WorldWideScience

Sample records for nonthermal field effects

  1. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats☆

    Science.gov (United States)

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR) than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested. PMID:25685416

  2. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats

    Directory of Open Access Journals (Sweden)

    Haitham S. Mohammed

    2013-03-01

    Full Text Available In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day. EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS and rapid eye movement sleep (REM sleep revealed that the REM sleep is more susceptible to modulated radiofrequency radiation fields (RFR than the SWS. The latency of REM sleep increased due to radiation exposure indicating a change in the ultradian rhythm of normal sleep cycles. The cumulative and irreversible effect of radiation exposure was proposed and the interaction of the extremely low frequency radiation with the similar EEG frequencies was suggested.

  3. Field induced decrystallization of silicon: Evidence of a microwave non-thermal effect

    Science.gov (United States)

    Nozariasbmarz, Amin; Dsouza, Kelvin; Vashaee, Daryoosh

    2018-02-01

    It is rather strange and not fully understood that some materials decrystallize when exposed to microwave radiation, and it is still debatable if such a transformation is a thermal or non-thermal effect. We hereby report experimental evidences that weight the latter effect. First, a single crystal silicon wafer exposed to microwaves showed strong decrystallization at high temperature. Second, when some areas of the wafer were masked with metal coating, only the exposed areas underwent decrystallization. Transmission electron microscopy analysis, x-ray diffraction data, and thermal conductivity measurements all indicated strong decrystallization, which occurred in the bulk of the material and was not a surface effect. These observations favor the existence of a non-thermal microwave effect.

  4. Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats ?

    OpenAIRE

    Mohammed, Haitham S.; Fahmy, Heba M.; Radwan, Nasr M.; Elsayed, Anwar A.

    2012-01-01

    In the present study, the alteration in the sleep EEG in rats due to chronic exposure to low-level non-thermal electromagnetic radiation was investigated. Two types of radiation fields were used; 900 MHz unmodulated wave and 900 MHz modulated at 8 and 16 Hz waves. Animals has exposed to radiation fields for 1 month (1 h/day). EEG power spectral analyses of exposed and control animals during slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) revealed that the REM sleep is more susc...

  5. Effect of external magnetic field and variable dust electrical charge on the shape and propagation of solitons in the two nonthermal ions dusty plasma

    International Nuclear Information System (INIS)

    Ghalambor Dezfuly, S.; Dorranian, D.

    2012-01-01

    In this manuscript, the effect of dust electrical charge, nonthermal ions, and external magnetic field on the shape and propagation of solitons in dusty plasma with two nonthermal ions is studied theoretically. Using the reductive perturbation theory, the Zakharov-Kuznetsov equation for propagation of dust acoustic waves is extracted. Results show that external magnetic field does not affect the amplitude of solitary wave but width of solitons are effectively depend on the magnitude of external magnetic field. With increasing the charge of dust particles the amplitude of solution will increase while their width will decrease. Increasing the nonthermal ions lead to opposite effect.

  6. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  7. The effects of radiofrequency fields on cell proliferation are non-thermal.

    Science.gov (United States)

    Velizarov, S; Raskmark, P; Kwee, S

    1999-02-01

    The number of reports on the effects induced by radiofrequency (RF) electromagnetic fields and microwave (MW) radiation in various cellular systems is still increasing. Until now no satisfactory mechanism has been proposed to explain the biological effects of these fields. One of the current theories is that heat generation by RF/MW is the cause, in spite of the fact that a great number of studies under isothermal conditions have reported significant cellular changes after exposure to RF/MW. Therefore, this study was undertaken to investigate which effect MW radiation from these fields in combination with a significant change of temperature could have on cell proliferation. The experiments were performed on the same cell line, and with the same exposure system as in a previous work [S. Kwee, P. Raskmark, Changes in cell proliferation due to environmental non-ionizing radiation: 2. Microwave radiation, Bioelectrochem. Bioenerg., 44 (1998), pp. 251-255]. The field was generated by signal simulation of the Global System for Mobile communications (GSM) of 960 MHz. Cell cultures, growing in microtiter plates, were exposed in a specially constructed chamber, a Transverse Electromagnetic (TEM) cell. The Specific Absorption Rate (SAR) value for each cell well was calculated for this exposure system. However, in this study the cells were exposed to the field at a higher or lower temperature than the temperature in the field-free incubator i.e., the temperature in the TEM cell was either 39 or 35 +/- 0.1 degrees C. The corresponding sham experiments were performed under exactly the same experimental conditions. The results showed that there was a significant change in cell proliferation in the exposed cells in comparison to the non-exposed (control) cells at both temperatures. On the other hand, no significant change in proliferation rate was found in the sham-exposed cells at both temperatures. This shows that biological effects due to RF/MW cannot be attributed only to a

  8. Health-related biological effects of electric, magnetic, and electro-magnetic fields with special reference to nonthermal effects

    International Nuclear Information System (INIS)

    Stevenson, A.F.G.

    1993-02-01

    This expert report is a supplement to the report by L. von Klitzing (The actions and effects of electric, magnetic, and electro-magnetic fields in man with special reference to athermal effects) and concerns in particular the biological effects on cationic homeostasis and cell regulation with special reference to calcium and the effects on the pineal gland. The report concludes with statements on teratogenicity, concerogenicity, mutagenicity and a bibliography of literature. (VHE) [de

  9. Nonthermal and screening effects on photoionizations in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Shin, Dong-Soo; Jung, Young-Dae

    2009-01-01

    The nonthermal and plasma screening effects on the x-ray photoionization process are investigated in astrophysical Lorentzian plasmas. The screened atomic wave function and energy eigenvalue of the target ion in Lorentzian plasmas are obtained by the Rayleigh-Ritz variational method. The x-ray retardation and screened Coulomb corrections are considered to obtain a photoionization cross section as a function of the spectral index and plasma parameters. It is shown that the nonthermal character of the Lorentzian plasma suppresses the photoionization cross section. Hence, the photoionization cross sections in nonthermal plasmas are found to be always smaller than those in thermal plasmas. It is also shown that the plasma screening effect is more significant for small spectral indices. In addition, the nonthermal effect on the photoionization cross section is found to be decreased with an increase in the Debye length.

  10. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.

    Science.gov (United States)

    Johns, Lennart D

    2002-07-01

    To present the frequency resonance hypothesis, a possible mechanical mechanism by which treatment with non-thermal levels of ultrasound stimulates therapeutic effects. The review encompasses a 4-decade history but focuses on recent reports describing the effects of nonthermal therapeutic levels of ultrasound at the cellular and molecular levels. A search of MEDLINE from 1965 through 2000 using the terms ultrasound and therapeutic ultrasound. The literature provides a number of examples in which exposure of cells to therapeutic ultrasound under nonthermal conditions modified cellular functions. Nonthermal levels of ultrasound are reported to modulate membrane properties, alter cellular proliferation, and produce increases in proteins associated with inflammation and injury repair. Combined, these data suggest that nonthermal effects of therapeutic ultrasound can modify the inflammatory response. The concept of the absorption of ultrasonic energy by enzymatic proteins leading to changes in the enzymes activity is not novel. However, recent reports demonstrating that ultrasound affects enzyme activity and possibly gene regulation provide sufficient data to present a probable molecular mechanism of ultrasound's nonthermal therapeutic action. The frequency resonance hypothesis describes 2 possible biological mechanisms that may alter protein function as a result of the absorption of ultrasonic energy. First, absorption of mechanical energy by a protein may produce a transient conformational shift (modifying the 3-dimensional structure) and alter the protein's functional activity. Second, the resonance or shearing properties of the wave (or both) may dissociate a multimolecular complex, thereby disrupting the complex's function. This review focuses on recent studies that have reported cellular and molecular effects of therapeutic ultrasound and presents a mechanical mechanism that may lead to a better understanding of how the nonthermal effects of ultrasound may be

  11. Nonthermal effects in thermal treatment applications of nonionizing irradiation

    Science.gov (United States)

    Thomsen, Sharon

    2005-04-01

    Several non-thermal factors influence the primary and secondary effects of interstitial thermal treatments using various types of non-ionizing irradiation. Recognition and understanding of the influences of these various factors are important in choice of energy source, the configuration of the application instrument and the design of treatments.

  12. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    Science.gov (United States)

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2018-07-24

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

  13. Nonthermal plasmas around black holes, relevant collective modes, new configurations, and magnetic field amplification

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B., E-mail: coppi@mit.edu [Massachusetts Institute of Technology (United States)

    2017-03-15

    The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.

  14. Semiconductor surface diffusion: Nonthermal effects of photon illumination

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.

    2000-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society

  15. Study of non-thermal effects from laser radiation on live tissues

    International Nuclear Information System (INIS)

    Cotta, M.A.

    1987-02-01

    The functional biological effects related to the irradiation of live tissues with low power lasers, called non-thermal effects were theoretical and experimentally studied. For the experimental part, a device which allows to: irradiation lesions artificially created on the back of rats by a He-Ne laser, or put a moving ground glass in front of the laser beam, by irradiation of this same laser with its coherence degree decreased. The relevance of the radiation coherence in the lesion cicatrization process was shown. The electrical field distribution and the intensity distribution on a surface with micro-roughness when irradiated by coherent light are theoretically studied. (M.C.K.) [pt

  16. Combining nonthermal technologies to control foodborne microorganisms.

    Science.gov (United States)

    Ross, Alexander I V; Griffiths, Mansel W; Mittal, Gauri S; Deeth, Hilton C

    2003-12-31

    Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned.

  17. Effects of nonthermal preservation technologies on antioxidant activity of fruits and vegetables: A review.

    Science.gov (United States)

    Xue, Zhaohui; Li, Jiaomei; Yu, Wancong; Lu, Xiaotong; Kou, Xiaohong

    2015-10-05

    Consumer demand for safe and nutritious fruits and vegetables has given rise to the development of a number of nonthermal food preservation techniques. Recent studies have highlighted that antioxidant activity of fruits and vegetables plays an important role in human health. In this paper, the influences of nonthermal preservation technologies, including pulsed electric field, radiation processing, dense phase carbon dioxide, ozone processing, and edible coatings, on the antioxidant capacity and related compounds in fruits and vegetables are reviewed. The proposed mechanisms and future trends are also discussed to accelerate the further commercialization and exploration of these novel technologies, which will, in turn, help to promote human health. © The Author(s) 2015.

  18. Nonthermal Effects of Photon Illumination on Surface Diffusion

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E.G.

    1998-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally for the first time. Activation energies and preexponential factors for diffusion of germanium and indium on silicon change substantially in response to illumination by photons having energies greater than the substrate band gap. Results depend on doping type. Ionization of surface vacancies by photogenerated charge carriers seems to play a key role. The results have significant implications for aspects of microelectronics fabrication governed by surface mobility. copyright 1998 The American Physical Society

  19. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr

    2016-01-01

    Roč. 6, č. 30 (2016), 25286-25292 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  20. Nonthermal food processing alternatives and their effects on taste and flavor compounds of beverages.

    Science.gov (United States)

    Ortega-Rivas, Enrique; Salmerón-Ochoa, Iván

    2014-01-01

    Food drinks are normally processed to increase their shelf-life and facilitate distribution before consumption. Thermal pasteurization is quite efficient in preventing microbial spoilage of many types of beverages, but the applied heat may also cause undesirable biochemical and nutritious changes that may affect sensory attributes of the final product. Alternative methods of pasteurization that do not include direct heat have been investigated in order to obtain products safe for consumption, but with sensory attributes maintained as unchanged as possible. Food scientists interested in nonthermal food preservation technologies have claimed that such methods of preserving foods are equally efficient in microbial inactivation as compared with conventional thermal means of food processing. Researchers in the nonthermal food preservation area also affirm that alternative preservation technologies will not affect, as much as thermal processes, nutritional and sensory attributes of processed foods. This article reviews research in nonthermal food preservation, focusing on effects of processing of food drinks such as fruit juices and dairy products. Analytical techniques used to identify volatile flavor-aroma compounds will be reviewed and comparative effects for both thermal and nonthermal preservation technologies will be discussed.

  1. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  2. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  3. Effect of nonthermal electrons on oblique electrostatic excitations in a magnetized electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

    2012-05-15

    The linear and nonlinear propagation of ion-acoustic waves are investigated in a magnetized electron-positron-ion (e-p-i) plasma with nonthermal electrons. In the linear regime, the propagation of two possible modes and their evolution are studied via a dispersion relation. In the cases of parallel and perpendicular propagation, it is shown that these two possible modes are always stable. Then, the Korteweg-de Vries equation describing the dynamics of ion-acoustic solitary waves is derived from a weakly nonlinear analysis. The influence on the solitary wave characteristics of relevant physical parameters such as nonthermal electrons, magnetic field, obliqueness, positron concentration, and temperature ratio is examined. It is observed that the increasing nonthermal electrons parameter makes the solitary structures much taller and narrower. Also, it is revealed that the magnetic field strength makes the solitary waves more spiky. The present investigation contributes to the physics of the nonlinear electrostatic ion-acoustic waves in space and laboratory e-p-i plasmas in which wave damping produces an electron tail.

  4. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  5. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  6. Effect of Weakly Nonthermal Ion Velocity Distribution on Jeans Instability in a Complex Plasma in Presence of Secondary Electrons

    International Nuclear Information System (INIS)

    Sarkar, S.; Maity, S.

    2013-01-01

    In this paper we have investigated the effect of weak nonthermality of ion velocity distribution on Jean’s instability in a complex plasma in presence of secondary electrons and negatively charged dust grains. The primary and secondary electron temperatures are assumed equal. Thus plasma under consideration consists of three components: Boltzman distributed electrons, non-thermal ions and negatively charged inertial dust grains. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically we have found that secondary electron emission destabilizes Jean’s mode when ion nonthermality is weak. (author)

  7. Preliminary results on the non-thermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies

    Science.gov (United States)

    Hadjiloucas, S.; Chahal, M. S.; Bowen, J. W.

    2002-11-01

    We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200-350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

  8. Preliminary results on the non-thermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Chahal, M S; Bowen, J W [Department of Cybernetics, University of Reading, Whiteknights, RG6 6AY, Berkshire (United Kingdom)

    2002-11-07

    We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200-350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlich's hypothesis.

  9. Non-thermal effects in a hot dense plasma

    International Nuclear Information System (INIS)

    Jones, L.A.; Kania, D.R.; Hammel, B.A.; Kallne, E.; Maestas, M.D.; McGurn, J.; Shepherd, R.

    1985-01-01

    A hollow gas shell Z-pinch device is described, and some initial observations are shown to lead to the conclusion that there is an energetic electron beam produced along the axis of the collapsing gas shell. An experiment is summarized that directly measured some of the characteristics of this runaway electron beam. Finally, the results of an experiment which observed a new affect are presented along with a model that uses a runaway electron beam to explain this new effect. 9 refs., 17 figs

  10. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage.

    Science.gov (United States)

    Monteiro, Sara H M C; Silva, Eric Keven; Alvarenga, Verônica O; Moraes, Jeremias; Freitas, Mônica Q; Silva, Márcia C; Raices, Renata S L; Sant'Ana, Anderson S; Meireles, M Angela A; Cruz, Adriano G

    2018-04-01

    This study presents the emerging high-intensity ultrasound (HIUS) processing as a non-thermal alternative to high-temperature short-time pasteurization (HTST). Chocolate milk beverage (CMB) was subjected to different ultrasound energy densities (0.3-3.0 kJ/cm 3 ), as compared to HTST pasteurization (72 °C/15 s) aimed to verify the effect of the HIUS processing on the microbiological and physicochemical characteristics of the beverage. The application of HIUS at an energy density of 3.0 kJ/cm 3 was able to reduce 3.56 ± 0.02 logarithmic cycles in the total aerobic counts. In addition, the ultrasound energy density affected the physical properties of the beverage as the size distribution of fat globule and rheological behavior, as well as the chemical properties such as antioxidant activity, ACE inhibitory activity, fatty acid profile, and volatile profile. In general, the different energetic densities used as a non-thermal method of pasteurization of CMB were more effective when compared to the conventional pasteurization by HTST, since they improved the microbiological and physicochemical quality, besides preserving the bioactive compounds and the nutritional quality of the product. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of CO on NO and N2O conversions in nonthermal argon plasma

    International Nuclear Information System (INIS)

    Zhao Guibing; Argyle, Morris D.; Radosz, Maciej

    2006-01-01

    200-600 ppm of CO inhibit NO conversion in nonthermal Ar plasma, but do not produce N 2 O. However, 1.01% of CO has no effect on NO conversion, but produces N 2 O. In general, N 2 O conversion in Ar plasma decreases with increasing CO concentration. These experimental results cannot be explained by charge transfer reactions of Ar + . Selectivity analysis of all excited states of Ar possibly contributing to NO x conversion without and with CO suggests that only Ar( 3 P 2 ) contributes to NO x conversion and CO dissociation. A kinetic model of 43 reactions is required to model NO conversion or N 2 O conversion in Ar without CO, whereas 81 reactions are required to model NO conversion and N 2 O conversion in Ar with CO. At constant gas pressure, a single set of model parameters can predict NO conversion or N 2 O conversion without and with CO. All experimental results can be explained using a reaction mechanism in which excited neutral states of Ar are the only active species, which supports the conclusion that cations have a negligible impact on these nonthermal plasma reactions

  12. Nonthermal fusion reactor concept based on Hall-effect magnetohydrodynamics plasma theory

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1988-01-01

    The failure of magnetic confinement controlled thermonuclear fusion research to achieve its goal is attributed to its foundation on the incomplete MHD plasma description instead of the more general HMHD (Hall-effect magnetohydrodynamics) theory. The latter allows for a certain magnetic plasma self-confinement under described stringent conditions. A reactor concept based on the formation, acceleration, and forced disintegration of magnetized whirl structures, plasmoids, is proposed. The four conventional MHD theory objections, i.e., absence of dynamo action, fast decay caused by resistivity, non-existence of magnetic self-confinement, and negligible non-thermal fusion yield, are shown not to apply. Support for the scheme from dense plasma focus research is pointed out. (orig.) [de

  13. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    Science.gov (United States)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  14. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  15. Nonthermal gravitino production in tribrid inflation

    Science.gov (United States)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  16. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  17. Synergistic Effect of Nanophotocatalysis and Nonthermal Plasma on the Removal of Indoor HCHO

    Directory of Open Access Journals (Sweden)

    Yuanwei Lu

    2012-01-01

    Full Text Available Photocatalysis is an effective method of air purification at the condition of a higher pollutant concentration. However, its wide application in indoor air cleaning is limited due to the low level of indoor air contaminants. Immobilizing the nanosized TiO2 particles on the surface of activated carbon filter (TiO2/AC film could increase the photocatalytic reaction rate as a local high pollutant concentration can be formed on the surface of TiO2 by the adsorption of AC. However, the pollutant removal still decreased quickly with the increase in flow velocity, which results in a decrease in air treatment capacity. In order to improve the air treatment capacity by the photocatalytic oxidation (PCO method, this paper used formaldehyde (HCHO as a contaminant to study the effect of combination of PCO with nonthermal plasma technology (NTP on the removal of HCHO. The experimental results show that HCHO removal is more effective with line-to-plate electrode discharge reactor; the HCHO removal and the reaction rate can be enhanced and the amount of air that needs to be cleaned can be improved. Meanwhile, the results show that there is the synergistic effect on the indoor air purification by the combination of PCO with NTP.

  18. Effects of non-thermal mobile phone radiation on breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Zen Fourie

    2011-09-01

    Full Text Available Mobile phone usage currently exceeds landline communication in Africa. The extent of this usage has raised concerns about the long-term health effects of the ongoing use of mobile phones. To assess the physiological effects of radiation from mobile phones in vitro, MCF-7 breast adenocarcinoma cells were exposed to 2W/kg non-thermal 900-MHz mobile phone radiation. The effects investigated were those on metabolic activity, cell morphology, cell cycle progression, phosphatidylserine (PS externalisation and the generation of reactive oxygen species and nitrogen species. Statistically insignificant increases in mitochondrial dehydrogenase activity were observed in irradiated cells when compared to controls. Fluorescent detection of F-actin demonstrated an increase in F-actin stress fibre formation in irradiated MCF-7 cells. Cell cycle progression revealed no statistically significant variation. A small increase in early and late apoptotic events in irradiated MCF-7 cells was observed. No statistically significant changes were observed in reactive oxygen and reactive nitrogen species generation. In addition, quantitative and qualitative analyses of cell cycle activity and nuclear and cytosolic changes, respectively, revealed no significant changes. In conclusion, exposure to 1 h of 900-MHz irradiation induced an increase in PS externalisation and an increase in the formation of F-actin stress fibres in MCF-7 cells. Data obtained from this study, and their correlation with other studies, provides intriguing links between radio frequency radiation and cellular events and warrant further investigation.

  19. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    Science.gov (United States)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  20. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  1. Theoretical-experimental study of the non-thermal effects of the polarized laser radiation in living tissues

    International Nuclear Information System (INIS)

    Ribeiro, M.S.

    1991-01-01

    In the present research we had as a fundamental objective to analyse the non-thermal effects of the laser polarized light in biological tissues. These effects were performed with low power laser output. The theoretical procedure consisted in looking for a simple model which connects the effect of light polarized with microscopically rough tissues using well established physical concepts. Experimentally, we created artificial wounds on the back of animals using liquid nitrogen (this method was chosen because it does not interfere in the biochemistry of the animal tissue). For the wound irradiation we have utilized a He-Ne attached to an optical system. (author)

  2. Photobiomodulation with non-thermal lasers: Mechanisms of action and therapeutic uses in dermatology and aesthetic medicine.

    Science.gov (United States)

    Nestor, Mark; Andriessen, Anneke; Berman, Brian; Katz, Bruce E; Gilbert, Dore; Goldberg, David J; Gold, Michael H; Kirsner, Robert S; Lorenc, Paul Z

    2017-08-01

    Non-thermal laser therapy in dermatology, is a growing field in medical technology by which therapeutic effects are achieved by exposing tissues to specific wavelengths of light. The purpose of this review was to gain a better understanding of the science behind non-thermal laser and the evidence supporting its use in dermatology. A group of dermatologists and surgeons recently convened to review the evidence supporting the use of non-thermal laser for body sculpting, improving the appearance of cellulite, and treating onychomycosis. The use of non-thermal laser for body sculpting is supported by three randomized, double-blind, sham-controlled studies (N = 161), one prospective open-label study (N = 54), and two retrospective studies (N = 775). Non-thermal laser application for improving the appearance of cellulite is supported by one randomized, double-blind, sham-controlled study (N = 38). The use of non-thermal laser for the treatment of onychomycosis is supported by an analysis of three non-randomized, open-label studies demonstrating clinical improvement of nails (N = 292). Non-thermal laser is steadily moving into mainstream medical practice, such as dermatology. Although present studies have demonstrated the safety and efficacy of non-thermal laser for body sculpting, cellulite reduction and onychomycosis treatment, studies demonstrating the efficacy of non-thermal laser as a stand-alone procedure are still inadequate.

  3. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  4. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  5. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  6. Effect of electromagnetic fields on the bacteria bioluminescent activity

    International Nuclear Information System (INIS)

    Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.

    1995-01-01

    The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs

  7. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  8. Nonthermal effects on existence domains for dust-acoustic solitary structures in plasmas with two-temperature ions

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.

    2010-01-01

    Large dust-acoustic waves are investigated in a multispecies plasma model consisting of adiabatic, negatively charged dust, in the presence of two ion species, a cooler one with a Boltzmann distribution and a hotter one with a nonthermal Cairns distribution. This is treated through a Sagdeev pseudopotential analysis, in a way which is physically transparent and puts great emphasis on the existence domains in compositional parameter space. The occurrence and properties of positive double layers have been studied, and this automatically also includes the existence domains for positive solitons with velocities and amplitudes smaller than the double layer values. A brief discussion is given of negative solitons and of conditions affecting the coexistence of negative and positive solitary structures for the same plasma properties. Subject to simple adjustments, these results apply equally to the conjugate plasma model of positive dust and two electron species, and in the limit without nonthermal effects, to the case of ion-acoustic solitary structures in a plasma with double Boltzmann electrons, and extensions of earlier results of that problem are presented.

  9. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  10. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  11. Non-thermal effects on femtosecond laser ablation of polymers extracted from the oscillation of time-resolved reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Takayuki, E-mail: kumada.takayuki@jaea.go.jp; Akagi, Hiroshi; Itakura, Ryuji; Otobe, Tomohito; Nishikino, Masaharu; Yokoyama, Atsushi [Kansai Photon Science Institute, Japan Atomic Energy Agency, Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2015-06-01

    The dynamics of femtosecond laser ablation of transparent polymers were examined using time-resolved reflectivity. When these polymers were irradiated by a pump pulse with fluence above the ablation threshold of 0.8–2.0 J/cm{sup 2}, we observed the oscillation of the reflectivity caused by the interference between the reflected probe pulses from the sample surface and the thin layer due to the non-thermal photomechanical effects of spallation. As the fluence of the pump pulse increased, the separation velocity of the thin layer increased from 6 km/s to the asymptotic value of 11 km/s. It is suggested that the velocities are determined by shock-wave velocities of the photo-excited layer.

  12. Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation

    International Nuclear Information System (INIS)

    Pan Wei-Zhen; Yang Xue-Jun; Xie Zhi-Kun

    2011-01-01

    Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour—Ruffini method. After the tortoise coordinate transformation, the Klein—Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton—Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable. (geophysics, astronomy, and astrophysics)

  13. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S.

    2012-01-01

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  14. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    International Nuclear Information System (INIS)

    Hoang, Trung Q; Zhu Xinli; Lobban, Lance L; Mallinson, Richard G

    2011-01-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H 2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H 2 and CO to 120% and 87%, with a significant reduction of C 2 H x side products. H 2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO 2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C 2 H x products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H 2 only.

  15. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  16. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  17. Nonthermal Photocoercivity Effect in Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor

    Science.gov (United States)

    Kiessling, T.; Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.

    2011-12-01

    We report a photoinduced change of the coercive field of a low doped Ga1-xMnxAs ferromagnetic semiconductor under very low intensity illumination. This photocoercivity effect (PCE) is local and reversible, which enables the controlled formation of localized magnetization domains. The PCE arises from a light induced lowering of the domain wall pinning energy as confirmed by test experiments on high doped, fully metallic ferromagnetic Ga1-xMnxAs.

  18. Effect of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity, Saumyen; Banerjee, Soumyajyoti

    2011-01-01

    In this paper, we have investigated the role of secondary electron emission on Jean's instability in a complex plasma in the presence of nonthermal ions. The equilibrium dust surface potential has been considered negative and hence primary and secondary electron temperatures are equal. Such plasma consists of three components: Boltzman distributed electrons, nonthermal ions and negatively charged inertial dust grains. From the linear dispersion relation, we have calculated the real frequency and growth rate of Jean's instability. Numerically, we have shown that for strong ion nonthermality Jean's mode is unstable. Growth of the instability reduces and the real part of the wave frequency increases with increasing secondary electron emission from dust grains. Hence, strong secondary electron emission suppresses Jean's instability in a complex plasma even when ion nonthermality is strong and equilibrium dust charge is negative.

  19. Nonthermal Photocoercivity Effect in a Low-Doped (Ga,Mn)As Ferromagnetic Semiconductor

    Science.gov (United States)

    Astakhov, G. V.; Hoffmann, H.; Korenev, V. L.; Kiessling, T.; Schwittek, J.; Schott, G. M.; Gould, C.; Ossau, W.; Brunner, K.; Molenkamp, L. W.

    2009-05-01

    We report a photoinduced change of the coercive field, i.e., a photocoercivity effect (PCE), under very low intensity illumination of a low-doped (Ga,Mn)As ferromagnetic semiconductor. We find a strong correlation between the PCE and the sample resistivity. Spatially resolved dynamics of the magnetization reversal rule out any role of thermal heating in the origin of this PCE, and we propose a mechanism based on the light-induced lowering of the domain wall pinning energy. The PCE is local and reversible, allowing writing and erasing of magnetic images using light.

  20. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    Science.gov (United States)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  1. Nonthermal Ablation by Using Intravascular Oxygen Radical Generation with WST11: Dynamic Tissue Effects and Implications for Focal Therapy

    Science.gov (United States)

    Kimm, Simon Y.; Tarin, Tatum V.; Monette, Sébastien; Srimathveeravalli, Govindarajan; Gerber, Daniel; Durack, Jeremy C.; Solomon, Stephen B.; Scardino, Peter T.; Scherz, Avigdor

    2016-01-01

    effect, despite treatment proximity. Conclusion WST11 VTP induces nonthermal tissue ablation in target tissue while preserving critical organ structures and bystander blood vessels within solid organs. © RSNA, 2016 Online supplemental material is available for this article. PMID:26986047

  2. Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: Synergetic effect and mass transfer

    OpenAIRE

    Assadi , Aymen Amine; Bouzaza , Abdelkrim; Merabet , Smail; Wolbert , Dominique

    2014-01-01

    International audience; This paper deals with photocatalysis (TiO2 + UV), nonthermal plasma (NTP) and their combinations. These processes have been widely studied for isovaleraldehyde (Isoval) treatment. Isoval removal, selectivity of CO2 and CO, and ozone formation are investigated in order to evaluate the performance of the combined process. The results show that the performance of the process has enhanced and a synergetic effect is observed. On the other hand, this work aims at investigati...

  3. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  4. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Yi Sun

    Full Text Available We investigated the antifungal effect of non-thermal plasma, as well as its combination with common antifungal drugs, against Candida biofilms. A direct current atmospheric pressure He/O(2 (2% plasma microjet (PMJ was used to treat Candida biofilms in a 96-well plate. Inactivation efficacies of the biofilms were evaluated by XTT assay and counting colony forming units (CFUs. Morphological properties of the biofilms were evaluated by Scanning Electron Microscope (SEM. The sessile minimal inhibitory concentrations (SMICs of fluconazole, amphotericin B, and caspofungin for the biofilms were also tested. Electron Spin Resonance (ESR spectroscopy was used to detect the reactive oxygen species (ROS generated directly and indirectly by PMJ. The Candida biofilms were completely inactivated after 1 min PMJ treatment, where severely deformed fungal elements were observed in SEM images. The SMICs of the tested antifungal drugs for the plasma-treated biofilms were decreased by 2-6 folds of dilution, compared to those of the untreated controls. ROS such as hydroxyl radical ((•OH, superoxide anion radical ((•O(2 (- and singlet molecular oxygen ((1O(2 were detected by ESR. We hence conclude that He/O(2 (2% plasma alone, as well as in combination with common antifungal drugs, is able to inactivate Candida biofilms rapidly. The generation of ROS is believed to be one of the underlying mechanisms for the fungicidal activity of plasma.

  5. Non-thermal leptogenesis after Majoron hilltop inflation

    Science.gov (United States)

    Antusch, Stefan; Marschall, Kenneth

    2018-05-01

    We analyse non-thermal leptogenesis after models of Majoron hilltop inflation, where the scalar field that provides masses for the right-handed neutrinos and sneutrinos via its vacuum expectation value acts as the inflaton. We discuss different realisations of Majoron inflation models with different hilltop shapes and couplings to the right-handed (s)neutrinos. To study the non-thermally produced baryon asymmetry in these models, we numerically solve the relevant Boltzmann equations. In contrast to previous studies, we include the effects from resonant sneutrino particle production during preheating. We find that these effects can result in an enhancement of the produced baryon asymmetry by more than an order of magnitude. This can significantly change the favoured parameter regions of these models.

  6. Toward a Philosophy and Theory of Volumetric Nonthermal Processing.

    Science.gov (United States)

    Sastry, Sudhir K

    2016-06-01

    Nonthermal processes for food preservation have been under intensive investigation for about the past quarter century, with varying degrees of success. We focus this discussion on two volumetrically acting nonthermal processes, high pressure processing (HPP) and pulsed electric fields (PEF), with emphasis on scientific understanding of each, and the research questions that need to be addressed for each to be more successful in the future. We discuss the character or "philosophy" of food preservation, with a question about the nature of the kill step(s), and the sensing challenges that need to be addressed. For HPP, key questions and needs center around whether its nonthermal effectiveness can be increased by increased pressures or pulsing, the theoretical treatment of rates of reaction as influenced by pressure, the assumption of uniform pressure distribution, and the need for (and difficulties involved in) in-situ measurement. For PEF, the questions include the rationale for pulsing, difficulties involved in continuous flow treatment chambers, the difference between electroporation theory and experimental observations, and the difficulties involved in in-situ measurement and monitoring of electric field distribution. © 2016 Institute of Food Technologists®

  7. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  8. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  9. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  10. Non-thermal radio frequency and static magnetic fields increase rate of hemoglobin deoxygenation in a cell-free preparation.

    Directory of Open Access Journals (Sweden)

    David Muehsam

    Full Text Available The growing body of clinical and experimental data regarding electromagnetic field (EMF bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF signal, and a static magnetic field (SMF, applied independently, increased the rate of deoxygenation of human hemoglobin (Hb in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10-30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur.

  11. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  12. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    International Nuclear Information System (INIS)

    Veenendaal, Michel van

    2016-01-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than a picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.

  13. [Non-thermal effect of GSM electromagnetic radiation on quality of pea seeds].

    Science.gov (United States)

    Veselova, T V; Veselovskiĭ, V A; Deev, L I; Baĭzhumanov, A A

    2012-01-01

    The seeds with low level of room temperature phosphorescence (RTP) were selected from a lot of air-dry peas (Pisum sativum) with 62% germination. These strong seeds (95-97% germination percentage) in air-dry, imbibed or emerged states were exposed to 905 MHz GSM-band electromagnetic radiation (EMR). The following effects of EMR were observed. Fraction II with higher RTP level appeared in the air-dry seeds. The germination rate decreased 2-3 fold in the air-dry, swollen and sprouting seeds due to an increase in the ratio of the seedlings with morphological defects (from 3 to 38%) and suffocated seeds (from 1 to 15%). We suggest tentative mechanisms to account for the decreased fitness of peas under GSM-band EMR (905 MHz); also discussed is the role of non-enzymatic hydrolysis of carbohydrates and amino-carbonyl reaction in this process.

  14. Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action.

    Science.gov (United States)

    Pall, Martin L

    2015-01-01

    This review considers a paradigm shift on microwave electromagnetic field (EMF) action from only thermal effects to action via voltage-gated calcium channel (VGCC) activation. Microwave/lower frequency EMFs were shown in two dozen studies to act via VGCC activation because all effects studied were blocked by calcium channel blockers. This mode of action was further supported by hundreds of studies showing microwave changes in calcium fluxes and intracellular calcium [Ca2+]i signaling. The biophysical properties of VGCCs/similar channels make them particularly sensitive to low intensity, non-thermal EMF exposures. Non-thermal studies have shown that in most cases pulsed fields are more active than are non-pulsed fields and that exposures within certain intensity windows have much large biological effects than do either lower or higher intensity exposures; these are both consistent with a VGCC role but inconsistent with only a heating/thermal role. Downstream effects of VGCC activation include calcium signaling, elevated nitric oxide (NO), NO signaling, peroxynitrite, free radical formation, and oxidative stress. Downstream effects explain repeatedly reported biological responses to non-thermal exposures: oxidative stress; single and double strand breaks in cellular DNA; cancer; male and female infertility; lowered melatonin/sleep disruption; cardiac changes including tachycardia, arrhythmia, and sudden cardiac death; diverse neuropsychiatric effects including depression; and therapeutic effects. Non-VGCC non-thermal mechanisms may occur, but none have been shown to have effects in mammals. Biologically relevant safety standards can be developed through studies of cell lines/cell cultures with high levels of different VGCCs, measuring their responses to different EMF exposures. The 2014 Canadian Report by a panel of experts only recognizes thermal effects regarding safety standards for non-ionizing radiation exposures. Its position is therefore contradicted by each

  15. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  16. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  17. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  18. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Deshmukh, R.R.; Arunkumar, A.; Ramkumar, M.C.; Ruzybayev, I.; Ismat Shah, S.; Su, Pi-Guey; Periayah, Mercy Halleluyah; Halim, A.S.

    2015-01-01

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O 2 , air and Ar + O 2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well

  19. Sneutrino hybrid inflation and nonthermal leptogenesis

    International Nuclear Information System (INIS)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M.

    2010-01-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters

  20. Sneutrino hybrid inflation and nonthermal leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M., E-mail: antusch@mppmu.mpg.de, E-mail: jbaumann@mppmu.mpg.de, E-mail: domcke@mppmu.mpg.de, E-mail: kostka@mppmu.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2010-10-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters.

  1. On the Non-Thermal Energy Content of Cosmic Structures

    Directory of Open Access Journals (Sweden)

    Franco Vazza

    2016-11-01

    Full Text Available (1 Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales; (2 Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter; (3 Results: the impact of non-thermal energy (e.g., cosmic rays, magnetic fields and turbulent motions is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume; (4 Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles and of the origin of extragalactic magnetic fields.

  2. Numerical Simulation of Non-Thermal Food Preservation

    Science.gov (United States)

    Rauh, C.; Krauss, J.; Ertunc, Ö.; Delgado, a.

    2010-09-01

    Food preservation is an important process step in food technology regarding product safety and product quality. Novel preservation techniques are currently developed, that aim at improved sensory and nutritional value but comparable safety than in conventional thermal preservation techniques. These novel non-thermal food preservation techniques are based for example on high pressures up to one GPa or pulsed electric fields. in literature studies the high potential of high pressures (HP) and of pulsed electric fields (PEF) is shown due to their high retention of valuable food components as vitamins and flavour and selective inactivation of spoiling enzymes and microorganisms. for the design of preservation processes based on the non-thermal techniques it is crucial to predict the effect of high pressure and pulsed electric fields on the food components and on the spoiling enzymes and microorganisms locally and time-dependent in the treated product. Homogenous process conditions (especially of temperature fields in HP and PEF processing and of electric fields in PEF) are aimed at to avoid the need of over-processing and the connected quality loss and to minimize safety risks due to under-processing. the present contribution presents numerical simulations of thermofluiddynamical phenomena inside of high pressure autoclaves and pulsed electric field treatment chambers. in PEF processing additionally the electric fields are considered. Implementing kinetics of occurring (bio-) chemical reactions in the numerical simulations of the temperature, flow and electric fields enables the evaluation of the process homogeneity and efficiency connected to different process parameters of the preservation techniques. Suggestions to achieve safe and high quality products are concluded out of the numerical results.

  3. State of the art in medical applications using non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru

    2017-12-01

    Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.

  4. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  5. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); University of the Western Cape, Belville (South Africa); Devanandhan, S., E-mail: devanandhan@gmail.com [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa)

    2016-08-15

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of “burst a” event by Viking satellite on the auroral field lines.

  6. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  7. Effective field theories

    International Nuclear Information System (INIS)

    Mack, G.; Kalkreuter, T.; Palma, G.; Speh, M.

    1992-05-01

    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low utraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically, the idea is to integrate out the high frequency components of fields. This requires the choice of a 'blockspin', i.e. the specification af a low frequency field as a function of the fundamental fields. These blockspins will be fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspin in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels A from coarse to fine grid in addition to the averaging kernels C which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The special case of a 'lattice' with a single site (the constraint effective potential) is of particular interest. In a higgs model, the effective action reduces in this case to the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data. (orig.)

  8. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1993-01-01

    The most appropriate description of particle interactions in the language of quantum field theory depends on the energy at which the interactions are studied; the description is in terms of an ''effective field theory'' that contains explicit reference only to those particles that are actually important at the energy being studied. The various themes of the article are: local quantum field theory, quantum electrodynamics, new physics, dimensional parameters and renormalizability, socio-dynamics of particle theory, spontaneously broken gauge theories, scale dependence, grand unified and effective field theories. 2 figs

  9. Urinary Tract Effects After Multifocal Nonthermal Irreversible Electroporation of the Kidney: Acute and Chronic Monitoring by Magnetic Resonance Imaging, Intravenous Urography and Urinary Cytology

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Johann Jakob, E-mail: johann.wendler@med.ovgu.de [University of Magdeburg, Department of Urology (Germany); Pech, Maciej [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Porsch, Markus; Janitzky, Andreas [University of Magdeburg, Department of Urology (Germany); Fischbach, Frank [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Buhtz, Peter; Vogler, Klaus [University of Magdeburg, Institute of Pathology (Germany); Huehne, Sarah [University of Magdeburg, Department of Urology (Germany); Borucki, Katrin [University of Magdeburg, Institute of Clinical Chemistry (Germany); Strang, Christof [University of Magdeburg, Department of Anaesthesiology (Germany); Mahnkopf, Dirk [Institute of Medical Technology and Research (Germany); Ricke, Jens [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Liehr, Uwe-Bernd [University of Magdeburg, Department of Urology (Germany)

    2012-08-15

    Purpose: The nonthermal irreversible electroporation (NTIRE) is a novel potential ablation modality for renal masses. The aim of this study was the first evaluation of NTIRE's effects on the renal urine-collecting system using intravenous urography (IVU) and urinary cytology in addition to histology and magnetic resonance imaging (MRI). Methods: Eight percutaneous NTIRE ablations of the renal parenchyma, including the calyxes or pelvis, were performed in three male swine. MRI, IVU, histology, and urinary cytology follow-ups were performed within the first 28 days after treatment. Results: MRI and histological analysis demonstrated a localized necrosis 7 days and a localized scarification of the renal parenchyma with complete destruction 28 days after NTIRE. The urine-collecting system was preserved and showed urothelial regeneration. IVU and MRI showed an unaltered normal morphology of the renal calyxes, pelvis, and ureter. A new urinary cytology phenomenon featured a temporary degeneration by individual vacuolization of detached transitional epithelium cells within the first 3 days after NTIRE. Conclusions: This first urographical, urine-cytological, and MRI evaluation after porcine kidney NTIRE shows multifocal parenchyma destruction while protecting the involved urine-collecting system with regenerated urothelial tissue. NTIRE could be used as a targeted ablation method of centrally located renal masses.

  10. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration.

    Science.gov (United States)

    Narinyan, Lilia; Ayrapetyan, Sinerik

    2017-01-01

    Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [ 3 H]-ouabain binding with cell membrane, 45 Ca 2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na + gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45 Ca 2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na + /Ca 2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [ 3 H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.

  11. Integrated nonthermal treatment system study

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  12. Integrated nonthermal treatment system study

    International Nuclear Information System (INIS)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J.; Quapp, W.J.; Bechtold, T.; Brown, B.; Schwinkendorf, W.; Swartz, G.

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs

  13. High power RF heating and nonthermal distributions in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, A.G.

    1994-12-13

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL).

  14. High power RF heating and nonthermal distributions in tokamak plasmas

    International Nuclear Information System (INIS)

    Peeters, A.G.

    1994-01-01

    This thesis discusses the nonthermal effects in the electron population of a tokamak, that are generated by the inductive electric field and electron cyclotron resonant heating. The kinetic description of the plasma is given by a Boltzmann equation for the electron velocity distribution, in which the many small angle scattering Coulomb collisions that occur in the plasma are modelled by a Fokker-Planck collision term. These collisions drive the distribution towards the Maxwellian distribution of thermodynamic equilibrium. The energy absorption from the electron cyclotron waves and the acceleration by the toroidal electric field lead to deviations from the Maxwellian destribution. The interaction of the electron cyclotron waves with the plasma is treated within quasilinear theory. Resonant interaction occurs when the wave frequency matches one of the harmonics of the gyration frequency of the electrons in the static magnetic field. The waves generate a diffusion of resonant electrons in velocity space. The inductive electric field accelerates the electrons in the direction prallel to the magnetic field and leads to a convection in velocity space. The equilibrium that is reached between the driving forces of the electric field and the electron cyclotron waves and the restoring force of the collisions is studied in this thesis. The specific geometry of the tokamak is incorporated in the model through an average of the kinetic equation over the electron orbits. (orig./WL)

  15. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  16. Nonthermal Radiation from Supernova Remnant Shocks

    Directory of Open Access Journals (Sweden)

    Hyesung Kang

    2013-09-01

    Full Text Available Most of high energy cosmic rays (CRs are thought to be produced by diffusive shock acceleration (DSA at supernova remnants (SNRs within the Galaxy. Fortunately, nonthermal emissions from CR protons and electrons can provide direct observational evidence for such a model and place strong constraints on the complex nonlinear plasma processes in DSA theory. In this study we calculate the energy spectra of CR protons and electrons in Type Ia SNRs, using time-dependent DSA simulations that incorporate phenomenological models for some wave-particle interactions. We demonstrate that the timedependent evolution of the self-amplified magnetic fields, Alfvénic drift, and escape of the highest energy particles affect the energy spectra of accelerated protons and electrons, and so resulting nonthermal radiation spectrum. Especially, the spectral cutoffs in X-ray and γ-ray emission spectra are regulated by the evolution of the highest energy particles, which are injected at the early phase of SNRs. Thus detailed understandings of nonlinear wave-particle interactions and time-dependent DSA simulations of SNRs are crucial in testing the SNR hypothesis for the origin of Galactic cosmic rays.

  17. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  18. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  19. Effective quantum field theories

    International Nuclear Information System (INIS)

    Georgi, H.M.

    1989-01-01

    Certain dimensional parameters play a crucial role in the understanding of weak and strong interactions based on SU(2) x U(1) and SU(3) symmetry group theories and of grand unified theories (GUT's) based on SU(5). These parameters are the confinement scale of quantum chromodynamics and the breaking scales of SU(2) x U(1) and SU(5). The concepts of effective quantum field theories and renormalisability are discussed with reference to the economics and ethics of research. (U.K.)

  20. Possibilities of implementing nonthermal processing methods in the dairy industry

    OpenAIRE

    Irena Jeličić

    2010-01-01

    In the past two decades a lot of research in the field of food science has focused on new, non-thermal processing methods. This article describes the most intensively investigated new processing methodsfor implementation in the dairy industry, like microfiltration, high hydrostatic pressure, ultrasound and pulsed electric fields. For each method an overview is given for the principle of microbial inactivation, the obtained results regarding reduction of microorganisms as well as the positive ...

  1. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min

    2016-01-01

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  2. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna

    2016-06-23

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  3. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects.

    Science.gov (United States)

    Leszczynski, Dariusz; Joenväärä, Sakari; Reivinen, Jukka; Kuokka, Reetta

    2002-05-01

    We have examined whether non-thermal exposures of cultures of the human endothelial cell line EA.hy926 to 900 MHz GSM mobile phone microwave radiation could activate stress response. Results obtained demonstrate that 1-hour non-thermal exposure of EA.hy926 cells changes the phosphorylation status of numerous, yet largely unidentified, proteins. One of the affected proteins was identified as heat shock protein-27 (hsp27). Mobile phone exposure caused a transient increase in phosphorylation of hsp27, an effect which was prevented by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38MAPK). Also, mobile phone exposure caused transient changes in the protein expression levels of hsp27 and p38MAPK. All these changes were non-thermal effects because, as determined using temperature probes, irradiation did not alter the temperature of cell cultures, which remained throughout the irradiation period at 37 +/- 0.3 degrees C. Changes in the overall pattern of protein phosphorylation suggest that mobile phone radiation activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK stress response pathway. Based on the known functions of hsp27, we put forward the hypothesis that mobile phone radiation-induced activation of hsp27 may (i) facilitate the development of brain cancer by inhibiting the cytochrome c/caspase-3 apoptotic pathway and (ii) cause an increase in blood-brain barrier permeability through stabilization of endothelial cell stress fibers. We postulate that these events, when occurring repeatedly over a long period of time, might become a health hazard because of the possible accumulation of brain tissue damage. Furthermore, our hypothesis suggests that other brain damaging factors may co-participate in mobile phone radiation-induced effects.

  4. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, CO 80309 (United States)

    2017-07-10

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  5. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  6. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  7. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli

    2018-11-01

    The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nonthermal fixed points and the functional renormalization group

    International Nuclear Information System (INIS)

    Berges, Juergen; Hoffmeister, Gabriele

    2009-01-01

    Nonthermal fixed points represent basic properties of quantum field theories, in addition to vacuum or thermal equilibrium fixed points. The functional renormalization group on a closed real-time path provides a common framework for their description. For the example of an O(N) symmetric scalar theory it reveals a hierarchy of fixed point solutions, with increasing complexity from vacuum and thermal equilibrium to nonequilibrium

  9. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  10. Nonthermal plasma technology for organic destruction

    International Nuclear Information System (INIS)

    Heath, W.O.; Birmingham, J.G.

    1995-06-01

    Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the Gas-Phase Corona Reactor (GPCR)III for treating air, the Liquid-Phase Corona Reactor for treating water, and In Situ Corona for treating soils. This presentation focuses on recent technical developments, commercial status, and project costs of OPCR as a cost-effective alternative to other air-purification technologies that are now in use to treat off-gases from site-remediation efforts as well as industrial emissions

  11. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  12. Some non-thermal microbial inactivation methods in dairy products

    International Nuclear Information System (INIS)

    Yangilar, F.; Kabil, E.

    2013-01-01

    During the production of dairy products, some thermal processes such as pasteurization and sterilization are used commonly to inactive microorganisms. But as a result of thermal processes, loss of nutrient and aroma, non-enzymatic browning and organoleptic differentiation especially in dairy products are seen. Because of this, alternative methods are needed to provide microbial inactivation and as major problems are caused by high temperatures, non-thermal processes are focused on. For this purpose, some methods such as high pressure (HP), pulsed light (PL), ultraviolet radiation (UV), supercritical carbon dioxide (SC-CO2) or pulsed electric field (PEF) are used in food. These methods products are processed in ambient temperature and so not only mentioned losses are minimized but also freshness and naturality of products can be preserved. In this work, we will try to be given information about methods of non-thermal microbial inactivation of dairy products. (author) [tr

  13. Continuous raw skim milk processing by pulsed electric field at non-lethal temperature: effect on microbial inactivation and functional properties

    OpenAIRE

    Floury , Juliane; Grosset , Noël; Leconte , Nadine; Pasco , Maryvonne; Madec , Marie-Noëlle; Jeantet , Romain

    2006-01-01

    International audience; Pulsed electric field (PEF) is an emerging non-thermal processing technology used to inactivate microorganisms in liquid foods such as milk. The objective of this research was to study the effectiveness of continuous PEF equipment (square wave pulses) on total microorganisms of raw skim milk and on Salmonella enteritidis inactivation under moderate temperatures (T < 50 °C). Processing parameters (electric field and pulse width) were chosen as follows: 45 kV*cm-1/500 ns...

  14. WHY IS NON-THERMAL LINE BROADENING OF SPECTRAL LINES IN THE LOWER TRANSITION REGION OF THE SUN INDEPENDENT OF SPATIAL RESOLUTION?

    International Nuclear Information System (INIS)

    De Pontieu, B.; Martinez-Sykora, J.; McIntosh, S.; Peter, H.; Pereira, T. M. D.

    2015-01-01

    Spectral observations of the solar transition region (TR) and corona show broadening of spectral lines beyond what is expected from thermal and instrumental broadening. The remaining non-thermal broadening is significant (5–30 km s −1 ) and correlated with intensity. Here we study spectra of the TR Si iv 1403 Å line obtained at high resolution with the Interface Region Imaging Spectrograph (IRIS). We find that the large improvement in spatial resolution (0.″33) of IRIS compared to previous spectrographs (2″) does not resolve the non-thermal line broadening which, in most regions, remains at pre-IRIS levels of about 20 km s −1 . This invariance to spatial resolution indicates that the processes behind the broadening occur along the line-of-sight (LOS) and/or on spatial scales (perpendicular to the LOS) smaller than 250 km. Both effects appear to play a role. Comparison with IRIS chromospheric observations shows that, in regions where the LOS is more parallel to the field, magneto-acoustic shocks driven from below impact the TR and can lead to significant non-thermal line broadening. This scenario is supported by MHD simulations. While these do not show enough non-thermal line broadening, they do reproduce the long-known puzzling correlation between non-thermal line broadening and intensity. This correlation is caused by the shocks, but only if non-equilibrium ionization is taken into account. In regions where the LOS is more perpendicular to the field, the prevalence of small-scale twist is likely to play a significant role in explaining the invariance and correlation with intensity. (letters)

  15. Nonthermal Argon Plasma Generator and Some Potential Applications

    Directory of Open Access Journals (Sweden)

    Bunoiu M.

    2015-12-01

    Full Text Available A laboratory - made nonthermal plasma generator is presented. It has a diameter of 0.020 m and length of 0.155 m and contains two electrodes. The first electrode is a 2% Th-W alloy, 0.002 m in diameter bar, centred inside the generator’s body by means of a four channel teflon piece; the other three channels, 0.003 m in diameter, are used for Ar supply. The second electrode is a nozzle of 0.002 m - 0.008 m diameter and 0.005m length. A ~500 kV/m electric field is generated between the two electrodes by a high frequency source (13.56 MHz ±5%, equipped with a OT-1000 (Tungsram power triode. For Ar flows ranging from 0.00008 m3/s to 0.00056 m3/s, a plasma jet of length not exceeding 0.015 m and temperature below 315 K is obtained. Anthurium andraeanumis sample , blood matrix, human hair and textile fibers may be introduced in the plasma jet. For time periods of 30 s and 60 s, various effects like, cell detexturization, fast blood coagulation or textile fiber or hair cleaning and smoothing are obtained. These effects are presented and discussed in the paper.

  16. Jean’s instability in a complex plasma in presence of secondary electrons and nonthermal ions

    International Nuclear Information System (INIS)

    Sarkar, Susmita; Maity Saumyen

    2013-01-01

    In this paper we have investigated the effect of secondary electron emission and nonthermality of ion velocity distribution simultaneously on Jean’s instability in a complex plasma in presence of negatively charged dust grains. Primary and secondary electron temperatures are assumed to be equal. Thus plasma under consideration consists of Boltzmann distributed electrons, nonthermal ions and negatively charged dust grains. The dust grain component is modeled by continuity and momentum equations. From the linear dispersion relation we have calculated the real frequency and growth rate of the Jean’s mode. Numerically it is found that for lower values of the nonthermal parameter Jean’s instability is higher for higher secondary electron emission whereas the effect of secondary electron emission on Jean’s instability becomes insignificant for higher values of the nonthermal parameter. (author)

  17. Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation

    Science.gov (United States)

    Molendi, S.; Gastaldello, F.

    2009-01-01

    We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be less than about 5 × 10-16 erg~cm-2 s-1 arcsec-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC-based magnetic field lower limits do not disagree with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times lower than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.

  18. Possibilities of implementing nonthermal processing methods in the dairy industry

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2010-06-01

    Full Text Available In the past two decades a lot of research in the field of food science has focused on new, non-thermal processing methods. This article describes the most intensively investigated new processing methodsfor implementation in the dairy industry, like microfiltration, high hydrostatic pressure, ultrasound and pulsed electric fields. For each method an overview is given for the principle of microbial inactivation, the obtained results regarding reduction of microorganisms as well as the positive and undesirable effects on milk composition and characteristics. Most promising methods for further implementation in the dairy industry appeared to be combination of moderate temperatures with high hydrostatic pressure, respectively, pulsed electric fields and microfiltration, since those treatments did not result in any undesirable changes in sensory properties of milk. Additionally, milk treatment with these methodsresulted in a better milk fat homogenization, faster rennet coagulation, shorter duration of milk fermentations, etc. Very good results regarding microbial inactivation were obtained by treating milkwith combination of moderate temperatures and high intensity ultrasound which is also called a process of thermosonification. However, thermosonification treatments often result in undesirablechanges in milk sensory properties, which is most probably due to ultrasonic induced milk fat oxidation. This article also shortly describes the use of natural compounds with antimicrobial effects such as bacteriocins, lactoperoxidase system and lysozime. However their implementation is limited for reasons like high costs, interaction with other food ingredients, poor solubility, narrow activity spectrum, spontaneous loss of bacteriocinogenicity, etc. In addition, principles of antimicrobial effect of microwaves and ultraviolet irradiation are described. However their implementation in the dairy industry failed mostly due to technical and commercial reasons.

  19. Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Amour, Rabia

    2007-01-01

    A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem

  20. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  1. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  2. Optimization of nonthermal fusion power consistent with energy channeling

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1995-02-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for nonthermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non- Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  3. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.

    Directory of Open Access Journals (Sweden)

    Amanda Lee

    Full Text Available Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.

  4. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  5. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  6. Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids.

    Science.gov (United States)

    Torregrosa, Francisco; Cortés, Clara; Esteve, María J; Frígola, Ana

    2005-11-30

    Liquid chromatography (LC) was the method of choice for quantification of carotenoids (including geometrical isomers) to evaluate the effects of high-intensity pulsed electric field (HIPEF), a nonthermal preservation method, with different parameters (electric field intensities and treatment times), on an orange-carrot juice mixture (80:20, v/v). In parallel, a conventional heat treatment (98 degrees C, 21 s) was applied to the juice. HIPEF processing generally caused a significant increase in the concentrations of the carotenoids identified as treatment time increased. HIPEF treatment at 25 and 30 kV/cm provided a vitamin A concentration higher than that found in the pasteurized juice.

  7. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz; Lussem, Bjorn; Liu, Shiyi

    2017-01-01

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer

  8. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  9. Enhanced integrated nonthermal treatment system study

    International Nuclear Information System (INIS)

    Biagi, C.; Schwinkendorf, B.; Teheranian, B.

    1997-02-01

    The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer

  10. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  11. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Wik, Daniel R.; Sarazin, Craig L.; Finoguenov, Alexis; Matsushita, Kyoko; Nakazawa, Kazuhiro; Clarke, Tracy E.

    2009-01-01

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10 -12 erg s -1 cm -2 (20-80 keV, for Γ = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 μG. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that ∼50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.

  12. Bio-effects of non-ionizing electromagnetic fields in context of cancer therapy.

    Science.gov (United States)

    Saliev, Timur; Tachibana, Katsuro; Bulanin, Denis; Mikhalovsky, Sergey; Whitby, Ray D L

    2014-01-01

    Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.

  13. Quantum effects in strong fields

    International Nuclear Information System (INIS)

    Roessler, Lars

    2014-01-01

    This work is devoted to quantum effects for photons in spatially inhomogeneous fields. Since the purely analytical solution of the corresponding equations is an unsolved problem even today, a main aspect of this work is to use the worldline formalism for scalar QED to develop numerical algorithms for correlation functions beyond perturbative constructions. In a first step we take a look at the 2-Point photon correlation function, in order to understand effects like vacuum polarization or quantum reflection. For a benchmark test of the numerical algorithm we reproduce analytical results in a constant magnetic background. For inhomogeneous fields we calculate for the first time local refractive indices of the quantum vacuum. In this way we find a new de-focusing effect of inhomogeneous magnetic fields. Furthermore the numerical algorithm confirms analytical results for quantum reflection obtained within the local field approximation. In a second step we take a look at higher N-Point functions, with the help of our numerical algorithm. An interesting effect at the level of the 3-Point function is photon splitting. First investigations show that the Adler theorem remains also approximately valid for inhomogeneous fields.

  14. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  15. Graphene field-effect devices

    Science.gov (United States)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  16. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  17. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  18. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  19. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  20. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  1. Bacterial decontamination using ambient pressure nonthermal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemical and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.

  2. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  3. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  4. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  5. Instability of nonplanar modulated dust acoustic wave packets in a strongly coupled nonthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)

    2015-07-15

    Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.

  6. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  7. Effective field theory dimensional regularization

    International Nuclear Information System (INIS)

    Lehmann, Dirk; Prezeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed

  8. Effective field theory dimensional regularization

    Science.gov (United States)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  9. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  10. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    Gabriel, C.

    1996-01-01

    The effects of electromagnetic (em) fields on biological systems were first observed and exploited well over a century ago. Concern over the possible health hazards of human exposure to such fields developed much later. It is now well known that excessive exposure to em fields may have in undesirable biological consequences. Standards were introduced to determine what constitute an excessive exposure and how to avoid it. Current concern over the issue of hazards stems mainly from recent epidemiological studies of exposed populations and also from the results of laboratory experiments in which whole animals are exposed in vivo or tissue and cell cultures exposed in vitro to low levels of irradiation. The underlying fear is the possibility of a causal relationship between chronic exposure to low field levels and some forms of cancer. So far the evidence does not add up to a firm statement on the matter. At present it is not known how and at what level, if at all, can these exposure be harmful to human health. This state of affair does not provide a basis for incorporating the outcome of such research in exposure standards. This paper will give a brief overview of the research in this field and how it is evaluated for the purpose of producing scientifically based standards. The emphasis will be on the physical, biophysical and biological mechanisms implicated in the interaction between em fields and biological systems. Understanding such mechanisms leads not only to a more accurate evaluation of their health implications but also to their optimal utilization, under controlled conditions, in biomedical applications. (author)

  11. Casimir effect for interacting fields

    International Nuclear Information System (INIS)

    Kay, B.S.

    1982-01-01

    The author discusses some recent work on the Casimir effect: that is the problem of renormalizing Tsub(μγ) on locally-flat space-times. That is on space-times which, while topologically non-trivial are locally Minkowskian - with vanishing local curvature. The author has developed a systematic method for calculating this Casimir effect for interacting fields to arbitrary order in perturbation theory - and for arbitrary components of Tsub(μγ) which he describes in general and then illustrates it by describing first order perturbation theory calculations for a lambdaphi 4 theory for the two models: the cylinder space-time and the parallel plates. (Auth.)

  12. Fringing-field effects in acceleration columns

    International Nuclear Information System (INIS)

    Yavor, M.I.; Weick, H.; Wollnik, H.

    1999-01-01

    Fringing-field effects in acceleration columns are investigated, based on the fringing-field integral method. Transfer matrices at the effective boundaries of the acceleration column are obtained, as well as the general transfer matrix of the region separating two homogeneous electrostatic fields with different field strengths. The accuracy of the fringing-field integral method is investigated

  13. Ambipolar phosphorene field effect transistor.

    Science.gov (United States)

    Das, Saptarshi; Demarteau, Marcel; Roelofs, Andreas

    2014-11-25

    In this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance. We also propose and implement a novel technique for extracting the transport gap as well as the Schottky barrier height at the metal-phosphorene contact interface from the ambipolar transfer characteristics of the phosphorene FETs. This robust technique is applicable to any ultrathin body semiconductor which demonstrates symmetric ambipolar conduction. Finally, we demonstrate a high gain, high noise margin, chemical doping free, and fully complementary logic inverter based on ambipolar phosphorene FETs.

  14. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  15. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  16. Nonthermal plasma technology for organic destruction

    International Nuclear Information System (INIS)

    Heath, W.O.; Birmingham, J.G.

    1995-01-01

    Pacific Northwest Laboratory (PNL) is investigating the use of nonthermal, electrically driven plasmas for destroying organic contaminants near ambient temperatures and pressures. Three different plasma systems have been developed to treat organics in air, water, and soil. These systems are the gas-phase corona reactor (GPCR) for treating air, the liquid phase corona reactor for treating water, and the in-situ corona for treating soils. This paper focuses on the GPCR as an alternative to other air purification technologies for treating off-gasses from remedial action efforts and industrial emissions

  17. Electromagnetic field effects in explosives

    Science.gov (United States)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  18. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  19. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  20. Renormalons in effective field theories

    International Nuclear Information System (INIS)

    Luke, M.; Manohar, A.V.; Savage, M.J.

    1995-01-01

    We investigate the high-order behavior of perturbative matching conditions in effective field theories. These series are typically badly divergent, and are not Borel summable due to infrared and ultraviolet renormalons which introduce ambiguities in defining the sum of the series. We argue that, when treated consistently, there is no physical significance to these ambiguities. Although nonperturbative matrix elements and matching conditions are in general ambiguous, the ambiguity in any physical observable is always higher order in 1/M than the theory has been defined. We discuss the implications for the recently noticed infrared renormalon in the pole mass of a heavy quark. We show that a ratio of form factors in exclusive Λ b decays (which is related to the pole mass) is free from renormalon ambiguities regardless of the mass used as the expansion parameter of heavy quark effective theory. The renormalon ambiguities also cancel in inclusive heavy hadron decays. Finally, we demonstrate the cancellation of renormalons in a four-Fermi effective theory obtained by integrating out a heavy colored scalar

  1. Moderate pressure plasma source of nonthermal electrons

    Science.gov (United States)

    Gershman, S.; Raitses, Y.

    2018-06-01

    Plasma sources of electrons offer control of gas and surface chemistry without the need for complex vacuum systems. The plasma electron source presented here is based on a cold cathode glow discharge (GD) operating in a dc steady state mode in a moderate pressure range of 2–10 torr. Ion-induced secondary electron emission is the source of electrons accelerated to high energies in the cathode sheath potential. The source geometry is a key to the availability and the extraction of the nonthermal portion of the electron population. The source consists of a flat and a cylindrical electrode, 1 mm apart. Our estimates show that the length of the cathode sheath in the plasma source is commensurate (~0.5–1 mm) with the inter-electrode distance so the GD operates in an obstructed regime without a positive column. Estimations of the electron energy relaxation confirm the non-local nature of this GD, hence the nonthermal portion of the electron population is available for extraction outside of the source. The use of a cylindrical anode presents a simple and promising method of extracting the high energy portion of the electron population. Langmuir probe measurements and optical emission spectroscopy confirm the presence of electrons with energies ~15 eV outside of the source. These electrons become available for surface modification and radical production outside of the source. The extraction of the electrons of specific energies by varying the anode geometry opens exciting opportunities for future exploration.

  2. Nonthermal Quantum Channels as a Thermodynamical Resource

    Science.gov (United States)

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-01

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  3. Dissolution of metallic uranium and its alloys. Part II. Screening study results: Identification of an effective non-thermal uranium dissolution method

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    Screening experiments were performed to evaluate reagent systems that deactivate pyrophoric, metallic depleted uranium waste streams at ambient temperature. The results presented led to the selection of two systems, which would be investigated further, for the design of the LLNL onsite treatment process of metallic depleted uranium wastes. The two feasible systems are: (a) 7.5 mol/l H 2 SO 4 - 1 mol/l HNO 3 and (b) 3 mol/l HCl - 1 mol/l H 3 PO 4 . The sulfuric acid system dissolves uranium metal completely, while the hydrochloric-phosphoric acid system converts the metal completely into a solid, which might be suitable for direct disposal. Both systems combine oxidation of metallic uranium with complexation of the uranium ions formed to effectively deactivate uranium.s pyrophoricity at ambient temperature. (author)

  4. Paracetamol degradation in aqueous solution by non-thermal plasma

    Science.gov (United States)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  5. Modeling quantization effects in field effect transistors

    International Nuclear Information System (INIS)

    Troger, C.

    2001-06-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied

  6. Effect of non Maxwellian distribution on the dressed electrostatic wave and energy properties

    Directory of Open Access Journals (Sweden)

    N.F. Abdo

    2017-07-01

    Full Text Available The investigation of dressed electrostatic and energy ion acoustic solitary waves in a warm plasma composed fluid of ions, Maxwillian positrons and fast nonthermal electrons are elaborated. The plasma system is reduced to KdV equation that obtained using reductive perturbation method. For enlarged amplitude, the higher order perturbed equation is proposed. The positron parameters and nonthermal electron effects on broadband dressed electric field and energy are discussed.

  7. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  8. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  9. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  10. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    International Nuclear Information System (INIS)

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-01-01

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  11. Issues of effective field theories with resonances

    International Nuclear Information System (INIS)

    Gegelia, J.; Japaridze, G.

    2014-01-01

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem. (author)

  12. Non-thermal emission from young supernova remnants: Implications on cosmic ray acceleration

    Science.gov (United States)

    Araya-Arguedas, Miguel A.

    For a long time, supernova remnants have been thought to constitute the main source of galactic cosmic rays. Plausible mechanisms have been proposed through which these objects would be able to transfer some of their energy to charged particles. Detailed studies of SNRs, particularly allowed by the spectral and spatial resolution obtained with telescopes such as the Chandra X-Ray Observatory , have permitted us to understand some of the properties of high-energy particles within these objects and their interactions with their environment. In the first part of this work, the basic concepts of particle acceleration in SNRs are outlined, and the main observational tools available today for studying high-energy phenomena in astrophysics are mentioned briefly. In the second part, a study of non-thermal emission from the young SNR Cassiopeia A is presented. Through the use of a very deep one million-second Chandra observation of this remnant, the spectral evolution across non-thermal filaments near the forward shock was studied. A consistent hardening of the spectrum towards the exterior of the remnant was found and explained via a model developed that takes into account particle diffusion, plasma advection and radiation losses. The role of particle diffusion was studied and its effect on the photon spectral index quantified. In the model, the diffusion is included as a fraction of Bohm-type diffusion, which is consistent with the data. The model also allowed an estimation of the electron distribution, the magnetic field and its orientation, as well as the level of magnetic turbulence. In the third part, a multi-wavelength study of two young SNRs is presented. Multi-wavelength modeling of spectral energy distributions (SED) may hold the key to disentangle the nature and content of cosmic rays within these objects. The first model shown presents state of the art measurements gathered for Cassiopeia A, and the modeling is based partly on the results presented in the second

  13. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    International Nuclear Information System (INIS)

    Correa, C

    2004-01-01

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060

  14. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.; Russel, S.M.; Mendoza-Briceno, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K.

    1999-05-01

    A rigorous theoretical investigation has been made of multi-dimensional instability of obliquely propagating electrostatic solitary structures in a hot magnetized nonthermal dusty plasma which consists of a negatively charged hot dust fluid, Boltzmann distributed electrons, and nonthermally distributed ions. The Zakharov-Kuznetsov equation for the electrostatic solitary structures that exist in such a dusty plasma system is derived by the reductive perturbation method. The multi-dimensional instability of these solitary waves is also studied by the small-k (long wavelength plane wave) perturbation expansion method. The nature of these solitary structures, the instability criterion, and their growth rate depending on dust-temperature, external magnetic field, and obliqueness are discussed. The implications of these results to some space and astrophysical dusty plasma situations are briefly mentioned. (author)

  15. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  16. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  17. Effective theories of single field inflation when heavy fields matter

    CERN Document Server

    Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P

    2012-01-01

    We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...

  18. Genetic effects of nonionizing electromagnetic fields

    International Nuclear Information System (INIS)

    Lai, Henry

    2001-01-01

    Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)

  19. Nonthermal emission from clusters of galaxies

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2009-01-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10 14.5 M ☉ , galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β core and η e . β core is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η e(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β core ≅ η p /200, nearly independent of cluster mass and with a scatter Δln β core ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η e /η p )(T/10 keV) −1/2 and ≅ 150(η e /η p )(T/10 keV) −1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η p ∼ η e ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in

  20. Nonthermal emission from clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M ∼> 10{sup 14.5}M{sub ☉}, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, β{sub core} and η{sub e}. β{sub core} is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and η{sub e(p)} is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that β{sub core} ≅ η{sub p}/200, nearly independent of cluster mass and with a scatter Δln β{sub core} ≅ 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors ≅ 500(η{sub e}/η{sub p})(T/10 keV){sup −1/2} and ≅ 150(η{sub e}/η{sub p})(T/10 keV){sup −1/2} respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (∼> 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for η{sub p} ∼ η{sub e} ∼ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular

  1. Nonthermal emission from clusters of galaxies

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2009-08-01

    We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show

  2. Search for Nonthermal X-Rays from Supernova Remnant Shells

    Science.gov (United States)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  3. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil

    Directory of Open Access Journals (Sweden)

    G. Prieto

    2003-03-01

    Full Text Available During the last decade, nonthermal plasma technology was applied in many different fields, focusing attention on the destruction of harmful compounds in the air. This paper deals with nonthermal plasma reactors for the conversion of heavy oil into light hydrocarbon olefins, to be employed as gasoline components or to be added in small amounts for the catalytic reduction of nitrogen oxide compounds in the treatment of exhaust gas at power plants. For the process, the plate-plate nonthermal plasma reactor driven by AC high voltage was selected. The reactor was modeled as a function of parameter characteristics, using the methodology provided by the statistical experimental design. The parameters studied were gap distance between electrodes, carrier gas flow and applied power. Results indicate that the reactions occurring in the process of heavy oil conversion have an important selective behavior. The products obtained were C1-C4 hydrocarbons with ethylene as the main compound. Operating the parameters of the reactor within the established operative window of the system and close to the optimum conditions, efficiencies as high as 70 (mul/joule were obtained. These values validate the process as an in-situ method to produce light olefins for the treatment of nitrogen oxides in the exhaust gas from diesel engines.

  4. NONTHERMALLY DOMINATED ELECTRON ACCELERATION DURING MAGNETIC RECONNECTION IN A LOW-β PLASMA

    International Nuclear Information System (INIS)

    Li, Xiaocan; Li, Gang; Guo, Fan; Li, Hui

    2015-01-01

    By means of fully kinetic simulations, we investigate electron acceleration during magnetic reconnection in a nonrelativistic proton–electron plasma with conditions similar to solar corona and flares. We demonstrate that reconnection leads to a nonthermally dominated electron acceleration with a power-law energy distribution in the nonrelativistic low-β regime but not in the high-β regime, where β is the ratio of the plasma thermal pressure and the magnetic pressure. The accelerated electrons contain most of the dissipated magnetic energy in the low-β regime. A guiding-center current description is used to reveal the role of electron drift motions during the bulk nonthermal energization. We find that the main acceleration mechanism is a Fermi-type acceleration accomplished by the particle curvature drift motion along the electric field induced by the reconnection outflows. Although the acceleration mechanism is similar for different plasma β, low-β reconnection drives fast acceleration on Alfvénic timescales and develops power laws out of thermal distribution. The nonthermally dominated acceleration resulting from magnetic reconnection in low-β plasma may have strong implications for the  highly efficient electron acceleration in solar flares and other astrophysical systems

  5. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  6. Interpretation of the microwave non-thermal radiation of the Moon during impact events

    Directory of Open Access Journals (Sweden)

    V. Grimalsky

    2004-01-01

    Full Text Available The results of recent observations of the non-thermal electromagnetic (EM emission at wavelengths of 2.5cm, 13cm, and 21cm are summarized. After strong impacts of meteorites or spacecrafts (Lunar Prospector with the Moon's surface, the radio emissions in various frequency ranges were recorded. The most distinctive phenomenon is the appearance of quasi-periodic oscillations with amplitudes of 3–10K during several hours. The mechanism concerning the EM emission from a propagating crack within a piezoactive dielectric medium is considered. The impact may cause the global acoustic oscillations of the Moon. These oscillations lead to the crackening of the Moon's surface. The propagation of a crack within a piezoactive medium is accompanied by the excitation of an alternative current source. It is revealed that the source of the EM emission is the effective transient magnetization that appears in the case of a moving crack in piezoelectrics. The moving crack creates additional non-stationary local mechanical stresses around the apex of the crack, which generate the non-stationary electromagnetic field. For the cracks with a length of 0.1–1µm, the maximum of the EM emission may be in the 1–10GHz range.

  7. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    International Nuclear Information System (INIS)

    Golberg, A; Laufer, S; Rabinowitch, H D; Rubinsky, B

    2011-01-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  8. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  9. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  10. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  11. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  12. Nonthermal-plasma-mediated animal cell death

    Science.gov (United States)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  13. Evolution of streamer groups in nonthermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, M., E-mail: mokubo@me.osakafu-u.ac.jp [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)

    2015-12-15

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  14. Evolution of streamer groups in nonthermal plasma

    Science.gov (United States)

    Okubo, M.

    2015-12-01

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  15. Nonthermal-plasma-mediated animal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai [Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784 (Korea, Republic of); Kim, Gyoo-Cheon, E-mail: ktk@postech.ac.kr [Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 626-810 (Korea, Republic of)

    2011-01-12

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  16. Nonthermal-plasma-mediated animal cell death

    International Nuclear Information System (INIS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai; Kim, Gyoo-Cheon

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  17. Towards accurate simulation of fringe field effects

    International Nuclear Information System (INIS)

    Berz, M.; Erdelyi, B.; Makino, K.

    2001-01-01

    In this paper, we study various fringe field effects. Previously, we showed the large impact that fringe fields can have on certain lattice scenarios of the proposed Neutrino Factory. Besides the linear design of the lattice, the effects depend strongly on the details of the field fall off. Various scenarios are compared. Furthermore, in the absence of detailed information, we study the effects for the LHC, a case where the fringe fields are known, and try to draw some conclusions for Neutrino Factory lattices

  18. Effective Field Theory on Manifolds with Boundary

    Science.gov (United States)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  19. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  20. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...

  1. Optimization of nonthermal fusion power consistent with channeling of charged fusion product energy

    International Nuclear Information System (INIS)

    Snyder, P.B.; Herrmann, M.C.; Fisch, N.J.

    1994-01-01

    If the energy of charged fusion products can be diverted directly to fuel ions, non-Maxwellian fuel ion distributions and temperature differences between species will result. To determine the importance of these nonthermal effects, the fusion power density is optimized at constant-β for non-thermal distributions that are self-consistently maintained by channeling of energy from charged fusion products. For D-T and D- 3 He reactors, with 75% of charged fusion product power diverted to fuel ions, temperature differences between electrons and ions increase the reactivity by 40-70%, while non-Maxwellian fuel ion distributions and temperature differences between ionic species increase the reactivity by an additional 3-15%

  2. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  3. Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO{sub 2}/ZnO as a photocatalyst: Effect of photocatalyst on CO{sub 2} selectivity and byproducts reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman [Center of Excellence for Occupational Health and Research Center for Health Science, School of Public Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Alimohammadi, Iraj; Yarahmadi, Rassuol [Department of Occupational Health, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Jaleh, Babak; Gandomi, Mastaneh [Faculty of Science, Physics Department, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Ebrahimi, Hossein, E-mail: hossein.ebrahimi@yahoo.com [Department of Occupational Health, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ad-Din Abedi, Kamal [Department of Occupational Health Engineering, Faculty of Health, Kurdistan University of Medical sciences, Sanandaj (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • TiO{sub 2} and ZnO Nano particles were coated on the surface of expanded graphite. • Expanded graphite-TiO{sub 2}/ZnO nano composite under UV light was placed downstream non-thermal plasma reactor. • Chlorobenzene removal and selectivity of CO{sub 2} were enhanced in combined system. • Produced harmful byproducts from plasma reactor were reduced dramatically in combined system. - Abstract: The non-thermal plasma (NTP) technique, which suffers from low selectivity in complete oxidation of volatile organic compounds to CO{sub 2} and H{sub 2}O, creates unwanted and harmful byproducts. NTP in concert with photocatalyst can resolve this limitation due to additional oxidation. TiO{sub 2} and ZnO nanoparticles were coated on the surface of the expanded graphite and placed downstream of the NTP reactor under UV light. In this study, to compare the performance of NTP and the combined system, chlorobenzene removal, selectivity of CO{sub 2} and byproducts formation were investigated. The results showed that the combined system enhanced both the removal efficiency and CO{sub 2} selectivity. The output gas of the NTP reactor contained chlorobenzene, phosgene, O{sub 3}, NO, NO{sub 2}, CO, CO{sub 2}, HCL and CL. The bulk of these byproducts was oxidized on the surface of the nanocomposite; as a result, the content of the byproducts in the output gas of the combined system decreased dramatically. The removal efficiency and CO{sub 2} selectivity increased by rising the applied voltage and residence time because the collision between active species and pollutant molecules increases. Based on these results, the combined system is preferred due to a higher performance and lower formation of harmful byproducts.

  4. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  5. A Nonthermal Radio Filament Connected to the Galactic Black Hole?

    Science.gov (United States)

    Morris, Mark R.; Zhao, Jun-Hui; Goss, W. M.

    2017-12-01

    Using the Very Large Array, we have investigated a nonthermal radio filament (NTF) recently found very near the Galactic black hole and its radio counterpart, Sgr A*. While this NTF—the Sgr A West Filament (SgrAWF)—shares many characteristics with the population of NTFs occupying the central few hundred parsecs of the Galaxy, the SgrAWF has the distinction of having an orientation and sky location that suggest an intimate physical connection to Sgr A*. We present 3.3 and 5.5 cm images constructed using an innovative methodology that yields a very high dynamic range, providing an unprecedentedly clear picture of the SgrAWF. While the physical association of the SgrAWF with Sgr A* is not unambiguous, the images decidedly evoke this interesting possibility. Assuming that the SgrAWF bears a physical relationship to Sgr A*, we examine the potential implications. One is that Sgr A* is a source of relativistic particles constrained to diffuse along ordered local field lines. The relativistic particles could also be fed into the local field by a collimated outflow from Sgr A*, perhaps driven by the Poynting flux accompanying the black hole spin in the presence of a magnetic field threading the event horizon. Second, we consider the possibility that the SgrAWF is the manifestation of a low-mass-density cosmic string that has become anchored to the black hole. The simplest form of these hypotheses would predict that the filament be bi-directional, whereas the SgrAWF is only seen on one side of Sgr A*, perhaps because of the dynamics of the local medium.

  6. Biological Effects of Electromagnetic Fields

    Science.gov (United States)

    2006-11-27

    Warning stimuli, as well as learning material, i.e. the numbers to recall, were presented binaurally via earphones at an intensity of 65dB sound...ensued in a remarkable increase in the yield of ES-derived spontaneously beating cardiomyocytes. Figure 3 Effect of MF on...move the mucus along a surface layer of saline. This is very likely that the cilia, beating with the frequency about few tenth of Hertz, generate some

  7. Effect of magnetic field on food freezing

    OpenAIRE

    村田, 圭治; 奥村, 太一; 荒賀, 浩一; 小堀, 康功

    2010-01-01

    [Abstract] This paper presents an experimental investigation on effects of magnetic field on food freezing process. Although purpose of food freezing is to suppress the deterioration of food, freezing breaks food tissue down, and some nutrient and delicious element flow out after thawing. Recently, a few of refrigeration equipments with electric and magnetic fields have attracted attention from food production companies and mass media. Water and tuna were freezed in magnetic field (100kH, 1.3...

  8. Boundary effects on quantum field theories

    International Nuclear Information System (INIS)

    Lee, Tae Hoon

    1991-01-01

    Quantum field theory in the S 1 *R 3 space-time is simply described by the imaginary time formalism. We generalize Schwinger-DeWitt proper-time technique which is very useful in zero temperature field theories to this case. As an example we calculate the one-loop effective potential of the finite temperature scala field theory by this technique.(Author)

  9. Non-Thermal Treatment of Hanford Site Low-Level Mixed Waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    DOE proposes to transport contact-handled LLMW from the Hanford Site to the Allied Technology Group (ATG) Mixed Waste Facility (MWF) in Richland, Washington, for non-thermal treatment and to return the treated waste to the Hanford Site for eventual land disposal. Over a 3-year period the waste would be staged to the ATG MWF, and treated waste would be returned to the Hanford Site. The ATG MWF would be located on an 18 hectare (ha) (45 acre [at]) ATG Site adjacent to ATG's licensed low-level waste processing facility at 2025 Battelle Boulevard. The ATG MWF is located approximately 0.8 kilometers (km) (0.5 miles [mi]) south of Horn Rapids Road and 1.6 km (1 mi) west of Stevens Drive. The property is located within the Horn Rapids triangle in northern Richland (Figure 2.1). The ATG MWF is to be located on the existing ATG Site, near the DOE Hanford Site, in an industrial area in the City of Richland. The effects of siting, construction, and overall operation of the MWF have been evaluated in a separate State Environmental Policy Act (SEPA) EIS (City of Richland 1998). The proposed action includes transporting the LLMW from the Hanford Site to the ATG Facility, non-thermal treatment of the LLMW at the ATG MWF, and transporting the waste from ATG back to the Hanford Site. Impacts fi-om waste treatment operations would be bounded by the ATG SEPA EIS, which included an evaluation of the impacts associated with operating the non-thermal portion of the MWF at maximum design capacity (8,500 metric tons per year) (City of Richland 1998). Up to 50 employees would be required for non-thermal treatment portion of the MWF. This includes 40 employees that would perform waste treatment operations and 10 support staff. Similar numbers were projected for the thermal treatment portion of the MWF (City of Richland 1998).

  10. Effective field theory for NN interactions

    International Nuclear Information System (INIS)

    Tran Duy Khuong; Vo Hanh Phuc

    2003-01-01

    The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)

  11. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  12. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  13. Nonthermal x-ray emission from a tungsten z-pinch at 5 MA

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1995-01-01

    The generation of intense bursts of warm x rays with power in the 1-TW regime are of interest for the study of in-depth nuclear radiation effects. Results from high-atomic-number single-wire experiments carried out at 0.8 MA on Gamble II in the 1970s showed 0.25% efficient production of nonthermal, bremsstrahlung-like lines and continuum in the 5- to 100-keV regime. This high efficiency in combination with suggested Z 2 and I 2 scaling of the nonthermal radiation motivated the present experiment to measure and model the radiation from the z pinch formed from compact high-Z wire arrays at high current. In the experiment, tungsten wire arrays of length 20 mm on a mounting radius of 2 mm were imploded over the mass range 1 to 16 mg on the Saturn accelerator operating with a peak discharge current of 5 MA. As in the Gamble-II experiments, bright spots were observed to form at ∼1-mm intervals along the z axis at the time of a first implosion and to be the source of the hard radiation measured. Maximum radiation occurred for masses less than or approximately equal to 4 mg. The experiment was simulated using the LASNEX and TIP numerical codes with a nonthermal model. The timing of the multiple implosions, owing to compression and expansion of the resulting plasma are observed to be in agreement with predictions from both codes and analytic modeling

  14. Non-thermal escape of molecular hydrogen from Mars

    Science.gov (United States)

    Gacesa, M.; Zhang, P.; Kharchenko, V.

    2012-05-01

    We present a detailed theoretical analysis of non-thermal escape of molecular hydrogen from Mars induced by collisions with hot atomic oxygen from the Martian corona. To accurately describe the energy transfer in O + H2(v, j) collisions, we performed extensive quantum-mechanical calculations of state-to-state elastic, inelastic, and reactive cross sections. The escape flux of H2 molecules was evaluated using a simplified 1D column model of the Martian atmosphere with realistic densities of atmospheric gases and hot oxygen production rates for low solar activity conditions. An average intensity of the non-thermal escape flux of H2 of 1.9 × 105 cm-2s-1 was obtained considering energetic O atoms produced in dissociative recombinations of O2+ ions. Predicted ro-vibrational distribution of the escaping H2 was found to contain a significant fraction of higher rotational states. While the non-thermal escape rate was found to be lower than Jeans rate for H2 molecules, the non-thermal escape rates of HD and D2 are significantly higher than their respective Jeans rates. The accurate evaluation of the collisional escape flux of H2 and its isotopes is important for understanding non-thermal escape of molecules from Mars, as well as for the formation of hot H2 Martian corona. The described molecular ejection mechanism is general and expected to contribute to atmospheric escape of H2 and other light molecules from planets, satellites, and exoplanetary bodies.

  15. Pulsed electric field and combination processing of mango nectar: effect on volatile compounds and HMF formation

    Directory of Open Access Journals (Sweden)

    A. S. Bawa

    2015-01-01

    Full Text Available Mango nectar is a commercially familiar and preferred product. The traditional processing of mango nectar has been by thermal processing which resulted in the alteration of the flavour of the product due to the effect of high temperature. The thermal processing of the nectar also resulted in the production of byproducts of non-enzymatic browning such as 5- hydroxy methyl furfural (HMF. These process induced effects, affect both the nutritive and sensory attributes of the fruit product, making it less preferable. With the growing interest and awareness about the benefits of alternative non-thermal technologies, such as pulsed electric field (PEF, the present work was proposed to use PEF to minimize the loss of volatiles and formation of HMF. The study involves thermal (96 ºC for 300 s and 600 s, PEF (24 µs, 120 Hz and 38 kV/cm and combination processing (PEF + Thermal (96 ºC for 90 s of mango nectar. The effect of these treatments on the volatile composition of mango nectar has been analysed using GC-MS technique. The reduction in the volatile compounds was significant (p 0.05 different from unprocessed sample, proving the fresh-like character of the product.

  16. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  17. QCD Effective Field Theories for Heavy Quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora

    2006-01-01

    QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT

  18. Effective field theory approach to nuclear matter

    International Nuclear Information System (INIS)

    Saviankou, P.; Gruemmer, F.; Epelbaum, E.; Krewald, S.; Meissner, Ulf-G.

    2006-01-01

    Effective field theory provides a systematic approach to hardon physics and few-nucleon systems. It allows one to determine the effective two-, three-, and more-nucleon interactions which are consistent with each other. We present a project to derive bulk properties of nuclei from the effective nucleonic interactions

  19. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  20. Imaging using long range dipolar field effects

    International Nuclear Information System (INIS)

    Gutteridge, Sarah

    2002-01-01

    The work in this thesis has been undertaken by the author, except where indicated in reference, within the Magnetic Resonance Centre, at the University of Nottingham during the period from October 1998 to March 2001. This thesis details the different characteristics of the long range dipolar field and its application to magnetic resonance imaging. The long range dipolar field is usually neglected in nuclear magnetic resonance experiments, as molecular tumbling decouples its effect at short distances. However, in highly polarised samples residual long range components have a significant effect on the evolution of the magnetisation, giving rise to multiple spin echoes and unexpected quantum coherences. Three applications utilising these dipolar field effects are documented in this thesis. The first demonstrates the spatial sensitivity of the signal generated via dipolar field effects in structured liquid state samples. The second utilises the signal produced by the dipolar field to create proton spin density maps. These maps directly yield an absolute value for the water content of the sample that is unaffected by relaxation and any RF inhomogeneity or calibration errors in the radio frequency pulses applied. It has also been suggested that the signal generated by dipolar field effects may provide novel contrast in functional magnetic resonance imaging. In the third application, the effects of microscopic susceptibility variation on the signal are studied and the relaxation rate of the signal is compared to that of a conventional spin echo. (author)

  1. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  2. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  3. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  4. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  5. Ion-acoustic supersolitons and double layers in plasmas with nonthermal electrons

    Science.gov (United States)

    Gao, D.-N.; Zhang, J.; Yang, Y.; Duan, W.-S.

    2017-08-01

    Supersoliton (SS) can be mainly featured in two ways, namely, by focusing on subsidiary maxima on its electric field or by meeting the requirement that the appropriate Sagdeev pseudopotential (SP) has three local extrema between the equilibrium conditions and its amplitude. In this paper, by using the SP method, double layers and ion-acoustic SSs are studied in a plasma with Maxwellian cold electrons, nonthermal hot electrons, and fluid ions. The existence of the SS regime in parameter space is obtained in a methodical fashion. The existence domains for positive solitary waves are also presented. It is found that there is no SSs at the acoustic speed.

  6. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  7. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  8. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    Energy Technology Data Exchange (ETDEWEB)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O., E-mail: klaus.reitberger@uibk.ac.at [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria)

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  9. NON-THERMAL EMISSION FROM CATACLYSMIC VARIABLES: IMPLICATIONS ON ASTROPARTICLE PHYSICS

    Directory of Open Access Journals (Sweden)

    Vojtech Šimon

    2013-12-01

    Full Text Available We review the lines of evidence that some cataclysmic variables (CVs are the sources of non-thermal radiation. It was really observed in some dwarf novae in outburst, a novalike CV in the high state, an intermediate polar, polars, and classical novae (CNe during outburst. The detection of this radiation suggests the presence of highly energetic particles in these CVs. The conditions for the observability of this emission depend on the state of activity, and the system parameters. We review the processes and conditions that lead to the production of this radiation in various spectral bands, from gamma-rays including TeV emission to radio. Synchrotron and cyclotron emissions suggest the presence of strong magnetic fields in CV. In some CVs, e.g. during some dwarf nova outbursts, the magnetic field generated in the accretion disk leads to the synchrotron jets radiating in radio. The propeller effect or a shock in the case of the magnetized white dwarf (WD can lead to a strong acceleration of the particles that produce gamma-ray emission via pi0 decay; even Cherenkov radiation is possible. In addition, a gamma-ray production via pi0 decay was observed in the ejecta of an outburst of a symbiotic CN. Nuclear reactions during thermonuclear runaway in the outer layer of the WD undergoing CN outburst lead to the production of radioactive isotopes; their decay is the source of gamma-ray emission. The production of accelerated particles in CVs often has episodic character with a very small duty cycle; this makes their detection and establishing the relation of the behavior in various bands difficult.

  10. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  11. Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: Effect of photocatalyst on CO2 selectivity and byproducts reduction.

    Science.gov (United States)

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Alimohammadi, Iraj; Yarahmadi, Rassuol; Jaleh, Babak; Gandomi, Mastaneh; Ebrahimi, Hossein; Ad-Din Abedi, Kamal

    2017-02-15

    The non-thermal plasma (NTP) technique, which suffers from low selectivity in complete oxidation of volatile organic compounds to CO 2 and H 2 O, creates unwanted and harmful byproducts. NTP in concert with photocatalyst can resolve this limitation due to additional oxidation. TiO 2 and ZnO nanoparticles were coated on the surface of the expanded graphite and placed downstream of the NTP reactor under UV light. In this study, to compare the performance of NTP and the combined system, chlorobenzene removal, selectivity of CO 2 and byproducts formation were investigated. The results showed that the combined system enhanced both the removal efficiency and CO 2 selectivity. The output gas of the NTP reactor contained chlorobenzene, phosgene, O 3 , NO, NO 2 , CO, CO 2 , HCL and CL. The bulk of these byproducts was oxidized on the surface of the nanocomposite; as a result, the content of the byproducts in the output gas of the combined system decreased dramatically. The removal efficiency and CO 2 selectivity increased by rising the applied voltage and residence time because the collision between active species and pollutant molecules increases. Based on these results, the combined system is preferred due to a higher performance and lower formation of harmful byproducts. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Magnetic field effects on electrochemical metal depositions

    Directory of Open Access Journals (Sweden)

    Andreas Bund, Adriana Ispas and Gerd Mutschke

    2008-01-01

    Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  13. Effective lagrangian from bosonic string field theory

    International Nuclear Information System (INIS)

    Nakazawa, Naohito

    1987-01-01

    We investigate the low-energy effective action from the string field theoretical view point. The low-energy effective lagrangian for the massless mode of bosonic string is determined to the order of α'. We find a term which can not be determined from the S-matrix approach. (author)

  14. Effective field equations for expectation values

    International Nuclear Information System (INIS)

    Jordan, R.D.

    1986-01-01

    We discuss functional methods which allow calculation of expectation values, rather than the usual in-out amplitudes, from a path integral. The technique, based on Schwinger's idea of summing over paths which go from the past to the future and then back to the past, provides effective field equations satisfied by the expectation value of the field. These equations are shown to be real and causal for a general theory up to two-loop order, and unitarity is checked to this order. These methods are applied to a simple quantum-mechanical example to illustrate the differences between the new formalism and the standard theory. When applied to the gravitational field, the new effective field equations should be useful for studies of quantum cosmology

  15. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review.

    Science.gov (United States)

    Mosqueda-Melgar, Jonathan; Elez-Martínez, Pedro; Raybaudi-Massilia, Rosa M; Martín-Belloso, Olga

    2008-09-01

    Pathogenic microorganisms such as Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Yersinia enterocolitica, and Campylobacter jejuni have been implicated in foodborne diseases and outbreaks worldwide. These bacteria have been associated with the consumption of fresh fruit juices, milk, and dairy products, which are foodstuff, highly demanded by consumers in retails and supermarkets. Nowadays, consumers require high quality, fresh-like, and safe foods. Pulsed electric field (PEF) is a non-thermal preservation method, able to inactivate pathogenic microorganisms without significant loss of the organoleptic and nutritional properties of food. The PEF treatment effectiveness to destroy bacteria such as Listeria innocua, E. coli, Salmonella Typhimurium, E. coli O157:H7 and E. coli 8739 at pasteurization levels (> or = 5.0 log(10) cycles) in some fluid foods was reported. However, data on the inactivation of some microorganisms such as Bacillus cereus, Staphylococcus aureus, Yersinia enterocolitica, and Campylobacter jejuni in fluid foods by PEF processing is very limited. Therefore, future works should be focused toward the inactivation of these pathogenic bacteria in real foods.

  16. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  17. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  18. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  19. Cold plasma as a nonthermal food processing technology

    Science.gov (United States)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  20. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  1. Thermal and nonthermal particle production without event horizons

    International Nuclear Information System (INIS)

    Sanchez, N.

    1979-01-01

    Usually, particle production in accelerated frames is discussed in connection with the presence of event horizons and with a planckian spectrum. Accelerated frames without event horizons, where particle production takes place with thermal as well as nonthermal distributions, are constructed. (Auth.)

  2. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  3. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  4. Playing with QCD I: effective field theories

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  5. Dust-acoustic shock waves in a charge varying electronegative magnetized dusty plasma with nonthermal ions: Application to Halley Comet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Bacha, Mustapha [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, USTHB, B. P. 32, El Alia, Algiers 16111 (Algeria)

    2013-10-15

    Weak dust-acoustic waves (DAWs) are addressed in a nonthermal charge varying electronegative magnetized dusty plasmas with application to the Halley Comet. A weakly nonlinear analysis is carried out to derive a Korteweg-de Vries-Burger equation. The positive ion nonthermality, the obliqueness, and magnitude of the magnetic field are found to modify the dispersive and dissipative properties of the DA shock structure. Our results may aid to explain and interpret the nonlinear oscillations that may occur in the Halley Comet Plasma.

  6. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  7. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  8. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  9. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  10. Gravitational effects in field gravitation theory

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.; Mestvirishvili, M.A.; Vlasov, A.A.

    1979-01-01

    The possibilities to describe various gravitation effects of field gravitation theory (FGT) are considered. Past-Newtonian approximation of the FGT has been constructed and on the basis of this approximation it has been shown that the field theory allows one to describe the whole set of experimental facts. The comparison of post-Newtonian parameters in FGT with those in the Einstein's theory makes it clear that these two; theories are undistinguishable from the viewpoint of any experiments, realized with post-Newtonian accuracy. Gravitational field of an island type source with spherically symmetrical distribution of matter and unstationary homogeneous model of Universe, which allows to describe the effect of cosmological red shift, are considered

  11. On the derivation of effective field theories

    International Nuclear Information System (INIS)

    Uzunov, Dimo I.

    2004-12-01

    A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the φ 4 -theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated. (author)

  12. PROBABILISTIC APPROACH OF STABILIZED ELECTROMAGNETIC FIELD EFFECTS

    Directory of Open Access Journals (Sweden)

    FELEA. I.

    2017-09-01

    Full Text Available The effects of the omnipresence of the electromagnetic field are certain and recognized. Assessing as accurately as possible these effects, which characterize random phenomena require the use of statistical-probabilistic calculation. This paper aims at assessing the probability of exceeding the admissible values of the characteristic sizes of the electromagnetic field - magnetic induction and electric field strength. The first part justifies the need for concern and specifies how to approach it. The mathematical model of approach and treatment is presented in the second part of the paper and the results obtained with reference to 14 power stations are synthesized in the third part. In the last part, are formulated the conclusions of the evaluations.

  13. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    Science.gov (United States)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  14. On some nonlinear effects in ultrasonic fields

    Science.gov (United States)

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  15. Ferromagnetic hysteresis and the effective field

    NARCIS (Netherlands)

    Naus, H.W.L.

    2002-01-01

    The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical

  16. ALPs effective field theory and collider signatures

    DEFF Research Database (Denmark)

    Brivio, I.; Gavela, M. B.; Merlo, L.

    2017-01-01

    We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is d...... final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations....

  17. Non-thermal fixed points and solitons in a one-dimensional Bose gas

    International Nuclear Information System (INIS)

    Schmidt, Maximilian; Erne, Sebastian; Nowak, Boris; Sexty, Dénes; Gasenzer, Thomas

    2012-01-01

    Single-particle momentum spectra for a dynamically evolving one-dimensional Bose gas are analysed in the semi-classical wave limit. Representing one of the simplest correlation functions, these provide information on a possible universal scaling behaviour. Motivated by the previously discovered connection between (quasi-) topological field configurations, strong wave turbulence and non-thermal fixed points of quantum field dynamics, soliton formation is studied with respect to the appearance of transient power-law spectra. A random-soliton model is developed for describing the spectra analytically, and the analogies and differences between the emerging power laws and those found in a field theory approach to strong wave turbulence are discussed. The results open a new perspective on solitary wave dynamics from the point of view of critical phenomena far from thermal equilibrium and the possibility of studying this dynamics by experiment without the need for detecting solitons in situ. (paper)

  18. Toroidal field ripple effects in large tokamaks

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tsang, K.T.; Callen, J.D.

    1975-01-01

    In an experimental power reactor, the ripple produced by the finite number of toroidal field coils destroys the ideal axisymmetry of the configuration and is responsible for additional particle trapping, loss regions and plasma transport. The effects of toroidal field ripple on the plasma transport coefficient, the loss of alpha particles and energetic injection ions, and the relaxation of toroidal flows are investigated in a new and systematic way. The relevant results are applied to the ORNL-EPR reference design; the maximum ripple there of about 2.2 percent at the outer edge of the plasma column is found to be tolerable from plasma physics considerations

  19. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    International Nuclear Information System (INIS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-01-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials

  20. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V., E-mail: Vladimir.Scholtz@vscht.cz; Khun, J. [Institute of Chemical Technology in Prague, Department of Physics and Measurements, Faculty of Chemical Engineering (Czech Republic); Soušková, H. [Institute of Chemical Technology in Prague, Department of Computing and Control Engineering, Faculty of Chemical Engineering (Czech Republic); Čeřovský, M. [Institute of Chemical Technology in Prague, Department of Food Preservation, Faculty of Food and Biochemical Technology (Czech Republic)

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  1. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  2. Field Effect Microparticle Generation for Cell Microencapsulation.

    Science.gov (United States)

    Hsu, Brend Ray-Sea; Fu, Shin-Huei

    2017-01-01

    The diameter and sphericity of alginate-poly-L-lysine-alginate microcapsules, determined by the size and the shape of calcium alginate microspheres, affect their in vivo durability and biocompatibility and the results of transplantation. The commonly used air-jet spray method generates microspheres with a wider variation in diameter, larger sphere morphology, and evenly distributed encapsulated cells. In order to overcome these drawbacks, we designed a field effect microparticle generator to create a stable electric field to prepare microparticles with a smaller diameter and more uniform morphology. Using this electric field microparticle generator the encapsulated cells will be located at the periphery of the microspheres, and thus the supply of oxygen and nutrients for the encapsulated cells will be improved compared with the centrally located encapsulated cells in the air-jet spray method.

  3. Evaluation of the differential energy distribution of systems of non-thermally activated molecules

    International Nuclear Information System (INIS)

    Rogers, E.B.

    1986-01-01

    A non-thermally activated molecule may undergo pressure dependent deactivation or energy dependent decomposition. It should be possible to use the pressure dependent stabilization/decomposition yields to determine the energy distribution in non-thermal systems. The numerical technique of regularization has been applied to this chemical problem to evaluate this distribution. The resulting method has been tested with a number of simulated distributions and kinetic models. Application was then made to several real chemical systems to determine the energy distribution resulting from the primary excitation process. Testing showed the method to be quite effective in reproducing input distributions from simulated data in all test cases. The effect of experimental error proved to be negligible when the error-filled data were first smoothed with a parabolic spline. This method has been applied to three different hot atom activated systems. Application to 18 F-for-F substituted CH 3 CF 3 generated a broad distribution extending from 62 to 318 kcal/mol, with a median energy of 138 kcal/mol. The shape of this distribution (and those from the other applications) indicated the involvement of two mechanisms in the excitation process. Analysis of the T-for-H substituted CH 3 CH 2 F system showed a more narrow distribution (56-218 kcal/mol) with a median energy of 79.8 kcal/mol. The distribution of the T-for-H substituted CH 3 CH 2 Cl system, extending from 54.5 to 199 kcal/mol was seen to be quite similar. It was concluded that this method is a valid approach to evaluating differential energy distributions in non-thermal systems, specifically those activated by hot atom substitution

  4. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  5. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  6. Nanowire field effect transistors principles and applications

    CERN Document Server

    Jeong, Yoon-Ha

    2014-01-01

    “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

  7. Simulating nonthermal radiation from cluster radio galaxies.

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. (Ian L.); Jones, T. W. (Thomas Walter); Ryu, Dongsu

    2004-01-01

    We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy (RG) jets. This analysis is based on the first three-dimensional simulations to treat cosmic ray acceleration and transport self-consistently within a magnetohydrodynamical calculation. We use standard observational techniques to calculate both minimum-energy and inverse-Compton field values for our simulated objects. The latter technique provides meaningful information about the field. Minimum-energy calculations retrieve reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also study the reliability of published rotation measure analysis techniques. We find that gradient alignment statistics accurately reflect the physical situation, and can uncover otherwise hidden information about the source. Furthermore, correlations between rotation measure (RM) and position angle (PA) can be significant even when the RM is completely dominated by an external cluster medium.

  8. Effective-field theories for heavy quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2005-01-01

    This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production

  9. Accurate estimate of the relic density and the kinetic decoupling in nonthermal dark matter models

    International Nuclear Information System (INIS)

    Arcadi, Giorgio; Ullio, Piero

    2011-01-01

    Nonthermal dark matter generation is an appealing alternative to the standard paradigm of thermal WIMP dark matter. We reconsider nonthermal production mechanisms in a systematic way, and develop a numerical code for accurate computations of the dark matter relic density. We discuss, in particular, scenarios with long-lived massive states decaying into dark matter particles, appearing naturally in several beyond the standard model theories, such as supergravity and superstring frameworks. Since nonthermal production favors dark matter candidates with large pair annihilation rates, we analyze the possible connection with the anomalies detected in the lepton cosmic-ray flux by Pamela and Fermi. Concentrating on supersymmetric models, we consider the effect of these nonstandard cosmologies in selecting a preferred mass scale for the lightest supersymmetric particle as a dark matter candidate, and the consequent impact on the interpretation of new physics discovered or excluded at the LHC. Finally, we examine a rather predictive model, the G2-MSSM, investigating some of the standard assumptions usually implemented in the solution of the Boltzmann equation for the dark matter component, including coannihilations. We question the hypothesis that kinetic equilibrium holds along the whole phase of dark matter generation, and the validity of the factorization usually implemented to rewrite the system of a coupled Boltzmann equation for each coannihilating species as a single equation for the sum of all the number densities. As a byproduct we develop here a formalism to compute the kinetic decoupling temperature in case of coannihilating particles, which can also be applied to other particle physics frameworks, and also to standard thermal relics within a standard cosmology.

  10. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  11. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  12. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  13. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  14. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    Science.gov (United States)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma

  15. Non-thermal pressure in the outskirts of Abell 2142

    Science.gov (United States)

    Fusco-Femiano, Roberto; Lapi, Andrea

    2018-03-01

    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.

  16. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  17. Nonthermal Particles and Radiation Produced by Cluster Merger Shocks

    Science.gov (United States)

    2003-09-10

    NONTHERMAL PARTICLES AND RADIATION PRODUCED BY CLUSTER MERGER SHOCKS Robert C. Berrington and Charles D. Dermer Naval Research Laboratory, Code 7653...of the merging cluster and is assumed to be constant as the shock propagates outward from the cluster center. In this paper , we model the cluster ...emission in the60–250 eV band for a number of clus- ters. These clusters include Virgo , Coma, Fornax, A2199, A1795, and A4059 (Lieu et al. 1996a, 1996b

  18. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  19. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  20. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  1. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  2. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  3. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    Science.gov (United States)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  4. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  5. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma.

    Science.gov (United States)

    Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn

    2017-07-26

    Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.

  6. The Supersymmetric Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)

    2017-03-10

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.

  7. Effective field theories for correlated electrons

    International Nuclear Information System (INIS)

    Wallington, J.P.

    1999-10-01

    In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)

  8. Field-effect P-N junction

    Science.gov (United States)

    Regan, William; Zettl, Alexander

    2015-05-05

    This disclosure provides systems, methods, and apparatus related to field-effect p-n junctions. In one aspect, a device includes an ohmic contact, a semiconductor layer disposed on the ohmic contact, at least one rectifying contact disposed on the semiconductor layer, a gate including a layer disposed on the at least one rectifying contact and the semiconductor layer and a gate contact disposed on the layer. A lateral width of the rectifying contact is less than a semiconductor depletion width of the semiconductor layer. The gate contact is electrically connected to the ohmic contact to create a self-gating feedback loop that is configured to maintain a gate electric field of the gate.

  9. Effective field theory analysis of Higgs naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)

    2015-07-20

    Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.

  10. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  11. Effective masses and the nuclear mean field

    International Nuclear Information System (INIS)

    Mahaux, C.; Sartor, R.

    1985-01-01

    The effective mass characterizes the energy dependence of the empirical average nuclear potential. This energy dependence has two different sources, namely the nonlocality in space of the microscopic mean field on the one hand, and its true energy dependence on the other hand. Correspondingly it is convenient to divide the effective mass into two components, the k-mass and the ω-mass. The latter is responsible for the existence of a peak in the energy dependence of the effective mass. This peak is located near the Fermi energy in nuclear matter and in nuclei, as well as in the electron gas, the hard sphere Fermi gas and liquid helium 3. A related phenomenon is the existence of a low energy anomaly in the energy dependence of the optical model potential between two heavy ions. (orig.)

  12. SU-F-J-215: Non-Thermal Pulsed High Intensity Focused Ultrasound Therapy Combined with 5-Aminolevulinic Acid: An in Vivo Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; He, W; Cvetkovic, D; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: It has recently been shown that non-thermal pulsed high intensity focused ultrasound (pHIFU) has a cell-killing effect. The purpose of the study is to investigate the sonosensitizing effect of 5-Aminolevulinic Acid (5-ALA) in non-thermal pHIFU cancer therapy. Methods: FaDu human head and neck squamous cell carcinoma cells were injected subcutaneously in the flanks of nude mice. After one to two weeks, the tumors reached the volume of 112 ± 8 mm3 and were assigned randomly into a non-thermal pHIFU group (n=9) and a non-thermal sonodynamic therapy (pHIFU after 5-ALA administration) group (n=7). The pHIFU treatments (parameters: 1 MHz frequency; 25 W acoustic power; 0.1 duty cycle; 60 seconds duration) were delivered using an InSightec ExAblate 2000 system with a GE Signa 1.5T MR scanner. The mice in the non-thermal sonodynamic group received 5-ALA tail-vein injection 4 hours prior to the pHIFU treatment. The tumor growth was monitored using the CT scanner on a Sofie-Biosciences G8 PET/CT system. Results: The tumors in this study grew very aggressively and about 60% of the tumors in this study developed ulcerations at various stages. Tumor growth delay after treatments was observed by comparing the treated (n=9 in pHIFU group; n=7 in sonodynamic group) and untreated tumors (n=17). However, no statistically significant differences were found between the non-thermal pHIFU and non-thermal sonodynamic group. The mean normalized tumor volume of the untreated tumors on Day 7 after their first CT scans was 7.05 ± 0.54, while the normalized volume of the treated tumors on Day 7 after treatment was 5.89 ± 0.79 and 6.27 ± 0.47 for the sonodynamic group and pHIFU group, respectively. Conclusion: In this study, no significant sonosensitizing effects of 5-ALA were obtained on aggressive FaDu tumors despite apparent tumor growth delay in some mice treated with non-thermal sonodynamic therapy.

  13. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  14. The Effective Field Theory of nonsingular cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Wan, Youping [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui 230026 (China); Li, Hai-Guang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Qiu, Taotao [Institute of Astrophysics, Central China Normal University,Wuhan 430079 (China); Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University,Wuhan 430079 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-01-20

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  15. The Effective Field Theory of nonsingular cosmology

    International Nuclear Information System (INIS)

    Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song

    2017-01-01

    In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.

  16. Global effects in quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  17. Oxidation and crystal field effects in uranium

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  18. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Ki, S H; Park, J K; Sung, C; Lee, C B; Uhm, H; Choi, E H; Baik, K Y

    2016-01-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H 2 O 2 . This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  19. The Biological Effects of Weak Electromagnetic Fields

    International Nuclear Information System (INIS)

    Algattawi, A.; Elshyrih, H.

    2010-01-01

    Many studies investigated that weak electromagnetic fields remove calcium ions bound to the membranes of living cells, making them more likely to tear,. There is an enzyme that destroys DNA this enzyme leaking through the membranes of lysosomes explains the fragmentation of DNA. This case was seen in cells exposed to mobile phone signals. When this occurs in the germ line it reduces fertility and predicts genetic damage in future generations. Although leakage of calcium ions into the cytosol (the main part of the cell) accelerates the growth, but it also promotes the growth of tumors. Leakage of calcium ions into neurons (brain cells) makes nerve impulses accounting for pain and other neurological symptoms in electro sensitive. It also reduces the signal to noise ratio of the brain making it less likely to respond. This may be partially responsible for the increased accident rate of drivers using mobile phones. More details for the molecular mechanisms to explain characteristics of electromagnetic exposure are needed, e.g. I) why weak fields are more effective than strong ones, II) why some frequencies such as 16 Hz are especially potent and III) why pulsed fields do more damage

  20. Nucleon Polarisabilities and Effective Field Theories

    Science.gov (United States)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  1. ALPs effective field theory and collider signatures

    Energy Technology Data Exchange (ETDEWEB)

    Brivio, I. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); University of Copenhagen, Niels Bohr International Academy, Copenhagen (Denmark); Gavela, M.B.; Merlo, L.; Rey, R. del [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Mimasu, K. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); No, J.M. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); King' s College London, Department of Physics, London (United Kingdom); Sanz, V. [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-08-15

    We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-Z, mono-W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations. (orig.)

  2. Consistency relations in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Munshi, Dipak; Regan, Donough, E-mail: D.Munshi@sussex.ac.uk, E-mail: D.Regan@sussex.ac.uk [Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH (United Kingdom)

    2017-06-01

    The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity θ-bar . Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k ∼> 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k , can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.

  3. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  5. Human Milk Composition and Preservation: Evaluation of High-pressure Processing as a Nonthermal Pasteurization Technology.

    Science.gov (United States)

    Sousa, Sílvia G; Delgadillo, Ivonne; Saraiva, Jorge A

    2016-01-01

    Human milk is seen not only as a food, but as a functional and dynamic biologic system. It provides nutrients, bioactive components, and immune factors, promoting adequate and healthy growth of newborn infants. When mothers cannot supply their children, donated breast milk is the nutrition recommended by the World Health Organization, as it is a better alternative than infant formula. However, because of the manner in which donor milk is handled in human milk banks (HMB) many of the properties ascribed to mother's own milk are diminished or destroyed. The major process responsible for these losses is Holder pasteurization. High-pressure processing (HPP) is a novel nonthermal pasteurization technology that is being increasingly applied in food industries worldwide, primarily as an alternative to thermal treatment. This is due to its capacity to inactivate microorganisms while preserving both nutritional and bioactive components of foods. This review describes human milk composition and preservation, and critically discusses HMB importance and practices, highlighting HPP as a potential nonthermal pasteurization technology for human milk preservation. HPP technology is described and the few currently existing studies of its effects in human milk are presented.

  6. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy

    OpenAIRE

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatme...

  7. ON THE ROLE AND ORIGIN OF NONTHERMAL ELECTRONS IN HOT ACCRETION FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Niedźwiecki, Andrzej; Stȩpnik, Agnieszka [Department of Astrophysics, University of Łódź, Pomorska 149/153, 90-236 Łódź (Poland); Xie, Fu-Guo, E-mail: niedzwiecki@uni.lodz.pl, E-mail: agajer@o2.pl, E-mail: fgxie@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-02-01

    We study the X-ray spectra of tenuous, two-temperature accretion flows using a model involving an exact, Monte Carlo computation of the global Comptonization effect as well as a general relativistic description of both the flow structure and radiative processes. In our previous work, we found that in flows surrounding supermassive black holes, thermal synchrotron radiation is not capable of providing a sufficient seed photon flux to explain the X-ray spectral indices as well as the cut-off energies measured in several best-studied active galactic nuclei (AGNs). In this work, we complete the model by including seed photons provided by nonthermal synchrotron radiation and we find that it allows us to reconcile the hot flow model with the AGN data. We take into account two possible sources of nonthermal electrons. First, we consider e {sup ±} produced by charged-pion decay, which should always be present in the innermost part of a two-temperature flow due to proton-proton interactions. We find that for a weak heating of thermal electrons (small δ) the synchrotron emission of pion-decay e {sup ±} is much stronger than the thermal synchrotron emission in the considered range of bolometric luminosities, L ∼ (10{sup –4}-10{sup –2}) L {sub Edd}. The small-δ model including hadronic effects, in general, agrees with the AGN data, except for the case of a slowly rotating black hole and a thermal distribution of protons. For large δ, the pion-decay e {sup ±} have a negligible effect and, in this model, we consider nonthermal electrons produced by direct acceleration. We find an approximate agreement with the AGN data for the fraction of the heating power of electrons, which is used for the nonthermal acceleration η ∼ 0.1. However, for constant η and δ, the model predicts a positive correlation of the X-ray spectral index with the Eddington ratio, and hence a fine tuning of η and/or δ with the accretion rate is required to explain the negative correlation

  8. Cyclotron radiation from thermal and non-thermal electrons in the WEGA-stellarator

    International Nuclear Information System (INIS)

    Piekaar, H.W.; Rutgers, W.R.

    1980-11-01

    Electron cyclotron radiation measurements on the WEGA-stellarator are reported. Emission spectra around 2ωsub(ce) and 3ωsub(ce) were measured with a far-infra-red spectrometer and InSb detectors. When the plasma loop voltage is high, runaway electrons give rise to intense broad-band emission. Runaway particles can be removed by increasing the plasma density. For low loop voltage discharges the electron temperature profile was deduced from thermal emission around 2ωsub(ce). In spite of the low E-field, runaway particles are still created and pitch-angle scattered because ωsub(pe)/ωsub(ce) approximately 1. From non-thermal emission below 2ωsub(ce) and 3ωsub(ce) the energy and number of particles could be calculated, and was found to be in agreement with existing theories

  9. Cosmological bounds on large extra dimensions from nonthermal production of Kaluza-Klein modes

    International Nuclear Information System (INIS)

    Allahverdi, Rouzbeh; Bird, Chris; Groot Nibbelink, Stefan; Pospelov, Maxim

    2004-01-01

    The existing cosmological constraints on theories with large extra dimensions rely on the thermal production of the Kaluza-Klein (KK) modes of gravitons and radions in the early Universe. Successful inflation and reheating, as well as baryogenesis, typically requires the existence of a TeV-scale field in the bulk, most notably the inflaton. The nonthermal production of KK modes with masses of order 100 GeV accompanying the inflaton decay sets the lower bounds on the fundamental scale M * . For a 1-TeV inflaton, the late decay of these modes distorts the successful predictions of big bang nucleosynthesis unless M * >35, 13, 7, 5, and 3 TeV for two, three, four, five, and six extra dimensions, respectively. This improves the existing bounds from cosmology on M * for four, five, and six extra dimensions. Even more stringent bounds are derived for a heavier inflaton

  10. Magnetic Field Effects on Plasma Plumes

    Science.gov (United States)

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  11. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  12. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  13. Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission

    Science.gov (United States)

    Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella

    2015-04-01

    Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.

  14. Effective field theory for cold atoms

    International Nuclear Information System (INIS)

    Hammer, H.-W.

    2005-01-01

    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed

  15. Nuclear parity violation in effective field theory

    International Nuclear Information System (INIS)

    Zhu Shilin; Maekawa, C.M.; Holstein, B.R.; Ramsey-Musolf, M.J.; Kolck, U. van

    2005-01-01

    We reformulate the analysis of nuclear parity violation (PV) within the framework of effective field theory (EFT). To O(Q), the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV πNN coupling. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV

  16. Assessment of Extremely Low Frequency (ELF Electric and Magnetic Fields in Hamedan High Electrical Power Stations and their Effects on Workers

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani Shahna

    2011-09-01

    Full Text Available Introduction: Public and occupational exposure to extremely low frequency (ELF electric and magnetic fields induced by electrical equipment is a significant issue in the environment and at the workplace due to their potential health effects on public health. The purpose of this study was assessment of the electric and magnetic fields intensities and determination of mental and psychological effects of occupational exposure in the high voltage electric power stations in the city of Hamadan, Iran. Material and Methods: The intensities of the magnetic and electric fields were measured at eight high voltage electric power stations at three different intervals of sources using an HI-3604 instrument. A two-part questionnaire was used to assess mental and psychological effects of the exposure to these fields. Two groups of control and case workers including 30 samples were selected to determine the exposure effects. Results: The results of field measurements showed the highest average electric field intensity was related to the CVT unit with 3110 V/m at a 2 m distance from the source and the lowest average was related to the control room with 1.35 V/m next to the source. Also, the highest and lowest magnetic field intensities were close to the transformator 2 and the battery room (50.42 and 1.31 mG, respectively. Discussion and Conclusion: The intensities of electric and magnetic fields in the selected stations are lower than the ACGIH and ICNIRP standard levels for occupational exposures. The results obtained indicate that the distribution of these fields was nonlinear around the sources and the effects observed on exposed workers were non-thermal.

  17. Probing light nonthermal dark matter at the LHC

    Science.gov (United States)

    Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2014-05-01

    This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.

  18. Smooth hybrid inflation and non-thermal Type II leptogenesis

    International Nuclear Information System (INIS)

    Sil, Arunansu

    2013-01-01

    We consider a smooth hybrid inflation scenario based on a supersymmetricSU(2) L ⊗ SU(2) R ⊗ U(1) B-L model. The Higgs triplets involved in the model play a key role in inflation as well as in explaining the observed baryon asymmetry of the universe. We show that the baryon asymmetry can originate via non-thermal triplet leptogenesis from the decay of SU(2) B-L triplets, whose tiny vacuum expectation values also provide masses for the light neutrinos. (author)

  19. Non-thermal plasma mills bacteria: scanning electron microscopy observations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Churpita, Olexandr; Zablotskyy, Vitaliy A.; Deyneka, I.G.; Meshkovskii, I.K.; Jäger, Aleš; Syková, Eva; Kubinová, Šárka; Dejneka, Alexandr

    2015-01-01

    Roč. 106, č. 5 (2015), "053703-1"-"053703-5" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk(CZ) LM2011026; GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219; SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * plasma medicine * bacteria * cells Subject RIV: BO - Biophysics Impact factor: 3.142, year: 2015

  20. Thermal-nonthermal relationships in active galactic nuclei

    International Nuclear Information System (INIS)

    Waard, G.J. de.

    1986-01-01

    This dissertation reports on optical and radio observations of active galactic nuclei, selected on the basis of the presence of dominant narrow (narrow line radio galaxies, Seyfert II galaxies, QSOs) and/or broad (broad line radio galaxies, Seyfert I galaxies, QSOs) optical emission lines in their spectra. Special attention is drawn to possible relationships and physical links between the two regimes responsible for the optical (thermal) and radio (non-thermal) emission. Several projects, each studying such relationships on different angular (and thus linear) scales and at different observational frequencies were conceived with a variety of detection devices. (Auth.)

  1. Effective field theory description of halo nuclei

    Science.gov (United States)

    Hammer, H.-W.; Ji, C.; Phillips, D. R.

    2017-10-01

    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.

  2. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  3. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    International Nuclear Information System (INIS)

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS

  4. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS.

  5. Hard x ray imaging and the relative contribution of thermal and nonthermal emission in flares

    International Nuclear Information System (INIS)

    Holman, G.D.

    1986-01-01

    The question of whether the impulsive 25 to 100 keV x ray emission from solar flares is thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal (beam) models have been developed and applied to the hard x ray data. It now seems likely that both thermal and nonthermal emission have been observed at hard x ray energies. The Hinotori classification scheme, for example, is an attempt to associate the thermal-nonthermal characteristics of flare hard x ray emission with other flare properties. From a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without dumping an equal or greater amount of energy into plasma heating. On the other hand, any impulsive heating process will invariably generate at least some nonthermal particles. Hence, strictly speaking, although thermal or nonthermal emission may dominate the hard x ray emission in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal flare mechanism

  6. Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?

    Directory of Open Access Journals (Sweden)

    Martina Nardoni

    2018-03-01

    Full Text Available Recently, magnetic nanoparticles (MNPs have been used to trigger drug release from magnetoliposomes through a magneto-nanomechanical approach, where the mechanical actuation of the MNPs is used to enhance the membrane permeability. This result can be effectively achieved with low intensity non-thermal alternating magnetic field (AMF, which, however, found rare clinic application. Therefore, a different modality of generating non-thermal magnetic fields has now been investigated. Specifically, the ability of the intermittent signals generated by non-thermal pulsed electromagnetic fields (PEMFS were used to verify if, once applied to high-transition temperature magnetoliposomes (high-Tm MLs, they could be able to efficiently trigger the release of a hydrophilic model drug. To this end, hydrophilic MNPs were combined with hydrogenated soybean phosphatidylcholine and cholesterol to design high-Tm MLs. The release of a dye was evaluated under the effect of PEMFs for different times. The MNPs motions produced by PEMF could effectively increase the bilayer permeability, without affecting the liposomes integrity and resulted in nearly 20% of release after 3 h exposure. Therefore, the current contribution provides an exciting proof-of-concept for the ability of PEMFS to trigger drug release, considering that PEMFS find already application in therapy due to their anti-inflammatory effects.

  7. Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?

    Science.gov (United States)

    Nardoni, Martina; Della Valle, Elena; Liberti, Micaela; Relucenti, Michela; Casadei, Maria Antonietta; Paolicelli, Patrizia; Apollonio, Francesca; Petralito, Stefania

    2018-03-27

    Recently, magnetic nanoparticles (MNPs) have been used to trigger drug release from magnetoliposomes through a magneto-nanomechanical approach, where the mechanical actuation of the MNPs is used to enhance the membrane permeability. This result can be effectively achieved with low intensity non-thermal alternating magnetic field (AMF), which, however, found rare clinic application. Therefore, a different modality of generating non-thermal magnetic fields has now been investigated. Specifically, the ability of the intermittent signals generated by non-thermal pulsed electromagnetic fields (PEMFS) were used to verify if, once applied to high-transition temperature magnetoliposomes (high-Tm MLs), they could be able to efficiently trigger the release of a hydrophilic model drug. To this end, hydrophilic MNPs were combined with hydrogenated soybean phosphatidylcholine and cholesterol to design high-Tm MLs. The release of a dye was evaluated under the effect of PEMFs for different times. The MNPs motions produced by PEMF could effectively increase the bilayer permeability, without affecting the liposomes integrity and resulted in nearly 20% of release after 3 h exposure. Therefore, the current contribution provides an exciting proof-of-concept for the ability of PEMFS to trigger drug release, considering that PEMFS find already application in therapy due to their anti-inflammatory effects.

  8. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  9. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  10. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  11. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  12. Integrated CO{sub 2} Capture and Utilization Using Non-Thermal Plasmolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Matthew, E-mail: mmoss1@sheffield.ac.uk; Reed, Daniel G.; Allen, Ray W. K.; Styring, Peter [UK Centre for Carbon Dioxide Utilisation, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield (United Kingdom)

    2017-08-02

    In this work, two simple processes for carbon dioxide (CO{sub 2}) such as capture and utilization have been combined to form a whole systems approach to carbon capture and utilization (CCU). The first stage utilizes a pressure swing adsorption (PSA) system, which offers many benefits over current amine technologies. It was found that high selectivity can be achieved with rapid adsorption/desorption times while employing a cheap, durable sorbent that exhibits no sorbent losses and is easily regenerated by simple pressure drops. The PSA system is capable of capturing and upgrading the CO{sub 2} concentration of a waste gas stream from 12.5% to a range of higher purities. As many CCU end processes have some tolerance toward impurities in the feed, in the form of nitrogen (N{sub 2}), for example, this is highly advantageous for this PSA system since CO{sub 2} purities in excess of 80% can be achieved with only a few steps and minimal energy input. Non-thermal plasma is one such technology that can tolerate, and even benefit from, small N{sub 2} impurities in the feed, therefore a 100% pure CO{sub 2} stream is not required. The second stage of this process deploys a nanosecond pulsed corona discharge reactor to split the captured CO{sub 2} into carbon monoxide (CO), which can then be used as a chemical feedstock for other syntheses. Corona discharge has proven industrial applications for gas cleaning and the benefit of pulsed power reduces the energy consumption of the system. The wire-in-cylinder geometry concentrates the volume of gas treated into the area of high electric field. Previous work has suggested that moderate conversions can be achieved (9%), compared to other non-thermal plasma methods, but with higher energy efficiencies (>60%).

  13. Chemical effects in the near-field

    International Nuclear Information System (INIS)

    Ewart, F.T.; Tasker, P.W.

    1987-01-01

    A research program is described which is designed to investigate the chemical conditions in the near-field of a concrete based repository and the behavior of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a new coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. Results are reported for plutonium, americium, neptunium and lead; these results have been under to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behavior of plutonium and americium, under the same conditions, have been studied, the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio

  14. A periodic table of effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Clifford [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Kampf, Karol; Novotny, Jiri [Institute of Particle and Nuclear Physics,Faculty of Mathematics and Physics, Charles University,Prague (Czech Republic); Shen, Chia-Hsien [Walter Burke Institute for Theoretical Physics,California Institute of Technology,Pasadena, CA (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA (United States)

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  15. Room Temperature Silicene Field-Effect Transistors

    Science.gov (United States)

    Akinwande, Deji

    Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.

  16. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  17. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  18. Orbital effect of the magnetic field in dynamical mean-field theory

    Science.gov (United States)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  19. Probing non-thermal density fluctuations in the one-dimensional Bose gas

    Directory of Open Access Journals (Sweden)

    Jacopo De Nardis, Miłosz Panfil, Andrea Gambassi, Leticia F. Cugliandolo, Robert Konik, Laura Foini

    2017-09-01

    Full Text Available Quantum integrable models display a rich variety of non-thermal excited states with unusual properties. The most common way to probe them is by performing a quantum quench, i.e., by letting a many-body initial state unitarily evolve with an integrable Hamiltonian. At late times, these systems are locally described by a generalized Gibbs ensemble with as many effective temperatures as their local conserved quantities. The experimental measurement of this macroscopic number of temperatures remains elusive. Here we show that they can be obtained by probing the dynamical structure factor of the system after the quench and by employing a generalized fluctuation-dissipation theorem that we provide. Our procedure allows us to completely reconstruct the stationary state of a quantum integrable system from state-of-the-art experimental observations.

  20. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2017-01-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed. (paper)

  1. Non-thermal distribution of O(1D) atoms in the night-time thermosphere

    Science.gov (United States)

    Yee, Jeng-Hwa

    1988-01-01

    The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.

  2. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Krebs, H.

    2011-01-01

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories

  3. Crystal-field effect in UO2

    International Nuclear Information System (INIS)

    Gajek, Z.; Lahalle, M.P.; Krupa, J.C.; Mulak, J.

    1988-01-01

    Simple ab initio model perturbation calculations of the crystal-field parameters for the U 4+ ion in UO 2 crystals are reported. The crystal-field parameters obtained, B 0 4 = -7130 cm -1 and B 0 6 = 2890 cm -1 , turn out to be much lower in value, particularly the first one, than those usually assumed for this compound. They are found, however, to agree with new spectroscopic data and recent inelastic neutron scattering measurements. (orig.)

  4. Utilizing Urban Environments for Effective Field Experiences

    Science.gov (United States)

    MacAvoy, S. E.; Knee, K.

    2014-12-01

    Research surveys suggest that students are demanding more applied field experiences from their undergraduate environmental science programs. For geoscience educators at liberal arts colleges without field camps, university vehicles, or even geology departments, getting students into the field is especially rewarding - and especially challenging. Here, we present strategies that we have used in courses ranging from introductory environmental science for non-majors, to upper level environmental methods and geology classes. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Here we share detailed lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency, and provide student feedback about the classes and activities.

  5. Transverse Field Effect in Fluxgate Sensors

    DEFF Research Database (Denmark)

    Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V

    1997-01-01

    A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non-linearity......A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non......-linearity are made with a spectrum analyser, measuring the higher harmonics of an applied sinusoidal field. For a sensor with a permalloy ringcore of 1" in diameter the deviation from linearity is measured to about 15 nTp-p in the earth's field and the measurements are shown to fit well the calculations. Further......, the measurements and the calculations are also compared with a calibration model of the fluxgate sensor onboard the "MAGSAT" satellite. The later has a deviation from linearity of about 50 nTp-p but shows basically the same form of non-linearity as the measurements....

  6. Magnetic field and screening effects in condensed and ultradense matter

    International Nuclear Information System (INIS)

    Roussel, K.M.

    1974-01-01

    The investigations of three topics are presented: the origin of magnetic fields in white dwarfs and neutron stars, the detection of magnetic fields in white dwarfs, and screening effects due to free charged particles, particularly in semiconductors. (U.S.)

  7. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  8. Nonthermal plasma--A tool for decontamination and disinfection.

    Science.gov (United States)

    Scholtz, Vladimir; Pazlarova, Jarmila; Souskova, Hana; Khun, Josef; Julak, Jaroslav

    2015-11-01

    By definition, the nonthermal plasma (NTP) is partially ionized gas where the energy is stored mostly in the free electrons and the overall temperature remains low. NTP is widely used for many years in various applications such as low-temperature plasma chemistry, removal of gaseous pollutants, in gas-discharge lamps or surface modification. However, during the last ten years, NTP usage expanded to new biological areas of application like plasma microorganisms' inactivation, ready-to-eat food preparation, biofilm degradation or in healthcare, where it seems to be important for the treatment of cancer cells and in the initiation of apoptosis, prion inactivation, prevention of nosocomial infections or in the therapy of infected wounds. These areas are presented and documented in this paper as a review of representative publications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nonthermal production of dark matter from primordial black holes

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  10. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  11. On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES

    Science.gov (United States)

    Leblanc, F.; Chaufray, J. Y.; Modolo, R.; Leclercq, L.; Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Halekas, J.; Schneider, N.; Deighan, J.; Mahaffy, P. R.; Benna, M.; Johnson, R. E.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Eparvier, F. G.; Jakosky, B.

    2017-12-01

    The first measurements of the emission brightness of the oxygen atomic exosphere by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission have clearly shown that it is composed of a thermal component produced by the extension of the upper atmosphere and of a nonthermal component. Modeling these measurements allows us to constrain the origins of the exospheric O and, as a consequence, to estimate Mars' present oxygen escape rate. We here propose an analysis of three periods of MAVEN observations based on a set of three coupled models: a hybrid magnetospheric model (LATmos HYbrid Simulation (LatHyS)), an Exospheric General Model (EGM), and the Global Martian Circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM), which provide a description of Mars' environment from the surface up to the solar wind. The simulated magnetosphere by LatHyS is in good agreement with MAVEN Plasma and Field Package instruments data. The LMD-GCM modeled upper atmospheric profiles for the main neutral and ion species are compared to Neutral Gas and Ion Mass Spectrometer/MAVEN data showing that the LMD-GCM can provide a satisfactory global view of Mars' upper atmosphere. Finally, we were able to reconstruct the expected emission brightness intensity from the oxygen exosphere using EGM. The good agreement with the averaged measured profiles by Imaging Ultraviolet Spectrograph during these three periods suggests that Mars' exospheric nonthermal component can be fully explained by the reactions of dissociative recombination of the O2+ ion in Mars' ionosphere, limiting significantly our ability to extract information from MAVEN observations of the O exosphere on other nonthermal processes, such as sputtering.

  12. Direct coupled amplifiers using field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1964-03-15

    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  13. The stark effect in intense field. 2

    International Nuclear Information System (INIS)

    Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.

    1987-01-01

    The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment

  14. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  15. Change in Color and Volatile Composition of Skim Milk Processed with Pulsed Electric Field and Microfiltration Treatments or Heat Pasteurization

    OpenAIRE

    Chugh, Anupam; Khanal, Dipendra; Walkling-Ribeiro, Markus; Corredig, Milena; Duizer, Lisa; Griffiths, Mansel

    2014-01-01

    Non-thermal processing methods, such as pulsed electric field (PEF) and tangential-flow microfiltration (TFMF), are emerging processing technologies that can minimize the deleterious effects of high temperature short time (HTST) pasteurization on quality attributes of skim milk. The present study investigates the impact of PEF and TFMF, alone or in combination, on color and volatile compounds in skim milk. PEF was applied at 28 or 40 kV/cm for 1122 to 2805 µs, while microfiltration (MF) was c...

  16. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  17. Spontaneous non-thermal leptogenesis in high-scale inflation models

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2006-11-01

    We argue that a non-thermal leptogenesis occurs spontaneously, without direct couplings of the inflation with right-handed neutrinos, in a wide class of high-scale inflation models such as the chaotic and hybrid inflation. It is only a finite vacuum expectation value of the inflaton, of more precisely, a linear term in the Kaehler potential, that is a prerequisite for the spontaneous non-thermal leptogenesis. To exemplify how it works, we show that a chaotic inflation model in supergravity naturally produces a right amount of baryon asymmetry via the spontaneous non-thermal leptogenesis. We also discuss the gravitino production from the inflation. (orig.)

  18. Thermal and non-thermal preservation techniques of tiger nuts' beverage "horchata de chufa". Implications for food safety, nutritional and quality properties.

    Science.gov (United States)

    Roselló-Soto, Elena; Poojary, Mahesha M; Barba, Francisco J; Koubaa, Mohamed; Lorenzo, Jose M; Mañes, Jordi; Moltó, Juan Carlos

    2018-03-01

    "Horchata de chufa" is a traditional Spanish beverage produced from tiger nuts (Cyperus esculentus L.). Due to its richness in nutritional compounds, it is highly perishable and its conservation by pasteurization and/or adding preservatives is required. Although efficient, conventional thermal treatment for pasteurization induces changes in the nutritional and sensory properties. Replacing conventional pasteurization by non-thermal technologies such as pulsed electric fields, ultraviolet, and high pressure, combined with moderate temperatures (preservation of the most thermo-sensitive molecules. Accordingly, this review deals with the description of the most relevant non-thermal technologies applied to preserve "horchata" beverage in order to extend the shelf life and inactivate pathogenic microorganisms as well as to preserve the nutritional and quality properties of this food beverage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Self-field effects on electron dynamics in free-electron lasers with axial magnetic field

    International Nuclear Information System (INIS)

    Mirzanejhad, S.; Maraghechi, B.; Mohsenpour, T.

    2004-01-01

    A self-consistent method for the analysis of self-magnetic field for a free-electron laser with a one-dimensional helical wiggler and an axial guide magnetic field is presented. The equilibrium orbits and their stability, under the influence of self-electric and self-magnetic fields, are analyzed. New unstable orbits, in the first part of the Group I orbits and in the resonance region of the Group II orbits, are found. It is shown that an increase in the defocusing effect of self-fields will widen the unstable orbits. An anomalous self-field regime is found where an increase in the defocusing effect of self-fields can have stabilizing effect on the resonance region

  20. Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak

    Science.gov (United States)

    Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.

    2018-02-01

    The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.

  1. Field-effect detection using phospholipid membranes -Topical Review

    Directory of Open Access Journals (Sweden)

    Chiho Kataoka-Hamai and Yuji Miyahara

    2010-01-01

    Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.

  2. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

    Science.gov (United States)

    Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N

    2014-03-01

    Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

  3. Effect of tidal fields on star clusters

    Science.gov (United States)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  4. Effects of the magnetic field on the structure of materials

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    1984-02-01

    This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)

  5. Boundary effects in quantum field theory

    International Nuclear Information System (INIS)

    Deutsch, D.; Candelas, P.

    1979-01-01

    Electromagnetic and scalar fields are quantized in the region near an arbitrary smooth boundary, and the renormalized expectation value of the stress-energy tensor is calculated. The energy density is found to diverge as the boundary is approached. For nonconformally invariant fields it varies, to leading order, as the inverse fourth power of the distance from the boundary. For conformally invariant fields the coefficient of this leading term is zero, and the energy density varies as the inverse cube of the distance. An asymptotic series for the renormalized stress-energy tensor is developed as far as the inverse-square term in powers of the distance. Some criticisms are made of the usual approach to this problem, which is via the ''renormalized mode sum energy,'' a quantity which is generically infinite. Green's-function methods are used in explicit calculations, and an iterative scheme is set up to generate asymptotic series for Green's functions near a smooth boundary. Contact is made with the theory of the asymptotic distribution of eigenvalues of the Laplacian operator. The method is extended to nonflat space-times and to an example with a nonsmooth boundary

  6. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  7. Generalization of the cogeneration concept as field theory effects

    International Nuclear Information System (INIS)

    Forje, A.; Tiberiu, C.; Calugaru, A.; Carstea, O.; Dorobantu, G.; Barota, R.; Balan, N.; Mariam, G.; Udrea, E.

    1990-01-01

    This paper reports on the reformulated notions regarding energy, action geodesic and non-linearity that were defined. Information geodesic is defined as pathway of perceptible and quantifiable signals emitted and received during the evolution of the conversion of a mass field in interaction with the energy field. The objective reality at the level of the distances ranging in between the limits of human ability of perception and quantification can be regarded as an interpenetrative complex of two fields namely: a diffuse, extensive and continuous energy field with multiple manifestation possibilities which is indirectly perceived and quantified through its interaction effects with the field of masses during their conversion; a discrete, intensive and discontinuous field of masses also showing multiple manifestation possibilities which render possible both the perception of this field and quantification of its conversions as an effect of the interactions with the energy field

  8. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  9. Effects of magnetic fields in white dwarfs

    International Nuclear Information System (INIS)

    Franzon, Bruno; Schramm, Stefan

    2017-01-01

    We perform calculations of white dwarfs endowed with strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ∼ 1.4 M⊙. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ∼ 2.0 M⊙. (paper)

  10. Nuclear matter from chiral effective field theory

    International Nuclear Information System (INIS)

    Drischler, Christian

    2017-01-01

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal

  11. Nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Drischler, Christian

    2017-11-15

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the

  12. Analysis of a high brightness photo electron beam with self field and wake field effects

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surface and the self field of the bunch)

  13. Effective field theory: A modern approach to anomalous couplings

    International Nuclear Information System (INIS)

    Degrande, Céline; Greiner, Nicolas; Kilian, Wolfgang; Mattelaer, Olivier; Mebane, Harrison; Stelzer, Tim; Willenbrock, Scott; Zhang, Cen

    2013-01-01

    We advocate an effective field theory approach to anomalous couplings. The effective field theory approach is the natural way to extend the standard model such that the gauge symmetries are respected. It is general enough to capture any physics beyond the standard model, yet also provides guidance as to the most likely place to see the effects of new physics. The effective field theory approach also clarifies that one need not be concerned with the violation of unitarity in scattering processes at high energy. We apply these ideas to pair production of electroweak vector bosons. -- Highlights: •We discuss the advantages of effective field theories compared to anomalous couplings. •We show that one need not be concerned with unitarity violation at high energy. •We discuss the application of effective field theory to weak boson physics

  14. Dissipative Effects in the Effective Field Theory of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study

    2012-09-14

    We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.

  15. Radiation, waves, fields. Causes and effects on environment and health

    International Nuclear Information System (INIS)

    Leitgeb, N.

    1990-01-01

    The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de

  16. The efficacy of a combination non-thermal focused ultrasound and radiofrequency device for noninvasive body contouring in Asians.

    Science.gov (United States)

    Shek, Samantha Y N; Yeung, Chi K; Chan, Johnny C Y; Chan, Henry H L

    2016-02-01

    Several studies have been published on the first generation non-thermal focused ultrasound with an average improvement of 0-3.95 cm reported. We aim to investigate the efficacy of the second-generation non-thermal focused ultrasound device with a combined radiofrequency hand piece. With the addition of radiofrequency energy, the temperature of the adipose tissue is raised before focused ultrasound is applied. This facilitates the mechanical disruption of fat cells by focused ultrasound. Twenty subjects were recruited and underwent three treatments biweekly. Caliper reading, abdominal circumference, and standardized photographs were taken with the Vectra(®) system at all visits. We aim to have the subjects stand and hold the same position and the photograph taken after exhalation. Caliper and circumference measurements carry uncertainty. It is impossible to eliminate all uncertainties but can be improved by having the same trained physician assistant perform the measurement at the same site and taking an average of three readings. Pain score and satisfaction were recorded by means of the visual analogue scale. The efficacy is defined by a statistically significant improvement in circumferential improvement based on intention-to-treat analysis. Seventeen subjects completed the treatment schedule. Abdominal circumference showed statistically significant improvement at 2 weeks post-second treatment (P = 0.023) and almost all subsequent follow-ups. Caliper readings were statistically significant at 2 weeks post-second treatment (P = 0.013) and almost all follow-ups. The mean pain score reported was 2.3 on the visual analog scale and 6% were unsatisfied with the overall treatments. Six incidents of wheal formation appeared immediately after treatment all of which subsided spontaneously within several hours. The combination non-thermal focused ultrasound and radiofrequency device is effective for improving body contour in Asians. © 2015 Wiley Periodicals, Inc.

  17. Enhancing the lethal effect of high-intensity pulsed electric field in milk by antimicrobial compounds as combined hurdles.

    Science.gov (United States)

    Sobrino-López, A; Martín-Belloso, O

    2008-05-01

    High-intensity pulsed electric field (HIPEF) is a nonthermal treatment studied for its wide antimicrobial spectrum on liquid food, including milk and dairy products. Moreover, the antimicrobial effect of HIPEF may be enhanced by combining HIPEF with other treatments as hurdles. Nisin and lysozyme are natural antimicrobial compounds that could be used in combination with HIPEF. Therefore, the purpose of this study was to determine the effect of combining HIPEF with the addition of nisin and lysozyme to milk inoculated with Staphylococcus aureus with regard to different process variables. The individual addition of nisin and lysozyme did not produce any reduction in cell population within the proposed range of concentrations, whereas their combination resulted in a pH-dependent microbial death of Staph. aureus. The addition of nisin and lysozyme to milk combined with HIPEF treatment resulted in a synergistic effect. Applying a 1,200-micros HIPEF treatment time to milk at pH 6.8 containing 1 IU/mL of nisin and 300 IU/mL of lysozyme resulted in a reduction of more than 6.2 log units of Staph. aureus. Final counts resulting from the addition of nisin and lysozyme and applying HIPEF strongly depended on both the sequence of application and the milk pH. Thus, more research is needed to elucidate the mode of action of synergism as well as the role of different process variables, although the use of HIPEF in combination with antimicrobial compounds such as nisin and lysozyme is shown to be potentially useful in processing milk and dairy products.

  18. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...

  19. The effects of magnetic fields on carnauba wax electret formation

    Science.gov (United States)

    Clator, Irvin G.

    1987-08-01

    The results of thermally stimulated depolarization current and effective surface charge-density measurements indicate that magnetic fields do not produce carnauba wax electrets and that previously reported data can be attributed to nonmagnetic effects.

  20. A new non-thermal galactic radio source with a possible binary system

    International Nuclear Information System (INIS)

    Fuerst, E.; Reich, W.; Reich, P.; Sofue, Y.; Handa, T.

    1985-01-01

    A galactic object [G18.95-1.1], detected recently in a galactic plane survey, may belong to a new class of non-thermal radio sources that originate in accreting binary systems. The data on integrated flux density spectral index and the polarization, proves the non-thermal nature of the source. The morphology defies any classification as a supernova remnant. The authors suggest that the object is a binary system containing a compact component. (U.K.)

  1. Thermal and Nonthermal Emissions of a Composite Flare Derived from NoRH and SDO Observations

    Science.gov (United States)

    Lee, Jeongwoo; White, Stephen M.; Jing, Ju; Liu, Chang; Masuda, Satoshi; Chae, Jongchul

    2017-12-01

    Differential emission measure (DEM) derived from the extreme ultraviolet (EUV) lines of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory is used in the analysis of a solar flare observed by the Nobeyama Radioheliograph (NoRH). The target was a composite event consisting of an impulsive flare, SOL2015-06-21T01:42 (GOES class M2.0), and a gradual flare, SOL2015-06-21T02:36 (M2.6), for which separation of thermal plasma heating from nonthermal particle acceleration was of major interest. We have calculated the thermal free-free intensity maps with the AIA-derived DEM and compared them against the observed NoRH maps to attribute the difference to the nonthermal component. In this way, we were able to locate three distinct sources: the major source with thermal and nonthermal components mixed, a nonthermal source devoid of thermal particles, and a thermal source lacking microwave emission. Both the first and the second nonthermal sources produced impulsively rising 17 GHz intensities and moved away from the local magnetic polarization inversion lines in correlation with the flare radiation. In contrast, the thermal sources stay in fixed locations and show temporal variations of the temperature and emission measure uncorrelated with the flare radiation. We interpret these distinct properties as indicating that nonthermal sources are powered by magnetic reconnection and thermal sources passively receive energy from the nonthermal donor. The finding of these distinct properties between thermal and nonthermal sources demonstrates the microwave and EUV emission measure combined diagnostics.

  2. Nanometer size field effect transistors for terahertz detectors

    International Nuclear Information System (INIS)

    Knap, W; Rumyantsev, S; Coquillat, D; Dyakonova, N; Teppe, F; Vitiello, M S; Tredicucci, A; Blin, S; Shur, M; Nagatsuma, T

    2013-01-01

    Nanometer size field effect transistors can operate as efficient resonant or broadband terahertz detectors, mixers, phase shifters and frequency multipliers at frequencies far beyond their fundamental cut-off frequency. This work is an overview of some recent results concerning the application of nanometer scale field effect transistors for the detection of terahertz radiation. (paper)

  3. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Organic thin film transistors were fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film ... At room temperature, these transistors exhibit p-type conductivity with field-effect ... Keywords. Organic semiconductor; field effect transistor; phthalocyanine; high mobility. ... The evaporation rate was kept at ...

  4. Field experimental design comparisons to detect field effects associated with agronomic traits in Upland cotton

    Science.gov (United States)

    Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...

  5. Effective potentials in gauge field theories

    International Nuclear Information System (INIS)

    Caldas, P.S.S.; Fleming, H.; Garcia, R.L.

    An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt

  6. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  7. Is the effective field theory of dark energy effective?

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V. [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, New Campbell Hall 341, Berkeley, CA, 94720 (United States); Sengör, Gizem; Watson, Scott, E-mail: evlinder@lbl.gov, E-mail: gsengor@syr.edu, E-mail: gswatson@syr.edu [Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244 (United States)

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions —assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H ( z ) or dark energy equation of state w ( z ) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  8. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  9. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    Science.gov (United States)

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  10. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    International Nuclear Information System (INIS)

    Melrose, D. B.

    2010-01-01

    The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  11. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  12. Effective and fundamental quantum fields at criticality

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michael

    2010-10-28

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  13. Effective and fundamental quantum fields at criticality

    International Nuclear Information System (INIS)

    Scherer, Michael

    2010-01-01

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  14. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  15. Changes in the spectral composition of animal-brain electrical activity under the influence of nonthermal millimeter-wave radiation on acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Khramov, R.N.; Vorob`ev, V.V.

    1994-07-01

    The frequency spectra (0-26 Hz) of electrograms (EG) of the preoptic region of the hypothalamus were studied in chronic experiments on nine awake rabbits under the influence of nonthermal millimeter-bank (55-75 GHz) electromagnetic fields on various acupuncture points: (I) the auricular {open_quotes}heart{close_quotes} point (after F. G. Portnov); (II) the cranial acupoint (TR-20; the {open_quotes}hypothalamus{close_quotes} point after R. Voll); and (III) the {open_quotes}longevity{close_quotes} acupoint (E-36). Irradiation of point I was accompanied by significant suppression of hypothalamic electrical activity at 5 and 16 Hz and enhancement at 7-8, 12, and 26 Hz. Irradiation of point II, and III were, respectively, 31%, 21%, and 5% (p < 0.05, U-criterion). These results suggest that acupuncture points I and II are more sensitive to millimeter-band radiation than is point III. The presence of individual characteristics of the effects and their change after stress to sign inversion were shown in rat experiments in which the acupuncture points were irradiated.

  16. END FIELD EFFECTS IN BEND ONLY COOLING LATTICES

    International Nuclear Information System (INIS)

    BEERG, J.S.; KIRK, H.; GARREN, A.

    2003-01-01

    Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them

  17. Magnetic field and magnetic isotope effects on photochemical reactions

    International Nuclear Information System (INIS)

    Wakasa, Masanobu

    1999-01-01

    By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)

  18. Light-induced nonthermal population of optical phonons in nanocrystals

    Science.gov (United States)

    Falcão, Bruno P.; Leitão, Joaquim P.; Correia, Maria R.; Soares, Maria R.; Wiggers, Hartmut; Cantarero, Andrés; Pereira, Rui N.

    2017-03-01

    Raman spectroscopy is widely used to study bulk and nanomaterials, where information is frequently obtained from spectral line positions and intensities. In this study, we monitored the Raman spectrum of ensembles of semiconductor nanocrystals (NCs) as a function of optical excitation intensity (optical excitation experiments). We observe that in NCs the red-shift of the Raman peak position with increasing light power density is much steeper than that recorded for the corresponding bulk material. The increase in optical excitation intensity results also in an increasingly higher temperature of the NCs as obtained with Raman thermometry through the commonly used Stokes/anti-Stokes intensity ratio. More significantly, the obtained dependence of the Raman peak position on temperature in optical excitation experiments is markedly different from that observed when the same NCs are excited only thermally (thermal excitation experiments). This difference is not observed for the control bulk material. The inefficient diffusion of photogenerated charges in nanoparticulate systems, due to their inherently low electrical conductivity, results in a higher steady-state density of photoexcited charges and, consequently, also in a stronger excitation of optical phonons that cannot decay quickly enough into acoustic phonons. This results in a nonthermal population of optical phonons and thus the Raman spectrum deviates from that expected for the temperature of the system. Our study has major consequences to the general application of Raman spectroscopy to nanomaterials.

  19. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  20. Information loss in effective field theory: Entanglement and thermal entropies

    Science.gov (United States)

    Boyanovsky, Daniel

    2018-03-01

    Integrating out high energy degrees of freedom to yield a low energy effective field theory leads to a loss of information with a concomitant increase in entropy. We obtain the effective field theory of a light scalar field interacting with heavy fields after tracing out the heavy degrees of freedom from the time evolved density matrix. The initial density matrix describes the light field in its ground state and the heavy fields in equilibrium at a common temperature T . For T =0 , we obtain the reduced density matrix in a perturbative expansion; it reveals an emergent mixed state as a consequence of the entanglement between light and heavy fields. We obtain the effective action that determines the time evolution of the reduced density matrix for the light field in a nonperturbative Dyson resummation of one-loop correlations of the heavy fields. The Von-Neumann entanglement entropy associated with the reduced density matrix is obtained for the nonresonant and resonant cases in the asymptotic long time limit. In the nonresonant case the reduced density matrix displays an incipient thermalization albeit with a wave-vector, time and coupling dependent effective temperature as a consequence of memory of initial conditions. The entanglement entropy is time independent and is the thermal entropy for this effective, nonequilibrium temperature. In the resonant case the light field fully thermalizes with the heavy fields, the reduced density matrix loses memory of the initial conditions and the entanglement entropy becomes the thermal entropy of the light field. We discuss the relation between the entanglement entropy ultraviolet divergences and renormalization.

  1. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  2. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  3. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  4. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  5. Effects of hypersonic field and anharmonic interactions on channelling radiation

    International Nuclear Information System (INIS)

    George, Juby; Pathak, Anand P; Goteti, L N S Prakash; Nagamani, G

    2007-01-01

    The effects of a hypersonic field on positron channelling radiation are considered. Anharmonic effects of the transverse potential induced by these longitudinal fields are incorporated and the wavefunction of the planar channelled positron is found by the solution of Dirac equation under the resonant influence of hypersound. An expression for the resonant frequency is estimated. The transition probabilities and the intensity of the channelling radiation are also calculated. It is found that the anharmonic effects change the spectral distributions considerably

  6. Developmental effects of extremely low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Juutilainen, J.

    2003-01-01

    Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)

  7. Magnetic field shielding effect for CFETR TF coil-case

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiwei; Liu, Xufeng, E-mail: Lxf@ipp.ac.cn; Du, Shuangsong; Zheng, Jinxing

    2017-05-15

    Highlights: • The eddy current of CFETR vacuum vessel can be calculated by using a series of ideal current loops. • The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components. • The shielding effect can be determined from the rate of eddy current magnetic field to the external magnetic field. - Abstract: The operation of superconducting magnet for fusion device is under the complex magnetic field condition, which affect the stabilization of superconductor. The coil-case of TF coil can shield the magnetic field to some extent. The shielding effect is related to the eddy current of coil-case. The shielding effect with different eddy current is studied by decomposing the exciting magnetic field as two orthogonal components, respectively. The results indicate that the shielding effect of CFETR TF coil-case has obvious different with the different directional magnetic field, and it’s larger for tangential magnetic compared with that for normal field.

  8. FLARE STARS—A FAVORABLE OBJECT FOR STUDYING MECHANISMS OF NONTHERMAL ASTROPHYSICAL PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States); Gershberg, R. E. [Crimean Astrophysical Observatory, Nauchny, Bakhchisaray region, Crimea, 298409 (Russian Federation)

    2016-03-01

    We present a spectroscopic method for diagnosing a low-frequency electrostatic plasma turbulence (LEPT) in plasmas of flare stars. This method had been previously developed by one of us and successfully applied to diagnosing the LEPT in solar flares. In distinction to our previous applications of the method, here we use the latest advances in the theory of the Stark broadening of hydrogen spectral lines. By analyzing observed emission Balmer lines, we show that it is very likely that the LEPT was developed in several flares of AD Leo, as well as in one flare of EV Lac. We found the LEPT (though of different field strengths) both in the explosive/impulsive phase and at the phase of the maximum, as well as at the gradual phase of the stellar flares. While for solar flares our method allows diagnosing the LEPT only in the most powerful flares, for the flare stars it seems that the method allows revealing the LEPT practically in every flare. It should be important to obtain new and better spectrograms of stellar flares, allowing their analysis by the method outlined in the present paper. This can be the most favorable way to the detailed understanding of the nature of nonthermal astrophysical phenomena.

  9. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  10. Multiple-wavelength analysis of energy release during a solar flare - Thermal and nonthermal electron populations

    Science.gov (United States)

    Willson, Robert F.; Lang, Kenneth R.; Klein, Karl-Ludwig; Kerdraon, Alain; Trottet, Gerard

    1990-01-01

    Collaborative solar investigations by Tufts University and the Observatoire de Paris have resulted in simultaneous radio observations with the Very Large Array (VLA) and the Nancay Radioheliograph (NR), comparisons of this radio data with X-ray observations, and theoretical interpretations of the dominant radiation mechanisms during a weak impulsive solar flare observed on May 28, 1988. The VLA has mapped the flaring structures at time intervals of 3.3 s, showing that the preflash and flash-phase components of the impulsive emission originate in spatially separated sources. The 20.7 cm preflash source is ascribed to thermal gyroresonance emission from coronal loops with typical magnetic field strengths of up to 270 G; this emission is associated with heating and exhibits no detectable hard X-ray radiation above 30 keV. The flash-phase 20.7 cm source and the hard X-ray emission are attributed to nonthermal electrons in the coronal and chromospheric portions of a magnetic loop. The combination of imaging observations at 20.7 and 91.6 cm excludes emission from a confined hot plasma during the flash phase.

  11. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  12. Experimental realization of a silicon spin field-effect transistor

    OpenAIRE

    Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian

    2007-01-01

    A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ~115% magnetocurrent, corresponding to at least ~38% electron current spin polarization after...

  13. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  14. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  15. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  16. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    KAUST Repository

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  17. 3-dimensional simulation of dynamo effect of reversed field pinch

    International Nuclear Information System (INIS)

    Koide, Shinji.

    1990-09-01

    A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)

  18. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  19. 3D quantum gravity and effective noncommutative quantum field theory.

    Science.gov (United States)

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  20. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  1. Effective interactions from q-deformed quark fields

    International Nuclear Information System (INIS)

    Timoteo, V. S.; Lima, C. L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed

  2. The effectiveness of Farmer Field School (FFS) training on farmers ...

    African Journals Online (AJOL)

    The effectiveness of Farmer Field School (FFS) training on farmers competence in Integrated Pest Management (IPM) of Cocoa in Ondo state, Nigeria. ... of years of cocoa farming (b=1.785) and participation in Farmer Field School training (b ...

  3. Quark pair creation in color electric fields and effects of magnetic fields

    International Nuclear Information System (INIS)

    Tanji, Noato

    2010-01-01

    The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.

  4. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1.

    Science.gov (United States)

    Han, Ihn; Choi, Eun Ha

    2017-05-30

    Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.

  5. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  6. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  7. COLLISIONLESS ELECTRON–ION SHOCKS IN RELATIVISTIC UNMAGNETIZED JET–AMBIENT INTERACTIONS: NON-THERMAL ELECTRON INJECTION BY DOUBLE LAYER

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi

    2016-01-01

    The course of non-thermal electron ejection in relativistic unmagnetized electron–ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ∼1% of electrons and ∼8% of the electron energy. Its power-law index is −2.6. The acceleration efficiency is ∼23% by number and ∼50% by energy, and the power-law index is −1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.

  8. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  9. Solar off-limb line widths with SUMER: revised value of the non-thermal velocity and new results

    Directory of Open Access Journals (Sweden)

    L. Dolla

    2009-09-01

    Full Text Available Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind and in the upper corona. In the lower corona, one can use the line profiles to infer the ion temperatures. But the value of the so-called "non-thermal" (or "unresolved" velocity, potentially related to the amplitude of Alfvén waves propagating in the corona, is critical in firmly identifying ion-cyclotron preferential heating. In a previous paper, we proposed a method to constrain both the Alfvén wave amplitude and the preferential heating, above a polar coronal hole observed with the SUMER/SOHO spectrometer. Taking into account the effect of instrumental stray light before analysing the line profiles, we ruled out any direct evidence of damping of the Alfvén waves and showed that ions with the lowest charge-to-mass ratios were preferentially heated. We re-analyse these data here to correct the derived non-thermal velocity, and we discuss the consequences on the main results. We also include a measure of the Fe VIII 1442.56 Å line width (second order, thus extending the charge-to-mass ratio domain towards ions more likely to experience cyclotron resonance.

  10. Nonthermal pasteurization of beer by high pressure processing: modelling the inactivation of saccharomyces cerevisiae ascospores in different alcohol beers

    Science.gov (United States)

    Milani, Elham A.; Silva, Filipa V. M.

    2016-10-01

    The industrial production of beer ends with a process of thermal pasteurization. In this research, the nonthermal pasteurization of beer by high pressure processing (HPP) was carried out. First, the effect of alcohol content on Saccharomyces cerevisiae ascospore inactivation at 400 MPa was studied. The number of ascospores in 0.0%, 4.8%, and 7.0% alc/vol beers for 10 min processing time decreased by 3.1, 4.9, and ≥ 6.0 log, respectively. The Weibull model fitted the ascospore inactivation by HPP in 0.0%, 4.8%, and 7.0% alc/vol beers. At 400 MPa, 7.2 s could ensure the minimum pasteurization of beers and for 600 MPa 5 s were enough for ≥ 7 log reductions. The overall flavour of HPP vs. untreated beers was evaluated for a lager and an ale, with no significant differences between the untreated and HPP beers. Thus, nonthermal HPP is a feasible technology to pasteurize beer with different alcohol contents without heat.

  11. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  12. Differentiated-effect shims for medium field levels and saturation

    International Nuclear Information System (INIS)

    Richie, A.

    1976-01-01

    The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)

  13. Toroidal field effects on the stability of Heliotron E

    International Nuclear Information System (INIS)

    Carreras, B.A.; Garcia, L.; Lynch, V.E.

    1986-02-01

    The addition of a small toroidal field to the Heliotron E configuration improves the stability of the n = 1 mode and increases the value of the stability beta critical. Total stabilization of this mode can be achieved with added toroidal fields between 5 and 15% of the total field. In this situation, the plasma can have direct access to the second stability regime. For the Heliotron E configuration, the self-stabilization effect is due to the shear, not to the magnetic well. The toroidal field threshold value for stability depends strongly on the pressure profile and the plasma radius. 21 refs., 15 figs

  14. Nucleon effective masses in field theories of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C H; Reddy, S; Prakash, M [Dept. of Physics and Astronomy, Stony Brook, NY (United States)

    1998-06-01

    We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)

  15. effect of brinkman number and magnetic field on laminar convection ...

    African Journals Online (AJOL)

    Joseph et al.

    Science World Journal Vol 12(No 4) 2017 ... Joule heating on the fully developed MHD flow with heat transfer .... fluid in a vertical parallel – plate with effect of magnetic field and ..... Plates Channel, Proceedings of the 2013 International.

  16. Nucleon effective masses in field theories of dense matter

    International Nuclear Information System (INIS)

    Lee, C.H.; Reddy, S.; Prakash, M.

    1998-01-01

    We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)

  17. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-01-01

    inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors

  18. Hyperon-nucleon interactions - a chiral effective field theory approach

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2006-01-01

    We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme

  19. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  20. Gravitomagnetic effects in conductor in applied magnetic field

    International Nuclear Information System (INIS)

    Ahmedov, B.J.; Karim, M.

    1999-11-01

    The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)

  1. Effect of external fields in Axelrod's model of social dynamics

    Science.gov (United States)

    Peres, Lucas R.; Fontanari, José F.

    2012-09-01

    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.

  2. Progresses in organic field-effect transistors and molecular electronics

    Institute of Scientific and Technical Information of China (English)

    Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben

    2006-01-01

    In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.

  3. Versatility of field theory motivated nuclear effective Lagrangian approach

    International Nuclear Information System (INIS)

    Arumugam, P.; Sharma, B.K.; Sahu, P.K.; Patra, S.K.; Sil, Tapas; Centelles, M.; Vinas, X.

    2004-01-01

    We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei

  4. Baryon non-invariant couplings in Higgs effective field theory

    International Nuclear Information System (INIS)

    Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario

    2017-01-01

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)

  5. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  6. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  7. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  8. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  9. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  10. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  11. Fringe field effects in small rings of large acceptance

    Directory of Open Access Journals (Sweden)

    Martin Berz

    2000-12-01

    Full Text Available Recently there has been renewed interest in the influence of fringe fields on particle dynamics, due to studies that revealed their importance in some cases, as, for example, the proposed Neutrino Factory and muon colliders. In this paper, we present a systematic study of generic fringe field effects. Using as an example a lattice of the proposed Neutrino Factory, we show that fringe fields influence the dynamics of particles at all orders, starting with the linear motion. It is found that the widely used sharp cutoff approximation leads to divergences regardless of the specific fall-off shape of the fields. The results suggest that a careful consideration of fringe field effects in the design stage of small machines for large emittances is always recommended.

  12. Effective-field theory on the kinetic Ising model

    International Nuclear Information System (INIS)

    Shi Xiaoling; Wei Guozhu; Li Lin

    2008-01-01

    As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)

  13. Physical effects in gravitational field of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1986-01-01

    A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed

  14. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    Science.gov (United States)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  15. Non-thermal inactivation of Noroviruses in food

    Science.gov (United States)

    Velebit, B.; Petronijević, R.; Bošković, T.

    2017-09-01

    An increased incidence of foodborne illnesses caused by Norovirus and consumer demand for fresh, convenient, and safe foods have prompted research into alternative antiviral processing technologies. Chlorine dioxide, UV treatment and thermal processing are standard antinoroviral technologies that have been employed for a while; however, they tend to be non-effective in modern processing due to residue concerns (ClO2), shadowing effects (UV) and low-energy efficiency (heat treatment). Alternative technologies have been validated such as ozone treatment, high pressure processing and pulse electric fields. Although these techniques are promising, none of them individually can deem food free of Norovirus. Further research on the effects on Norovirus in various food matrices is required. Good manufacturing practices and proper sanitation procedures remain the “gold” safety tools in food business.

  16. The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field.

    Science.gov (United States)

    Sobrino-Lopez, A; Viedma-Martínez, P; Abriouel, H; Valdivia, E; Gálvez, A; Martin-Belloso, O

    2009-06-01

    The use of high-intensity pulsed-electric field (HIPEF) and antimicrobial substances of natural origin, such as enterocin AS-48 (AS-48), nisin, and lysozyme, are among the most important nonthermal preservation methods. Thus, the purpose of this study was to evaluate the combined effect on milk inoculated with Staphylococcus aureus of the addition of AS-48 with nisin or lysozyme, or both, together with the use of HIPEF. Synergy was observed in the reduction of Staph. aureus counts with the following combination methods: i) addition of AS-48 and nisin, ii) addition of AS-48 plus use of HIPEF, and iii) addition of AS-48 and nisin plus use of HIPEF. Specifically, when 28 arbitrary units/mL of AS-48 and 20 IU/mL of nisin were added to the milk, and it was treated with HIPEF for 800 mus, over 6 log reductions were observed in the microorganism. In general, Staph. aureus inactivation was dependent on HIPEF treatment time, antimicrobial doses, and medium pH. During storage of the treated milk, survivor population was related to peptide concentration and temperature. Final cell viability was influenced by the sequence in which the treatments were applied: the addition of AS-48 or AS-48 and nisin was more effective before than after HIPEF treatment. The results obtained indicate that the combination of HIPEF and antimicrobials could be of great interest to the dairy industry, although it is necessary to study further the way in which the combined treatments act.

  17. Non-planar ion-acoustic solitary waves and their head-on collision in a plasma with nonthermal electrons and warm adiabatic ions

    Energy Technology Data Exchange (ETDEWEB)

    Han Jiuning; He Yonglin; Chen Yan; Zhang Kezhi; Ma Baohong [College of Physics and Electromechanical Engineering, Hexi University, Zhangye 734000 (China)

    2013-01-15

    By using the model of Cairns et al.[Geophys. Rev. Lett. 22, 2709 (1995)], the head-on collision of cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-planar plasma consisting of warm adiabatic ions and nonthermally distributed electrons is investigated. The extended Poincare-Lighthill-Kuo perturbation method is used to derive the modified Korteweg-de Vries equations for ion-acoustic solitary waves in this plasma system. The effects of the plasma geometry m, the ion to electron temperature ratio {sigma}, and the nonthermality of the electron distribution {alpha} on the interaction of the colliding solitary waves are studied. It is found that the plasma geometries have a big impact on the phase shifts of solitary waves. Also it is important to note that the phase shifts induced by the collision of compressive and rarefactive solitary waves are very different. We point out that this study is useful to the investigations about the observations of electrostatic solitary structures in astrophysical as well as in experimental plasmas with nonthermal energetic electrons.

  18. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Felix, T., E-mail: tsfelix81@gmail.com [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Cassini, F.A.; Benetoli, L.O.B. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Dotto, M.E.R. [Physics Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Debacher, N.A. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2017-05-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R{sub RMS} (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91{sub (PET)} and 0.88{sub (PEEK)}, β = 0.25{sub (PET)} and z = 3,64{sub (PET)}.

  19. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  20. Naima: a Python package for inference of particle distribution properties from nonthermal spectra

    Science.gov (United States)

    Zabalza, V.

    2015-07-01

    The ultimate goal of the observation of nonthermal emission from astrophysical sources is to understand the underlying particle acceleration and evolution processes, and few tools are publicly available to infer the particle distribution properties from the observed photon spectra from X-ray to VHE gamma rays. Here I present naima, an open source Python package that provides models for nonthermal radiative emission from homogeneous distribution of relativistic electrons and protons. Contributions from synchrotron, inverse Compton, nonthermal bremsstrahlung, and neutral-pion decay can be computed for a series of functional shapes of the particle energy distributions, with the possibility of using user-defined particle distribution functions. In addition, naima provides a set of functions that allow to use these models to fit observed nonthermal spectra through an MCMC procedure, obtaining probability distribution functions for the particle distribution parameters. Here I present the models and methods available in naima and an example of their application to the understanding of a galactic nonthermal source. naima's documentation, including how to install the package, is available at http://naima.readthedocs.org.

  1. Magnetic field effects on brain monoamine oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Borets, V.M.; Ostrovskiy, V.Yu.; Bankovskiy, A.A.; Dudinskaya, T.F.

    1985-03-01

    In view of the increasing use of magnetotherapy, studies were conducted on the effects of 35 mTesla magnetic fields on monoamine oxidase activity in the rat brain. Under in vitro conditions a constant magnetic field in the continuous mode was most effective in inhibiting deamination of dopamine following 1 min exposure, while in vivo studies with 8 min or 10 day exposures showed that inhibition was obtained only with a variable field in the continuous mode. However, inhibition of dopamine deamination was only evident within the first 24 h after exposure was terminated. In addition, in none of the cases was norepinephrine deamination inhibited. The effects of the magnetic fields were, therefore, transient and selective with the CNS as the target system. 9 references.

  2. Review: Bioenergetic Fields and Their Biologic Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Zahra Movaffaghi

    2007-04-01

    Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.

  3. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    Science.gov (United States)

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  4. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Directory of Open Access Journals (Sweden)

    Surya B. Karki

    2017-01-01

    Full Text Available Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  5. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  6. Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis

    International Nuclear Information System (INIS)

    Harvego, L.A.; Schafer, J.J.

    1997-02-01

    The U.S. Department of Energy's (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems' (ITTS) and the Integrated Nonthermal Treatment Systems' (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle

  7. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  8. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  9. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  10. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  11. Nonthermal pasteurization of fermented green table olives by means of high hydrostatic pressure processing.

    Science.gov (United States)

    Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C

    2014-01-01

    Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.

  12. Fluid analog model for boundary effects in field theory

    International Nuclear Information System (INIS)

    Ford, L. H.; Svaiter, N. F.

    2009-01-01

    Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.

  13. Single event burnout sensitivity of embedded field effect transistors

    International Nuclear Information System (INIS)

    Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.

    1999-01-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described

  14. Effective potential for bilocal composite fields and its ambiguity

    International Nuclear Information System (INIS)

    Muta, T.

    1988-01-01

    It is discussed that an ambiguity exists in the definition of the effective potential for bilocal composite fields which is an indispensable tool to discuss dynamical symmetry breaking. The ambiguity gives warning to arguments on the stability of ground states based on the curvature of the effective potential

  15. The effects of lithographic residues and humidity on graphene field ...

    Indian Academy of Sciences (India)

    humidity at graphene field effect transistors (GFETs). While the exact means of humidity interacting with hydropho- bic graphene remains unknown, this work examines pristine and lithographic-process-applied graphene surfaces with surface ... temperature quantum Hall effect, linear electron dispersion at the vicinity of the ...

  16. Effective magnetic moment of neutrinos in strong magnetic fields

    International Nuclear Information System (INIS)

    Perez M, A.; Perez R, H.; Masood, S.S.; Gaitan, R.; Rodriguez R, S.

    2002-01-01

    In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)

  17. Single event burnout sensitivity of embedded field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.

    1999-12-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  18. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jie; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Carlsson, Mats, E-mail: dmd@nju.edu.cn [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway)

    2017-08-20

    Ellerman bombs (EBs) are brightenings in the H α line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the H α line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the H α line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the H α line will be unrealistically strong and there are still no clear UV burst signatures.

  19. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  20. RADYN Simulations of Non-thermal and Thermal Models of Ellerman Bombs

    Science.gov (United States)

    Hong, Jie; Carlsson, Mats; Ding, M. D.

    2017-08-01

    Ellerman bombs (EBs) are brightenings in the Hα line wings that are believed to be caused by magnetic reconnection in the lower atmosphere. To study the response and evolution of the chromospheric line profiles, we perform radiative hydrodynamic simulations of EBs using both non-thermal and thermal models. Overall, these models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. In our simulations, if a higher heating rate is applied, then the Hα line will be unrealistically strong and there are still no clear UV burst signatures.

  1. Biological interactions and human health effects of static magnetic fields

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1994-09-01

    Mechanisms through which static magnetic fields interact with living systems will be described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecular structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary will also be presented of the biological effects of static magnetic fields studied in the laboratory and in natural settings. One aspect of magnetic field effects that merits special concern is their influence on implanted medical electronic devices such as cardiac pacemakers. Several extensive studies have demonstrated closure of the reed switch in pacemakers exposed to relatively weak static magnetic fields, thereby causing them to revert to an asynchronous mode of operation that is potentially hazardous. Recommendations for human exposure limits are provided

  2. Diffusion affected magnetic field effect in exciplex fluorescence

    International Nuclear Information System (INIS)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-01-01

    The fluorescence of the exciplex, 1 [D +δ A −δ ], formed at contact of photoexcited acceptor 1 A * with an electron donor 1 D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1,3 [D + …A − ]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates

  3. Diffusion affected magnetic field effect in exciplex fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Burshtein, Anatoly I. [Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Anatoly I., E-mail: Anatoly.Ivanov@volsu.ru [Volgograd State University, University Avenue, 100, Volgograd 400062 (Russian Federation)

    2014-07-14

    The fluorescence of the exciplex, {sup 1}[D{sup +δ}A{sup −δ}], formed at contact of photoexcited acceptor {sup 1}A{sup *} with an electron donor {sup 1}D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, {sup 1,3}[D{sup +}…A{sup −}]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  4. Diffusion affected magnetic field effect in exciplex fluorescence

    Science.gov (United States)

    Burshtein, Anatoly I.; Ivanov, Anatoly I.

    2014-07-01

    The fluorescence of the exciplex, 1[D+δA-δ], formed at contact of photoexcited acceptor 1A* with an electron donor 1D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, 1, 3[D+…A-]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.

  5. Thermoelectric effects and spin injection into superconductors with exchange field

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, Tero [Dept. Phys., Univ. Jyvaeskylae (Finland); Silaev, Mihail [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Dept. Theor. Physics, KTH, Stockholm (Sweden); Virtanen, Pauli [O.V. Lounasmaa Lab, Aalto Univ. (Finland); Giazotto, Francesco [NEST CNR-INFM and SNS Pisa (Italy); Ozaeta, Asier; Bergeret, Sebastian [CFM-CSIC and DIPC, San Sebastian (Spain)

    2015-07-01

    When a thin superconducting film is exposed to a longitudinal magnetic field or is in proximity to a ferromagnet, an exchange field separating the spin bands emerges in it. For low enough exchange fields superconductivity survives, but its response to external driving is strongly modified. In my talk I will show how at linear response such systems exhibit very strong thermoelectric response with an almost ideal efficiency. For strong driving, this effect creates a spin accumulation that can only relax via thermalization, and therefore at low temperatures has a very long range. Therefore our work explains recent observations of the long-range spin accumulation in spin-split superconductors. When injecting spin from injectors with non-collinear magnetization compared to the exchange field, the spins start to rotate around the latter. I will describe how superconductivity modifies this spin Hanle effect so that the resulting nonlocal magnetoresistance depends on the details of spin relaxation, therefore allowing for probing them.

  6. Shaping the Educational Policy Field: "Cross-Field Effects" in the Chinese Context

    Science.gov (United States)

    Yu, Hui

    2018-01-01

    This paper theorises how politics, economy and migrant population policies influence educational policy, utilising Bourdieusian theoretical resources to analyse the Chinese context. It develops the work of Lingard and Rawolle on cross-field effects and produces an updated three-step analytical framework. Taking the policy issue of the schooling of…

  7. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  8. Effects on the CMB from magnetic field dissipation before recombination

    Science.gov (United States)

    Kunze, Kerstin E.

    2017-09-01

    Magnetic fields present before decoupling are damped due to radiative viscosity. This energy injection affects the thermal and ionization history of the cosmic plasma. The implications for the CMB anisotropies and polarization are investigated for different parameter choices of a nonhelical stochastic magnetic field. Assuming a Gaussian smoothing scale determined by the magnetic damping wave number at recombination, it is found that magnetic fields with present-day strength less than 0.1 nG and negative magnetic spectral indices have a sizable effect on the CMB temperature anisotropies and polarization.

  9. Effects of RF low levels electromagnetic fields on Paramecium primaurelia

    International Nuclear Information System (INIS)

    Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.

    1988-01-01

    In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters

  10. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  11. The neutron field perturbation effect in the Dalat Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.

  12. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  13. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  14. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  15. Effects of extremely low frequency electromagnetic fields on human beings

    International Nuclear Information System (INIS)

    Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.

    2010-01-01

    Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)

  16. Infrared and ultraviolet behaviour of effective scalar field theory

    International Nuclear Information System (INIS)

    Ball, R.D.; Thorne, R.S.

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z 2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also Weinberg's Theorem for the massive effective theory, n the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of theory. 12 refs

  17. Infrared and ultraviolet behaviour of effective scalar field theory

    CERN Document Server

    Ball, R D

    1995-01-01

    We consider the infrared and ultraviolet behaviour of the effective quantum field theory of a single Z_2 symmetric scalar field. In a previous paper we proved to all orders in perturbation theory the renormalizability of massive effective scalar field theory using Wilson's exact renormalization group equation. Here we show that away from exceptional momenta the massless theory is similarly renormalizable, and we prove detailed bounds on Green's functions as arbitrary combinations of exceptional Euclidean momenta are approached. As a corollary we also prove Weinberg's Theorem for the massive effective theory, in the form of bounds on Green's functions at Euclidean momenta much greater than the particle mass but below the naturalness scale of the theory.

  18. Effective field theory of interactions on the lattice

    DEFF Research Database (Denmark)

    Valiente, Manuel; Zinner, Nikolaj T.

    2015-01-01

    We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling consta...... constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.......We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling...

  19. More effective field theory for non-relativistic scattering

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1997-01-01

    An effective field theory treatment of nucleon-nucleon scattering at low energy shows much promise and could prove to be a useful tool in the study of nuclear matter at both ordinary and extreme densities. The analysis is complicated by the existence a large length scale - the scattering length -which arises due to couplings in the short distance theory being near critical values. I show how this can be dealt with by introducing an explicit s-channel state in the effective field theory. The procedure is worked out analytically in a toy example. I then demonstrate that a simple effective field theory excellently reproduces the 1 S 0 np phase shift up to the pion production threshold. (orig.)

  20. Globally and locally supersymmetric effective theories for light fields

    CERN Document Server

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...