WorldWideScience

Sample records for nonsulfide mineral surfaces

  1. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    Science.gov (United States)

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  2. Supergene Nonsulfide Zinc-Lead Deposits: The Examples of Jabali (Yemen) and Yanque (Peru)

    OpenAIRE

    Mondillo, Nicola

    2013-01-01

    Nonsulfide zinc” is a very general term, referred to a group of ore deposits consisting of Zn-oxidized minerals, mainly represented by smithsonite, hydrozincite, hemimorphite, sauconite and willemite, which are markedly different from sphalerite ores, typically exploited for zinc. Locally, Ag minerals can occur too. The supergene nonsulfide deposits form from low-temperature oxidation of sulfide-bearing concentrations. Objective of this study is to increase the knowledge on the geology, mine...

  3. Sulfide Mineral Surfaces

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Vaughan, David J.

    2006-01-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  4. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  5. Germanium enrichment in supergene settings: evidence from the Cristal nonsulfide Zn prospect, Bongará district, northern Peru

    Science.gov (United States)

    Mondillo, Nicola; Arfè, Giuseppe; Herrington, Richard; Boni, Maria; Wilkinson, Clara; Mormone, Angela

    2018-02-01

    Supergene nonsulfide ores form from the weathering of sulfide mineralization. Given the geochemical affinity of Ge to Si4+ and Fe3+, weathering of Ge-bearing sulfides could potentially lead to Ge enrichments in silicate and Fe-oxy-hydroxide minerals, although bulk rock Ge concentrations in supergene nonsulfide deposits are rarely reported. Here, we present the results of an investigation into Ge concentrations and deportment in the Cristal supergene Zn nonsulfide prospect (Bongará, northern Peru), which formed from the weathering of a preexisting Mississippi Valley-type (MVT) sulfide deposit. Material examined in this study originates from drillcore recovered from oxidized Zn-rich bodies 15-20 m thick, containing 5-45 wt% Zn and Ge concentrations 100 ppm. Microanalysis and laser ablation-ICP-MS show that precursor sphalerite is rich in both Fe (mean Fe = 8.19 wt%) and Ge (mean Ge = 142 ppm). Using the mineral geothermometer GGIMFis—geothermometer for Ga, Ge, In, Mn, and Fe in sphalerite—proposed by Frenzel et al. (Ore Geol Rev 76:52-78, 2016), sphalerite trace element data from the Cristal prospect suggest a possible formation temperature ( T GGIMFis) of 225 ± 50 °C, anomalously high for a MVT deposit. Germanium concentrations measured in both goethite (mean values 100 to 229 ppm, max 511 ppm) and hemimorphite (mean values 39 to 137 ppm, max 258 ppm) are similar to concentrations measured in hypogene sphalerite. Additionally, the Ge concentrations recorded in bulk rock analyses of sphalerite-bearing and oxidized samples are also similar. A persistent warm-humid climate is interpreted for the region, resulting in the development of an oxidation zone favoring the formation of abundant Zn hydrosilicates and Fe hydroxides, both able to incorporate Ge in their crystal structure. In this scenario, Ge has been prevented from dispersion during the weathering of the Ge-bearing sulfide bodies and remains in the resultant nonsulfide ore.

  6. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  7. C–O Stable Isotopes Geochemistry of Tunisian Nonsulfide Zinc Deposits: A First Look

    Directory of Open Access Journals (Sweden)

    Hechmi Garnit

    2018-01-01

    Full Text Available A preliminary C–O stable isotopes geochemical characterization of several nonsulfide Zn-Pb Tunisian deposits has been carried out, in order to evidence the possible differences in their genesis. Nonsulfide ores were sampled from the following deposits: Ain Allegua, Jebel Ben Amara, Jebel Hallouf (Nappe Zone, Djebba, Bou Grine, Bou Jaber, Fedj el Adoum, Slata Fer (Diapir Zone, Jebel Ressas, Jebel Azreg, Mecella (North South Axis Zone, Jebel Trozza, Sekarna (Graben Zone. After mineralogical investigation of selected specimens, the C–O stable isotopic study was carried out on smithsonite, hydrozincite, cerussite and calcite. The data have shown that all the carbonate generations in the oxidized zones of Ain Allegua and Jebel Ben Amara (Nappe Zone, Bou Jaber, Bou Grine and Fedj el Adoum (Diapir Zone, Mecella and Jebel Azreg (North South Zone have a supergene origin, whereas the carbonates sampled at Sekarna (Graben Zone (and in limited part also at Bou Jaber precipitated from thermal waters at moderately high temperature. Most weathering processes that controlled the supergene alteration of the Zn-Pb sulfide deposits in Tunisia had probably started in the middle to late Miocene interval and at the beginning of the Pliocene, both periods corresponding to two distinct tectonic pulses that produced the exhumation of sulfide ores, but the alteration and formation of oxidized minerals could have also continued through the Quaternary. The isotopic characteristics associated with the weathering processes in the sampled localities were controlled by the different locations of the sulfide protores within the tectonic and climatic zones of Tunisia during the late Tertiary and Quaternary.

  8. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  9. Uranyl adsorption at clay mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roesch, N. [Technische Univ. Muenchen (Germany). Fachgebiet Theoretische Chemie

    2016-11-01

    This first systematic survey of actinide adsorption at complex clay mineral surfaces, which provided new insights at the atomic level, is currently being extended to neptunyl NpO{sub 2}{sup +} and more complex minerals, like iron-substituted phyllosilicates. In this way we examine if the concepts developed so far can be applied more generally to support the interpretation of pertinent experiments. A further facet of these studies is to account also for the dynamic nature of the mineral/water interface by means of exemplary dynamic simulations.

  10. Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses

    Science.gov (United States)

    Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert

    2018-02-01

    The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water

  11. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  12. Thermodynamic investigation of surface of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Medout-Marere, V.; Zoungrana, T.; Douillard, J.M.; Partyka, S. [U.P.R.E.S.A., 5072 CNRS, University of Montpellier II, place Eugene Bataillon, Case 015, 34095 Montpellier Cedex (France); Malandrini, H. [Sanofi Recherche-Centre de Recherches, 371 rue du Professeur Blayac, 34000 Montpellier (France)

    1998-06-06

    In this paper values of surface enthalpies and surface Gibbs free energies are given in order to characterize subsurface minerals. These values are obtained by combining standard measurements of adsorption and the Van Oss-Chaudhury-Good model [Van Oss, C.J., Chaudhury, M.K., Good, R.J., 1987. Monopolar surfaces. Adv. Coll. Interface Sci. 28, 35; Van Oss, C.J., Good, R.J., Chaudhury, M.K., 1988. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884; Van Oss, C.J., Giese, R.F., Costanzo, P.M., 1990. DLVO and non-DLVO interactions in hectorite. Clays Clay Min. 38, 151; Van Oss, C.J., Giese, R.F., Li, Z., Murphy, K., Norris, J., Chaudhury, M.K., Good, R.J., 1992. Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhesion Sci. Technol. 6, 413.]. This model is reviewed and modified with a view to identify the types of interactions at solid-fluid interfaces and interpreting experimental results

  13. Surface characterization of bacterial cells relevant to the mineral industry

    NARCIS (Netherlands)

    Sharma, PK; Rao, KH

    Bacteria belonging to the Acidithiobacilli group are widely used in the mineral processing industry in bioleaching and biobeneficiation operations. Paenibacillus polymyxa has also found application in biobeneficiation studies. Microbial adhesion to mineral surface is an essential step,for both

  14. Internal reflection spectroscopic analysis of sulphide mineral surfaces

    International Nuclear Information System (INIS)

    Kaoma, J.

    1989-01-01

    To establish the reason for flotation of sulfide minerals in the absence of any conventional collector, internal reflection spectroscopic analysis (IRS) of their surfaces was conducted. sulfur, sulfates, thiosulfates, and hydrocarbonates have been detected on the surface of as-grand sulfide minerals. On sodium sulfide-treated surfaces, both sulfur and polysulfide have also been found to be present. From these findings, the flotation of sulfide minerals without collectors is discussed. (author). 26 refs

  15. Mineral and surface issues in oil and gas operations

    International Nuclear Information System (INIS)

    Vasseur, P.F.

    1998-01-01

    The Farmers' Advocate Office was created in 1972 to help put Alberta mineral owners on an equal footing with the energy sector. Most mineral owners are at a disadvantage when dealing with the disposition of their minerals because they have little or no knowledge of what they own or what their surface rights are. This paper addresses key features of mineral leasing arrangements in Alberta and explains their potential impact. It also brings to the mineral owner's attention some specific problems and concerns including mineral rights, the lease agreement, signing considerations, length of leases, delayed production payment, drilling rental, royalties, and gas cost allowance. Issues regarding oil and gas production including shut-in wells, off-set clauses , drilling depth, taxes and prepayment for minerals are also discussed from the perspective of a mineral owner

  16. Dating oxalate minerals in rock surface deposits

    International Nuclear Information System (INIS)

    Watchman, A.

    2001-01-01

    Oxalate minerals are found associated with rocks, mineral coatings, micro-organisms, plants and animals. They are important in archaeology because they have been found intimately associated with organic binders in prehistoric paints. Oxalate minerals also accumulate in the coatings on rock shelter walls and fallen ceiling slabs where they form the natural backing supports for painting and opaque laminates covering engravings. Though the relationship between anthropogenic activity in a rock shelter and oxalate formation is often uncertain, the radiocarbon age of the oxalate may provide the only means for determining the antiquity of a rock painting or engraving. This paper examines the history of dating oxalate minerals at archaeological sites and provides insights into achieving reliable age estimates. (author). 37 refs., 1 fig., 2 tabs

  17. Hydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst

    Science.gov (United States)

    Liu, Jing; Lei, Jiandu; He, Jing; Deng, Lihong; Wang, Luying; Fan, Kai; Rong, Long

    2015-01-01

    The non-sulfided Ni-PTA/Al2O3 catalyst was developed to produce green diesel from the hydroprocessing of Jatropha oil. The Ni-PTA/Al2O3 catalyst was prepared by one-pot synthesis of Ni/Al2O3 with the co-precipitation method and then impregnanting Ni/Al2O3 with PTA solution. The catalysts were characterized with BET, SEM-EDX, TEM, XRD, XPS, TGA and NH3-TPD. The Ni and W species of the Ni-PTA/Al2O3 catalyst were much more homogeneously distributed on the surface than that of commercial Al2O3. Catalytic performance in the hydroprocessing of Jatropha oil was evaluated by GC. The maximum conversion of Jatropha oil (98.5 wt%) and selectivity of the C15-C18 alkanes fraction (84.5 wt %) occurred at 360 °C, 3.0 MPa, 0.8 h−1. The non-sulfided Ni-PTA/Al2O3 catalyst is more environmentally friendly than the conventional sulfided hydroprocessing catalyst, and it exhibited the highest catalytic activity than the Ni-PTA catalyst supported with commercial Al2O3 grain and Al2O3 powder. PMID:26162092

  18. Paleomagnetic dating of non-sulfide Zn-Pb ores in SW Sardinia (Italy: a first attempt

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    2005-06-01

    Full Text Available A first paleomagnetic investigation aimed at constraining the age of the non-sulfide Zn-Pb ore deposits in the Iglesiente district (SW Sardinia, Italy was carried out. In these ores, the oxidation of primary sulfides, hosted in Cambrian carbonate rocks, was related to several paleoweathering episodes spanning from the Mesozoic onward. Paleomagnetic analyses were performed on 43 cores from 4 different localities, containing: a non-oxidized primary sulfides and host rock, b oxidized Fe-rich hydrothermal dolomites and (c supergene oxidation ore («Calamine». Reliable data were obtained from 18 samples; the others show uninterpretable results due to low magnetic intensity or to scattered demagnetization trajectories. Three of them show a scattered Characteristic Remanent Magnetization (ChRM, likely carried by the original (i.e. Paleozoic magnetic iron sulfides. The remaining 15 samples show a well defined and coherent ChRM, carried by high-coercivity minerals, acquired after the last phase of counterclockwise rotation of Sardinia (that is after 16 Myr, in a time interval long enough to span at least one reversal of the geomagnetic field. Hematite is the main magnetic carrier in the limestone, whereas weathered hydrothermal dolomite contains goethite or a mixture of both. The results suggest that paleomagnetism can be used to constrain the timing of oxidation in supergene-enriched ores.

  19. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    Science.gov (United States)

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Thermodynamics of Selenium Minerals in Near-Surface Environments

    Directory of Open Access Journals (Sweden)

    Vladimir Krivovichev

    2017-10-01

    Full Text Available Selenium compounds are relatively rare as minerals; there are presently only 118 known mineral species. This work is intended to codify and systematize the data of mineral systems and the thermodynamics of selenium minerals, which are unstable (selenides or formed in near-surface environments (selenites, where the behavior of selenium is controlled by variations of the redox potential and the acidity of solutions at low temperatures and pressures. These parameters determine the migration of selenium and its precipitation as various solid phases. All selenium minerals are divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I and hydrous selenites and selenates (II. Within each of the groups, minerals are codified according to the minimum number of independent elements necessary to define the composition of the mineral system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0 software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca were plotted for the average contents of these elements in acidic waters in the oxidation zones of sulfide deposits. The possibility of the formation of Zn, Cd, Ag and Hg selenites under natural oxidation conditions in near surface environments is discussed.

  1. Surface and mineral structure of ferrihydrite

    NARCIS (Netherlands)

    Hiemstra, T.

    2013-01-01

    Ferrihydrite (Fh) is an yet enigmatic nano Fe(III)-oxide material, omnipresent in nature that can bind ions in large quantities, regulating bioavailability and ion mobility. Although extensively studied, to date no proper view exists on the surface structure and composition, while it is of vital

  2. Health status of anthracite surface coal miners

    International Nuclear Information System (INIS)

    Amandus, H.E.; Petersen, M.R.; Richards, T.B.

    1989-01-01

    In 1984-1985, medical examinations consisting of a chest radiograph, spirometry test, and questionnaire on work history, respiratory symptoms, and smoking history were administered to 1,061 white males who were employed at 31 coal cleaning plants and strip coal mines in the anthracite coal region of northeastern Pennsylvania. The prevalence of radiographic evidence of International Labour Office (ILO) category 1 or higher small opacities was 4.5% in 516 men who had never been employed in a dusty job other than in surface coal mining. Among these 516 workers, all 4 cases of ILO radiographic category 2 or 3 rounded opacities and 1 case of large opacities had been employed as a highwall drill operator or helper. The prevalence of category 1 or higher opacities increased with tenure as a highwall drill operator or helper (2.7% for 0 y, 6.5% for 1-9 yr, 25.0% for 10-19 y, and 55.6% for greater than or equal to 20 y drilling). Radiographic evidence of small rounded opacities, dyspnea, and decreases in FEV1.0, FVC, and peak flow were significantly related to tenure at drilling operations after adjusting for age, height, cigarette smoking status, and exposures in dusty jobs other than in surface coal mining. However, tenure in coal cleansing plants and other surface coal mine jobs were not related to significant health effects. The apparent excess prevalence of radiographic small rounded opacities in anthracite surface coal mine drillers suggests that quartz exposures have been increased. Average respirable quartz concentrations at surface coal mine drilling operations should be evaluated to determine whether exposures are within existing standards, and dust exposures should be controlled

  3. Liquid infused porous surfaces for mineral fouling mitigation.

    Science.gov (United States)

    Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard

    2015-04-15

    Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling. Copyright © 2014 Elsevier Inc. All rights

  4. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    Science.gov (United States)

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  5. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    Science.gov (United States)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent

  7. The role of mineral surface chemistry in modified dextrin adsorption.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka M; Harmer, Sarah L; Beattie, David A

    2011-05-15

    The adsorption of two modified dextrins (phenyl succinate dextrin--PS Dextrin; styrene oxide dextrin--SO Dextrin) on four different mineral surfaces has been studied using X-ray photoelectron spectroscopy (XPS), in situ atomic force microscopy (AFM) imaging, and captive bubble contact angle measurements. The four surfaces include highly orientated pyrolytic graphite (HOPG), freshly cleaved synthetic sphalerite (ZnS), and two surfaces produced through surface reactions of sphalerite: one oxidized in alkaline solution (pH 9, 1 h immersion); and one subjected to metal ion exchange between copper and zinc (i.e. copper activation: exposed to 1×10(-3) M CuSO(4) solution for 1 h). XPS measurements indicate that the different sphalerite surfaces contain varying amounts of sulfur, zinc, oxygen, and copper, producing substrates for polymer adsorption with a range of possible binding sites. AFM imaging has shown that the two polymers adsorb to a similar extent on HOPG, and that the two polymers display very different propensities for adsorption on the three sphalerite surface types, with freshly cleaved sphalerite encouraging the least adsorption, and copper activated and oxidized sphalerite encouraging significantly more adsorption. Contact angle measurements of the four surfaces indicate that synthetic sphalerite has a low contact angle upon fracture, and that oxidation on the timescale of one hour substantially alters the hydrophobicity. HOPG and copper-activated sphalerite were the most hydrophobic, as expected due to the carbon and di/poly-sulfide rich surfaces of the two samples, respectively. SO Dextrin is seen to have a significant impact on the wettability of HOPG and the surface reacted sphalerite samples, highlighting the difficulty in selectively separating sphalerite from carbonaceous unwanted minerals in flotation. PS Dextrin has the least effect on the hydrophobicity of the reacted sphalerite surfaces, whilst still significantly increasing the wettability of

  8. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa

    2016-01-01

    of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell......, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated...

  9. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Molecular approach of uranyl/mineral surfaces: theoretical approach

    International Nuclear Information System (INIS)

    Roques, J.

    2009-01-01

    As migration of radio-toxic elements through the geosphere is one of the processes which may affect the safety of a radioactive waste storage site, the author shows that numerical modelling is a support to experimental result exploitation, and allows the development of new interpretation and prediction codes. He shows that molecular modelling can be used to study processes of interaction between an actinide ion (notably a uranyl ion) and a mineral surface (a TiO 2 substrate). He also reports the predictive theoretical study of the interaction between an uranyl ion and a gibbsite substrate

  11. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  12. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  13. Influence of organic surface coatings on the sorption of anticonvulsants on mineral surfaces.

    Science.gov (United States)

    Qu, Shen; Cwiertny, David M

    2013-10-01

    Here, we explore the role that sorption to mineral surfaces plays in the fate of two commonly encountered effluent-derived pharmaceuticals, the anticonvulsants phenytoin and carbamazepine. Adsorption isotherms and pH-edge experiments are consistent with electrostatics governing anticonvulsant uptake on metal oxides typically found in soil and aquifer material (e.g., Si, Al, Fe, Mn, and Ti). Appreciable, albeit limited, adsorption was observed only for phenytoin, which is anionic above pH 8.3, on the iron oxides hematite and ferrihydrite. Adsorption increased substantially in the presence of cationic and anionic surfactants, species also commonly encountered in wastewater effluent. For carbamazepine, we propose the enhanced uptake results entirely from hydrophobic interactions with apolar tails of surfactant surface coatings. For phenytoin, adsorption also arises from the ability of surfactants to alter the net charge of the mineral surface and thereby further enhance favorable electrostatic interactions with its anionic form. Collectively, our results demonstrate that although pristine mineral surfaces are likely not major sinks for phenytoin and carbamazepine in the environment, their alteration with organic matter, particularly surfactants, can considerably increase their ability to retain these emerging pollutants in subsurface systems.

  14. Headspace analysis gas-phase infrared spectroscopy: a study of xanthate decomposition on mineral surfaces

    Science.gov (United States)

    Vreugdenhil, Andrew J.; Brienne, Stephane H. R.; Markwell, Ross D.; Butler, Ian S.; Finch, James A.

    1997-03-01

    The O-ethyldithiocarbonate (ethyl xanthate, CH 3CH 2OCS -2) anion is a widely used reagent in mineral processing for the separation of sulphide minerals by froth flotation. Ethyl xanthate interacts with mineral powders to produce a hydrophobic layer on the mineral surface. A novel infrared technique, headspace analysis gas-phase infrared spectroscopy (HAGIS) has been used to study the in situ thermal decomposition products of ethyl xanthate on mineral surfaces. These products include CS 2, COS, CO 2, CH 4, SO 2, and higher molecular weight alkyl-containing species. Decomposition pathways have been proposed with some information determined from 2H- and 13C-isotope labelling experiments.

  15. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    NARCIS (Netherlands)

    Fischer, H.R.; Dillingh, E.C.; Hermse, C.G.M.

    2013-01-01

    The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in

  16. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  17. Thermodynamics of Minerals Stable Near the Earth's Surface

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra

    2003-01-01

    OAK B262 Research and Education Activities We are working on developing calorimetric techniques for sulfide minerals. We have completed calorimetric studies of (Na, K, H3O) jarosites, of Na and K jarosite -alunite solid solutions, and of Cr6+ - containing jarosites. We are now working on phases containing As and Pb. These studies are important to issues of heavy metal pollution in the environment. A number of postdocs, graduate students, and undergrads have participated in the research. We have active collaboration with Dirk Baron, faculty at California State University, Bakersfield. In a collaboration with Peter Burns, Notre Dame University, we are working on thermochemistry of U6+ minerals. Navrotsky has participated in a number of national workshops that are helping to define the interfaces between nanotechnology and earth/environmental science. Major Findings Our first finding on uranyl minerals shows that studtite, a phase containing structural peroxide ion, is thermodynamically unstable in the absence of a source of aqueous peroxide ion but is thermodynamically stable in contact with a solution containing peroxide concentrations expected for the radiolysis of water in contact with spent nuclear fuel. This work is in press in Science. We have a consistent thermodynamic data set for the (Na, K, H3O) (Al, Fe) jarosite, alunite minerals and for Cr6+ substituting for S6+ in jarosite. The latter phases represent one of the few solid sinks for trapping toxic Cr6+ in groundwater. Contributions within Discipline Better understanding of thermodynamic driving for and constraints on geochemical and environmental processes

  18. Adsorption of some radionuclides on kaolinite mineral surface

    International Nuclear Information System (INIS)

    Hafez, M.B.; Said, F.I.A.

    1986-01-01

    Fixation of 187 Cs(I), 144 Ce(III), 90 Sr(II), 233 U(VI), 239 Pu(IV) and 211 Am(III) from aqueous and phosphate media on kaolinite was studied. The fixation of the nuclides on the mineral was found to depend on the pH and the hydrolytic behaviour of the elements

  19. Mineralization of CCl4 and CCl2F2 on solid surfaces

    International Nuclear Information System (INIS)

    Gaeb, S.; Schmitzer, J.; Turner, W.V.; Korte, F.; Technische Univ. Muenchen, Freising

    1980-01-01

    The mineralization of 14 CCl 4 and 14 CCl 2 F 2 in the dark is shown to be greatly dependent on the nature of the solid surfaces to which they are exposed, alumina being more effective than silica gel and a number of natural sands. Activation of the solids by drying or mechanically by tumbling leads to increased mineralization rates. (orig.)

  20. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  1. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  2. Chromate Adsorption on Selected Soil Minerals: Surface Complexation Modeling Coupled with Spectroscopic Investigation.

    Czech Academy of Sciences Publication Activity Database

    Veselská, V.; Fajgar, Radek; Číhalová, S.; Bolanz, R.M.; Göttlicher, J.; Steininger, R.; Siddique, J.A.; Komárek, M.

    2016-01-01

    Roč. 318, NOV 15 (2016), s. 433-442 ISSN 0304-3894 Institutional support: RVO:67985858 Keywords : surface complexation modeling * chromate * soil minerals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.065, year: 2016

  3. Could Mineral Surfaces have Oriented Amino Acid Polymerization Towards Useful Products?

    Science.gov (United States)

    Lambert, J. F.; Sakhno, Y.; Battistella, A.; Ribetto, B.; Mezzetti, A.; Georgelin, T.; Jaber, M.; Michot, L.

    2017-07-01

    We investigated selective amino acid polymerization on the surface of silicic minerals. Specific amino acid couples were deposited on silica or clays, thermally activated, and the oligomers formed were analyzed. Very different behaviors were observed.

  4. Characterization of surface processes on mineral surfaces in aqueous solutions. Annual report for fiscal year 1993

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1993-11-01

    Performance assessments by Los Alamos National Laboratory for the DOE's Yucca Mountain Site Characterization Project (YMP) are being done investigating the environmental risk related to long-term disposal of hazardous wastes resulting from the use of radioactive materials that must subsequently be isolated from the environment. The YMP site, located in southwestern Nevada, is intended for the storage of high-level wastes generated by nuclear energy-related activities, including spent fuel and waste from reprocessed fuel rods. The work covered by this contract is necessary for producing a defensible model and dataset, and may be critical for evaluation of repository compliance. This work, performed by the Environmental Engineering and Science research group at Stanford University, will quantify the adsorption of uranyl on various minerals. The project's principle objective is to provide sorption coefficients for uranyl and other ions of interest to predict radionuclide movements form the repository to accessible environments. This adsorption data is essential for the unambiguous interpretation of field experiments and observations. In this report, details of the activity and progress made with respect to the study of uranyl adsorption on mineral surfaces is presented and discussed

  5. Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.

    Science.gov (United States)

    Petridis, Loukas; Ambaye, Haile; Jagadamma, Sindhu; Kilbey, S Michael; Lokitz, Bradley S; Lauter, Valeria; Mayes, Melanie A

    2014-01-01

    The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.

  6. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  7. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  8. Review of Cuttability Indices and A New Rockmass Classification Approach for Selection of Surface Miners

    Science.gov (United States)

    Dey, Kaushik; Ghose, A. K.

    2011-09-01

    Rock excavation is carried out either by drilling and blasting or using rock-cutting machines like rippers, bucket wheel excavators, surface miners, road headers etc. Economics of mechanised rock excavation by rock-cutting machines largely depends on the achieved production rates. Thus, assessment of the performance (productivity) is important prior to deploying a rock-cutting machine. In doing so, several researchers have classified rockmass in different ways and have developed cuttability indices to correlate machine performance directly. However, most of these indices were developed to assess the performance of road headers/tunnel-boring machines apart from a few that were developed in the earlier days when the ripper was a popular excavating equipment. Presently, around 400 surface miners are in operation around the world amongst which, 105 are in India. Until now, no rockmass classification system is available to assess the performance of surface miners. Surface miners are being deployed largely on trial and error basis or based on the performance charts provided by the manufacturer. In this context, it is logical to establish a suitable cuttability index to predict the performance of surface miners. In this present paper, the existing cuttability indices are reviewed and a new cuttability indexes proposed. A new relationship is also developed to predict the output from surface miners using the proposed cuttability index.

  9. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Hartmut R., E-mail: hartmut.fischer@tno.nl [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands); Dillingh, E.C.; Hermse, C.G.M. [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. Black-Right-Pointing-Pointer Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. Black-Right-Pointing-Pointer Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  10. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    International Nuclear Information System (INIS)

    Fischer, Hartmut R.; Dillingh, E.C.; Hermse, C.G.M.

    2013-01-01

    Highlights: ► Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. ► Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. ► Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  11. Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?

    Science.gov (United States)

    Campbell, Jay M.; Zhang, Nianli; Hickey, William J.

    2012-01-01

    Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560

  12. Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Minnah; Arora, Aditya; Katti, Dhirendra S., E-mail: dsk@iitk.ac.in

    2014-12-01

    Interfacial properties of biomaterials play an important role in governing their interaction with biological microenvironments. This work investigates the role of surface hydrophilicity of electrospun poly(lactide-co-glycolide) (PLGA) fibers in determining their biological response. For this, PLGA is blended with varying amounts of Pluronic®F-108 and electrospun to fabricate microfibers with varying surface hydrophilicity. The results of mineralization study in simulated body fluid (SBF) demonstrate a significant enhancement in mineralization with an increase in surface hydrophilicity. While presence of serum proteins in SBF reduces absolute mineral content, mineralization continues to be higher on samples with higher surface hydrophilicity. The results from in vitro cell culture studies demonstrate a marked improvement in mesenchymal stem cell —adhesion, elongation, proliferation, infiltration, osteogenic differentiation and matrix mineralization on hydrophilized fibers. Therefore, hydrophilized PLGA fibers are advantageous both in terms of mineralization and elicitation of favorable cell response. Since most of the polymeric materials being used in orthopedics are hydrophobic in nature, the results from this study have strong implications in the future design of interfaces of such hydrophobic materials. In addition, the work proposes a facile method for the modification of electrospun fibers of hydrophobic polymers by blending with a poloxamer for improved bone tissue regeneration. - Highlights: • Surface hydrophilicity of PLGA modulated by blending with Pluronic F-108. • Hydrophilized fibers support better in vitro mineralization. • Mineralization trends retained in the presence of adsorbed serum proteins. • Hydrophilized fibers promote better cell adhesion and proliferation. • Hydrophilized fibers also enable better osteogenic differentiation.

  13. Debilitating lung disease among surface coal miners with no underground mining tenure.

    Science.gov (United States)

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  14. Thermochemistry of minerals stable near the earth's surface

    International Nuclear Information System (INIS)

    1990-01-01

    The present proposal continues the evolution, of changing emphasis from silicate melts to glass and toward crystalline minerals stable in the shallow crustal environment, particularly amphiholes, micas, and related hydrous phases adding zeolites and carbonates to our areas of interest. This is made possible both by recent advances in our high-temperature calorimetric techniques and by an interest in extending our ideas about the systematics of ionic substitutions to more complex structures. The proposal presents the following: (a) a listing of papers, theses, and abstracts in the past 3 years supported by the present grant, (b) a summary of work on glasses containing highly charged cations and on some related crystalline phases, with proposed new directions, (c) a discussion of advances in calorimetric methods and what new possibilities they open, (d) completed and planned work on amphiboles, micas, and clays, (e) completed and proposed work on amorpous low temperature materials, (f) proposed work on zeolites, and (g) proposed work on carbonates and (h) a discussion of the energy relevance of the above projects. This is followed by the required forms, budget pages, and CV. 34 refs., 5 figs., 1 tab

  15. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  16. Molecularly-Limited Fractal Surface Area of Mineral Powders

    Directory of Open Access Journals (Sweden)

    Petr Jandacka

    2016-05-01

    Full Text Available The topic of the specific surface area (SSA of powders is not sufficiently described in the literature in spite of its nontrivial contribution to adsorption and dissolution processes. Fractal geometry provides a way to determine this parameter via relation SSA ~ x(D − 3s(2 − D, where x (m is the particle size and s (m is a scale. Such a relation respects nano-, micro-, or macro-topography on the surface. Within this theory, the fractal dimension 2 ≤ D < 3 and scale parameter s plays a significant role. The parameter D may be determined from BET or dissolution measurements on several samples, changing the powder particle sizes or sizes of adsorbate molecules. If the fractality of the surface is high, the SSA does not depend on the particle size distribution and vice versa. In this paper, the SSA parameter is analyzed from the point of view of adsorption and dissolution processes. In the case of adsorption, a new equation for the SSA, depending on the term (2 − D∙(s2 − sBET/sBET, is derived, where sBET and s2 are effective cross-sectional diameters for BET and new adsorbates. Determination of the SSA for the dissolution process appears to be very complicated, since the fractality of the surface may change in the process. Nevertheless, the presented equations have good application potential.

  17. Adsorption mechanisms of carboxymethyl cellulose on mineral surfaces.

    NARCIS (Netherlands)

    Hoogendam, C.W.; Keizer, de A.; Cohen Stuart, M.A.; Bijsterbosch, B.H.; Batelaan, J.G.; Horst, van der P.M.

    1998-01-01

    The adsorption behavior of carboxymethyl cellulose (CMC) on inorganic surfaces (TiO2 and -Fe2O3) in aqueous solution has been studied systematically. The general trends are that the adsorbed amount decreases with increasing pH, whereas increasing the electrolyte (NaCl) concentration causes the

  18. Mineral Surface Reactivity in teaching of Science Materials

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    which enables him to continuous innovation. Different materials are used in the adsorption and improvement and design of new adsorbents, most of whom remain under patent, so they do not know the procedures and products used, but in all cases the safety and / or biodegradability of materials used is an important issue in their choice for environmental applications. In regard to materials, safe and low cost must be mentioned clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for adsorption chemical contaminants. We proposed to use these materials to show the different aspects for the study of the Science Materials. References -del Hoyo, C. (2007b). Layered Double Hydroxides and human health: An overview. Applied Clay Science. 36, 103-121. -Konta, J. (1995). Clay and man: Clay raw materials in the service of man. Applied Clay Science. 10, 275-335. -Volzone, C. (2007). Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science. 36, 191-196.

  19. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  1. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey

    2014-03-01

    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  2. The surface-active bio oil solution in sulfured copper mineral benefit

    Directory of Open Access Journals (Sweden)

    L.E. Brossard

    2005-03-01

    Full Text Available Surface-active bio-oil (SABO solutions, prepared from vacuum pyrolysis bio-oil with a phenol-to-levoglucosan mass ratio of 4.8, was compared to pine-oil (PO as foaming agent in the process of flotation of sulfured copper minerals. With the aid of 2³ factorial designs, regression models were obtained for % Cu in flotation concentrate (L Cu and % Cu recovery (R, as functions of foaming agent-to-Cu mineral, collector-to-Cu mineral mass ratio and liquid-to-solid ratio (v/w. Experimental designs composed of a saturated design in its first half and a fold over design in its second half allowed to study the influence of flotation conditions on L Cu and R when SABO was the foaming agent. The factors selected were: particle size; pulp pH; flotation time; initial Cu content in the mineral (mineral type; liquid-to-solid ratio and finally SABO-to-mineral and collector-to-mineral mass ratio. Within the chosen experimental region only pulp pH affected significantly both responses. It is shown that high pulp pH, in the presence of minerals rich in Cu content leads to a significant increase in L Cu and R. Although SABO to mineral mass ratio is high compared to PO, it is considered that an optimization study on pulp pH should reduce this difference making SABO an attractive alternative to PO and a way to widen the field of applications of pyrolysis products.

  3. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    Science.gov (United States)

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Surface mineralization and characterization of tobacco mosaic virus biotemplated nanoparticles

    Science.gov (United States)

    Freer, Alexander S.

    The genetically engineered tobacco mosaic virus (TMV) has been utilized as a biotemplate in the formation of nanoparticles with the intent of furthering the understanding of the biotemplated nanoparticles formed in the absence of an external reducing agent. Specifically, the work aims to provide better knowledge of the final particle characteristics and how these properties could be altered to better fit the need of functional devices. Three achievements have been accomplished including a method for controlling final particle size, characterizing the resistivity of palladium coated TMV, and the application of TMV as an additive in nanometric calcium carbonate synthesis. Until the last 5 years, formation of metal nanoparticles on the surface of TMV has always occurred with the addition of an external reducing agent. The surface functionalities of genetically engineered TMV allow for the reduction of palladium in the absence of an external reducing agent. This process has been furthered to understand how palladium concentration affects the final coating uniformity and thickness. By confirming an ideal ratio of palladium and TMV concentrations, a uniform coat of palladium is formed around the viral nanorod. Altering the number of palladium coating cycles at these concentrations allows for a controllable average diameter of the final nanorods. The average particle diameter was determined by small angle x-ray scattering (SAXS) analysis by comparing the experimental results to the model of scattering by an infinitely long cylinder. The SAXS results were confirmed through transmission electron microscopy images of individual Pd-TMV nanorods. Secondly, methodologies to determine the electrical resistivity of the genetically engineered TMV biotemplated palladium nanoparticles were created to provide valuable previously missing information. Two fairly common nanoelectronic characterization techniques were combined to create the novel approach to obtain the desired

  5. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    Science.gov (United States)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  6. Influence of natural organic matter and mineral surfaces upon the radionuclide speciation in an environmental context

    International Nuclear Information System (INIS)

    Janot, N.

    2011-01-01

    This study deals with interactions occurring in a ternary europium(III)/humic acid(HA)/α-Al 2 O 3 system, depending on solution conditions (pH, ionic strength, organic concentration). These interactions were studied at a macroscopic scale - quantifying Eu(III) and/or HA adsorption onto the mineral surface - and using time-resolved luminescence spectroscopy. The presence of HA modifies Eu(III) behavior toward the mineral surface. Analysis showed a Eu(III)-HA complexation in the ternary system, in all the conditions studied. However, Eu(III) complexation with the mineral surface is occurring at high pH and ionic strength only. Spectrophotometric titrations were validated as a method to study HA reactivity at environmental relevant concentrations. They have been used to determine modifications of HA reactivity after adsorption onto the alumina surface depending on initial HA concentration. These results have then be used to model Eu(III) speciation in the ternary system, using the CD-MUSIC and NICA-Donnan models for mineral and organic complexation, respectively. (author) [fr

  7. Spectroscopic studies on surface reactions between minerals and reagents in flotation systems

    International Nuclear Information System (INIS)

    Giesekke, E.W.

    1981-01-01

    A study of the adsorbed species at the interface between the minerals and the aqueous solution is reported in the hope that it will contribute to a better understanding of selective mineral flotation by various reagents. The results of infrared spectroscopic studies are cited from the author's investigation on the fluorite-sodium oleate and fluorite-linoleate systems. Electron-spectroscopic techniques, e.g., electron spectroscopy for chemical analysis (ESCA) have also been useful in the identification of adsorbed species on mineral surfaces. Some experimental data from the literature are discussed. These studies have the disadvantage that they are not in situ investigations of the interface between the mineral and the aqueous solution. The potential use of other spectroscopic techniques are discussed, photo-acoustic, Raman, and electron-spin-resonance spectroscopy being considered as possible alternatives. It is suggested that the relatively small surface areas of minerals used in flotation (i.e. smaller than 2m 2 .g- 1 ) impose severe restrictions on the use of such techniques

  8. Studying the interface between cyanobacteria and biotite mineral surfaces using FIB and TEM

    International Nuclear Information System (INIS)

    Ward, M B; Brown, A P

    2014-01-01

    Recent analysis of the bioweathering of minerals has highlighted the challenges for investigating the interface between fungi or bacteria and the surface of the mineral that they live on. Transmission electron microscopy (TEM) with its ability to gather imaging information and collect elemental data at high spatial resolution is the ideal technique to analyse such interfaces. Further to this, a dual beam scanning electron and focused ion beam (FIB) microscope is an ideal instrument to prepare specimens for TEM because of its ability to simultaneously cut through hard and soft materials from specific sites of interest. There are however precautions that must be taken when analysing such mineral systems. The electron beam sensitive nature of most sheet silicate minerals means that consideration has to be made as to whether the structure and/or chemistry of the material is being altered during (S)TEM analysis. Here, results from a study of cyanobacteria grown on the surface of biotite are discussed. Particular reference is given to the methods used to determine an electron beam intensity threshold, below which STEM-EDX analysis could be performed without detrimental alteration to the mineral

  9. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research

    Directory of Open Access Journals (Sweden)

    Richard J. Gillams

    2018-05-01

    Full Text Available An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.

  11. Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research.

    Science.gov (United States)

    Gillams, Richard J; Jia, Tony Z

    2018-05-08

    An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.

  12. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  13. The burden of surface minerals. Study on the effects on nature, environment and the economy in the Netherlands

    International Nuclear Information System (INIS)

    Wit, R.C.N.; Blom, M.J.; Schwencke, A.M.; Groot, P.J.M.; Kreijen, M.

    2000-05-01

    The Dutch government plans to implement a tax (1.75 Dutch guilders per tonne surface minerals) on imported surface minerals (e.g. sand, grit, clay, etc.) per January 1, 2001. The environmental and economic impacts were studied. 34 refs

  14. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  15. Carbon mineralization in surface and subsurface soils in a subtropical mixed forest in central China

    Science.gov (United States)

    Liu, F.; Tian, Q.

    2014-12-01

    About a half of soil carbon is stored in subsurface soil horizons, their dynamics have the potential to significantly affect carbon balancing in terrestrial ecosystems. However, the main factors regulating subsurface soil carbon mineralization are poorly understood. As affected by mountain humid monsoon, the subtropical mountains in central China has an annual precipitation of about 2000 mm, which causes strong leaching of ions and nutrition. The objectives of this study were to monitor subsurface soil carbon mineralization and to determine if it is affected by nutrient limitation. We collected soil samples (up to 1 m deep) at three locations in a small watershed with three soil layers (0-10 cm, 10-30 cm, below 30 cm). For the three layers, soil organic carbon (SOC) ranged from 35.8 to 94.4 mg g-1, total nitrogen ranged from 3.51 to 8.03 mg g-1, microbial biomass carbon (MBC) ranged from 170.6 to 718.4 μg g-1 soil. We measured carbon mineralization with the addition of N (100 μg N/g soil), P (50 μg P/g soil), and liable carbon (glucose labeled by 5 atom% 13C, at five levels: control, 10% MBC, 50% MBC, 100% MBC, 200% MBC). The addition of N and P had negligible effects on CO2 production in surface soil layers; in the deepest soil layer, the addition of N and P decreased CO2 production from 4.32 to 3.20 μg C g-1 soil carbon h-1. Glucose addition stimulated both surface and subsurface microbial mineralization of SOC, causing priming effects. With the increase of glucose addition rate from 10% to 200% MBC, the primed mineralization rate increased from 0.19 to 3.20 μg C g-1 soil carbon h-1 (fifth day of glucose addition). The magnitude of priming effect increased from 28% to 120% as soil layers go deep compare to the basal CO2 production (fifth day of 200% MBC glucose addition, basal CO2 production rate for the surface and the deepest soil was 11.17 and 2.88 μg C g-1 soil carbon h-1). These results suggested that the mineralization of subsurface carbon is more

  16. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources.

    Science.gov (United States)

    Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun

    2018-04-01

    Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  18. On some investigation features of sorption of flotation reagents labelled by soft β-emitters on mineral surface

    International Nuclear Information System (INIS)

    Korobochkin, V.P.; Gladyshev, V.P.; Latypova, O.A.

    1983-01-01

    A correction for self-absorption, taking into account concrete dimensions of mineral grain during sorption of flotation reagents on mineral surface is deduced. On the basis of the regularity obtained problems of the sensitivity of the determination method of reagent activity sorbed by minerals which are labelled by radioactive isotopes are considered. Improved technique is described and statistical analysis of the experimental data obtained is carried out

  19. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Rabnawaz, Muhammad

    2017-01-01

    Highlights: • Fe-Co/SiO 2 catalyst with medium acidity was more effective for bio-oil upgrading. • Co-loading of Fe and Co on SiO 2 support improved catalyst performance. • Catalyst showing the best catalytic activity had a Fe/Co mole ratio of 1. • Biofuel produced by Fe-Co(1)/SiO 2 had the higher hydrocarbons content at 22.44%. • The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed. - Abstract: Hydrodeoxygenation (HDO) is an effective route to upgrade bio-oil to hydrocarbon bio-oil, but the development of efficient catalysts for bio-oil HDO still remains a challenge. In this study, non-sulfided Fe-Co/SiO 2 catalysts were used to upgrade bio-oil using HDO. A series of Fe-Co/SiO 2 catalysts with different Fe/Co mole ratios were prepared, characterized and evaluated. The Fe and/or Co loading did not change SiO 2 crystalline structure. The Fe and/or Co metals increased the amount and strength of Fe-Co/SiO 2 catalyst acidity. Physicochemical properties of upgraded bio-oils produced using Fe-Co/SiO 2 catalysts such as water content, total acid number, viscosity and higher heating values improved in comparison to raw bio-oil. Bimetallic Fe-Co/SiO 2 catalysts resulted in better HDO performance than monometallic Fe/SiO 2 or Co/SiO 2 catalysts. This was due to the synergistic effect of Fe and Co occurring on the SiO 2 support. Fe-Co/SiO 2 catalyst having medium amount of acidity was more effective for bio-oil upgrading. The highest hydrocarbons content produced using Fe-Co(1)/SiO 2 catalyst was 22.44%. The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed.

  20. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  1. Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.

    Science.gov (United States)

    Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray

    2002-04-01

    Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.

  2. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  3. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.

    Science.gov (United States)

    Tang, Chuyang Y; Shiang Fu, Q; Gao, Dawen; Criddle, Craig S; Leckie, James O

    2010-04-01

    Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns, yet very limited information has been available on PFOS adsorption onto mineral surfaces. PFOS adsorption onto goethite and silica was investigated by batch adsorption experiments under various solution compositions. Adsorption onto silica was only marginally affected by pH, ionic strength, and calcium concentration, likely due to the dominance of non-electrostatic interactions. In contrast, PFOS uptake by goethite increased significantly at high [H+] and [Ca2+], which was likely due to enhanced electrostatic attraction between the negatively charged PFOS molecules and positively charged goethite surface. The effect of pH was less significant at high ionic strength, likely due to electrical double layer compression. PFOS uptake was reduced at higher ionic strength for a strongly positively charged goethite surface (pH 3), while it increased for a weakly charged surface (pH 7 and 9), which could be attributed to the competition between PFOS-surface electrostatic attraction and PFOS-PFOS electrostatic repulsion. A conceptual model that captures PFOS-surface and PFOS-PFOS electrostatic interactions as well as non-electrostatic interaction was also formulated to understand the effect of solution chemistry on PFOS adsorption onto goethite and silica surfaces. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    Science.gov (United States)

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  6. Ensuring the Environmental and Industrial Safety in Solid Mineral Deposit Surface Mining

    Science.gov (United States)

    Trubetskoy, Kliment; Rylnikova, Marina; Esina, Ekaterina

    2017-11-01

    The growing environmental pressure of mineral deposit surface mining and severization of industrial safety requirements dictate the necessity of refining the regulatory framework governing safe and efficient development of underground resources. The applicable regulatory documentation governing the procedure of ore open-pit wall and bench stability design for the stage of pit reaching its final boundary was issued several decades ago. Over recent decades, mining and geomechanical conditions have changed significantly in surface mining operations, numerous new software packages and computer developments have appeared, opportunities of experimental methods of source data collection and processing, grounding of the permissible parameters of open pit walls have changed dramatically, and, thus, methods of risk assessment have been perfected [10-13]. IPKON RAS, with the support of the Federal Service for Environmental Supervision, assumed the role of the initiator of the project for the development of Federal norms and regulations of industrial safety "Rules for ensuring the stability of walls and benches of open pits, open-cast mines and spoil banks", which contribute to the improvement of economic efficiency and safety of mineral deposit surface mining and enhancement of the competitiveness of Russian mines at the international level that is very important in the current situation.

  7. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  8. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  9. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2015-08-01

    Full Text Available We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

  10. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    Science.gov (United States)

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  11. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  12. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    NARCIS (Netherlands)

    Klymov, A.; Song, J.; Cai, X; Riet, J. te; Leeuwenburgh, S.C.; Jansen, J.A.; Walboomers, X.F.

    2016-01-01

    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth

  13. Surface characteristics of kaolinite and other selected 2-layer silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Nalaskowski, J.; Abdul, B.; Du, H. [Utah Univ., Salt Lake City, UT (United States). Dept. of Metallurgical Engineering

    2007-10-15

    The wetting of mineral phases by bitumens plays an important role in efficient bitumen recovery. In this study, molecular dynamics simulations were used to investigate the electrokinetic behaviour and interfacial water features of 2-layer silicate minerals. The study compared the planar structures of antigorite and kaolinite with equivalent tubular structures of halloysite and chrysolite. Equivalency of pH dependency of zeta potential was determined using electrophoretic mobility measurements. The atomic mismatch between tetrahydral and octahydral sheets in a bilayer was examined in order to determine electrokinetic behaviour. Results of the study indicated that the silica tetrahydral surface was not wetted by water, but by structural imperfections. Polarity reversal within a tetrahedral octahedral layer and an out-of-order layer within the stack were then considered to explain both the wetting characteristics and electrokinetic behaviour. It was concluded that further research is needed to explain why the hexagonal rings structure for the silica tetrahydral face of kaolinite is wetted by water. 55 refs., 2 tabs., 12 figs.

  14. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  15. GEOSURF: a computer program for modeling adsorption on mineral surfaces from aqueous solution

    Science.gov (United States)

    Sahai, Nita; Sverjensky, Dimitri A.

    1998-11-01

    A new program, GEOSURF, has been developed for calculating aqueous and surface speciation consistent with the triple-layer model of surface complexation. GEOSURF is an extension of the original programs MINEQL, MICROQL and HYDRAQL. We present, here, the basic algorithm of GEOSURF along with a description of the new features implemented. GEOSURF is linked to internally consistent data bases for surface species (SURFK.DAT) and for aqueous species (AQSOL.DAT). SURFK.DAT contains properties of minerals such as site densities, and equilibrium constants for adsorption of aqueous protons and electrolyte ions on a variety of oxides and hydroxides. The Helgeson, Kirkham and Flowers version of the extended Debye-Huckel Equation for 1:1 electrolytes is implemented for calculating aqueous activity coefficients. This permits the calculation of speciation at ionic strengths greater than 0.5 M. The activity of water is computed explicitly from the osmotic coefficient of the solution, and the total amount of electrolyte cation (or anion) is adjusted to satisfy the electroneutrality condition. Finally, the use of standard symbols for chemical species rather than species identification numbers is included to facilitate use of the program. One of the main limitations of GEOSURF is that aqueous and surface speciation can only be calculated at fixed pH and at fixed concentration of total adsorbate. Thus, the program cannot perform reaction-path calculations: it cannot determine whether or not a solution is over- or under-saturated with respect to one or more solid phases. To check the proper running of GEOSURF, we have compared results generated by GEOSURF with those from two other programs, HYDRAQL and EQ3. The Davies equation and the "bdot" equation, respectively, are used in the latter two programs for calculating aqueous activity coefficients. An example of the model fit to experimental data for rutile in 0.001 M-2.0 M NaNO 3 is included.

  16. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-11-01

    Full Text Available Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition, molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ProRoot MTA (Dentsply Tulsa Dental, and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively. However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively. Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

  17. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    International Nuclear Information System (INIS)

    Han, Guang; Müller, Werner E.G.; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-01-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist

  18. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guang [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Müller, Werner E.G.; Wang, Xiaohong [ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz (Germany); Lilja, Louise [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist.

  19. Acidic surface functional groups and mineral elements in Lakra coal (Sindh, Pakistan)

    International Nuclear Information System (INIS)

    Saeed, K.; Ishaq, M.; Ahjmad, I.; Shakirullah, M.; Haider, S.

    2010-01-01

    Surface acidity of virgin coal (Lakra Sindh, Pakistan) and variously extracted/leached coal samples with HNO/sub 3/ NaOH, and KMnO/sub 4/, were investigated by aqueous potentiometric titration employing KOH as a titrant. The titration curve of virgin coal showed that its surface might contain carboxylic, carbonyl, phenolic and other weak acidic functional groups such as enols and C-H bond. The titration curves of leached coal samples showed inflections at pH 4-11, being not similar the inflections of carboxylic groups. This inflection might be given by functional groups like CO/sub 2/, phenolic, enols and C-H. Mineral matter such as Fe, K, Zn, Mn and Ni were determined in the ash of coal by atomic absorption spectrophotometer and was found that Fe (3104 micro g/g) in the highest and Ni (36.05 micro g/g) in the lowest quantity is present in virgin coal sample. (author)

  20. The optical constants of the organic thin films in the case of xanthats adsorption at the surface of semiconductors minerals

    International Nuclear Information System (INIS)

    Todoran, Radu; Todoran, Daniela

    2008-01-01

    The paper present the determinations of some kinetic parameters that characterize the kinetics of the adsorption phenomenon of some organic xanthate molecule on the surface of some natural semiconductor mineral (galena, sphalerite) in order to understand the inward mechanism of this phenomenon. Among the methods of inquiry that allow kinetics determination in situ the optical ones were chosen relying on the change of the liquid-mineral semiconductor interface, and permitting continuous inquires without disturbing the inward development of the processes. Into the computation, we took into the consideration the physical values which feature the roughness of the solid surface, the diffusion into liquid media and the energetic non-homogeneities of the surface. The R s /R p =f(θ) characteristic helps us to establish the thickness of the adsorbed layer, as well as to determine the optical parameters of the thin film. the experimental results allow us to get some information on the mineral and mineral-solution of xanthate, as well allow us to get some information on the parameters which, in correlation with other proportions experimentally determined - could had as to estimations of the dynamic of the surface of a semiconductor solid body. (Author)

  1. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  2. Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity.

    Science.gov (United States)

    Trauscht, Jacob; Pazmino, Eddy; Johnson, William P

    2015-09-01

    Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing

  3. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  4. Microbes, Minerals and Electrodes at the Sanford Underground Research Facility (SURF): Electrochemistry 4100 ft below the surface.

    Science.gov (United States)

    Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.

    2017-12-01

    Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.

  5. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin.

    Science.gov (United States)

    Magro, Massimiliano; Fasolato, Luca; Bonaiuto, Emanuela; Andreani, Nadia Andrea; Baratella, Davide; Corraducci, Vittorino; Miotto, Giovanni; Cardazzo, Barbara; Vianello, Fabio

    2016-10-01

    Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    NARCIS (Netherlands)

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  7. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    Directory of Open Access Journals (Sweden)

    Yinghong Wu

    2014-01-01

    Full Text Available Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%, organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP, and humic acid (HA on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents.

  8. Mechanochemical transformation of an organic ligand on mineral surfaces: The efficiency of birnessite in catechol degradation

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Paola, E-mail: pdileo@imaa.cnr.it [Consiglio Nazionale delle Ricerche - Istituto di Metodologie per l' Analisi Ambientale, C.da S. Loja, Zona Industriale, 85050 Tito Scalo (PZ) (Italy); Pizzigallo, Maria Donata Rosa [Dipartimento di Biologia e Chimica Agroforestale e Ambientale, Universita di Bari Aldo Moro, Via Amendola 165/a, 70126 Bari (Italy); Ancona, Valeria [Consiglio Nazionale delle Ricerche - Istituto di Ricerca sulle Acque, Via F. De Blasio 5, 70132 Bari (Italy); Di Benedetto, Francesco [Dipartimento di Chimica, Universita di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino (Italy); Mesto, Ernesto; Schingaro, Emanuela; Ventruti, Gennaro [Dipartimento di Scienze della Terra e Geoambientali, Universita di Bari Aldo Moro, Via Orabona, 4, 70125 Bari (Italy)

    2012-01-30

    grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO{sub 6} layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn{sup 2+} ions production.

  9. A Non-sulfided flower-like Ni-PTA Catalyst that Enhances the Hydrotreatment Efficiency of Plant Oil to Produce Green Diesel

    Science.gov (United States)

    Liu, Jing; Chen, Pan; Deng, Lihong; He, Jing; Wang, Luying; Rong, Long; Lei, Jiandu

    2015-01-01

    The development of a novel non-sulfided catalyst with high activity for the hydrotreatment processing of plant oils, is of high interest as a way to improve the efficient production of renewable diesel. To attempt to develop such a catalyst, we first synthesized a high activity flower-like Ni-PTA catalyst used in the hydrotreatment processes of plant oils. The obtained catalyst was characterized with SEM, EDX, HRTEM, BET, XRD, H2-TPR, XPS and TGA. A probable formation mechanism of flower-like Ni(OH)2 is proposed on the basis of a range of contrasting experiments. The results of GC showed that the conversion yield of Jatropha oil was 98.95%, and the selectivity of C11-C18 alkanes was 70.93% at 360 °C, 3 MPa, and 15 h−1. The activity of this flower-like Ni-PTA catalyst was more than 15 times higher than those of the conventional Ni-PTA/Al2O3 catalysts. Additionally, the flower-like Ni-PTA catalyst exhibited good stability during the process of plant oil hydrotreatment. PMID:26503896

  10. Surface properties and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers

    International Nuclear Information System (INIS)

    Annamalai, Alagappan; Eo, Yang Dam; Im, Chan; Lee, Man-Jong

    2011-01-01

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn 2 SnO 4 ) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na 2 CO 3 , KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn 2 SnO 4 based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn 2 SnO 4 nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn 2 SnO 4 nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn 2 SnO 4 nanoparticles, the IEPs of Zn 2 SnO 4 surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn 2 SnO 4 nanoparticles formed using Na 2 CO 3 , KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn 2 SnO 4 nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn 2 SnO 4 electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: → The effect of various mineralizers on the isoelectric point of Zn 2 SnO 4 was discussed. → The IEP of Zn 2 SnO 4 can be modified by the choice of mineralizer. → Change in IEP affects the surface properties and the morphology of Zn 2 SnO 4 particles. → Modified surface affects the N719 dye loading behaviour of the Zn 2 SnO 4 based DSSCs.

  11. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  12. Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface.

    Science.gov (United States)

    Gu, Jia-Yu; Zang, Sheng-Gang; Sheng, Xia-Fang; He, Lin-Yan; Huang, Zhi; Wang, Qi

    2015-03-01

    A novel type of mineral-weathering bacterium was isolated from the weathered surface of rock (mica schist) collected from Susong (Anhui, China). Cells of strain L226(T) were Gram-stain-negative. The strain grew optimally at 30 °C, with 1 % (w/v) NaCl and at pH 7.0 in trypticase soy broth. On the basis of 16S rRNA gene phylogeny, strain L226(T) was shown to belong to the genus Burkholderia and the closest phylogenetic relatives were Burkholderia sprentiae WSM5005(T) (98.3 %), Burkholderia acidipaludis NBRC 101816(T) (98.2 %), Burkholderia tuberum STM678(T) (97.2 %) and Burkholderia diazotrophica JPY461(T) (97.1 %). The DNA G+C content was 63.5 mol% and the respiratory quinone was Q-8. The major fatty acids were C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c. The polar lipid profile of strain L226(T) consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, unknown lipids and unidentified aminophospholipids. Based on the low level of DNA-DNA relatedness (ranging from 25.8 % to 34.4 %) to the tested type strains of species of the genus Burkholderia and unique phenotypic characteristics, it is suggested that strain L226(T) represents a novel species of the genus Burkholderia, for which the name Burkholderia susongensis sp. nov., is proposed. The type strain is L226(T) ( = CCTCC AB2014142(T) = JCM 30231(T)). © 2015 IUMS.

  13. Molecular binding mechanisms of aqueous cadmium and lead to siderophores, bacteria and mineral surfaces

    Science.gov (United States)

    Mishra, Bhoopesh

    Recent studies have shown that diverse groups of bacteria adsorb metals to similar extents and uptake can be modeled using a universal adsorption model. In this study, XAFS has been used to resolve whether binding sites determined for single species systems are responsible for adsorption in more complex natural bacterial assemblages. Results obtained from a series of XAFS experiments on pure Gram positive and Gram negative bacterial strains and consortia of bacteria as a function of pH and Cd loading suggests that every bacterial strain has a complex physiology and they are all slightly different from each other. Nevertheless from the metal adsorption chemistry point of view, the main difference between them lies in the site ratio of three fundamental sites only - carboxyl, phosphoryl and sulfide. Two completely different consortia of bacteria (obtained from natural river water, and soil system with severe organic contamination) were successfully modeled in the pH range 3.4--7.8 using the EXAFS models developed for single species systems. Results thus obtained can potentially have very high impact on the modeling of the complex bacterial systems in realistic geological settings, leading to further refinement and development of robust remediation strategies for metal contamination at macroscopic level. In another study, solution speciation of Pb and Cd with DFO-B has been examined using a combination of techniques (ICP, TOC, thermodynamic modeling and XAFS). Results indicate that Pb does not complex with DFO-B at all until about pH 3.5, but forms a totally caged structure at pH 7.5. At intermediate pH conditions, mixture of species (one and two hydroxamate groups complexed) is formed. Cd on the other hand, does not complex until pH 5, forms intermediate complexes at pH 8 and is totally chelated at pH 9. Further studies were conducted for Pb sorption to mineral surface kaolinite with and without DFO-B. In the absence of DFO-B, results suggest outer sphere and inner

  14. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study

    OpenAIRE

    Amin Salem Milani; Saeed Rahimi; Mohammad Froughreyhani; Mahdi Vahid Pakdel

    2013-01-01

    Background and aims. In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Materials and methods. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly ...

  15. Co-binding of pharmaceutical compounds at mineral surfaces: Molecular investigations of dimer formation at goethite/water interfaces

    OpenAIRE

    Xu , Jing; Marsac , Rémi; Costa , Dominique; Cheng , Wei; Wu , Feng; Boily , Jean-François; Hanna , Khalil

    2017-01-01

    International audience; The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) ...

  16. How biological crusts are stabilizing the soil surface? The devolpment of organo-mineral interactions in the initial phase

    Science.gov (United States)

    Fischer, T.; Veste, M.; Wiehe, W.; Lange, P.

    2009-04-01

    First colonizers of new land surfaces are cryptogames which often form biological soil crusts (BSC) covering the first millimetre of the top soil in many ecosystems from polar to desert ecosystems. These BSC are assemblages of cyanobacteria, green algae, mosses, liverworts, fungi and/or lichens. The development of soil surface crusts plays a major role for the further vegetation pattern through changes to the physico-chemical conditions and influencing various ecosystem processes. We studied the development of BSC on quaternary substrate of an initial artificial water catchment in Lusatia, Germany. Due to lack of organic matter in the geological substrate, photoautotrophic organisms like green algae and cyanobacteria dominated the initial phases of ecosystem development and, hence, of organo-mineral ineractions. We combined SEM/EDX and FTIR microscopy to study the contact zone of extracellular polymeric substances (EPS) of green algae and cyanobacteria with quartz, spars and mica on a >40 µm scale in undisturbed biological soil crusts, which had a maximum thickness of approx. 2 mm. SEM/EDX microscopy was used to determine the spatial distribution of S, Ca, Fe, Al, Si and K in the profiles, organic compounds were identified using FTIR microscopy. Exudates of crust organisms served as cementing material between sand particles. The crust could be subdivided into two horizontal layers. The upper layer, which had a thickness of approx. 200 µm, is characterized by accumulation of Al and K, but absence of Fe in microbial derived organic matter, indicating capture of weathering products of feldspars and mica by microbial exudates. The pore space between mineral particles was entirely filled with organic matter here. The underlying layer can be characterized by empty pores and organo-mineral bridges between the sand particles. Contrarily to the upper layer of the crust, Fe, Al and Si were associated with organic matter here but K was absent. Highest similarity of the FTIR

  17. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  18. Mineral exploitation by surface mining and environmental restoration. Explotacion minera a cielo abierto y restauracion ambiental

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The subject of environmental restoration of zones affected by the opencast exploitation of coal, is one of the most interesting for mineral zones since at the end of the industrial process the reclaimed land is appropriate for subsequent use. In all, HUNOSA has restored more than 1000 Ha of pasture. 1 fig.

  19. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  20. Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    International Nuclear Information System (INIS)

    Teng, K.H.; Amiri, Ahmad; Kazi, S.N.; Bakar, M.A.; Chew, B.T.; Al-Shamma’a, A.; Shaw, A.

    2017-01-01

    Highlights: • Decoration EDTA on MWCNT surface to retard the rate of fouling. • Preparation of DTPA-treated MWCNT/water nanofluid. • Evaluating the mitigation of DTPA-treated MWCNT-based water nanofluids. • Retarding of calcium carbonate crystals by MWCNT-DTPA additives. • The effect of additive on the rate of fouling. - Abstract: Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L −1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution.

  1. Interactions of the Calcite {10.4} Surface with Organic Compounds: Structure and Behaviour at Mineral – Organic Interfaces

    DEFF Research Database (Denmark)

    Hakim, S. S.; Olsson, M. H. M.; Sørensen, H. O.

    2017-01-01

    The structure and the strength of organic compound adsorption on mineral surfaces are of interest for a number of industrial and environmental applications, oil recovery, CO2 storage and contamination remediation. Biomineralised calcite plays an essential role in the function of many organisms...... that control crystal growth with organic macromolecules. Carbonate rocks, composed almost exclusively of calcite, host drinking water aquifers and oil reservoirs. In this study, we examined the ordering behaviour of several organic compounds and the thickness of the adsorbed layers formed on calcite {10...... monolayers. The results of this work indicate that adhered organic compounds from the surrounding environment can affect the surface behaviour, depending on properties of the organic compound....

  2. A computational investigation of adsorption of organics on mineral surfaces: Implications for organics delivery in the early solar system

    Science.gov (United States)

    Asaduzzaman, A. M.; Zega, T. J.; Laref, Slimane; Runge, K.; Deymier, P. A.; Muralidharan, Krishna

    2014-12-01

    The adsorption of simple organic compounds onto minerals that are known to occur in the early solar nebula such as olivine, spinel and water-ice, is examined using first-principles density functional theory. The calculations show that electron-rich organics and organics containing cyanide, amine and carboxylic functional groups can strongly bind to low-index surfaces of olivine and spinel. Based on the surface coverage as obtained from these calculations, it can be inferred that an estimated amount of 1013 kg of organics could have been delivered to early Earth via direct adsorption mechanisms, thereby providing an endogenous source of planetary organics. In addition, adsorption of organic compounds on magnesite, a carbonate phase believed to have formed via aqueous processes on asteroidal bodies, is also studied. The adsorption behavior of the organics is observed to be similar in both cases, i.e., for minerals that formed during the earliest stages of nebular evolution through condensation (spinel and olivine) or other processes and for those that formed via hydration processes on asteroidal bodies (magnesite). These results suggest that direct incorporation via adsorption is an important delivery mechanism of organics to both asteroidal bodies and terrestrial planets.

  3. Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: variation of polymer concentration and ionic strength.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2010-06-15

    The adsorption of carboxymethyl cellulose (CMC) on the basal planes of talc and molybdenite has been studied using in situ atomic force microscope (AFM) imaging. These experiments were partnered with quantitative adsorption isotherm determinations on particulate samples. The isotherms revealed a clear increase of the CMC adsorbed amount upon increasing the solution ionic strength for adsorption on both minerals. In addition, the shapes of the isotherms changed in response to the change in the electrolyte concentration, with CMC on talc displaying stepped (10(-3) M KCl), Langmuir (10(-2) M KCl), then Freundlich isotherm shapes (10(-1) M KCl), and CMC on molybdenite displaying stepped (10(-3) M KCl), Freundlich (10(-2) M KCl), then Langmuir isotherm shapes (10(-1) M KCl). AFM imaging of the polymer layer on the mineral surfaces with varying solution conditions mirrored and confirmed the conclusions from the isotherms: as the polymer solution concentration increased, coverage on the basal plane increased; as the ionic strength increased, coverage on the basal plane increased and the morphology of the layer changed from isolated well-distributed polymer domains to extensive adsorption and formation of dense, uneven polymer domains/features. In addition, comparison of the talc and molybdenite datasets points toward the presence of different binding mechanisms for CMC adsorption on the talc and molybdenite basal plane surfaces. 2010 Elsevier Inc. All rights reserved.

  4. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  5. The Peru Margin as an Authigenic Mineral Factory, Evidence From Surface Sediments and Oceanography

    Science.gov (United States)

    Dean, W. E.; Arthur, M. A.

    2004-12-01

    Characteristics of sediments deposited within an intense oxygen-minimum zone (OMZ) on the Peru continental margin were mapped by submersible, and studied in samples collected in deck-deployed box cores and submersible push cores on two east-west transects over water depths of 75 to 1000 m at 12 degrees and 13.5 degrees S. On the basis of sampling of the top 1-2 cm of available cores, three main belts of sediments were identified in each transect with increasing depth: 1) organic-carbon (OC)-rich muds; 2) authigenic phosphatic mineral crusts; and 3) glaucony facies. These facies patterns are primarily controlled by redox conditions and strength of bottom currents. OC-rich sediments on the 12-degree transect were mainly located on the outer shelf and upper slope (150-350 m), but they occurred in much shallower water (ca. 100 m) on the 13.5-degree transect. The organic matter is almost entirely marine, resulting from very high primary productivity. The OC concentrations are highest (up to 18%) in sediments where intermediate water masses with low dissolved oxygen concentrations (less than 5 micromoles/kg) impinge on the slope at water depths between 75 and 450 m. The region between 175 and 350 m depth is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Currents as high as 30 cm/sec were measured over that depth interval. Current-resuspension of surficial organic matter, activity of organisms, and transport to and from more oxygenated zones contribute to greater oxidation and poorer preservation of organic matter than occur under oxygen-deficient conditions. Phosphate-rich sediments occurred at depths of about 300 to 550 m on both transects. Nodular crusts cemented by carbonate-fluorapatite (CFA; phosphorite) or dolomite form within the OMZ. The crusts start by cementation of sediment near the sediment-water interface forming stiff but friable phosphatizes claystone "protocrusts". The protocrusts

  6. Computational Redox Potential Predictions: Applications to Inorganic and Organic Aqueous Complexes, and Complexes Adsorbed to Mineral Surfaces

    Directory of Open Access Journals (Sweden)

    Krishnamoorthy Arumugam

    2014-04-01

    Full Text Available Applications of redox processes range over a number of scientific fields. This review article summarizes the theory behind the calculation of redox potentials in solution for species such as organic compounds, inorganic complexes, actinides, battery materials, and mineral surface-bound-species. Different computational approaches to predict and determine redox potentials of electron transitions are discussed along with their respective pros and cons for the prediction of redox potentials. Subsequently, recommendations are made for certain necessary computational settings required for accurate calculation of redox potentials. This article reviews the importance of computational parameters, such as basis sets, density functional theory (DFT functionals, and relativistic approaches and the role that physicochemical processes play on the shift of redox potentials, such as hydration or spin orbit coupling, and will aid in finding suitable combinations of approaches for different chemical and geochemical applications. Identifying cost-effective and credible computational approaches is essential to benchmark redox potential calculations against experiments. Once a good theoretical approach is found to model the chemistry and thermodynamics of the redox and electron transfer process, this knowledge can be incorporated into models of more complex reaction mechanisms that include diffusion in the solute, surface diffusion, and dehydration, to name a few. This knowledge is important to fully understand the nature of redox processes be it a geochemical process that dictates natural redox reactions or one that is being used for the optimization of a chemical process in industry. In addition, it will help identify materials that will be useful to design catalytic redox agents, to come up with materials to be used for batteries and photovoltaic processes, and to identify new and improved remediation strategies in environmental engineering, for example the

  7. Structure-reactivity relationships in the interactions between humic substances, pollutants from the nuclear cycle, and mineral surfaces

    International Nuclear Information System (INIS)

    Reiller, Pascal

    2015-01-01

    This document proposes an analysis of the structure-reactivity relationships in the interaction between humic substances, metallic pollutants from the nuclear cycle, and mineral surfaces. It composes the scientific document, which allowed the author to defend a Habilitation degree. It is mainly focused on the research works into which the author have been involved in on this particular thematic. Humic substances are issued from the degradation of the living. They have an important influence onto migration of metals in the environment. They are showing particular intrinsic physic and chemical, metal complexation, and adsorption onto mineral surfaces properties, which render the global comprehension of the different mechanisms somehow difficult. These three aspects are covered in this document. The first part is dedicated to the studies on composition, structure, and organization of humic substances, which cannot be considered as a well-defined type of chemical. They are a heterogeneous degradation product with a supramolecular organization, which is showing fractal properties from fractions up to several nanometers. Second part is on the complexation reactions. The different modelling strategies come from the difficulties on apprehending composition, structure, and organization of humic substances. The different models used are showing more or less strongly empiric characteristics. They can be derived from the mass action law, or explicitly account for heterogeneity, acid-basic, or ionic strength related parameters. The third and latter part covers the adsorption studies. The main property is adsorptive fractionation, which induces modification of chemical composition of humic substances between the surface and the solution. It also induces modification of complexation properties between the adsorbed and non-adsorbed fractions. Because of adsorptive fractionation, and the particular influence of ionic strength on humic substances, and of complexed metals, adsorption

  8. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Santschi, P.H.

    2010-01-01

    New equilibrium and kinetic models have been developed to describe rate-limited sorption and desorption of Pu onto and off of mineral oxide surfaces using a generic approach to estimate sorption constants that require minimal laboratory calibrations. Equilibrium, reactions describing a total of six surface species were derived from a combination of empirical relationships previously described in the literature and generated as part of this work. These sorption reactions and corresponding equilibrium constants onto goethite (and silica) are: triple bond SOH + Pu 3+ triple bond SOPu 2+ + H + , log K = -2.1(-10) (1) triple bond SOH + Pu 4+ triple bond SOPu 3+ + H + , log K = 15.3(7.2) (2) triple bond SOH + PuO 2 + triple bond SOPuO 2 + H + , log K = -8.5(-16.5) (3) triple bond SOH + PuO 2 2+ triple bond SOPuO 2 + + H + , log K = 1.2(-6.5) (4) triple bond SOH + Pu 4- + 3H 2 O triple bond SOPu(OH) 3 + 4H + , log K = 12.5(4.6) (5) triple bond SOH + Pu 4+ + 4H 2 O triple bond SOPu(OH) 4 - + 5H + , log K = 5.0(-2.3) (6) The kinetic model decouples reduced (III, IV) and oxidized (V, VI) forms of Pu via a single rate-limiting, but reversible, surface mediated reaction: triple bond SOPuO 2 + H 2 O + 1/2H 2(g) ↔ k 1 k 2 triple bond SOPu(OH) 2 log k 1 = -5.3 (7) Where the reaction rate is equal to: (d[ triple bond SOPu 2 ])/(d t ) = k 1 [Pu OX ] - k 2 [Pu red ] (8) and [Pu OX ] and [Pu red ] are the sums of the oxidized (V and VI) and reduced (III and IV) surface species, respectively. Predictions using the equilibrium and kinetic models were validated against previously published experimental results, which give credence to the validity of the proposed mechanisms controlling the sorption of Pu onto mineral oxide surfaces. Of importance, a reversible, rate-limited, reaction successfully predicted time dependent behavior associated with Pu sorption onto goethite. Previously, researchers have suggested desorption of Pu to these surfaces is extremely slow or even irreversible

  9. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    Science.gov (United States)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  10. Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive

    International Nuclear Information System (INIS)

    Zhang Baosen; Xu Yi; Gao Fei; Shi Peijing; Xu Binshi; Wu Yixiong

    2011-01-01

    This work aims to investigate the friction and wear properties of surface-coated natural serpentine powders (SP) suspended in diesel engine oil using an Optimal SRV oscillating friction and wear tester. The worn surface was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Results indicated that the additives can improve the wear resistance and decrease friction coefficient of carbon steel friction couples. The 0.5 wt% content of serpentine powders is found most efficient in reducing friction and wear at the load of 50 N. The SEM and XPS analysis results demonstrate that a tribofilm forms on the worn surface, which is responsible for the decrease in friction and wear, mainly with iron oxides, silicon oxides, graphite and organic compounds.

  11. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  12. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  13. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    Science.gov (United States)

    Afrin, Rehana; Ganbaatar, Narangerel; Aono, Masashi; Cleaves, H. James; Yano, Taka-aki; Hara, Masahiko

    2018-01-01

    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces. PMID:29370126

  14. Highly roughened polycaprolactone surfaces using oxygen plasma-etching and in vitro mineralization for bone tissue regeneration: fabrication, characterization, and cellular activities.

    Science.gov (United States)

    Kim, YongBok; Kim, GeunHyung

    2015-01-01

    Herein, poly(ɛ-caprolactone) (PCL) surfaces were treated to form various roughness values (R(a)=290-445 nm) and polar functional groups on the surfaces using a plasma-etching process, followed by immersion into simulated body fluid (SBF) for apatite formation. The surface morphology, chemical composition, and mean roughness of the plasma-etched PCL surfaces were measured, and various physical and morphological properties (water contact angles, protein absorption ability, and crystallite size of the apatite layer) of the in vitro mineralized PCL surfaces were evaluated. The roughened PCL surface P-3, which was treated with a sufficient plasma exposure time (4 h), achieved homogeneously distributed apatite formation after soaking in SBF for 7 days, as compared with other surfaces that were untreated or plasma-treated for 30 min or 2 h. Furthermore, to demonstrate their feasibility as a biomimetic surface, pre-osteoblast cells (MC3T3-E1) were cultured on the mineralized PCL surfaces, and cell viability, DAPI-phalloidin fluorescence assay, and alizarin red-staining of the P-3 surface were highly improved compared to the P-1 surface treated with a 30-min plasma exposure time; compared to untreated mineralized PCL surface (N-P), P-3 showed even greater improvements in cell viability and DAPI-phalloidin fluorescence assay. Based on these results, we found that the mineralized PCL surface supplemented with the appropriate plasma treatment can be implicitly helpful to achieve rapid hard tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mineralization sources of surface and subsurface waters at the southeastern edges of dead sea basin in Jordan

    International Nuclear Information System (INIS)

    AbdEl-Samie, S.G.; EL-Shahat, M.F.; Al-Nawayseh, K.M.

    2004-01-01

    Surface and ground waters within the shallow-Alluvial and deep- Kurnub aquifers in four areas (Issal, Mazraa, Safi and Haditha) in the southeastern edge of the Dead Sea basin were evaluated according to Salinity changes and water quality degradation. Chemical and isotopic parameters were integrated to follow the chemical evolutionary trend and sources of mineralization in these waters. The isotopic results indicated that the main recharge sources Issal. Mazraa and Safi groundwaters are the flash flood and base flow water from the eastern highland through wadies. In Safi area, the groundwater that mixed with other depleted source could be paleowater seeped from older formation. The depletion in stable isotopic values with low d-parametewr (less than 10%) for Haditha groundwater confirms that the replenishment to the aquifer (Kurnub sandstone) had been formed during the pluvial time. The chemical data showed that the base flow water from the eastern highland is denoted by the least salinity values, whereas drainage water acquired the highest values as aa result of receiving a considerable amount of the remaining water from salt extraction processes. The groundwater in Safi wells has low salt content with respect to the other areas taping the same aquifer. The elevation in Ca and Mg ions reflects the dissolution of Ca-Mg rich minerals that actively reached saturation with respect to calcite and dolomite in all samples except Haditha deep aquifer due to its low ph values. In spite of the meteoric origin of the recharge source, the presence of MgCl 2 and CaCl 2 salts in almost all samples changed the water character to be old or recent marine genesis. This points to the effect of Dead Sea in both surface and ground waters. The obvious depletion in O-18 and isotopes for all ground waters samples with respect to the positive values of Dead Sea sample is good indicative for non mixing trend with Dead Sea water in the Alluvial and Kurnub aquifers

  16. Mineralization of bacterial cell mass on a photocatalytic surface in air

    International Nuclear Information System (INIS)

    Jacoby, W.A.; Maness, P.C.; Wolfrum, E.J.; Blake, D.M.; Fennell, J.A.

    1998-01-01

    Whole cells deposited on a titanium dioxide-coated surface have been oxidized in air to carbon dioxide via photocatalysis. This paper provides the first evidence that the organic matter in whole cells can be completely oxidized. Three experimental techniques were employed to monitor this reaction: scanning electron microscopy, 14 C radioisotope labeling experiments establish that the carbon content of E. coli is oxidized to form carbon dioxide with substantial closure of the mass balance. The batch reactor experiments corroborate the mass balance and provide a preliminary indication of the rate of the oxidation reaction. These results provide evidence that a photocatalytic surface used for disinfection can also be self-cleaning in an air-solid system

  17. Effect of heavy metals on soil mineral surfaces and bioretention pond performance

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2009-12-01

    Haibo Zhang and Mira S. Olson Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 As urban stormwater runoff flows across impervious surfaces, it collects and accumulates pollutants that are detrimental to the quality of local receiving water bodies. Heavy metal pollution, such as copper, lead and zinc, has been a concern in urban stormwater runoff. In addition, the presence of bacteria in stormwater has been frequently reported. The co-existence of both heavy metals and bacteria in stormwater and their complex interactions determine their transport and removal through bioretention pond. Stormwater runoff was sampled from a bioretention pond in Philadelphia, PA. The concentration of copper, lead and zinc were measured as 0.086ppm, 0.083ppm and 0.365ppm, respectively. Batch experiments were conducted with solutions of pure copper, lead and zinc, and with a synthetic stormwater solution amended with copper, lead and zinc. The solution was buffered to pH 7, within the range of the observed stormwater pH. In pure heavy metal solutions, the sorption of copper, lead and zinc onto soil are 96%, 99% and 85%, respectively. In synthetic stormwater containing nutrients and all three metals, the sorption of lead is 97%, while copper and zinc decrease to 29% and 71%, respectively. Mineralogy of a soil sample taken from the bioretention pond was analyzed using a scanning electron microscope (SEM) and compared before and after sorption experiments. Sorption and complexation of heavy metals is likely to change the mineralogy of soil particle surfaces, which will affect the attachment of bacteria and therefore its transport through soil. This study will benefit long-term predictions of the performance of bioretention ponds for urban stormwater runoff treatment. Keyword: Heavy metal pollution, sorption, surface complexation, urban stormwater runoff, bioretention pond

  18. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  19. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  20. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  1. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials.

    Science.gov (United States)

    Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit

    2013-12-01

    Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil-cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

  2. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  3. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study

    Directory of Open Access Journals (Sweden)

    Amin Salem Milani

    2013-08-01

    Full Text Available Background and aims. In various clinical situations, mineral trioxide aggregate (MTA may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Materials and methods. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly divided into two groups (n = 15: in group 1, the internal surface of the cavities was coated with fresh blood. Then, the cavities were filled with MTA. The roots were immersed in molds containing fresh blood. In group 2, the aforementioned procedures were performed except that synthetic tissue fluid (STF was used instead of blood. To assess the marginal adaptation, “gap perimeter” and “maximum gap width” were measured under scanning electron microscope. The surface microstructure was also examined. Independent samples t-test and Mann-Whitney U test were used to analyze the data. Results. Maximum gap width and gap perimeter in the blood-exposed group were significantly larger than those in the STF-exposed group (p < 0.01. In the blood-exposed group, the crystals tended to be more rounded and less angular compared with the STF-exposed group, and there was a general lack of needle-like crystals. Conclusion. Exposure to blood during setting has a negative effect on marginal adaptation of MTA, and blood-exposed MTA has a different surface microstructure compared to STF-exposed MTA.

  4. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study.

    Science.gov (United States)

    Salem Milani, Amin; Rahimi, Saeed; Froughreyhani, Mohammad; Vahid Pakdel, Mahdi

    2013-01-01

    In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly divided into two groups (n = 15): in group 1, the internal surface of the cavities was coated with fresh blood. Then, the cavities were filled with MTA. The roots were immersed in molds containing fresh blood. In group 2, the aforementioned procedures were performed except that synthetic tissue fluid (STF) was used instead of blood. To assess the marginal adaptation, "gap perimeter" and "maximum gap width" were measured under scanning electron microscope. The surface microstructure was also examined. Independent samples t-test and Mann-Whitney U test were used to analyze the data. Maximum gap width and gap perimeter in the blood-exposed group were significantly larger than those in the STF-exposed group (p < 0.01). In the blood-exposed group, the crystals tended to be more rounded and less angular compared with the STF-exposed group, and there was a general lack of needle-like crystals. Exposure to blood during setting has a negative effect on marginal adaptation of MTA, and blood-exposed MTA has a different surface microstructure compared to STF-exposed MTA.

  5. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    Science.gov (United States)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  6. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  7. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  8. Mineralogical compositions of fault rocks from surface ruptures of Wenchuan earthquake and implication of mineral transformation during the seismic cycle along Yingxiu-Beichuan fault, Sichuan Province, China

    Science.gov (United States)

    Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli

    2018-06-01

    There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.

  9. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    International Nuclear Information System (INIS)

    Malkin, A.J.

    2010-01-01

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  15. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    The formation of acid mine drainage from metals extraction or natural acid rock drainage and its mixing with surface waters is a complex process that depends on petrology and mineralogy, structural geology, geomorphology, surface-water hydrology, hydrogeology, climatology, microbiology, chemistry, and mining and mineral processing history. The concentrations of metals, metalloids, acidity, alkalinity, Cl-, F- and SO42- found in receiving streams, rivers, and lakes are affected by all of these factors and their interactions. Remediation of mine sites is an engineering concern but to design a remediation plan without understanding the hydrogeochemical processes of contaminant mobilization can lead to ineffective and excessively costly remediation. Furthermore, remediation needs a goal commensurate with natural background conditions rather than water-quality standards that might bear little relation to conditions of a highly mineralized terrain. This paper reviews hydrogeochemical generalizations, primarily from US Geological Survey research, that enhance our understanding of the origin, transport, and fate of contaminants released from mined and mineralized areas.

  16. Near-source surface seismic measurements for the NPE, NPE Calibration, Hunter`s Trophy, and Mineral Quarry

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, R.E.; Leverette, J.A. [Field Command Defense Nuclear Agency, Kirtland AFB, NM (United States); Stump, B.W. [Los Alamos National Laboratory, NM (United States)] [and others

    1994-12-31

    An extensive seismic network was deployed on the surface of Rainier Mesa for both the Non-Proliferation Experiment (NPE) Calibration shot as well as the full scale NPE event. This network was very similar to previous deployments for the nuclear events MISTY ECHO, MINERAL QUARRY, and HUNTERS TROPHY. For the full scale NPE event three-component accelerometers and seismometers were fielded at 32 sites across the mesa. A slightly smaller network with 28 stations was in operation for the 300 pound NPE calibration event. The mesa top array included both accelerometers and seismometers. The accelerometers were used to obtain data from the main NPE event while the seismometers with their higher sensitivity were used to record the 300 pound cal shot and several hundred after events from the NPE. Large spatial variations in ground motion are evident in both the full mesa data set as well as a small (80 m on a side) aperture, 9-element triangular array. This paper summarizes the data and discusses wave propagation effects. A companion paper presents a comparative source analysis.

  17. Protection and restoration of soil in mining operations which disrupt the surface of the earth, with the open pit method of working minerals (problems, obtained data and recommendations)

    Energy Technology Data Exchange (ETDEWEB)

    Debelak, M.

    1981-01-01

    A critical analysis is made of the current state and the ways to solve the problem of protection and restoration of the sections of the earth's surface and sources of drinking water which can be disrupted with the open pit method of working minerals. The need is advanced for creating a system of coordination and planning of the activity of all the organizations associated with working minerals, restoration operations and inspection of them. The order of preparation for recultivation during mining operations (in particular, storage of the fertile ground) and conducting them after the end of mining are described.

  18. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2003-01-01

    Calcium (Ca) is an important element for neutralizing soil acidity in temperate forests. The immediate availability of Ca in forested acid soils is largely dependent on mineralization of organic Ca, which may differ significantly among tree species. I estimated net Ca mineralization in the forest

  19. Surface properties and dye loading behavior of Zn{sub 2}SnO{sub 4} nanoparticles hydrothermally synthesized using different mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Alagappan; Eo, Yang Dam [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Im, Chan [Department of Chemistry, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Man-Jong, E-mail: leemtx@konkuk.ac.kr [Department of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2011-10-15

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn{sub 2}SnO{sub 4}) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn{sub 2}SnO{sub 4} based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn{sub 2}SnO{sub 4} nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn{sub 2}SnO{sub 4} nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn{sub 2}SnO{sub 4} nanoparticles, the IEPs of Zn{sub 2}SnO{sub 4} surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn{sub 2}SnO{sub 4} nanoparticles formed using Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn{sub 2}SnO{sub 4} nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn{sub 2}SnO{sub 4} electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: {yields} The effect of various mineralizers on the isoelectric point of Zn{sub 2}SnO{sub 4} was discussed. {yields} The IEP of Zn{sub 2}SnO{sub 4} can be modified by the choice of mineralizer. {yields} Change in IEP affects the surface properties and the morphology of Zn{sub 2}SnO{sub 4} particles. {yields} Modified surface affects the N719 dye loading behaviour of the Zn{sub 2

  20. [Effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterial on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin

    2014-10-01

    In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P bone modified with surface mineralization/P24 composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.

  1. EXTRACTION AND QUANTITATIVE ANALYSIS OF ELEMENTAL SULFUR FROM SULFIDE MINERAL SURFACES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY. (R826189)

    Science.gov (United States)

    A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...

  2. The influence of shale depositional fabric on the kinetics of hydrocarbon generation through control of mineral surface contact area on clay catalysis

    Science.gov (United States)

    Rahman, Habibur M.; Kennedy, Martin; Löhr, Stefan; Dewhurst, David N.; Sherwood, Neil; Yang, Shengyu; Horsfield, Brian

    2018-01-01

    Accurately assessing the temperature and hence the depth and timing of hydrocarbon generation is a critical step in the characterization of a petroleum system. Clay catalysis is a potentially significant modifier of hydrocarbon generation temperature, but experimental studies of clay catalysis show inconsistent or contradictory results. This study tests the hypothesis that source rock fabric itself is an influence on clay mineral catalysis as it controls the extent to which organic matter and clay minerals are physically associated. Two endmember clay-organic fabrics distinguish the source rocks studied: (1) a particulate fabric where organic matter is present as discrete, >5 μm particles and (2) a nanocomposite fabric in which amorphous organic matter is associated with clay mineral surfaces at sub-micron scale. High-resolution electron imaging and bulk geochemical characterisation confirm that samples of the Miocene Monterey Formation (California) are representative of the nanocomposite source rock endmember, whereas samples from the Permian Stuart Range Formation (South Australia) represent the particulate source rock endmember. Kinetic experiments are performed on paired whole rock and kerogen isolate samples from these two formations using open system, non-isothermal pyrolysis at three different heating rates (0.7, 2 and 5 K/min) to determine the effects of the different shale fabrics on hydrocarbon generation kinetics. Extrapolation to a modelled geological heating rate shows a 20 °C reduction in the onset temperature of hydrocarbon generation in Monterey Formation whole rock samples relative to paired kerogen isolates. This result is consistent with the Monterey Formations's nanocomposite fabric where clay catalysis can proceed because reactive clay minerals are intimately associated with organic matter. By contrast, there is no significant difference in the modelled hydrocarbon generation temperature of paired whole rock and kerogen isolates from the

  3. Fragility Fracture Incidence in Chronic Obstructive Pulmonary Disease (COPD) Patients Associates With Nanoporosity, Mineral/Matrix Ratio, and Pyridinoline Content at Actively Bone-Forming Trabecular Surfaces.

    Science.gov (United States)

    Paschalis, Eleftherios P; Gamsjaeger, Sonja; Dempster, David; Jorgetti, Vanda; Borba, Victoria; Boguszewski, Cesar L; Klaushofer, Klaus; Moreira, Carolina A

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is associated with low areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and altered microstructure by bone histomorphometry and micro-computed tomography. Nevertheless, not all COPD patients sustain fragility fractures. In the present study, we used Raman microspectroscopic analysis to determine bone compositional properties at actively forming trabecular surfaces (based on double fluorescent labels) in iliac crest biopsies from 19 postmenopausal COPD patients (aged 62.1 ± 7.3 years). Additionally, we analyzed trabecular geometrical centers, representing tissue much older than the forming surfaces. Eight of the patients had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. None of the patients had taken oral glucocorticoids. The monitored parameters were mineral/matrix ratio (MM), nanoporosity, and relative glycosaminoglycan (GAG), lipid, and pyridinoline contents (PYD). There were no significant differences between the glucocorticoid-treated patients and those who did not receive any. On the other hand, COPD patients sustaining fragility fractures had significantly lower nanoporosity and higher MM and PYD values compared with COPD patients without fragility fractures. To the best of our knowledge, this is the first study to discriminate between fracture and non-fracture COPD patients based on differences in the material properties of bone matrix. Given that these bone material compositional differences are evident close to the cement line (a major bone interface), they may contribute to the inferior bone toughness and coupled with the lower lumbar spine bone mineral density values result in the fragility fractures prevalent in these patients. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  4. Phosphorus loss by surface runoff in no-till system under mineral and organic fertilization Perda de fósforo via escoamento superficial no sistema plantio direto sob adubação mineral e orgânica

    Directory of Open Access Journals (Sweden)

    Oromar João Bertol

    2010-02-01

    Full Text Available The no-till system has been intensively used in the state of Paraná, Brazil, and it has increased the nutrients level at the soil surface. This has contributed for nutrient losses via runoff and consequently, off-site water pollution. The objective of this study was to evaluate phosphorus loss in surface runoff by simulated rainfall on an Oxisol, under no-till system following application of mineral fertilizer and liquid swine manure. Nitrogen, soil and water losses from the same study are reported in a separated paper. The application of liquid swine manure, compared with mineral fertilization, increased runoff concentration of total P, particulate P and dissolved reactive P by 193%, 111% and 506%, respectively, averaged for all rainfall intensities. Independently on the fertilizer source, the highest rainfall intensity provided the greatest concentration and loads of P in runoff.O sistema plantio direto tem sito intensivamente utilizado no Estado do Paraná Brasil o qual tem aumentado os níveis de nutrientes na superfície do solo. Isto tem contribuído para a perda de nutrientes via escoamento superficial e consequentemente com a poluição não pontual das águas. Avaliou-se a perda de fósforo via escoamento superficial ocasionado por chuva simulada sobre um Latossolo originário de basalto, em sistema plantio direto submetido à aplicação de fertilizante mineral e dejeto líquido de suíno. As perdas de nitrogênio, solo e água deste mesmo estudo foram publicadas em outro artigo. A aplicação de dejeto líquido suíno, comparado com o fertilizante mineral, aumentou a concentração de P total, P particulado e P dissolvido reativo em 193%, 111% e 506%, respectivamente, na média das chuvas. Independentemente da fonte de fertilizante, a chuva de maior intensidade proporcionou maior concentração e quantidade perdida de P no escoamento superficial.

  5. Isotope analysis of closely adjacent minerals

    International Nuclear Information System (INIS)

    Smith, M.P.

    1990-01-01

    This patent describes a method of determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development. It comprises: searching for a class of minerals in a mineral specimen comprising more than one class of minerals; identifying in the mineral specimen a target sample of the thus searched for class; directing thermally pyrolyzing laser beam radiation onto surface mineral substance of the target sample in the mineral specimen releasing surface mineral substance pyrolysate gases therefrom; and determining isotope composition essentially of the surface mineral substance from analyzing the pyrolysate gases released from the thus pyrolyzed target sample, the isotope composition including isotope(s) selected from the group consisting of carbon, hydrogen, and oxygen isotopes; determining an indicator of at least one of hydrocarbon formation, migration, and accumulation during mineral development of the target mineral from thus determined isotope composition of surface mineral substance pyrolysate

  6. Coating a polystyrene well-plate surface with synthetic hematite, goethite and aluminium hydroxide for cell mineral adhesion studies in a controlled environment

    International Nuclear Information System (INIS)

    Pouran, Hamid M.; Banwart, Steve A.; Romero-Gonzalez, Maria

    2014-01-01

    Highlights: • Hematite, goethite and aluminium hydroxide were synthesized and characterize. • Polystyrene cell culture well plates were coated with the synthetic metal oxides. • The coated well plates proven to be completely identical to the synthetic minerals. • The coating method is compatible with what occurs in aquifers with metal oxides. • This method provides a key experimental part for cell mineral adhesion studies. - Abstract: Iron and aluminium oxides are available in many climatic regions and play a vital role in many environmental processes, including the interactions of microorganisms in contaminated soils and groundwater with their ambient environment. Indigenous microorganisms in contaminated environments often have the ability to degrade or transform those contaminants, a concept that supports an in situ remediation approach and uses natural microbial populations in order to bio-remediate polluted sites. These metal oxides have a relatively high pH-dependent surface charge, which makes them good candidates for studying mineral–bacterial adhesion. Given the importance of understanding the reactions that occur at metal oxide and bacterial cell interfaces and to investigate this phenomenon further under well-characterized conditions, some of the most common iron and aluminium oxides; hematite, goethite and aluminium hydroxide, were synthesized and characterized and a coating method was developed to coat polystyrene well-plates as a surface exposable to bacterial adhesion with these minerals (non-treated polystyrene-12 well-plates which are used for cell cultures). The coating process was designed in a way that resembles naturally coated surfaces in aquifers. Hematite, Fe 2 O 3 , was synthesized from acidic FeCl 3 solution, while goethite, FeOOH, and aluminium hydroxide, Al(OH) 3 , were prepared from an alkaline solution of Fe(NO 3 ) 3 and Al(NO 3 ) 3 . They were further characterized using X-ray diffraction (XRD), Fourier transform infrared

  7. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species

    International Nuclear Information System (INIS)

    Froideval, A.

    2004-09-01

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO 3 solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 μmol/m 2 ) to high (26 μmol/m 2 ) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range ≅ 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 μM). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 μmol/m 2 ). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  8. Optimization of Catalytic Ozonation Process for Formaldehyde Mineralization from Synthetic Wastewater by Fe/MgO Nanoparticles Synthesis by Sol-Gel Method by Response Surface Model

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-09-01

    Full Text Available Background: Design experiment stages of formalin mineralization process by center composition design (CCD cause ease of work, reducing the number of samples, increasing the accuracy of optimized conditions and the interaction parameters determined during the process. The aim of this study was optimization of catalytic ozonation process for formaldehyde mineralization from synthetic wastewater by Fe/MgO nanoparticles synthesis by sol-gel method by response surface model. Methods: This experimental study was conducted in a semi-batch reactor, using a RSM by taking 3 factors in the final stage of pH (7-9, reaction time (10-20 min and catalyst dose (1.1-1.3 g/L was investigated. Synthesis of nanoparticles was done by sol-gel method. The results were analyzed by Design Expert 7.0.1 software. Results: The results showed that the process was dependent on the parameters studied and changing each parameter, affected the process efficiency and other parameters. The optimum conditions predicted for the process was 86.51% of mineralization efficiency. Optimum condition included pH=8.82, reaction time of 20 minute and catalyst dose of 1.3 g/L. The correlation coefficient for the process was determined 0.91. Conclusion: Using a statistical model could reduce the number of experiments, the accuracy and the prediction process. The catalytic ozonation process has the ability to remove formaldehyde with high efficiency and the process was environmental friendly.

  9. Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses

    Science.gov (United States)

    Parsa, Mohammad; Maghsoudi, Abbas

    2018-04-01

    The Behabad district, located in the central Iranian microcontinent, contains numerous epigenetic stratabound carbonate-hosted Zn-Pb ore bodies. The mineralizations formed as fault, fracture and karst fillings in the Permian-Triassic formations, especially in Middle Triassic dolostones, and comprise mainly non-sulfides zinc ores. These are all interpreted as Mississippi Valley-type (MVT) base metal deposits. From an economic geological point of view, it is imperative to recognize the processes that have plausibly controlled the emplacement of MVT Zn-Pb mineralization in the Behabad district. To address the foregoing issue, analyses of the spatial distribution of mineral deposits comprising fry and fractal techniques and analysis of the spatial association of mineral deposits with geological features using distance distribution analysis were applied to assess the regional-scale processes that could have operated in the distribution of MVT Zn-Pb deposits in the district. The obtained results based on these analytical techniques show the main trends of the occurrences are NW-SE and NE-SW, which are parallel or subparallel to the major northwest and northeast trending faults, supporting the idea that these particular faults could have acted as the main conduits for transport of mineral-bearing fluids. The results of these analyses also suggest that Permian-Triassic brittle carbonate sedimentary rocks have served as the lithological controls on MVT mineralization in the Behabad district as they are spatially and temporally associated with mineralization.

  10. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    Science.gov (United States)

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  11. Development and functioning of microorganisms in concentration cycles of sulfide copper-nickel and non-sulfide apatite-nepheline ores

    Directory of Open Access Journals (Sweden)

    Fokina N. V.

    2017-03-01

    Full Text Available The number and trophic diversity of bacteria in flotation samples of apatite-nepheline and sulfide copper-nickel ores at the concentration plants of JSC "Apatite" and Kola Mining and Metallurgical Company have been determined. The study of the size and diversity of the microbiota has been conducted by culture on selective nutrient media. The total number and biomass of bacteria have been considered by fluorescence microscopy using Cyclopore polycarbonate membrane filters. Bacteria have been identified by molecular genetic methods. The least amount of both saprotrophic and other trophic groups of bacteria has been observed in the samples of ore and recycled water as at the concentrating factory of Apatit JSC, and also at the plant "Pechenganikel". It has been found out that the bacteria contained in the ore and recycling water flowing from the tailings increased their number during the flotation process due to coming of the nutrients with the flotation reagents, aeration and increased temperature. Strains which occurrence is more than 60 % have been extracted from recycled water and basic flotation products and classified as Pseudomonas. Two strains with occurrence of more than 60 % have been discovered at Apatit JSC and classified as Stenotrophomonas and Acinetobacter. The number of fungi in the cycle of apatite-nepheline ore enrichment at the factories is very low (1 to 24 CFU / 1 ml or 1 g of ore. Fungi of the genus Penicillium have been dominated, fungi of the genera Acremonium, Aureobasidium, Alternaria, Chaetomium have also been detected. At the plant "Pechenganikel" species Aspergillus fumigatus, Penicillium aurantiogriseum and P. glabrum have been extracted. It has been shown that the bacteria deteriorate the apatite flotation as a result of their interaction with active centers of calcium-containing minerals and intensive flocculation decreasing the floatation selectivity. Also some trend of copper and nickel recovery change has been

  12. Miners' welfare

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C

    1984-06-13

    The Miners' Welfare Committee (MWC) was formed in Britain in 1921 and initiated building programmes to provide welfare amenities for miners and families, using architecture to improve the quality of a miner's working and leisure time. The article reviews the MWC's work, and assesses the design and architecture at the Selby Coalfield. (7 refs.)

  13. Action of a clay suspension on an Fe(0) surface under anoxic conditions: Characterization of neoformed minerals at the Fe(0)/solution and Fe(0)/atmosphere interfaces

    International Nuclear Information System (INIS)

    Le Pape, Pierre; Rivard, Camille; Pelletier, Manuel; Bihannic, Isabelle; Gley, Renaud; Mathieu, Sandrine; Salsi, Lise; Migot, Sylvie; Barres, Odile; Villiéras, Frédéric; Michau, Nicolas

    2015-01-01

    Highlights: • Immersion of an Fe(0) foil in a clay suspension at 90 °C and in anoxic conditions. • Magnetite was observed on the atmospheric part. • Iron-rich 7 Å serpentines were observed on the clay suspension part. • A gradient in serpentine cristallochemistry was observed. • A pure Fe–Si phyllosilicate was identified at the Fe(0)/clay suspension contact. - Abstract: To better understand the reaction mechanisms involved at the Fe(0)/clay minerals interface, we investigate in the present study the reaction between an Fe(0) surface and a clay suspension extracted from the Callovo-Oxfordian claystone (COx). Batch experiments were carried out under anoxic conditions in sealed autoclave, at 90 °C to mimic predicted radioactive waste disposal conditions. An Fe(0) foil was introduced into the autoclave so that the lower part of the foil was immersed in the clay suspension while the upper part was contacted with the atmosphere of the experimental setup. After two months, the mineralogical deposits that precipitated at the surface of the Fe(0) foil were analyzed using multiple techniques, namely X-ray diffraction (XRD), scanning/transmission electron microscopy associated to microanalysis (SEM/TEM–EDXS), and micro-spectroscopic measurements (μ-FTIR and μ-Raman). Both parts of the Fe(0) foil were then shown to react: magnetite was the main resulting mineral formed at the Fe(0) surface in the atmospheric conditions whereas serpentine 1:1 phyllosilicates were the main end-products in the clay suspension. The analyses performed on the immersed part of the foil revealed a spatial heterogeneity in both serpentine cristallochemistry and morphology, with a gradient from the Fe(0) contact point toward the clay suspension. A pure Fe–Si phyllosilicate ring was observed at the direct contact point with the Fe(0) foil and a progressive incorporation of Al instead of Fe into the clay phases was identified as deposit thickness increased from the Fe(0) surface to

  14. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas

    2014-01-01

    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...

  15. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements

    Directory of Open Access Journals (Sweden)

    R. J. Gustafsson

    2005-01-01

    Full Text Available The hygroscopicity of mineral aerosol samples has been examined by three independent methods: diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and differential mobility analysis. All three methods allow an evaluation of the water coverage of two samples, CaCO3 and Arizona Test dust, as a function of relative humidity. For the first time, a correlation between absolute gravimetric measurements and the other two (indirect methods has been established. Water uptake isotherms were reliably determined for both solids which at 298 K and 80% relative humidity exhibited similar coverages of ~4 monolayers. However, the behaviour at low relative humidity was markedly different in the two cases, with Arizona Test Dust showing a substantially higher affinity for water in the contact layer. This is understandable in terms of the chemical composition of these two materials. The mobility analysis results are in good accord with field observations and with our own spectroscopic and gravimetric measurements. These findings are of value for an understanding of atmospheric chemical processes.

  16. Theoretical Understanding the Relations of Melting-point Determination Methods from Gibbs Thermodynamic Surface and Applications on Melting Curves of Lower Mantle Minerals

    Science.gov (United States)

    Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.

    2016-12-01

    The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.

  17. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    International Nuclear Information System (INIS)

    Churakov, S.V.

    2005-01-01

    Pyrophyllite, Al 2 [Si 4 O 10 ](OH) 2 , is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH 2 complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  18. Abiotic Degradation and Toxicological Impacts of Pharmaceuticals and Personal Care Products (PPCPs) in Surface Waters: Roles of Mineral Sediments and Solar Radiation

    Science.gov (United States)

    Rubasinghege, G. R. S.; Rijal, H.; Maldonado-Torres, S.; Gurung, R.; Rogelj, S.; Piyasena, M.

    2017-12-01

    The growing medical and personal needs of human populations have escalated release of pharmaceuticals and personal care products into surface waters. This work investigates abiotic degradation pathways of a particular PPCP, ibuprofen, in the presence of a major mineral component of sedimentation (kaolinite clay), as well as the health effects of the primary compound and its degradation products. Results from these studies showed that the rate and extent of ibuprofen degradation is greatly influenced by the presence of sedimentation particles and solar radiation. In the absence of solar radiation, the dominant reaction mechanism was observed to be the adsorption of ibuprofen onto sedimentation particle surface where surface silanol groups play a key role. In contrast, under solar radiation and in the presence of clay particles, ibuprofen breaks down to several fractions. The decay rates were at least 6-fold higher for irradiated samples compared to those of dark conditions. Toxicity of primary ibuprofen and its secondary residues were tested on three microorganisms: Bacillus megaterium, Pseudoaltermonas atlantica; and algae from the Chlorella genus. The results from the biological assays show that primary PPCP is more toxic than the mixture of secondary products. Overall, however, biological assays carried out using only 4-acetylbenzoic acid, the most abundant secondary product, show a higher toxic effect on algae compared to its parent compound.

  19. Radium on soil mineral surfaces: Its mobility under environmental conditions and its role in radon emanation. Final report

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1997-01-01

    The ultimate source of 222 Rn to the atmosphere is, of course, 226 Ra. Tracking the mobility of radium therefore is part of the story of radon flux assessment. The study of radium mobility and radon flux measurements has involved virtually all the reservoirs at the Earth's surface. These include soils, groundwaters, coastal waters and the atmosphere. The attempt to understand the mobility of radium involved the study of almost all the radium isotopes ( 226 Ra, 228 Ra, 224 Ra) and the parent and daughters of these isotopes

  20. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. "PROCESS and UVolution: photochemistry experiments in Low Earth Orbit": investigation of the photostability of organic and mineral material exposed to Mars surface UV radiation conditions

    Science.gov (United States)

    Stalport, Fabien; Guan, Yuan Yong; Noblet, Audrey; Coll, Patrice; Szopa, Cyril; Macari, Frederique; Person, Alain; Chaput, Didier; Raulin, Francois; Cottin, Hervé

    The harsh martian environment could explain the lack of organics and minerals such as car-bonates by destroying them: i) no organic molecule has been found at the two different landing sites of the Viking landers within the detection limits of the instruments onboard, ii) to date, no large deposits of carbonates have been detected and their detection is specific of local ar-eas and in very low amounts. In this context several experimental and numerical modelling studies were led to evaluate the possibility for the destruction or evolution of the organics and carbonates under the martian surface environmental conditions. The presence of UV radiation has been proposed to explain the photodecomposition of such material. This is the reason why, to investigate the nature, abundance, and stability of organic and mineral material that could survive under such environmental conditions, we exposed in low Earth orbit organic molecules and carbonates (also biominerals) with martian relevance to solar UV radiation ¿ 200 nm, in the frame of the experiment UVolution, onboard the BIOPAN ESA module which was set outside a Russian Foton automated capsule and exposed to space condition during 12 days in September 2007, and the experiment PROCESS (hervé peux tu rajouter quelques infos sur le temps exact d'exposition stp) which was set outside the International Space Station (ISS). Here, we present results with regard to the impact of solar UV radiation on the targeted molecules. Preliminary results indicate that that no organic sample seems to resist to the solar UV radiation if directly exposed to it. Conversely our results show that the exposed carbonates seem to be stable to the solar UV radiation if directly exposed to it. Moreover, the stability of the biominerals strengthens the interest to explore deeper their potential as life records at Mars. Hence they should be considered as primary targets for in situ analyses during future missions.

  6. Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles

    Directory of Open Access Journals (Sweden)

    D. Niedermeier

    2011-11-01

    Full Text Available During the measurement campaign FROST 2 (FReezing Of duST 2, the Leipzig Aerosol Cloud Interaction Simulator (LACIS was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C and a slight increase in the second branch (T≤−35 °C. The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD

  7. Radial Oxygen Loss in the Rhizosphere of Wild Rice as a Control On Root Surface Mineral Precipitation

    Science.gov (United States)

    Murphy, K.; Trejo, B.; LaFond-Hudson, S.

    2017-12-01

    Wild rice (Zizania palustris) is an aquatic plant native to the Great Lakes region that is culturally and nutritionally significant for the Ojibwe people of Northern Minnesota. Concern for the future health of wild rice populations has increased amidst ongoing pressures from proposed mining projects that risk sulfate contamination to natural waters. Although sulfate itself is not toxic to wild rice, bacteria living in anoxic sediments use the sulfate as an electron acceptor, converting it to sulfide, which subsequently precipitates in the form of iron-sulfide on the root surface of wild rice. These precipitates are linked to lowered viability of wild rice. Most wetland plants are able to shield against the harmful accumulation of these precipitates through a process known as radial oxygen loss (ROL), in which oxygen leaches from roots into anoxic sediments to form protective iron-oxide plaques. This mechanism, however, had yet to be experimentally confirmed in wild rice. In this study, we eliminated the potential for ROL to occur in wild rice prior to the reproductive phase, and measured the rates of iron-sulfide accumulation on the roots and in associated sediments. We compared these data with the geochemical composition of roots and sediment from wild rice that accumulated iron-sulfide precipitate during the reproductive phase. In doing so, we demonstrate that ROL is indeed a mechanism by which wild rice protects itself against sulfide exposure, and examine the nuances of ROL as it relates to the life cycle of wild rice. The better we understand the vulnerability of wild rice across its life cycle and comparative rates of both toxic and protective precipitate accumulation, the better we can approach wild rice conservation.

  8. Ab initio Studies of O2 Adsorption on (110 Nickel-Rich Pentlandite (Fe4Ni5S8 Mineral Surface

    Directory of Open Access Journals (Sweden)

    Peace P. Mkhonto

    2015-10-01

    Full Text Available Ab initio density functional theory was used to investigate the adsorption of oxygen molecule on the nickel-rich pentlandite (110 surface, which is important for mineral extraction. The three most reactive adsorption sites: Fe-top, Ni-top, and fcc-hollow have been considered. Firstly, the non-adsorbed pentlandite surface reflects the Ni atoms relaxing inwards. Consequently, their electronic structure showed high Fe 3d-orbital contribution than the Ni 3d-orbitals at the EF (indicating that the Fe atoms are more reactive than Ni. Secondly, the O2-adsorbed surface predicted lowest adsorption energy for Fe-top (-1.902 eV, as a more spontaneous reaction is likely to occur than on fcc-hollow (-1.891 eV and Ni-top (-0.040 eV sites, suggesting Fe preferential oxidation. The density of states indicates that the O2 show prevalence of electrons in the πp* antibonding orbitals, and are reduced to zero states at the valence band on metal-bonded oxygen (O1. The πp* orbital is observed to reside just above the EF for Fe-top and fcc-hollow site, while on Ni-top is half-occupied for both metal-bonded oxygen (O1 and terminal oxygen (O2. Finally, the isosurface charge density difference showed electron (charge depletion on Ni/Fe metals and accumulation on the O2 molecule. Bader analysis indicated that the oxidized Fe and Ni atoms adopt more positive charge, while O2 on Fe-top atoms possesses more negative charge than on Ni-top, resulting with O1 possessing a smaller charge than O2 atom.

  9. Studies of mineralization in South African rivers

    CSIR Research Space (South Africa)

    Hall, GC

    1978-03-01

    Full Text Available Several South African rivers are polluted by mineral salts of diffuse source. This pollution can be related to geological phenomena and to irrigation practices. Mineralization is problematic in that it can render surface waters unsuitable...

  10. Aggregate and Mineral Resources - Minerals

    Data.gov (United States)

    NSGIC State | GIS Inventory — This point occurrence data set represents the current mineral and selected energy resources of Utah. The data set coordinates were derived from USGS topographic maps...

  11. Fumarolic minerals

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Garavelli, Anna; Jakobsson, Sveinn Peter

    2016-01-01

    The fumarolic mineralogy of the Icelandic active volcanoes, the Tyrrhenian volcanic belt (Italy) and the Aegean active arc (Greece) is investigated, and literature data surveyed in order to define the characteristics of the European fumarolic systems. They show broad diversity of mineral...... associations, with Vesuvius and Vulcano being also among the world localities richest in mineral species. Volcanic systems, which show recession over a longer period, show fumarolic development from the hightemperature alkaline halide/sulphate, calcic sulphate or sulphidic parageneses, synchronous...... with or immediately following the eruptions, through mediumtemperature ammonium minerals, metal chlorides, or fluoride associations to the late low-temperature paragenesis dominated by sulphur, gypsum, alunogen, and other hydrous sulphates. The situation can be different in the systems that are not recessing but show...

  12. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  13. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    Science.gov (United States)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  14. Sorption of pesticides to aquifer minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    This paper summarizes results from a work were the sorption of five pesticides on seven minerals were studied in order to quantify the adsorption to different mineral surfaces. Investigated mineral phases are: quartz, calcite, kaolinite, a-alumina, and three iron oxides (2-line ferrihydrite......, goethite, lepidocrocite). Selected pesticides are: atrazine, isoproturon, mecoprop, 2,4-D, and bentazone. The results demonstrate that pesticides adsorb to pure mineral surfaces. However, the size of the adsorption depends on the type of pesticide and the type of mineral....

  15. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  16. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    flux. Circulation of seawater through the oceanic crust and upper mantle gives rise to a complex series of physical and chemical reactions that lead to the 1) formation of seafloor mineral deposits; 2) alteration of oceanic crust; 3) control... temperature in the high-temperature reaction zone near the heat source. Important parameters in determining the high- temperature fluid composition are • pressure, • temperature, • water/rock ratio, • rock composition, • recharge fluid...

  17. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  18. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  19. Digital mineral logging system

    International Nuclear Information System (INIS)

    West, J.B.

    1980-01-01

    A digital mineral logging system acquires data from a mineral logging tool passing through a borehole and transmits the data uphole to an electronic digital signal processor. A predetermined combination of sensors, including a deviometer, is located in a logging tool for the acquisition of the desired data as the logging tool is raised from the borehole. Sensor data in analog format is converted in the logging tool to a digital format and periodically batch transmitted to the surface at a predetermined sampling rate. An identification code is provided for each mineral logging tool, and the code is transmitted to the surface along with the sensor data. The self-identifying tool code is transmitted to the digital signal processor to identify the code against a stored list of the range of numbers assigned to that type of tool. The data is transmitted up the d-c power lines of the tool by a frequency shift key transmission technique. At the surface, a frequency shift key demodulation unit transmits the decoupled data to an asynchronous receiver interfaced to the electronic digital signal processor. During a recording phase, the signals from the logging tool are read by the electronic digital signal processor and stored for later processing. During a calculating phase, the stored data is processed by the digital signal processor and the results are outputted to a printer or plotter, or both

  20. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  1. Investigating the size, shape and surface roughness dependence of polarization lidars with light-scattering computations on real mineral dust particles: Application to dust particles' external mixtures and dust mass concentration retrievals

    Science.gov (United States)

    Mehri, Tahar; Kemppinen, Osku; David, Grégory; Lindqvist, Hannakaisa; Tyynelä, Jani; Nousiainen, Timo; Rairoux, Patrick; Miffre, Alain

    2018-05-01

    Our understanding of the contribution of mineral dust to the Earth's radiative budget is limited by the complexity of these particles, which present a wide range of sizes, are highly-irregularly shaped, and are present in the atmosphere in the form of particle mixtures. To address the spatial distribution of mineral dust and atmospheric dust mass concentrations, polarization lidars are nowadays frequently used, with partitioning algorithms allowing to discern the contribution of mineral dust in two or three-component particle external mixtures. In this paper, we investigate the dependence of the retrieved dust backscattering (βd) vertical profiles with the dust particle size and shape. For that, new light-scattering numerical simulations are performed on real atmospheric mineral dust particles, having determined mineralogy (CAL, DOL, AGG, SIL), derived from stereogrammetry (stereo-particles), with potential surface roughness, which are compared to the widely-used spheroidal mathematical shape model. For each dust shape model (smooth stereo-particles, rough stereo-particles, spheroids), the dust depolarization, backscattering Ångström exponent, lidar ratio are computed for two size distributions representative of mineral dust after long-range transport. As an output, two Saharan dust outbreaks involving mineral dust in two, then three-component particle mixtures are studied with Lyon (France) UV-VIS polarization lidar. If the dust size matters most, under certain circumstances, βd can vary by approximately 67% when real dust stereo-particles are used instead of spheroids, corresponding to variations in the dust backscattering coefficient as large as 2 Mm- 1·sr- 1. Moreover, the influence of surface roughness in polarization lidar retrievals is for the first time discussed. Finally, dust mass-extinction conversion factors (ηd) are evaluated for each assigned shape model and dust mass concentrations are retrieved from polarization lidar measurements. From

  2. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  3. BET measurements: Outgassing of minerals

    DEFF Research Database (Denmark)

    Clausen, Liselotte; Fabricius, Ida Lykke

    2000-01-01

    Outgassing minerals at elevated temperatures prior to BET measurements can lead to phase changes, especially in the case of amorphous and poorly crystalline materials. In order to evaluate the applicability of the BET method when low outgassing temperatures are required, selected aquifer minerals...... were outgassed at different temperatures and for different times. The studied minerals are 2-line ferrihydrite, goethite, lepidocrocite, quartz, calcite, ®-alumina, and kaolinite. The results demonstrate that measured specific surface areas of iron oxides are strongly dependent on outgassing conditions...... because the surface area increased by 170% with increasing temperature. In the poorly crystalline minerals, phase changes caused by heating were observed at temperatures lower than 100±C. Therefore low outgassing temperatures are preferable for minimizing phase changes. As demonstrated in this study...

  4. Characterization and origin of low-T willemite (Zn2SiO4) mineralization: the case of the Bou Arhous deposit (High Atlas, Morocco)

    Science.gov (United States)

    Choulet, Flavien; Barbanson, Luc; Buatier, Martine; Richard, James; Vennemann, Torsten; Ennaciri, Aomar; Zouhair, Mohamed

    2017-10-01

    Willemite (Zn2SiO4) usually reported in hypogene non-sulfide deposits is described as the main ore mineral in the carbonate-hosted Bou Arhous zinc deposit. This deposit is located in the High Atlas intracontinental range that formed during the Tertiary. Based on a set of microscopic observations, it was possible to establish that willemite replaces primary sphalerite. On the basis of cathodoluminescence imaging, three successive generations of willemite are distinguished, with evidence of dissolution-reprecipitation processes. Willemite is also variably enriched in Ge (up to 1000 ppm), while Ge contents lower than 100 ppm are reported in the primary sulfide minerals. Depending on the willemite generation, this substitution was positively or negatively correlated to the Zn-Pb substitution. According to the nature of zoning (sector versus oscillatory), the incorporation of Ge was either controlled by crystallographic factors or by the nature of the mineralizing fluids. Willemite is associated with other oxidation-related mineral species, like cerussite (PbCO3) but is not in isotopic equilibrium and therefore not considered to be cogenetic. Oxygen isotope compositions support the formation of willemite at temperatures below 130 °C, from mixed meteoric and deeper, hydrothermal fluids. The formation of the High Atlas Belt during the Tertiary has contributed to the exhumation of the sulfide minerals and the development of vertical conduits for percolation of meteoric water and ascending hydrothermal fluids. In addition to a local contribution of silicate minerals of the host limestone, hydrothermal fluids probably transported Si and Ge that are incorporated in willemite.

  5. Tensão superficial estática de soluções aquosas com óleos minerais e vegetais utilizados na agricultura Surface tension of mineral oils and vegetable oils

    Directory of Open Access Journals (Sweden)

    Cristina G. de Mendonça

    2007-01-01

    Full Text Available O trabalho teve como objetivo avaliar a tensão superficial estática de soluções aquosas com formulações de óleos minerais e vegetais emulsionáveis utilizados como adjuvantes na agricultura. Os óleos minerais e vegetais, quando adicionados aos produtos fitossanitários, podem imprimir características desejáveis à calda de pulverização, como reduzir a tensão superficial em soluções aquosas, possibilitar maior contato da calda com a superfície vegetal ou reduzir o potencial de deriva durante as pulverizações. Foram testados os seguintes produtos comerciais: óleos minerais (Assist, Attach, Dytrol, Iharol, Mineral Oil, Spinner, Sunspray-E e Triona e óleos vegetais (Agrex'oil Vegetal, Crop Oil, Natur'l Óleo, Óleo Vegetal Nortox e Veget Oil, todos com registro de uso na agricultura. A tensão superficial das soluções aquosas foi avaliada em 11 concentrações para cada produto (0,025; 0,05; 0,1; 0,25; 0,5; 0,75; 1,0; 1,5; 2,0; 2,5 e 3,0% v/v. Essa propriedade dos óleos minerais e dos óleos vegetais foi estimada medindo-se a massa das gotas formadas na extremidade de uma bureta. Ao conjunto de dados obtidos para cada produto, na avaliação da tensão superficial, foram determinadas as análises de variância e de regressão, ajustando-se os dados ao Modelo de Mitscherlich. Entre os óleos minerais, destacaram-se os produtos: Assist, Dytrol, Iharol e Mineral Oil por apresentarem as menores tensões superficiais mínimas estimadas pelo Modelo, respectivamente, 29,255; 28,442; 26,097 e 28,584 mN m-1. Os óleos vegetais que apresentaram os menores valores de tensão superficial mínima estimados pelo Modelo, foram: Agrex' oil Vegetal (27,716 mN m-1, Natur'l óleo (28,216 mN m-1, Veget Oil (27,308 mN m-1 e Crop Oil (29,964 mN m-1.The aim of this work was to evaluate the surface tension of water emulsion with mineral oils and vegetable oils used as adjuvant. The mineral and vegetable oils when added to the agrochemicals can

  6. Effect of Alumina Incorporation on the Surface Mineralization and Degradation of a Bioactive Glass (CaO-MgO-SiO2-Na2O-P2O5-CaF2-Glycerol Paste

    Directory of Open Access Journals (Sweden)

    Dilshat Tulyaganov

    2017-11-01

    Full Text Available This study investigates the dissolution behavior as well as the surface biomineralization in simulated body fluid (SBF of a paste composed of glycerol (gly and a bioactive glass in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2 (BG. The synthesis of the bioactive glass in an alumina crucible has been shown to significantly affect its bioactivity due to the incorporation of aluminum (ca. 1.3–1.4 wt % into the glass network. Thus, the kinetics of the hydroxyapatite (HA mineralization on the glass prepared in the alumina crucible was found to be slower than that reported for the same glass composition prepared in a Pt crucible. It is considered that the synthesis conditions lead to the incorporation of small amount of aluminum into the BG network and thus delay the HA mineralization. Interestingly, the BG-gly paste was shown to have significantly higher bioactivity than that of the as-prepared BG. Structural analysis of the paste indicate that glycerol chemically interacts with the glass surface and strongly alter the glass network architecture, thus generating a more depolymerized network, as well as an increased amount of silanol groups at the surface of the glass. In particular, BG-gly paste features early intermediate calcite precipitation during immersion in SBF, followed by hydroxyapatite formation after ca. seven days of SBF exposure; whereas the HA mineralization seems to be suppressed in BG, probably a consequence of the incorporation of aluminum into the glass network. The results obtained within the present study reveal the positive effect of using pastes based on bioactive glasses and organic carriers (here alcohols which may be of interest not only due to their advantageous visco-elastic properties, but also due to the possibility of enhancing the glass bioactivity upon surface interactions with the organic carrier.

  7. 30 CFR 702.16 - Stockpiling of minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Stockpiling of minerals. 702.16 Section 702.16 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.16 Stockpiling of...

  8. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  9. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  10. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  11. Mars weathering analogs - Secondary mineralization in Antarctic basalts

    Science.gov (United States)

    Berkley, J. L.

    1982-01-01

    Alkalic basalt samples from Ross Island, Antarctica, are evaluated as terrestrial analogs to weathered surface materials on Mars. Secondary alteration in the rocks is limited to pneumatolytic oxidation of igneous minerals and glass, rare groundmass clay and zeolite mineralization, and hydrothermal minerals coating fractures and vesicle surfaces. Hydrothermal mineral assemblages consist mainly of K-feldspar, zeolites (phillipsite and chabazite), calcite, and anhydrite. Low alteration rates are attributed to cold and dry environmental factors common to both Antarctica and Mars. It is noted that mechanical weathering (aeolian abrasion) of Martian equivalents to present Antarctic basalts would yield minor hydrothermal minerals and local surface fines composed of primary igneous minerals and glass but would produce few hydrous products, such as palagonite, clay or micas. It is thought that leaching of hydrothermal vein minerals by migrating fluids and redeposition in duricrust deposits may represent an alternate process for incorporating secondary minerals of volcanic origin into Martian surface fines.

  12. Miscellaneous Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team...

  13. On the formation of polymer non-grafted onto the surface during radiation-induced polymerization of monomers adsorbed on mineral substrates

    International Nuclear Information System (INIS)

    Bruk, M.A.; Mund, S.L.; Aksman, I.B.; Abkin, A.D.

    1977-01-01

    It has been established that during radiation polymerization of vinylacetate and acrylonitrile, adsorbed on aerosil from the vapour phase, considerable amounts of the polymer are formed even at the initial stage of the process which is extracted by the organic solvents. It has been shown for polyvinylacetate as an example that probability of the polymer chain located on the surface to transfer into the solution depends not only on the ''quality'' of the solvent with respect to the given polymer but on the energy of solvent interaction with the surface adsorption centers as well. It has been observed that the molecular mass of PVA extracted from the aerosil surface by acetone is several times lower than that of PVA which remains on the surface after treating with acetone. Probable participation of low-molecular radicals in the formation of polymer chains not forming a chemical bond with the surface has been considered

  14. [Histochemical stains for minerals by hematoxylin-lake method].

    Science.gov (United States)

    Miyagawa, Makoto

    2013-04-01

    The present study was undertaken to establish the experimental animal model by histological staining methods for minerals. After intraperitoneal injections of minerals, precipitates deposited on the surface of the liver. Liver tissues were fixed in paraformaldehyde, embedded in paraffin and cut into thin sections which were used as minerals containing standard section. Several reagents for histological stains and spectrophotometry for minerals were applied in both test-tube experiments and stainings of tissue sections to test for minerals. Hematoxylin-lake was found of capable of staining minerals in tissue. A simple technique used was described for light microscopic detection of minerals.

  15. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  16. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    Science.gov (United States)

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  17. Mechanism of formation of humus coatings on mineral surfaces 3. Composition of adsorbed organic acids from compost leachate on alumina by solid-state 13C NMR

    Science.gov (United States)

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.

    1996-01-01

    The adsorption of compost leachate DOC on alumina is used as a model for elucidation of the mechanism of formation of natural organic coatings on hydrous metal oxide surfaces in soils and sediments. Compost leachate DOC is composed mainly of organic acid molecules. The solid-state 13C NMR spectra of these organic acids indicate that they are very similar in composition to aquatic humic substances. Changes in the solid-state 13C NMR spectra of compost leachate DOC fractions adsorbed on alumina indicate that the DOC molecules are most likely adsorbed on metal oxide surfaces through a combination of polar and hydrophobic interaction mechanisms. This combination of polar and hydrophobic mechanism leads to the formation of bilayer coatings of the leachate molecules on the oxide surfaces.

  18. Geology, mineralization, and hydrothermal alteration and relationships to acidic and metal-bearing surface waters in the Palmetto Gulch area, southwestern Colorado

    Science.gov (United States)

    Bove, Dana J.; Kurtz, Jeffrey P.; Wright, Winfield G.

    2002-01-01

    The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate these anthropogenic and potential natural sources of acidity and metals, we mapped the geology, veins, and hydrothermally altered areas; conducted mine dump leachate studies; and collected reconnaissance water quality data. Several small abandoned mines are present in the Palmetto Gulch area that produced small amounts of relatively high-grade silver ore from fault-controlled polymetallic vein deposits. These veins are hosted in lavas, breccias, and related volcaniclastic sediments that ponded within the 28 Ma San Juan-Uncompahgre caldera complex. These rock units generally have conformable contacts and have shallow dips to the northwest. Lava flows of pyroxene andesite, which host the Roy-Pray mine, are massive near their base and typically grade upward into tightly jointed rock with 2-15 cm joint spacing. In general, most hydrothermally altered rock within the Palmetto Gulch area is restricted to envelopes surrounding the mineralized veins and faults. Composite zones of vein-related alteration vary from about 50 to 80 m wide along the high ridgelines and narrow to less than 10 to 15 m beneath an elevation of about 5,462 m. Where unaffected by surficial oxidation, these altered zones contain as much as 7 to 10 volume percent finely-disseminated pyrite. The majority of rocks in the area were affected by regional and vein-related propylitic alteration. These greenish-colored rocks have alteration products consisting of chlorite, illite, and calcite; and feldspars are typically weakly altered. Most of these rocks have detectable amounts of calcite, while as much as 11 percent by weight was detected in samples collected during this study. The Palmetto Gulch area is affected by low pH and metal-bearing drainage from abandoned mines, and perhaps, from natural weathering around vein zones. To investigate

  19. Adsorption of dextrin on hydrophobic minerals.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2009-09-01

    The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.

  20. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  1. Hyperspectral analysis of clay minerals

    Science.gov (United States)

    Janaki Rama Suresh, G.; Sreenivas, K.; Sivasamy, R.

    2014-11-01

    A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique information about many important earth-surface minerals. Understanding the spectral response along with the soil chemical properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through DISPEC tool. The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795. Besides, an attempt was made to classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43 %. Results showed that kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area.

  2. Mineral surface processes responsible for the decreased retardation (or enhanced mobilization) of 137Cs from HLW tank discharges. 1998 annual progress report

    International Nuclear Information System (INIS)

    Bertsch, P.M.; Zachara, J.M.

    1998-01-01

    'Cesium (137) is a major component of high level weapons waste. At Hanford, single shell tanks (SST''s) with high level wastes (HLW) have leaked supernate containing over 10 6 Ci of 137 Cs and other co-contaminants into the vadose zone. In select locations, 137 Cs has migrated further than expected from retardation experiments and performance assessment calculations. Deep 137 Cs migration has been observed beneath the SX tank farm at Hanford with REDOX wastes as the carrier causing regulatory and stakeholder concern. The causes for expedited migration are unclear. This research is investigating how the sorption chemistry of Cs on Hanford vadose zone sediments changes after contact with solutions characteristic of HLW. The central scientific hypothesis is that the high Na concentration of HLW will suppress surface-exchange reactions of Cs, except those to highly-selective frayed edge sites (FES) of the micaceous fraction. The authors further speculate that the concentrations, ion selectivity, and structural aspects of the FES will change after contact with HLW and that these changes will be manifest in the macroscopic sorption behavior of Cs. The authors believe that migration predictions of Cs can be improved substantially if such changes are understood and quantified. The research has three objectives: (1.) identify how the multi-component surface exchange behavior of Cs on Hanford sediments changes after contact with HLW simulants that span a range of relevant chemical (Na, OH, Al, K) and temperature conditions (23-80 C); (2) reconcile changes in sorption chemistry with microscopic and molecular changes in site distribution, chemistry, mineralogy, and surface structure of the micaceous fraction; (3) integrate mass-action-solution exchange measurements with changes in the structure/site distribution of the micaceous fraction to yield a multicomponent exchange model relevant to high ionic strength and hydroxide for prediction of environmental Cs sorption.'

  3. Construction Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes construction minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  4. Agricultural Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes agricultural minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  5. Mineral commodity summaries 2015

    Science.gov (United States)

    ,

    2015-01-01

    Each chapter of the 2015 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2014 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses.

  6. Plasmid-mediated mineralization of 4-chlorobiphenyl

    International Nuclear Information System (INIS)

    Shields, M.S.; Hooper, S.W.; Sayler, G.S.

    1985-01-01

    Strains of Alcaligenes and Acinetobacter spp. were isolated from a mixed culture already proven to be proficient at complete mineralization of monohalogenated biphenyls. These strains were shown to harbor a 35 x 10(6)-dalton plasmid mediating a complete pathway for 4-chlorobiphenyl (4CB) oxidation. Subsequent plasmid curing of these bacteria resulted in the abolishment of the 4CB mineralization phenotype and loss of even early 4CB metabolism by Acinetobacter spp. Reestablishment of the Alcaligenes plasmid, denoted pSS50, in the cured Acinetobacter spp. via filter surface mating resulted in the restoration of 4CB mineralization abilities. 4CB mineralization, however, proved to be an unstable characteristic in some subcultured strains. Such loss was not found to coincide with any detectable alteration in plasmid size. Cultures capable of complete mineralization, as well as those limited to partial metabolism of 4CB, produced 4-chlorobenzoate as a metabolite. Demonstration of mineralization of a purified 14 C-labeled chlorobenzoate showed it to be a true intermediate in 4CB mineralization. Unlike the mineralization capability, the ability to produce a metabolite has proven to be stable on subculture. These results indicate the occurrence of a novel plasmid, or evolved catabolic plasmid, that mediates the complete mineralization of 4CB

  7. Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the Response Surface Methodology as the optimization tool.

    Science.gov (United States)

    GilPavas, Edison; Dobrosz-Gómez, Izabela; Gómez-García, Miguel Ángel

    2012-01-01

    The Response Surface Methodology (RSM) was applied as a tool for the optimization of the operational conditions of the photo-degradation of highly concentrated PY12 wastewater, resulting from a textile industry located in the suburbs of Medellin (Colombia). The Box-Behnken experimental Design (BBD) was chosen for the purpose of response optimization. The photo-Fenton process was carried out in a laboratory-scale batch photo-reactor. A multifactorial experimental design was proposed, including the following variables: the initial dyestuff concentration, the H(2)O(2) and the Fe(+2) concentrations, as well as the UV wavelength radiation. The photo-Fenton process performed at the optimized conditions resulted in ca. 100% of dyestuff decolorization, 92% of COD and 82% of TOC degradation. A kinetic study was accomplished, including the identification of some intermediate compounds generated during the oxidation process. The water biodegradability reached a final DBO(5)/DQO = 0.86 value.

  8. Mineral distributions at the developing tendon enthesis.

    Science.gov (United States)

    Schwartz, Andrea G; Pasteris, Jill D; Genin, Guy M; Daulton, Tyrone L; Thomopoulos, Stavros

    2012-01-01

    Tendon attaches to bone across a functionally graded interface, "the enthesis". A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral

  9. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    Science.gov (United States)

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Sorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants. 1997 annual progress report

    International Nuclear Information System (INIS)

    Leckie, J.; Redden, G.

    1997-01-01

    'This project fits well within the overall objectives established by the Environmental Management and Science Program to promote long-term basic research that will provide the tools for more effective and lower cost remediation efforts at DOE sites where hazardous and radioactive wastes or contamination zones are present. In order to develop the necessary remediation technology it has been recognized that a fundamental understanding of the various chemical and physical factors associated with waste treatment and contaminant transport must be established. Some of the specific topics include waste pretreatment, volume reduction, immobilization, separation methods, the interactions of actinides and heavy metals with surfaces in the presence of organic residues and co-contaminants, contaminant transport in the environment, and long-term storage site assessment. This project has direct and potential application in all these areas. The interaction and partitioning of contaminant metals and radionuclides between solution and solid- surface phases is a fundamental issue for waste treatment and predicting contaminant transport in the environment. Many factors are involved in the functional relationships describing chemical reactivity and physical distribution of chemical species. These include modification of chemical behavior by the suite of chemical co-contaminants in a system. Organic complexing agents are common components of waste mixtures and include both synthetic components specifically introduced as part of processing methods, and poorly characterized compounds that were introduced separately or evolved within the highly reactive wastes. Natural organic complexing agents such as citric acid and siderophores are common in nature and represent factors that will further influence contaminant transport in soils and aquatic systems. Knowledge of the existence of a metal-organic complex cannot automatically be used to predict changes in solid-solution partitioning of the

  11. Microprobe to closely examine minerals

    International Nuclear Information System (INIS)

    2006-01-01

    The University of South Australia will develop synchrotron-based technology that can determine the structure and chemical composition of mineral samples at microscopic levels. The planned multi-analysis synchrotron X-ray facility Beam-line 11 is for implementing on the Australian Synchrotron. UniSA's Applied Centre for Structural and Synchrotron Studies (ACeSSS) will use Beamline 11 to shed new light on factors that constrain recoveries of copper and gold from typical copper ores. ACeSSS director Professor Andrea Gerson is working with an international team and the Australian Synchrotron on the design of Beamline 11. According to Gerson, there is scope to improve processing and/or increase recoveries in copper, gold and valueless pyrite either through separation, smelting, leaching or electro-processing. Using synchrotron technology, researchers will determine the structure and chemical composition of mineral samples to understand the fundamental behaviour of these materials in order to identify process and : environmental benefits. Three different strategies will be employed: tracing the movement of gold through the mineral processing chain to optimise and increase gold recovery; examining the surface layers formed when copper is leached from the mineral, chalcopyrite, to enhance the understanding of this surface layer formation and ultimately maximise cop-per recovery; and improving environmental remediation by understanding the mineralisation process during acid-rock drainage. ACeSSS will work with the minerals and environmental remediation sectors, building on the I establishment of the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, and cementing close collaboration with UniSA's Ian Wark Research Institute. Contributions from the SA Premier's Science and Research Fund, BHP Billiton and Rio Tinto, synchrotron partners Advanced Light Source (USA) and the Canadian Light Source Funding totalling $1.38m are available for

  12. Destabilization of emulsions by natural minerals.

    Science.gov (United States)

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Fissure minerals, literature review

    International Nuclear Information System (INIS)

    Larsson, S.Aa.

    1980-01-01

    This paper is a review of methods used for direct and indirect dating of tectonic events. Isotope geochemistry including stable isotopes as well as fission track- dating, fluid inclusion and thermoluminescens techniques have been considered. It has been concluded that an investigation of tectonic (and thermal) events should start with a detailed study of the mineral phases grown in seald fissures as well as minerals from fissure walls. This study should include phase identification, textures as well as mineral chemistry. The information from this study is fundamental for the decision of further investigations. Mineral chemistry including isotopes and fluid inclusion studies will give an essential knowledge about crystallization conditions for fissure minerals concerned. Direct dating using fission tracks as well as radioactive isotopes could be useful for some minerals. Application of thermoluminescens dating on fissure minerals is doubtful. (Auth.)

  14. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  15. Experience of the leading miner crew in the 'Severo-Vostochnyi' im. 50-letiya Velikogo Oktyabrya surface mine. Opyt raboty peredovykh brigad razreza 'Severo-vostochnyi' im. 50-letiya Velikogo Oktyabrya

    Energy Technology Data Exchange (ETDEWEB)

    Banshchikov, G I; Demidova, A O

    1981-01-01

    The paper evaluates surface coal mining in the Dal'vostugol' association. Five surface mines of the association mined 13.8 Mt in 1980, 105,900 m/sup 3/ of overburden were removed, overburden to coal ratio was 7.67 m/sup 3//t, labor productivity per miner was 663 t/month, mining cost 2.70 ruble/t. Use of powerful walking draglines for mining, overburden removal and spoil bank formation influenced mining schemes and permitted labor productivity to be increased. Mining schemes without transport of overburden are shown . The following types of mining equipment were used: EhSh-15/90, EhSh-14/75, EhSh-10/60 and EhSh-10/70 draglines, EhKG-4.6u and EhVG-4I face shovels. Mining and geologic conditions are described: climatic conditions are characterized by intensive temperature fluctuation. Air temperature in January ranges from minus 26.8 C to minus 41.0 C and in July from 7.2 C to 31.9 C, the annual precipitation is 622 mm. Thickness of frozen soil in winter ranges from 2.5 to 3.0 m. Geologic conditions of the basin are analyzed: coal seam thickness, depth, coal properties, ash, sulfur, volatile matter, moisture, calorific value, stratification of overburden, mechanical properties of overburden, ground water and water influx. Operation of the Dal'vostugol' mines is described on the example of the Severo-Vostochnyi surface mine, the largest of the region (47% of the coal output). The following aspects of mine operation are evaluated: coal output, economic analysis, mining cost, mining equipment, earthmoving equipment (draglines), mine haulage, effects of climates (particularly equipment repairs), mining schemes, failures of excavators, innovation and safety.

  16. Exogenic and endogenic Europa minerals

    Science.gov (United States)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  17. Grouping Minerals by Their Formulas

    Science.gov (United States)

    Mulvey, Bridget

    2018-01-01

    Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…

  18. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  20. Radioactive mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    1948-01-01

    This publication was designed as a guide for uranium and thorium prospectors in Australia. Physical properties, such as color, streak, luster, hardness, fracture, and specific gravity of the uranium and thorium-bearing minerals are summarized and the various methods suitable for detecting radioactivity in minerals are described. Two colored plates show samples of pitchblende (uraninite), autunite, carnotite, monazite, and others of the most important minerals sources of uranium and thorium.

  1. Brazilian minerals annual report

    International Nuclear Information System (INIS)

    1977-01-01

    Statistics of Brazilian mineral resources and production in 1977 are presented. Data included refer also to economic aspects, market, taxes, government incentives, manpower, exportation, importation, etc [pt

  2. Minerals industry survey, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This is the seventh edition of the statistical survey commissioned by the Australian Mining Industry Council. It represents the most comprehensive review of the financial position of the Australian minerals industry and provides timely financial data on the minerals industry. The tables of this survey have been prepared for AMIC by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies. For the purpose of the survey, the minerals industry has been defined as including exploration for, and extraction and primary processing of, minerals in Australia. The oil and gas industry is not included.

  3. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  4. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  5. Mineral statistics yearbook 1994

    International Nuclear Information System (INIS)

    1994-01-01

    A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs

  6. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  7. Radiogenic cancer in underground miners

    International Nuclear Information System (INIS)

    Radford, E.P.

    1984-01-01

    Multiple studies have yielded remarkably consistent results relating radon daughter exposure to lung cancer risk in underground mining populations. The U.S. uranium miner study appears to be at variance with the other results. The primary reason is that the doses in the U.S. miner study were systematically overestimated, resulting in a risk coefficient that is lower than all the others. The significance of these findings for radiogenic lung cancer goes well beyond mining populations, because one is now aware of the implications of radon daughters detected in homes. The highest cumulative levels from radon exposures within homes have been found in Sweden, evidently because of their unusual geology with uranium-bearing ores near the surface. The Swedish authorities view this as a major public health problem that needs to be addressed

  8. 30 CFR 947.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 947.702 Section 947.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  9. 30 CFR 933.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 933.702 Section 933.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  10. 30 CFR 939.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 939.702 Section 939.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  11. 30 CFR 903.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 903.702 Section 903.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  12. 30 CFR 912.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 912.702 Section 912.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  13. 30 CFR 937.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 937.702 Section 937.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  14. 30 CFR 921.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 921.702 Section 921.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of the chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  15. 30 CFR 905.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 905.702 Section 905.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  16. 30 CFR 942.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 942.702 Section 942.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  17. 30 CFR 910.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 910.702 Section 910.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  18. 30 CFR 922.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 922.702 Section 922.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of Other...

  19. 30 CFR 941.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 941.702 Section 941.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  20. Evaluation of mineral resource potential of the Finnish precambrian

    International Nuclear Information System (INIS)

    Peltonen, K.

    1993-05-01

    In the report the undiscovered mineral resource potential of metallogenic regions in Finland is evaluated. The evaluation is based on known deposits. The criteria of the evaluation were: ore and mineral deposit density, regional distribution of valuable metals, and the amount and the nature of prospecting methods used. The information for the study has been collected from the data base for ore minerals maintained by the Geological Survey of Finland. Regions with mineral resource potential conclusively under national average are Presvecokarelidic and Svecokarelidic granitoids and rapakivi Massif. The mineral resource potential of basic rocks in relation to their surface area is multiple compared to non-basic rocks

  1. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    Energy Technology Data Exchange (ETDEWEB)

    Tratnyek, Paul G. [Oregon Health & Science Univ., Beaverton, OR (United States); Tebo, Bradley M. [Oregon Health & Science Univ., Beaverton, OR (United States); Fan, Dimin [Oregon Health & Science Univ., Beaverton, OR (United States); Anitori, Roberto [Oregon Health & Science Univ., Beaverton, OR (United States); Szecsody, Jim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jansik, Danielle [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  2. Mineral oil industry

    NARCIS (Netherlands)

    Brasser, L.J.; Suess, M.J.; Grefen, K.; Reinisch, D.W.

    1985-01-01

    In this chapter a general picture is presented of the air pollution aspects in the mineral oil industry. The complete field is covered, starting from drilling operations and the well head up to the delivery of the products to the consumer. A large field of activities as is given by the mineral oil

  3. Vitamins, Minerals, and Mood

    Science.gov (United States)

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  4. Mineral commodity summaries 2018

    Science.gov (United States)

    Ober, Joyce A.

    2018-01-31

    This report is the earliest Government publication to furnish estimates covering 2017 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  5. Indochina area mineral prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-05

    Prospects for commercial mining of various minerals are considered for Kampuchea (Cambodia), Laos, Vietnam, Myanmar (Burma) and Thailand. Mineral production is much below its geologic potential for economic and political reasons. Resource potential is limited to tin, tungsten, lead and zinc, barytes and gemstones, and coal. 1 fig.

  6. Taxation of unmined minerals

    International Nuclear Information System (INIS)

    Bremberg, B.P.

    1989-01-01

    This paper reports on the Kentucky Revenue Cabinet which began implementing its controversial unmined minerals tax program. The Revenue Cabinet should complete its first annual assessment under this program in December, 1989. The Revenue Cabinet's initial efforts to collect basic data concerning the Commonwealth's coal bearing lands has yielded data coverage for 5 million of Kentucky's 10 million acres of coal lands. Approximately 1000 detailed information returns have been filed. The returns will be used to help create an undeveloped mineral reserves inventory, determine mineral ownership, and value mineral reserves. This new program is run by the Revenue Cabinet's Mineral Valuation Section, under the Division of Technical Support, Department of Property Taxation. It has been in business since September of 1988

  7. Mineral industry in Australia

    International Nuclear Information System (INIS)

    Parbo, S.A.

    1982-01-01

    The paper reviews the history and growth of the mineral industry in Australia and its significance to the nation's economic growth and overseas trade, particularly over the last twenty years during which time production of coal, iron ore, manganese and mineral sands has increased greatly and new discoveries of petroleum, bauxite and nickel have given rise to major new industries. Australia ranks fourteenths in the value of world trade and is among the world's largest exporters of alumina, iron ore, mineral sands, coal, lead, zinc and nickel. Some details of production, processing and exports of the major minerals are given. Comment is made on the policies and roles of the six State Governments and the Federal Government in respect of ownership and control of the mining, processing and exporting of both energy and non-energy minerals. (orig.) [de

  8. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  9. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  10. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  11. Definitions of Health Terms: Minerals

    Science.gov (United States)

    ... gov/definitions/mineralsdefinitions.html Definitions of Health Terms : Minerals To use the sharing features on this page, ... National Institutes of Health, Office of Dietary Supplements Minerals Minerals are those elements on the earth and ...

  12. Minerals industry survey 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This is the eleventh Minerals Industry Survey produced by the Australian Mining Industry Council. It represents an invaluable time series on the minerals industry's financial performance, as well as an up to date description of the industry for the latest financial year. The survey has been conceived as a supplement to and expansion of the various Australian Bureau of Statistics and Bureau of Mineral Resources, Geology and Geophysics publications which describe the exploration, mining and smelting and refining industries in Australia. The tables in this survey have been prepared by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies.

  13. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  14. Mineral mining machines

    Energy Technology Data Exchange (ETDEWEB)

    Mc Gaw, B H

    1984-01-01

    A machine for mining minerals is patented. It is a cutter loader with a drum actuating element of the worm type equipped with a multitude of cutting teeth reinforced with tungsten carbide. A feature of the patented machine is that all of the cutting teeth and holders on the drum have the identical design. This is achieved through selecting a slant angle for the cutting teeth which is the mean between the slant angle of the conventional radial teeth and the slant angle of the advance teeth. This, in turn, is provided thanks to the corresponding slant of the holders relative to the drum and (or) the slant of the cutting part of the teeth relative to their stems. Thus, the advance teeth projecting beyond the surface of the drum on the face side and providing upper and lateral clearances have the same angle of attack as the radial teeth, that is, from 20 to 35 degrees. A series of modifications of the cutting teeth is patented. One of the designs allows the cutting tooth to occupy a varying position relative to the drum, from the conventional vertical to an inverted, axially projecting position. In the last case the tooth in the extraction process provides the upper and lateral clearances for the drum on the face side. Among the different modifications of the cutting teeth, a design is proposed which provides for the presence of a stem which is shaped like a truncated cone. This particular stem is designed for use jointly with a wedge which unfastens the teeth and is placed in a holder. The latter is completed in a transverse slot thanks to which the rear end of the stem is compressed, which simplifies replacement of a tooth. Channels are provided in the patented machine for feeding water to the worm spiral, the holders and the cutting teeth themselves in order to deal with dust.

  15. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  16. Law of radioactive minerals

    International Nuclear Information System (INIS)

    1980-01-01

    Legal device done in order to standardize and promote the exploration and explotation of radioactive minerals by peruvian and foreign investors. This device include the whole process, since the prospection until the development, after previous auction given by IPEN

  17. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  18. sequenceMiner algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — Detecting and describing anomalies in large repositories of discrete symbol sequences. sequenceMiner has been open-sourced! Download the file below to try it out....

  19. A novel mineral flotation process using Thiobacillus ferrooxidans.

    Science.gov (United States)

    Nagaoka, T; Ohmura, N; Saiki, H

    1999-08-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppressed to less than 20%. In contrast, addition of the bacterium had little effect on the floatabilities of the other minerals, even when they were present in relatively large quantities: their floatabilities remained in the range of 81 to 98%. T. ferrooxidans thus appears to selectively suppress pyrite floatability. As a consequence, 77 to 95% of pyrite was removed from mineral mixtures while 72 to 100% of nonpyrite sulfide minerals was recovered. The suppression of pyrite floatability was caused by bacterial adhesion to pyrite surfaces. When normalized to the mineral surface area, the number of cells adhering to pyrite was significantly larger than the number adhering to other minerals. These results suggest that flotation with T. ferrooxidans may provide a novel approach to mineral processing in which the biological functions involved in cell adhesion play a key role in the separation of minerals.

  20. Mineral industry statistics 1975

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Production, consumption and marketing statistics are given for solid fuels (coal, peat), liquid fuels and gases (oil, natural gas), iron ore, bauxite and other minerals quarried in France, in 1975. Also accident statistics are included. Production statistics are presented of the Overseas Departments and territories (French Guiana, New Caledonia, New Hebrides). An account of modifications in the mining field in 1975 is given. Concessions, exploitation permits, and permits solely for prospecting for mineral products are discussed. (In French)

  1. Coastal placer minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Gujar, A.R.

    to be processed and purified to extract the metal either by sulphate or chloride route. The economical aspects of placer mining would involve the cost to benefit ratio, which would encompass the money Selective sorting has resulted in two distinct sediments... or mineral at the national and international levels. Interestingly, though gold is the most sought metal and the prices per gram keep rising, there are others that are much more costly such as diamond and rare earth metals. Uses of Heavy Minerals...

  2. [Pneumoconiosis in bauxite miners].

    Science.gov (United States)

    Molinini, R; Pesola, M; Digennaro, M A; Carino, M; Nuzzaco, A; Coviello, F

    1985-01-01

    The authors examined a group of 40 miners who were being working at an Apulian bauxite mine, presently inactive. Radiographic findings of pulmonary micronodulation without significant reduction of lung functions were showed in 15 miners. Mineralogical analysis of mine dust samples excluded any presence of more than 1% free silica. As a result of this study hypotheses have been formulated about pathogenesis of this moderated and non-invasive pneumoconiosis, showed in long exposed subjects to low silica content dusts.

  3. Mineral commodity summaries 2013

    Science.gov (United States)

    ,

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  4. Mineral commodity summaries 2014

    Science.gov (United States)

    ,

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  5. Zeta potentials in the flotation of oxide and silicate minerals.

    Science.gov (United States)

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.

  6. The effect of mechanical activation of cements with mineral ...

    African Journals Online (AJOL)

    ... it comes that the increase of the specific surface and the chemical composition of cements to the mineral additions are the principal responsibles to the improvement of the latent reactivity of mineral additions and increase the mechanical strengths of the concretes. Journal of Civil Engineering Research and Practice Vol.

  7. Thioamides as collectors at flotation of sulfide minerals

    International Nuclear Information System (INIS)

    Fomin, B.M.; Solozhenkin, P.M.; Rukhadze, E.G.; Lyubavina, L.L.

    1976-01-01

    The collective properties of thioamides at flotation of number of sulfide minerals are considered. It is defined that studied thioamides fix on the surface of minerals with formation of appropriate complexes. The spectres of copper thioamides are studied by means of electron paramagnetic resonance and infrared spectroscopy.

  8. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  9. The nanophase iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  10. Fractal analysis of sulphidic mineral

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    2002-03-01

    Full Text Available In this paper, the application of fractal theory in the characterization of fragmented surfaces, as well as the mass-size distributions are discussed. The investigated mineral-chalcopyrite of Slovak provenience is characterised after particle size reduction processes-crushing and grinding. The problem how the different size reduction methods influence the surface irregularities of obtained particles is solved. Mandelbrot (1983, introducing the fractal geometry, offered a new way of characterization of surface irregularities by the fractal dimension. The determination of the surface fractal dimension DS consists in measuring the specific surface by the BET method in several fractions into which the comminuted chalcopyrite is sieved. This investigation shows that the specific surface of individual fractions were higher for the crushed sample than for the short-term (3 min ground sample. The surface fractal dimension can give an information about the adsorption sites accessible to molecules of nitrogen and according to this, the value of the fractal dimension is higher for crushed sample.The effect of comminution processes on the mass distribution of particles crushed and ground in air as well as in polar liquids is also discussed. The estimation of fractal dimensions of particles mass distribution is done on the assumption that the particle size distribution is described by the power-law (1. The value of fractal dimension for the mass distribution in the crushed sample is lower than in the sample ground in air, because it is influenced by the energy required for comminution.The sample of chalcopyrite was ground (10min in ethanol and i-butanol [which according to Ikazaki (1991] are characterized by the parameter µ /V, where µ is its dipole moment and V is the molecular volume. The values of µ /V for the used polar liquids are of the same order. That is why the expressive differences in particle size distributions as well as in the values of

  11. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  12. Nuclear technology and mineral recovery

    International Nuclear Information System (INIS)

    Stewart, Richard M.; Niermeyer, Karl E.

    1970-01-01

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  13. Nuclear technology and mineral recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Richard M; Niermeyer, Karl E [Anaconda Company, Salt Lake City, UT (United States)

    1970-05-15

    The particular aspect of nuclear technology most applicable to the mineral field, as has been pointed out by various authors, is nuclear blasting. The prime target for this nuclear blasting has usually been a large disseminated deposit of copper mineralization which, because of large dimensions, employs the nuclear devices most effectively. From the work of the AEC we know that the larger nuclear devices fragment rock for a lower energy cost per unit of ground broken than do smaller nuclear devices or chemical explosives. A mineralized deposit near the surface is usually not amenable to nuclear fragmentation, nor are the more deeply buried thin deposits. Also, one would not anticipate fragmenting a zone of excessively erratic mineralization with nuclear devices. Many of our mineralized areas would be eliminated using the above criteria, so at this point you are well aware that my self-imposed limitation is to nuclear blasting and large disseminated copper deposits. As with most other industries, copper mining faces rising costs and greater demands for its products. One of the rising cost features peculiar to extractive industries is the reliance placed on production from lower grade deposits as the higher grade deposits are depleted. As the grade or metal content of an orebody decreases more material must be handled to produce a given amount of metal. The increased volume of ore which must be handled as the grade declines requires expansion of facilities and higher capital expenditures. Expansion of facilities for mining, milling, and concentrating of the ore increases the per unit capital cost of the end product--copper. Increased copper consumption will aggravate this situation with demand for more metal, much of which will have to be obtained from lower grade deposits. As the higher grade deposits are depleted, future production will come from those deposits which cannot be exploited economically today. Most familiar of the proposed new methods for copper mining

  14. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals

    Science.gov (United States)

    Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.

    2015-01-01

    Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714

  15. Using of Mineral Recourses for Water Purification

    International Nuclear Information System (INIS)

    Tumanova, I.V.; Nazarenko, O.B.; Anna, Yu.

    2009-01-01

    Pollution of surface waters results in necessity of underground waters using for drinking. Underground waters are characterized by the high quantity of heavy metals salts. This led to development of methods reducing the concentration of the metal salts in water. Wide spread occurrence, cheapness and high sorption properties of nature minerals allow to consider them as perspective sorbents for different impurities extraction, including dissoluble compounds of heavy metals. Reachable purification efficiency with mineral resources use for the moment satisfies sanitary indexes and standards presenting to portable water in Russia. In given material there are presented the results of research of artificial sorbent and certain minerals sorption characteristics, which are typical for West Siberia. For purification quality improvement from Fe and Mn ions there are suggested to use the method of boiling bed.

  16. Absenteeism due to sickness in coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Szymczykiewicz, K.

    1980-01-01

    During two consecutive years sickness absence of 8005 miners from two pit coal mines (A and B) of different geological structure and mechanization degree was analysed. It was found that in mine ''A'' 37% had no sick leaves, whereas in mine ''B''--28%. Absence rate was similar in both mines (though the miners' work and living conditions differed), i.e. 5.21% in mine ''A'', and 5.98% in mine ''B''. Thus work and living conditions do not determine general sickness absence rate. The highest absence in both mines was that of miners frequently falling ill for a long time (approx. 5.5% miners). For the group the number of work disablement days was 28.8 and 26.7, respectively. Underground miners' sickness absence was higher than that of surface workers, the rate being 3.8 and 4.0 and 1.1 and 2.1, respectively. The highest absence was that of miners travelling to work on motor cycles (7.1 and 7.3) and bicycles (6.4 and 6.7). Those working regularly in the first shift were more frequently absent from work than those working in different shifts. Miners living in worse conditions had higher absence rate than those living in flats of a higher standard. Also elderly employees and those having children represented a higher absence rate. The highest absence rate was that of workers having four children, the lowest--that of single persons. In addition, specific absence rate of men, especially due to respiratory and circulatory system diseases, was found to be enhanced by smoking. Absence rate of smokers was 2--3 times higher than that of non-smokers.

  17. Carbonizing bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    1921-05-01

    A process for carbonizing bituminous minerals, like oil-shale, in a furnace with addition of air in the presence of heat-receiving material is characterized by the fact that to the feed such solid or liquid material (with the exception of oil) is added, which, through vaporization or heat-binding decomposition or conversion, hinders the establishment of excessive temperatures.

  18. Uruguay minerals fuels

    International Nuclear Information System (INIS)

    Goso, H.

    1967-01-01

    In this report the bases for the development of the necessary works of prospection are exposed on mineral fuels of Uruguay. We have taken the set from: coal, lutitas bituminous, uranium, petroleum and disturbs. In all the cases we have talked about to the present state of the knowledge and to the works that we considered necessary to develop in each case

  19. Mineral formation and organo-mineral controls on the bioavailability of carbon at the terrestrial-aquatic interface

    Science.gov (United States)

    Rod, K. A.; Smith, A. P.; Renslow, R.

    2016-12-01

    Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution

  20. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  1. Mechanical Properties of Man-Made Mineral glass fibres

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    of man made mineral wool fibres, and an improvement of the mechanical performances of man made mineral wool fibres are an evitable task for us. To do so, it is important to look into the fracture behaviour and its connection to the mechanical strength. In order to improve the understanding...... of the information gained from the mechanical tests, fracture characteristics of individual glass fibres are imaged by scanning electron microscopy. The fracture surfaces showed to fall in three groups; 1) surfaces including fracture mirror, mist and hackle, 2) bend fracture surfaces and 3) surfaces including pores...

  2. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    Science.gov (United States)

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic

  3. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  4. Indústria mineral

    Directory of Open Access Journals (Sweden)

    Iran F. Machado

    1998-08-01

    Full Text Available A INDÚSTRIA mineral brasileira é analisada, de modo sucinto, face aos desafios impostos pela globalização contemporânea. As mudanças profundas ocorridas no contexto internacional na última década, abrangendo as esferas política, econômica, social e institucional, exigem uma reflexão aprofundada sobre o papel a ser desempenhado pelo Brasil no comércio internacional de bens minerais. De um lado, as oportunidades de aproveitamento de jazidas de classe internacional, principalmente na Amazônia, são bastante promissoras. Por outro, não se deve ignorar que: a explotação dessas reservas terá de obedecer a critérios de sustentabilidade, seguindo paradigmas já adotados em países desenvolvidos; o Brasil terá de garantir a sua competitividade diante dos seus principais concorrentes (Austrália, CEI, China e Índia. A questão dos minerais estratégicos é também abordada, com ênfase nas preocupações demonstradas pelo Departamento de Estado dos EUA. Finalmente, são alinhados três cenários possíveis para o desempenho futuro da mineração brasileira, instando-se o governo a dedicar maior atenção ao destino do nosso subsolo.THE MINERAL industry of Brazil is briefly analysed vis-à-vis the challenges imposed by the cruenta globalization process. The profound changes that occurred in the international framework during the last decade, encompassing the political, economic, social, and institutional structures, demand a thorough appraisal about the role to be played by Brazil in the international market of mineral commodities. On one hand, the opportunities open for world class deposits, mainly in the Amazon, are very promising. On the other hand, it is mandatory to take into account that: the exploitation of these reserves shall comply with sound sustainability criteria, following guidelines already adopted by some developed countries; Brazil will have to demonstrate its competitiveness among the major competitors (Australia

  5. Uranium (VI) chemistry at the interface solution/minerals (quartz and aluminium hydroxide): experiments and spectroscopic investigations of the uranyl surface species; Chimie de l'uranium (VI) a l'interface solution/mineraux (quartz et hydroxyde d'aluminium): experiences et caracterisations spectroscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Froideval, A.

    2004-09-15

    This study deals with the understanding of the uranyl chemistry at the 0.1 M NaNO{sub 3} solution/mineral (quartz and aluminium hydroxide) interface. The aims are:(i) to identify and to characterize the different uranyl surface species (mononuclear, polynuclear complexes and/or precipitates...), i.e. the coordination environments of sorbed/precipitated uranyl ions, by using X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) and time-resolved laser-induced fluorescence spectroscopy (TRLFS), and;(ii) to investigate the influence of pH, initial uranyl aqueous concentration and hydroxyl ligand concentration on the uranyl surface speciation. Our study on the speciation of uranyl ions at the quartz surface (i) confirms the formation of uranyl polynuclear/oligomers on quartz from moderate (1 {mu}mol/m{sup 2}) to high (26 {mu}mol/m{sup 2}) uranyl surface concentrations and (ii) show that theses polynuclear species coexist with uranyl mononuclear surface species over a pH range {approx_equal} 5-8.5 and a wide range of initial uranyl concentration o f the solutions (10-100 {mu}M). The uranyl concentration of these surface species depends on pH and on the initial uranyl aqueous concentration. Hydrate (surface-) precipitates and/or adsorbed polynuclear species and monomeric uranyl surface complexes are formed on aluminium hydroxide. Uranyl mononuclear complexes are predominant at acidic pH, as well as uranyl in solution or on the surface. Besides mononuclear species, precipitates and/or adsorbed polynuclear species are predominantly formed at neutral pH values on aluminium hydroxide. A main contribution of our investigations is that precipitation and/or adsorption of polynuclear species seem to occur at low uranyl surface concentrations (0.01-0.4 {mu}mol/m{sup 2}). The uranyl surface speciation is mainly dependent on the pH and the aluminol ligand concentration. (author)

  6. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  7. Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data

    Science.gov (United States)

    Carpenter, R. H. (Principal Investigator); Trexler, D. W.

    1976-01-01

    The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.

  8. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  9. Outlook 96: Minerals and Energy

    International Nuclear Information System (INIS)

    1996-01-01

    Papers discussing the future of Australia's minerals and energy are presented under the following headings: Australia in the global minerals and energy markets; minerals exploration; steelmaking raw materials; aluminium and alumina; gold; nickel; base metals; titanium minerals; energy for a sustainable future; electricity; electricity in Asia; crude oil; coal trade; natural gas in Australia and uranium. Relevant papers are individually indexed/abstracted. Tabs., figs., refs

  10. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A [Norman White Associates, London (UK)

    1979-06-01

    Whereas the ultimate world supply of energy minerals - defined as fossil fuels and fissile minerals - is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. A brief comparison is also made between energy and non-energy minerals.

  11. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  12. The bismuth miners study

    International Nuclear Information System (INIS)

    Grosche, B.; Kreuzer, M.; Kreisheimer, M.; Schnelzer, M.; Tschense, A.; Gottschalk, K.

    2005-01-01

    The Federal Radiation Protection Office carried out a retrospective cohort study on some 60,000 former employees of the SAG/SDAG Wismut. The purpose of the study was to validate the radon-related risk of acquiring lung cancer previously calculated from 11 jointly evaluated studies among miners on the basis of an independent, homogeneous data record of comparable size. A further goal was to study the risk of acquiring extrapulmonal tumours. This paper only briefly describes the sampling, design and methods used in the study, as these were already presented during the Radon Status Talks. The first follow-up on the cohort was completed in 2003. Around this time a job exposure matrix (JEM) suitable for scientific inquiries was made available by the professional miners' association and the roof organisation of professional trade associations (HVBG). This paper is the first to report on the outcome of the risk analysis in direct comparison with the results found by BEIR

  13. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  14. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  15. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  16. 76 FR 6110 - Conflict Minerals

    Science.gov (United States)

    2011-02-03

    ...-10] RIN 3235-AK84 Conflict Minerals AGENCY: Securities and Exchange Commission. ACTION: Proposed rule...'') and would require any such issuer for which conflict minerals are necessary to the functionality or... body of its annual report whether its conflict minerals originated in the Democratic Republic of the...

  17. Flotation of sulphide minerals 1990

    Energy Technology Data Exchange (ETDEWEB)

    Forssberg, K S.E. [ed.; Luleaa University of Technology, Luleaa (Sweden). Division of Mineral Processing

    1991-01-01

    A total of 27 papers presented at the workshop on flotation of sulphide minerals, reprinted from the International Journal of Mineral Processing, vol. 33, nos. 1-4, are included in this book. They cover various aspects of flotation of such minerals as chalcopyrite, pyrrhotite, galena, malachite and pyrite.

  18. Ice nucleation properties of mineral dusts

    OpenAIRE

    Steinke, Isabelle

    2013-01-01

    Ice nucleation in clouds has a significant impact on the global hydrological cycle as well as on the radiative budget of the Earth. The AIDA cloud chamber was used to investigate the ice nucleation efficiency of various atmospherically relevant mineral dusts. From experiments with Arizona Test Dust (ATD) a humidity and temperature dependent ice nucleation active surface site density parameterization was developed to describe deposition nucleation at temperatures above 220 K. Based...

  19. Inherent mineralization of 2,6-dichlorobenzamide (BAM) in unsaturated zone and aquifers – Effect of initial concentrations and adaptation

    DEFF Research Database (Denmark)

    Janniche, Gry Sander; Clausen, Liselotte; Albrechtsen, Hans-Jørgen

    2011-01-01

    cores with known dichlobenil application were collected from topsoil to 8.5 m below surface resulting in 57 samples hereof 4 aquifer samples. Mineralization was only substantial (>10%) in the uppermost meter of the unsaturated zone. Microbial adaptation, observed as faster mineralization in pre......, in pre-exposed clay mineralization was stimulated at high concentrations. Furthermore BAM was for the first time mineralized in aerobic aquifer sediments from different BAM-contaminated groundwater locations. BAM mineralization in subsurface and groundwater was demonstrated....

  20. Who's on first? Part I: Influence of plant growth on C association with fresh soil minerals

    Science.gov (United States)

    Neurath, R.; Whitman, T.; Nico, P. S.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Mineral surfaces provide sites for carbon stabilization in soils, protecting soil organic matter (SOM) from microbial degradation. SOM distributed across mineral surfaces is expected to be patchy and certain minerals undergo re-mineralization under dynamic soil conditions, such that soil minerals surfaces can range from fresh to thickly-coated with SOM. Our research investigates the intersection of microbiology and geochemistry, and aims to build a mechanistic understanding of plant-derived carbon (C) association with mineral surfaces and the factors that determine SOM fate in soil. Plants are the primary source of C in soil, with roots exuding low-molecular weight compounds during growth and contributing more complex litter compounds at senescence. We grew the annual grass, Avena barbata, (wild oat) in a 99 atom% 13CO2 atmosphere in soil microcosms incubated with three mineral types representing a spectrum of reactivity and surface area: quartz, kaolinite, and ferrihydrite. These minerals, isolated in mesh bags to exclude roots but not microorganisms, were extracted and analyzed for total C and 13C at multiple plant growth stages. At plant senescence, the quartz had the least mineral-bound C (0.40 mg-g-1) and ferrihydrite the most (0.78 mg-g-1). Ferrihydrite and kaolinite also accumulated more plant-derived C (3.0 and 3.1% 13C, respectively). The experiment was repeated with partially digested 13C-labled root litter to simulate litter decomposition during plant senescence. Thus, we are able evaluate contributions derived from living and dead root materials on soil minerals using FTIR and 13C-NMR. We find that mineral-associated C bears a distinct microbial signature, with soil microbes not only transforming SOM prior to mineral association, but also populating mineral surfaces over time. Our research shows that both soil mineralogy and the chemical character of plant-derived compounds are important controls of mineral protection of SOM.

  1. Development of industrial minerals in Colorado

    Science.gov (United States)

    Arbogast, Belinda F.; Knepper, Daniel H.; Langer, William H.; Cappa, James A.; Keller, John W.; Widmann, Beth L.; Ellefsen, Karl J.; Klein, Terry L.; Lucius, Jeffrey E.; Dersch, John S.

    2011-01-01

    Technology and engineering have helped make mining safer and cleaner for both humans and the environment. Inevitably, mineral development entails costs as well as benefits. Developing a mine is an environmental, engineering, and planning challenge that must conform to many Federal, State, and local regulations. Community collaboration, creative design, and best management practices of sustainability and biodiversity can be positive indicators for the mining industry. A better understanding of aesthetics, culture, economics, geology, climate, vegetation and wildlife, topography, historical significance, and regional land planning is important in resolving land-use issues and managing mineral resources wisely. Ultimately, the consuming public makes choices about product use (including water, food, highways, housing, and thousands of other items) that influence operations of the mineral industry. Land planners, resource managers, earth scientists, designers, and public groups have a responsibility to consider sound scientific information, society's needs, and community appeals in making smart decisions concerning resource use and how complex landscapes should change. An effort to provide comprehensive geosciences data for land management agencies in central Colorado was undertaken in 2003 by scientists of the U.S. Geological Survey and the Colorado Geological Survey. This effort, the Central Colorado Assessment Project, addressed a variety of land-use issues: an understanding of the availability of industrial and metallic rocks and minerals, the geochemical and environmental effects of historic mining activity on surface water and groundwater, and the geologic controls on the availability and quality of groundwater. The USDA Forest Service and other land management agencies have the opportunity to contribute to the sustainable management of natural aggregate and other mineral resources through the identification and selective development of mineral resources and the

  2. Depth distribution of 137Cs adsorption property of clay minerals influenced by mineral weathering

    International Nuclear Information System (INIS)

    Nakao, Atsushi; Funakawa, Shinya; Kosaki, Takashi

    2007-01-01

    Radiocesium adsorption potential of mica clay mineral can increase as it is weathered, because K depletion in mica interlayer sites generates new Cs selective sites. However, in soils weathered under field conditions, the increase in 137 Cs adsorption potential associated with mineral weathering has not been observed extensively. We investigated four soil profiles from Japan and Thailand with different soil pH ranges (3.3-4.0, 4.2-4.3, 5.0-5.7, and 5.5-7.3). The solid/liquid distribution coefficients of Cs ( Cs Kd) in clay ( 137 Cs adsorption potential of mica clay minerals. In three soil profiles, Cs Kd value in clay was the largest at a surface horizon and was decreased with depth, whereas in the most acidic of Podzolic soil profile, it was the largest at B horizon. The large Cs Kd value in surface clays relative to deeper horizons were well associated with that of 2.0-1.0 μm clay fraction. We assumed that the 137 Cs adsorption potential increased at surface horizons mainly because coarser clay micas were weathered and generated Cs selective sites. The exceptional result obtained in Podzolic soil profile suggests that too intensive weathering destruct mica structure and may decrease in Cs adsorption potential of mica clay minerals. (author)

  3. A topology of mineralization and its meaning for prospecting

    Science.gov (United States)

    Neuerburg, G.J.

    1982-01-01

    Epigenetic mineral deposits are universal members of an orderly spatial and temporal arrangement of igneous rocks, endomorphic rocks, and hydrothermally altered rocks. The association and sequence of these rocks is invariant whereas the metric relations and configurations of the properties of these rocks are unlimited in variety. This characterization satisfies the doctrines of topology. Metric relations are statistical, and their modes are among the better guides to optimal areas for exploration. Metric configurations are graphically irregular and unpredictable mathematical surfaces like mountain topography. Each mineral edifice must be mapped to locate its mineral deposits. All measurements and observations are only positive or neutral for the occurrence of a mineral deposit. Effective prospecting is based on an increasing density of positive data with proximity to the mineral deposit. This means sampling for maximal numbers of positive data, pragmatically the highest ore-element assays at each site, by selecting rock showing maximal development of lode attributes.

  4. Nuclear minerals in Pakistan

    International Nuclear Information System (INIS)

    Mansoor, M.

    2005-01-01

    Strategic importance of Nuclear Minerals was recognized during early formative years of the Pakistan Atomic Energy Commission, and prospecting for uranium was started in Dera Ghazi Khan in collaboration with the Geological Survey of Pakistan (GSP) as early as 1961. Later, the responsibility for countrywide surveys and exploration was fully entrusted with PAEC and in this respect a Directorate of Nuclear Minerals(DNM) was established in 1966 at Lahore. Later, DNM was shifted to the Atomic Energy Centre (AEC), Lahore building and renamed as Atomic Energy Minerals Centre. It has state-of-the-art Chemistry, Mineralogy, Remote Sensing and Electronics Laboratories and an Ore Processing Pilot Plant. The Centre has Prospecting, Exploration, Geophysics, Geochemistry, Geo-tectonics, Mining and Drilling Sections. Regional Offices have been established to facilitate work at Karachi, Quetta and Peshawar. Siwaliks were recognized as a favorable geological formation of prime importance. Sandstone-shale sequence of Siwaliks Formation is exposed in all provinces of Pakistan and in Azad Jammu and Kashmir (AJK), broadly categorized into Rajanpur-Dera Ghazi Khan, Bannu Basin-Kohat Plateau and Potwar-AJK zones. Baghalchur, Nangar Nai and Taunsa uranium deposits have been discovered in the Rajanpur- D.G. Khan Zone. Qabul Khel and Shanawah Uranium deposits have been discovered in the Shanawah-Kohat Plateau Zone. Prospection and exploration is in progress. The first uranium mine was opened at Baghalchur, and uranium mill was established at D.G Khan in 1977-78 all by indigenous effort. The uranium mine was the most advanced and mechanized mine of that time in the country. Later, a second uranium mine was opened at Qabul Khel in 1992, which was based on a new and advanced in situ leach technology, developed to suit local geological and ore zone parameters. Mining of Nanganai and Taunsa Deposits was started respectively in 1996 and 2002, and is also based on in situ leach technology which is

  5. Formation and Reactivity of Biogenic Iron Minerals

    International Nuclear Information System (INIS)

    Ferris, F. Grant

    2002-01-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals

  6. Minerals and rumen function

    International Nuclear Information System (INIS)

    Smith, R.H.

    1984-01-01

    The mechanisms are discussed of some clinical disorders, characteristic only of ruminants and related to the effects of abnormal mineral intake on rumen function. With particular attention to tropical conditions, consideration is given to: (a) the possible effects of phosphorus deficiency on rumen microbial activity; (b) the depression of rumen microbial synthesis in sulphur deficiency; (c) the inhibition of magnesium absorption from the forestomachs; and (d) the involvement of the rumen microorganisms in leading to copper and vitamin B 12 deficiencies as a result of low intakes of cobalt. (author)

  7. Reducing coal miner absenteeism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.H.; Clingan, M.R. (Bureau of Mines, PA (USA). Pittsburgh Research Center)

    1989-09-01

    High absenteeism at coal mines can seriously affect safety and hamper productivity. Several effective strategies for achieving high attendance which mine operators may not have considered are presented and a method is proposed for implementing programs for minimizing absenteeism among coal miners. The best strategies for improving attendance will vary according to the needs and circumstances of the particular mine, however, the process for establishing such a program is relatively invariant. A four-stage process is recommended; evaluate data from prior attendance records, communicate attendance goals and policy, develop and implement an attendance promotion program, and recycle. 12 refs., 5 figs.

  8. United States mineral resources

    Science.gov (United States)

    Brobst, Donald A.; Pratt, Walden P.

    1973-01-01

    The work on this volume began in January 1972, but in a broader sense its production began many years ago. The chapters were written by geologists most of whom have had many years of experience studying the geology of mineral deposits, and more particularly the commodities about which they have written here. A total of nearly 2,300 man-years of professional experience in the geology of mineral resources is represented by the authors of the volume, and about 30 man-years went directly into its preparation. Each chapter contains not only a synthesis of the state of knowledge of the geology of the commodity, but also an appraisal of the known resources, and an examination of the geologic possibilities for finding additional deposits. In January 1972, responsibility for the preparation of the volume was assigned to us as co-editors, and we were given a tentative list of commodities and authors. We provided each author with a suggested outline of general topics to be covered, and some guidelines as to scope and philosophy of approach, but beyond that we avoided any attempt to fit each chapter into a stereotype. Moreover, the types of commodities range from the major metals and industrial minerals such as copper, silver, and fluorspar, which have been the subject of geologic research for years, to other commodities that are of such varied geologic nature (such as pigments or gemstones) or of such minor present importance (such as scandium or thallium) that they cannot be treated from the same viewpoint as the major minerals. The chapters range, therefore, from comprehensive summary reports to general essays that reflect the individuality of the authors as well as the variation among commodities. Throughout the book the emphasis is on geology, but each chapter contains some summary information on uses, technology, and economics. These summaries are not meant to be exhaustive, however, and additional details are in the 1970 edition of "Mineral Facts and Problems" (Bulletin

  9. Refining mineral oils

    Energy Technology Data Exchange (ETDEWEB)

    1946-07-05

    A process is described refining raw oils such as mineral oils, shale oils, tar, their fractions and derivatives, by extraction with a selected solvent or a mixture of solvents containing water, forming a solvent more favorable for the hydrocarbons poor in hydrogen than for hydrocarbons rich in hydrogen, this process is characterized by the addition of an aiding solvent for the water which can be mixed or dissolved in the water and the solvent or in the dissolving mixture and increasing in this way the solubility of the water in the solvent or the dissolving mixture.

  10. RELATIVE TRACE MINERAL BIOAVAILABILITY

    OpenAIRE

    Rchard D. Miles; Peter R. Henry

    2006-01-01

    Para determinar a eficiência de utilização de elementos minerais dietéticos, deve-se conhecer a biodisponibilidade relativa de cada elemento de um determinado ingrediente ou de uma ração completa. Análises químicas da dieta ou de um determinado ingrediente não indicam a efetividade biológica de um nutriente. Existem muitos fatores que influenciam a biodisponibilidade dos minerais, especialmente dos minerais-traço, tais como: nível de consumo do mineral, forma química, digestibilidade da dieta...

  11. Magnetic mineral exploration using ground magnetic survey data of ...

    African Journals Online (AJOL)

    The field data were quantitatively interpreted and the results gave values for the total component measurements of the ground magnetic anomaly that varied ... from the Earth surface fall in the interval of 1.28m to 13.57m, which indicates the magnetic source body suspected to be magnetic mineral, are near surface features.

  12. Geoethical approach to mineral activities in Antarctica

    Science.gov (United States)

    Talalay, Pavel

    2013-04-01

    Antarctica is the outermost from civilization space continent. From 14.0 million km2 of surface area about 98% of Antarctica is covered by ice that averages at least 1.6 km in thickness. Geologically, the continent is the least explored in the world, and it is almost absolutely unknown what mineral resources Antarctica has as they are buried in rock that is covered by a thick ice sheet. It is thought to have large and valuable mineral deposits under the ice. This is because of what has been found in samples taken from the small areas of rock that are exposed, and also from what has been found in South Africa and South America. Up until 180 million years ago, Antarctica was a part of the Gondwanaland super continent, attached to South America, the Southern part of Africa, India and Australia, these continents then drifted apart until they reached their current positions. This leads to a possibility that Antarctica may also share some of the mineral wealth of these continents. Right now on the ice-free areas of Antarctica iron ore, chromium, copper, gold, nickel, platinum, coal and hydrocarbons have been found. The Protocol on Environmental Protection to the Antarctic Treaty, also known as the Madrid Protocol, was signed in 1991 by the signatories to the Antarctic Treaty and became law in January 1998. The Protocol provides for comprehensive protection of the Antarctic environment and associated ecosystems and includes a ban on all commercial mining for at least fifty years (this is up for review in 2041). Current climate change and melting ice in Polar Regions is opening up new opportunities to exploit mineral and oil resources. Even Antarctica's weather, ice and distance from any industrialized areas mean that mineral extraction would be extremely expensive and also extremely dangerous, the depletion of mineral recourses on the Earth can reverse banning of mining in Antarctica in future. There is no question that any resource exploitation in Antarctica will cause

  13. Bioprocessing of coal - 10 - an application of microbial flotation to mineral processing

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, T. [and others] [CRIEPI, Abiko-shi (Japan). Abiko Research Lab.

    1996-09-01

    Microbial flotation for coal desulfurization is being developed. Pyrite in coal is removed by bacterial adhesion by changing the surface property of pyrite. The bacterial adhesion of Thiobacillus ferrooxidans to sulfide minerals (pyrite, galena, molybdenite, chalcocite and millerite), and pyrite removal from the mixture of these sulfide minerals by microbial flotation was investigated. To compare the adhesion of T. ferrooxidans to pyrite with that to the other four minerals mentioned, the surface areas of the minerals, where the bacterium could adhere, was measured. It was observed that the roughness on the mineral surfaces was much smaller than the size of the bacterial cells. Hence, it was suggested that the roughness did not affect the bacterial adhesion to mineral surfaces. Bacterial adhesion to pyrite was compared with that to the other minerals. The amount of adhering bacterium was estimated on the basis of the adherable surface area measured with microscopic method. The amount of adhering cells to pyrite was 421.6 x 10{sup 8} cells/cm{sup 2}. On the other hand, the amounts of adhering cells to the minerals, except for pyrite were in a range of 77.1 to 160.8 x 10{sup 8} cells/cm{sup 2}. The bacterium adheres more to pyrite than to the other minerals, and only adheres to pyrite even if the pyrite is mixed with other minerals. Hence, T. ferrooxidans could adhere selectively to pyrite. Pyrite removal from the mineral mixtures was investigated with microbial flotation. Pyrite removal was in a range of 83.7% to 95.1% and mineral recovery was 72.9% to 100%. The grade of recovered minerals was in a range of 79.2 to 86.0% and that of rejected pyrite was in a range of 78.7 to 90.0%. These results suggest that microbial flotation can be a novel technology for mineral processing.

  14. Mineral supplementation for grazing ruminants

    International Nuclear Information System (INIS)

    McDowell, L.R.; Conrad, J.H.; Ellis, G.L.

    1986-01-01

    Grazing ruminants to which concentrate feeds cannot be economically fed must rely on self-feeding of mineral supplements. A number of factors affect mineral consumption of free-choice mixtures. Livestock exhibit little nutritional wisdom and will select palatable mixtures in preference to mixtures designed to meet their requirements. Palatability and appetite stimulators are often used to achieve a more uniform herd-wide consumption. It is best to formulate free-choice mixtures on the basis of analyses or other available data. However, when no information on mineral status is known, a free-choice complete mineral supplement is warranted. A 'complete' mineral mixture usually includes salt, a low fluoride P source, Ca, Co, Cu, I, Mn and Zn. Selenium, Mg, K, S, Fe or additional elements can be incorporated into a mineral supplement as new information suggests a need. The detriment to ruminant production caused by providing Ca, Se and Cu in excess can be greater than any benefit derived by providing a mineral supplement. In regions where high forage Mo predominates, three to five times the Cu content in mineral mixtures is needed to counteract Mo toxicity. Supplemental minerals are most critical during the wet season, when cattle are gaining weight rapidly and energy and protein supplies are adequate. Economic return on mineral supplementation is high. (author)

  15. Impact of mineral transformation on elemental mobility in aquatic environments

    International Nuclear Information System (INIS)

    Waite, T.D.; Payne, T.E.; Davis, J.A.

    1994-01-01

    While laboratory and field studies of uranium uptake on naturally occurring mineral substrates have indicated that interaction with amorphous oxide phases controls the steady state concentration of uranium in the dissolved phase, questions remain concerning the impact of crystallization of these amorphous phases on ability of the minerals to retain adsorbed uranium. Using isotope exchange techniques, the authors confirm that a portion of the adsorbed uranium is retained within the mineral structure on increasing crystallization. In addition, the relationship between increased crystallinity, decreased site density and lowered elemental uptake is discussed, with uranium partitioning to the solids of varying crystallinity successfully modelled using the surface complexation approach

  16. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  17. Non-autoclaved aerated concrete with mineral additives

    Science.gov (United States)

    Il'ina, L. V.; Rakov, M. A.

    2016-01-01

    We investigated the effect of joint grinding of Portland cement clinker, silica and carbonate components and mineral additives to specific surface of 280 - 300 m2/kg on the properties (strength, average density and thermal conductivity) of non-autoclaved aerated concrete, and the porosity of the hardened cement paste produced from Portland cement clinker with mineral additives. The joint grinding of the Portland cement clinker with silica and carbonate components and mineral additives reduces the energy consumption of non-autoclaved aerated concrete production. The efficiency of mineral additives (diopside, wollastonite) is due to the closeness the composition, the type of chemical bonds, physical and chemical characteristics (specific enthalpy of formation, specific entropy) to anhydrous clinker minerals and their hydration products. Considering the influence of these additions on hydration of clinker minerals and formation of hardened cement paste structure, dispersed wollastonite and diopside should be used as mineral additives. The hardness and, consequently, the elastic modulus of diopside are higher than that of hardened cement paste. As a result, there is a redistribution of stresses in the hardened cement paste interporous partitions and hardening, both the partitions and aerated concrete on the whole. The mineral additives introduction allowed to obtain the non-autoclaved aerated concrete with average density 580 kg/m3, compressive strength of 3.3 MPa and thermal conductivity of 0.131 W/(m.°C).

  18. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.

    Science.gov (United States)

    Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue

    2013-11-15

    Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.

  19. Aggregate and Mineral Resources - MO 2014 Industrial Mineral Mines (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains names, locations and additional data for active Industrial Mineral Mines permitted with the Missouri Department of Natural Resources, Division...

  20. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  2. Importance of weak minerals on earthquake mechanics

    Science.gov (United States)

    Kaneki, S.; Hirono, T.

    2017-12-01

    The role of weak minerals such as smectite and talc on earthquake mechanics is one of the important issues, and has been debated for recent several decades. Traditionally weak minerals in fault have been reported to weaken fault strength causing from its low frictional resistance. Furthermore, velocity-strengthening behavior of such weak mineral (talc) is considered to responsible for fault creep (aseismic slip) in the San Andreas fault. In contrast, recent studies reported that large amount of weak smectite in the Japan Trench could facilitate gigantic seismic slip during the 2011 Tohoku-oki earthquake. To investigate the role of weak minerals on rupture propagation process and magnitude of slip, we focus on the frictional properties of carbonaceous materials (CMs), which is the representative weak materials widely distributed in and around the convergent boundaries. Field observation and geochemical analyses revealed that graphitized CMs-layer is distributed along the slip surface of a fossil plate-subduction fault. Laboratory friction experiments demonstrated that pure quartz, bulk mixtures with bituminous coal (1 wt.%), and quartz with layered coal samples exhibited almost similar frictional properties (initial, yield, and dynamic friction). However, mixtures of quartz (99 wt.%) and layered graphite (1 wt.%) showed significantly lower initial and yield friction coefficient (0.31 and 0.50, respectively). Furthermore, the stress ratio S, defined as (yield stress-initial stress)/(initial stress-dynamic stress), increased in layered graphite samples (1.97) compared to quartz samples (0.14). Similar trend was observed in smectite-rich fault gouge. By referring the reported results of dynamic rupture propagation simulation using S ratio of 1.4 (typical value for the Japan Trench) and 2.0 (this study), we confirmed that higher S ratio results in smaller slip distance by approximately 20 %. On the basis of these results, we could conclude that weak minerals have lower

  3. Destructive textures around radioactive minerals

    International Nuclear Information System (INIS)

    Montel, J.M.; Seydoux-Guillaume, A.M.

    2009-01-01

    In most of the rocks, natural uranium and thorium are concentrated in some minerals which provide favourable crystallographic sites. These minerals are thus submitted to an intense auto-irradiation which may transform them. Using conventional investigation methods (petrographic or scanning electronic microscopy, electronic micro-probe) and less conventional ones (transmission electronic microscopy), the authors studied the interfaces between radioactive minerals and their host minerals. They comment the possible mechanical and structural aspects of this interaction by irradiation, and the influence of geological events

  4. Trace Mineral Losses in Sweat

    National Research Council Canada - National Science Library

    Chinevere, Troy D; McClung, James P; Cheuvront, Samuel N

    2007-01-01

    Copper, iron and zinc are nutritionally essential trace minerals that confer vital biological roles including the maintenance of cell structure and integrity, regulation of metabolism, immune function...

  5. Silicoaluminous minerals analysis

    International Nuclear Information System (INIS)

    Puglisi, Celia; Fina, J.P.

    1987-01-01

    A group of silicoaluminous minerals of known composition have been analyzed by means of an energy dispersive electron microprobe. The analysis has been performed using a standarless semiquantitative method. The concentration was calculated using the program included in the software of the on-line computer, based on the ZAF correction. It is well known that it is difficult to analyze Si, Al and Na by this method because the absortion correction in the range of 0.9 to 2.0 KeV is not very accurate and the background substraction is also questionable. The purpose of this work is to evaluate the errors involved in these measurements and the best operation conditions. (Author) [es

  6. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  7. Biomechanical properties of jaw periosteum-derived mineralized culture on different titanium topography.

    Science.gov (United States)

    Att, Wael; Kubo, Katsutoshi; Yamada, Masahiro; Maeda, Hatsuhiko; Ogawa, Takahiro

    2009-01-01

    This study evaluated the biomechanical properties of periosteum-derived mineralized culture on different surface topographies of titanium. Titanium surfaces modified by machining or by acid etching were analyzed using scanning electron microscopy (SEM). Rat mandibular periosteum-derived cells were cultured on either of the titanium surfaces. Cell proliferation was evaluated by cell counts, and gene expression was analyzed using a reverse-transcriptase polymerase chain reaction. Alkaline phosphatase (ALP) stain assay was employed to evaluate osteoblastic activity. Matrix mineralization was examined via von Kossa stain assay, total calcium deposition, and SEM. The hardness and elastic modulus of mineralized cultures were measured using a nano-indenter. The machined surface demonstrated a flat topographic configuration, while the acid-etched surface revealed a uniform micron-scale roughness. Both cell density and ALP activity were significantly higher on the machined surface than on the acid-etched surface. The expression of bone-related genes was up-regulated or enhanced on the acid-etched surface compared to the machined surface. Von Kossa stain showed significantly greater positive areas for the machined surface compared to the acid-etched surface, while total calcium deposition was statistically similar. Mineralized culture on the acid-etched surface was characterized by denser calcium deposition, more mature collagen deposition on the superficial layer, and larger and denser globular matrices inside the matrix than the culture on the machined surface. The mineralized matrix on the acid-etched surface was two times harder than on the machined surface, whereas the elastic modulus was comparable between the two surfaces. The design of this study can be used as a model to evaluate the effect of implant surface topography on the biomechanical properties of periosteum-derived mineralized culture. The results suggest that mandibular periosteal cells respond to different

  8. Mineral fibres and health

    International Nuclear Information System (INIS)

    Hoskins, J.A.

    2001-01-01

    The use of inorganic fibrous materials is a comparatively new phenomenon and was uncommon before the Industrial Revolution. Humans evolved in a comparatively fibre-free environment and consequently never fully developed the defence mechanisms needed to deal with the consequences of inhaling fibres. However, the urban environment now has an airborne fibre concentration of around 1 f.l -1 , which is a tenfold increase on the natural background. Any sample of ambient air collected indoors or outdoors will probably contain some mineral fibres, but there is little evidence that these pose any risk to human health. They come from asbestos used in brakes, glass and mineral wools used as insulation and fire proofing of buildings, gypsum from plaster and a variety of types from many sources. Few of these have the potential to do any harm. Asbestos is the only fibre of note but urban levels are insignificant compared to occupational exposures. When the health of cohorts occupationally exposed to the several types of asbestos is studied the problem can be put into perspective. Studies of workers in the chrysotile industry exposed to much higher dust levels than in a factory today show no excess lung cancer or mesothelioma. By comparison those living near crocidolite mines, let alone working in them, may develop asbestos-related disease. As always, dose is the critical factor. Chrysotile is cleared from the lungs very efficiently, only the amphiboles are well retained. The only real health problem comes from the earlier use of asbestos products that may now be old, friable and damaged and made from amphibole or mixed fibre. If though, these are still in good condition, they do not pose a health problem. Asbestos-related diseases are very rare in those not occupationally exposed. Where they exist exposure has nearly always been to crocidolite. (author)

  9. Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil

    Science.gov (United States)

    Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.

    2017-12-01

    The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases

  10. Of minerals and men. [Discovery of new mineral species

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.W. (Council for Mineral Technology, Randburg (South Africa))

    1983-01-01

    The rate of discovery of new mineral species appears to be on the increase in Southern Africa and classification and nomenclature, once haphazard, are now subject to international scientific screening and rules. Earlier names entrenched in the literature provide a fascinating background to the minerals scene.

  11. Molecular Characterization of Bacterial Respiration on Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Robert C.

    2013-04-26

    anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  12. Characterization of Mexican zeolite minerals

    International Nuclear Information System (INIS)

    Jimenez C, M.J.

    2005-01-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  13. Plant macro- and micronutrient minerals

    Science.gov (United States)

    All plants must obtain a number of inorganic mineral elements from their environment to ensure successful growth and development of both vegetative and reproductive tissues. A total of fourteen mineral nutrients are considered to be essential. Several other elements have been shown to have beneficia...

  14. Radioisotopes in plant mineral nutrition

    International Nuclear Information System (INIS)

    Singh, Bhupinder

    2016-01-01

    Extensive investigations on mineral composition of different plant species growing on various soils, helped in realizing that neither the presence nor the concentration of a mineral element in a plant can be regarded as a criterion for essentially. Plants have a limited capability for selective uptake of those mineral elements which are essential for their growth. They also take up mineral element which are not necessary for growth and may even be toxic. The mineral composition of plants growing in soils cannot, therefore, be used to establish essentially of a mineral element. Once this fact was appreciated, both water and sand culture experiments were carried out in which particular mineral elements were omitted. Von Sach and Knop are credited with reintroduction of the solution culture method using which they demonstrated the absolute requirement of ten macronutrients. As evident, these techniques made possible a more precise characterization of essentially of mineral elements and led to a better understanding of their role in plant metabolism. By the beginning of 20"t"h century importance of micronutrients like B, Mn, Cu, Mo and CI was also established

  15. Miners' strike 1984-85

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L; Salter, S [comps.

    1985-01-01

    References relating to the 1984-85 UK miners strike are listed under the following subject headings: events and analysis - a chronological record; short term effects - coal stocks and supplies, electricity supplies, financial, industrial and economic; the miners and their leadership; social aspects - civil liberties, media coverage, mining communities, picketing, policing, the future; pit closures. 240 references.

  16. Minerals From the Marine Environment

    Science.gov (United States)

    Cruickshank, Michael J.

    The current interest in minerals centering on, among other things, potential shortages, long-term needs, and deep seabed nodules, accentuates the usefulness and timeliness of this little book authored by a former chairman of the British National Environmental Research Council.In less than 100 pages, the author puts into perspective the potential for producing minerals from offshore areas of the world. After introducing the reader to the ocean environment and the extraordinary variety of the nature of the seabed, the author describes in some detail the variety of minerals found there. This is done in seven separate chapters entitled ‘Bulk and Non-Metallic Minerals From the Seas’ ‘Metals From the Shallow Seas’ ‘Metals From the Deep Oceans’ ‘Minerals From Solution’ ‘Oil and Gas from the Shallow Seas’ ‘Oil and Gas From Deep Waters’ and ‘Coal Beneath the Sea.’ The remaining chapters give a brief regional review of marine minerals distribution for eight areas of significant socioeconomic structure, and a short recapitulation of special problems of mineral recovery in the marine environment including such matters as the effect of water motion on mineral processing and of international law on investments. Glossaries of geological periods and technical terms, a short list of references, and an index complete the work.

  17. Ways to defuse miners' anger

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The violence and riots which often occur with mining personnel are considered. The emotions and feelings which miners often experience because of their work environment are dealth with. From recognizing the pressures, the article then works to present methods to help defuse the miners' hostility and anger

  18. 77 FR 56273 - Conflict Minerals

    Science.gov (United States)

    2012-09-12

    ... auditor and to certify the audit. In addition, Section 13(p) requires the report to include a description.... Auditor Independence iii. Audit Objective 4. Recycled and Scrap Minerals a. Proposed Rules b. Comments on... Minerals Report must also identify the independent private sector auditor \\23\\ and certify the independent...

  19. Biologically enhanced mineral weathering: what does it look like, can we model it?

    Science.gov (United States)

    Schulz, M. S.; Lawrence, C. R.; Harden, J. W.; White, A. F.

    2011-12-01

    The interaction between plants and minerals in soils is hugely important and poorly understood as it relates to the fate of soil carbon. Plant roots, fungi and bacteria inhabit the mineral soil and work symbiotically to extract nutrients, generally through low molecular weight exudates (organic acids, extracelluar polysachrides (EPS), siderophores, etc.). Up to 60% of photosynthetic carbon is allocated below ground as roots and exudates, both being important carbon sources in soils. Some exudates accelerate mineral weathering. To test whether plant exudates are incorporated into poorly crystalline secondary mineral phases during precipitation, we are investigating the biologic-mineral interface. We sampled 5 marine terraces along a soil chronosequence (60 to 225 ka), near Santa Cruz, CA. The effects of the biologic interactions with mineral surfaces were characterized through the use of Scanning Electron Microscopy (SEM). Morphologically, mycorrhizal fungi were observed fully surrounding minerals, fungal hyphae were shown to tunnel into primary silicate minerals and we have observed direct hyphal attachment to mineral surfaces. Fungal tunneling was seen in all 5 soils by SEM. Additionally, specific surface area (using a nitrogen BET method) of primary minerals was measured to determine if the effects of mineral tunneling are quantifiable in older soils. Results suggest that fungal tunneling is more extensive in the primary minerals of older soils. We have also examined the influence of organic acids on primary mineral weathering during soil development using a geochemical reactive transport model (CrunchFlow). Addition of organic acids in our models of soil development at Santa Cruz result in decreased activity of Fe and Al in soil pore water, which subsequently alters the spatial extent of primary mineral weathering and kaolinite precipitation. Overall, our preliminary modeling results suggest biological processes may be an important but underrepresented aspect of

  20. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals

    Energy Technology Data Exchange (ETDEWEB)

    Gerdemann, Stephen J.; Dahlin, David C.; O' Connor, William K.; Penner, Larry R.

    2003-01-01

    The dramatic increase in atmospheric carbon dioxide since the Industrial Revolution has caused concerns about global warming. Fossil-fuel-fired power plants contribute approximately one third of the total human-caused emissions of carbon dioxide. Increased efficiency of these power plants will have a large impact on carbon dioxide emissions, but additional measures will be needed to slow or stop the projected increase in the concentration of atmospheric carbon dioxide. By accelerating the naturally occurring carbonation of magnesium silicate minerals it is possible to sequester carbon dioxide in the geologically stable mineral magnesite (MgCO3). The carbonation of two classes of magnesium silicate minerals, olivine (Mg2SiO4) and serpentine (Mg3Si2O5(OH)4), was investigated in an aqueous process. The slow natural geologic process that converts both of these minerals to magnesite can be accelerated by increasing the surface area, increasing the activity of carbon dioxide in the solution, introducing imperfections into the crystal lattice by high-energy attrition grinding, and in the case of serpentine, by thermally activating the mineral by removing the chemically bound water. The effect of temperature is complex because it affects both the solubility of carbon dioxide and the rate of mineral dissolution in opposing fashions. Thus an optimum temperature for carbonation of olivine is approximately 185 degrees C and 155 degrees C for serpentine. This paper will elucidate the interaction of these variables and use kinetic studies to propose a process for the sequestration of the carbon dioxide.

  1. Ice and mineral licks used by caribou in winter

    Directory of Open Access Journals (Sweden)

    Douglas C. Heard

    1990-09-01

    Full Text Available In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.

  2. Low back pain and lumbar angles in Turkish coal miners

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, S.; Ozdolap, S.; Gumustas, S.; Koc, U. [Zonguldak Karaelmas University, Zonguldak (Turkey). Faculty of Medicine

    2007-02-15

    This study was designed to assess the incidence of low back pain among Turkish coal miners and to investigate the relationship between angles of the lumbar spine and low back pain in coal miners. Fifty underground workers (Group I) and 38 age-matched surface workers (Group II) were included in the study. All the subjects were asked about low back pain in the past 5 years. The prevalence of low back pain was higher in Group I than in Group II (78.0%, 32.4%, respectively, P {lt} 0.001). The results of the study showed that low back pain occurred in 78.0% of Turkish coal miners. Although the nature of the occupation may have influenced coal miners' lumbar spinal curvature, lumbar angles are not a determinant for low back pain in this population. Further extensive studies involving ergonomic measurements are needed to validate our results for Turkish coal mining industry.

  3. Economic drivers of mineral supply

    Science.gov (United States)

    Wagner, Lorie A.; Sullivan, Daniel E.; Sznopek, John L.

    2003-01-01

    The debate over the adequacy of future supplies of mineral resources continues in light of the growing use of mineral-based materials in the United States. According to the U.S. Geological Survey, the quantity of new materials utilized each year has dramatically increased from 161 million tons2 in 1900 to 3.2 billion tons in 2000. Of all the materials used during the 20th century in the United States, more than half were used in the last 25 years. With the Earth?s endowment of natural resources remaining constant, and increased demand for resources, economic theory states that as depletion approaches, prices rise. This study shows that many economic drivers (conditions that create an economic incentive for producers to act in a particular way) such as the impact of globalization, technological improvements, productivity increases, and efficient materials usage are at work simultaneously to impact minerals markets and supply. As a result of these economic drivers, the historical price trend of mineral prices3 in constant dollars has declined as demand has risen. When price is measured by the cost in human effort, the price trend also has been almost steadily downward. Although the United States economy continues its increasing mineral consumption trend, the supply of minerals has been able to keep pace. This study shows that in general supply has grown faster than demand, causing a declining trend in mineral prices.

  4. herbage mineral nutrition indexed as tools for rapid mineral status

    African Journals Online (AJOL)

    Administrator

    mineral indices were calculated from chemical analysis with a view to generate relevant fertilisation recommenda- tions. Although the dry .... P, and K established in temperate climate (Blanfort ..... like rotational grazing rhythms or stocking rates.

  5. Preparation of pHEMA-CP composites with high interfacial adhesionvia template-driven mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R.

    2002-12-05

    We report a template-driven nucleation and mineral growth process for the high-affinity integration of calcium phosphate (CP) with a poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel scaffold. A mineralization technique was developed that exposes carboxylate groups on the surface of crosslinked pHEMA, promoting high-affinity nucleation and growth of calcium phosphate on the surface along with extensive calcification of the hydrogel interior. External factors such as the heating rate, the agitation of the mineral stock solution and the duration of the process that affect the outcome of the mineralization were investigated. This template-driven mineralization technique provides an efficient approach toward bonelike composites with high mineral-hydrogel interfacial adhesion strength.

  6. Magnetic Separation for the Direct Observation of Mineral-Associated Microbial Diversity

    Science.gov (United States)

    Harrison, B. K.; Orphan, V.

    2006-12-01

    Previous studies have demonstrated that microorganisms may selectively colonize mineral surfaces in diverse environments. Mineral substrates may serve as an important source of limiting nutrients or provide electron acceptors and donors for dissimilatory reactions. This work presents a new method for characterizing the microbial diversity associated with specific components in environmental samples. Minerals are concentrated from the bulk sample according to magnetic susceptibility, resulting in compositionally distinct partitions. The microbial communities associated with these partitions are subsequently characterized using molecular techniques. Initial testing of samples from active and dormant hydrothermal chimney structures from the Lau and Fiji Basins show that mineral components may be concentrated from bulk samples without concealing pre-existing patterns of selective colonization. 16S gene surveys from environmental clone libraries reveal distinct colonization patterns for thermophilic archaea and bacteria between sulfide mineral partitions. This method offers a unique tool discerning the role of mineral composition in surface-associated diversity.

  7. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  8. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions.

    Science.gov (United States)

    Diao, Mengxue; Taran, Elena; Mahler, Stephen; Nguyen, Anh V

    2014-10-01

    Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria-mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Vitamins and Minerals in Kidney Disease

    Science.gov (United States)

    ... Donate A to Z Health Guide Vitamins and Minerals in Kidney Disease Tweet Share Print Email Are ... you need to know. What are vitamins and minerals? Vitamins and minerals are substances your body needs ...

  10. 76 FR 44892 - Information Collection; Locatable Minerals

    Science.gov (United States)

    2011-07-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Information Collection; Locatable Minerals AGENCY: Forest... on the extension of a currently approved information collection, Locatable Minerals-36 CFR part 228...: Comments concerning this notice should be addressed to: USDA, Forest Service, Minerals and Geology...

  11. [Vitamins and Minerals in Oncology].

    Science.gov (United States)

    Holch, Julian Walter; Michl, Marlies; Heinemann, Volker; Erickson, Nicole

    2017-06-01

    The use of vitamins and minerals to prevent cancer as well as their supportive use in oncological patients is widespread and often occurs without the knowledge of the treating physician. Beyond general recommendations with regard to a balanced and healthy diet, no evidence exists supporting the use of vitamins and minerals in the prevention of cancer. Furthermore, the diet of oncological patients should contain vitamins and minerals of the same quantity as for healthy individuals. In particular, there is currently no rationale for a high-dosage administration of antioxidants. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Land and federal mineral ownership coverage for northwestern Colorado

    Science.gov (United States)

    Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob

    1999-01-01

    This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.

  13. Refractory, Abrasive and Other Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes refractory, abrasive, and other industrial minerals operations in the United States. The data represent commodities covered by the Minerals...

  14. GHGRP Minerals Sector Industrial Profile

    Science.gov (United States)

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Minerals industry.

  15. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  16. (MEPE) mineralization ability in vitro

    African Journals Online (AJOL)

    Jane

    matrix proteins and is associated with bone and teeth mineralization. We developed .... acetic acid) and bands were visualized by dynamic integrated exposure using .... approximate agreement with the expected molecular size. Purification of.

  17. Mineral exploration in developing countries

    International Nuclear Information System (INIS)

    Johnson, C.J.; Clark, A.L.

    1988-01-01

    The chapter provides an overview and comparisons of mineral exploration in Botswana and Papua New Guinea, including selection comparisons with Australia and Canada. It describes the history of exploration in Botswana and PNG. The concluding section summarizes the findings

  18. Hydrometalurgical processes for mineral complexes

    International Nuclear Information System (INIS)

    Barskij, L.A.; Danil'chenko, L.M.

    1977-01-01

    Requirements for the technology of the processing of ores including uranium ores and principal stages of the working out of technological schemes are described in brief. There are reference data on commercial minerals and ores including uranium-thorium ores, their classification with due regard for physical, chemical and superficial properties which form the basis for ore-concentrating processes. There are also presented the classification of minerals including uranium minerals by their flotation ability, flotation regimes of minerals, structural-textural characteristics of ores, genetic types of ore formations and their concentrating ability, algorithmization of the apriori evaluation of the concentration and technological diagnostics of the processing of ores. The classification of ore concentration technique is suggested

  19. VT Mineral Resources - MRDS Extract

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) MRDSVT is an extract from the Mineral Resources Data System (MRDS) covering the State of Vermont only. MRDS database contains the records provided...

  20. Mineral resources potential of Antarctica

    National Research Council Canada - National Science Library

    Splettstoesser, John F; Dreschhoff, Gisela A. M

    1990-01-01

    .... This volume of the Antarctic Research Series results from an attempt to assemble a summary of current factual knowledge and scientific data related to issues of mineral resources in Antarctica...

  1. Hydrokinesitherapy in thermal mineral water

    Directory of Open Access Journals (Sweden)

    Rendulić-Slivar Senka

    2013-01-01

    Full Text Available The treatment of clients in health spa resorts entails various forms of hydrotherapy. Due to specific properties of water, especially thermal mineral waters, hydrokinesitherapy has a positive effect on the locomotor system, aerobic capabilities of organism and overall quality of human life. The effects of use of water in movement therapy are related to the physical and chemical properties of water. The application of hydrotherapy entails precautionary measures, with an individual approach in assessment and prescription. The benefits of treatment in thermal mineral water should be emphasized and protected, as all thermal mineral waters differ in composition. All physical properties of water are more pronounced in thermal mineral waters due to its mineralisation, hence its therapeutical efficiency is greater, as well.

  2. BLM Colorado Federal Mineral Estate

    Data.gov (United States)

    Department of the Interior — Shapefile Format –This Federal Mineral Estate (Subsurface) dataset is a result of combining data sets that were collected at each BLM Colorado Field Office and using...

  3. Spatial distribution of gamma radiation levels in surface soils from Jaduguda uranium mineralization zone, Jharkhand, India, using γ-ray spectrometry, and determination of outdoor dose to the population

    Directory of Open Access Journals (Sweden)

    Maharana Mandakini

    2010-01-01

    Full Text Available The concentrations of natural radionuclides in surface soil samples around selected villages of Jaduguda were investigated and compared with the radioactivity level in the region. Concentrations of 238 U, 232 Th, and 40 K were determined by a gamma ray spectrometer using the HPGe detector with 50% relative efficiency, and the radiation dose to the local population was estimated. The average estimated activity concentrations of 238 U, 232 Th, and 40 K in the surface soil were 53.8, 44.2 and 464.2 Bq kg -1 respectively. The average absorbed dose rate in the study area was estimated to be 72.5 nGy h-1, where as the annual effective dose to the population was 0.09 mSv y-1. A correlation analysis was made between measured dose rate and individual radionuclides, in order to delineate the contribution of the respective nuclides towards dose rate. The radio-elemental concentrations of uranium, thorium and potassium estimated for the soils, in the study area, indicated the enrichment of uranium series nuclide. The results of the present study were subsequently compared with international and national recommended values.

  4. Mineral resources of Vietnam

    Directory of Open Access Journals (Sweden)

    Kušnír Imrich

    2000-06-01

    Full Text Available Vietnam je bohatý na nerastné suroviny, ktoré sa nachádzajú prevažne na severe krajiny. Ložiská bauxitov, fosfátov, vzácnych zemín (REE, majú svetový význam. Ale i zásoby celého radu ïalších surovín (ropy, uhlia, zlata, železných rúd, chromitu, cínu, ilmenitu, medi, grafitu, atï. sú významné, ekonomicky ažite¾né a ich potenciál je obrovský. Za uvedené nerastné bohatstvo je „zodpovednᓠrozmanitá geologická stavba krajiny. Taktiež i morfológia a klíma (vlhká, tropická prispeli ku vytvoreniu niektorých ložísk (bauxity v krasových priehlbniach, atï.. Súèasná produkcia, okrem ropy (3,5 Mt/rok, zahròuje: 10,7 Mt uhlia, 3,5 Mt chromitu, asi 1 000 kg zlata, grafitu, kaolínu a mnohé iné minerály. Napriek tomu, je banícky priemysel v porovnaní so surovinovou základòou slabo vyvinutý. K jeho rozvoju urèite prispeje i úèas zahranièných spoloèností, odnedávna prítomných pri prieskume a ažbe surovín urèených pre export. Okrem struèného úvodu do geológie krajiny, obsahuje tento èlánok krátky popis nerastného bohatstva Vietnamu.

  5. Inhalation hazards to underground miners

    International Nuclear Information System (INIS)

    Beckman, R.T.

    1988-01-01

    Massive radon-daughter exposures to miners have caused lung cancer for centuries. Exposures in US uranium mines have been regulated for 15 years and, during this time, relatively few miners have been exposed to over 4 WLM year. Present trends are toward lower annual exposures and shorter working lives. The net effect has been to hold cumulative lifetime exposures well below the level at which statistically significant excess risk has been shown

  6. Economic potential of the heavy minerals of the beaches between Baruva and Bavanapadu, Andhra Pradesh

    International Nuclear Information System (INIS)

    Rajasekhara Reddy, D.; Prasad, V.S.S.; Malathi, V.; Reddy, K.S.N.; Varma, D.D.

    2001-01-01

    The economic potentiality of the heavy minerals in the beaches between Baruva and Bavanapadu extending for about 45 km was examined. In the sub-surface sediments, the heavy minerals were studied at an interval of 1 m up to a maximum depth of 5.8m. In general the concentration of heavy minerals is high in dunes followed by backshore and foreshore regions. Heavy mineral content increases from surface to sub-surface in dunes, decreases in foreshore and does not vary much in backshore. The heavy minerals include mainly ilmenite, garnet, sillimanite and ortho-pyroxenes with minor amounts of amphiboles, zircon, monazite, rutile etc. Majority of the heavies such as ilmenite, monazite, zircon etc. are concentrated in finer fractions while some of the heavies like garnet and sillimanite are concentrated in coarser fractions. The inferred reserves estimated for the area indicate its economical potential. (author)

  7. Lung Cancer in uranium miners

    International Nuclear Information System (INIS)

    Zhou Chundi; Fan Jixiong; Wang Liuhu; Huang Yiehan; Nie Guanghua

    1987-01-01

    This paper analyese the clinical data of 39 uranium miners with lung cancer and of 20 patients with lung cancer who have not been exposed to uranium as control. The age of uranium miners with lung cancer was 36∼61 with an average of 48.8, nine years earlier than that of the control group (57.3). In the uranium miner patients the right lung was more susceptible to cancer than the left, the ratio being 2.5:1. However, in the control group the right lung had an equal incidence of cancer as the left lung. The relative frequency of small cell anaplastic carcinoma in uranium miner was higher than that in the control group. In the miner patients the mean occupation history was 11.1 ± 5.2 years; the exposure dose to radon and its daughters in 50% patients was 0.504J(120 WLM). The etiologic factor of lung cancer in uranium miners is strongly attributed, in addition to smoking, to the exposure to radon and its daughters in uranium mines

  8. Probing the rhizosphere to define mineral organic relationships

    Science.gov (United States)

    Schulz, M. S.; Dohnalkova, A.; Stonestrom, D. A.

    2016-12-01

    Soil organic matter (SOM) accumulation and stabilization over time is an important process as soils are a large carbon reservoir in which feedbacks under changing climates are unclear. The association of SOM with poorly crystalline or short-range-ordered secondary minerals has been shown to be important for carbon stabilization. Commonly used soil extraction techniques display correlations of SOM with secondary phases but do not show causation. The fate of root exudates in soils and processes controlling exudate associations with mineral phases are as yet structurally undefined. Sub-micron exploration of in-situ relations provides valuable information on SOM-mineral interactions. Soils of the Santa Cruz (California) marine terrace chronosequence are used to illustrate changes in deep (> 1 m) rhizosphere through time. Cracks and soil ped faces are sites of high root density and organic matter (biofilm or mucilage) deposition. We employ a variety of scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) techniques for high resolution imaging and elemental analyses of deep rhizosphere and associated carbon mineral interactions. In these coastal prairie soils microscopy reveals secondary clay minerals associated with and possibly forming from organic-rich mucilage that occurs along the aforementioned rooting networks on fracture surfaces. We hypothesize that the production of secondary clays in the rhizosphere is an important mode of C incorporation into secondary minerals.

  9. Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control

    Science.gov (United States)

    Matt D. Busse; Samual E. Beattie; Robert F. Powers; Filpe G. Sanchez; Allan E. Tiarks

    2006-01-01

    We tested three disturbance hypotheses in young conifer plantations: H1: soil compaction and removal of surface organic matter produces sustained changes in microbial community size, activity, and structure in mineral soil; H2: microbial community characteristics in mineral soil are linked to the recovery of plant diversity...

  10. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other minerals...

  11. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  12. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  13. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    International Nuclear Information System (INIS)

    Morel, Mauricio; Martínez, Francisco; Mosquera, Edgar

    2013-01-01

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N 2 (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe 2+ and Fe 3+ from the mineral magnetite is synergistic

  14. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile); Martínez, Francisco, E-mail: polimart@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile)

    2013-10-15

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N{sub 2} (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe{sup 2+} and Fe{sup 3+} from the mineral magnetite is synergistic.

  15. Mineral sources and transport pathways for arsenic release in a coastal watershed, USA

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.

    2008-01-01

    Metasedimentary bedrock of coastal Maine contains a diverse suite of As-bearing minerals that act as significant sources of elements found in ground and surface waters in the region. Arsenic sources in the Penobscot Formation include, in order of decreasing As content by weight: löllingite and realgar (c.70%), arsenopyrite, cobaltite, glaucodot, and gersdorffite (in the range of 34–45%), arsenian pyrite (Formation, the relative stability of primary As-bearing minerals follows a pattern where the most commonly observed highly altered minerals are pyrrhotite, realgar, niccolite, löllingite > glaucodot, arsenopyrite-cobaltian > arsenopyrite, cobaltite, gersdorffite, fine-grained pyrite, Ni-pyrite > coarse-grained pyrite. Reactions illustrate that oxidation of Fe-As disulphide group and As-sulphide minerals is the primary release process for As. Liberation of As by carbonation of realgar and orpiment in contact with high-pH groundwaters may contribute locally to elevated contents of As in groundwater, especially where As is decoupled from Fe. Released metals are sequestered in secondary minerals by sorption or by incorporation in crystal structures. Secondary minerals acting as intermediate As reservoirs include claudetite (c.75%), orpiment (61%), scorodite (c. 45%), secondary arsenopyrite (c. 46%), goethite (minerals. Reductive dissolution of Fe-oxide minerals may govern the ultimate release of iron and arsenic – especially As(V) – to groundwater; however, dissolution of claudetite (arsenic trioxide) may directly contribute As(III). Processes thought to explain the release of As from minerals in bedrock include oxidation of arsenian pyrite or arsenopyrite, or carbonation of As-sulphides, and most models based on these generally rely on discrete minerals or on a fairly limited series of minerals. In contrast, in the Penobscot Formation and other metasedimentary rocks of coastal Maine, oxidation of As-bearing Fe-cobalt-nickel-sulphide minerals, dissolution (by

  16. The actual prevention of fibrogenic effect of mineral dust

    Directory of Open Access Journals (Sweden)

    Bobro Milan

    2000-09-01

    Full Text Available The dustiness occurs in the mining work environment during the process of disintegration of rocks by drilling, explosion and dislocation. The dust contains minerals forming the massif, under Slovak mining conditions, it was usually quartz and some other minerals. They usually accompanied utility minerals. The characteristic mining aerosol is created during disintegration process. It was inhaled by miners and due to the most dangerous fibrogenic mineral – quartz – it caused that employees suffered from the so far incurable industrial disease. From that reason a long-term research of reaction qualities of quartz dust was carried out and the possibility to decrease its fibrogenic properties was researched. The prevention vested in the elimination of these properties on the surface of quartz grain or other silicate before entering, i.e. being inhaled by lungs, using water soluble aluminium hydroxide compound. This water was used for flushing in drilling process and to decrease dustiness by spraying it directly in the mining workplace. The aluminium hydroxide agent reacted with mineral dust directly in aerosol before being inhaled. The principle vested in the reaction of one mole of agent with two moles of surface structures of quartz particle forming a thermostatic layer of a new mineral type, in this case aluminium silicate of kaolinite. The required concentration of aluminium hydroxide compound solution for pure quartz dust was determined by experimental works and calculation with a required reserve or even slight excess of agent. If the fibrogenity of quartz not influenced in this manner was considered as 100%, its cytostatic and consequently fibrogenic effect would be decreased by the influence of this agent minimally by 60%. The method has been tested directly in mines, but due to recession of mining industry, it was not introduced in practice, however, it is currently getting a certain significance in tunnelling of transport tunnels in

  17. [Mineral water as a cure].

    Science.gov (United States)

    Nocco, Priska Binz

    2008-01-01

    The treatment of diseases with mineral spring water belongs to the oldest medical therapies. The "remedy" mineral water is therefore of importance also within the pharmacy. The present pharmacy historical work examines the impact of the use of mineral waters, as well as of their dried components, as therapeutic agents in the 19th and early 20th centuries, i.e. from approx. 1810 to 1930, as well as the contributions given by pharmacists in the development and analysis of mineral water springs. Beside these aspects, the aim here is also to describe the role played by pharmacists in the production of artificial mineral water as well as in the sale and wholesale of natural and artificial mineral water. In the first part of this work the situation in Switzerland and its surrounding countries, such as Germany, France, Italy and Austria, is discussed. The second part contains a case-study of the particular situation in the Canton Tessin. It is known from the scientific literature published at that time that information on mineral water was frequently reported. Starting from the beginning of the 19th century the number of such publications increased tremendously. The major part of them were publications in scientific journals or contributions to medical and pharmaceutical manuals and reference books. In particular the spa-related literature, such as spa-guides, was of growing interest to a broad public. The inclusion of monographs into the Swiss, the Cantonal as well the foreign pharmacopoeias granted a legal frame for the mineral waters and their dried components. These works are of major importance from a pharmacy historical standpoint and represent a unique proof of historical evidence of the old medicinal drug heritage. The most frequently used therapies based on mineral waters were drinking and bath cures. Several diseases, particularly those of a chronic character, were treated with mineral waters. The positive influence of these cures on the recovery of the patients

  18. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  19. Minerals yearbook: The mineral industry of Brazil. 1988 international review

    International Nuclear Information System (INIS)

    Ensminger, H.R.

    1988-01-01

    Brazil's gross domestic product (GDP) grew only slightly in 1988 to $277 billion at current prices. The growth rate was the smallest registered since 1983, when the rate was minus 2.8%. The economy's performance was strongly influenced by a 2% to 3% decrease in industrial production and civil construction. The mineral industry, however, countered the downward trend in the industrial sector and grew a modest 1.4%. Topics discussed in the report include the following: Government policies and programs; Production; Trade; Commodity review--Metals (Aluminum, Aluminia, and Bauxite, Columbium, Copper, Gold, Iron and Steel, Manganese, Tin, Titanium); Industrial Minerals (Gem stones, Phosphate rock, Quartz); Mineral fuels (Coal, Natural gas, Petroleum, Nuclear power); Nonmineral energy sources (Alcohol, Hydroelectric)

  20. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  1. 21 CFR 573.680 - Mineral oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Mineral oil. 573.680 Section 573.680 Food and... Listing § 573.680 Mineral oil. Mineral oil may be safely used in animal feed, subject to the provisions of this section. (a) Mineral oil, for the purpose of this section, is that complying with the definition...

  2. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals

    International Nuclear Information System (INIS)

    Feng Xionghan; Zhai Limei; Tan Wenfeng; Liu Fan; He Jizheng

    2007-01-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite ≥ cryptomelane > todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb 2+ , Cu 2+ , Co 2+ , Cd 2+ and Zn 2+ , while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb 2+ among the tested heavy metals. Hydration tendency (pK 1 ) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn 2+ varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0) > cryptomelane (422.6) > todorokite (59.7) > hausmannite (36.6). - The characteristics of heavy metal adsorption and Cr(III) oxidation on Mn oxide minerals are determined by their structure, composition, surface property and crystallinity

  3. Mineral matter reactions in cokes

    Energy Technology Data Exchange (ETDEWEB)

    D. French; R. Sakurovs; M. Grigore [CSIRO Energy Technology (Australia)

    2009-07-15

    Some cokes appear to be particularly susceptible to weakening in the blast furnace. A mechanism which has been postulated to explain this is silica reduction by coke. Thus this project was initiated to ascertain the behaviour of quartz and silicates in coke with an emphasis on the role of the clay minerals. It is now possible to obtain quantitative mineralogical data and, the case of coal, to also obtain quantitative data on mineral grain size, shape and association through the use of automated electron beam image analysis techniques. This new ability can allow relationships between the amount of minerals in a coke and its reactivity to be established for the first time. Samples of five Australian coking coals were selected based upon quartz and clay mineral contents, mineral grain size and association. Samples were also provided by BlueScope Steel of coal, feed coke, and tuyere coke samples from the bosh, deadman and raceway regions of the blast furnace. The analytical work program conducted was as follows: Preparation of cokes by CSIRO; Petrography of starting coals and cokes; QEMSCAN of coals; LTA and XRD of starting coals and cokes; Coke reactivity tests (NSC and small scale); Petrography, LTA and XRD of reacted cokes; Petrographic and XRD examination of heat treated cokes. This study indicates that the NSC reactivity test does not adequately reflect the behaviour of coke in the lower part of the blast furnace. Further investigation of the behaviour of coke in the lower part of the blast furnace is required.

  4. A literature review of actinide-carbonate mineral interactions

    International Nuclear Information System (INIS)

    Stout, D.L.

    1993-10-01

    Chemical retardation of actinides in groundwater systems is a potentially important mechanism for assessing the performance of the Waste Isolation Pilot Plant (WIPP), a facility intended to demonstrate safe disposal of transuranic waste. Rigorous estimation of chemical retardation during transport through the Culebra Dolomite, a water-bearing unit overlying the WIPP, requires a mechanistic understanding of chemical reactions between dissolved elements and mineral surfaces. This report represents a first step toward this goal by examining the literature for pertinent experimental studies of actinide-carbonate interactions. A summary of existing models is given, along with the types of experiments on which these models are based. Articles pertaining to research into actinide interactions with carbonate minerals are summarized. Select articles involving trace element-carbonate mineral interactions are also reviewed and may serve as templates for future research. A bibliography of related articles is included. Americium(III), and its nonradioactive analog neodymium(III), partition strongly from aqueous solutions into carbonate minerals. Recent thermodynamic, kinetic, and surface studies show that Nd is preferentially removed from solution, forming a Nd-Ca carbonate solid solution. Neptunium(V) is rapidly removed from solution by carbonates. Plutonium incorporation into carbonates is complicated by multiple oxidation states. Little research has been done on the radium(H) and thorium(IV) carbonate systems. Removal of uranyl ion from solution by calcite is limited to monolayer surface coverage

  5. Development of a theory of the spectral reflectance of minerals, part 4

    Science.gov (United States)

    Aronson, J. R.; Emslie, A. G.; Smith, E. M.

    1972-01-01

    A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces.

  6. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    Science.gov (United States)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D

  7. Understanding Contaminants Associated with Mineral Deposits

    Science.gov (United States)

    Verplanck, Philip L.

    2008-01-01

    Interdisciplinary studies by the U.S. Geological Survey (USGS) have resulted in substantial progress in understanding the processes that control *the release of metals and acidic water from inactive mines and mineralized areas, *the transport of metals and acidic water to streams, and *the fate and effect of metals and acidity on downstream ecosystems. The potential environmental effects associated with abandoned and inactive mines, resulting from the complex interaction of a variety of chemical and physical processes, is an area of study that is important to the USGS Mineral Resources Program. Understanding the processes contributing to the environmental effects of abandoned and inactive mines is also of interest to a wide range of stakeholders, including both those responsible for managing lands with historically mined areas and those responsible for anticipating environmental consequences of future mining operations. The recently completed (2007) USGS project entitled 'Process Studies of Contaminants Associated with Mineral Deposits' focused on abandoned and inactive mines and mineralized areas in the Rocky Mountains of Montana, Colorado, New Mexico, Utah, and Arizona, where there are thousands of abandoned mines. Results from these studies provide new information that advances our understanding of the physical and biogeochemical processes causing the mobilization, transport, reaction, and fate of potentially toxic elements (including aluminum, arsenic, cadmium, copper, iron, lead, and zinc) in mineralized near-surface systems and their effects on aquatic and riparian habitat. These interdisciplinary studies provide the basis for scientific decisionmaking and remedial action by local, State, and Federal agencies charged with minimizing the effects of potentially toxic elements on the environment. Current (2007) USGS research highlights the need to understand (1) the geologic sources of metals and acidity and the geochemical reactions that release them from their

  8. Proton induced luminescence of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H.; Millan, A.; Calderon, T. [Depto. Geologia y Geoquimica, Universidad Autonoma de Madrid, Ctra. Colmenar, km. 15, 28049, Madrid (Spain); Beneitez, P. [Departamento Quimica Fisica Aplicada, Universidad Autonoma de Madrid Cantoblanco, Madrid (Spain); Ruvalcaba S, J.L. [lFUNAM, Circuito de la lnvestigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2008-07-01

    This paper presents a summary of Ionoluminescence (IL) for several minerals commonly found in jewellery pieces and/or artefacts of historical interest. Samples including silicates and non-silicates (native elements, halide, oxide, carbonate and phosphate groups) have been excited with a 1.8 MeV proton beam, and IL spectra in the range of 200- 900 nm have been collected for each one using a fiber optic coupled spectrometer. Light emissions have been related to Cr{sup 3+}, Mn{sup 2+} and Pr{sup 3+} ions, as well as intrinsic defects in these minerals. Results show the potential of IL for impurity characterization with high detection limits, local symmetry studies, and the study of the origin of minerals. (Author)

  9. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  10. New french uranium mineral species

    International Nuclear Information System (INIS)

    Branche, G.; Chervet, J.; Guillemin, C.

    1952-01-01

    In this work, the authors study the french new uranium minerals: parsonsite and renardite, hydrated phosphates of lead and uranium; kasolite: silicate hydrated of uranium and lead uranopilite: sulphate of uranium hydrated; bayleyite: carbonate of uranium and of hydrated magnesium; β uranolite: silicate of uranium and of calcium hydrated. For all these minerals, the authors give the crystallographic, optic characters, and the quantitative chemical analyses. On the other hand, the following species, very rare in the french lodgings, didn't permit to do quantitative analyses. These are: the lanthinite: hydrated uranate oxide; the α uranotile: silicate of uranium and of calcium hydrated; the bassetite: uranium phosphate and of hydrated iron; the hosphuranylite: hydrated uranium phosphate; the becquerelite: hydrated uranium oxide; the curite: oxide of uranium and lead hydrated. Finally, the authors present at the end of this survey a primary mineral: the brannerite, complex of uranium titanate. (author) [fr

  11. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin

    2016-01-01

    , for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set......We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  12. Radon risk in ore miners

    International Nuclear Information System (INIS)

    Beno, M.

    1997-01-01

    Underground workers are exposed to various clastogenic agents. One of these agents, radon, attracts attention of recent research as it causes lung cancer in the population occupationally exposed to its various concentrations especially in mine air of uranium mines or ore mines. This paper is a pilot study in which the numbers of chromosomal aberrations (CA) in lymphocytes of ore mines (Nizna Slana-iron ore, Hnusta-talc ore) located in east central Slovakia were followed and related to the lifetime underground radon exposure and to lifetime smoking. Seventy miners volunteering after an informed consent served as donors of venous blood. Twenty healthy pro-bands, age matched with the miners, which never worked underground (mostly clerks) served as donors of control blood samples. The exposure to radon and smoking has been estimated according to working-records and personal anamnesis. The findings unequivocally showed a small but statistically significant clastogenic effect of the exposure to underground environment of the mines concerned. This study has shown also a small but significant influence of smoking, which in the subgroup of miners working underground less than 1500 shifts may have acted synergically with the underground exposure. It was concluded tat: (1) Significantly higher counts of chromosomal aberrations in lymphocytes of 70 miners than in an age matched control group of 20 white-collar workers were found; (2) The higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; (3) The positive dependence of the number of chromosomal aberrations from the exposure to smoking was loose and it was expressed by significantly higher chromosomal aberrations counts in the group of miners working less than 1500 shifts underground; (4) A dependence of chromosomal aberrations counts from the exposure to radon could not be assessed. At relatively low numbers of pro-bands in subgroups it was not ruled out the confounding

  13. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A

    1978-09-01

    Whereas the ultimate world supply of energy minerals--defined as fossil fuels and fissile materials--is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. Genuine shortages of energy minerals are now of a very long-term nature, whereas artificial ones may occur at any time and have a serious effect on the world economy due to the dependence of most OECD countries on imports of energy minerals. This paper argues that events over the last decade will progressively lead to a major, long-lasting transformation of the energy scene worldwide. This transformation will encompass demand, in terms of conservation and efficiency, the supply mix of the various energy minerals, the supply system and the structure of the different energy industries. It is already affecting the role of governments and reaching into the question of national sovereignty, thereby making energy minerals a key area of international relations. In all these respects, this paper concludes that we have entered an era that is quite different from those we have experienced in the past. As well as requiring many new technological innovations, more importantly, attention must be focused on the development of new approaches to meeting the energy industries' capital requirements in the decades ahead--first, because of the changing character of the energy industries and the magnitude of their financial requirements; secondly, because of the nature of the uncertainties with which they are faced; and thirdly, because of the constantly shifting and increasingly complex world capital market conditions.

  14. Integrated Approaches for the Study of Real Mineral Flotation Systems

    Directory of Open Access Journals (Sweden)

    Andrea Gerson

    2013-01-01

    Full Text Available It is more common than not, for mineral processing studies to proceed via the examination of model flotation systems with the resulting data often lacking statistical verification. The resultant concentrates and tails may then be subjected to a restricted range of analyses, for diagnosis of the flotation behavior variations observed, that themselves bias the outcomes. For instance surface analysis may be undertaken without reference to solution speciation, or liberation may be studied but surface speciation may not be taken into account. We propose an integrated approach whereby firstly the flotation data are vigorously scrutinized and the mineralogy, liberation, surface and solution speciation are examined in parallel to establish a chemical over view of the system. It is proposed that to make progress in the understanding of flotation systems, in terms of the minerals chemistry, that a multi-dimensional analytical approach is utilized and that the focus shifts towards the analysis of real ores and industrial flotation systems.

  15. Mineral dust transport toward Hurricane Helene (2006)

    Science.gov (United States)

    Schwendike, Juliane; Jones, Sarah C.; Vogel, Bernhard; Vogel, Heike

    2016-05-01

    This study investigates the transport of mineral dust from its source regions in West Africa toward the developing tropical cyclone Helene (2006) and diagnoses the resulting properties of the air influencing the tropical cyclonegenesis. The model system COSMO-ART (Consortium for Small-Scale Modelling-Aerosols and Reactive Trace gases) in which the emission and transport of mineral dust as well as the radiation feedback are taken into account, was used. The emission of mineral dust between 9 and 14 September 2006 occurred in association with the relatively strong monsoon flow and northeasterly trade winds, with gust fronts of convective systems over land, and with the Atlantic inflow. Additionally, increased surface wind speed was linked to orographical effects at the Algerian Mountains, Atlas Mountains, and the Hoggar. The dust, as part of the Saharan air layer, is transported at low levels by the monsoon flow, the Harmattan, the northeasterly trade winds, and the monsoon trough, and is transported upward in the convergence zone between Harmattan and monsoon flow, in the baroclinic zone along the West African coastline, and by convection. At around 700 hPa the dust is transported by the African easterly jet. Dry and dust-free air is found to the north-northwest of the developing tropical depression due to descent in an anticyclone. Based on the model data, it was possible to distinguish between dry (from the anticyclone), dry and dusty (from the Harmattan and northeasterly trade winds), and dusty and moist air (from the monsoon flow and in the tropical depression due to convection).

  16. Mineral surface–organic matter interactions: basics and applications

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted–Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  17. Economical characteristics of base types of minerals. 1. Metallic minerals

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1990-01-01

    Metallic minerals is raw materials base of black and colour metallurgy. In this article of book author describes the group of black metals (iron, manganese, chromium), group of tempers (titanium, vanadium, nickel, cobalt, molybdenum, tungsten), colour metals (copper, lead, zinc, aluminium, tin, mercury, antimony, bismuth) and etc.

  18. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  19. Platinum-group element mineralization

    International Nuclear Information System (INIS)

    Gruenewaldt, G.

    1985-01-01

    The purpose of this investigation is to determine the geological processes responsible for the abnormal enrichment of the platinum-group elements (PGE) in the mineralized layers of the Bushveld Complex. Questions asked are: what processes caused enrichment of the Bushveld magma in the PGE ; by what processes were these PGE concentrated in the mineralized layers ; was contamination of the Bushveld magma from external sources important in the formation of the PGE enriched layers ; what are the effects of fractional crystallization on the PGE ratios

  20. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hideo Hashizume

    2015-02-01

    Full Text Available Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  1. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  2. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities.

    Science.gov (United States)

    Uroz, Stephane; Kelly, Laura Catherine; Turpault, Marie-Pierre; Lepleux, Cendrella; Frey-Klett, Pascale

    2015-12-01

    Soil is composed of a mosaic of different rocks and minerals, usually considered as an inert substrata for microbial colonization. However, recent findings suggest that minerals, in soils and elsewhere, favour the development of specific microbial communities according to their mineralogy, nutritive content, and weatherability. Based upon recent studies, we highlight how bacterial communities are distributed on the surface of, and in close proximity to, minerals. We also consider the potential role of the mineral-associated bacterial communities in mineral weathering and nutrient cycling in soils, with a specific focus on nutrient-poor and acidic forest ecosystems. We propose to define this microbial habitat as the mineralosphere, where key drivers of the microbial communities are the physicochemical properties of the minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Investigation of Ageing Effects on Organic Binders used for Mineral Wool Products

    DEFF Research Database (Denmark)

    Zafar, Ashar

    mainly due to hydrolyzation of urea containing groups. On the other hand, XPS and ToF-SIMS characterization of alkanol amine-acid anhydride binder coated mineral fibres consistently showed that the surface chemical composition of the organic components of these samples did not change appreciably during......Phenol-Urea-Formaldehyde (PUF) binder based mineral wool products’ mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while mineral wool products based on a newly developed alkanol amine-acid anhydride binder exhibited better ageing properties...... for the same duration of ageing. The main purpose of the present work is to examine the chemical changes occurring in the phenol-urea-formaldehyde binder based mineral fibres due to ageing, which cause deterioration of the mechanical properties of mineral wool products. This has been done using surface...

  4. Glyphosate behavior at soil and mineral-water interfaces

    International Nuclear Information System (INIS)

    Pessagno, Romina C.; Torres Sanchez, Rosa M.; Santos Afonso, Maria dos

    2008-01-01

    Adsorption isotherms and surface coverage of glyphosate, N-phosphonomethylglycine (PMG), in aqueous suspensions of three Argentine soils with different mineralogical composition were measured as a function of PMG concentration and pH. Zeta potential curves for PMG/soils system were also determined. Montmorillonite and soil sample surface charges were negative and increased as the amount of adsorbed PMG increased, showing that the surface complexes are more negative than those formed during the surface protonation. PMG adsorption on soils were described using Langmuir isotherms and the affinity constants, and the maximum surface coverage was estimated at pH 4 and 7 using a two-term Langmuir isotherm, the mineralogical composition percentages, and maximum surface coverage and Langmuir constants for pure minerals. The influence of organic matter (OM) and iron content of soils on the PMG adsorption was evaluated. The surface coverage of PMG decreased when the OM and iron content decreased for minerals and soils. - Adsorption isotherms, surface coverage and zeta potential curves of glyphosate in aqueous suspensions of montmorillonite and three Argentine soils were measured as a function of PMG concentration and pH

  5. Glyphosate behavior at soil and mineral-water interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pessagno, Romina C. [INQUIMAE and Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II, (C1428EHA) Buenos Aires (Argentina)], E-mail: rpessagno@qi.fcen.uba.ar; Torres Sanchez, Rosa M. [CETMIC, CC 49, (B1896ZCA) M.B. Gonnet, Buenos Aires Province (Argentina)], E-mail: rosats@cetmic.unlp.edu.ar; Santos Afonso, Maria dos [INQUIMAE and Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II, (C1428EHA) Buenos Aires (Argentina)], E-mail: dosantos@qi.fcen.uba.ar

    2008-05-15

    Adsorption isotherms and surface coverage of glyphosate, N-phosphonomethylglycine (PMG), in aqueous suspensions of three Argentine soils with different mineralogical composition were measured as a function of PMG concentration and pH. Zeta potential curves for PMG/soils system were also determined. Montmorillonite and soil sample surface charges were negative and increased as the amount of adsorbed PMG increased, showing that the surface complexes are more negative than those formed during the surface protonation. PMG adsorption on soils were described using Langmuir isotherms and the affinity constants, and the maximum surface coverage was estimated at pH 4 and 7 using a two-term Langmuir isotherm, the mineralogical composition percentages, and maximum surface coverage and Langmuir constants for pure minerals. The influence of organic matter (OM) and iron content of soils on the PMG adsorption was evaluated. The surface coverage of PMG decreased when the OM and iron content decreased for minerals and soils. - Adsorption isotherms, surface coverage and zeta potential curves of glyphosate in aqueous suspensions of montmorillonite and three Argentine soils were measured as a function of PMG concentration and pH.

  6. Heteroaggregation of graphene oxide with minerals in aqueous phase.

    Science.gov (United States)

    Zhao, Jian; Liu, Feifei; Wang, Zhenyu; Cao, Xuesong; Xing, Baoshan

    2015-03-03

    Upon release into waters, sediments, and soils, graphene oxide (GO) may interact with fine mineral particles. We investigated the heteroaggregation of GO with different minerals, including montmorillonite, kaolinite, and goethite, in aqueous phase. GO significantly enhanced the dispersion of positively charged goethite (>50%) via heteroaggregation, while there was no interaction between GO and negatively charged montmorillonite or kaolinite. Electrostatic attraction was the dominant force in the GO-goethite heteroaggregation (pH 4.0-8.5), and the dissolved Fe ions (formation of multilayered GO-goethite complex with high configurational stability. These findings are useful for understanding the interaction of GO with mineral surfaces, and potential fate and toxicity of GO under natural conditions in aquatic environments, as well as in soils and sediments.

  7. Electrochemical degradation and mineralization of glyphosate herbicide.

    Science.gov (United States)

    Tran, Nam; Drogui, Patrick; Doan, Tuan Linh; Le, Thanh Son; Nguyen, Hoai Chau

    2017-12-01

    The presence of herbicide is a concern for both human and ecological health. Glyphosate is occasionally detected as water contaminants in agriculture areas where the herbicide is used extensively. The removal of glyphosate in synthetic solution using advanced oxidation process is a possible approach for remediation of contaminated waters. The ability of electrochemical oxidation for the degradation and mineralization of glyphosate herbicide was investigated using Ti/PbO 2 anode. The current intensity, treatment time, initial concentration and pH of solution are the influent parameters on the degradation efficiency. An experimental design methodology was applied to determine the optimal condition (in terms of cost/effectiveness) based on response surface methodology. Glyphosate concentration (C 0  = 16.9 mg L -1 ) decreased up to 0.6 mg L -1 when the optimal conditions were imposed (current intensity of 4.77 A and treatment time of 173 min). The removal efficiencies of glyphosate and total organic carbon were 95 ± 16% and 90.31%, respectively. This work demonstrates that electrochemical oxidation is a promising process for degradation and mineralization of glyphosate.

  8. Copperton - Areachap Cu-Zn mineralization

    International Nuclear Information System (INIS)

    Theart, H.F.J.

    1985-05-01

    Stratiform massive sulfide deposit at the Prieska Cu-Zn and Areachap mines are situated close to the eastern margin of the Namaqua Province, South Africa, within the Copperton and Jannelsepan Formations. The investigation of the petrology and geochemistry of the Prieska Cu-Zn deposits forms the basis of this study. Borehole core and surface samples were investigated petrographically. Knowledge gained during this investigation was used to select suitable samples for geochemical analysis. Suites of samples were analysed for their major element and some trace element concentrations by wavelength-dispersive X-ray fluorescence spectrometry. Concentrations of some elements in the lanthanide group were determined using the inductively coupled plasma emission spectrometer. Samples were also submitted for analysis by instrumental neutron activation analysis. Determinations of concentrations of U and Pb and isotopic compositions of Pb were done for both whole rock samples and sulfide mineral separates. Major and trace element abundances within different rock types of the Copperton Formation are discussed and compared with those of the Jannelsepan and Hartebeest Pan Formations. The petrogenetic implications of these, the U-Pb isotope systematics and S isotope ratios are used to reconstruct the geological environment of mineralization. 187 refs., 106 figs., 68 tabs

  9. Mineral formation on metallic copper in a 'future repository site environment'

    International Nuclear Information System (INIS)

    Amcoff, Oe.; Holenyi, K.

    1996-04-01

    Since reducing conditions are expected much effort has been concentrated on Cu-sulfides and CuFe-sulfides. However, oxidizing conditions are also discussed. A list of copper minerals are included. It is concluded that mineral formation and mineral transitions on the copper canister surface will be governed by kinetics and metastabilities rather than by stability relations. The sulfides formed are less likely to form a passivating layer, and the rate of sulfide growth will probably be governed by the rate of transport of reacting species to the canister surface. A series of tests are recommended, in an environment resembling the initial repository site conditions. 82 refs, 8 figs

  10. Mineral formation on metallic copper in a `future repository site environment`

    Energy Technology Data Exchange (ETDEWEB)

    Amcoff, Oe; Holenyi, K

    1996-04-01

    Since reducing conditions are expected much effort has been concentrated on Cu-sulfides and CuFe-sulfides. However, oxidizing conditions are also discussed. A list of copper minerals are included. It is concluded that mineral formation and mineral transitions on the copper canister surface will be governed by kinetics and metastabilities rather than by stability relations. The sulfides formed are less likely to form a passivating layer, and the rate of sulfide growth will probably be governed by the rate of transport of reacting species to the canister surface. A series of tests are recommended, in an environment resembling the initial repository site conditions. 82 refs, 8 figs.

  11. Near-infrared detection of ammonium minerals at Ivanhoe Hot Springs, Nevada

    Science.gov (United States)

    Krohn, M. D.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were collected over the fossil hot spring deposit at Ivanhoe, Nevada in order to determine the surface distribution of NH4-bearing minerals. Laboratory studies show that NH4-bearing minerals have characteristic absorption features in the near-infrared (NIR). Ammonium-bearing feldspars and alunites were observed at the surface of Ivanhoe using a hand-held radiometer. However, first look analysis of the AIS images showed that the line was about 500 m east of its intended mark, and the vegetation cover was sufficiently dense to inhibit preliminary attempts at making relative reflectance images for detection of ammonium minerals.

  12. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures

    Science.gov (United States)

    Wasilewska, Marta; Małaszkiewicz, Dorota; Ignatiuk, Natalia

    2017-10-01

    Mineral filler aggregates play an important role in asphalt mixtures because they fill voids in paving mix and improve the cohesion of asphalt binder. Limestone powder containing over 90% of CaCO3 is the most frequently used type of filler. Waste material from the production of coarse aggregate can be successfully used as a mineral filler aggregate for hot asphalt concrete mixtures as the limestone powder replacement. This paper presents the experimental results of selected properties of filler aggregates which were obtained from rocks with different mineral composition and origin. Five types of rocks were used as a source of the mineral filler aggregate: granite, gabbro, trachybasalt, quartz sandstone and rocks from postglacial deposits. Limestone filler was used in this study as the reference material. The following tests were performed: grading (air jet sieving), quality of fines according to methylene blue test, water content by drying in a ventilated oven, particle density using pyknometer method, Delta ring and ball test, Bitumen Number, fineness determined as Blaine specific surface area. Mineral filler aggregates showed significant differences when they were mixed with bitumen and stiffening effect in Delta ring and ball test was evaluated. The highest values were achieved when gabbro and granite fillers were used. Additionally, Scanning Electron Microscopy (SEM) analysis of grain shape and size was carried out. Significant differences in grain size and shape were observed. The highest non-homogeneity in size was determined for quartz sandstone, gabbro and granite filler. Their Blaine specific surface area was lower than 2800 cm2/g, while for limestone and postglacial fillers with regular and round grains it exceeded 3000 cm2/g. All examined mineral filler aggregates met requirements of Polish National Specification WT-1: 2014 and could be used in asphalt mixtures.

  13. Are underground coal miners satisfied with their work boots?

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. MINERAL WATERS IN RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    BORGES, TIAGO

    2013-02-01

    Full Text Available Background: Rheumatoid arthritis (RA is an autoimmune disorder affecting nearly 1% of adult population. First-line therapies include disease-modifying antirheumatic drugs, but creno-balneotherapyis often prescribed in rheumatic disorders and RA is no exception. Objectives: To know the efficacy of creno-balneotherapy in RA. Methods: A Medline based search was made using MeSH terms “balneology” and “rheumatoid arthritis”. Articles concerning the use of mineral waters in RA treatment were included. Results: In RA, two traditional ways of employing mineral waters are commonly used: immersion and peliotherapy. Each owns their benefits to non-specific or hydrotherapeutic effects and specific or crenotherapeutic effects. Mineral waters must be regarded as an adjuvant therapy in quiescent, stable or non-progressive RA. Significant benefits have been accomplished with radonenriched and sulphurous waters. Isothermal or hyperthermal waters should be preferred. Conclusions: Although there is a global lack of evidence, mineral waters are a safe and effective therapy to be considered in RA.

  15. Marine minerals: The Indian perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.; Nath, B.N.; Banerjee, R.

    the Konkan Coast, Maharashtra. The future demand for economic minerals and metals for the year 2000 vis-a-vis the production of material in the last twelve years has been calculated, and in light of the above, the importance and chances of offshore...

  16. Oceans: Geochemistry and mineral resources

    Digital Repository Service at National Institute of Oceanography (India)

    Joao, H.M.; Paropkari, A.L.

    , Indian became the first country to have been allocated exclusive rights of exploration in the pioneer area in the Central Indian Ocean Basin. Presently world wide some of the near-shore deposits are being exploited. However, the mining for other mineral...

  17. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  18. Lagoa Real design - Mineral engineering

    International Nuclear Information System (INIS)

    Forman, J.M.A.

    1982-01-01

    This paper presents the works realized, in course and to realize of Lagoa Real Design, including the works for implantation of Mineral-Industrial complex with the production capacity of 1.000 ton of U sub(3) O sub(8) per year from 1988. (author)

  19. Impact of mineral resource depletion

    CSIR Research Space (South Africa)

    Brent, AC

    2006-09-01

    Full Text Available In a letter to the editor, the authors comment on BA Steen's article on "Abiotic Resource Depletion: different perceptions of the problem with mineral deposits" published in the special issue of the International Journal of Life Cycle Assessment...

  20. Minerals Industry' 97. Survey report

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of this annual survey is to provide timely and accurate financial data such as production, price movements, profitability, distribution of assets by activity, employment and labour cost and taxation on the Australian minerals industry. It aims to facilitate more informed debate on the industry's role and importance in the economy. The report also includes information on the safety and health performance and overseas exploration expenditure of the minerals industry. This twenty-first survey relates to the year ended 30 June 1997. The proportion of activity covered in this year's survey is comparable with the 1996 survey. The mineral industry is defined as including exploration for, extraction and primary processing of minerals in Australia. The oil, gas, iron and steel industries are excluded. As for the uranium industry, increased mine capacity over the medium term saw a switch away from spot market purchases to long term contracts for uranium in 1996. This, coupled with announced releases from the US stockpile, saw downward pressure on spot market prices for uranium during 1996/97. The average spot market price for U 3 O 8 fell by an average of 6 percent during 1996/97 and was approximately 16 percent lower than three years ago. General uncertainty over the future profitability of coal industry is compounded by the likely softness of future coal prices

  1. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.

  2. Relationships between mineralization and silicic volcanism in the central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Halls, C.; Baker, M.C.W.

    1983-10-01

    Studies of late Tertiary silicic volcanic centers in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth.

  3. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.

    Science.gov (United States)

    Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M

    2005-06-30

    Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.

  4. Health effects of mineral dusts, Volume 28: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, G.D. Jr. [ed.] [Los Alamos National Lab., NM (United States); Mossman, B.T. [ed.] [Vermont Univ., Burlington, VT (United States). Dept. of Pathology

    1993-12-31

    The processes that lead to the development of disease (or pathogenesis) by minerals very likely occur at or near the mineral-fluid interface. Thus the field of ``mineral-induced pathogenesis`` is a prime candidate for interdisciplinary research, involving mineral scientists, health scientists, petrologists, pathologists, geochemists, biochemists, and surface scientists, to name a few. This review volume and the short course upon which it was based are intended to provide some of the necessary tools for the researcher interested in this area of interdisciplinary research. The chapters present several of the important problems, concepts, and approaches from both the geological and biological ends of the spectrum. These two extremes are partially integrated throughout the book by cross-referencing between chapters. Chapter 1 also presents a general introduction into the ways in which these two areas overlap. The final chapter of this book discusses some of the regulatory aspects of minerals. A glossary is included at the end of this book, because the complexity of scientific terms in the two fields can thwart even the most enthusiastic of individuals. Individual reports have been processed separately for the database.

  5. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation

    Science.gov (United States)

    Zeng, Zhirui; Tice, Michael M.

    2018-01-01

    Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms.

  6. Lineament analysis of mineral areas of interest in Afghanistan

    Science.gov (United States)

    Hubbard, Bernard E.; Mack, Thomas J.; Thompson, Allyson L.

    2012-01-01

    During a preliminary mineral resource assessment of Afghanistan (Peters and others, 2007), 24 mineralized areas of interest (AOIs) were highlighted as the focus for future economic development throughout various parts of the country. In addition to located mineral resources of value, development of a viable mining industry in Afghanistan will require the location of suitable groundwater resources for drinking, processing of mineral ores for use or for export, and for agriculture and food production in areas surrounding and supporting future mining enterprises. This report and accompanying GIS datasets describe the results of both automated and manual mapping of lineaments throughout the 24 mineral occurrence AOIs described in detail by Peters and others (2007; 2011). For this study, we define lineaments as "mappable linear or curvilinear features of a surface whose parts align in a straight or slightly curving relationship that may be the expression of a fault or other linear zones of weakness" as derived from remote sensing sources such as optical imagery, radar imagery or digital elevation models (DEMs) (Sabins, 2007).

  7. [Runoff loss of soil mineral nitrogen and its relationship with grass coverage on Loess slope land].

    Science.gov (United States)

    Zhang, Yali; Li, Huai'en; Zhang, Xingchang; Xiao, Bo

    2006-12-01

    In a simulated rainfall experiment on Loess slope land, this paper determined the rainfall, surface runoff and the effective depth of interaction (EDI) between rainfall and soil mineral nitrogen, and studied the effects of grass coverage on the EDI and the runoff loss of soil mineral nitrogen. The results showed that with the increase of EDI, soil nitrogen in deeper layers could be released into surface runoff through dissolution and desorption. The higher the grass coverage, the deeper the EDI was. Grass coverage promoted the interaction between surface runoff and surface soil. On the slope land with 60%, 80% and 100% of grass coverage, the mean content of runoff mineral nitrogen increased by 34.52%, 32.67% and 6.00%, while surface runoff decreased by 4.72%, 9.84% and 12.89%, and eroded sediment decreased by 83.55%, 87.11% and 89.01%, respectively, compared with bare slope land. The total runoff loss of soil mineral nitrogen on the lands with 60%, 80%, and 100% of grass coverage was 95.73%, 109.04%, and 84.05% of that on bare land, respectively. Grass cover had dual effects on the surface runoff of soil mineral nitrogen. On one hand, it enhanced the influx of soil mineral nitrogen to surface runoff, and on the other hand, it markedly decreased the runoff, resulting in the decrease of soil mineral nitrogen loss through runoff and sediment. These two distinct factors codetermined the total runoff loss of soil mineral nitrogen.

  8. Radiological hazards to uranium miners

    International Nuclear Information System (INIS)

    1990-05-01

    The purpose of the present document is to review and assess the occupational hazards to uranium miners in Canada. Amendments to regulations set the maximum permissible dose to uranium miners at 50 mSv per year. Uranium miners are exposed to radon and thoron progeny, external gamma radiation and long-lived alpha-emitting radionuclides in dust. The best estimate for the lifetime risk of inhaled radon progeny is about 3 x 10 -4 lung cancers per WLM for the average miner, with a range of uncertainty from about 1 -6 x 10 -4 per WLM. This central value is nearly twice as high as that recommended by the ICRP in 1981. The probability of serious biological consequences following exposure to external gamma rays is currently under review but is expected to be in the range of 3 - 6 x 10 -2 Sv -1 . Dosimetric calculations indicate that the stochastic risks per WLM of thoron progeny are about one-third of those for radon progeny. The annual limits on intake of inhaled ore dusts recommended by the ICRP are probably too low by at least a factor of two for the type of ore and dust normally encountered in underground uranium mines in Ontario; this is due in part to the fact that the average diameter of these dusts is five times greater than the value used by the ICRP. Radiological exposures of uranium miners in Canada were reviewed. The biological impact of these exposures were compared with those of conventional accidents on the basis of the years of normal life expectancy that are lost or seriously impaired due to occupational hazards. The objectives in considering all occupational risks are to reduce the total risk from all causes and to use funds spent for health protection as effectively as possible

  9. Proceedings of XXIV international mineral processing congress

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dianzuo; Sun Chuan Yao; Wang Fu Liang; Zhang Li Cheng; Han Long (eds.)

    2008-07-01

    Topics covered in volume 1 include applied mineralogy, comminution, classification, physical separation, flotation chemistry, sulphide flotation, non-sulphide flotation and reagent in mineral industry. Volume 2 covers processing of complex ores, processing of industrial minerals and coal, solid liquid separation, dispersion and aggregation, process simulation, expert systems and control of mineral processing, biohydrometallurgy, and mineral chemical processing. Volume 3 contains powder technology, mineral materials, treatment and recycling for solid wastes, waste water treatment, secondary resource recovery, soil remediation, concentrator engineering and process design, and application of mineral processing in related industry. It includes a CD-ROM of the proceedings.

  10. Direct Flotation of Niobium Oxide Minerals from Carbonatite Niobium Ores

    Science.gov (United States)

    Ni, Xiao

    Currently the recovery of niobium oxide minerals from carbonatite niobium ores relies on the use of non-selective cationic collectors. This leads to complicated process flowsheets involving multiple desliming and multiple reverse flotation stages, and low niobium recovery. In this research, anionic collectors that are capable of strong chemisorption on the niobium minerals were studied with the objective of directly floating the niobium oxide minerals from the carbonatite ores. In the flotation of both high purity minerals and Niobec ores, it was shown that the combination of hydroxamic acid and sodium metaphosphate was an effective reagent scheme for the direct flotation of niobium oxide from its ores. Batch flotation on the Niobec Mill Feed showed that over 95% of niobium oxide was recovered into a rougher concentrate that was less than 47% of the original feed mass. Preliminary cleaning tests showed that the reagent scheme could also be used to upgrade the rougher concentrate, although the depression of iron oxide minerals required further study. X-ray photoelectron spectroscopic (XPS) measurement results confirm that OHA (octyl hydroxamic acid) could chemisorb on pyrochlore surface while only physically adsorb on calcite, judging by the chemical shifts of electron binding energies in the elements in both OHA and the mineral surfaces. When hydroxamic acid was adsorbed on calcite surface, the binding energies of the N 1s electrons, at 400.3 eV, did not shift. However, after adsorption on pyrochlore, the N 1s binding energy peak split into two peaks, one at a binding energy of around 399 eV, representing chemically adsorbed OHA, the other at between 400 and 401 eV. The experimental data suggested a strong chemisorption of the OHA on pyrochlore surface in the form of a vertical head-on orientation of the OHA molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations, followed by possibly randomly oriented physisorbed OHA molecules

  11. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  12. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  13. New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals

    Science.gov (United States)

    Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie

    2017-11-01

    Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.

  14. Molecular approach of uranyl/mineral surfaces: experimental approach

    International Nuclear Information System (INIS)

    Drot, R.

    2009-01-01

    The author reports an experimental approach in which different spectroscopic approaches are coupled (laser spectroscopy, X-ray absorption spectroscopy, vibrational spectroscopy) to investigate the mechanisms controlling actinide sorption processes by different substrates, in order to assess radioactive waste storage site safety. Different substrates have been considered: monocrystalline or powdered TiO 2 , montmorillonite, and gibbsite

  15. Australian mineral industry annual review for 1982

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The Australian mineral industry annual review records the activities and development of the Australian mineral industry and reports production, consumption, treatment, trade, prices, new developments, exploration and resources for mineral commodities including fuels, and summarises equivalent developments abroad. The present volume reviews activities and developments in 1982. Part 1 (General Review) - after briefly surveying the world mineral industry, summarises developments in the Australian mineral industry as a whole, under the headings: the industry in the national economy; important recent developments; production; overseas trade; prices; exploration expenditure; investment; income tax; royalties; structural data; wages and salaries; industrial disputes; and government assistance, legislation and controls. Part 2 (Commodity Review) - covers industrial mineral commodities, from abrasives to zirconium. Part 3 (Mining Census) - tabulates statistics extracted from the mining census, together with some mineral processing statistics from the manufacturing census. Part 4 (Miscellaneous) - tabulates quantum and value data on mineral output provided by State departments of mines and their equivalents.

  16. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  17. Abundance estimation of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This paper evaluates a spectral unmixing method for estimating the partial abundance of spectrally similar minerals in complex mixtures. The method requires formulation of a linear function of individual spectra of individual minerals. The first...

  18. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  19. Iron Hydroxide Minerals Drive Organic and Phosphorus Chemistry in Subsurface Redox / pH Gradients

    Science.gov (United States)

    Flores, E.; Barge, L. M.; VanderVelde, D.; Baum, M.

    2017-12-01

    Iron minerals, particularly iron oxides and oxyhydroxides, are prevalent on Mars and may exist in mixed valence or even reduced states beneath the oxidized surface. Iron (II,III) hydroxides, including green rust, are reactive and potentially catalytic minerals that can absorb and concentrate charged species, while also driving chemical reactions. These minerals are highly redox-sensitive and the presence of organics and/or phosphorus species could affect their mineralogy and/or stability. Conversely, the minerals might be able to drive chemical processes such as amino acid formation, phosphorus oxyanion reactions, or could simply selectively preserve organic species via surface adsorption. In an open aqueous sediment column, soluble products of mineral-driven reactions could also diffuse to sites of different chemical conditions to react even further. We synthesized Fe-hydroxide minerals under various conditions relevant to early Earth and ancient Mars (>3.0 Gyr), anoxically and in the presence of salts likely to have been present in surface or ground waters. Using these minerals we conducted experiments to test whether iron hydroxides could promote amino acid formation, and how the reaction is affected by subsurface gradients of redox, pH, and temperature. We also tested the adsorption of organic and phosphorus species onto Fe-hydroxide minerals at different conditions within the gradients. The suite of organic or phosphorus signatures that may be found in a particular mineral system is a combination of what is synthesized there, what is preferentially concentrated / retained there, and what is preserved against degradation. Further work is needed to determine how these processes could have proceeded on Mars and what mineral-organic signatures, abiotic or otherwise, would be produced from such processes.

  20. Multifaceted role of clay minerals in pharmaceuticals

    OpenAIRE

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelli...

  1. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1987-01-01

    Using both large and small experimental animals, this project is investigating levels of uranium-mine air contaminants that produce respiratory system disease in miners. Lung cancer incidence and deaths from degenerative lung disease are significantly elevated among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema. Histopathological data for 100-working-level (WL) exposure rates show a significant increase in lung tumor risk over 1000-WL exposure rates for comparable cumulative radon-daughter exposures. Exposure of rats to radon daughters and other contaminants continues; the exposure of beagle dogs to uranium ore dust alone was terminated. Renal function and hematology data on ore-dust-exposed dogs are reported. 1 figure, 5 tables

  2. Radiolysis of alanine adsorbed in a clay mineral

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-543, Deleg. Coyoacan, C.P. 04510 (Mexico)

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  3. Radiolysis of alanine adsorbed in a clay mineral

    International Nuclear Information System (INIS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-01-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine

  4. Analytical Methods to Distinguish the Positive and Negative Spectra of Mineral and Environmental Elements Using Deep Ablation Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Dongyoung; Yang, Jun-Ho; Choi, Soojin; Yoh, Jack J

    2018-01-01

    Environments affect mineral surfaces, and the surface contamination or alteration can provide potential information to understanding their regional environments. However, when investigating mineral surfaces, mineral and environmental elements appear mixed in data. This makes it difficult to determine their atomic compositions independently. In this research, we developed four analytical methods to distinguish mineral and environmental elements into positive and negative spectra based on depth profiling data using laser-induced breakdown spectroscopy (LIBS). The principle of the methods is to utilize how intensity varied with depth for creating a new spectrum. The methods were applied to five mineral samples exposed to four environmental conditions including seawater, crude oil, sulfuric acid, and air as control. The proposed methods are then validated by applying the resultant spectra to principal component analysis and data were classified by the environmental conditions and atomic compositions of mineral. By applying the methods, the atomic information of minerals and environmental conditions were successfully inferred in the resultant spectrum.

  5. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1983-01-01

    This project is investigating levels or uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological), and their exposure levels, that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumoconiosis, and emphysema

  6. Inhalation hazards to uranium miners

    International Nuclear Information System (INIS)

    Cross, F.T.

    1982-01-01

    This project is investigating levels of uranium mine air contaminants, using both large and small experimental animals to model human respiratory system disease. Lung cancer and deaths by degenerative lung disease have reached epidemic proportions among uranium miners, but the cause-effect relationships for these diseases are based on inadequate epidemiological data. This project identifies agents or combinations of agents (both chemical and radiological) and their exposure levels that produce respiratory tract lesions, including respiratory epithelial carcinoma, pneumonconiosis and emphysema

  7. Cancer of lung in miners

    International Nuclear Information System (INIS)

    Kolenic, J.; Jurgova, T.; Volckova, A.; Zimacek, J.

    1995-01-01

    In the period of 1983-1994 was registered at Clinic of occupational diseases 87 cases of professional cancer of lung. Mostly /85/ of cases was related to miners, by whom act as risk factor alpha ionisation from radon. Average age group was 60.2 y, average time of exposition was 21.6 y. Epidermoid carcinoma was the most frequent type of tumor /46.5 %/ of cases/. Smoking plays a supportive role. (authors)

  8. Minor sources of miner exposure

    International Nuclear Information System (INIS)

    Strong, J.C.; Green, N.; Brown, K.; O'Riordan, M.C.

    1983-01-01

    The sources of radiation exposure to miners in non-coal mines in addition to radon daughters are thoron daughters in mine air, long-lived radionuclides in mine dust and gamma radiation from the local rocks. A crude estimate of the total annual effective dose equivalent from these minor sources is 2 - 5 mSv which is of secondary importance compared to the dose from radon daughters. (UK)

  9. Epidemiological studies of Czech miners

    International Nuclear Information System (INIS)

    Tomasek, L.

    1995-01-01

    Lung cancer risk from radon was analysed in three cohorts of uranium (N=4320+5628) and burnt clay (N=915) miners. The follow-up of miners was extended up to 1990. Most of the cases (708) have been observed in the oldest (S) cohort followed since 1952. The other two cohorts, 18 years younger in average with substantially lower exposures, contributed 72 cases. Therefore, the main analyses of risk from radon were based on the S cohort. The data of the S cohort were subjected to checks both as for the individual exposures of the miners and the completeness of follow-up. The present mortality analyses from other causes suggest the follow-up is correct. The general patterns of mortality from violent deaths and diseases other than lung cancer show similar features in all the three cohorts, i.e. decreasing trend with time since first exposure in the first case, and increasing trend in the second one, confirming thus the healthy worker effect, in the first 20 years. A raised mortality was observed in later periods in respiratory and circulatory diseases and also in cancers other than lung cancer, suggesting that smoking habits among miners might be more frequent than in the general population. The estimates of lung cancer risk from radon exposure were based on relative linear models, where cumulative exposures were lagged by 5 years. The linear effect of cumulative exposure was substantially modified by time since exposure, exposure rate, and age at exposure. From the estimated intercept, it can be deduced that in the absence of exposure to radon, the estimated mortality from lung cancer in the cohort is about 1.5 times higher than in the general population. (orig.) [de

  10. 36 CFR 331.17 - Minerals.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Minerals. 331.17 Section 331..., KENTUCKY AND INDIANA § 331.17 Minerals. All activities in connection with prospecting, exploration, development, mining or other removal or the processing of mineral resources and all uses reasonably incident...

  11. Contribution of the Minerals Industry towards Sustainable ...

    African Journals Online (AJOL)

    South Africa is a leading producer of a number of mineral commodities, and the minerals industry is a key driver of the South African economy. Ensuring that this mineral wealth is exploited in a manner consistent with the principles of sustainable development requires policies and strategies that are underpinned by a ...

  12. Recovery of asphalt from bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jossinet, J

    1881-12-31

    A process is disclosed for the recovery of asphalt from bituminous minerals, consisting in that the mineral is extracted with mineral oil, which is recovered by distilling the raw asphalt and distilling the solution to obtain on the one hand the liquid oil contained in the raw asphalt for use in the extraction and on the other hand distilled asphalt.

  13. Sustainability in the UK construction minerals industry

    OpenAIRE

    Mitchell, Clive

    2015-01-01

    Sustainability in the UK construction minerals industry Clive Mitchell, Industrial Minerals Specialist, British Geological Survey, Nottingham, UK Email: Sustainability is not just about environmental protection it also concerns biodiversity, community relations, competence, employment, geodiversity, health and safety, resource efficiency, restoration and stakeholder accountability. The UK construction minerals industry aims to supply essential materials in a sustainabl...

  14. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  15. Lead isotope in mineral exploration

    International Nuclear Information System (INIS)

    Gulson, B.L.

    1986-01-01

    This book provides an up-to-date state-of-the-art review of lead isotopes in mineral exploration. Beginning with an historical review on suggested uses of lead isotopes in mineral exploration, the author then outlines the theoretical aspects of lead isotopes and illustrates that the method is based on well-known principles of radioactive decay, from which isotopic signatures for different styles of mineralization are derived. The varying isotopic signatures are then introduced. The major part of the book details over 40 case histories for base and precious metals, uranium and tin using sampling media such as sulfides, gossans, soils, weathered bedrock, vegetation and groundwaters. Advantages and disadvantages of each are discussed. Examples are given of the use of lead isotopes in testing conceptual models for exploration. The success rate and cost-effectiveness of the method are illustrated by actual exploration examples. Analytical advances which should lower the cost of the method and future uses are outlined. Many of the case histories use recently published or unpublished data, 27 tables of which are given in an appendix. Details of sampling, the methods for obtaining the isotope ratios, and a commercially-available integrated lead isotope service are also provided. (Auth.)

  16. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China

    Directory of Open Access Journals (Sweden)

    Xiang Zeng

    2018-05-01

    Full Text Available Types of organic matter and mineral associations and microstructures of shales can reflect the depositional mechanism and sedimentary environment. Therefore, analysis of organic matter and mineral associations is a prerequisite for research on fine-grained sedimentary rocks. Shales from the Eocene Shahejie Formation in the Dongying Sag of China were selected to classify their lithofacies and to investigate the characteristics of their organic matter and mineral associations. This analysis identified six lithofacies (e.g., laminated shales and massive mudstones; in all the lithofacies, clay minerals exhibit a positive correlation with detrital minerals, thus indicating that they were derived from the same source. The comprehensive analysis of mineral and organic matter associations reveals that detrital minerals were deposited with low-hydrogen index (HI OM. The deposition of detrital minerals was mainly a physical process. Clay minerals can undergo deposition in one of two ways due to their surface charge: they can either aggregate with high-HI OM via chemical deposition, thus forming organic-rich laminae, or they can be deposited together with low-HI OM via physical deposition, thus forming clay-rich laminae or a massive matrix. Carbonate minerals, which often coexist with high-HI OM, are biological sediments. The analysis of the sedimentary characteristics of these organic matter and mineral associations indicates that the sedimentary processes differ between various lithofacies: e.g., the discontinuous laminated shale represents the product of biophysical processes. Differences in depositional mechanisms are also present in each sub-member. Therefore, it is important to analyze the properties of minerals and organic matter, as well as their associations, to more deeply understand the classification of lithofacies and the depositional processes of shales and mudstones.

  17. Role of Mineral Deposits in Global Geochemical Cycles

    Science.gov (United States)

    Kesler, S.; Wilkinson, B.

    2009-12-01

    Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global geochemical cycles. Quantitative estimates of the role that mineral deposits play in these geochemical cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” model for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural geochemical cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural

  18. Mortality among sulfide ore miners

    International Nuclear Information System (INIS)

    Ahlman, K.; Koskela, R.S.; Kuikka, P.; Koponen, M.; Annanmaeki, M.

    1991-01-01

    Lung cancer mortality was studied during 1965-1985 in Outokumpu township in North Karelia, where an old copper mine was located. Age-specific lung cancer death rates (1968-1985) were higher among the male population of Outokumpu than among the North Karelian male population of the same age excluding the Outokumpu district (p less t