WorldWideScience

Sample records for nonstructural protein 4b

  1. Effects of hepatitis C virus core protein and nonstructural protein 4B on the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jiang, Xiao-Hua; Xie, Yu-Tao; Cai, Ya-Ping; Ren, Jing; Ma, Tao

    2017-05-25

    Hepatitis C virus (HCV) core protein and nonstructural protein 4B (NS4B) are potentially oncogenic. Aberrant activation of the Wnt/β-catenin signaling pathway is closely associated with hepatocarcinogenesis. We investigated the effects of HCV type 1b core protein and NS4B on Wnt/β-catenin signaling in various liver cells, and explored the molecular mechanism underlying HCV-related hepatocarcinogenesis. Compared with the empty vector control, HCV core protein and NS4B demonstrated the following characteristics in the Huh7 cells: significantly enhanced β-catenin/Tcf-dependent transcriptional activity (F = 40.87, P  0.05), but they did significantly enhance Wnt3a-induced β-catenin/Tcf-dependent transcriptional activity (F = 64.25, P core protein than with NS4B (P core protein and NS4B directly activate the Wnt/β-catenin signaling pathway in Huh7 cells and LO2 cells induced by Wnt3a. These data suggest that HCV core protein and NS4B contribute to HCV-associated hepatocellular carcinogenesis.

  2. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus

    Energy Technology Data Exchange (ETDEWEB)

    Fogeron, Marie-Laure [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Jirasko, Vlastimil; Penzel, Susanne [ETH Zurich, Physical Chemistry (Switzerland); Paul, David [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Montserret, Roland; Danis, Clément; Lacabanne, Denis; Badillo, Aurélie [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Gouttenoire, Jérôme; Moradpour, Darius [University of Lausanne, Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois (Switzerland); Bartenschlager, Ralf [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Penin, François [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); and others

    2016-06-15

    We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [{sup 2}H,{sup 13}C,{sup 15}N]-labeled protein are shown to yield narrow {sup 13}C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.

  3. Dengue Virus Non-Structural Protein 5

    Science.gov (United States)

    El Sahili, Abbas; Lescar, Julien

    2017-01-01

    The World Health Organization estimates that the yearly number of dengue cases averages 390 million. This mosquito-borne virus disease is endemic in over 100 countries and will probably continue spreading, given the observed trend in global warming. So far, there is no antiviral drug available against dengue, but a vaccine has been recently marketed. Dengue virus also serves as a prototype for the study of other pathogenic flaviviruses that are emerging, like West Nile virus and Zika virus. Upon viral entry into the host cell and fusion of the viral lipid membrane with the endosomal membrane, the viral RNA is released and expressed as a polyprotein, that is then matured into three structural and seven non-structural (NS) proteins. The envelope, membrane and capsid proteins form the viral particle while NS1-NS2A-NS2B-NS3-NS4A-NS4B and NS5 assemble inside a cellular replication complex, which is embedded in endoplasmic reticulum (ER)-derived vesicles. In addition to their roles in RNA replication within the infected cell, NS proteins help the virus escape the host innate immunity and reshape the host-cell inner structure. This review focuses on recent progress in characterizing the structure and functions of NS5, a protein responsible for the replication and capping of viral RNA that represents a promising drug target. PMID:28441781

  4. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  5. Role of nonstructural protein NS2A in flavivirus assembly

    NARCIS (Netherlands)

    Leung, J.Y.; Pijlman, G.P.; Kondratieva, N.; Hyde, J.; Mackenzie, J.M.; Khromykh, A.A.

    2008-01-01

    Flavivirus nonstructural (NS) proteins are involved in RNA replication and modulation of the host antiviral response; however, evidence is mounting that some NS proteins also have essential roles in virus assembly. Kunjin virus (KUN) NS2A is a small, hydrophobic, transmembrane protein that is part

  6. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    Sequencing of complementary DNAs prepared from various coronaviruses has revealed open reading frames encoding putative proteins that are yet to be characterized and are so far only described as nonstructural (ns). As a first step in the elucidation of its function, we characterized the expression...... and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  7. MAVS protein is attenuated by rotavirus nonstructural protein 1.

    Directory of Open Access Journals (Sweden)

    Satabdi Nandi

    Full Text Available Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS, which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1 which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.

  8. A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein.

    Science.gov (United States)

    Guo, Fang; Wu, Shuo; Julander, Justin; Ma, Julia; Zhang, Xuexiang; Kulp, John; Cuconati, Andrea; Block, Timothy M; Du, Yanming; Guo, Ju-Tao; Chang, Jinhong

    2016-09-21

    Although a highly effective vaccine is available, the number of yellow fever cases has increased over the past two decades, which highlights the pressing need for antiviral therapeutics. In a high throughput screening campaign, we identified an acetic acid benzodiazepine (BDAA) compound, which potently inhibits yellow fever virus (YFV). Interestingly, while treatment of YFV infected cultures with 2 μM of BDAA reduced the virion production by greater than 2 logs, the compound is not active against 21 other viruses from 14 different viral families. Selection and genetic analysis of drug resistant viruses revealed that substitution of proline at amino acid 219 (P219) of the nonstructural protein 4B (NS4B) with serine, threonine or alanine confers YFV resistance to BDAA without apparent loss of replication fitness in cultured mammalian cells. However, substitution of P219 with glycine confers BDAA resistance with significant loss of replication ability. Bioinformatics analysis predicts that the P219 localizes at the endoplasmic reticulum lumen side of the fifth putative trans-membrane domain of NS4B and the mutation may render the viral protein incapable of interacting with BDAA. Our studies thus revealed important role and structural basis for NS4B protein in supporting YFV replication. Moreover, in YFV-infected hamsters, oral administration of BDAA protected 90% of the animals from death, significantly reduced viral load by greater than 2 logs and attenuated viral infection-induced liver injury and body weight loss. The encouraging preclinical results thus warrant further development of BDAA or its derivatives as antiviral agents to treat yellow fever. Yellow fever is an acute viral hemorrhagic disease which threatens approximately one billion people living in tropical areas of Africa and Latin America. Although a highly effective yellow fever vaccine has been available for more than seven decades, the low vaccination rate fails to prevent outbreaks in at

  9. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    Science.gov (United States)

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  10. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    Directory of Open Access Journals (Sweden)

    Manuela Sironi

    2016-09-01

    Full Text Available The Flavivirus genus comprises several human pathogens such as dengue virus (DENV, Japanese encephalitis virus (JEV, and Zika virus (ZIKV. Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus. After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING and viral (i.e. NS1, NS4A proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of

  11. Membrane alterations induced by nonstructural proteins of human norovirus.

    Directory of Open Access Journals (Sweden)

    Sylvie Y Doerflinger

    2017-10-01

    Full Text Available Human noroviruses (huNoV are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4 variants. The viral nonstructural (NS proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV. Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER which included single membrane vesicles (SMVs, double membrane vesicles (DMVs and multi membrane vesicles (MMVs. In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and

  12. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S. J.; van't Veer, C.; Sixma, J. J.; Bouma, B. N.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  13. Rift Valley fever virus structural and non-structural proteins: Recombinant protein expression and immunoreactivity against antisera from sheep

    Science.gov (United States)

    The Rift Valley fever virus (RVFV) encodes structural proteins, nucleoprotein (N), N-terminus glycoprotein (Gn), C-terminus glycoprotein (Gc) and L protein, 78-kDa and non-structural proteins NSm and NSs. Using the baculovirus system we expressed the full-length coding sequence of N, NSs, NSm, Gc an...

  14. Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells.

    Science.gov (United States)

    Tang, Jie; Ji, Lili; Wang, Yuchan; Huang, Yuejiao; Yin, Haibing; He, Yunhua; Liu, Jing; Miao, Xiaobing; Wu, Yaxun; Xu, Xiaohong; He, Song; Cheng, Chun

    2015-07-01

    The expression and biologic function of the gene encoding vacuolar protein sorting 4B (VPS4B) in human multiple myeloma (MM) were investigated in this study. We determined that VPS4B expression is decreased in adherent MM cells and that knockdown of VPS4B expression induces cell adhesion-mediated drug resistance (CAM-DR) in MM. This induced CAM-DR phenotype manifested through down-regulation of cell apoptosis and requires phosphorylation of AKT and Erk. Finally, VPS4B expression was positively correlated with cell proliferation. Our findings support a role for VPS4B in MM cell proliferation, adhesion, and drug resistance, and pave the way for a novel therapeutic approach targeting this molecule.

  15. [Research progress in the structure and function of dengue virus non-structural 1 protein].

    Science.gov (United States)

    Chen, Yue; Ren, Rui-wen; Liu, Jian-wei

    2014-11-01

    Dengue virus (DENV) is a re-emerging disease transmitted by the Aedes mosquitoes and has become a major public health problem in southern China. Currently, no antiviral drug or effective vaccine exist to control this disease. The chimeric DENV structural protein vaccine cannot elicit balanced levels of protective immunity to each of the four viral serotypes; therefore, non-structural protein components may be required to construct an effective DENV vaccine. The Dengue virus non-structural 1 (DENV NS1) protein plays a critical role in viral pathogenesis and protective immunity. Therefore, immunity to Dengue 1-4 NS1 subtypes may be crucial for the prevention of severe disease. This review attempts to provide an overview about the structure and function of DENV NS1.

  16. Complement system proteins which interact with C3b or C4b A superfamily of structurally related proteins

    DEFF Research Database (Denmark)

    Reid, K B M; Bentley, D R; Campbell, R D

    1986-01-01

    Recent cDNA sequencing data has allowed the prediction of the entire amino acid sequences of complement components factor B and C2, the complement control proteins factor H and C4b-binding protein and a partial sequence for the Cab/C4b receptor CR1. These proteins all contain internal repeating...

  17. Yersinia pestis Ail recruitment of C4b-binding protein leads to factor I-mediated inactivation of covalently and noncovalently bound C4b.

    Science.gov (United States)

    Ho, Derek K; Skurnik, Mikael; Blom, Anna M; Meri, Seppo

    2014-03-01

    The outer membrane protein Ail of Yersinia pestis mediates several virulence functions, including serum resistance. Here, we demonstrate that Ail binds C4b-binding protein (C4BP), the primary fluid-phase regulator of the classical and lectin pathways. Non-covalent binding of C4 and C4b to Ail was also observed. C4BP bound to Ail can act as a cofactor to the serine protease factor I (fI) in the cleavage of fluid-phase C4b. Employing a panel of C4BP alpha-chain mutants, we observed that the absence of complement control protein domain 6 and 8 reduced binding to Ail. Immunoblot analysis of normal human serum (NHS)-treated bacteria revealed minimal C4b alpha'-chain complexes with bacterial outer membrane targets. Addition of the anti-C4BP monoclonal antibody MK104 to NHS restored C4b-alpha' chain target complexes, suggesting that C4b binds covalently to targets on the Y. pestis surface. C4b bound to Ail noncovalently was also cleaved in a C4BP and fI-dependent manner, leaving the C4c fragment bound to Ail. MK104 also prevented the cleavage of noncovalently bound C4b. Collectively, these data suggest that when C4BP is bound to Ail, fI can cleave and inactivate C4b that has bound covalently to bacterial surface structures as well as C4b bound noncovalently to Ail. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structure and non-structure of centrosomal proteins.

    Directory of Open Access Journals (Sweden)

    Helena G Dos Santos

    Full Text Available Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set, since their genes contain in average more exons (20.3 versus 14.6. They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15% contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands, and even more in the whole centrosomal proteome (52% against 7%, while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins, which may correspond to alpha-helix forming molecular recognition features (α-MoRFs. We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32% and 19 out of 72 domains (26% were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%, for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  19. Rab5 Enhances Classical Swine Fever Virus Proliferation and Interacts with Viral NS4B Protein to Facilitate Formation of NS4B Related Complex

    Directory of Open Access Journals (Sweden)

    Jihui Lin

    2017-08-01

    Full Text Available Classical swine fever virus (CSFV is a fatal pig pestivirus and causes serious financial losses to the pig industry. CSFV NS4B protein is one of the most important viral replicase proteins. Rab5, a member of the small Rab GTPase family, is involved in infection and replication of numerous viruses including hepatitis C virus and dengue virus. Until now, the effects of Rab5 on the proliferation of CSFV are poorly defined. In the present study, we showed that Rab5 could enhance CSFV proliferation by utilizing lentivirus-mediated constitutive overexpression and eukaryotic plasmid transient overexpression approaches. On the other hand, lentivirus-mediated short hairpin RNA knockdown of Rab5 dramatically inhibited virus production. Co-immunoprecipitation, glutathione S-transferase pulldown and laser confocal microscopy assays further confirmed the interaction between Rab5 and CSFV NS4B protein. In addition, intracellular distribution of NS4B-Red presented many granular fluorescent signals (GFS in CSFV infected PK-15 cells. Inhibition of basal Rab5 function with Rab5 dominant negative mutant Rab5S34N resulted in disruption of the GFS. These results indicate that Rab5 plays a critical role in facilitating the formation of the NS4B related complexes. Furthermore, it was observed that NS4B co-localized with viral NS3 and NS5A proteins in the cytoplasm, suggesting that NS3 and NS5A might be components of the NS4B related complex. Taken together, these results demonstrate that Rab5 positively modulates CSFV propagation and interacts with NS4B protein to facilitate the NS4B related complexes formation.

  20. Protection against Asiatic Taenia solium induced by a recombinant 45W-4B protein.

    Science.gov (United States)

    Luo, Xuenong; Zheng, Yadong; Hou, Junling; Zhang, Shaohua; Cai, Xuepeng

    2009-02-01

    Taenia solium is a great threat not only to human health but also to the pig-raising industry. Oncospheral stage-specific 45W proteins are good candidates for the development of anticysticercosis vaccines. In this study, a recombinant 45W-4B protein was highly produced and used for vaccination. Two animal trials resulted in a significant reduction in parasite burden induced by the definite protein against Asiatic T. solium, up to 97.0% and 98.4%, respectively. These provide informative results for the development of effective 45W-4B vaccines against cysticercosis caused by both Chinese and Mexican T. solium isolates and even by other isolates.

  1. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  2. A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4

    International Nuclear Information System (INIS)

    Hanley, Kathryn A.; Manlucu, Luella R.; Gilmore, Lara E.; Blaney, Joseph E.; Hanson, Christopher T.; Murphy, Brian R.; Whitehead, Stephen S.

    2003-01-01

    An acceptable live-attenuated dengue virus vaccine candidate should have low potential for transmission by mosquitoes. We have identified and characterized a mutation in dengue virus type 4 (DEN4) that decreases the ability of the virus to infect mosquitoes. A panel of 1248 mutagenized virus clones generated previously by chemical mutagenesis was screened for decreased replication in mosquito C6/36 cells but efficient replication in simian Vero cells. One virus met these criteria and contained a single coding mutation: a C-to-U mutation at nucleotide 7129 resulting in a Pro-to-Leu change in amino acid 101 of the nonstructural 4B gene (NS4B P101L). This mutation results in decreased replication in C6/36 cells relative to wild-type DEN4, decreased infectivity for mosquitoes, enhanced replication in Vero and human HuH-7 cells, and enhanced replication in SCID mice implanted with HuH-7 cells (SCID-HuH-7 mice). A recombinant DEN4 virus (rDEN4) bearing this mutation exhibited the same set of phenotypes. Addition of the NS4B P101L mutation to rDEN4 bearing a 30 nucleotide deletion (Δ30) decreased the ability of the double-mutant virus to infect mosquitoes but increased its ability to replicate in SCID-HuH-7 mice. Although the NS4B P101L mutation decreases infectivity of DEN4 for mosquitoes, its ability to enhance replication in SCID-HuH-7 mice suggests that it might not be advantageous to include this specific mutation in an rDEN4 vaccine. The opposing effects of the NS4B P101L mutation in mosquito and vertebrate systems suggest that the NS4B protein is involved in maintaining the balance between efficient replication in the mosquito vector and the human host

  3. Identification of a major non-structural protein in the nuclei of Rift Valley fever virus-infected cells.

    Science.gov (United States)

    Struthers, J K; Swanepoel, R

    1982-06-01

    A non-structural protein of mol. wt. 34 X 10(3) was demonstrated in the nuclei of Rift Valley fever virus-infected Vero cells by SDS-polyacrylamide gel electro-phoresis. The protein appears to correspond to the virus-induced antigen demonstrated by indirect immunofluorescence in intranuclear inclusions.

  4. Mosquito densonucleosis virus non-structural protein NS2 is necessary for a productive infection

    International Nuclear Information System (INIS)

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee; Afanasiev, Boris; Kittayapong, Pattamaporn; Carlson, Jonathan; Corsini, Joe

    2008-01-01

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins. Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny

  5. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    Science.gov (United States)

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  6. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    Science.gov (United States)

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Characterization of the expression and immunogenicity of the ns4b protein of human coronavirus 229E

    DEFF Research Database (Denmark)

    Chagnon, F; Lamarre, A; Lachance, C

    1998-01-01

    and immunogenicity of the ns4b gene product from strain 229E of human coronavirus (HCV-229E), a respiratory virus with a neurotropic potential. The gene was cloned and expressed in bacteria. A fusion protein of ns4b with maltose-binding protein was injected into rabbits to generate specific antibodies that were used...

  8. Polypeptide structure and encoding location of the adenovirus serotype 2 late, nonstructural 33K protein

    International Nuclear Information System (INIS)

    Oosterom-Dragon, E.A.; Anderson, C.W.

    1983-01-01

    Radiochemical microsequence analysis of selected tryptic peptides of the adenovirus type 2 33K nonstructural protein has revealed the precise region of the genomic nucleotide sequence that encodes this protein. The initiation codon for the 33K protein lies 606 nucleotides to the right of the EcoRI restriction site at 70.7 map units and 281 nucleotides to the left of the postulated carboxyterminal codon of the adenovirus 100K protein. The coding regions for these two proteins thus overlap; however, the 33K protein is derived from the +1 frame with respect to the postulated 100K reading frame. Our results contradict an earlier published report suggesting that these two proteins share extensive amino acid sequence homology. The published nucleotide sequence of the Ad2 EcoRI-F fragment (70.7 to 75.9 map units) cannot accomodate in a single reading frame the peptide sequences of the 33K protein that we have determined. Sequence analysis of DNA fragments derived from virus has confirmed the published nucleotide sequence in all critical regions with respect to the coding region for the 33K protein. Consequently, our data are only consistent with the existence of an mRNA splice within the coding for 33K. Consensus donor and acceptor splice sequences have been located that would predict the removal of 202 nucleotides from the transcripts for the 33K protein. Removal of these nucleotides would explain the structure of a peptide that cannot otherwise be directly encoded by the EcoRI-F fragment. Identification of the precise splice points by peptide sequencing has permitted a prediction of the complete amino acid sequence for the 33K protein

  9. The superfamily of C3b/C4b-binding proteins

    DEFF Research Database (Denmark)

    Kristensen, Torsten; D'Eustachio, P; Ogata, R T

    1987-01-01

    The determination of primary structures by amino acid and nucleotide sequencing for the C3b-and/or C4b-binding proteins H, C4BP, CR1, B, and C2 has revealed the presence of a common structural element. This element is approximately 60 amino acids long and is repeated in a tandem fashion, commencing...... at the amino-terminal end of each molecule. Two other complement components, C1r and C1s, have two of these repeating units in the carboxy-terminal region of their noncatalytic A chains. Three noncomplement proteins, beta 2-glycoprotein I (beta 2I), the interleukin 2 receptor (IL 2 receptor), and the b chain...... of factor XIII, have 4, 2 and 10 of these repeating units, respectively. These proteins obviously belong to the above family, although there is no evidence that they interact with C3b and/or C4b. Human haptoglobin and rat leukocyte common antigen also contain two and three repeating units, respectively...

  10. 2BC Non-Structural Protein of Enterovirus A71 Interacts with SNARE Proteins to Trigger Autolysosome Formation.

    Science.gov (United States)

    Lai, Jeffrey K F; Sam, I-Ching; Verlhac, Pauline; Baguet, Joël; Eskelinen, Eeva-Liisa; Faure, Mathias; Chan, Yoke Fun

    2017-07-04

    Viruses have evolved unique strategies to evade or subvert autophagy machinery. Enterovirus A71 (EV-A71) induces autophagy during infection in vitro and in vivo. In this study, we report that EV-A71 triggers autolysosome formation during infection in human rhabdomyosarcoma (RD) cells to facilitate its replication. Blocking autophagosome-lysosome fusion with chloroquine inhibited virus RNA replication, resulting in lower viral titres, viral RNA copies and viral proteins. Overexpression of the non-structural protein 2BC of EV-A71 induced autolysosome formation. Yeast 2-hybrid and co-affinity purification assays showed that 2BC physically and specifically interacted with a N -ethylmaleimide-sensitive factor attachment receptor (SNARE) protein, syntaxin-17 (STX17). Co-immunoprecipitation assay further showed that 2BC binds to SNARE proteins, STX17 and synaptosome associated protein 29 (SNAP29). Transient knockdown of STX17, SNAP29, and microtubule-associated protein 1 light chain 3B (LC3B), crucial proteins in the fusion between autophagosomes and lysosomes) as well as the lysosomal-associated membrane protein 1 (LAMP1) impaired production of infectious EV-A71 in RD cells. Collectively, these results demonstrate that the generation of autolysosomes triggered by the 2BC non-structural protein is important for EV-A71 replication, revealing a potential molecular pathway targeted by the virus to exploit autophagy. This study opens the possibility for the development of novel antivirals that specifically target 2BC to inhibit formation of autolysosomes during EV-A71 infection.

  11. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs

    DEFF Research Database (Denmark)

    Madsen, Eva Smedegaard; Madsen, Knud Gert; Nielsen, Jens

    1997-01-01

    producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies......The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immune sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2...... was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2...

  12. High affinity human antibody fragments to dengue virus non-structural protein 3.

    Directory of Open Access Journals (Sweden)

    Nicole J Moreland

    Full Text Available BACKGROUND: The enzyme activities catalysed by flavivirus non-structural protein 3 (NS3 are essential for virus replication. They are distributed between the N-terminal protease domain in the first one-third and the C-terminal ATPase/helicase and nucleoside 5' triphosphatase domain which forms the remainder of the 618-aa long protein. METHODOLOGY/PRINCIPAL FINDINGS: In this study, dengue full-length NS3 protein with residues 49 to 66 of NS2B covalently attached via a flexible linker, was used as bait in biopanning with a naïve human Fab phage-display library. Using a range of truncated constructs spanning the NS2B cofactor region and the full-length NS3, 10 unique Fab were identified and characterized. Of these, monoclonal Fab 3F8 was shown to bind α3″ (residues 526 through 531 within subdomain III of the helicase domain. The antibody inhibits the ATPase and helicase activites of NS3 in biochemical assays and reduces DENV replication in HEK293 cells that were previously transfected with Fab 3F8 compared with mock transfected cells. CONCLUSIONS/SIGNIFICANCE: Antibodies such as 3F8 are valuable tools for studying the molecular mechanisms of flaviviral replication and for the monospecific detection of replicating dengue virus in vivo.

  13. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  14. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  15. Characterization of polyclonal antibodies against nonstructural protein 9 from the porcine reproductive and respiratory syndrome virus

    Directory of Open Access Journals (Sweden)

    Mengmeng ZHAO,Juanjuan QIAN,Jiexiong XIE,Tiantian CUI,Songling FENG,Guoqiang WANG,Ruining WANG,Guihong ZHANG

    2016-06-01

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS is considered to be one of the most important infectious diseases impacting the swine industry and is characterized by reproductive failure in late term gestation in sows and respiratory disease in pigs of all ages. The nonstructural protein 9 gene, Nsp9, encoding the RNA-dependent RNA polymerase, is generally regarded as fairly conserved when compared to other viral proteins. Antibodies against Nsp9 will be of great importance for the diagnosis and treatment of the causal agent, PRRS virus. A study was undertaken to generate polyclonal antibodies against the immunodominant Nsp9. For this purpose, the Nsp9 was expressed in Escherichia coli and subsequently used as an antigen to immunize New Zealand rabbits. Antiserum was identified via an indirect ELISA, and then verified based on the ability to react with both naturally and artificially expressed Nsp9. Results of virus neutralization test showed that this antiserum could not neutralize the PRRSV. Nevertheless, this antiserum as a diagnostic core reagent should prove invaluable for further investigations into the mechanism of PRRS pathogenesis.

  16. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  17. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2012-01-01

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  18. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  19. Structure and Function of the Non-Structural Protein of Dengue Virus and its Applications in Antiviral Therapy.

    Science.gov (United States)

    Xie, Qian; Zhang, Bao; Yu, JianHai; Wu, Qinghua; Yang, Fangji; Cao, Hong; Zhao, Wei

    2017-01-01

    Dengue fever, a type of global and tropical infectious disease, and its prevention has become a challenging issue worldwide. Antibody-dependent enhancement effects and the virus pathogenic mechanism have not yet been fully elucidated, hindering the development of dengue fever prevention and suitable drug treatment. There is currently no specific prevention and therapy in clinical trials, however, in recent years, studies have focused on the pathogenesis and treatment of dengue. Research focusing on dengue virus nonstructural protein in special drugs for the prevention and control of dengue fever is a new progress leading to improved understanding regarding the prevention and control of dengue fever and suitable drugs for the treatment. The main challenges regarding the structure of dengue virus nonstructural protein and the drugs for antiviral therapy are summarized in this paper.

  20. Identification of antigenic domains in the non-structural protein of Muscovy duck parvovirus.

    Science.gov (United States)

    Yu, Tian-Fei; Li, Ming; Yan, Bing; Shao, Shu-Li; Fan, Xing-Dong; Wang, Jia; Wang, Dan-Na

    2016-08-01

    Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection.

  1. Identification of linear B-cell epitopes on goose parvovirus non-structural protein.

    Science.gov (United States)

    Yu, Tian-Fei; Ma, Bo; Wang, Jun-Wei

    2016-10-15

    Goose parvovirus (GPV) infection can cause a highly contagious and lethal disease in goslings and muscovy ducklings which is widespread in all major goose (Anser anser) and Muscovy duck (Cairina moschata) farming countries, leading to a huge economic loss. Humoral immune responses play a major role in GPV immune protection during GPV infection. However, it is still unknown for the localization and immunological characteristics of B-cell epitopes on GPV non-structural protein (NSP). Therefore, in this study, the epitopes on the NSP of GPV were identified by means of overlapping peptides expressed in Escherichia coli in combination with Western blot. The results showed that the antigenic epitopes on the GPV NSP were predominantly localized in the C-terminal (aa 485-627), and especially, the fragment NS (498-532) was strongly positive. These results may facilitate future investigations on the function of NSP of GPV and the development of immunoassays for the diagnosis of GPV infection. Copyright © 2016. Published by Elsevier B.V.

  2. The Role of Interferon Antagonist, Non-Structural Proteins in the Pathogenesis and Emergence of Arboviruses

    Directory of Open Access Journals (Sweden)

    Samantha S. Soldan

    2011-06-01

    Full Text Available A myriad of factors favor the emergence and re-emergence of arthropod-borne viruses (arboviruses, including migration, climate change, intensified livestock production, an increasing volume of international trade and transportation, and changes to ecosystems (e.g., deforestation and loss of biodiversity. Consequently, arboviruses are distributed worldwide and represent over 30% of all emerging infectious diseases identified in the past decade. Although some arboviral infections go undetected or are associated with mild, flu-like symptoms, many are important human and veterinary pathogens causing serious illnesses such as arthritis, gastroenteritis, encephalitis and hemorrhagic fever and devastating economic loss as a consequence of lost productivity and high mortality rates among livestock. One of the most consistent molecular features of emerging arboviruses, in addition to their near exclusive use of RNA genomes, is the inclusion of viral, non-structural proteins that act as interferon antagonists. In this review, we describe these interferon antagonists and common strategies that arboviruses use to counter the host innate immune response. In addition, we discuss the complex interplay between host factors and viral determinants that are associated with virus emergence and re-emergence, and identify potential targets for vaccine and anti-viral therapies.

  3. Immunological Features of the Non-Structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-02-01

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is currently one of the most important viruses affecting the swine industry worldwide. Despite the large number of papers published each year, the participation of non-structural proteins (nsps in the immune response is not completely clear. nsps have been involved in the host innate immune response, specifically, nsp1α/β, nsp2, nsp4 and nsp11 have been associated with the immunomodulation capability of the virus. To date, only participation by nsp1, nsp2, nsp4 and nsp7 in the humoral immune response has been reported, with the role of other nsps being overlooked. Furthermore, nsp1, nsp2, nsp5, nsp7 nsp9, nsp10, nsp11 have been implicated in the induction of IFN-γ and probably in the development of the cell-mediated immune response. This review discusses recent reports involving the participation of nsps in the modulation of the innate immune response and their role in the induction of both the humoral and cellular immune responses.

  4. Recombinant Production of the Amino Terminal Cytoplasmic Region of Dengue Virus Non-Structural Protein 4A for Structural Studies

    OpenAIRE

    Hung, Yu-Fu; Valdau, Olga; Schünke, Sven; Stern, Omer; Koenig, Bernd W.; Willbold, Dieter; Hoffmann, Silke

    2014-01-01

    BACKGROUND: Dengue virus (DENV) is a mosquito-transmitted positive single strand RNA virus belonging to the Flaviviridae family. DENV causes dengue fever, currently the world's fastest-spreading tropical disease. Severe forms of the disease like dengue hemorrhagic fever and dengue shock syndrome are life-threatening. There is no specific treatment and no anti-DENV vaccines. Our recent data suggests that the amino terminal cytoplasmic region of the dengue virus non-structural protein 4A (NS4A)...

  5. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  6. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  7. A perspective on targeting non-structural proteins to combat neglected tropical diseases: Dengue, West Nile and Chikungunya viruses.

    Science.gov (United States)

    Bhakat, Soumendranath; Karubiu, Wilson; Jayaprakash, Venkatesan; Soliman, Mahmoud E S

    2014-11-24

    Neglected tropical diseases are major causes of fatality in poverty stricken regions across Africa, Asia and some part of America. The combined potential health risk associated with arthropod-borne viruses (arboviruses); Dengue virus (DENV), West Nile Virus (WNV) and Chikungunya Virus (CHIKV) is immense. These arboviruses are either emerging or re-emerging in many regions with recent documented outbreaks in the United States. Despite several recent evidences of emergence, currently there are no approved drugs or vaccines available to counter these diseases. Non-structural proteins encoded by these RNA viruses are essential for their replication and maturation and thus may offer ideal targets for developing antiviral drugs. In recent years, several protease inhibitors have been sourced from plant extract, synthesis, computer aided drug design and high throughput screening as well as through drug reposition based approaches to target the non-structural proteins. The protease inhibitors have shown different levels of inhibition and may thus provide template to develop selective and potent drugs against these devastating arboviruses. This review seeks to shed light on the design and development of antiviral drugs against DENV, WNV and CHIKV to date. To the best of our knowledge, this review provides the first comprehensive update on the development of protease inhibitors targeting non-structural proteins of three most devastating arboviruses, DENV, WNV and CHIKV. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Inhibition of Hepatitis C virus (HCV Core protein- induced Cell Growth by Non-structural Protein 4A (NS4A is Mediated by Mitochondrial Dysregulation

    Directory of Open Access Journals (Sweden)

    Denis Selimović

    2008-02-01

    Full Text Available Hepatitis C virus (HCV is a significant health problem facing the world. More than 170 million people are infected with HCV worldwide. HCV encodes a large polyprotein precursor that is processed into at least 10 distinct products including structural (core, E1 and E2 and non-structural (NS2, NS3, NS4A, NS4B, NS5A and NS5B. Besides its importance in virus replication, NS4A functions as a cofactor for NS3 and contributes to viral pathogenesis by influencing cellular functions. Here, we investigated the effect of NS4A protein on the growth rate induced by core protein in liver cells. Using our established tetracycline inducible system, we demonstrated the ability of NS4A protein to inhibit core protein-induced cell growth in Hepatoma cell line, HepG2. Induction of both core and NS4A proteins in HepG2- core/NS4A transfectants inhibited core-induced growth advantage in HepG2-core transfectants and blocked NS4A protein-induced cell growth inhibition in HepG2-NS4A transfectants. Using both immune fluorescence staining and Western blot analysis, we confirmed the localization of NS4A protein to the mitochondria in HepG2-NS4A transfectants expressing NS4A protein. Data obtained from flow cytometry analysis, using JC-1 demonstrated the loss of mitochondrial membrane potential (ΔΨ^ by the expression of NS4A protein in HepG2-NS4A transfectants, but not by the expression of core protein in HepG2-core transfectants. Whereas, the induction of the expression of both core and NS4A proteins in HepG2-core/NS4A transfectants blocked NS4A-induced loss of ΔΨm in HepG2 cells. Taken together, our data suggest an important role for mitochondria in the modulation HCV NS4A-induced inhibition of HCV core-mediated cell growth.

  9. Multimers Formed by the Rotavirus Nonstructural Protein NSP2 Bind to RNA and Have Nucleoside Triphosphatase Activity

    OpenAIRE

    Taraporewala, Zenobia; Chen, Dayue; Patton, John T.

    1999-01-01

    The nonstructural protein NSP2 is a component of rotavirus replication intermediates and accumulates in cytoplasmic inclusions (viroplasms), sites of genome RNA replication and the assembly of subviral particles. To better understand the structure and function of the protein, C-terminally His-tagged NSP2 was expressed in bacteria and purified to homogeneity. In its purified form, the protein did not exist as a monomer but rather was present as an 8S-10S homomultimer consisting of 6 ± 2 subuni...

  10. The nonstructural protein 8 (nsp8) of the SARS coronavirus interacts with its ORF6 accessory protein

    International Nuclear Information System (INIS)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping; Chow, Vincent T.K.; Druce, Julian; Birch, Chris; Catton, Mike; Fielding, Burtram C.; Tan, Yee-Joo; Lal, Sunil K.

    2007-01-01

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities to interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication

  11. Pharmacoinformatics approach for investigation of alternative potential hepatitis C virus nonstructural protein 5B inhibitors

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2015-03-01

    Full Text Available Muhammad Usman Mirza,1 Noor-Ul-Huda Ghori,2 Nazia Ikram,3 Abdur Rehman Adil,4 Sadia Manzoor3 1Centre for Research in Molecular Medicine (CRiMM, The University of Lahore, Lahore, 2Atta-ur-Rehman School of Applied Biosciences (ASAB, National University of Science and Technology, Islamabad, 3Institute of Molecular Biology and Biotechnology (IMBB, The University of Lahore, Lahore, Pakistan; 4Centre for Excellence in Molecular Biology (CEMB, The University of Punjab, Lahore, Pakistan Abstract: Hepatitis C virus (HCV is one of the major viruses affecting the world today. It is a highly variable virus, having a rapid reproduction and evolution rate. The variability of genomes is due to hasty replication catalyzed by nonstructural protein 5B (NS5B which is also a potential target site for the development of anti-HCV agents. Recently, the US Food and Drug Administration approved sofosbuvir as a novel oral NS5B inhibitor for the treatment of HCV. Unfortunately, it is much highlighted for its pricing issues. Hence, there is an urgent need to scrutinize alternate therapies against HCV that are available at affordable price and do not have associated side effects. Such a need is crucial especially in underdeveloped countries. The search for various new bioactive compounds from plants is a key part of pharmaceutical research. In the current study, we applied a pharmacoinformatics-based approach for the identification of active plant-derived compounds against NS5B. The results were compared to docking results of sofosbuvir. The lead compounds with high-binding ligands were further analyzed for pharmacokinetic and pharmacodynamic parameters based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET profile. The results showed the potential alternative lead compounds that can be developed into commercial drugs having high binding energy and promising ADMET properties. Keywords: hepatitis C, NS5B inhibitors, molecular docking, Auto

  12. Functional recruitment of human complement inhibitor C4B-binding protein to outer membrane protein Rck of Salmonella.

    Directory of Open Access Journals (Sweden)

    Derek K Ho

    Full Text Available Resistance to complement mediated killing, or serum resistance, is a common trait of pathogenic bacteria. Rck is a 17 kDa outer membrane protein encoded on the virulence plasmid of Salmonella enterica serovars Typhimurium and Enteritidis. When expressed in either E. coli or S. enterica Typhimurium, Rck confers LPS-independent serum resistance as well as the ability to bind to and invade mammalian cells. Having recently shown that Rck binds the inhibitor of the alternative pathway of complement, factor H (fH, we hypothesized that Rck can also bind the inhibitor of the classical and lectin pathways, C4b-binding protein (C4BP. Using flow cytometry and direct binding assays, we demonstrate that E. coli expressing Rck binds C4BP from heat-inactivated serum and by using the purified protein. No binding was detected in the absence of Rck expression. C4BP bound to Rck is functional, as we observed factor I-mediated cleavage of C4b in cofactor assays. In competition assays, binding of radiolabeled C4BP to Rck was reduced by increasing concentrations of unlabeled protein. No effect was observed by increasing heparin or salt concentrations, suggesting mainly non-ionic interactions. Reduced binding of C4BP mutants lacking complement control protein domains (CCPs 7 or 8 was observed compared to wt C4BP, suggesting that these CCPs are involved in Rck binding. While these findings are restricted to Rck expression in E. coli, these data suggest that C4BP binding may be an additional mechanism of Rck-mediated complement resistance.

  13. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Naturally Occurring Deletion Mutants of the Pig-Specific, Intestinal Crypt Epithelial Cell Protein CLCA4b without Apparent Phenotype.

    Directory of Open Access Journals (Sweden)

    Stephanie Plog

    Full Text Available The human CLCA4 (chloride channel regulator, calcium-activated modulates the intestinal phenotype of cystic fibrosis (CF patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.

  15. Identifying the substrate proteins of U-box E3s E4B and CHIP by orthogonal ubiquitin transfer.

    Science.gov (United States)

    Bhuripanyo, Karan; Wang, Yiyang; Liu, Xianpeng; Zhou, Li; Liu, Ruochuan; Duong, Duc; Zhao, Bo; Bi, Yingtao; Zhou, Han; Chen, Geng; Seyfried, Nicholas T; Chazin, Walter J; Kiyokawa, Hiroaki; Yin, Jun

    2018-01-01

    E3 ubiquitin (UB) ligases E4B and carboxyl terminus of Hsc70-interacting protein (CHIP) use a common U-box motif to transfer UB from E1 and E2 enzymes to their substrate proteins and regulate diverse cellular processes. To profile their ubiquitination targets in the cell, we used phage display to engineer E2-E4B and E2-CHIP pairs that were free of cross-reactivity with the native UB transfer cascades. We then used the engineered E2-E3 pairs to construct "orthogonal UB transfer (OUT)" cascades so that a mutant UB (xUB) could be exclusively used by the engineered E4B or CHIP to label their substrate proteins. Purification of xUB-conjugated proteins followed by proteomics analysis enabled the identification of hundreds of potential substrates of E4B and CHIP in human embryonic kidney 293 cells. Kinase MAPK3 (mitogen-activated protein kinase 3), methyltransferase PRMT1 (protein arginine N -methyltransferase 1), and phosphatase PPP3CA (protein phosphatase 3 catalytic subunit alpha) were identified as the shared substrates of the two E3s. Phosphatase PGAM5 (phosphoglycerate mutase 5) and deubiquitinase OTUB1 (ovarian tumor domain containing ubiquitin aldehyde binding protein 1) were confirmed as E4B substrates, and β-catenin and CDK4 (cyclin-dependent kinase 4) were confirmed as CHIP substrates. On the basis of the CHIP-CDK4 circuit identified by OUT, we revealed that CHIP signals CDK4 degradation in response to endoplasmic reticulum stress.

  16. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Science.gov (United States)

    Kirjavainen, Vesa; Jarva, Hanna; Biedzka-Sarek, Marta; Blom, Anna M; Skurnik, Mikael; Meri, Seppo

    2008-08-29

    Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  17. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  18. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.

  19. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains.

    Science.gov (United States)

    da Fonseca, Néli José; Lima Afonso, Marcelo Querino; Pedersolli, Natan Gonçalves; de Oliveira, Lucas Carrijo; Andrade, Dhiego Souto; Bleicher, Lucas

    2017-10-28

    Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A DIVA system based on the detection of antibodies to non-structural protein 3 (NS3) of Bluetongue virus

    OpenAIRE

    2009-01-01

    Abstract Vaccination programs for the control of bluetongue (BT) in ruminants have limitations due to difficulties in differentiating between vaccinated and virus infected animals (DIVA). To overcome this problem a DIVA test that looks at a differential immune response to bluetongue virus (BTV) non-structural protein 3 (NS3) was developed. The NS3 encoding gene of strain BTV4/22045/PT04 was inserted into expression vector pET-28a and expressed in Escherichia coli strain JM109. Reco...

  1. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  2. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    Science.gov (United States)

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  3. Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Gralinski, Lisa E.; Mitchell, Hugh D.; Dinnon, Kenneth H.; Leist, Sarah R.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Stratton, Kelly G.; Cockrell, Adam S.; Debbink, Kari; Sims, Amy C.; Waters, Katrina M.; Baric, Ralph S.; Fernandez-Sesma, Ana

    2017-11-15

    ABSTRACT

    Coronaviruses (CoVs) encode a mixture of highly conserved and novel genes, as well as genetic elements necessary for infection and pathogenesis, raising the possibility of common targets for attenuation and therapeutic design. In this study, we focused on highly conserved nonstructural protein 16 (NSP16), a viral 2'O-methyltransferase (2'O-MTase) that encodes critical functions in immune modulation and infection. Using reverse genetics, we disrupted a key motif in the conserved KDKE motif of Middle East respiratory syndrome CoV (MERS-CoV) NSP16 (D130A) and evaluated the effect on viral infection and pathogenesis. While the absence of 2'O-MTase activity had only a marginal impact on propagation and replication in Vero cells, dNSP16 mutant MERS-CoV demonstrated significant attenuation relative to the control both in primary human airway cell cultures andin vivo. Further examination indicated that dNSP16 mutant MERS-CoV had a type I interferon (IFN)-based attenuation and was partially restored in the absence of molecules of IFN-induced proteins with tetratricopeptide repeats. Importantly, the robust attenuation permitted the use of dNSP16 mutant MERS-CoV as a live attenuated vaccine platform protecting from a challenge with a mouse-adapted MERS-CoV strain. These studies demonstrate the importance of the conserved 2'O-MTase activity for CoV pathogenesis and highlight NSP16 as a conserved universal target for rapid live attenuated vaccine design in an expanding CoV outbreak setting.

    IMPORTANCECoronavirus (CoV) emergence in both humans and livestock represents a significant threat to global public health, as evidenced by the sudden emergence of severe acute respiratory syndrome CoV (SARS-CoV), MERS-CoV, porcine epidemic diarrhea virus, and swine delta CoV in the 21st century. These studies describe an approach that

  4. Cissampelos sympodialis has anti-viral effect inhibiting dengue non-structural viral protein-1 and pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Fagner Carvalho Leite

    Full Text Available ABSTRACT Dengue is the most important viral infection transmitted among humans by arthropod-borne. There are currently no vaccines or specific therapeutical treatment. Therefore, immunomodulatory compounds from plants have been widely examined for their antiviral effects. Cissampelos sympodialis Eichler, Menispermaceae, has scientifically proven to present immunomodulatory activities. Here we assessed the antiviral activity of leaf hydroalcoholic extract, warifteine or methylwarifteine from C. sympodialis in an in vitro dengue virus infection model. The results demonstrated that leaf hydroalcoholic extract or warifteine/methylwarifteine treatment did not reduce dengue virus-Ag+ hepatocyte (Huh-7 cell rates in present experimental conditions. However, we assessed the potential antiviral effect of leaf hydroalcoholic extract or warifteine/methylwarifteine on dengue virus-infection by the production of inflammatory molecules, TNF-α, MIF, IL-8 and PGE2. Dengue virus infection enhanced TNF-α, MIF, IL-8 and PGE2 production in infected Huh-7 cells and leaf hydroalcoholic extract but not warifteine/methylwarifteine treatments, significantly reduced these molecules in infected cells. In dengue virus-infected Huh-7 cells, non-structural protein-1 is produced and leaf hydroalcoholic extract significantly inhibited it independently of alkaloids. Our findings imply that leaf hydroalcoholic extract may attenuate dengue virus infection in Huh-7 cells by inhibiting the enhanced of pro-inflammatory mediators and non-structural protein-1 production induce by dengue virus independently of warifteine/methywarifteine its major compound.

  5. Hepatitis C virus non-structural protein 3 interacts with cytosolic 5'(3'-deoxyribonucleotidase and partially inhibits its activity.

    Directory of Open Access Journals (Sweden)

    Chiu-Ping Fang

    Full Text Available Infection with hepatitis C virus (HCV is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3 is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5'(3'-deoxyribonucleotidase (cdN, dNT-1 was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.

  6. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    Background & Aims Hepatitis C virus (HCV) requires host cellular proteins for its own propagation. To identify the cellular factors necessary for HCV propagation, we have recently screened the small interfering RNA (siRNA) library targeting cell cycle genes using cell culture grown HCV (HCVcc......, in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay. Results We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B......)-infected cells. In the current study, we have selected and characterized the gene encoding Cyclin A2 (CycA2). Deregulation of CycA2 has been implicated in many types of cancers, including hepatocellular carcinoma. Methods The effects of CycA2 on HCV propagation were investigated by siRNA-mediated knockdown assay...

  7. Prediction of the ligands having the inhibitory activity against the HCV non-structural protein 5B polymerase

    Directory of Open Access Journals (Sweden)

    Fatima Lebbad

    2015-08-01

    Full Text Available Objective: To find similar compounds of rhodanine inhibitors of HCV non-structural protein 5B (NS5B through exploring the PubChem database. Methods: We used the data mining of these ligands and we studied molecular docking of these ligands with the enzyme HCV NS5B for knowing inhibitory activity. We used the the Knime software for the data mining and the USCF Chimera and Molecular Operating Environment for study the molecular docking. Results: As a result, the discovery was two new inhibitors of NS5B HCV, namely CID 211702 and CID 13752. Conclusions: Two new ligands, CID 211702 and CID 13752, were discovered for the inhibition of the HCV and can be used to invent new medicines against the cancerous diseases.

  8. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells

    Directory of Open Access Journals (Sweden)

    Laura Martinez-Alvarez

    2013-06-01

    Full Text Available A hallmark of group/species A rotavirus (RVA replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1 is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV. NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.

  9. Secretory pathway antagonism by calicivirus homologues of Norwalk virus nonstructural protein p22 is restricted to noroviruses

    Directory of Open Access Journals (Sweden)

    Sharp Tyler M

    2012-09-01

    Full Text Available Abstract Background Our previous report that the Norwalk virus nonstructural protein p22 is an antagonist of the cellular secretory pathway suggests a new aspect of norovirus/host interaction. To explore conservation of function of this highly divergent calicivirus protein, we examined the effects of p22 homologues from four human and two murine noroviruses, and feline calicivirus on the secretory pathway. Findings All human noroviruses examined induced Golgi disruption and inhibited protein secretion, with the genogroup II.4 Houston virus being the most potent antagonist. Genogroup II.6 viruses have a conserved mutation in the mimic of an Endoplasmic Reticulum export signal (MERES motif that is highly conserved in human norovirus homologues of p22 and is critical for secretory pathway antagonism, and these viruses had reduced levels of Golgi disruption and inhibition of protein secretion. p22 homologues from both persistent and nonpersistent strains of murine norovirus induced Golgi disruption, but only mildly inhibited cellular protein secretion. Feline calicivirus p30 did not induce Golgi disruption or inhibit cellular protein secretion. Conclusions These differences confirm a norovirus-specific effect on host cell secretory pathway antagonism by homologues of p22, which may affect viral replication and/or cellular pathogenesis.

  10. Comparative evaluation of six ELISAs for the detection of antibodies to the non-structural proteins of foot-and-mouth disease virus

    DEFF Research Database (Denmark)

    Brocchi, E.; Bergmann, I.E.; Dekker, A.

    2006-01-01

    To validate the use of serology in substantiating freedom from infection after foot-and-mouth disease (FMD) outbreaks have been controlled by measures that include vaccination, 3551 sera were tested with six assays that detect antibodies to the non-structural proteins of FMD virus. The sera came...

  11. Avian encephalomyelitis virus nonstructural protein 2C induces apoptosis by activating cytochrome c/caspase-9 pathway

    International Nuclear Information System (INIS)

    Liu Jue; Wei Ting; Kwang, Jimmy

    2004-01-01

    The nonstructural protein 2C is highly conserved among picornaviruses and plays an important role in the assembly of mature virions, membrane association, and viral RNA synthesis. The investigation of other potential functions of nonstructural protein 2C from avian encephalomyelitis virus (AEV) resulted in identifying for the first time that the protein 2C is involved in apoptosis. Expression of the protein 2C on chick embryo brain (CEB) and Cos-7 cells produced TUNEL-positive cells characterized by a cleavage of cellular DNA and the formation of membrane-enclosed apoptotic bodies. Analysis of the protein 2C showed that the N-terminal domain containing 35 amino acid (aa) residues (between 46 and 80 aa) is associated with apoptotic function. Transfection of the deletion mutant lacking this 35 aa's into CEB and Cos-7 cells failed to induce apoptosis. Furthermore, the protein 2C induced apoptosis in the transfected CEB and Cos-7 cells through activation of caspase-9 rather than caspase-8 followed by activation of caspase-3 pathway. Analysis of the Western blots of caspase-3 and caspase-9 showed the characteristics of active caspase-3 and -9 in the 2C-transfected CEB and Cos-7 cells as seen in the AEV-infected CEB cells while they were in the form of procaspase-3 and procaspase-9 in the 2C mutant-transfected cells. To further elucidate the mechanism of the 2C-induced apoptosis, the 2C-transfected CEB and Cos-7 cells were fractionated into mitochondria and cytosol and subjected for Western blotting, located cytochrome c in the mitochondria as well as the cytosol fractions, while it was only sequestered in the mitochondrial fraction in the mutant 2C-transfected cells. The protein 2C was located in the mitochondria and cytosol of the transfected/infected CEB and transfected Cos-7 cells, but the mutant lost its ability to localize to the mitochondria. Altogether, the results demonstrate that the protein 2C localized to the mitochondria of the transfected cells triggered

  12. Interactions between the Hepatitis C Virus Nonstructural 2 Protein and Host Adaptor Proteins 1 and 4 Orchestrate Virus Release.

    Science.gov (United States)

    Xiao, Fei; Wang, Stanley; Barouch-Bentov, Rina; Neveu, Gregory; Pu, Szuyuan; Beer, Melanie; Schor, Stanford; Kumar, Sathish; Nicolaescu, Vlad; Lindenbach, Brett D; Randall, Glenn; Einav, Shirit

    2018-03-13

    Hepatitis C virus (HCV) spreads via secreted cell-free particles or direct cell-to-cell transmission. Yet, virus-host determinants governing differential intracellular trafficking of cell-free- and cell-to-cell-transmitted virus remain unknown. The host adaptor proteins (APs) AP-1A, AP-1B, and AP-4 traffic in post-Golgi compartments, and the latter two are implicated in basolateral sorting. We reported that AP-1A mediates HCV trafficking during release, whereas the endocytic adaptor AP-2 mediates entry and assembly. We demonstrated that the host kinases AAK1 and GAK regulate HCV infection by controlling these clathrin-associated APs. Here, we sought to define the roles of AP-4, a clathrin-independent adaptor; AP-1A; and AP-1B in HCV infection. We screened for interactions between HCV proteins and the μ subunits of AP-1A, AP-1B, and AP-4 by mammalian cell-based protein fragment complementation assays. The nonstructural 2 (NS2) protein emerged as an interactor of these adaptors in this screening and by coimmunoprecipitations in HCV-infected cells. Two previously unrecognized dileucine-based motifs in the NS2 C terminus mediated AP binding and HCV release. Infectivity and coculture assays demonstrated that while all three adaptors mediate HCV release and cell-free spread, AP-1B and AP-4, but not AP-1A, mediate cell-to-cell spread. Live-cell imaging revealed HCV cotrafficking with AP-1A, AP-1B, and AP-4 and that AP-4 mediates HCV trafficking in a post-Golgi compartment. Lastly, HCV cell-to-cell spread was regulated by AAK1 and GAK and thus susceptible to treatment with AAK1 and GAK inhibitors. These data provide a mechanistic understanding of HCV trafficking in distinct release pathways and reveal a requirement for APs in cell-to-cell viral spread. IMPORTANCE HCV spreads via cell-free infection or cell-to-cell contact that shields it from antibody neutralization, thereby facilitating viral persistence. Yet, factors governing this differential sorting remain unknown

  13. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  14. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB.

    Science.gov (United States)

    Tang, Fenfen; Xia, Hongjie; Wang, Peipei; Yang, Jie; Zhao, Tianyong; Zhang, Qi; Hu, Yuanyang; Zhou, Xi

    2014-09-01

    Human enterovirus 71 (EV71) belongs to the genus Enterovirus in the family Picornaviridae and has been recognized as one of the most important pathogens that cause emerging infectious disease. Despite of the importance of EV71, the nonstructural protein 3AB from this virus is little understood for its function during EV71 replication. Here we expressed EV71 3AB protein as recombinant protein in a eukaryotic expression system and uncovered that this protein possesses a nucleic acid helix-destabilizing and strand annealing acceleration activity in a dose-dependent manner, indicating that EV71 3AB is a nucleic acid chaperone protein. Moreover, we characterized the RNA chaperone activity of EV71 3AB, and revealed that divalent metal ions, such as Mg(2+) and Zn(2+), were able to inhibit the RNA helix-destabilizing activity of 3AB to different extents. Moreover, we determined that 3B plus the last 7 amino acids at the C-terminal of 3A (termed 3B+7) possess the RNA chaperone activity, and five amino acids, i.e. Lys-80, Phe-82, Phe-85, Tyr-89, and Arg-103, are critical and probably the active sites of 3AB for its RNA chaperone activity. This report reveals that EV71 3AB displays an RNA chaperone activity, adds a new member to the growing list of virus-encoded RNA chaperones, and provides novel knowledge about the virology of EV71. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Victor C Chu

    Full Text Available HCV infection is a major cause of chronic liver disease and liver cancer in the United States. To address the pathogenesis caused by HCV infection, recent studies have focused on the direct cytopathic effects of individual HCV proteins, with the objective of identifying their specific roles in the overall pathogenesis. However, this approach precludes examination of the possible interactions between different HCV proteins and organelles. To obtain a better understanding of the various cytopathic effects of and cellular responses to HCV proteins, we used human hepatoma cells constitutively replicating HCV RNA encoding either the full-length polyprotein or the non-structural proteins, or cells constitutively expressing the structural protein core, to model the state of persistent HCV infection and examined the combination of various HCV proteins in cellular pathogenesis. Increased reactive oxygen species (ROS generation in the mitochondria, mitochondrial injury and degeneration, and increased lipid accumulation were common among all HCV protein-expressing cells regardless of whether they expressed the structural or non-structural proteins. Expression of the non-structural proteins also led to increased oxidative stress in the cytosol, membrane blebbing in the endoplasmic reticulum, and accumulation of autophagocytic vacuoles. Alterations of cellular redox state, on the other hand, significantly changed the level of autophagy, suggesting a direct link between oxidative stress and HCV-mediated activation of autophagy. With the wide-spread cytopathic effects, cells with the full-length HCV polyprotein showed a modest antioxidant response and exhibited a significant increase in population doubling time and a concomitant decrease in cyclin D1. In contrast, cells expressing the non-structural proteins were able to launch a vigorous antioxidant response with up-regulation of antioxidant enzymes. The population doubling time and cyclin D1 level were also

  16. Disruption of human astn2 function by ZIKV ns4b gene as a molecular basis for Zika viral microcephaly

    OpenAIRE

    Ganguly, Enakshi; Ganguly, Bhaskar

    2016-01-01

    The present Zika virus (ZIKV) pandemic is being associated with increased incidence of microcephaly in newborns. However, a molecular basis for such pathogenesis is distinctly lacking. Comparative nucleic acid sequence analysis showed similarity between regions of non-structural protein 4B (ns4b) gene of ZIKV and human astrotactin2 (astn2) gene. Based on these findings, a molecular target of Zika viral microcephaly is being proposed.

  17. Hepatitis C virus non-structural 5B protein interacts with cyclin A2 and regulates viral propagation

    DEFF Research Database (Denmark)

    Pham, Long; Ngo, HT; Lim, YS

    2012-01-01

    , in vitro and in vivo protein binding assays, luciferase reporter gene assay, and immunoblot assay. Results We showed that siRNA-mediated depletion of CycA2 significantly inhibited HCV replication in both HCV subgenomic replicon cells and HCVcc-infected cells. Furthermore, HCV non-structural 5B (NS5B......) specifically interacted with CycA2 in vitro and in vivo. Protein interaction was mediated through the cyclin box of CycA2 and the palm domain of NS5B. We further showed that R/HxL motif in the palm domain of HCV NS5B mediated protein interaction with CycA2 and this interaction was necessary for HCV replication....... Moreover, we demonstrated that tylophorine, the natural plant product exerting a CycA2 inhibitory function, abrogated HCV replication. Conclusions HCV regulates CycA2 via NS5B protein for its own propagation. In addition, tylophorine may be a potential therapeutic agent for HCV....

  18. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2010-08-01

    Full Text Available In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV, is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20 and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20 were blocked in encapsidation (no virus after blind passages but could be rescued if the capsid and 2C(ATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i genome replication is known to be stringently linked to translation, (ii morphogenesis is known to be stringently linked to genome replication, (iii newly synthesized 2C(ATPase is an essential component of the replication complex, and (iv 2C(ATPase has specific affinity to capsid protein(s. These conditions lead to morphogenesis at the site where newly

  19. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival.

    Science.gov (United States)

    Caine, Jennifer A; Lin, Yi-Pin; Kessler, Julie R; Sato, Hiromi; Leong, John M; Coburn, Jenifer

    2017-12-01

    Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced. © 2017 John Wiley & Sons Ltd.

  20. Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine.

    Science.gov (United States)

    Lee, Sanghyun; Wilen, Craig B; Orvedahl, Anthony; McCune, Broc T; Kim, Ki-Wook; Orchard, Robert C; Peterson, Stefan T; Nice, Timothy J; Baldridge, Megan T; Virgin, Herbert W

    2017-10-11

    Cellular tropism during persistent viral infection is commonly conferred by the interaction of a viral surface protein with a host receptor complex. Norovirus, the leading global cause of gastroenteritis, can be persistently shed during infection, but its in vivo cellular tropism and tropism determinants remain unidentified. Using murine norovirus (MNoV), we determine that a small number of intestinal epithelial cells (IECs) serve as the reservoir for fecal shedding and persistence. The viral non-structural protein NS1, rather than a viral surface protein, determines IEC tropism. Expression of NS1 from a persistent MNoV strain is sufficient for an acute MNoV strain to target IECs and persist. In addition, interferon-lambda (IFN-λ) is a key host determinant blocking MNoV infection in IECs. The inability of acute MNoV to shed and persist is rescued in Ifnlr1 -/- mice, suggesting that NS1 evades IFN-λ-mediated antiviral immunity. Thus, NS1 and IFN-λ interactions govern IEC tropism and persistence of MNoV. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Regulation of hepatitis C virus replication by nuclear translocation of nonstructural 5A protein and transcriptional activation of host genes.

    Science.gov (United States)

    Maqbool, Muhammad Ahmad; Imache, Mohamed R; Higgs, Martin R; Carmouse, Sophie; Pawlotsky, Jean-Michel; Lerat, Hervé

    2013-05-01

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is involved in regulating viral replication through its direct interaction with the HCV RNA-dependent RNA polymerase. NS5A also alters infected cell metabolism through complex interactions with numerous host cell proteins. NS5A has furthermore been suggested to act as a transcriptional activator, although the impact on viral replication is unclear. To study this, HCV NS5A variants were amplified from hepatic tissue from an HCV-infected patient, and their abilities to activate gene transcription were analyzed in a single-hybrid yeast (Saccharomyces cerevisiae) model. Different variants isolated from the same patient displayed different transactivational activities. When these variants were inserted into the HCV subgenomic replicon system, they demonstrated various levels of RNA replication, which correlated with their transactivational activities. We showed that the C-terminal fragment of NS5A was localized to the nucleus and that a functional NS5A nuclear localization signal and cellular caspase activity were required for this process. Furthermore, nuclear localization of NS5A was necessary for viral replication. Finally, we demonstrate that nuclear NS5A binds to host cell promoters of several genes previously identified as important for efficient HCV RNA replication, inducing their transcription. Taken together, these results demonstrate a new mechanism by which HCV modulates its cellular environment, thereby enhancing viral replication.

  2. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3 Revealing Its Secrets at Last

    Directory of Open Access Journals (Sweden)

    Benjamin Götte

    2018-02-01

    Full Text Available Alphaviruses encode 4 non-structural proteins (nsPs, most of which have well-understood functions in capping and membrane association (nsP1, polyprotein processing and RNA helicase activity (nsP2 and as RNA-dependent RNA polymerase (nsP4. The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD. In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions.

  3. The interaction between anticoagulant protein S and complement regulatory C4b-binding protein (C4BP)

    NARCIS (Netherlands)

    van de Poel, R. H.; Meijers, J. C.; Bouma, B. N.

    2000-01-01

    An important mechanism of regulation of blood coagulation is the anticoagulant protein C pathway. In this pathway, the anticoagulant activity of activated protein C is increased by its cofactor protein S. The cofactor activity of protein S can be regulated by binding to complement regulatory

  4. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  5. Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy

    DEFF Research Database (Denmark)

    Liang, Qiming; Luo, Zhifei; Zeng, Jianxiong

    2016-01-01

    present in ZIKV, we found that two, NS4A and NS4B, cooperatively suppress the Akt-mTOR pathway and lead to cellular dysregulation. Corresponding proteins from the closely related dengue virus do not have the same effect on neurogenesis. Thus, our study highlights ZIKV NS4A and NS4B as candidate...

  6. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    Science.gov (United States)

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity.

    Science.gov (United States)

    Taraporewala, Z; Chen, D; Patton, J T

    1999-12-01

    The nonstructural protein NSP2 is a component of rotavirus replication intermediates and accumulates in cytoplasmic inclusions (viroplasms), sites of genome RNA replication and the assembly of subviral particles. To better understand the structure and function of the protein, C-terminally His-tagged NSP2 was expressed in bacteria and purified to homogeneity. In its purified form, the protein did not exist as a monomer but rather was present as an 8S-10S homomultimer consisting of 6 +/- 2 subunits of recombinant NSP2 (rNSP2). As shown by gel mobility shift assays, the rNSP2 multimers bound to RNA in discrete cooperative steps to form higher-order RNA-protein complexes. The RNA-binding activity of the rNSP2 multimers was determined to be nonspecific and to have a strong preference for single-stranded RNA over double-stranded RNA, for which it displayed little affinity. Enzymatic analysis revealed that rNSP2 possessed an associated nucleoside triphosphatase (NTPase) activity in vitro, which in the presence of Mg(2+) catalyzed the hydrolysis of each of the four NTPs to NDPs with equal efficiency. Evidence indicating that the hydrolysis of NTP resulted in the covalent linkage of the gamma-phosphate to rNSP2 was obtained. Additional experiments showed that NSP2 expressed transiently in MA014 cells is phosphorylated. We propose that NSP2 functions as a molecular motor, catalyzing the packaging of viral mRNA into core-like replication intermediates through the energy derived from its NTPase activity.

  8. Viroporin Activity of the Foot-and-Mouth Disease Virus Non-Structural 2B Protein.

    Directory of Open Access Journals (Sweden)

    Da Ao

    Full Text Available Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that are encoded by various animal viruses. Viroporins form transmembrane pores in host cells via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for virus replication and virion release. Among the Picornaviridae family of viruses, the 2B protein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B protein encoded by the foot-and-mouth disease virus (FMDV has not yet been described. An analysis of the FMDV 2B protein domains by computer-aided programs conducted in this study revealed that this protein may contain two transmembrane regions. Further biochemical, biophysical and functional studies revealed that the protein possesses a number of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells as well as in FMDV-infected cells. The protein was found to be mainly localized in the endoplasmic reticulum (ER, with both the N- and C-terminal domains stretched into the cytosol. It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The release of virions from cells infected with FMDV was inhibited by amantadine, a viroporin inhibitor. The 2B protein monomers interacted with each other to form both intracellular and extracellular oligomers. The Ca(2+ concentration in the cells increased, and the integrity of the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover, the 2B protein induced intense autophagy in host cells. All of the results of this study demonstrate that the FMDV 2B protein has properties that are also found in other viroporins and may be involved in the infection mechanism of FMDV.

  9. Foot-and-mouth disease virus, but not bovine enterovirus, targets the host cell cytoskeleton, via the non-structural protein 3Cpro

    DEFF Research Database (Denmark)

    Armer, Hannah; Moffat, Katy; Wileman, Thomas

    2008-01-01

    Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus...... replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells......(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro...

  10. Rapid de novo generation of defective interfering RNA by cucumber necrosis virus mutants that do not express the 20-kDa nonstructural protein.

    Science.gov (United States)

    Rochon, D M

    1991-01-01

    It is generally believed that serial passage at high multiplicity of infection (moi) is required for the generation of defective interfering (DI) particles. High levels of DI RNAs are found associated with persistent infections initiated with laboratory cultures of cucumber necrosis virus (CNV). Two synthetic CNV transcripts that were derived through site-directed mutagenesis of a highly infectious CNV cDNA clone and that do not express the CNV 20-kDa nonstructural protein were found to generate high levels of symptom-attenuating DI RNAs de novo without serial high-moi passage in transcript-inoculated plants. Such de novo generation of DI RNAs did not occur in infections initiated with wild-type transcript until at least eight serial high-moi passages. The observation that a CNV nonstructural protein mutant rapidly generates DI RNA de novo may provide insight into mechanisms that underly DI particle formation in RNA viruses in general. Images PMID:1722320

  11. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle

    DEFF Research Database (Denmark)

    Paton, D.J.; de Clercq, K.; Greiner, Matthias

    2006-01-01

    There has been much debate about the use of the so-called "vaccinate-to-live" policy for the control of foot-and-mouth disease (FMD) in Europe, according to which, spread of the FMD virus (FMDV) from future outbreaks could be controlled by a short period of "emergency" vaccination of surrounding...... is circulating or has established persistent infections (vaccinate-to-live), in order to rapidly regain the most favoured trading status of FMD-free without vaccination. The latter approach can be supported by testing vaccinated animals for the presence of antibodies to certain non-structural proteins (NSP...... ELISAs for antibodies to the non-structural proteins of foot-and-mouth disease. Vaccine, in press], this paper examines the ways in which serological testing with NSP ELISAs can be used and interpreted and the effect that this will have on the confidence with which freedom from infection can...

  12. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes.

    Science.gov (United States)

    Kappes, Matthew A; Miller, Cathy L; Faaberg, Kay S

    2015-07-01

    The membrane insertion and topology of nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) strain VR-2332 was assessed using a cell free translation system in the presence or absence of artificial membranes. Expression of PRRSV nsp2 in the absence of all other viral factors resulted in the genesis of both full-length nsp2 as well as a select number of C-terminal nsp2 isoforms. Addition of membranes to the translation stabilized the translation reaction, resulting in predominantly full-length nsp2 as assessed by immunoprecipitation. Analysis further showed full-length nsp2 strongly associates with membranes, along with two additional large nsp2 isoforms. Membrane integration of full-length nsp2 was confirmed through high-speed density fractionation, protection from protease digestion, and immunoprecipitation. The results demonstrated that nsp2 integrated into the membranes with an unexpected topology, where the amino (N)-terminal (cytoplasmic) and C-terminal (luminal) domains were orientated on opposite sides of the membrane surface. Published by Elsevier Inc.

  13. Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Hae-Jung Park

    Full Text Available The nonstructural protein 1 (NS1 of influenza A virus (IAV enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1 induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN immunization and was associated with high levels of virus-specific antibodies (Abs. SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.

  14. Sublingual immunization with a live attenuated influenza a virus lacking the nonstructural protein 1 induces broad protective immunity in mice.

    Science.gov (United States)

    Park, Hae-Jung; Ferko, Boris; Byun, Young-Ho; Song, Joo-Hye; Han, Gye-Yeong; Roethl, Elisabeth; Egorov, Andrej; Muster, Thomas; Seong, Baiklin; Kweon, Mi-Na; Song, Manki; Czerkinsky, Cecil; Nguyen, Huan H

    2012-01-01

    The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics.

  15. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection.

    Science.gov (United States)

    Wang, Chunxiao; Yang, Sundy N Y; Smith, Kate; Forwood, Jade K; Jans, David A

    2017-12-02

    In the absence of approved therapeutics, Zika virus (ZIKV)'s recent prolific outbreaks in the Americas, together with impacts on unborn fetuses of infected mothers, make it a pressing human health concern worldwide. Although a key player in viral replication in the infected host cell cytoplasm, ZIKV non-structural protein 5 (NS5) appears to contribute integrally to pathogenesis by localising in the host cell nucleus, in similar fashion to NS5 from Dengue virus (DENV). We show here for the first time that ZIKV NS5 is recognized with high nanomolar affinity by the host cell importin α/β1 heterodimer, and that this interaction can be blocked by the novel DENV NS5 targeting inhibitor N-(4-hydroxyphenyl) retinamide (4-HPR). Importantly, we show that 4-HPR has potent anti-ZIKV activity at low μM concentrations. With an established safety profile for human use, 4-HPR represents an exciting possibility as an anti-ZIKV agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Evaluation of Serum Antibody Responses against the Rotavirus Nonstructural Protein NSP4 in Children after Rhesus Rotavirus Tetravalent Vaccination or Natural Infection

    OpenAIRE

    Vizzi, Esmeralda; Calviño, Eva; González, Rosabel; Pérez-Schael, Irene; Ciarlet, Max; Kang, Gagandeep; Estes, Mary K.; Liprandi, Ferdinando; Ludert, Juan E.

    2005-01-01

    The immune response elicited by the rotavirus nonstructural protein NSP4 and its potential role in protection against rotavirus disease are not well understood. We investigated the serological response to NSP4 and its correlation with disease protection in sera from 110 children suffering acute diarrhea, associated or not with rotavirus, and from 26 children who were recipients of the rhesus rotavirus tetravalent (RRV-TV) vaccine. We used, as antigens in an enzyme-linked immunosorbent assay (...

  17. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    Science.gov (United States)

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  18. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone.

    Directory of Open Access Journals (Sweden)

    Hongjie Xia

    2015-07-01

    Full Text Available RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71, which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3'-to-5' unwinds RNA helices in an adenosine triphosphate (ATP-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16, another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings

  19. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells.

    Science.gov (United States)

    Dechtawewat, Thanyaporn; Paemanee, Atchara; Roytrakul, Sittiruk; Songprakhon, Pucharee; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-Thai; Saitornuang, Sawanan; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Noisakran, Sansanee

    2016-09-01

    Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antibody Epitopes Identified in Critical Regions of Dengue Virus Nonstructural 1 Protein in Mouse Vaccination and Natural Human Infections.

    Science.gov (United States)

    Hertz, Tomer; Beatty, P Robert; MacMillen, Zachary; Killingbeck, Sarah S; Wang, Chunling; Harris, Eva

    2017-05-15

    Dengue is a global public health problem and is caused by four dengue virus (DENV) serotypes (DENV1-4). A major challenge in dengue vaccine development is that cross-reactive anti-DENV Abs can be protective or potentially increase disease via Ab-dependent enhancement. DENV nonstructural protein 1 (NS1) has long been considered a vaccine candidate as it avoids Ab-dependent enhancement. In this study, we evaluated survival to challenge in a lethal DENV vascular leak model in mice immunized with NS1 combined with aluminum and magnesium hydroxide, monophosphoryl lipid A + AddaVax, or Sigma adjuvant system+CpG DNA, compared with mice infected with a sublethal dose of DENV2 and mice immunized with OVA (negative control). We characterized Ab responses to DENV1, 2, and 3 NS1 using an Ag microarray tiled with 20-mer peptides overlapping by 15 aa and identified five regions of DENV NS1 with significant levels of Ab reactivity in the NS1 + monophosphoryl lipid A + AddaVax group. Additionally, we profiled the Ab responses to NS1 of humans naturally infected with DENV2 or DENV3 in serum samples from Nicaragua collected at acute, convalescent, and 12-mo timepoints. One region in the wing domain of NS1 was immunodominant in both mouse vaccination and human infection studies, and two regions were identified only in NS1-immunized mice; thus, vaccination can generate Abs to regions that are not targeted in natural infection and could provide additional protection against lethal DENV infection. Overall, we identified a small number of immunodominant regions, which were in functionally important locations on the DENV NS1 protein and are potential correlates of protection. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Characterization of the Nonstructural Proteins of the Bocavirus Minute Virus of Canines

    OpenAIRE

    Sukhu, Loretta; Fasina, Olufemi; Burger, Lisa; Rai, Ayushi; Qiu, Jianming; Pintel, David J.

    2013-01-01

    We present a detailed characterization of a single-cycle infection of the bocavirus minute virus of canines (MVC) in canine WRD cells. This has allowed identification of an additional smaller NS protein that derives from an mRNA spliced within the NS gene that had not been previously reported. In addition, we have identified a role for the viral NP1 protein during infection. NP1 is required for read-through of the MVC internal polyadenylation site and, thus, access of the capsid gene by MVC m...

  2. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells

    International Nuclear Information System (INIS)

    Garcia-Briones, Mercedes; Rosas, Maria F.; Gonzalez-Magaldi, Monica; Martin-Acebes, Miguel A.; Sobrino, Francisco; Armas-Portela, Rosario

    2006-01-01

    Differences in the kinetics of expression and cell distribution among FMDV non-structural proteins (NSPs) have been observed in BHK-21-infected cells. 3D pol was the first protein detected by immunofluorescence (1.5 h p.i.), showing a perinuclear distribution. At 2-2.5 h p.i., 2B, 2C, 3B and 3C were detected, mostly exhibiting a punctuated, scattered pattern, while 3A and 3D pol appeared concentrated at one side of the nucleus. This distribution was exhibited by all the NSPs from 3 h p.i., being 2C and, to a lesser extent, precursors 2BC and 3ABBB, the only proteins detected by Western blotting at that infection time. From 4 h p.i., all mature NSPs as well as precursors 2BC, 3ABBB, 3ABB, 3AB and 3CD pol were detected by this technique. In spite of their similar immunofluorescence patterns, 2C and 3A co-localized partially by confocal microscopy at 3.5 h p.i., and 3A, but not 2C, co-localized with the ER marker calreticulin, suggesting differences in the distribution of these proteins and/or their precursors as infection proceeded. Transient expression of 2C and 3AB resulted in punctuated fluorescence patterns similar to those found in early infected cells, while 3A showed a more diffuse distribution. A shift towards a fibrous pattern was noticed for 3ABB, while a major change was observed in cells expressing 3ABBB, which displayed a perinuclear fibrous distribution. Interestingly, when co-expressed with 3D pol , the pattern observed for 3ABBB fluorescence was altered, resembling that exhibited by cells transfected with 3AB. Transient expression of 3D pol showed a homogeneous cell distribution that included, as determined by confocal microscopy, the nucleus. This was confirmed by the detection of 3D pol in nuclear fractions of transfected cells. 3D pol and its precursor 3CD pol were also detected in nuclear fractions of infected cells, suggesting that these proteins can directly interact with the nucleus during FMDV infection

  3. C4b-binding protein inhibits the factor V-dependent but not the factor V-independent cofactor activity of protein S in the activated protein C-mediated inactivation of factor VIIIa

    NARCIS (Netherlands)

    van de Poel, R. H.; Meijers, J. C.; Bouma, B. N.

    2001-01-01

    Activated protein C (APC) is an important inactivator of coagulation factors Va and VIIIa. In the inactivation of factors Va and VIIIa, protein S serves as a cofactor to APC. Protein S can bind to C4b-binding protein (C4BP), and thereby loses its cofactor activity to APC. By modulating free protein

  4. Non-structural protein 2 of the porcine reproductive and respiratory syndrome (PRRS) virus: a crucial protein in viral pathogenesis, immunity and diagnosis.

    Science.gov (United States)

    Wang, Feng-Xue; Song, Ni; Chen, Li-Zhi; Cheng, Shi-Peng; Wu, Hua; Wen, Yong-Jun

    2013-08-01

    Porcine reproductive and respiratory syndrome (PRRS) is a swine disease of significant economic importance that causes reproductive and respiratory problems in pigs. The replicase non-structural protein 2 (Nsp2) of the porcine reproductive and respiratory syndrome virus (PRRSV) is recognized as the most variable region within the PRRSV genome. This review discusses the molecular characteristics and biological and immunological functions of the PRRSV Nsp2 and its involvement in the virus's pathogenesis. The role of Nsp2 in cell and tissue tropism, replication and growth, and variation and pathogenicity of PRRSV and the differences in virulence among different strains are described in the present review. Nsp2 is an ideal marker for monitoring genetic variation and for developing differential diagnostic tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Comprehensive mapping of common immunodominant epitopes in the West Nile virus nonstructural protein 1 recognized by avian antibody responses.

    Directory of Open Access Journals (Sweden)

    Encheng Sun

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1 of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24 were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV, Newcastle Disease Virus (NDV, Duck Plague Virus (DPV and Goose Parvovirus (GPV antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and

  6. Significance of monoclonal antibodies against the conserved epitopes within non-structural protein 3 helicase of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Yixin Bian

    Full Text Available Nonstructural protein 3 (NS3 of hepatitis C virus (HCV, codes for protease and helicase carrying NTPase enzymatic activities, plays a crucial role in viral replication and an ideal target for diagnosis, antiviral therapy and vaccine development. In this study, monoclonal antibodies (mAbs to NS3 helicase were characterized by epitope mapping and biological function test. A total of 29 monoclonal antibodies were produced to the truncated NS3 helicase of HCV-1b (T1b-rNS3, aa1192-1459. Six mAbs recognized 8/29 16mer peptides, which contributed to identify 5 linear and 1 discontinuous putative epitope sequences. Seven mAbs reacted with HCV-2a JFH-1 infected Huh-7.5.1 cells by immunofluorescent staining, of which 2E12 and 3E5 strongly bound to the exposed linear epitope (1231PTGSGKSTK(1239 (EP05 or core motif (1373IPFYGKAI(1380 (EP21, respectively. Five other mAbs recognized semi-conformational or conformational epitopes of HCV helicase. MAb 2E12 binds to epitope EP05 at the ATP binding site of motif I in domain 1, while mAb 3E5 reacts with epitope EP21 close to helicase nucleotide binding region of domain 2. Epitope EP05 is totally conserved and EP21 highly conserved across HCV genotypes. These two epitope peptides reacted strongly with 59-79% chronic and weakly with 30-58% resolved HCV infected blood donors, suggesting that these epitopes were dominant in HCV infection. MAb 2E12 inhibited 50% of unwinding activity of NS3 helicase in vitro. Novel monoclonal antibodies recognize highly conserved epitopes at crucial functional sites within NS3 helicase, which may become important antibodies for diagnosis and antiviral therapy in chronic HCV infection.

  7. Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation.

    Science.gov (United States)

    Chuang, Yung-Chun; Lin, Jessica; Lin, Yee-Shin; Wang, Shuying; Yeh, Trai-Ming

    2016-02-01

    Dengue virus (DENV) infection is the most common mosquito-borne viral disease, and it can cause life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Abnormal activation of the coagulation and fibrinolysis system is one of the hallmarks of DHF/DSS. However, the mechanism underlying hemorrhage in DHF/DSS remains elusive. In previous studies, plasminogen (Plg) cross-reactive Abs, which can recognize DENV nonstructural protein (NS) 1, have been found in dengue patients. However, it is unclear whether these Abs are indeed induced by DENV NS1. Thus, we immunized mice with recombinant NS1 from both bacteria and drosophila to determine whether NS1 can induce Plg cross-reactive Abs. The results from the NS1-immunized mouse sera indicated that NS1 immunization induced Abs that could cross-react with Plg. To study the effects of these NS1-induced Plg cross-reactive Abs on fibrinolysis, we isolated several Plg cross-reactive anti-NS1 mAbs from these mice and found that some of them could enhance Plg activation. In addition, epitope mapping with a phage-displayed random peptide library revealed that one of these mAbs (2A5) could recognize NS1 C-terminal residues 305-311, which share sequence homology with Plg residues 590-597. A synthetic peptide of NS1 residues 305-311 could inhibit the binding of both 2A5 and its Fab to Plg and its enhanced activation. Thus, our results suggest that DENV NS1 can induce Plg cross-reactive Abs through molecular mimicry, which can enhance Plg activation and may contribute to the pathogenesis of DHF/DSS. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. In silico mutation analysis of non-structural protein-5 (NS5) dengue virus

    Science.gov (United States)

    Puspitasari, R. D.; Tambunan, U. S. F.

    2017-04-01

    Dengue fever is a world disease. It is endemic in more than 100 countries. Information about the effect of mutations in the virus is important in drug design and development. In this research, we studied the effect of mutation on NS5 dengue virus. NS5 is the large protein containing 67% amino acid similarity in DENV 1-4 and has multifunctional enzymatic activities. Dengue virus is an RNA virus that has very high mutation frequency with an average of 100 times higher than DNA mutations, and the accumulation of mutations will be possible to generate the new serotype. In this study, we report that mutation occurs in NS5 of DENV serotype 3, glutamine mutates into methionine at position 10 and threonine mutates into isoleucine at position 55. These residues are part of the domain named S-Adenosyl-L-Methionine-Dependent Methyltransferase (IPR029063).

  9. Double-stranded RNA-induced activation of activating protein-1 promoter is differentially regulated by the non-structural protein 1 of avian influenza A viruses.

    Science.gov (United States)

    Munir, Muhammad; Zohari, Siamak; Belák, Sándor; Berg, Mikael

    2012-02-01

    Non-structural protein 1 (NS1) of influenza A viruses is a multifunctional protein that antagonizes the host immune response by interfering with several host signaling pathways. Based on putative amino acid sequences, NS1 proteins are categorized into two gene pools, allele A and allele B. Here we identified that allele A NS1 proteins of H6N8 and H4N6 are able to inhibit double-stranded RNA (dsRNA)-induced activating protein-1 (AP-1) promoter in cultured cell lines (human A549 and mink lung cells). Allele B NS1 proteins from corresponding subtypes of influenza A viruses are weak in this inhibition, despite significant levels of expression of each NS1 protein in human A549 cells. Furthermore, the capability to inhibit AP-1 promoter was mapped in the effector domain, since RNA binding domain alone lost its ability to inhibit this promoter activation. Chimeric forms of NS1 protein, composed of either RNA binding domain of allele A or B and effector domain of allele A or B, showed comparable inhibition to that of their wild-type NS1 proteins, or to the effector domain of corresponding NS1 proteins. Both alleles A and B NS1 proteins of H6N8 and H4N6 were expressed to significant levels, and were localized predominantly in the nucleus of human A549 cells. These results underscore the importance of the effector domain in inhibiting AP-1 promoter activation, and the biological function of the effector domain in stabilizing the RNA binding domain. Further, we revealed the versatile nature of NS1 in inhibiting the AP-1 transcription factor, in a manner dependent on allele type. Comprehensive studies, focusing on the molecular mechanisms behind this differential inhibition, may facilitate exploration of the zoonotic and pathogenic potential of influenza A viruses.

  10. Analysis of chikungunya virus proteins reveals that non-structural proteins nsP2 and nsP3 exhibit RNA interference (RNAi) suppressor activity.

    Science.gov (United States)

    Mathur, Kalika; Anand, Abhishek; Dubey, Sunil Kumar; Sanan-Mishra, Neeti; Bhatnagar, Raj K; Sunil, Sujatha

    2016-11-30

    RNAi pathway is an antiviral defence mechanism employed by insects that result in degradation of viral RNA thereby curbing infection. Several viruses including flaviviruses encode viral suppressors of RNAi (VSRs) to counteract the antiviral RNAi pathway. Till date, no VSR has been reported in alphaviruses. The present study was undertaken to evaluate chikungunya virus (CHIKV) proteins for RNAi suppressor activity. We systematically analyzed all nine CHIKV proteins for RNAi suppressor activity using Sf21 RNAi sensor cell line based assay. Two non-structural proteins, namely, nsP2 and nsP3 were found to exhibit RNAi suppressor activity. We further validated the findings in natural hosts, namely in Aedes and in mammalian cell lines and further through EMSA and Agrobacterium infiltration in GFP silenced transgenic tobacco plants. Domains responsible for maximum RNAi suppressor activity were also identified within these proteins. RNA binding motifs in these domains were identified and their participation in RNAi suppression evaluated using site directed mutagenesis. Sequence alignment of these motifs across all species of known alphaviruses revealed conservation of these motifs emphasizing on a similar role of action in other species of alphaviruses as well. Further validation of RNAi suppressor activity of these proteins awaits establishment of specific virus infection models.

  11. Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal.

    Directory of Open Access Journals (Sweden)

    Tyler M Sharp

    2010-10-01

    Full Text Available Protein trafficking between the endoplasmic reticulum (ER and Golgi apparatus is central to cellular homeostasis. ER export signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the Golgi. Norwalk virus nonstructural protein p22 contains a YXΦESDG motif that mimics a di-acidic ER export signal in both sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved human norovirus motif is therefore an appealing target for antiviral drug development.

  12. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome.

    Directory of Open Access Journals (Sweden)

    Tuomas Rönnberg

    Full Text Available Hantaviruses (Bunyaviridae are negative-strand RNA viruses with a tripartite genome. The small (S segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs. The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.

  13. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    International Nuclear Information System (INIS)

    Karttunen, Jenni; Mäntynen, Sari; Ihalainen, Teemu O.; Bamford, Jaana K.H.; Oksanen, Hanna M.

    2015-01-01

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components

  14. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, Jenni; Mäntynen, Sari [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Ihalainen, Teemu O. [Stem Cells in Neurological Applications Group, BioMediTech, University of Tampere, Tampere (Finland); Bamford, Jaana K.H. [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Oksanen, Hanna M., E-mail: hanna.oksanen@helsinki.fi [Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 Helsinki (Finland)

    2015-08-15

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.

  15. Recombinant production of the amino terminal cytoplasmic region of dengue virus non-structural protein 4A for structural studies.

    Directory of Open Access Journals (Sweden)

    Yu-Fu Hung

    Full Text Available BACKGROUND: Dengue virus (DENV is a mosquito-transmitted positive single strand RNA virus belonging to the Flaviviridae family. DENV causes dengue fever, currently the world's fastest-spreading tropical disease. Severe forms of the disease like dengue hemorrhagic fever and dengue shock syndrome are life-threatening. There is no specific treatment and no anti-DENV vaccines. Our recent data suggests that the amino terminal cytoplasmic region of the dengue virus non-structural protein 4A (NS4A comprising amino acid residues 1 to 48 forms an amphipathic helix in the presence of membranes. Its amphipathic character was shown to be essential for viral replication. NMR-based structure-function analysis of the NS4A amino terminal region depends on its milligram-scale production and labeling with NMR active isotopes. METHODOLOGY/PRINCIPAL FINDINGS: This report describes the optimization of a uniform procedure for the expression and purification of the wild type NS4A(1-48 peptide and a peptide derived from a replication-deficient mutant NS4A(1-48; L6E, M10E with disrupted amphipathic nature. A codon-optimized, synthetic gene for NS4A(1-48 was expressed as a fusion with a GST-GB1 dual tag in E. coli. Tobacco etch virus (TEV protease mediated cleavage generated NS4A(1-48 peptides without any artificial overhang. Using the described protocol up to 4 milligrams of the wild type or up to 5 milligrams of the mutant peptide were obtained from a one-liter culture. Isotopic labeling of the peptides was achieved and initial NMR spectra were recorded. CONCLUSIONS/SIGNIFICANCE: Small molecules targeting amphipathic helices in the related Hepatitis C virus were shown to inhibit viral replication, representing a new class of antiviral drugs. These findings highlight the need for an efficient procedure that provides large quantities of the amphipathic helix containing NS4A peptides. The double tag strategy presented in this manuscript answers these needs yielding

  16. Recombinant production of the amino terminal cytoplasmic region of dengue virus non-structural protein 4A for structural studies.

    Science.gov (United States)

    Hung, Yu-Fu; Valdau, Olga; Schünke, Sven; Stern, Omer; Koenig, Bernd W; Willbold, Dieter; Hoffmann, Silke

    2014-01-01

    Dengue virus (DENV) is a mosquito-transmitted positive single strand RNA virus belonging to the Flaviviridae family. DENV causes dengue fever, currently the world's fastest-spreading tropical disease. Severe forms of the disease like dengue hemorrhagic fever and dengue shock syndrome are life-threatening. There is no specific treatment and no anti-DENV vaccines. Our recent data suggests that the amino terminal cytoplasmic region of the dengue virus non-structural protein 4A (NS4A) comprising amino acid residues 1 to 48 forms an amphipathic helix in the presence of membranes. Its amphipathic character was shown to be essential for viral replication. NMR-based structure-function analysis of the NS4A amino terminal region depends on its milligram-scale production and labeling with NMR active isotopes. This report describes the optimization of a uniform procedure for the expression and purification of the wild type NS4A(1-48) peptide and a peptide derived from a replication-deficient mutant NS4A(1-48; L6E, M10E) with disrupted amphipathic nature. A codon-optimized, synthetic gene for NS4A(1-48) was expressed as a fusion with a GST-GB1 dual tag in E. coli. Tobacco etch virus (TEV) protease mediated cleavage generated NS4A(1-48) peptides without any artificial overhang. Using the described protocol up to 4 milligrams of the wild type or up to 5 milligrams of the mutant peptide were obtained from a one-liter culture. Isotopic labeling of the peptides was achieved and initial NMR spectra were recorded. Small molecules targeting amphipathic helices in the related Hepatitis C virus were shown to inhibit viral replication, representing a new class of antiviral drugs. These findings highlight the need for an efficient procedure that provides large quantities of the amphipathic helix containing NS4A peptides. The double tag strategy presented in this manuscript answers these needs yielding amounts that are sufficient for comprehensive biophysical and structural studies, which

  17. Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis.

    Science.gov (United States)

    Kang, Kai; Guo, Kangkang; Tang, Qinhai; Zhang, Yanming; Wu, Jiang; Li, Weiwei; Lin, Zhi

    2012-12-01

    Classical swine fever is caused by the classical swine fever virus (CSFV), which has a special affinity to endothelial cells. This fever is characterized by hemorrhage and necrosis of vascular injury. Very little information is available on the interaction between vascular endothelial cells and CSFV. In the current report, the cDNA library of swine umbilical vein endothelial cell (SUVEC) was constructed by the switching mechanism at 5' end of the RNA transcript approach. The yeast two-hybrid (Y2H) system was adopted to screen non-structure 2 protein (NS2) interactive proteins in the SUVEC line. Alignment with the NCBI database revealed 11 interactive proteins: GOPC, HNRNPH1, DNAJA1, ATP6, CSDE1, CNDP2, FANCL, TMED4, DNAJA4, MOAP1, and PNMA1. These proteins were mostly related to apoptosis, stress response and oxidation reduction, or metabolism. In the protein interaction network constructed based on proteins with NS2, the more important proteins were MOAP1, DNAJA1, GOPC, FANCL, TMED4, and CSDE1. The interactions detected by the Y2H should be regarded only as preliminary indications. However, the CSFV NS2 interactive proteins in the SUVEC cDNA library obtained in the current study provides valuable information for gaining a better understanding of the host protein-virus interactions of the CSFV NS2 protein.

  18. Biogenesis of non-structural protein 1 (nsp1) and nsp1-mediated type I interferon modulation in arteriviruses

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mingyuan; Kim, Chi Yong [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Rowland, Raymond R.R.; Fang, Ying [Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506 (United States); Kim, Daewoo [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802 (United States)

    2014-06-15

    Type I interferons (IFNs-α/β) play a key role for the antiviral state of host, and the porcine arterivirus; porcine reproductive and respiratory syndrome virus (PRRSV), has been shown to down-regulate the production of IFNs during infection. Non-structural protein (nsp) 1 of PRRSV has been identified as a viral IFN antagonist, and the nsp1α subunit of nsp1 has been shown to degrade the CREB-binding protein (CBP) and to inhibit the formation of enhanceosome thus resulting in the suppression of IFN production. The study was expanded to other member viruses in the family Arteriviridae: equine arteritis virus (EAV), murine lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV). While PRRSV–nsp1 and LDV–nsp1 were auto-cleaved to produce the nsp1α and nsp1β subunits, EAV–nsp1 remained uncleaved. SHFV–nsp1 was initially predicted to be cleaved to generate three subunits (nsp1α, nsp1β, and nsp1γ), but only two subunits were generated as SHFV–nsp1αβ and SHFV–nsp1γ. The papain-like cysteine protease (PLP) 1α motif in nsp1α remained inactive for SHFV, and only the PLP1β motif of nsp1β was functional to generate SHFV–nsp1γ subunit. All subunits of arterivirus nsp1 were localized in the both nucleus and cytoplasm, but PRRSV–nsp1β, LDV–nsp1β, EAV–nsp1, and SHFV–nsp1γ were predominantly found in the nucleus. All subunits of arterivirus nsp1 contained the IFN suppressive activity and inhibited both interferon regulatory factor 3 (IRF3) and NF-κB mediated IFN promoter activities. Similar to PRRSV–nsp1α, CBP degradation was evident in cells expressing LDV–nsp1α and SHFV–nsp1γ, but no such degradation was observed for EAV–nsp1. Regardless of CBP degradation, all subunits of arterivirus nsp1 suppressed the IFN-sensitive response element (ISRE)-promoter activities. Our data show that the nsp1-mediated IFN modulation is a common strategy for all arteriviruses but their mechanism of action may differ

  19. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts.

    Directory of Open Access Journals (Sweden)

    Steffen Frey

    Full Text Available During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps.

  20. Development of an indirect ELISA with epitope on nonstructural protein of Muscovy duck parvovirus for differentiating between infected and vaccinated Muscovy ducks.

    Science.gov (United States)

    Yan, B; Ma, J-Z; Yu, T-F; Shao, S-L; Li, M; Fan, X-D

    2014-12-01

    The aim of this study was to develop an indirect enzyme-linked immunosorbent assay (i-ELISA) based on epitope AA503-509 (RANEPKE), which is on nonstructural protein of Muscovy duck parvovirus (MDPV). Sera (100) from negative and vaccinated Muscovy ducks were compared with infected sera (240) to establish the cut-off value of this i-ELISA. There was a significant difference between the positive and negative populations (P < 0·05). The adoption of this positive-negative threshold value for this i-ELISA assay resulted in specificity of 98·0%. This i-ELISA could be used as a diagnostic tool for differentiating infected Muscovy ducks from Muscovy ducks vaccinated with inactivated virus. In this study, we developed an i-ELISA based on epitope AA503-509 (RANEPKE), which is on nonstructural protein of MDPV. This i-ELISA could be used as a diagnostic tool for differentiating infected Muscovy ducks from Muscovy ducks vaccinated with inactivated virus. © 2014 The Society for Applied Microbiology.

  1. Nonstructural protein NS4 of Rice Stripe Virus plays a critical role in viral spread in the body of vector insects.

    Directory of Open Access Journals (Sweden)

    Wei Wu

    Full Text Available Rice stripe virus (RSV, a tenuivirus, is transmitted by small brown planthopper (SBPH in a persistent-propagative manner. In this study, sequential infection of RSV in the internal organs of SBPH after ingestion of virus indicated that RSV initially infected the midgut epithelium, and then progressed to the visceral muscle tissues, through which RSV spread to the entire alimentary canal. Finally, RSV spread into the salivary glands and reproductive system. During viral infection, the nonstructural protein NS4 of RSV formed cytoplasmic inclusions in various tissues of viruliferous SBPH. We demonstrated that the ribonucleoprotein particles of RSV were closely associated with NS4-specific inclusions in the body of viruliferous SBPH through a direct interaction between NS4 and nucleoprotein of RSV. Moreover, the knockdown of NS4 expression due to RNA interference induced by dsRNA from NS4 gene significantly prevented the spread of RSV in the bodies of SBPHs without a significant effect on viral replication in continuous cell culture derived from SBPH. All these results suggest that the nonstructural protein NS4 of RSV plays a critical role in viral spread by the vector insects.

  2. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Directory of Open Access Journals (Sweden)

    Sven Malm

    Full Text Available Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP and Factor H (FH. Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  3. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    Science.gov (United States)

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  4. The non-structural protein 5 and matrix protein are antigenic targets of T cell immunity to genotype 1 porcine reproductive and respiratory syndrome viruses

    Directory of Open Access Journals (Sweden)

    Helen eMokhtar

    2016-02-01

    Full Text Available The porcine reproductive and respiratory syndrome virus (PRRSV is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focussed on envelope glycoproteins to target virus-neutralising antibody responses. However, these approaches have failed to demonstrate the necessary efficacy to progress towards market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralising antibodies, it has been proposed that T cell mediated immunity plays a key role. We therefore hypothesised that conserved T cell antigens represent prime candidates for the development a novel PRRS vaccine. Antigens were identified by screening a proteome-wide synthetic peptide library with T cells from cohorts of pigs rendered immune by experimental infections with a closely-related (subtype 1 or divergent (subtype 3 PRRSV-1 strain. Dominant T cell IFN-γ responses were directed against the non-structural protein 5 (NSP5, and to a lesser extent, the matrix (M protein. The majority of NSP5-specific CD8 T cells and M-specific CD4 T cells expressed a putative effector memory phenotype and were polyfunctional as assessed by co-expression of TNF-α and mobilisation of the cytotoxic degranulation marker CD107a. Both antigens were generally well conserved amongst strains of both PRRSV genotypes. Thus M and NSP5 represent attractive vaccine candidate T cell antigens which should be evaluated further in the context of PRRSV vaccine development.

  5. RSK activation of translation factor eIF4B drives abnormal increases of laminin γ2 and MYC protein during neoplastic progression to squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Martin Degen

    Full Text Available Overexpression of the basement membrane protein Laminin γ2 (Lamγ2 is a feature of many epidermal and oral dysplasias and all invasive squamous cell carcinomas (SCCs. This abnormality has potential value as an immunohistochemical biomarker of premalignancy but its mechanism has remained unknown. We recently reported that Lamγ2 overexpression in culture is the result of deregulated translation controls and depends on the MAPK-RSK signaling cascade. Here we identify eIF4B as the RSK downstream effector responsible for elevated Lamγ2 as well as MYC protein in neoplastic epithelial cells. Premalignant dysplastic keratinocytes, SCC cells, and keratinocytes expressing the E6 oncoprotein of human papillomavirus (HPV type 16 displayed MAPK-RSK and mTOR-S6K1 activation and overexpressed Lamγ2 and MYC in culture. Immunohistochemical staining of oral dysplasias and SCCs for distinct, RSK- and S6K1-specific S6 phosphorylation events revealed that their respective upstream pathways become hyperactive at the same time during neoplastic progression. However, pharmacologic kinase inhibitor studies in culture revealed that Lamγ2 and MYC overexpression depends on MAPK-RSK activity, independent of PI3K-mTOR-S6K1. eIF4B knockdown reduced Lamγ2 and MYC protein expression, consistent with the known requirement for eIF4B to translate mRNAs with long, complex 5' untranslated regions (5'-UTRs. Accordingly, expression of a luciferase reporter construct preceded by the Lamγ2 5'-UTR proved to be RSK-dependent and mTOR-independent. These results demonstrate that RSK activation of eIF4B is causally linked to elevated Lamγ2 and MYC protein levels during neoplastic progression to invasive SCC. These findings have potential clinical significance for identifying premalignant lesions and for developing targeted drugs to treat SCC.

  6. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b.

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2016-09-01

    Full Text Available Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3 as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance.

  7. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b

    Science.gov (United States)

    Du, Jin; Zhao, Tao-Lan; Wang, Peng-Fei; Zhao, Ping-Xia; Xie, Qi; Cao, Xiao-Feng; Xiang, Cheng-Bin

    2016-01-01

    Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. PMID:27676073

  8. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  9. Interaction Research on the Antiviral Molecule Dufulin Targeting on Southern Rice Black Streaked Dwarf Virus P9-1 Nonstructural Protein

    Directory of Open Access Journals (Sweden)

    Zhenchao Wang

    2015-03-01

    Full Text Available ern rice black streaked dwarf virus (SRBSDV causes severe harm to rice production. Unfortunately, studies on effective antiviral drugs against SRBSDV and interaction mechanism of antiviral molecule targeting on SRBSDV have not been reported. This study found dufulin (DFL, an ideal anti-SRBSDV molecule, and investigated the interactions of DFL targeting on the nonstructural protein P9-1. The biological sequence information and bonding characterization of DFL to four kinds of P9-1 protein were described with fluorescence titration (FT and microscale thermophoresis (MST assays. The sequence analysis indicated that P9-1 had highly-conserved C- and N-terminal amino acid residues and a hypervariable region that differed from 131 aa to 160 aa. Consequently, wild-type (WT-His-P9-1, 23 C-terminal residues truncated (TR-ΔC23-His-P9-1, 6 N-terminal residues truncated (TR-ΔN6-His-P9-1, and Ser138 site-directed (MU-138-His-P9-1 mutant proteins were expressed. The FT and MST assay results indicated that DFL bounded to WT-His-P9-1 with micromole affinity and the 23 C-terminal amino acids were the potential targeting site. This system, which combines a complete sequence analysis, mutant protein expression, and binding action evaluating system, could further advance the understanding of the interaction abilities between antiviral drugs and their targets.

  10. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    International Nuclear Information System (INIS)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-01-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus

  11. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Cotmore, S.F.; McKie, V.C.; Anderson, L.J.; Astell, C.R.; Tattersall, P.

    1986-11-01

    Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights for 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.

  12. Seismic analysis of nonstructural elements

    OpenAIRE

    Toledo Arias, Carlos Alberto

    2013-01-01

    Nonstructural failures have accounted for the majority of earthquake damage in several recent earthquakes. Thus, it is critical to raise awareness of potential nonstructural risks, the costly consequences of nonstructural failures, and the opportunities that exist to limit future losses. Non-structural parts of a building have the potential to modify earthquake response of the primary structure in an unplanned way. This can lead to severe structural damage or even collapse. Failure of non-str...

  13. Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-β

    Science.gov (United States)

    Bakre, Abhijeet; Wu, Weining; Hiscox, Julian; Spann, Kirsten; Teng, Michael N.

    2015-01-01

    Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-β pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-β. Treatment with exogenous TGF-β suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, which facilitates RSV replication. PMID:26253191

  14. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    Science.gov (United States)

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  15. Evaluation of serum antibody responses against the rotavirus nonstructural protein NSP4 in children after rhesus rotavirus tetravalent vaccination or natural infection.

    Science.gov (United States)

    Vizzi, Esmeralda; Calviño, Eva; González, Rosabel; Pérez-Schael, Irene; Ciarlet, Max; Kang, Gagandeep; Estes, Mary K; Liprandi, Ferdinando; Ludert, Juan E

    2005-10-01

    The immune response elicited by the rotavirus nonstructural protein NSP4 and its potential role in protection against rotavirus disease are not well understood. We investigated the serological response to NSP4 and its correlation with disease protection in sera from 110 children suffering acute diarrhea, associated or not with rotavirus, and from 26 children who were recipients of the rhesus rotavirus tetravalent (RRV-TV) vaccine. We used, as antigens in an enzyme-linked immunosorbent assay (ELISA), affinity-purified recombinant NSP4 (residues 85 to 175) from strains SA11, Wa, and RRV (genotypes A, B, and C, respectively) fused to glutathione S-transferase. Seroconversion to NSP4 was observed in 54% (42/78) of the children who suffered from natural rotavirus infection and in 8% (2/26) of the RRV-TV vaccine recipients. Our findings indicate that NSP4 evokes significantly (P rotavirus-infected children with a detectable response to NSP4. Following natural infection or RRV-TV vaccination, NSP4 was significantly less immunogenic than the VP6 protein when these responses were independently measured by ELISA. A significant (P rotavirus had antibodies to NSP4 in acute-phase serum, suggesting that serum antibodies against NSP4 might correlate with protection from rotavirus diarrhea. In addition, previous exposures to rotavirus did not affect the NSP4 seroconversion rate.

  16. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    Energy Technology Data Exchange (ETDEWEB)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina); Vas, Mariana del, E-mail: mdelvas@cnia.inta.gov.ar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina)

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  17. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  18. The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA.

    Science.gov (United States)

    Tewary, Sunil Kumar; Zhao, Haiyan; Deng, Xuefeng; Qiu, Jianming; Tang, Liang

    2014-01-20

    The non-structural protein 1 (NS1) of human parvovirus B19 plays a critical role in viral DNA replication. Previous studies identified the origin of replication in the viral DNA, which contains four DNA elements, namely NSBE1 to NSBE4, that are required for optimal viral replication (Guan et al., 2009). Here we have demonstrated in vitro that the NS1 N-terminal domain (NS1N) binds to the origin of replication in a sequence-specific, length-dependent manner that requires NSBE1 and NSBE2, while NSBE3 and NSBE4 are dispensable. Mutagenesis analysis has identified nucleotides in NSBE1 and NSBE2 that are critical for NS1N binding. These results suggest that NS1 binds to the NSBE1-NSBE2 region in the origin of replication, while NSBE3 and NSBE4 may provide binding sites for potential cellular factors. Such a specialized nucleoprotein complex may enable NS1 to nick the terminal resolution site and separate DNA strands during replication. © 2013 Published by Elsevier Inc.

  19. Molecular basis for specific viral RNA recognition and 2'-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5).

    Science.gov (United States)

    Zhao, Yongqian; Soh, Tingjin Sherryl; Lim, Siew Pheng; Chung, Ka Yan; Swaminathan, Kunchithapadam; Vasudevan, Subhash G; Shi, Pei-Yong; Lescar, Julien; Luo, Dahai

    2015-12-01

    Dengue virus (DENV) causes several hundred million human infections and more than 20,000 deaths annually. Neither an efficacious vaccine conferring immunity against all four circulating serotypes nor specific drugs are currently available to treat this emerging global disease. Capping of the DENV RNA genome is an essential structural modification that protects the RNA from degradation by 5' exoribonucleases, ensures efficient expression of viral proteins, and allows escape from the host innate immune response. The large flavivirus nonstructural protein 5 (NS5) (105 kDa) has RNA methyltransferase activities at its N-terminal region, which is responsible for capping the virus RNA genome. The methyl transfer reactions are thought to occur sequentially using the strictly conserved flavivirus 5' RNA sequence as substrate (GpppAG-RNA), leading to the formation of the 5' RNA cap: G0pppAG-RNA → (m7)G0pppAG-RNA ("cap-0")→(m7)G0pppAm2'-O-G-RNA ("cap-1"). To elucidate how viral RNA is specifically recognized and methylated, we determined the crystal structure of a ternary complex between the full-length NS5 protein from dengue virus, an octameric cap-0 viral RNA substrate bearing the authentic DENV genomic sequence (5'-(m7)G0pppA1G2U3U4G5U6U7-3'), and S-adenosyl-l-homocysteine (SAH), the by-product of the methylation reaction. The structure provides for the first time, to our knowledge, a molecular basis for specific adenosine 2'-O-methylation, rationalizes mutagenesis studies targeting the K61-D146-K180-E216 enzymatic tetrad as well as residues lining the RNA binding groove, and offers previously unidentified mechanistic and evolutionary insights into cap-1 formation by NS5, which underlies innate immunity evasion by flaviviruses.

  20. Nonstructural 5A Protein of Hepatitis C Virus Interferes with Toll-Like Receptor Signaling and Suppresses the Interferon Response in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Takeya Tsutsumi

    Full Text Available The hepatitis C virus nonstructural protein NS5A is involved in resistance to the host immune response, as well as the viral lifecycle such as replication and maturation. Here, we established transgenic mice expressing NS5A protein in the liver and examined innate immune responses against lipopolysaccharide (LPS in vivo. Intrahepatic gene expression levels of cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly suppressed after LPS injection in the transgenic mouse liver. Induction of the C-C motif chemokine ligand 2, 4, and 5 was also suppressed. Phosphorylation of the signal transducer and activator of transcription 3, which is activated by cytokines, was also reduced, and expression levels of interferon-stimulated genes, 2'-5' oligoadenylate synthase, interferon-inducible double-stranded RNA-activated protein kinase, and myxovirus resistance 1 were similarly suppressed. Since LPS binds to toll-like receptor 4 and stimulates the downstream pathway leading to induction of these genes, we examined the extracellular signal-regulated kinase and IκB-α. The phosphorylation levels of these molecules were reduced in transgenic mouse liver, indicating that the pathway upstream of the molecules was disrupted by NS5A. Further analyses revealed that the interaction between interleukin-1 receptor-associated kinase-1 and tumor necrosis factor receptor associated factor-6 was dispersed in transgenic mice, suggesting that NS5A may interfere with this interaction via myeloid differentiation primary response gene 88, which was shown to interact with NS5A. Since the gut microbiota, a source of LPS, is known to be associated with pathological conditions in liver diseases, our results suggest the involvement of NS5A in the pathogenesis of HCV infected-liver via the suppression of innate immunity.

  1. Comparative study and grouping of nonstructural (NS1)proteins of influenza A viruses by the method of oligopeptide mapping

    International Nuclear Information System (INIS)

    Sokolov, B.P.; Rudneva, I.A.; Zhdanov, V.M.

    1983-01-01

    Oligopeptide mapping of 35 S-methionine labeled non-stuctural (NS1) proteins of 23 influenza A virus strains showed the presence of both common and variable oligopeptides. Analysis of the oligopeptide maps revealed at least four groups of NS1 proteins. The first group includes NS1 proteins of several human H1N1 influenza viruses (that were designated as H0N1 according to the old classification). The second group is composed of NS1 proteins of H1N1 and H2N2 viruses. The third group includes NS1 proteins of H3N2 human influenza viruses. The fourth group is composed of NS1 proteins of five avian influenza viruses and an equine (H3N8) influenza virus. Two animal influenza viruses A/equi/Prague/56 (H7N7) and A/duck/England/56 (H11N6) contain NS1 proteins that belong to the second group. (Author)

  2. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca(2+) and Mg(2+) dependent-DNase activity and antifungal action on Moniliophthora perniciosa.

    Science.gov (United States)

    Pereira Menezes, Sara; de Andrade Silva, Edson Mario; Matos Lima, Eline; Oliveira de Sousa, Aurizângela; Silva Andrade, Bruno; Santos Lima Lemos, Livia; Peres Gramacho, Karina; da Silva Gesteira, Abelmon; Pirovani, Carlos Priminho; Micheli, Fabienne

    2014-06-11

    The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively.

  3. Novel Strategy to Control Transgene Expression Mediated by a Sendai Virus-Based Vector Using a Nonstructural C Protein and Endogenous MicroRNAs.

    Directory of Open Access Journals (Sweden)

    Masayuki Sano

    Full Text Available Tissue-specific control of gene expression is an invaluable tool for studying various biological processes and medical applications. Efficient regulatory systems have been utilized to control transgene expression in various types of DNA viral or integrating viral vectors. However, existing regulatory systems are difficult to transfer into negative-strand RNA virus vector platforms because of significant differences in their transcriptional machineries. In this study, we developed a novel strategy for regulating transgene expression mediated by a cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp. Because of the capacity of Sendai virus (SeV nonstructural C proteins to specifically inhibit viral RNA synthesis, overexpression of C protein significantly reduced transgene expression mediated by SeVdp vectors. We found that SeV C overexpression concomitantly reduced SeVdp mRNA levels and genomic RNA synthesis. To control C expression, target sequences for an endogenous microRNA were incorporated into the 3' untranslated region of the C genes. Incorporation of target sequences for miR-21 into the SeVdp vector restored transgene expression in HeLa cells by decreasing C expression. Furthermore, the SeVdp vector containing target sequences for let-7a enabled cell-specific control of transgene expression in human fibroblasts and induced pluripotent stem cells. Our findings demonstrate that SeV C can be used as an effective regulator for controlling transgene expression. This strategy will contribute to efficient and less toxic SeVdp-mediated gene transfer in various biological applications.

  4. Nonstructural Protein 4 of Porcine Reproductive and Respiratory Syndrome Virus Modulates Cell Surface Swine Leukocyte Antigen Class I Expression by Downregulating β2-Microglobulin Transcription.

    Science.gov (United States)

    Qi, Pengfei; Liu, Ke; Wei, Jianchao; Li, Yuming; Li, Beibei; Shao, Donghua; Wu, Zhuanchang; Shi, Yuanyuan; Tong, Guangzhi; Qiu, Yafeng; Ma, Zhiyong

    2017-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of PRRS, which has important impacts on the pig industry. PRRSV infection results in disruption of the swine leukocyte antigen class I (SLA-I) antigen presentation pathway. In this study, highly pathogenic PRRSV (HP-PRRSV) infection inhibited transcription of the β2-microglobulin (β2M) gene ( B2M ) and reduced cellular levels of β2M, which forms a heterotrimeric complex with the SLA-I heavy chain and a variable peptide and plays a critical role in SLA-I antigen presentation. HP-PRRSV nonstructural protein 4 (Nsp4) was involved in the downregulation of β2M expression. Exogenous expression of Nsp4 downregulated β2M expression at both the mRNA and the protein level and reduced SLA-I expression on the cell surface. Nsp4 bound to the porcine B2M promoter and inhibited its transcriptional activity. Domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter were identified as essential for the interaction between Nsp4 and B2M These findings demonstrate a novel mechanism whereby HP-PRRSV may modulate the SLA-I antigen presentation pathway and provide new insights into the functions of HP-PRRSV Nsp4. IMPORTANCE PRRSV modulates the host response by disrupting the SLA-I antigen presentation pathway. We show that HP-PRRSV downregulates SLA-I expression on the cell surface via transcriptional inhibition of B2M expression by viral Nsp4. The interaction between domain III of Nsp4 and the enhancer PAM element of the porcine B2M promoter is essential for inhibiting B2M transcription. These observations reveal a novel mechanism whereby HP-PRRSV may modulate SLA-I antigen presentation and provide new insights into the functions of viral Nsp4. Copyright © 2017 American Society for Microbiology.

  5. Production of Polyclonal Antiobies to a Recombinant Potato Mop-top Virus Non-structural Triple Gene Block Protein l

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Filigarová, Marie; Pečenková, Tamara

    2006-01-01

    Roč. 154, - (2006), s. 422-427 ISSN 0931-1785 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato mop-top virus * recombinant protein * triple gene block * polyclonal antibodies Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.817, year: 2006

  6. Electrophoresis of the non-structural proteins from normal and atrophic muscles of the rabbit and of man

    NARCIS (Netherlands)

    Haan, A.M.F.H.

    1953-01-01

    The proteins of normal and atrophied skeletal muscles of the rabbit and of man, soluble in salt solutions of low ionic strength and pH about 7, were studied by means of electrophoresis. Atrophy of rabbit leg muscles was caused by severance of the motoric nerve, by immobilisation of a leg in a

  7. The C Terminus of the Core β-Ladder Domain in Japanese Encephalitis Virus Nonstructural Protein 1 Is Flexible for Accommodation of Heterologous Epitope Fusion.

    Science.gov (United States)

    Yen, Li-Chen; Liao, Jia-Teh; Lee, Hwei-Jen; Chou, Wei-Yuan; Chen, Chun-Wei; Lin, Yi-Ling; Liao, Ching-Len

    2016-02-01

    NS1 is the only nonstructural protein that enters the lumen of the endoplasmic reticulum (ER), where NS1 is glycosylated, forms a dimer, and is subsequently secreted during flavivirus replication as dimers or hexamers, which appear to be highly immunogenic to the infected host, as protective immunity can be elicited against homologous flavivirus infections. Here, by using a trans-complementation assay, we identified the C-terminal end of NS1 derived from Japanese encephalitis virus (JEV), which was more flexible than other regions in terms of housing foreign epitopes without a significant impact on virus replication. This mapped flexible region is located in the conserved tip of the core β-ladder domain of the multimeric NS1 structure and is also known to contain certain linear epitopes, readily triggering specific antibody responses from the host. Despite becoming attenuated, recombinant JEV with insertion of a neutralizing epitope derived from enterovirus 71 (EV71) into the C-terminal end of NS1 not only could be normally released from infected cells, but also induced dual protective immunity for the host to counteract lethal challenge with either JEV or EV71 in neonatal mice. These results indicated that the secreted multimeric NS1 of flaviviruses may serve as a natural protein carrier to render epitopes of interest more immunogenic in the C terminus of the core β-ladder domain. The positive-sense RNA genomes of mosquito-borne flaviviruses appear to be flexible in terms of accommodating extra insertions of short heterologous antigens into their virus genes. Here, we illustrate that the newly identified C terminus of the core β-ladder domain in NS1 could be readily inserted into entities such as EV71 epitopes, and the resulting NS1-epitope fusion proteins appeared to maintain normal virus replication, secretion ability, and multimeric formation from infected cells. Nonetheless, such an insertion attenuated the recombinant JEV in mice, despite having retained

  8. Identification of Respiratory Syncytial Virus Nonstructural Protein 2 Residues Essential for Exploitation of the Host Ubiquitin System and Inhibition of Innate Immune Responses.

    Science.gov (United States)

    Whelan, Jillian N; Tran, Kim C; van Rossum, Damian B; Teng, Michael N

    2016-07-15

    Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children worldwide. The RSV nonstructural protein 2 (NS2) is a multifunctional protein that primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. We investigated the structural determinants of NS2 important for interaction with the host ubiquitin system to degrade STAT2 during infection. We found that NS2 expression enhances ubiquitination of host proteins. Bioinformatics analysis provided a platform for identification of specific residues that limit NS2-induced ubiquitination. Combinations of multiple mutations displayed an additive effect on reducing NS2-induced ubiquitination. Using a reverse genetics system, we generated recombinant RSV (rRSV) containing NS2 ubiquitin mutations, which maintained their effect on ubiquitin expression during infection. Interestingly, STAT2 degradation activity was ablated in the NS2 ubiquitin mutant rRSV. In addition, NS2 ubiquitin mutations decreased rRSV replication, indicating a correlation between NS2's ubiquitin function and antagonism of innate immune signaling to enhance viral replication. Our approach of targeting NS2 residues required for NS2 inhibition of immune responses provides a mechanism for attenuating RSV for vaccine development. RSV has been circulating globally for more than 60 years, causing severe respiratory disease in pediatric, elderly, and immunocompromised populations. Production of a safe, effective vaccine against RSV is a public health priority. The NS2 protein is an effective target for prevention and treatment of RSV due to its antagonistic activity against the innate immune system. However, NS2-deleted RSV vaccine candidates rendered RSV overattenuated or poorly immunogenic. Alternatively, we can modify essential NS2 structural features to marginally limit viral growth while maintaining immune responses, providing the necessary balance between

  9. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion.

    Science.gov (United States)

    Zhang, Qingzhan; Ma, Jinyou; Yoo, Dongwan

    2017-10-01

    Porcine epidemic diarrhea virus emerged in the US is known to suppress the type I interferons response during infection. In the present study using porcine epithelial cells, we showed that PEDV inhibited both NF-κB and proinflammatory cytokines. PEDV blocked the p65 activation in infected cells and suppressed the PRD II-mediated NF-κB activity. Of the total of 22 viral proteins, nine proteins were identified as NF-κB antagonists, and nsp1 was the most potent suppressor of proinflammatory cytokines. Nsp1 interfered the phosphorylation and degradation of IκBα, and thus blocked the p65 activation. Mutational studies demonstrated the essential requirements of the conserved residues of nsp1 for NF-κB suppression. Our study showed that PEDV inhibited NF-κB activity and nsp1 was a potent NF-κB antagonist for suppression of both IFN and early production of pro-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Pegylated interferon and ribavirin promote early evolution of nonstructural 5A protein in individuals with hepatitis C who demonstrate a response to treatment.

    Science.gov (United States)

    Jain, Mamta K; Yuan, He-Jun; Adams-Huet, Beverley; Reeck, Amanda; Shelton, Janel; Attar, Nahid; Zhang, Song; Neumann, Avidan U; Carney, David S; Gale, Michael; Lee, William M

    2009-09-15

    Hepatitis C virus (HCV) quasispecies diversity is more likely to affect early viral decline during treatment of hepatitis C than is having human immunodeficiency virus (HIV) infection. We evaluated the influence of HCV therapy on changes in the nonstructural 5A (NS5A) protein. Fifteen patients with HCV genotype 1 infection with or without HIV infection were recruited for the present study, and the decrease in the HCV RNA level was measured at early time points. The evolution of HCV NS5A quasispecies within the first week was analyzed by comparing the clones observed at later times in the study with the baseline consensus sequence of individual patients. The response to therapy was defined as an early response (ER; ie, an HCV RNA level <615 IU/mL at week 4) or a slow response (SR; ie, a detectable HCV RNA level at week 4). HIV infection did not affect early viral kinetics. At baseline, lower diversity was seen in NS5A and in the amino and carboxyl termini of patients with an ER, compared with those with an SR. Rapid evolution of the NS5A genetic region occurred in patients with an ER (P = .01) but not in those with an SR (P = .73). The evolution was the result of an increase in the number of amino acid substitutions in the carboxyl region (P = .02) in patients with an ER. Selective pressure appears to result in more-marked changes in individuals with an ER than in those with an SR. The carboxyl terminus was subject to the most change and may be an important determinant of phenotypic resistance to interferon-based therapy.

  11. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation.

    Science.gov (United States)

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world's population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2'OH, resulting in S -adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  12. Modification of -Adenosyl--Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Usman Sumo Friend Tambunan

    2017-04-01

    Full Text Available Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5 methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S -adenosyl- l -methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S -adenosyl- l -homocysteine (SAH. The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity test. The 2 simulations were performed using Molecular Operating Environment (MOE 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356 based on ΔG binding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever.

  13. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Directory of Open Access Journals (Sweden)

    Kebaneilwe Lebani

    Full Text Available The multidimensional nature of dengue virus (DENV infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1 is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can

  14. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

    Science.gov (United States)

    Lebani, Kebaneilwe; Jones, Martina L; Watterson, Daniel; Ranzoni, Andrea; Traves, Renee J; Young, Paul R; Mahler, Stephen M

    2017-01-01

    The multidimensional nature of dengue virus (DENV) infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1) is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA) and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can discern amongst

  15. Green fluorescent protein (GFP) color reporter gene visualizes parvovirus B19 non-structural segment 1 (NS1) transfected endothelial modification.

    Science.gov (United States)

    Wurster, Thomas; Pölzelbauer, Catharina; Schönberger, Tanja; Paul, Angela; Seizer, Peter; Stellos, Konstantinos; Schuster, Andreas; Botnar, Rene M; Gawaz, Meinrad; Bigalke, Boris

    2012-01-01

    Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean ± standard deviation: NS1-GFP vs. control-GFP: 85.3 ± 11.2 vs. 61.6 ± 8.1; PGFP vs. control-GFP: 114 ± 15.3 vs. 80 ± 0.91; PGFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (PGFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage.

  16. Hepatitis C Virus Nonstructural 3/4A Protein Dampens Inflammation and Contributes to Slow Fibrosis Progression during Chronic Fibrosis In Vivo.

    Directory of Open Access Journals (Sweden)

    Ruchi Bansal

    Full Text Available HCV infection typically induces liver injury and inflammation, which appears to be responsible for the associated fibrogenesis. To date, the mechanism underlying the different rates of disease progression remains unclear. The aim of the study is to understand the possible role of the HCV non-structural (NS 3/4A protein in the fibrosis progression. We used NS3/4A-expressing transgenic mice (NS3/4A-Tg to accomplish the goals of the study. Different stages of liver fibrosis were induced in wild-type and NS3/4A-Tg mice by single carbon tetrachloride (acute or multiple injections for 4 (intermediate or 8 (chronic weeks. Fibrotic parameters, inflammatory responses and hepatocyte turnover were extensively examined. Hepatic expression of HCV NS3/4A did not induce spontaneous liver damage. However, NS3/4A expression exerted contrasting effects during acute and chronic liver damage. During early fibrogenesis and intermediate fibrosis (4 weeks, NS3/4A-Tg mice exhibited enhanced liver damage whereas reduced fibrosis was observed in NS3/4A-Tg during chronic liver fibrosis (8 weeks. Furthermore, attenuated inflammation was observed in NS3/4A-Tg during chronic fibrosis with increase in M2 macrophages, hepatocyte proliferation, decreased hepatocyte apoptosis and decreased ductular reaction. In conclusion, during early fibrogenesis, HCV NS3/4A contributes to liver damage. While, during chronic liver fibrosis, NS3/4A dampens inflammation and induces hepatocyte regeneration thereby contributing to slow fibrosis progression to promote its survival or persistence.

  17. Dengue virus non-structural Protein-1 expression and associated risk factors among febrile Patients attending University of Abuja Teaching Hospital, Nigeria.

    Science.gov (United States)

    Nasir, Idris Abdullahi; Agbede, Olubunmi Olajide; Dangana, Amos; Baba, Marycelin; Haruna, Abubakar Shehu

    2017-02-15

    Dengue is a mosquito-borne and neglected tropical viral disease that has been reported to be hyper-endemic in Nigeria. However, this is the first dengue study in Abuja. This hospital-based cross-sectional study investigated the prevalence of Dengue virus (DENV) non-structural protein-1 (NS1) antigenaemia, anti-Dengue virus IgG and their associated risk factors among febrile patients attending the University of Abuja Teaching Hospital (UATH), Nigeria. From May to August 2016, blood samples were individually collected from 171 consented participants. These samples were analyzed using DENV NS1 and anti-DENV IgG Enzyme Linked Immunosorbent Assay (ELISA) kits. Well-structured questionnaires was used to collect sociodemographic variables of participants. Out of the 171 participants, the prevalence of Dengue virus NS1 antigenaemia and IgG seropositivity were 8.8% and 43.3%, respectively. Three (1.8%) of the patients were NS1 (+) IgG (-), 12 (7.0%) had NS1 (+) IgG (+), 62 (36.3%) were NS1 (-) IgG (+), while 97 (56.7%) of the remaining patients were NS1 (-) IgG (-). There was statistical association between DENV NS1 antigenaemia with age of patients (p=0.034), residence in proximity to waste dumpsites (pDengue virus IgG with occupation (p=0.0034) and education level of patients (pDengue virus IgG with gender (p=0.4060) and residential area of patients (p=0.3896). Findings from this study revealed that DENV infection is one of the etiological agents of acute febrile illnesses in Abuja. It's recommended that Dengue testing be considered during differential diagnosis of febrile patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. C4b-binding protein is present in affected areas of myocardial infarction during the acute inflammatory phase and covers a larger area than C3.

    Directory of Open Access Journals (Sweden)

    Leendert A Trouw

    Full Text Available BACKGROUND: During myocardial infarction reduced blood flow in the heart muscle results in cell death. These dying/dead cells have been reported to bind several plasma proteins such as IgM and C-reactive protein (CRP. In the present study we investigated whether fluid-phase complement inhibitor C4b-binding protein (C4BP would also bind to the infarcted heart tissue. METHODS AND FINDINGS: Initial studies using immunohistochemistry on tissue arrays for several cardiovascular disorders indicated that C4BP can be found in heart tissue in several cardiac diseases but that it is most abundantly found in acute myocardial infarction (AMI. This condition was studied in more detail by analyzing the time window and extent of C4BP positivity. The binding of C4BP correlates to the same locations as C3b, a marker known to correlate to the patterns of IgM and CRP staining. Based on criteria that describe the time after infarction we were able to pinpoint that C4BP binding is a relatively early marker of tissue damage in myocardial infarction with a peak of binding between 12 hours and 5 days subsequent to AMI, the phase in which infiltration of neutrophilic granulocytes in the heart is the most extensive. CONCLUSIONS: C4BP, an important fluid-phase inhibitor of the classical and lectin pathway of complement activation binds to jeopardized cardiomyocytes early after AMI and co-localizes to other well known markers such as C3b.

  19. A Cell-Permeable Hairpin Peptide Inhibits Hepatitis C Viral Nonstructural Protein 5A Mediated Translation and Virus Production

    Science.gov (United States)

    Khachatoorian, Ronik; Arumugaswami, Vaithilingaraja; Ruchala, Piotr; Raychaudhuri, Santanu; Maloney, Eden M.; Miao, Edna; Dasgupta, Asim; French, Samuel W.

    2012-01-01

    NS5A is a key regulator of hepatitis C virus (HCV) life cycle including RNA replication, assembly, and translation. We and others have shown NS5A to augment HCV IRES-mediated translation. Further, Quercetin treatment and heat shock protein (HSP) 70 knockdown inhibit NS5A-driven augmentation of IRES-mediated translation and infectious virus production. We have also co-immunoprecipitated HSP70 with NS5A and demonstrated cellular colocalization leading to the hypothesis that the NS5A/HSP70 complex formation is important for IRES-mediated translation. Here, we have identified the NS5A region responsible for complex formation through in vitro deletion analyses. Deletion of NS5A domains II and III failed to reduce HSP70 binding, whereas domain I deletion eliminated complex formation. NS5A domain I alone also bound HSP70. Deletion mapping of domain I identified the C-terminal 34 amino acids (C34) to be the interaction site. Further, addition of C34 to domains II and III restored complex formation. C34 expression significantly reduced intracellular viral protein levels, in contrast to same size control peptides from other NS5A domains. C34 also competitively inhibited NS5A-augmented IRES-mediated translation, while controls did not. Triple-alanine scan mutagenesis identified an exposed beta-sheet hairpin in C34 to be primarily responsible for NS5A-augmented IRES-mediated translation. Moreover, treatment with a 10 amino acid peptide derivative of C34 suppressed NS5A-augmented IRES-mediated translation and significantly inhibited intracellular viral protein synthesis, with no associated cytotoxicity. Conclusion: These results support the hypothesis that the NS5A/HSP70 complex augments viral IRES-mediated translation, identify a sequence-specific hairpin element in NS5A responsible for complex formation, and demonstrate the functional significance of C34 hairpin-mediated NS5A/HSP70 interaction. Identification of this element may allow for further interrogation of NS5A

  20. Discovery of a novel compound with anti-venezuelan equine encephalitis virus activity that targets the nonstructural protein 2.

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Chung

    2014-06-01

    Full Text Available Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV, a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50 = 0.84 µM, for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.

  1. Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Pinghua Li

    Full Text Available Foot-and-mouth disease virus (FMDV is an aphthovirus that belongs to the Picornaviridae family and causes one of the most important animal diseases worldwide. The capacity of other picornaviruses to express foreign antigens has been extensively reported, however, little is known about FMDV. To explore the potential of FMDV as a viral vector, an 11-amino-acid (aa HSV epitope and an 8 aa FLAG epitope were introduced into the C-terminal different regions of 3A protein of FMDV full-length infectious cDNA clone. Recombinant viruses expressing the HSV or FLAG epitope were successfully rescued after transfection of both modified constructs. Immunofluorescence assay, Western blot and sequence analysis showed that the recombinant viruses stably maintained the foreign epitopes even after 11 serial passages in BHK-21 cells. The 3A-tagged viruses shared similar plaque phenotypes and replication kinetics to those of the parental virus. In addition, mice experimentally infected with the epitope-tagged viruses could induce tag-specific antibodies. Our results demonstrate that FMDV can be used effectively as a viral vector for the delivery of foreign tags.

  2. The use of non-structural proteins of foot and mouth disease virus (FMDV) to differentiate between vaccinated and infected animals

    International Nuclear Information System (INIS)

    2007-05-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture has a long history of coordinating isotope aided research projects for improving animal productivity in developing countries. Foot and mouth disease (FMD) remains a tremendous problem in developing countries and is a constant threat to developed countries. Tests to determine the immune status of animals form the basis of understanding the control of the disease. Vaccination is widely employed and has to be on a continuous basis. The antibodies produced against the FMD virus (FMDV) after infection are the same as those produced on vaccination. However, tests have been devised to use non-structural proteins (NSP) of FMDV since it is only on infection that antibodies are produced against such proteins. Thus, through their specific detection, it is possible to determine whether animals are infected in the face of vaccination. This is important since any contact with replicating virus in cattle, sheep and goats may result in a non-clinical situation where virus is carried by the affected animal without symptoms, and may be a threat to others. There is great suspicion over animals where virus has multiplied and so their identification is paramount and essential where countries are trying to demonstrate virus freedom. There have been many developments in this field and the IAEA sought to try and validate methods in this coordinated research project (CRP). Validation per se is always addressed by the IAEA and they have been instrumental in improving guidelines for test certification through the OIE. Although FMD tests had been devised they were not fully examined in a large geographical spread, nor were they compared directly. During the CRP many variations of tests were produced and this complicated the validation process. The resulting TECDOC reflects the relative instability of developments but value adds to the latest opinions on the use of NSP tests in the control of FMD. Several commercial kits

  3. Structural analysis of human complement protein H: homology with C4b binding protein, beta 2-glycoprotein I, and the Ba fragment of B2

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Wetsel, R A; Tack, B F

    1986-01-01

    We report here a partial primary structure for human complement protein H. Tryptic peptides comprising 27% of the H molecule were isolated by conventional techniques and were sequenced (333 amino acid residues). Several mixed-sequence oligonucleotide probes were constructed, based on the peptide...... sequence data, and were used to screen a human liver cDNA library. The largest recombinant plasmid (pH1050), which hybridized with two probes, was further characterized. The cDNA insert of this plasmid contained coding sequence (672 bp) for 224 amino acids of H. The 3' end of this clone had...... a polyadenylated tail preceded by a polyadenylation recognition site (ATTAAA) and a 3'-untranslated region (229 bp). Four regions of internal homology, each about 60 amino acids in length, were observed in the derived protein sequence from this cDNA clone, and a further seven from the tryptic peptide sequences...

  4. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa

    Science.gov (United States)

    2014-01-01

    Background The production and accumulation of pathogenesis-related proteins (PR proteins) in plants in response to biotic or abiotic stresses is well known and is considered as a crucial mechanism for plant defense. A pathogenesis-related protein 4 cDNA was identified from a cacao-Moniliophthora perniciosa interaction cDNA library and named TcPR-4b. Results TcPR-4b presents a Barwin domain with six conserved cysteine residues, but lacks the chitin-binding site. Molecular modeling of TcPR-4b confirmed the importance of the cysteine residues to maintain the protein structure, and of several conserved amino acids for the catalytic activity. In the cacao genome, TcPR-4b belonged to a small multigene family organized mainly on chromosome 5. TcPR-4b RT-qPCR analysis in resistant and susceptible cacao plants infected by M. perniciosa showed an increase of expression at 48 hours after infection (hai) in both cacao genotypes. After the initial stage (24-72 hai), the TcPR-4b expression was observed at all times in the resistant genotypes, while in the susceptible one the expression was concentrated at the final stages of infection (45-90 days after infection). The recombinant TcPR-4b protein showed RNase, and bivalent ions dependent-DNase activity, but no chitinase activity. Moreover, TcPR-4b presented antifungal action against M. perniciosa, and the reduction of M. perniciosa survival was related to ROS production in fungal hyphae. Conclusion To our knowledge, this is the first report of a PR-4 showing simultaneously RNase, DNase and antifungal properties, but no chitinase activity. Moreover, we showed that the antifungal activity of TcPR-4b is directly related to RNase function. In cacao, TcPR-4b nuclease activities may be related to the establishment and maintenance of resistance, and to the PCD mechanism, in resistant and susceptible cacao genotypes, respectively. PMID:24920373

  5. Differentiation of foot-and-mouth disease virus-infected from vaccinated pigs by enzyme-linked immunosorbent assay using nonstructural protein 3AB as the antigen and application to an eradication program

    DEFF Research Database (Denmark)

    Chung, Wen Bin; Sørensen, Karl Johan; Liao, Pei Chih

    2002-01-01

    . Positive reactions were found in sera from fattening pigs and sows 16 weeks and 3.5 years postoutbreak, respectively. There was, however, no positive reaction in sows with at least 10 vaccinations. Maternally derived antibodies to the 3AB antigen persisted in piglets up to 13 weeks of age. A high......Baculovirus-expressed foot-and-mouth disease virus (FMDV) nonstructural protein 3AB was used as the antigen in an enzyme-linked immunosorbent assay. This assay allowed the differentiation of vaccinated from infected pigs. Serial studies were performed using sera collected from pigs in the field...

  6. Production of recombinant non-structural protein-3 hydrophobic domain deletion (NS3ΔHD) protein of bluetongue virus from prokaryotic expression system as an efficient diagnostic reagent.

    Science.gov (United States)

    Mohanty, Nihar Nalini; Chacko, Nirmal; Biswas, Sanchay Kumar; Chand, Karam; Pandey, Awadh Bihari; Mondal, Bimalendu; Hemadri, Divakar; Shivachandra, Sathish Bhadravati

    2016-09-01

    Serological diagnostics for bluetongue (BT), which is an infectious, non-contagious and arthropod-borne virus disease of ruminants, are primarily dependent on availability of high quality native or recombinant antigen(s) based on either structural/non-structural proteins in sufficient quantity. Non-structural proteins (NS1-NS4) of BT virus are presumed candidate antigens in development of DIVA diagnostics. In the present study, NS3 fusion gene encoding for NS3 protein containing the N- and C-termini with a deletion of two hydrophobic domains (118A to S141 aa and 162S to A182 aa) and intervening variable central domain (142D to K161 aa) of bluetongue virus 23 was constructed, cloned and over-expressed using prokaryotic expression system. The recombinant NS3ΔHD fusion protein (∼38 kDa) including hexa-histidine tag on its both termini was found to be non-cytotoxic to recombinant Escherichia coli cells and purified by affinity chromatography. The purified rNS3ΔHD fusion protein was found to efficiently detect BTV-NS3 specific antibodies in indirect-ELISA format with diagnostic sensitivity (DSn = 94.4%) and specificity (DSp = 93.9%). The study indicated the potential utility of rNS3ΔHD fusion protein as candidate diagnostic reagent in developing an indirect-ELISA for sero-surveillance of animals for BTV antibodies under DIVA strategy, wherever monovalent/polyvalent killed BT vaccine formulations devoid of NS proteins are being practiced for immunization. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  7. Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines.

    Science.gov (United States)

    Abe, Takayuki; Kaname, Yuuki; Hamamoto, Itsuki; Tsuda, Yoshimi; Wen, Xiaoyu; Taguwa, Shuhei; Moriishi, Kohji; Takeuchi, Osamu; Kawai, Taro; Kanto, Tatsuya; Hayashi, Norio; Akira, Shizuo; Matsuura, Yoshiharu

    2007-09-01

    Hepatitis C virus (HCV) infection induces a wide range of chronic liver injuries; however, the mechanism through which HCV evades the immune surveillance system remains obscure. Blood dendritic cells (DCs) play a pivotal role in the recognition of viral infection and the induction of innate and adaptive immune responses. Several reports suggest that HCV infection induces the dysfunction of DCs in patients with chronic hepatitis C. Toll-like receptor (TLR) has been shown to play various roles in many viral infections; however, the involvement of HCV proteins in the TLR signaling pathway has not yet been precisely elucidated. In this study, we established mouse macrophage cell lines stably expressing HCV proteins and determined the effect of HCV proteins on the TLR signaling pathways. Immune cells expressing NS3, NS3/4A, NS4B, or NS5A were found to inhibit the activation of the TLR2, TLR4, TLR7, and TLR9 signaling pathways. Various genotypes of NS5A bound to MyD88, a major adaptor molecule in TLR, inhibited the recruitment of interleukin-1 receptor-associated kinase 1 to MyD88, and impaired cytokine production in response to TLR ligands. Amino acid residues 240 to 280, previously identified as the interferon sensitivity-determining region (ISDR) in NS5A, interacted with the death domain of MyD88, and the expression of a mutant NS5A lacking the ISDR partially restored cytokine production. These results suggest that the expression of HCV proteins modulates the TLR signaling pathway in immune cells.

  8. Elevated Dengue Virus Nonstructural Protein 1 Serum Levels and Altered Toll-Like Receptor 4 Expression, Nitric Oxide, and Tumor Necrosis Factor Alpha Production in Dengue Hemorrhagic Fever Patients

    Directory of Open Access Journals (Sweden)

    Denise Maciel Carvalho

    2014-01-01

    Full Text Available Background. During dengue virus (DV infection, monocytes produce tumor necrosis factor alpha (TNF-α and nitric oxide (NO which might be critical to immunopathogenesis. Since intensity of DV replication may determine clinical outcomes, it is important to know the effects of viral nonstructural protein 1 (NS1 on innate immune parameters of infected patients. The present study investigates the relationships between dengue virus nonstructural protein 1 (NS1 serum levels and innate immune response (TLR4 expression and TNF-α/NO production of DV infected patients presenting different clinical outcomes. Methodology/Principal Findings. We evaluated NO, NS1 serum levels (ELISA, TNF-α production by peripheral blood mononuclear cells (PBMCs, and TLR4 expression on CD14+ cells from 37 dengue patients and 20 healthy controls. Early in infection, increased expression of TLR4 in monocytes of patients with dengue fever (DF was detected compared to patients with dengue hemorrhagic fever (DHF. Moreover, PBMCs of DHF patients showed higher NS1 and lower NO serum levels during the acute febrile phase and a reduced response to TLR4 stimulation by LPS (with a reduced TNF-α production when compared to DF patients. Conclusions/Significance. During DV infection in humans, some innate immune parameters change, depending on the NS1 serum levels, and phase and severity of the disease which may contribute to development of different clinical outcomes.

  9. Production of Polyclonal Antibodies to the Recombinant Potato virus M (PVM) Non-structural Triple Gene Block Protein 1 and Coat Protein

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Plchová, Helena; Hoffmeisterová, Hana; Dědič, P.

    2012-01-01

    Roč. 160, č. 5 (2012), s. 251-254 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato virus M * recombinant protein * coat protein Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.000, year: 2012

  10. Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2.

    Science.gov (United States)

    McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W

    2017-07-11

    The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the

  11. Recombinant foot-and-mouth disease virus (FMDV) non-structural protein 3A fused to enhanced green fluorescent protein (EGFP) as a candidate probe to identify FMDV-infected cattle in serosurveys.

    Science.gov (United States)

    Lotufo, Cecilia M; Bergmann, Ingrid E; Mattion, Nora M; Wilda, Maximiliano; Grigera, Pablo R

    2017-08-01

    Recombinant protein 3A-EGFP, a fusion construct between foot-and-mouth disease virus (FMDV) non-structural protein 3A and the enhanced green fluorescent protein (EGFP) was expressed in BL21-DE3 cells. The identity of the partially purified protein 3A-EGFP was confirmed by its reactivity with sera from cattle infected with FMDV and with a monoclonal antibody specific for FMDV-3ABC (MAb3H7) in Western blot assays. No reactivity was observed with sera from uninfected vaccinated animals. The performance of 3A-EGFP as an antigen in an indirect enzyme-linked immunosorbent assay (ELISA) was assessed and compared with that of a previously developed and validated capture ELISA that uses a 3ABC recombinant antigen (3ABC ELISA) and has been widely applied for serological surveys in Argentina. Parallel analysis of strongly and weakly positive reference sera from infected animals and 329 serum samples from uninfected vaccinated cattle showed that the 3A-EGFP antigen unequivocally identifies sera from FMDV-infected cattle with similar performance to its 3ABC counterpart. The 3A-EGFP ELISA is simpler and faster to perform than the 3ABC ELISA, since it does not require a capture step with a specific antibody. Moreover, the expression and storage of the recombinant 3A-EGFP is simplified by the absence of residual autoproteolytic activity associated to the 3C sequence. We conclude that the 3A-EGFP ELISA constitutes a promising screening method in serosurveys to determine whether or not animals are infected with FMDV.

  12. NMR study of non-structural proteins-part III:1H,13C,15N backbone and side-chain resonance assignment of macro domain from Chikungunya virus (CHIKV).

    Science.gov (United States)

    Lykouras, Michail V; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2018-04-01

    Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130-190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.

  13. Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus

    DEFF Research Database (Denmark)

    Sørensen, K.J.; Madsen, K.G.; Madsen, E.S.

    1998-01-01

    The baculovirus expression system was found to be efficient at expressing the 3D, the 3AB and the 3ABC non-structural proteins (NSP) of foot-and-mouth disease virus (FMDV) as antigens recognised by immune sera in ELISA. ELISA's using 3D, 3AB and 3ABC detected antibodies from day 8 and 10 after...... experimental infection of susceptible cattle and sheep and cattle remained seropositive for more than 395 days. The ELISA's detected antibodies against any of the seven serotypes of FMDV. The 3D ELISA was specific and precise and as sensitive as established ELISA's which measure antibody to structural proteins....... The assay may be used as a resource saving alternative to established ELISA's for the detection of antibodies against any of the seven serotypes. The 3AB and the 3ABC ELISA were also specific and precise. FMDV infected cattle could be differentiated from those that had been merely vaccinated as they gave...

  14. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Directory of Open Access Journals (Sweden)

    René Huber

    Full Text Available The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (premonocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (posttranslational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  15. C/EBPβ-LAP*/LAP Expression Is Mediated by RSK/eIF4B-Dependent Signalling and Boosted by Increased Protein Stability in Models of Monocytic Differentiation.

    Science.gov (United States)

    Huber, René; Panterodt, Thomas; Welz, Bastian; Christmann, Martin; Friesenhagen, Judith; Westphal, Andreas; Pietsch, Daniel; Brand, Korbinian

    2015-01-01

    The transcription factor C/EBPβ plays a key role in monocytic differentiation and inflammation. Its small isoform LIP is associated with proliferation at early premonocytic developmental stages and regulated via mTOR-dependent signalling. During later stages of (pre)monocytic differentiation there is a considerable increase in the large C/EBPβ isoforms LAP*/LAP which inhibit proliferation thus supporting terminal differentiation. Here, we showed in different models of monocytic differentiation that this dramatic increase in the LAP*/LAP protein and LAP/LIP ratio was accompanied by an only modest/retarded mRNA increase suggesting an important role for (post)translational mechanisms. We found that LAP*/LAP formation was induced via MEK/RSK-dependent cascades, whereas mTOR/S6K1 were not involved. Remarkably, LAP*/LAP expression was dependent on phosphorylated eIF4B, an acceleratory protein of RNA helicase eIF4A. PKR inhibition reduced the expression of eIF4B and C/EBPβ in an eIF2α-independent manner. Furthermore, under our conditions a marked stabilisation of LAP*/LAP protein occurred, accompanied by reduced chymotrypsin-like proteasome/calpain activities and increased calpastatin levels. Our study elucidates new signalling pathways inducing LAP*/LAP expression and indicates new alternative PKR functions in monocytes. The switch from mTOR- to RSK-mediated signalling to orchestrate eIF4B-dependent LAP*/LAP translation, accompanied by increased protein stability but only small mRNA changes, may be a prototypical example for the regulation of protein expression during selected processes of differentiation/proliferation.

  16. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV Nonstructural Protein 5A (NS5A via MEK/Extracellular Signal Regulated Kinase (ERK Pathway

    Directory of Open Access Journals (Sweden)

    Xuesong Gao

    2013-05-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein 5A (NS5A is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-binding protein. Earlier studies have shown that NS5ATP9 might play an important role in HCV infection. The aim of this study is to investigate the function of NS5ATP9 on hepatocellular carcinoma (HCC cell lines proliferation under HCV NS5A expression. The results showed that overexpression of NS5ATP9 inhibited the proliferation of Bel7402 cells, whereas knockdown of NS5ATP9 by interfering RNA promoted the growth of HepG2 cells. Under HCV NS5A expression, RNA interference (RNAi targeting of NS5ATP9 could reverse the inhibition of HepG2 cell proliferation, suggesting that NS5ATP9 might be an anti-proliferation gene that plays an important role in the suppression of cell growth mediated by HCV NS5A via MEK/ERK signaling pathway. These findings might provide new insights into HCV NS5A and NS5ATP9.

  17. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Science.gov (United States)

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  18. The Lysine Residues within the Human Ribosomal Protein S17 Sequence Naturally Inserted into the Viral Nonstructural Protein of a Unique Strain of Hepatitis E Virus Are Important for Enhanced Virus Replication

    Science.gov (United States)

    Kenney, Scott P.

    2015-01-01

    hypervariable region (HVR) within the HEV genome, allowing for cell culture adaptation and expansion of the host range, have been reported. We utilized these cell culture-adapted HEV strains to assess how the HVR may be involved in virus replication and host range. We provide evidence that insertion of the RPS17 sequence in HEV likely confers nuclear trafficking capabilities to the nonstructural protein of the virus and that lysine residues within the RPS17 insertion are important for enhanced replication of the virus. These data will help to elucidate the mechanism of cross-species infection of HEV in the future. PMID:25609799

  19. Mutation of the elongin C binding domain of human respiratory syncytial virus non-structural protein 1 (NS1 results in degradation of NS1 and attenuation of the virus

    Directory of Open Access Journals (Sweden)

    Headlam Madeleine J

    2011-05-01

    Full Text Available Abstract Background Human respiratory syncytial virus (RSV is an important cause of lower respiratory tract disease in the paediatic population, immunocompromised individuals and the elderly worldwide. However, despite global efforts over the past several decades there are no commercially available vaccines. RSV encodes 2 non-structural proteins, NS1 and NS2, that are type I interferon antagonists. RSV restricts type I interferon signaling and the expression of antiviral genes by degrading STAT2. It has been proposed that NS1 binds to elongin C to form a ubiquitin ligase (E3 complex that targets STAT2 for ubiquitination and proteosomal degradation. Results Here, we have engineered a live recombinant RSV in which the 3 consensus amino acids of the NS1 elongin C binding domain have been replaced with alanine (NS1F-ELCmut. Mutation of this region of NS1 resulted in attenuation of RSV replication in A549 cells to levels similar to that observed when the NS1 gene is completely deleted (ΔNS1. This mutation also resulted in moderate attenuation in Vero cells. Attenuation was correlated to intracellular degradation of the mutated NS1 protein. Time course analysis showed that mutant NS1 protein accumulated in cytoplasmic bodies that contained the lysosomal marker LAMP1. However lack of cleavage of LC3 suggested that autophagy was not involved. Induction of IFN-β mRNA expression also was observed in association with the degradation of NS1 protein and attenuation of viral growth. Conclusions These results indicate that the elongin C binding region of NS1 is crucial for survival of the protein and that disruption of this region results in the degradation of NS1 and restriction of RSV replication.

  20. Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B.

    Science.gov (United States)

    Huang, Qiwei; Li, Qingxin; Joy, Joma; Chen, Angela Shuyi; Ruiz-Carrillo, David; Hill, Jeffrey; Lescar, Julien; Kang, Congbao

    2013-12-01

    Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Identification of a phosphorylated non-structural form of the P protein of Newcastle disease virus and analysis of P multimers.

    Science.gov (United States)

    Hightower, L E; Collins, P L; Smith, G W

    1984-09-01

    Two phosphorylated and two non-phosphorylated variants of P protein isolated from Newcastle disease virions are known. Here, a fifth form of P was identified using two-dimensional polyacrylamide gel electrophoresis and peptide mapping. P form 5 was phosphorylated; however, unlike the four known variants of P, the new form was not a major protein in virions, which suggested an intracellular function. The subunit composition of four electrophoretically distinct, disulphide-linked multimers of P from virions was determined. Each homomultimer was composed of at least three molecules of a different one of the four virion-associated P variants.

  2. Efficient bacterial expression of recombinant potato mop-top virus non-structural triple gene block protein 1 modified by progressive deletion of its N-terminus

    Czech Academy of Sciences Publication Activity Database

    Pečenková, Tamara; Filigarová, Marie; Čeřovská, Noemi

    2005-01-01

    Roč. 41, - (2005), s. 128-135 ISSN 1046-5928 R&D Projects: GA ČR GA522/04/1329 Institutional research plan: CEZ:AV0Z50380511 Keywords : Protein expression * Potato mop-top virus * Triple gene block Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.553, year: 2005

  3. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity

    Science.gov (United States)

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa

    2015-10-01

    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.

  4. C4BPAL1, a member of the human regulator of complement activation (RCA) gene cluster that resulted from the duplication of the gene coding for the [alpha]-chain of C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Corral, P.; Pardo-Manuel de Villena, F.; Rey-Campos, J.; Rodriguez de Cordoba, S. (Unidad de Immunologia, Madrid (Spain))

    1993-07-01

    The regulator of complement activation (RCA) gene cluster evolved by multiple gene duplications to produce a family of genes coding for proteins that collectively control the activation of the complement system. The authors report here the characterization of C4BPAL1, a member of the human RCA gene cluster that arose from the duplication of the C4BPA gene after the separation of rodent and primate lineages. C4BPAL1 maps 20 kb downstream of the C4BPA gene and is in the same 5[prime] to 3[prime] orientation found for all RCA genes characterized thus far. It includes nine exon-like regions homologous to exons 2-8, 11, and 12 of the C4BPA gene. Analysis of the C4BPAL1 sequence suggests that it is currently a pseudogene in humans. However, comparisons between C4BPAL1 and the human and murine C4BPA genes show sequence conservation, which strongly suggests that, for a long period of time, C4BPAL1 has been a functional gene coding for a protein with structural requirements similar to those of the [alpha]-chain of C4b-binding protein. 50 refs., 5 figs., 1 tab.

  5. In silico design of a Zika virus non-structural protein 5 aiming vaccine protection against zika and dengue in different human populations.

    Science.gov (United States)

    Dos Santos Franco, Lorrany; Oliveira Vidal, Paloma; Amorim, Jaime Henrique

    2017-11-23

    The arboviruses Zika virus (ZIKV) and Dengue virus (DENV) have important epidemiological impact in Brazil and other tropical regions of the world. Recently, it was shown that previous humoral immunity to DENV enhances ZIKV replication in vitro, which may lead to more severe forms of the disease. Thus, traditional approaches of vaccine development aiming to control viral infection through neutralizing antibodies may induce cross-reactive enhancing antibodies. In contrast, cellular immune response was shown to be capable of controlling DENV infection independently of antibodies. The aim of the present study was to design a flavivirus NS5 protein capable of inducing a cellular immune response against DENV and ZIKV. A consensus sequence of ZIKV NS5 protein was designed among isolates from various continents. Epitopes were predicted for the most prevalent alleles of class I and II HLA in the Brazilian population. Then, this epitopes were analyzed with regard to their conservation, population coverage and distribution along the whole antigen. Nineteen epitopes predicted to be more reactive (percentile rank immune response to ZIKV and DENV in different human populations of the world.

  6. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist

    International Nuclear Information System (INIS)

    Chen, Z.; Lawson, S.; Sun, Z.; Zhou, X.; Guan, X.; Christopher-Hennings, J.; Nelson, E.A.; Fang, Y.

    2010-01-01

    The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1α and nsp1β subunits. In infected cells, we detected the actual existence of nsp1α and nsp1β. Cleavage sites between nsp1α/nsp1β and nsp1β/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1α and nsp1β mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-β expression. The nsp1β was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1β has ability to inhibit both interferon synthesis and signaling, while nsp1α alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.

  7. The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2α signaling pathways.

    Science.gov (United States)

    Chi, Pei I; Huang, Wei R; Lai, I H; Cheng, Ching Y; Liu, Hung J

    2013-02-01

    Autophagy has been shown to facilitate replication or production of avian reovirus (ARV); nevertheless, how ARV induces autophagy remains largely unknown. Here, we demonstrate that the nonstructural protein p17 of ARV functions as an activator of autophagy. ARV-infected or p17-transfected cells present a fast and strong induction of autophagy, resulting in an increased level of autophagic proteins Beclin 1 and LC3-II. Although autophagy was suppressed by 3-methyladenine or shRNAs targeting autophagic proteins (Beclin 1, ATG7, and LC3) as well as by overexpression of Bcl-2, viral transcription, σC protein synthesis, and virus yield were all significantly reduced, suggesting a key role of autophagosomes in supporting ARV replication. Furthermore, we revealed for the first time that p17 positively regulates phosphatase and tensin deleted on chromosome 10 (PTEN), AMP-activated protein kinase (AMPK), and dsRNA dependent protein kinase RNA (PKR)/eIF2α signaling pathways, accompanied by down-regulation of Akt and mammalian target of rapamycin complex 1, thereby triggering autophagy. By using p53, PTEN, PKR, AMPK, and p17 short hairpin RNA (shRNA), activation of signaling pathways and LC3-II levels was significantly suppressed, suggesting that p17 triggers autophagy through activation of p53/PTEN, AMPK, and PKR signaling pathways. Furthermore, colocalization of LC3 with viral proteins (p17 and σC), p62 with LAMP2 and LC3 with Rab7 was observed under a fluorescence microscope. The expression level of p62 was increased at 18 h postinfection and then slightly decreased 24 h postinfection compared with mock infection and thapsigargin treatment. Furthermore, disruption of autophagosome-lysosome fusion by shRNAs targeting LAMP2 or Rab7a resulted in inhibition of viral protein synthesis and virus yield, suggesting that formation of autolysosome benefits virus replication. Taken together, our results suggest that ARV induces formation of autolysosome but does not induce

  8. Accumulation pattern of total nonstructural carbohydrate in ...

    African Journals Online (AJOL)

    The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa Duch.) nursery runner plants, cv. eCamarosaf, was determined for three growing seasons. Plant growth and fruit production patterns were also evaluated. The experiments were carried out on plants propagated in high ...

  9. Accumulation pattern of total nonstructural carbohydrate in ...

    African Journals Online (AJOL)

    Umukoro

    1977-09-09

    Sep 9, 1977 ... 1Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Famaillá, Argentina. 2Department of Plant Sciences, University of California Davis, CA, USA. Accepted 17 October, 2012. The pattern of total nonstructural carbohydrate (TNC) accumulation in strawberry (Fragaria ananassa. Duch.) nursery ...

  10. Fra SK 4b til MH 17

    DEFF Research Database (Denmark)

    Stræde, Therkel

    2015-01-01

    Om den nazistiske besættelsespolitik i Sydøstukraine og Sonderkommando 4b's udryddelse af jøder på den egn, hvor Malaysian Airlines MH 17 styrtede ned den 17. juli 2014......Om den nazistiske besættelsespolitik i Sydøstukraine og Sonderkommando 4b's udryddelse af jøder på den egn, hvor Malaysian Airlines MH 17 styrtede ned den 17. juli 2014...

  11. Vocal cord paralysis in Charcot-Marie-Tooth type 4b1 disease associated with a novel mutation in the myotubularin-related protein 2 gene: A case report and review of the literature.

    Science.gov (United States)

    Zambon, Alberto Andrea; Natali Sora, Maria Grazia; Cantarella, Giovanna; Cerri, Federica; Quattrini, Angelo; Comi, Giancarlo; Previtali, Stefano Carlo; Bolino, Alessandra

    2017-05-01

    Charcot-Marie-Tooth type 4B1 (CMT4B1) is an autosomal recessive motor and sensory demyelinating neuropathy characterized by the association of early-onset neurological symptoms and typical histological findings. The natural history and the clinical variability of the disease are still poorly known, thus further clarification of the different phenotypes is needed. We report on the case of a Pakistani girl born to consanguineous parents harboring a novel mutation in the MTMR2 gene. When aged 18 months, reduced limb tone, muscle wasting associated with proximal and distal weakness prevalent in lower limbs, absence of tendon reflexes, hoarseness and inspiratory stridor were detected. Vocal cord palsy was diagnosed shortly after. We suggest that laryngeal involvement might be a relevant and initial feature of early-onset CMT4B1 neuropathy. Thus, affected patients should undergo early laryngological evaluation in order to prompt an appropriate management. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus.

    Science.gov (United States)

    Zhang, Xinsheng; Hasoksuz, Mustafa; Spiro, David; Halpin, Rebecca; Wang, Shiliang; Stollar, Sarah; Janies, Daniel; Hadya, Nagesh; Tang, Yuxin; Ghedin, Elodie; Saif, Linda

    2007-02-20

    Transmissible gastroenteritis virus (TGEV) isolates that have been adapted to passage in cell culture maintain their infectivity in vitro but may lose their pathogenicity in vivo. To better understand the genomic mechanisms for viral attenuation, we sequenced the complete genomes of two virulent TGEV strains and their attenuated counterparts: virulent TGEV Miller M6 and attenuated TGEV Miller M60 and virulent TGEV Purdue and attenuated TGEV Purdue P115, together with the ISU-1 strain of porcine respiratory coronavirus (PRCV-ISU-1), a naturally occurring TGEV deletion mutant with an altered respiratory tropism and reduced virulence. Pairwise comparison at both the nucleotide (nt) and amino acid (aa) levels between virulent and attenuated TGEV strains identified a common change in nt 1753 of the spike gene, resulting in a serine to alanine mutation at aa position 585 of the spike proteins of the attenuated TGEV strains. Alanine was also present in this protein in PRCV-ISU-1. Particularly noteworthy, the serine to alanine mutation resides in the region of the major antigenic site A/B (aa 506-706) that elicits neutralizing antibodies and within the domain mediating the cell surface receptor aminopeptidase N binding (aa 522-744). Comparison of the predicted polypeptide products of ORF3b showed significant deletions in the naturally attenuated PRCV-ISU-1 and TGEV Miller M60; these deletions occurred at a common break point, suggesting a related mechanism of recombination that may affect viral virulence or tropism. Sequence comparisons at both genomic and protein levels indicated that PRCV-ISU-1 had a closer relationship with TGEV Miller strains than Purdue strains. Phylogenetic analyses showed that virulence is an evolutionarily labile trait in TGEV and that TGEV strains as a group share a common ancestor with PRCV.

  13. LAPTM4B allele *2 is associated with breast cancer susceptibility and prognosis.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Li

    Full Text Available BACKGROUND: Lysosome-associated protein transmembrane 4 beta (LAPTM4B has two alleles named LAPTM4B*1 and LAPTM4B*2. Allele *1 contains only one copy of a 19-bp sequence at the 5'UTR in the first exon, whereas this sequence of allele*2 is duplicated and arrayed as a tandem repeat. Previous studies revealed that LAPTM4B polymorphisms contribute to the risk of certain types of cancers. This study aimed to investigate the polymorphism of LAPTM4B in breast cancer by analysis the correlation of LAPTM4B genotype with breast cancer susceptibility, clinicopathologic features and prognosis. METHODS: Genotyping of the LAPTM4B polymorphism was determined by PCR method. The expression levels of LAPTM4B in breast cancer tissues and breast cancer cell lines were determined by quantitative reverse-transcription PCR (qRT-PCR analysis. The correlation of LAPTM4B genotype with clinicopathologic parameters and prognosis were assessed statistically. RESULTS: The results of qRT-PCR analysis indicated that LAPTM4B*2 was associated with the higher level of LAPTM4B expression compared with the LAPTM4B*1 in both breast cancer cell lines and breast cancer tissues. We found that LAPTM4B*2 was associated with an increased risk for breast cancer. LAPTM4B*2 was significantly associated with higher histopathologic grade, lymph node metastasis and poor prognosis. CONCLUSION: LAPTM4B*2 is a risk factor associated with breast cancer susceptibility and poor prognosis. LAPTM4B*2 may be a potential predicative marker for the susceptibility, progression and metastasis of breast cancer.

  14. Relationship Between LAPTM4B Gene Polymorphism and Susceptibility of Malignant Melanoma in Chinese Patients

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2014-10-01

    Full Text Available Lysosomal-associated protein transmembrane 4 beta (LAPTM4B is known as an oncogene associated with many human malignant tumors. There are two alleles of the gene, LAPTM4B*1 and LAPTM4B*2. Previous studies have shown that LAPTM4B polymorphism contributes to the risk of many cancers. This case-control study was to investigate the relationship between LAPTM4B gene polymorphism and susceptibility of malignant melanoma. The genotypes of LAPTM4B were determined in 617 control subjects and 220 patients with malignant melanoma by utilizing polymerase chain reaction based on specific primers. The genotypic distribution of LAPTM4B and Hardy–Weinberg equilibrium were analyzed by χ2 test. Odds ratio and 95% confidence interval was calculated by unconditional logistic regression. The distributions of LAPTM4B genotypes were significantly different between melanoma patients (45.9% for *1/1, 46.4% for *1/2 and 7.7 for *2/2 and controls (54.5% for *1/1, 39.9% for *1/2 and 5.7 for *2/2. LAPTM4B *1/2 and LAPTM4B *2/2 had a 1.396-fold and 1.619-fold higher risk for melanoma occurrence than *1/1, and subjects with LAPTM4B*2 have a 1.308-fold higher risk than LAPTM4B*1 carriers. No association between LAPTM4B genotypes and gender, age, subtype, Clark level of invasion, Breslow thickness, ulceration, clinical stage, and C-KIT, BRAF gene mutation status was observed. LAPTM4B*2 is associated with the high risk of malignant melanoma and carrying LAPTM4B *2 may be a susceptible factor to Chinese melanoma patients.

  15. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain

    Directory of Open Access Journals (Sweden)

    Spaan Willy JM

    2009-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. Results A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH. The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Conclusion Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  16. Discovery of Dengue Virus NS4B Inhibitors

    Science.gov (United States)

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  17. Accelerated hepatocellular carcinoma development in CUL4B transgenic mice.

    Science.gov (United States)

    Yuan, Jupeng; Jiang, Baichun; Zhang, Aizhen; Qian, Yanyan; Tan, Haining; Gao, Jiangang; Shao, Changshun; Gong, Yaoqin

    2015-06-20

    Cullin 4B (CUL4B) is a component of the Cullin 4B-Ring E3 ligase (CRL4B) complex that functions in proteolysis and in epigenetic regulation. CUL4B possesses tumor-promoting properties and is markedly upregulated in many types of human cancers. To determine the role of CUL4B in liver tumorigenesis, we generated transgenic mice that expressed human CUL4B in livers and other tissues and evaluated the development of spontaneous and chemically-induced hepatocellular carcinomas. We observed that CUL4B transgenic mice spontaneously developed liver tumors at a high incidence at old ages and exhibited enhanced DEN-induced hepatocarcinogenesis. There was a high proliferation rate in the livers of CUL4B transgenic mice that was accompanied by increased levels of Cdk1, Cdk4 and cyclin D1 and decreased level of p16. The transgenic mice also exhibited increased compensatory proliferation after DEN-induced liver injury, which was accompanied by activation of Akt, Erk, p38 and NF-κB. We also found that Prdx3 was downregulated and that DEN induced a higher level of reactive oxygen species in the livers of transgenic mice. Together, our results demonstrate a critical role of CUL4B in hepatocarcinogenesis in mice.

  18. Combined prime-boost vaccination against tick-borne encephalitis (TBE using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    Directory of Open Access Journals (Sweden)

    Zakharova LG

    2005-08-01

    Full Text Available Abstract Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines.

  19. Expression and prognostic role of ubiquitination factor E4B in primary hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Xiao-Fei; Pan, Qiu-Zhong; Pan, Ke; Weng, De-Sheng; Wang, Qi-Jing; Zhao, Jing-Jing; He, Jia; Liu, Qing; Wang, Dan-Dan; Jiang, Shan-Shan; Zheng, Hai-Xia; Lv, Lin; Chen, Chang-Long; Zhang, Hong-Xia; Xia, Jian-Chuan

    2016-01-01

    Ubiquitination factor E4B (UBE4B) has been speculated to have contradictory functions upon tumorigenesis as an oncogene or tumor suppressor in different types of cancers. We investigated the expression and prognostic role of UBE4B in primary hepatocellular carcinoma (HCC) using cell lines and 149 archived HCC samples. Correlation between the functions of UBE4B in HCC was also explored. We used human HCC cell lines (HepG2, Hep3B, SK-Hep1, Huh7, SMMC-7721, BEL-7402) and a normal hepatocyte cell line (LO2) along with HCC samples from patients who had undergone resection for HCC previously at our hospital. A battery of methods (real-time quantitative polymerase chain reaction; Western blotting; immunohistochjemical analyses; cell proliferation and colony formation assays; cell migration and cell invasion assays) were employed to assess various aspects of UBE4B.We found that UBE4B expression was upregulated aberrantly at mRNA and protein levels in human primary HCC tissues. Amplified expression of UBE4B was highly correlated with poor outcome. Silencing of UBE4B expression by siRNA inhibited the proliferation, colony formation, migration and invasion of HCC cells in vitro, and resulted in significant apoptosis that was associated with downregulation of expression of Bcl-2 and upregulation of expression of total p53, p-p53, Bax and Cleaved-Caspase3 in HCC cells. Our findings suggested that UBE4B might have an oncogenic role in human primary HCC, and that it could be used as a prognostic marker (as well as a potential molecular target) for the treatment of HCC. © 2015 Wiley Periodicals, Inc.

  20. Radial distribution of non-structural carbohydrates in Malaysian teak ...

    African Journals Online (AJOL)

    Non-structural carbohydrates are primary compounds whose distribution in the wood affects its properties. During the two last decades, a high variability of natural durability of plantation teak wood properties has been found with consequences for industry and consumers. In order to further investigate chemical traits for ...

  1. Dry matter and nonstructural carbohydrate content as quality ...

    African Journals Online (AJOL)

    A Lolium multiflorum cv. Midmar pasture and ninety individual plants (both Italian and Westerwolds types), from 15 different Lolium multiflorum cultivars in a spaced-plant trial, were assessed for total nonstructural carbohydrate (TNC) content, TNC yield, dry matter (DM) content, DM yield and nitrogen (N) content. Maximum ...

  2. Non-structural Components influencing Hospital Disaster Preparedness in Malaysia

    Science.gov (United States)

    Samsuddin, N. M.; Takim, R.; Nawawi, A. H.; Rosman, M. R.; SyedAlwee, S. N. A.

    2018-04-01

    Hospital disaster preparedness refers to measures taken by the hospital’s stakeholders to prepare, reduce the effects of disaster and ensure effective coordination during incident response. Among the measures, non-structural components (i.e., medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are critical towards hospital disaster preparedness. Nevertheless, over the past few years these components are badly affected due to various types of disasters. Hence, the objective of this paper is to investigate the non-structural components influencing hospital’s disaster preparedness. Cross-sectional survey was conducted among thirty-one (31) Malaysian hospital’s employees. A total of 6 main constructs with 107 non-structural components were analysed and ranked by using SPSS and Relative Importance Index (RII). The results revealed that 6 main constructs (i.e. medical laboratory equipment & supplies; architectural; critical lifeline; external; updated building document; and equipment & furnishing) are rated as ‘very critical’ by the respondents. Among others, availability of medical laboratory equipment and supplies for diagnostic and equipment was ranked first. The results could serve as indicators for the public hospitals to improve its disaster preparedness in terms of planning, organising, knowledge training, equipment, exercising, evaluating and corrective actions through non-structural components.

  3. Nonstructural Proteins of Alphavirus—Potential Targets for Drug Development

    Directory of Open Access Journals (Sweden)

    Farhana Abu Bakar

    2018-02-01

    Full Text Available Alphaviruses are enveloped, positive single-stranded RNA viruses, typically transmitted by arthropods. They often cause arthralgia or encephalitic diseases in infected humans and there is currently no targeted antiviral treatment available. The re-emergence of alphaviruses in Asia, Europe, and the Americas over the last decade, including chikungunya and o’nyong’nyong viruses, have intensified the search for selective inhibitors. In this review, we highlight key molecular determinants within the alphavirus replication complex that have been identified as viral targets, focusing on their structure and functionality in viral dissemination. We also summarize recent structural data of these viral targets and discuss how these could serve as templates to facilitate structure-based drug design and development of small molecule inhibitors.

  4. High resolution crystal structure of human Dim2/TXNL4B

    Science.gov (United States)

    TXNL4A (thioredoxin like 4A) is an essential protein conserved from yeast to human and is a component of the pre-mRNA splicing machinery. TXNL4B was identified as a TXNL4 family protein that also interacts with prp6, an integral component of the U4/U6•U5 tri-snRNP complex, and was shown to function...

  5. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis

    Science.gov (United States)

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-01-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses. PMID:25906080

  6. Protection against Asiatic Taenia solium Induced by a Recombinant 45W-4B Protein▿

    Science.gov (United States)

    Luo, Xuenong; Zheng, Yadong; Hou, Junling; Zhang, Shaohua; Cai, Xuepeng

    2009-01-01

    Taenia solium is a great threat not only to human health but also to the pig-raising industry. Oncospheral stage-specific 45W proteins are good candidates for the development of anticysticercosis vaccines. In this study, a recombinant 45W-4B protein was highly produced and used for vaccination. Two animal trials resulted in a significant reduction in parasite burden induced by the definite protein against Asiatic T. solium, up to 97.0% and 98.4%, respectively. These provide informative results for the development of effective 45W-4B vaccines against cysticercosis caused by both Chinese and Mexican T. solium isolates and even by other isolates. PMID:19091992

  7. LAPTM4B Predicts Axillary Lymph Node Metastasis in Breast Cancer and Promotes Breast Cancer Cell Aggressiveness in Vitro

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2017-02-01

    Full Text Available Purpose: Lysosome-associated protein transmembrane-4 beta (LAPTM4B is associated with the prognosis of several human malignancies. In this study, the role of LAPTM4B in the metastatic potential of breast cancer (BC and its underlying molecular mechanisms were investigated. Methods: The relationship between LAPTM4B expression and axillary lymph node metastasis was determined in 291 BC specimens by immunohistochemistry. The expression of LAPTM4B in paired BC cells was overexpressed and inhibited to analyse the role of LAPTM4B in the aggressiveness of BC. Cell proliferation, migration and invasion were assessed in vitro. Metastasis-related protein levels were detected through Western blot. Results: Immunohistochemical staining demonstrated that high expression level of LAPTM4B was independently associated with axillary lymph node metastasis (odds ratio=2.428; 95%CI=1.333- 4.425; P=0.004. The LAPTM4B inhibition in MCF-7 cells inhibited cell proliferation, migration, invasion, and resulted in simultaneous downregulation of phosphorylated N-cadherin, vimentin, and upregulation of E-cadherin. By contrast, the LAPTM4B overexpression promoted cell proliferation, migration, invasion, and led to simultaneous upregulation of N-cadherin, vimentin, and downregulation of E-cadherin in T47D cells. Conclusions: High expression level of LAPTM4B predicts tumor metastatic potential in patients with BC. Our results provide the first evidence of the role of LAPTM4B as an Epithelial-mesenchymal transition (EMT inducer that promotes aggressiveness in BC cells.

  8. Protection against Asiatic Taenia solium Induced by a Recombinant 45W-4B Protein▿

    OpenAIRE

    Luo, Xuenong; Zheng, Yadong; Hou, Junling; Zhang, Shaohua; Cai, Xuepeng

    2008-01-01

    Taenia solium is a great threat not only to human health but also to the pig-raising industry. Oncospheral stage-specific 45W proteins are good candidates for the development of anticysticercosis vaccines. In this study, a recombinant 45W-4B protein was highly produced and used for vaccination. Two animal trials resulted in a significant reduction in parasite burden induced by the definite protein against Asiatic T. solium, up to 97.0% and 98.4%, respectively. These provide informative result...

  9. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b

    DEFF Research Database (Denmark)

    Seoane, J; Pouponnot, C; Staller, P

    2001-01-01

    Transforming growth factor-beta (TGFbeta) is a cytokine that arrests epithelial cell division by switching off the proto-oncogene c-myc and rapidly switching on cyclin-dependent kinase (CDK) inhibitors such as p15INK4b. Gene responses to TGFbeta involve Smad transcription factors that are directly...... activated by the TGFbeta receptor. Why downregulation of c-myc expression by TGFbeta is required for rapid activation of p15INK4b has remained unknown. Here we provide evidence that TGFbeta signalling prevents recruitment of Myc to the p15INK4b transcriptional initiator by Myc-interacting zinc......-finger protein 1 (Miz-1). This relieves repression and enables transcriptional activation by a TGFbeta-induced Smad protein complex that recognizes an upstream p15INK4b promoter region and contacts Miz-1. Thus, two separate TGFbeta-dependent inputs - Smad-mediated transactivation and relief of repression by Myc...

  10. Some Aspects of Multigrid Methods on Non-Structured Meshes

    Science.gov (United States)

    Guillard, H.; Marco, N.

    1996-01-01

    To solve a given fine mesh problem, the design of a multigrid method requires the definition of coarse levels, associated coarse grid operators and inter-grid transfer operators. For non-structured simplified meshes, these definitions can rely on the use of non-nested triangulations. These definitions can also be founded on agglomeration/aggregation techniques in a purely algebraic manner. This paper analyzes these two options, shows the connections of the volume-agglomeration method with algebraic methods and proposes a new definition of prolongation operator suitable for the application of the volume-agglomeration method to elliptic problems.

  11. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees

    Science.gov (United States)

    Andrew D. Richardson; Mariah S. Carbone; Trevor F. Keenan; Claudia I. Czimczik; David Y. Hollinger; Paula Murakami; Paul G. Schaberg; Xiaomei. Xu

    2013-01-01

    Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars...

  12. Non-structural and Functional Vulnerability of Rehabilitation Centers of Tehran Welfare Organization in Disaster

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hosseini

    2016-04-01

    Conclusion: The functional and non-structural safety of state rehabilitation centers of Tehran welfare organization was above average and vulnerability of centers to disaster was average, too. We suggest that the required planning be performed to improve non-structural and functional safety quality of centers and reduce their vulnerability.

  13. Performance of scientific computing platforms with MCNP4B

    International Nuclear Information System (INIS)

    McLaughlin, H.E.; Hendricks, J.S.

    1998-01-01

    Several computing platforms were evaluated with the MCNP4B Monte Carlo radiation transport code. The DEC AlphaStation 500/500 was the fastest to run MCNP4B. Compared to the HP 9000-735, the fastest platform 4 yr ago, the AlphaStation is 335% faster, the HP C180 is 133% faster, the SGI Origin 2000 is 82% faster, the Cray T94/4128 is 1% faster, the IBM RS/6000-590 is 93% as fast, the DEC 3000/600 is 81% as fast, the Sun Sparc20 is 57% as fast, the Cray YMP 8/8128 is 57% as fast, the sun Sparc5 is 33% as fast, and the Sun Sparc2 is 13% as fast. All results presented are reproducible and allow for comparison to computer platforms not included in this study. Timing studies are seen to be very problem dependent. The performance gains resulting from advances in software were also investigated. Various compilers and operating systems were seen to have a modest impact on performance, whereas hardware improvements have resulted in a factor of 4 improvement. MCNP4B also ran approximately as fast as MCNP4A

  14. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    OpenAIRE

    L. Campo; A. B. Monteagudo; B. Salleres; P. Castro; J. Moreno-Gonzalez

    2013-01-01

    The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS) to predict non-structural carbohydrates (NSC), water soluble carbohydrates (WSC), in vitro organic dry matter digestibility (IVOMD), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. ...

  15. The KnowRISK project: Tools and strategies to reduce non-structural damage

    Science.gov (United States)

    Sousa Oliveira, Carlos; Lopes, Mário; Mota de Sá, Francisco; Amaral Ferreia, Mónica; Candeias, Paulo; Campos Costa, Alfredo; Rupakhety, Rajesh; Meroni, Fabrizio; Azzaro, Raffaele; D'Amico, Salvatore; Langer, Horst; Musacchio, Gemma; Sousa Silva, Delta; Falsaperla, Susanna; Scarfì, Luciano; Tusa, Giuseppina; Tuvé, Tiziana

    2016-04-01

    The project KnowRISK (Know your city, Reduce seISmic risK through non-structural elements) is financed by the European Commission to develop prevention measures that may reduce non-structural damage in urban areas. Pilot areas of the project are within the three European participating countries, namely Portugal, Iceland and Italy. Non-structural components of a building include all those components that are not part of the structural system, more specifically the architectural, mechanical, electrical, and plumbing systems, as well as furniture, fixtures, equipment, and contents. Windows, partitions, granite veneer, piping, ceilings, air conditioning ducts and equipment, elevators, computer and hospital equipment, file cabinets, and retail merchandise are all examples of non-structural components that are vulnerable to earthquake damage. We will use the experience gained during past earthquakes, which struck in particular Iceland, Italy and Portugal (Azores). Securing the non-structural elements improves the safety during an earthquake and saves lives. This paper aims at identifying non-structural seismic protection measures in the pilot areas and to develop a portfolio of good practices for the most common and serious non-structural vulnerabilities. This systematic identification and the portfolio will be achieved through a "cross-knowledge" strategy based on previous researches, evidence of non-structural damage in past earthquakes. Shake table tests of a group of non-structural elements will be performed. These tests will be filmed and, jointly with portfolio, will serve as didactic supporting tools to be used in workshops with building construction stakeholders and in risk communication activities. A Practical Guide for non-structural risk reduction will be specifically prepared for citizens on the basis of the outputs of the project, taking into account the local culture and needs of each participating country.

  16. 77 FR 40255 - Special Conditions: Boeing, Model 737-800; Large Non-Structural Glass in the Passenger Compartment

    Science.gov (United States)

    2012-07-09

    ... with the installation of large non-structural glass items in the cabin area of an executive interior...: The installation of large non-structural glass items, typically in the form of glass sheets in the... novel and unusual design features for the use of large non-structural glass in the passenger cabin...

  17. 77 FR 28533 - Special Conditions: Boeing, Model 737-800; Large Non-Structural Glass in the Passenger Compartment

    Science.gov (United States)

    2012-05-15

    ...-0499; Notice No. 25-12-01-SC] Special Conditions: Boeing, Model 737-800; Large Non-Structural Glass in... associated with the installation of large non-structural glass items in the cabin area of an executive... non-structural glass items in the cabin area of the executive interior occupied by passengers and crew...

  18. Alternative Splicing Generates Different 5′ UTRs in OCT4B Variants

    OpenAIRE

    Poursani, Ensieh M.; Mehravar, Majid; Shahryari, Alireza; Mowla, Seyed Javad; Mohammad Soltani, Bahram

    2017-01-01

    Background: The human OCT4 gene, responsible for pluripotency and self-renewal of Embryonic Stem (ES) and Embryonic Carcinoma (EC) cells, can generate several transcripts (OCT4A, OCT4B-variant 2, OCT4B-variant 3, OCT4B-variant 5, OCT4B1, OCT4 B2 and OCT4B3) by alternative splicing and alternative promoters. OCT4A that is responsible for ES and EC cell stemness properties is transcribed from a promoter upstream of Exon1a in those cells. The OCT4B group variants (OCT4B-variant2, OCT4B-variant3,...

  19. PDE4B as a microglia target to reduce neuroinflammation.

    Science.gov (United States)

    Pearse, Damien D; Hughes, Zoë A

    2016-10-01

    The importance of microglia in immune homeostasis within the brain is undisputed. Their role in a diversity of neurological and psychiatric diseases as well as CNS injury is the subject of much investigation. Cyclic adenosine monophosphate (AMP) is a critical regulator of microglia homeostasis; as the predominant negative modulator of cyclic AMP signaling within microglia, phosphodiesterase 4 (PDE4) represents a promising target for modulating immune function. PDE4 expression is regulated by inflammation, and in turn, PDE4 inhibition can alter microglia reactivity. As the prototypic PDE4 inhibitor, rolipram, was tested clinically in the 1980s, drug discovery and clinical development of PDE4 inhibitors have been severely hampered by tolerability issues involving nausea and emesis. The two PDE4 inhibitors approved for peripheral inflammatory disorders (roflumilast and apremilast) lack brain penetration and are dose-limited by side effects making them unsuitable for modulating microglial function. Subtype selective inhibitors targeting PDE4B are of high interest given the critical role PDE4B plays in immune function versus the association of PDE4D with nausea and emesis. The challenges and requirements for successful development of a novel brain-penetrant PDE4B inhibitor are discussed in the context of early clinical development strategies. Furthermore, the challenges of monitoring the state of microglia in vivo are highlighted, including a description of the currently available tools and their limitations. Continued drug discovery efforts to identify safe and well-tolerated, brain-penetrant PDE4 inhibitors are a reflection of the confidence in the rationale for modulation of this target to produce meaningful therapeutic benefit in a wide range of neurological conditions and injury. GLIA 2016;64:1698-1709. © 2016 Wiley Periodicals, Inc.

  20. Magnetic anomaly in superconducting TmRh4B4

    International Nuclear Information System (INIS)

    Smith, J.L.; Huang, C.Y.; Tsou, J.J.; Ho, J.C.

    1978-01-01

    The magnetic and superconducting properties of TmRh 4 B 4 (which becomes superconducting at 9.6 K) by means of ac and dc magnetic susceptibility and specific heat measurements are investigated. At 10.7 K, an ac susceptibility peak similar to those found in spin glasses has been observed. In addition, a pronounced specific heat peak has been observed at 11.4 K. The susceptibility peak is essentially unaffected by substitution of 1% Lu or Er for the Tm, but it diminishes when much larger amounts of Er are substituted. The physical origin of this anomalous peak will be discussed

  1. Assimilation, partitioning, and nonstructural carbohydrates in sweet compared with grain sorghum

    International Nuclear Information System (INIS)

    Vietor, D.M.; Miller, F.R.

    1990-01-01

    Nonstructural carbohydrate concentrations in stems are greater for sweet than grain sorghums [Sorghum bicolor (L.) Moench]. Knowledge of plant characteristics associated with high nonstructural carbohydrates in sweet sorghum will air efforts to increase nonstructural carbohydrates in grain sorghum stems. This study tested the hypothesis that variation of CO 2 assimilation rate, leaf area, branching at upper nodes, and partitioning of 14 C-labeled assimilate to main stems are associated with variation of stem nonstructural carbohydrates. A sweet (Atlas X Rio) and a grain (ATx623 X RTx5388) hybrid, stages near and after physiological maturity, and defoliation and gibberellic acid (GA 3 ) treatments provided sources of variation for study. Concentrations of nonstructural carbohydrates in lower and upper stems of the sweet hybrid were 1.4 and 2.7 times higher, respectively, than for the grain hybrid, after physiological maturity. Variation in branching, including 14 C-assimilate partitioning to branches, was not consistently associated with hybrid differences in stem nonstructural carbohydrates. Increased recovery (twofold) of 14 C-assimilate in roots and labeled leaves corresponded with lower percentages of 14 C-assimilate and lower concentrations of nonstructural carbohydrates in stems of the grain hybrid. Leaf areas and leaf CO 2 exchange rate were twice as great for the sweet hybrid. Although defoliation of the sweet hybrid minimized leaf area differences between hybrids, the sweet hybrid accumulated twice as much nonstructural carbohydrates in branches after physiological maturity. Greater potentials for CO 2 assimilation and for 14 C-assimilate accumulation in mature stem tissue were associated with higher levels of stem nonstructural carbohydrates in the sweet compared with the grain hybrid

  2. RAMONA-4B development for SBWR safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Aronson, A.L.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.

    1993-12-31

    The Simplified Boiling Water Reactor (SBWR) is a revolutionary design of a boiling-water reactor. The reactor is based on passive safety systems such as natural circulation, gravity flow, pressurized gas, and condensation. SBWR has no active systems, and the flow in the vessel is by natural circulation. There is a large chimney section above the core to provide a buoyancy head for natural circulation. The reactor can be shut down by either of four systems; namely, scram, Fine Motion Control Rod Drive (FMCRD), Alternate Rod Insertion (ARI), and Standby Liquid Control System (SLCS). The safety injection is by gravity drain from the Gravity Driven Cooling System (GDCS) and Suppression Pool (SP). The heat sink is through two types of heat exchangers submerged in the tank of water. These heat exchangers are the Isolation Condenser (IC) and the Passive Containment Cooling System (PCCS). The RAMONA-4B code has been developed to simulate the normal operation, reactivity transients, and to address the instability issues for SBWR. The code has a three-dimensional neutron kinetics coupled to multiple parallel-channel thermal-hydraulics. The two-phase thermal hydraulics is based on a nonhomogeneous nonequilibrium drift-flux formulation. It employs an explicit integration to solve all state equations (except for neutron kinetics) in order to predict the instability without numerical damping. The objective of this project is to develop a Sun SPARC and IBM RISC 6000 based RAMONA-4B code for applications to SBWR safety analyses, in particular for stability and ATWS studies.

  3. Seismic Behaviour of Post-Installed Anchors: Non-Structural Components and Art Objects Fastening

    OpenAIRE

    Abate, Marco

    2015-01-01

    The damage observation in recent seismic events (L’Aquila 2009, Chile 2010, Christchurch 2011, Tohoku 2011, Emilia 2012) helps in the identification of the critical aspects related to the response to earthquake of non-structural components (Miranda et al. 2012). Generally these elements are included in buildings and may belong to the architectural system, to the utility system or to the building content. The failure of the non-structural components can represent a significant danger for life ...

  4. A user exposure based approach for non-structural road network vulnerability analysis

    OpenAIRE

    Jin, Lei; Wang, Haizhong; Xie, Binglei; Yu, Le; Liu, Lin

    2017-01-01

    Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i) the rationality of non-structural road network vulnerability, (ii) the metrics for negative consequences accounting for variant road conditions, and (iii) the introduction of a new vulnerability index based on user exposure. Based on the proposed methodol...

  5. Use of recycled tires in non-structural concrete

    Directory of Open Access Journals (Sweden)

    Al Rawahi Zamzam

    2017-01-01

    Full Text Available This research addresses the issue of tire waste management and natural aggregate resource depletion. It investigates use of commercially produced recycled tire rubber as replacement for fine and coarse aggregate in non-structural concrete. Two replacement levels of 10% and 20% were considered for fine aggregate with 0% or 10% of coarse aggregate. The study employed a mix proportion of 1:5:4 (cement: fine aggregate: coarse aggregate with a water-to-cement ratio of 0.25, which is normally utilized in concrete block manufacturing in Oman. The mixes were tested for their thermal conductivity, water absorption and compressive strength. The behavior of mixes exposed to 100 and 200°C was also studied and the samples were later tested for compressive strength. The results showed improvements in compressive strength after exposure to heat. Thermal conductivity was reduced as the percentage replacement increased for both fine and coarse aggregate. During heat exposure, the temperature rise was faster in rubberized mixes, and the compressive strength of all mixes improved after the exposure to heat. Water absorption and void content increased with increase in replacement percentage. The compressive strength did not show a clear trend with the replacement and this is due to the sensitivity of the stiff mix used in the study and its inherent lean nature. The results indicate that the lean nature of the mix makes it insensitive to small replacement investigated in this research.

  6. Non-structural & Functional Vulnerability of Rehabilitation Centers of Tehran Welfare Organization in Disaster

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Hosseini

    2016-04-01

    Full Text Available Background: The safety of rehabilitation centers is of great importance to ensure the well-being of patients. The present study aimed to determine non-structural and functional vulnerability of state rehabilitation centers of Tehran City welfare organization in disasters using national standard instruments in 2014. Materials and Methods: This study has a descriptive and cross-sectional design. A total of 17 rehabilitation centers affiliated with Tehran welfare organization are investigated. The vulnerability of centers was measured using 2 checklists of non-structural and functional vulnerability of the World Health Organization. The reliabilities of the non-structural and functional vulnerability instuments were 0.79 and 0.91, respectively, using the Cronbach α. The data were collected through observation and interview with authorities of centers and their staffs. The data analysis was performed through descriptive statistics and 1-sample t-test using SPSS 16. Results: Among 17 rehabilitation centers, the mean functional safety of 11 centers (64.7% was high and showed low vulnerability and safety of 6 centers (35.3% was average and showed average vulnerability. With regard to non-structural safety level, 9 centers (53% of centers had high safety level and showed low vulnerability. Eight centers (47% of centers had average safety level and showed average vulnerability. The results of 1-sample t test showed that at the significance level of 0.05, there was no significant difference between functional and non-structural safety of centers. Conclusion: The functional and non-structural safety of state rehabilitation centers of Tehran welfare organization was above average and vulnerability of centers to disaster was average, too. We suggest that the required planning be performed to improve non-structural and functional safety quality of centers and reduce their vulnerability.

  7. A novel homozygous AP4B1 mutation in two brothers with AP-4 deficiency syndrome and ocular anomalies.

    Science.gov (United States)

    Accogli, Andrea; Hamdan, Fadi F; Poulin, Chantal; Nassif, Christina; Rouleau, Guy A; Michaud, Jacques L; Srour, Myriam

    2018-04-01

    Adaptor protein complex-4 (AP-4) is a heterotetrameric protein complex which plays a key role in vesicle trafficking in neurons. Mutations in genes affecting different subunits of AP-4, including AP4B1, AP4E1, AP4S1, and AP4M1, have been recently associated with an autosomal recessive phenotype, consisting of spastic tetraplegia, and intellectual disability (ID). The overlapping clinical picture among individuals carrying mutations in any of these genes has prompted the terms "AP-4 deficiency syndrome" for this clinically recognizable phenotype. Using whole-exome sequencing, we identified a novel homozygous mutation (c.991C>T, p.Q331*, NM_006594.4) in AP4B1 in two siblings from a consanguineous Pakistani couple, who presented with severe ID, progressive spastic tetraplegia, epilepsy, and microcephaly. Sanger sequencing confirmed the mutation was homozygous in the siblings and heterozygous in the parents. Similar to previously reported individuals with AP4B1 mutations, brain MRI revealed ventriculomegaly and white matter loss. Interestingly, in addition to the typical facial gestalt reported in other AP-4 deficiency cases, the older brother presented with congenital left Horner syndrome, bilateral optic nerve atrophy and cataract, which have not been previously reported in this condition. In summary, we report a novel AP4B1 homozygous mutation in two siblings and review the phenotype of AP-4 deficiency, speculating on a possible role of AP-4 complex in eye development. © 2018 Wiley Periodicals, Inc.

  8. Non-structural carbohydrates in woody plants compared among laboratories.

    Science.gov (United States)

    Quentin, Audrey G; Pinkard, Elizabeth A; Ryan, Michael G; Tissue, David T; Baggett, L Scott; Adams, Henry D; Maillard, Pascale; Marchand, Jacqueline; Landhäusser, Simon M; Lacointe, André; Gibon, Yves; Anderegg, William R L; Asao, Shinichi; Atkin, Owen K; Bonhomme, Marc; Claye, Caroline; Chow, Pak S; Clément-Vidal, Anne; Davies, Noel W; Dickman, L Turin; Dumbur, Rita; Ellsworth, David S; Falk, Kristen; Galiano, Lucía; Grünzweig, José M; Hartmann, Henrik; Hoch, Günter; Hood, Sharon; Jones, Joanna E; Koike, Takayoshi; Kuhlmann, Iris; Lloret, Francisco; Maestro, Melchor; Mansfield, Shawn D; Martínez-Vilalta, Jordi; Maucourt, Mickael; McDowell, Nathan G; Moing, Annick; Muller, Bertrand; Nebauer, Sergio G; Niinemets, Ülo; Palacio, Sara; Piper, Frida; Raveh, Eran; Richter, Andreas; Rolland, Gaëlle; Rosas, Teresa; Saint Joanis, Brigitte; Sala, Anna; Smith, Renee A; Sterck, Frank; Stinziano, Joseph R; Tobias, Mari; Unda, Faride; Watanabe, Makoto; Way, Danielle A; Weerasinghe, Lasantha K; Wild, Birgit; Wiley, Erin; Woodruff, David R

    2015-11-01

    Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory

  9. A user exposure based approach for non-structural road network vulnerability analysis.

    Directory of Open Access Journals (Sweden)

    Lei Jin

    Full Text Available Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i the rationality of non-structural road network vulnerability, (ii the metrics for negative consequences accounting for variant road conditions, and (iii the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for "emotionally hurt" of topological road network.

  10. Seismic assessment and performance of nonstructural components affected by structural modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jieun; Althoff, Eric; Sezen, Halil; Denning, Richard; Aldemir, Tunc [Ohio State University, Columbus (United States)

    2017-03-15

    Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

  11. Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor

    Science.gov (United States)

    Kakumani, Pavan Kumar; Ponia, Sanket Singh; S, Rajgokul K.; Sood, Vikas; Chinnappan, Mahendran; Banerjea, Akhil C.; Medigeshi, Guruprasad R.; Malhotra, Pawan

    2013-01-01

    RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication. PMID:23741001

  12. Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant

    Science.gov (United States)

    Dalrymple, Nadine A.; Cimica, Velasco

    2015-01-01

    ABSTRACT Dengue virus (DENV) replication is inhibited by the prior addition of type I interferon or by RIG-I agonists that elicit RIG-I/MAVS/TBK1/IRF3-dependent protective responses. DENV infection of primary human endothelial cells (ECs) results in a rapid increase in viral titer, which suggests that DENV inhibits replication-restrictive RIG-I/interferon beta (IFN-β) induction pathways within ECs. Our findings demonstrate that DENV serotype 4 (DENV4) nonstructural (NS) proteins NS2A and NS4B inhibited RIG-I-, MDA5-, MAVS-, and TBK1/IKKε-directed IFN-β transcription (>80%) but failed to inhibit IFN-β induction directed by STING or constitutively active IRF3-5D. Expression of NS2A and NS4B dose dependently inhibited the phosphorylation of TBK1 and IRF3, which suggests that they function at the level of TBK1 complex activation. NS2A and NS4B from DENV1/2/4, as well as the West Nile virus NS4B protein, commonly inhibited TBK1 phosphorylation and IFN-β induction. A comparative analysis of NS4A proteins across DENVs demonstrated that DENV1, but not DENV2 or DENV4, NS4A proteins uniquely inhibited TBK1. These findings indicate that DENVs contain conserved (NS2A/NS4B) and DENV1-specific (NS4A) mechanisms for inhibiting RIG-I/TBK1-directed IFN responses. Collectively, our results define DENV NS proteins that restrict IRF3 and IFN responses and thereby facilitate DENV replication and virulence. Unique DENV1-specific NS4A regulation of IFN induction has the potential to be a virulence determinant that contributes to the increased severity of DENV1 infections and the immunodominance of DENV1 responses during tetravalent DENV1-4 vaccination. PMID:25968648

  13. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2010-11-01

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  14. Distribution and mixing of old and new nonstructural carbon in two temperate trees

    Science.gov (United States)

    Andrew D. Richardson; Mariah S. Carbone; Brett A. Huggett; Morgan E. Furze; Claudia I. Czimczik; Jennifer C. Walker; Xiaomei Xu; Paul G. Schaberg; Paula. Murakami

    2015-01-01

    We know surprisingly little about whole-tree nonstructural carbon (NSC; primarily sugars and starch) budgets. Even less well understood is the mixing between recent photosynthetic assimilates (new NSC) and previously stored reserves. And, NSC turnover times are poorly constrained. We characterized the distribution of NSC in the stemwood, branches, and roots of two...

  15. Age, allocation and availability of nonstructural carbon in mature red maple trees

    Science.gov (United States)

    Mariah S. Carbone; Claudia I. Czimczik; Trevor F. Keenan; Paula F. Murakami; Neil Pederson; Paul G. Schaberg; Xiaomei Xu; Andrew D. Richardson

    2013-01-01

    The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality.We used the radiocarbon (14C) ‘bomb spike’ as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree...

  16. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  17. Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections.

    NARCIS (Netherlands)

    Koraka, P.; Burghoorn-Maas, C.P.; Falconar, A.; Setiati, T.E.; Djamiatun, K.; Groen, J.; Osterhaus, A.D.

    2003-01-01

    Accurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot blot

  18. Molecular Basis for the Association of Human E4B U Box Ubiquitin Ligase with E2-Conjugating Enzymes UbcH5c and Ubc4

    Energy Technology Data Exchange (ETDEWEB)

    Benirschke, Robert C.; Thompson, James R.; Nominé, Yves; Wasielewski, Emeric; Jurani& #263; , Nenad; Macura, Slobodan; Hatakeyama, Shigetsugu; Nakayama, Keiichi I.; Botuyan, Maria Victoria; Mer, Georges (Hokkaido); (Mayo); (Kyushu)

    2010-09-07

    Human E4B, also called UFD2a, is a U box-containing protein that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor. E4B is thought to participate in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. The U box domain is an anchor site for E2 ubiquitin-conjugating enzymes, but little is known of the binding mechanism. Using X-ray crystallography and NMR spectroscopy, we determined the structures of E4B U box free and bound to UbcH5c and Ubc4 E2s. Whereas previously characterized U box domains are homodimeric, we show that E4B U box is a monomer stabilized by a network of hydrogen bonds identified from scalar coupling measurements. These structural studies, complemented by calorimetry- and NMR-based binding assays, suggest an allosteric regulation of UbcH5c and Ubc4 by E4B U box and provide a molecular basis to understand how the ubiquitylation machinery involving E4B assembles.

  19. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  20. Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi

    Science.gov (United States)

    Susuki-Miyata, Seiko; Miyata, Masanori; Lee, Byung-Cheol; Xu, Haidong; Kai, Hirofumi; Yan, Chen; Li, Jian-Dong

    2015-01-01

    Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit β (PKA-Cβ) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cβ phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cβ–induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cβ and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor. PMID:25831493

  1. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Association of CHMP4B and Autophagy with Micronuclei: Implications for Cataract Formation

    Directory of Open Access Journals (Sweden)

    Antonia P. Sagona

    2014-01-01

    Full Text Available Autophagy is a mechanism of cellular self-degradation that is very important for cellular homeostasis and differentiation. Components of the endosomal sorting complex required for transport (ESCRT machinery are required for endosomal sorting and also for autophagy and the completion of cytokinesis. Here we show that the ESCRT-III subunit CHMP4B not only localizes to normal cytokinetic bridges but also to chromosome bridges and micronuclei, the latter surrounded by lysosomes and autophagosomes. Moreover, CHMP4B can be co-immunoprecipitated with chromatin. Interestingly, a CHMP4B mutation associated with autosomal dominant posterior polar cataract abolishes the ability of CHMP4B to localize to micronuclei. We propose that CHMP4B, through its association with chromatin, may participate in the autophagolysosomal degradation of micronuclei and other extranuclear chromatin. This may have implications for DNA degradation during lens cell differentiation, thus potentially protecting lens cells from cataract development.

  3. (4bS,8aS-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate

    Directory of Open Access Journals (Sweden)

    Radouane Oubabi

    2014-03-01

    Full Text Available The hemisynthesis of the title compound, C22H32O2, was carried out through direct acetylation reaction of the naturally occurring diterpene totarol [systematic name: (4bS,8aS-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol]. The molecule is built up from three fused six membered rings, one saturated and two unsaturated. The central unsaturated ring has a half-chair conformation, whereas the other unsaturated ring displays a chair conformation. The absolute configuration is deduced from the chemical pathway. The value of the Hooft parameter [−0.10 (6] allowed this absolute configuration to be confirmed.

  4. High-Affinity Interaction of the K-Ras4B Hypervariable Region with the Ras Active Site

    Science.gov (United States)

    Chavan, Tanmay S.; Jang, Hyunbum; Khavrutskii, Lyuba; Abraham, Sherwin J.; Banerjee, Avik; Freed, Benjamin C.; Johannessen, Liv; Tarasov, Sergey G.; Gaponenko, Vadim; Nussinov, Ruth; Tarasova, Nadya I.

    2015-01-01

    Ras proteins are small GTPases that act as signal transducers between cell surface receptors and several intracellular signaling cascades. They contain highly homologous catalytic domains and flexible C-terminal hypervariable regions (HVRs) that differ across Ras isoforms. KRAS is among the most frequently mutated oncogenes in human tumors. Surprisingly, we found that the C-terminal HVR of K-Ras4B, thought to minimally impact the catalytic domain, directly interacts with the active site of the protein. The interaction is almost 100-fold tighter with the GDP-bound than the GTP-bound protein. HVR binding interferes with Ras-Raf interaction, modulates binding to phospholipids, and slightly slows down nucleotide exchange. The data indicate that contrary to previously suggested models of K-Ras4B signaling, HVR plays essential roles in regulation of signaling. High affinity binding of short peptide analogs of HVR to K-Ras active site suggests that targeting this surface with inhibitory synthetic molecules for the therapy of KRAS-dependent tumors is feasible. PMID:26682817

  5. A Comprehensive Evaluation of the Genetic Relatedness of Listeria monocytogenes Serotype 4b Variant Strains

    Science.gov (United States)

    Burall, Laurel S.; Grim, Christopher J.; Mammel, Mark K.; Datta, Atin R.

    2017-01-01

    Recently, we have identified a link between four listeriosis incidents/outbreaks to a variant of Listeria monocytogenes (Lm) serotype 4b strains, 4bV. Although 4bV strains have been reported from clinical specimens as well as from foods, listeriosis outbreaks occurring in 2014–2016 were the first reported outbreaks involving 4bV in the USA. Since traditional typing methods do not detect members of this group, we undertook a systematic and retrospective analysis of all Lm in the NCBI WGS Sequence Read Archive database to investigate the burden of 4bV strains among all listeriosis cases. This analysis identified the presence of isolates causing sporadic cases as well as those associated with the aforementioned outbreaks, as determined by WGS and traditional epidemiology. In total, approximately 350 Lm 4bV strains were identified from multiple parts of the USA as well as from Australia and Chile, dating back to 2001. The genomic relatedness of these strains was compared using the CFSAN SNP Pipeline and multi-virulence-locus sequence typing (MVLST). Using the CFSAN Pipeline tool, the 4bV strains were found to group into seven clusters that were separate from 4b strains. All seven clades appeared to contain isolates from both clinical and non-clinical sources. Conversely, the MVLST analysis revealed that practically all of the strains belonged to a single clade, suggesting that 4bV strains from disparate geographic regions and sources are under varied selective pressure, restricting diversity across these six virulence loci while allowing more variability across the genome as a whole. Further evaluation of these 4bV strains identified genes potentially acquired from a lineage II source external to the lmo0733–lmo0739 region, as well as highly conserved SNPs unique to the 4bV strains when compared to those from other lineages. Taken together, these data suggest that 4bV strains have undergone adaptive responses to selective pressures that may enhance survival in the

  6. A Comprehensive Evaluation of the Genetic Relatedness of Listeria monocytogenes Serotype 4b Variant Strains

    Directory of Open Access Journals (Sweden)

    Laurel S. Burall

    2017-09-01

    Full Text Available Recently, we have identified a link between four listeriosis incidents/outbreaks to a variant of Listeria monocytogenes (Lm serotype 4b strains, 4bV. Although 4bV strains have been reported from clinical specimens as well as from foods, listeriosis outbreaks occurring in 2014–2016 were the first reported outbreaks involving 4bV in the USA. Since traditional typing methods do not detect members of this group, we undertook a systematic and retrospective analysis of all Lm in the NCBI WGS Sequence Read Archive database to investigate the burden of 4bV strains among all listeriosis cases. This analysis identified the presence of isolates causing sporadic cases as well as those associated with the aforementioned outbreaks, as determined by WGS and traditional epidemiology. In total, approximately 350 Lm 4bV strains were identified from multiple parts of the USA as well as from Australia and Chile, dating back to 2001. The genomic relatedness of these strains was compared using the CFSAN SNP Pipeline and multi-virulence-locus sequence typing (MVLST. Using the CFSAN Pipeline tool, the 4bV strains were found to group into seven clusters that were separate from 4b strains. All seven clades appeared to contain isolates from both clinical and non-clinical sources. Conversely, the MVLST analysis revealed that practically all of the strains belonged to a single clade, suggesting that 4bV strains from disparate geographic regions and sources are under varied selective pressure, restricting diversity across these six virulence loci while allowing more variability across the genome as a whole. Further evaluation of these 4bV strains identified genes potentially acquired from a lineage II source external to the lmo0733–lmo0739 region, as well as highly conserved SNPs unique to the 4bV strains when compared to those from other lineages. Taken together, these data suggest that 4bV strains have undergone adaptive responses to selective pressures that may

  7. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells.

    Science.gov (United States)

    Huang, Hao; Hong, Qian; Tan, Hong-Ling; Xiao, Cheng-Rong; Gao, Yue

    2016-12-01

    Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10-40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced up-regulation of PDE4B and

  8. Nonstructural damages of reinforced concrete buildings due to 2015 Ranau earthquake

    Science.gov (United States)

    Adiyanto, Mohd Irwan; Majid, Taksiah A.; Nazri, Fadzli Mohamed

    2017-07-01

    On 15th June 2016 a moderate earthquake with magnitude Mw5.9 was occurred in Sabah, Malaysia. Specifically, the epicentre was located at 16 km northwest of Ranau. Less than two days after the first event, a reconnaissance mission took action to investigate the damages on buildings. Since the reinforced concrete buildings in Ranau were designed based on gravity and wind load only, a lot of minor to severe damages was occurred. This paper presents the damages on the nonstructural elements of reinforced concrete buildings due to Ranau earthquake. The assessment was conducted via in-situ field investigation covering the visual observation, taking photo, and interview with local resident. Based on in-situ field investigation, there was a lot of damages occurred on the nonstructural elements like the brick walls. Such damages cannot be neglected since it can cause injury and fatality to the victims. Therefore, it can be concluded that the installation of nonstructural elements should be reviewed for the sake of safety.

  9. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives.

    Science.gov (United States)

    Desta, Seare T; Yuan, XianJun; Li, Junfeng; Shao, Tao

    2016-12-01

    Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility (ED) of Napier grass silage was examined. Napier grass ensiled with no additive control, 0.2% formic acid, 0.4% molasses, and 0.3% fibrolytic enzyme for, 7, 30, 60 and 90days. Additives increased lactic acid, soluble carbohydrate and decreased all of lignocellulosic contents except acid detergent lignin and pH than control. The highest value of nonstructural carbohydrate and large reduction in lignocellulosic contents was observed in formic acid and fibrolytic enzyme silage respectively. The content of glucose and fructose showed rapid drop in the first 7days of ensilage. Ensilage decreased lignocellulosic contents and increased ED compared to fresh material. The ED of formic acid and molasses silage was significantly higher than control and fibrolytic enzyme silages in all tested days. In summery the ensiling quality structural and nonstructural carbohydrate and ED value of mature Napier grass silage improved through additives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. RDR-4B doppler weather radar with forward looking wind shear detection capability

    Science.gov (United States)

    Grasley, Steven S.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Bendix/King atmospheric transport and dispersion (ATAD) position; RDR-4A technical baseline; RTA-4A characteristics; RDR-4 antenna characteristics; modification of RDR-4A to RDR-4B; RDR-4A functional block diagram; RDR-4B characteristics; development/test plan; CV-580 testing capability; CV-580 test results; Continental A300 test configuration; Continental Data Recording Program operational considerations; Continental A300 test results; and display considerations.

  11. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region.

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J; Chavan, Tanmay S; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I; Nussinov, Ruth; Gaponenko, Vadim

    2015-04-10

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    Science.gov (United States)

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  13. The higher level of complexity of K-Ras4B activation at the membrane

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S.; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-01-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5′-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.—Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. PMID:26718888

  14. The higher level of complexity of K-Ras4B activation at the membrane.

    Science.gov (United States)

    Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S; Lu, Shaoyong; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2016-04-01

    Is nucleotide exchange sufficient to activate K-Ras4B? To signal, oncogenic rat sarcoma (Ras) anchors in the membrane and recruits effectors by exposing its effector lobe. With the use of NMR and molecular dynamics (MD) simulations, we observed that in solution, farnesylated guanosine 5'-diphosphate (GDP)-bound K-Ras4B is predominantly autoinhibited by its hypervariable region (HVR), whereas the GTP-bound state favors an activated, HVR-released state. On the anionic membrane, the catalytic domain adopts multiple orientations, including parallel (∼180°) and perpendicular (∼90°) alignments of the allosteric helices, with respect to the membrane surface direction. In the autoinhibited state, the HVR is sandwiched between the effector lobe and the membrane; in the active state, with membrane-anchored farnesyl and unrestrained HVR, the catalytic domain fluctuates reinlessly, exposing its effector-binding site. Dimerization and clustering can reduce the fluctuations. This achieves preorganized, productive conformations. Notably, we also observe HVR-autoinhibited K-Ras4B-GTP states, with GDP-bound-like orientations of the helices. Thus, we propose that the GDP/GTP exchange may not be sufficient for activation; instead, our results suggest that the GDP/GTP exchange, HVR sequestration, farnesyl insertion, and orientation/localization of the catalytic domain at the membrane conjointly determine the active or inactive state of K-Ras4B. Importantly, K-Ras4B-GTP can exist in active and inactive states; on its own, GTP binding may not compel K-Ras4B activation.-Jang, H., Banerjee, A., Chavan, T. S, Lu, S., Zhang, J., Gaponenko, V., Nussinov, R. The higher level of complexity of K-Ras4B activation at the membrane. © FASEB.

  15. Electronic structure and magnetic properties of the ThCo4B compound

    International Nuclear Information System (INIS)

    Benea, D.; Pop, V.; Isnard, O.

    2008-01-01

    Detailed theoretical investigations of the electronic and magnetic properties of the newly discovered ThCo 4 B compound have been performed. The influence of the local environment on the magnitude of the Co magnetic moments is discussed by comparing the magnetic and electronic properties in the ThCo 4 B, YCo 4 B and ThCo 5 systems. All theoretical investigations of the electronic and magnetic properties have been done using the Korringa-Kohn-Rostoker (KKR) band-structure method in the ferromagnetic state. Very good agreement of the calculated and the experimental magnetic moments is obtained. Larger exchange-splitting is observed on the 2c site which carries by far the largest magnetic moment. Comparison of the band structure calculation for ThCo 5 and ThCo 4 B reveals that the presence of boron in the Co 6i site environment induces a broadening of the electronic bands as well as a significant reduction of the exchange-splitting and a diminution of the DOS at the Fermi level. These differences are attributed to the hybridization of the boron electronic states to the cobalt 3d ones. The calculated magnetic moment is 1.94μ B /formula unit. A large difference on the magnetic moment magnitude of the two Co sites is observed since 1.30 and 0.27μ B /atom are calculated for the 2c and 6i sites, respectively. The orbital contribution is found to differ by almost an order of magnitude on both cobalt sites. The Co magnetic moment is much smaller in the ThCo 4 B than in the YCo 4 B or RCo 4 B (where R is a rare earth) isotypes evidencing the major role played by the Th-Co bands on the electronic properties

  16. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD

    Science.gov (United States)

    Komatsu, Kensei; Lee, Ji-Yun; Miyata, Masanori; Hyang Lim, Jae; Jono, Hirofumi; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Kai, Hirofumi; Li, Jian-Dong

    2013-01-01

    The deubiquitinase CYLD acts as a key negative regulator to tightly control overactive inflammation. Most anti-inflammatory strategies have focused on directly targeting the positive regulator, which often results in significant side effects such as suppression of the host defence response. Here, we show that inhibition of phosphodiesterase 4B (PDE4B) markedly enhances upregulation of CYLD expression in response to bacteria, thereby suggesting that PDE4B acts as a negative regulator for CYLD. Interestingly, in Cyld-deficient mice, inhibition of PDE4B no longer suppresses inflammation. Moreover, PDE4B negatively regulates CYLD via specific activation of JNK2 but not JNK1. Importantly, ototopical post-inoculation administration of a PDE4 inhibitor suppresses inflammation in this animal model, thus demonstrating the therapeutic potential of targeting PDE4. These studies provide insights into how inflammation is tightly regulated via the inhibition of its negative regulator and may also lead to the development of new anti-inflammatory therapeutics that upregulate CYLD expression. PMID:23575688

  17. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    Science.gov (United States)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  18. Expression of Recombinant Potato leafroll virus Structural and Non-structural Proteins for Antibody Production

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Moravec, Tomáš; Dědič, P.; Čeřovská, Noemi

    2011-01-01

    Roč. 159, č. 2 (2011), s. 130-132 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030; GA MZe QH71123 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato leafroll virus * recombinant viral antigen * antibody production Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.791, year: 2011

  19. Bluetongue virus nonstructural protein NS3/NS3a is not essential for virus replication

    NARCIS (Netherlands)

    Gennip, van H.G.P.; Water, van de S.G.P.; Rijn, van P.A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is

  20. Detection of dengue nonstructural 1 (NS1) protein in Vietnamese patients with fever

    NARCIS (Netherlands)

    Phuong, Hoang Lan; Thai, Khoa T. D.; Nga, Tran T. T.; Giao, Phan T.; Hung, Le Q.; Binh, Tran Q.; Nam, Nguyen V.; Groen, Jan; de Vries, Peter J.

    2009-01-01

    Diagnostic dengue in febrile patients is challenging. Of a total of 459 patients with acute undifferentiated fever, randomly selected from 12 primary health facilities and 1 clinic of the provincial malaria station in southern Vietnam, dengue-specific antibody (Ab) and NS1 Ag enzyme-linked

  1. Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural Approach

    DEFF Research Database (Denmark)

    Barletta, Andrea; Santucci de Magistris, Paolo; Violante, Francesco

    We propose a non-structural pricing method to retrieve the risk-neutral density implied by options contracts on the CBOE VIX. The method is based on orthogonal polynomial expansions around a kernel density and yields the risk-neutral density of the underlying asset without the need for modeling its...... to their flexible rate of decay, are better suited at modeling the density of the VIX. Based on this technique, we propose a simple and robust way to estimate the expansion coefficients by means of a principal components analysis. We show that the proposed methodology yields an accurate approximation of the risk...

  2. Prognostic Factors Affecting Survival After Multivisceral Resection in Patients with Clinical T4b Gastric Cancer.

    Science.gov (United States)

    Mita, Kazuhito; Ito, Hideto; Katsube, Toshio; Tsuboi, Ayaka; Yamazaki, Nobuyoshi; Asakawa, Hideki; Hayashi, Takashi; Fujino, Keiichi

    2017-12-01

    The prognosis and survival of patients with advanced gastric cancer is poor. Although completeness of resection (R0) is one of the most important factors affecting survival, multivisceral resection (MVR) for locally advanced (clinical T4b, cT4b) gastric cancer remains controversial. The aim of this study was to evaluate the factors affecting prognosis and survival after MVR in patients with cT4b gastric cancer. Between 2005 and 2015, we retrospectively reviewed the medical records of 103 patients who underwent MVR for cT4b gastric cancer with suspected direct invasion to adjacent organs. Patient characteristics, related complications, long-term survival, and prognostic factors of cT4b gastric cancer were analyzed. Postoperative mortality and morbidity rates of patients after MVR were 1.0 and 37.9%, respectively. R0 resection was achieved in 82.5% patients, all of whom had a significantly improved survival rate. Overall survival rates at 1 and 3 years were 78.3 and 47.7% for R0 resection and 46.6 and 14.3% for R1 resection, respectively (R0 vs. R1, P < 0.002). Multivariate analysis revealed that completeness of resection (R0) was an independent prognostic factor associated with longer survival. In patients with cT4b gastric cancer, gastrectomy with MVR to achieve an R0 resection can be performed with acceptable postoperative morbidity and mortality rates and can have a positive impact on long-term survival.

  3. Discovery of a synthetic Aminopeptidase N inhibitor LB-4b as a potential anticancer agent.

    Science.gov (United States)

    Su, Li; Jia, Yuping; Wang, Xuejian; Zhang, Lei; Fang, Hao; Xu, Wenfang

    2013-05-01

    APN inhibitors have been considered as potential anticancer agents for years. LB-4b is the first synthetic APN inhibitor to be evaluated for both of its anti-invasion and anti-angiogenesis effects. As a potent synthetic APN inhibitor (IC50=850 nM, versus bestatin of 8.1 μM), LB-4b was determined to have more significant block effects to cancer cell invasion and angiogenesis than bestatin. Besides, it is able to be easily synthesized with a high total yield, while the reported synthetic methods of bestatin are much more complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Clipperton Atoll Core 4B Stable Isotope (delta 13C, delta 18O) Data for 1893 to 1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 101 year stable isotope record from P. lobata, core 4B, Clipperton Atoll, eastern Pacific. Sampling at annual and 12/year resolution, files clipperton.4B.iso.txt and...

  5. Tricritical behavior in the ferromagnetic superconductor ErRh4B4

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Kalia, R.K.; Hinks, D.G.; Behroozi, F.; Tachiki, M.

    1985-08-01

    A new tricritical point on the phase boundary between the superconducting vortex phase and the normal paramagnetic phase of ErRh 4 B 4 is presented. The microscopic origin of the tricritical point and the expected tricritical behavior are briefly discussed

  6. Coxeter groups A4, B4 and D4 for two-qubit systems

    Indian Academy of Sciences (India)

    physics pp. 247–260. Coxeter groups A4, B4 and D4 for two-qubit systems. RAMAZAN KOÇ1,∗. , M YAKUP HACIIBRAHIMO ˇGLU1 and MEHMET KOCA2 ... reflection matrices. The von Neumann entropy of each reduced density matrix is calculated. It is shown that these unitary matrix representations are naturally related to ...

  7. LAPTM4B Gene Expression And Polymorphism As Diagnostic Markers Of Breast Cancer In Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Shaker Olfat

    2015-10-01

    Full Text Available Background: The aim of this study was to investigate the association between LAPTM4B gene polymorphism and the risk of breast cancer among Egyptian female patients. Also, measurement was done of its serum level to evaluate its significance as a diagnostic marker for breast cancer.

  8. Chlorine- and Sulphur-substituted Pyrrolo[3, 4-b]quinolines and ...

    African Journals Online (AJOL)

    The outcome from aminolysis of 3, 3, 9-trichlorothieno[3, 4-b]quinolinone with an alkylamine is dependent on the reaction conditions and extraneous reagents employed. A variety of hitherto unreported products can be obtained and include 4-chloro-2- alkylthiocarbamoyl-quinoline-3-carboxylic acid alkylamides, ...

  9. Chlorine- and Sulphur-substituted Pyrrolo[3,4-b]quinolines and ...

    African Journals Online (AJOL)

    The outcome from aminolysis of 3,3,9-trichlorothieno[3,4-b]quinolinone with an alkylamine is dependent on the reaction condi- tions and extraneous reagents employed. A variety of hitherto unreported products can be obtained and include. 4-chloro-2-alkylthiocarbamoyl-quinoline-3-carboxylic acid alkylamides, ...

  10. The Synthesis of 4-Ethyl-2-propyl-3-substitutedpyrrolo[ 3,4-b ...

    African Journals Online (AJOL)

    The preparation, spectral properties and structure elucidations of the hitherto undocumented 3-oxo-, 3-thioxo-, 3-propylimino-, 3-imino-, and 3-propylamino- derivatives of 4-ethyl-2-propyl-2,3-dihydro-pyrrolo[3,4-b]quinoline-1,9-dione are described. Mechanistic aspects relating particularly to the formation of the latter two ...

  11. Chlorine- and Sulphur-substituted Pyrrolo[3,4-b]quinolines and ...

    African Journals Online (AJOL)

    80%) (arising from elimination of H2S) and 2-propyl-3-thioxo-pyrroloquinoline 4b (ca. 20%) (arising from elimination of propylamine) as end-products. RESEARCH ARTICLE. T. van Es and B. Staskun,. 40. S. Afr. J. Chem., 2003, 56, 40–46,. . * To whom correspondence should be ...

  12. Repression of p15INK4b expression by Myc through association with Miz-1

    DEFF Research Database (Denmark)

    Staller, P; Peukert, K; Kiermaier, A

    2001-01-01

    Deregulated expression of c-myc can induce cell proliferation in established cell lines and in primary mouse embryonic fibroblasts (MEFs), through a combination of both transcriptional activation and repression by Myc. Here we show that a Myc-associated transcription factor, Miz-1, arrests cells...... in G1 phase and inhibits cyclin D-associated kinase activity. Miz-1 upregulates expression of the cyclin-dependent kinases (CDK) inhibitor p15INK4b by binding to the initiator element of the p15INK4b promoter. Myc and Max form a complex with Miz-1 at the p15 initiator and inhibit transcriptional...... activation by Miz-1. Expression of Myc in primary cells inhibits the accumulation of p15INK4b that is associated with cellular senescence; conversely, deletion of c-myc in an established cell line activates p15INK4b expression. Alleles of c-myc that are unable to bind to Miz-1 fail to inhibit accumulation...

  13. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-01-01

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892

  14. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  15. Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice.

    Science.gov (United States)

    Wang, Diane R; Wolfrum, Edward J; Virk, Parminder; Ismail, Abdelbagi; Greenberg, Anthony J; McCouch, Susan R

    2016-11-01

    Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  17. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Qi; Chen, Liang-Long, E-mail: xhzlyx@126.com; Fan, Lin; Fang, Jun; Chen, Zhao-Yang; Li, Wei-Wei

    2014-04-25

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of

  18. New non-structured discretizations for fluid flows with reinforced incompressibility

    International Nuclear Information System (INIS)

    Heib, S.

    2003-01-01

    This work deals with the discretization of Stokes and Navier-Stokes equations modeling the flow of incompressible fluids on 2-D or 3-D non-structured meshes. Triangles and tetrahedrons are used for 2-D and 3-D meshes, respectively. The developments and calculations are performed with the code Priceles (fast CEA-EdF industrial platform for large Eddy simulation). This code allows to perform simulations both on structured and non-structured meshes. A finite-volume resolution method is used: a finite difference volume (FDV) method is used for the structured meshes and a finite element volume (FEV) method is used for the non-structured meshes. The finite element used in the beginning of this work has several defects. Starting from this situation, the discretization is improved by adding modifications to this element and the new elements introduced are analyzed theoretically. In parallel to these analyses, the new discretizations are implemented in order to test them numerically and to confirm the theoretical analyses. The first chapter presents the physical and mathematical modeling used in this work. The second chapter treats of the discretization of Stokes equations and presents the FEV resolution method. Chapter 3 presents a first attempt of improvement of this finite element and leads to the proposal of a new element which is presented in details. The problem encountered with the new discretization leads to a modification presented in chapter 4. This new discretization gives all the expected convergence results and sometimes shows super-convergence properties. Chapter 5 deals with the study and discretization of the Navier-Stokes equations. The study of the filtered Navier-Stokes equations, used for large Eddy simulations, requires to give a particular attention to the discretization of the diffusive terms. Then, the convective terms are considered. The effects of the convective terms in the initial discretization and in the improved method are compared. The use of

  19. Non-structural misalignments of body posture in the sagittal plane.

    Science.gov (United States)

    Czaprowski, Dariusz; Stoliński, Łukasz; Tyrakowski, Marcin; Kozinoga, Mateusz; Kotwicki, Tomasz

    2018-01-01

    The physiological sagittal spinal curvature represents a typical feature of good body posture in the sagittal plane. The cervical and the lumbar spine are curved anteriorly (lordosis), while the thoracic segment is curved posteriorly (kyphosis). The pelvis is inclined anteriorly, and the lower limbs' joints remain in a neutral position. However, there are many deviations from the optimal body alignment.The aim of this paper is to present the most common types of non-structural misalignments of the body posture in the sagittal plane. The most common types of non-structural misalignments of body posture in the sagittal plane are as follows: (1) lordotic, (2) kyphotic, (3) flat-back, and (4) sway-back postures. Each one may influence both the skeletal and the muscular system leading to the functional disturbance and an increased strain of the supporting structures. Usually, the disturbances localized within the muscles are analyzed in respect to their shortening or lengthening. However, according to suggestions presented in the literature, when the muscles responsible for maintaining good body posture (the so-called stabilizers) are not being stimulated to resist against gravity for an extended period of time, e.g., during prolonged sitting, their stabilizing function is disturbed by the hypoactivity reaction resulting in muscular weakness. The deficit of the locomotor system stability triggers a compensatory mechanism-the stabilizing function is overtaken by the so-called mobilizing muscles. However, as a side effect, such compensation leads to the increased activity of mobilizers (hyperactivity) and decreased flexibility, which may finally lead to the pathological chain of reaction within the musculoskeletal system. There exist four principal types of non-structural body posture misalignments in the sagittal plane: lordotic posture, kyphotic posture, flat-back posture, and sway-back posture. Each of them can disturb the physiological loading of the musculoskeletal

  20. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer

    DEFF Research Database (Denmark)

    Szallasi, Zoltan Imre; Li, Yang; Zou, Lihua

    2010-01-01

    Adjuvant chemotherapy for breast cancer after surgery has effectively lowered metastatic recurrence rates. However, a considerable proportion of women suffer recurrent cancer at distant metastatic sites despite adjuvant treatment. Identification of the genes crucial for tumor response to specific...... that 8q22 amplification and overexpression of LAPTM4B and YWHAZ contribute to de novo chemoresistance to anthracyclines and are permissive for metastatic recurrence. Overexpression of these two genes may predict anthracycline resistance and influence selection of chemotherapy....

  1. Inactivation of p15INK4b in chronic arsenic poisoning cases

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2014-01-01

    Full Text Available Arsenic exposure from burning high arsenic-containing coal has been associated with human skin lesion and cancer. However, the mechanisms of arsenic-related carcinogenesis are not fully understood. Inactivation of critical tumor suppression genes by epigenetic regulation or genetic modification might contribute to arsenic-induced carcinogenicity. This study aims to clarify the correlation between arsenic pollution and functional defect of p15INK4b gene in arsenic exposure residents from a region of Guizhou Province, China. To this end, 103 arsenic exposure residents and 105 control subjects were recruited in this study. The results showed that the exposure group exhibited higher levels of urinary and hair arsenic compared with the control group (55.28 vs 28.87 μg/L, 5.16 vs 1.36 μg/g. Subjects with higher arsenic concentrations are more likely to have p15INK4b methylation and gene deletion (χ2 = 4.28, P = 0.04 and χ2 = 4.31, P = 0.04. We also found that the degree of p15INK4b hypermethylation and gene deletion occurred at higher incidence in the poisoning cases with skin cancer (3.7% and 14.81% in non-skin cancer group, 41.18% and 47.06 in skin cancer group, and were significantly associated with the stage of skin lesions (χ2 = 12.82, P < 0.01 and χ2 = 7.835, P = 0.005. These observations indicate that inactivation of p15INK4b through genetic alteration or epigenetic modification is a common event that is associated with arsenic exposure and the development of arsenicosis.

  2. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China.

    Science.gov (United States)

    Chen, Jianshun; Chen, Qiaomiao; Jiang, Jianjun; Hu, Hongxia; Ye, Jiangbo; Fang, Weihuan

    2010-01-01

    Listeria monocytogenes, the causative organism of listeriosis, is primarily transmitted to humans through contaminated food. In this study, we examined 1275 batches of aquatic products imported from 29 countries and found that 36 batches from 8 countries were contaminated by Listeria (2.8%), with L. monocytogenes accounting for 2.6% (33/1275) and L. innocua for 0.2% (3/1275). Of the 23 selected L. monocytogenes isolates (from the 33 identified), 15 (65.2%) were of serovar 4b complex (4b, 4d, or 4e), three (13.0%) of 1/2a or 3a, four (17.4%) of 1/2b or 3b, and one (4.4%) of 1/2c or 3c. Notably, four of the 23 isolates belonged to epidemic clone I (ECI) and another four were associated with epidemic clone II (ECII), two highly clonal 4b clusters responsible for most of the documented listeriosis outbreaks. In the multilocus sequence typing scheme based on the concatenated genes gyrB-dapE-hisJ-sigB-ribC-purM-betL-gap-tuf, serovar 4b complex isolates from imported aquatic products exhibited significant genetic diversity. While the four ECI isolates were genetically related to those from Chinese diseased animals, both lacking one proline-rich repeat of ActA, the four ECII isolates were located between 1/2b or 3b strains. As the L. monocytogenes isolates from imported aquatic products possessed a nearly complete set of major infection-related genes, they demonstrated virulence potential in mouse model.

  3. Extremely Energetic 4B/X17.2 Flare and Associated Phenomena ...

    Indian Academy of Sciences (India)

    NOAA 10486 grew to be the largest sunspot group of the current solar cycle and it produced many spectacular solar events, including the most energetic flares. 4B/X17.2 on 28 October, the 2B/X10 on 29 October and the 3B/X28 on 4 November. 2003 and their associated fast halo CMEs, different types of extraordinary radio ...

  4. Seminar Proceedings Implementation of Nonstructural Measures Held at Ft. Belvoir, Virginia on 15, 16 and 17 November 1983

    Science.gov (United States)

    1983-11-01

    complicated model and not an attempt to extend the present, rather linear model. I think the answers and the future are with the more I encompassing risk...desirability ot adding other values to this equation when you are formulating nonstructural projents, particularly those which wind up with e- acuation and

  5. Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer

    Science.gov (United States)

    David R. Woodruff; Frederick C. Meinzer

    2011-01-01

    We analyzed concentrations of starch, sucrose, glucose and fructose in upper branch wood, foliage and trunk sapwood of Douglas-fir trees in height classes ranging from ~2 to ~57 m. Mean concentrations of non-structural carbohydrates (NSC) for all tissues were highest in the tallest height class and lowest in the lowest height class, and height-related trends in NSC...

  6. Detection of Immune-Complex Dissociated Nonstructural-1 (NS-1) Antigen in Patients with Acute Dengue Virus Infections

    NARCIS (Netherlands)

    P. Koraka (Penelope); C.P. Burghoorn-Maas; A. Falconar; T.E. Setiati (Tatty); K. Djamiatun; J. Groen (Jan); A.D.M.E. Osterhaus (Albert)

    2003-01-01

    textabstractAccurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot

  7. Outcomes of US BI-RADS 4A, 4B, and 4C Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae Wang; Ko, Eun Young; Han, Boo Kyung; Shin, Jung Hee; Kang, Seok Seon; Hahn, Soo Yeon [Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    The aim of our study was to evaluate the outcomes of sonographic (US) BIRADS category 4 lesions according to subcategories 4A, 4B, and 4C and palpability. We retrospectively reviewed the pathology results of 512 US BI-RADS category 4 lesions in 460 patients after ultrasound-guided percutaneous biopsy (n = 435) and surgical biopsy (n = 77). We analyzed the results according to subcategories 4A, 4B, 4C, and palpability, and compared outcomes of five breast radiologists. In BI-RADS 4A lesions (n = 302), biopsy results indicated 48 malignancies(15.9%). In BI-RADS 4B lesions (n = 113), biopsy revealed 69 malignancies (61.1%). Among BI-RADS 4C lesions (n = 97), 87 lesions were malignancies (89.7 %). Palpability had no correlation with the rate of malignancy in BI-RADS category 4 lesions, and the rate of malignancy for category 4A ranged widely from 8.1% - 26.4%. The outcomes of US BI-RADS category 4 lesions according to subcategories varied widely between radiologists, especially for 4A lesions. The US finding itself warrants a BI-RADS 4 subcategory. In category 4 lesions, the malignant rate was the same between palpable and nonpalpable lesions

  8. Mild phenotype of Charcot-Marie-Tooth disease type 4B1.

    Science.gov (United States)

    Murakami, Tatsufumi; Kutoku, Yumiko; Nishimura, Hirotake; Hayashi, Makiko; Abe, Akiko; Hayasaka, Kiyoshi; Sunada, Yoshihide

    2013-11-15

    Charcot-Marie-Tooth type 4B1 (CMT4B1) is a rare autosomal recessive demyelinating neuropathy caused by mutation of the myotubularin-related 2 (MTMR2) gene. It is characterized by a severe early-onset motor and sensory neuropathy, and myelin outfoldings on nerve biopsy. We describe a mild phenotype of CMT4B1 in a Japanese patient. She noticed difficulty in walking as an initial symptom at age 13. Her symptoms progressed slowly, and she could still walk at age 34. There was no cranial neuropathy. A nerve conduction study demonstrated demyelinating neuropathy. Sural nerve biopsy revealed a moderate-to-severe loss of myelinated fibers, and many focally folded myelin sheaths. Electron micrographs showed myelin outfoldings and infoldings. DNA tests for CMT showed that she is a homozygote for the MTMR2 p.R628PfsX18 mutation. The mild phenotype in our patient is probably due to the C-terminal position of the frame-shift mutation in MTMR2. © 2013 Elsevier B.V. All rights reserved.

  9. Quantitative characterization of nonstructural carbohydrates of mezcal Agave (Agave salmiana Otto ex Salm-Dick).

    Science.gov (United States)

    Michel-Cuello, Christian; Juárez-Flores, Bertha Irene; Aguirre-Rivera, Juan Rogelio; Pinos-Rodríguez, Juan Manuel

    2008-07-23

    Fructans are the reserve carbohydrates in Agave spp. plants. In mezcal factories, fructans undergoes thermal hydrolysis to release fructose and glucose, which are the basis to produce this spirit. Carbohydrate content determines the yield of the final product, which depends on plant organ, ripeness stage, and thermal hydrolysis. Thus, a qualitative and quantitative characterization of nonstructural carbohydrates was conducted in raw and hydrolyzed juices extracted from Agave salmiana stems and leaves under three ripeness stages. By high-performance liquid chromatography (HPLC), fructose, glucose, sucrose, xylose, and maltose were identified in agave juice. Only the plant fraction with hydrolysis interaction was found to be significant in the glucose concentration plant. Interactions of the fraction with hydrolysis and ripeness with hydrolysis were statistically significant in fructose concentration. Fructose concentration rose considerably with hydrolysis, but only in juice extracted from ripe agave stems (early mature and castrated). This increase was statistically significant only with acid hydrolysis.

  10. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-26

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  11. Hospital Workers Disaster Management and Hospital Nonstructural: A Study in Bandar Abbas, Iran

    Science.gov (United States)

    Lakbala, Parvin

    2016-01-01

    Introduction: A devastating earthquake is inevitable in the long term and likely in the near future in Iran. The objective of the study was to assess the knowledge of hospital staff to disaster management system in hospital and to determine nonstructural safety assessment in Shahid Mohammadi hospital in Bandar Abbas city of Iran. This hospital is the main referral hospital in Hormozgan province with a capacity of about 450 beds and the highest patient admissions. Methods: The cross-sectional study was conducted in 2013 on 200 healthcare workers at Shahid Mohammadi hospital, in the city of Bandar Abbas, Iran. This hospital is the main referral hospital in Hormozgan province and has a capacity of about 450 beds with highest numbers of patient admissions. Questionnaire and checklist used for assessing health workers knowledge and awareness towards disaster management and nonstructural safety this hospital. Results: This study found that knowledge, awareness, and disaster preparedness of hospital staff need continual reinforcement to improve self efficacy for disaster management. Equipping health care facilities at the time of natural disasters, especially earthquakes are of great importance all over the world, especially in Iran. This requires the national strategies and planning for all health facilities. Conclusion: It seems due to limitations of hospital beds, insufficient of personnel, and medical equipment, health care providers paid greater attention to this issue. Since this hospital is the only educational public hospital in the province, it is essential to pay much attention to the risk management not only to this hospital but at the national level to health facilities. PMID:26573039

  12. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Science.gov (United States)

    López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José

    2016-01-01

    In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874

  13. A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity.

    Science.gov (United States)

    Qiao, Shuxi; Dennis, Michael; Song, Xiufeng; Vadysirisack, Douangsone D; Salunke, Devika; Nash, Zachary; Yang, Zhifen; Liesa, Marc; Yoshioka, Jun; Matsuzawa, Shu-Ichi; Shirihai, Orian S; Lee, Richard T; Reed, John C; Ellisen, Leif W

    2015-04-28

    Macroautophagy (autophagy) is a critical cellular stress response; however, the signal transduction pathways controlling autophagy induction in response to stress are poorly understood. Here we reveal a new mechanism of autophagy control whose deregulation disrupts mitochondrial integrity and energy homeostasis in vivo. Stress conditions including hypoxia and exercise induce reactive oxygen species (ROS) through upregulation of a protein complex involving REDD1, an mTORC1 inhibitor and the pro-oxidant protein TXNIP. Decreased ROS in cells and tissues lacking either REDD1 or TXNIP increases catalytic activity of the redox-sensitive ATG4B cysteine endopeptidase, leading to enhanced LC3B delipidation and failed autophagy. Conversely, REDD1/TXNIP complex expression is sufficient to induce ROS, suppress ATG4B activity and activate autophagy. In Redd1(-/-) mice, deregulated ATG4B activity and disabled autophagic flux cause accumulation of defective mitochondria, leading to impaired oxidative phosphorylation, muscle ATP depletion and poor exercise capacity. Thus, ROS regulation through REDD1/TXNIP is physiological rheostat controlling stress-induced autophagy.

  14. Tumor suppressor ASXL1 is essential for the activation of INK4B expression in response to oncogene activity and anti-proliferative signals

    DEFF Research Database (Denmark)

    Wu, Xudong; Bekker-Jensen, Ida Holst; Christensen, Jesper

    2015-01-01

    ASXL1 mutations are frequently found in hematological tumors, and loss of Asxl1 promotes myeloid transformation in mice. Here we present data supporting a role for an ASXL1-BAP1 complex in the deubiquitylation of mono-ubiquitylated lysine 119 on Histone H2A (H2AK119ub1) in vivo. The Polycomb group...... proteins control the expression of the INK4B-ARF-INK4A locus during normal development, in part through catalyzing mono-ubiquitylation of H2AK119. Since the activation of the locus INK4B-ARF-INK4A plays a fail-safe mechanism protecting against tumorigenesis, we investigated whether ASXL1-dependent H2A...

  15. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features.

    Science.gov (United States)

    Tüysüz, Beyhan; Bilguvar, Kaya; Koçer, Naci; Yalçınkaya, Cengiz; Çağlayan, Okay; Gül, Ece; Sahin, Sezgin; Çomu, Sinan; Günel, Murat

    2014-07-01

    Adaptor protein complex-4 (AP4) is a component of intracellular transportation of proteins, which is thought to have a unique role in neurons. Recently, mutations affecting all four subunits of AP4 (AP4M1, AP4E1, AP4S1, and AP4B1) have been found to cause similar autosomal recessive phenotype consisting of tetraplegic cerebral palsy and intellectual disability. The aim of this study was analyzing AP4 genes in three new families with this phenotype, and discussing their clinical findings with an emphasis on neuroimaging and facial features. Using homozygosity mapping followed by whole-exome sequencing, we identified two novel homozygous mutations in AP4M1 and a homozygous deletion in AP4B1 in three pairs of siblings. Spastic tetraplegia, microcephaly, severe intellectual disability, limited speech, and stereotypic laughter were common findings in our patients. All patients also had similar facial features consisting of coarse and hypotonic face, bitemporal narrowing, bulbous nose with broad nasal ridge, and short philtrum which were not described in patients with AP4M1 and AP4B1 mutations previously. The patients presented here and previously with AP4M1, AP4B1, and AP4E1 mutations shared brain abnormalities including asymmetrical ventriculomegaly, thin splenium of the corpus callosum, and reduced white matter volume. The patients also had hippocampal globoid formation and thin hippocampus. In conclusion, disorders due to mutations in AP4 complex have similar neurological, facial, and cranial imaging findings. Thus, these four genes encoding AP4 subunits should be screened in patients with autosomal recessive spastic tetraplegic cerebral palsy, severe intellectual disability, and stereotypic laughter, especially with the described facial and cranial MRI features. © 2014 Wiley Periodicals, Inc.

  16. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  17. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  18. Kobuviral Non-structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein

    Czech Academy of Sciences Publication Activity Database

    Klíma, Martin; Chalupská, Dominika; Rozycki, B.; Humpolíčková, Jana; Řežábková, L.; Šilhán, Jan; Bäumlová, Adriana; Dubánková, Anna; Bouřa, Evžen

    2017-01-01

    Roč. 25, č. 2 (2017), s. 219-230 ISSN 0969-2126 R&D Projects: GA ČR(CZ) GJ17-07058Y Institutional support: RVO:61388963 Keywords : RNA replication * poliovirus 3A * Aichi virus Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.945, year: 2016 https://www.sciencedirect.com/science/article/pii/S096921261630363X?via%3Dihub

  19. Exotic Higgs decay h → φφ → 4b at the LHeC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shang; Zhang, Chen [Peking University, Institute of Theoretical Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Tang, Yi-Lei [Peking University, Center for High Energy Physics, Beijing (China); Zhu, Shou-hua [Peking University, Institute of Theoretical Physics and State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Peking University, Center for High Energy Physics, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2017-07-15

    We study the exotic decay of the 125 GeV Higgs boson (h) into a pair of light spin-0 particles (φ) which subsequently decay and result in a 4b final state. This channel is well motivated in models with an extended Higgs sector. Instead of searching at the Large Hadron Collider (LHC) and the high luminosity LHC (HL-LHC) which are beset by large standard model (SM) backgrounds, we investigate this decay channel at the much cleaner Large Hadron Electron Collider (LHeC). With some simple selection cuts this channel becomes nearly free of background at this ep machine, in sharp contrast to the situation at the (HL-)LHC. With a parton level analysis we show that for the φ mass range [20,60] GeV, with 100 fb{sup -1} luminosity the LHeC is generally capable of constraining C{sub 4b}{sup 2} ≡ κ{sub V}{sup 2} x Br(h → φφ) x Br{sup 2}(φ → b anti b) (κ{sub V} denotes the hVV(V = W, Z) coupling strength relative to the SM value) to a few percent level (95% CLs). With 1 ab{sup -1} luminosity C{sub 4b}{sup 2} at a few per mille level can be probed. These sensitivities are much better than the HL-LHC performance and demonstrate the important role expected to be played by the LHeC in probing exotic Higgs decay processes, in addition to the already proposed invisible Higgs decay channel. (orig.)

  20. Magnetic Properties of New Triangular Lattice Magnets A${_4}$B'B${_2}$O$_{12}$

    OpenAIRE

    Rawl, Ryan; Lee, Minseong; Choi, Eun Sang; Li, Guang; Chen, Kuan-Wen; Baumbach, Ryan; Cruz, Clarina R. dela; Ma, Jie; Zhou, Haidong

    2017-01-01

    The geometrically frustrated two dimensional triangular lattice magnets A${_4}$B'B${_2}$O$_{12}$ (A = Ba, Sr, La; B' = Co, Ni, Mn; B = W, Re) have been studied by x-ray diffraction, AC and DC susceptibilities, powder neutron diffraction, and specific heat measurements. The results reveal that (i) the samples containing Co$^{2+}$ (effective spin-1/2) and Ni$^{2+}$ (spin-1) ions with small spin numbers exhibit ferromagnetic (FM) ordering while the sample containing Mn$^{2+}$ (spin-5/2) ions wit...

  1. Crystal structure features in a new compound C4B25Mg1.42

    Science.gov (United States)

    Konovalikhin, S. V.; Ponomarev, V. I.

    2015-09-01

    The composition of C4B25Mg1.42 crystal obtained by self-propagating high-temperature synthesis was determined using X-ray diffraction. This is the first crystalline structure where all boron atoms in the В12 icosahedron occupy crystallographically independent positions; this circumstance allowed us to analyze the effect of substituents on bond lengths in the icosahedron. The crystal structure features, including the channels filled with disordered Mg atoms and the spread of В—В endo- and exo-bond lengths in the icosahedra, are described. A crystallochemical analysis of pair bonds has been performed for the first time.

  2. Two distinct binding modes define the interaction of Brox with the C-terminal tails of CHMP5 and CHMP4B.

    Science.gov (United States)

    Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Sette, Paola; Rudd, Victoria; Chuenchor, Watchalee; Bello, Nana F; Bouamr, Fadila; Xiao, Tsan Sam

    2012-05-09

    Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.

    Science.gov (United States)

    Drogue, Benoît; Sanguin, Hervé; Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2014-02-01

    Azospirillum-plant cooperation has been mainly studied from an agronomic point of view leading to a wide description of mechanisms implicated in plant growth-promoting effects. However, little is known about genetic determinants implicated in bacterial adaptation to the host plant during the transition from free-living to root-associated lifestyles. This study aims at characterizing global gene expression of Azospirillum lipoferum 4B following a 7-day-old interaction with two cultivars of Oryza sativa L. japonica (cv. Cigalon from which it was originally isolated, and cv. Nipponbare). The analysis was done on a whole genome expression array with RNA samples obtained from planktonic cells, sessile cells, and root-adhering cells. Root-associated Azospirillum cells grow in an active sessile-like state and gene expression is tightly adjusted to the host plant. Adaptation to rice seems to involve genes related to reactive oxygen species (ROS) detoxification and multidrug efflux, as well as complex regulatory networks. As revealed by the induction of genes encoding transposases, interaction with root may drive bacterial genome rearrangements. Several genes related to ABC transporters and ROS detoxification display cultivar-specific expression profiles, suggesting host specific adaptation and raising the question of A. lipoferum 4B/rice cv. Cigalon co-adaptation. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. 75 FR 41871 - International Conference on Harmonisation; Draft Guidance on Q4B Evaluation and Recommendation of...

    Science.gov (United States)

    2010-07-19

    ... Pharmaceutical Industries Associations; the Japanese Ministry of Health, Labour, and Welfare; the Japanese... and Research, FDA; and the Pharmaceutical Research and Manufacturers of America. The ICH Secretariat... the Q4B process entitled ``Q4B Evaluation and Recommendation of Pharmaceutical Texts for Use in the...

  5. Evaluation of three 3ABC ELISAs for foot-and-mouth disease non-structural antibodies using latent class analysis

    Directory of Open Access Journals (Sweden)

    Malirat Viviane

    2006-10-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious viral disease of even-toed ungulates. Serological diagnosis/surveillance of FMD presents several problems as there are seven serotypes worldwide and in the event of vaccination it may be necessary to be able to identify FMD infected/exposed animals irrespective of their vaccination status. The recent development of non-structural 3ABC protein (NSP ELISA tests has greatly advanced sero-diagnosis/surveillance as these tests detect exposure to live virus for any of the seven serotypes of FMD, even in vaccinated populations. This paper analyses the performance of three NSP tests using a Bayesian formulation of the Hui-Walter latent class model to estimate test sensitivity and specificity in the absence of a "gold-standard" test, using sera from a well described cattle population in Cameroon with endemic FMD. Results The analysis found a high sensitivity and specificity for both the Danish C-ELISA and the World Organisation for Animal Health (O.I.E. recommended South American I-ELISA. However, the commercial CHEKIT kit, though having high specificity, has very low sensitivity. The results of the study suggests that for NSP ELISAs, latent class models are a useful alternative to the traditional approach of evaluating diagnostic tests against a known "gold-standard" test as imperfections in the "gold-standard" may give biased test characteristics. Conclusion This study demonstrates that when applied to naturally infected zebu cattle managed under extensive rangeland conditions, the FMD ELISAs may not give the same parameter estimates as those generated from experimental studies. The Bayesian approach allows for full posterior probabilities and capture of the uncertainty in the estimates. The implications of an imperfect specificity are important for the design and interpretation of sero-surveillance data and may result in excessive numbers of false positives in low prevalence

  6. Non-structural carbohydrate metabolism and postharvest conservation of gerbera flowers

    Directory of Open Access Journals (Sweden)

    Ana Maria Oliveira Souza Alves

    2017-10-01

    Full Text Available The species Gerbera jamesonii Adlam has great economic importance in the ornamental sector, due to exuberance of floral stems. However, florists face some challenges such as postharvest handling and difficulty of conservation. Therefore, this study aimed to characterize the non-structural carbohydrate content in different floral stages of G. jamesonii var. Dawn and evaluate the effect of preservative solutions during the postharvest storage of this species. For this purpose, it was quantified TSS, RS and NRS from the seven stages of gerbera stems ontogeny (E1, E2, E3, E4, E5, E6 and E7. The preservative solutions used were: T1 distilled water; T2 citric acid (100 mg L-1; T3 glucose (20 g L-1; T4 gibberellic acid (GA3 , 5 mg L-1; T5 calcium chloride (CaCl2 , 20g L-1 and T6 Sodium Thiosulphate (STS, 20 mM. The effect of preservative solutions were assessed daily, considering the longevity of flowers, variation in the absorption of preservative solution, pH of the solution and fresh mass variation. The experimental design was completely randomized with four replicates. There was a difference in carbohydrate metabolism during floral opening and senescence. In the orange bracts there was a lower TSS content, while in the inflorescences it was observed a reduction in the yellowish, greenish-green and greenish stages. The content of RS increased in the bracts, whereas in the inflorescence there was no difference. The NRS content was higher in the orange bracts, showing lower rates in the inflorescences in yellowish and yellowish greenish stages. The preservative solutions had an impact, on the floral stem longevity, varying according to the solutions used, i.e. CaCl2 and STS reduced the durability of gerbera flower in 9.25 and 11.5 days, respectively, compared to stems kept in distilled water. The glucose solution did not promote a significant difference compared to water. Therefore, we conclude that there is variation in the metabolism of non-structural

  7. Wind-Tunnel Evaluation of the Effect of Blade Nonstructural Mass Distribution on Helicopter Fixed-System Loads

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, Jr, William T.; Singleton, Jeffrey D.; Mirick, Paul H.; Wilkie, W K.

    1998-01-01

    This report provides data obtained during a wind-tunnel test conducted to investigate parametrically the effect of blade nonstructural mass on helicopter fixed-system vibratory loads. The data were obtained with aeroelastically scaled model rotor blades that allowed for the addition of concentrated nonstructural masses at multiple locations along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for 10 blade-mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each blade-mass configuration. This report provides the fixed-system forces and moments measured during testing. The comprehensive database obtained is well-suited for use in correlation and development of advanced rotorcraft analyses.

  8. Protein: MPA1 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA1 TLR signaling molecules Nlrp3 Cias1, Mmig1, Nalp3, Pypaf1 NACHT, LRR and PYD d...n-associated-inducible protein 1, PYRIN-containing APAF1-like protein 1 10090 Mus musculus 216799 Q8R4B8 Q8R4B8 20007575 ...

  9. Simulating past severe flood events to evaluate the effectiveness of nonstructural flood countermeasures in the upper Chao Phraya River Basin, Thailand

    Directory of Open Access Journals (Sweden)

    Sarawut Jamrussri

    2017-04-01

    Their effectiveness in the Upper Chao Phraya River Basin was quantitatively assessed by comparing the model results for the actual conditions with the scenario results. Results showed that the proposed nonstructural measures had considerable potential to reduce peak discharges and flood volumes in the Upper Chao Phraya River Basin. Integration of these proposed nonstructural flood countermeasures with the existing countermeasures in the Chao Phraya River Basin may be the most practical way to cope with the challenges of future flood disasters.

  10. [A novel pyridazino-fused ring system: synthesis of pyridazino[3,4-b]diazepam].

    Science.gov (United States)

    Károlyházy, L; Horváth, G; Mátyus, P

    2001-08-01

    As an analogue of pyridazino-fused ring systems with pharmacological activities, the novel pyridazinol[3,4-b][1,5]diazepine ring system was prepared. The synthetic pathway includes three steps from 4 5-(N-benzyl-N-3-hydroxypropyl)amino derivative which is easily available through nucleophilic substitution reaction of the known 4,5-dichloro-2-methyl-6-nitro-3(2H)-pyridazinone (2) with N-benzyl-N-(3-hydroxypropyl)amine. In the first step, compound 4 was treated with thionyl chloride to give the chloropropyl derivative 5. In the second step, a Bechamp reduction was carried out with Fe in acetic acid to obtain the amino compound 6, and finally the ring closure reaction of 6 was performed in N,N-dimethylformamide in the presence of potassium carbonate at 110 degrees C for 40 hours. In this way the bicyclic compound 7 could be isolated in 48% yield.

  11. A Comprehensive Evaluation of the Genetic Relatedness ofListeria monocytogenesSerotype 4b Variant Strains.

    Science.gov (United States)

    Burall, Laurel S; Grim, Christopher J; Mammel, Mark K; Datta, Atin R

    2017-01-01

    Recently, we have identified a link between four listeriosis incidents/outbreaks to a variant of Listeria monocytogenes (Lm) serotype 4b strains, 4bV. Although 4bV strains have been reported from clinical specimens as well as from foods, listeriosis outbreaks occurring in 2014-2016 were the first reported outbreaks involving 4bV in the USA. Since traditional typing methods do not detect members of this group, we undertook a systematic and retrospective analysis of all Lm in the NCBI WGS Sequence Read Archive database to investigate the burden of 4bV strains among all listeriosis cases. This analysis identified the presence of isolates causing sporadic cases as well as those associated with the aforementioned outbreaks, as determined by WGS and traditional epidemiology. In total, approximately 350 Lm 4bV strains were identified from multiple parts of the USA as well as from Australia and Chile, dating back to 2001. The genomic relatedness of these strains was compared using the CFSAN SNP Pipeline and multi-virulence-locus sequence typing (MVLST). Using the CFSAN Pipeline tool, the 4bV strains were found to group into seven clusters that were separate from 4b strains. All seven clades appeared to contain isolates from both clinical and non-clinical sources. Conversely, the MVLST analysis revealed that practically all of the strains belonged to a single clade, suggesting that 4bV strains from disparate geographic regions and sources are under varied selective pressure, restricting diversity across these six virulence loci while allowing more variability across the genome as a whole. Further evaluation of these 4bV strains identified genes potentially acquired from a lineage II source external to the lmo0733-lmo0739 region, as well as highly conserved SNPs unique to the 4bV strains when compared to those from other lineages. Taken together, these data suggest that 4bV strains have undergone adaptive responses to selective pressures that may enhance survival in the

  12. Ex-vivo expansion of nonhuman primate CD34+ cells by stem cell factor Sall4B

    Directory of Open Access Journals (Sweden)

    Bin Shen

    2016-10-01

    Full Text Available Abstract Background Hematopoietic CD34+ stem cells are widely used in the clinical therapy of complicated blood diseases. Stem cell factor Sall4B is a zinc finger transcription factor that plays a vital role in hematopoietic stem cell expansion. The purpose of our current study is to further evaluate how Sall4B might affect the expansion of CD34+ cells derived from nonhuman primates. Methods Sall4B was overexpressed in nonhuman primate bone marrow-derived CD34+ cells via a lentiviral transduction system. The granulocyte–erythrocyte–macrophage–megakaryocyte colony-forming unit (CFU assay evaluated the differentiation potential of primate CD34+ cells that were expanded with Sall4B. Furthermore, an in-vivo murine system was employed to evaluate the hematopoietic potential of primate Sall4B-expanded CD34+ cells. Results Overexpression of Sall4B promoted ex-vivo nonhuman primate CD34+ cell expansion by 9.21 ± 1.94-fold on day 9, whereas lentiviral transduction without Sall4B expanded cells by only 2.95 ± 0.77-fold. Sall4B maintained a significant percentage of CD34+ cells as well. The CFU assay showed that the Sall4B-expanded CD34+ cells still possessed multilineage differentiation potential. A study using nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice in vivo revealed that Sall4B led to an increase in the number of repopulating cells and the 9-day-old Sall4B-transduced CD34+ cells still possess self-renewal and multilineage differentiation capacity in vivo, which are similar stemness characteristics to those in freshly isolated primate bone marrow-derived CD34+ cells. Conclusions We investigated the expansion of nonhuman primate bone marrow-derived CD34+ cells using the Sall4B lentiviral overexpression approach; our findings provide a new perspective on mechanisms of rapid stem cell proliferation. The utilization of Sall4B to expand CD34+ cells on a large scale through use of suitable model systems would prove

  13. Functional, Structural and Non-Structural Preparedness of Ahvaz Health Centers Against Disasters in 2014 – 2015

    Directory of Open Access Journals (Sweden)

    Hatami

    2016-05-01

    Full Text Available Background Ahvaz metropolitan as an industrial pole and special geopolitical location is vulnerable to miscellaneous disasters. Public health centers are one of the most important units that should have necessary preparedness against disasters and crisis. Objectives The current study aimed to determine functional, structural and non-structural preparedness of public health centers against natural and manmade disasters at all levels, rural health houses, rural and urban health centers and the Iranian health centers. Materials and Methods The current descriptive cross-sectional study was carried out on about 47 rural health houses, rural and urban health centers and Iranian health centers of Ahvaz city (western and eastern regions. A checklist of Iran ministry of health, field observation and interview methods were used for data collection. Functional preparedness included crisis management framework, planning, insurance coverage, event management system, public services, education and manure. Non-structural preparedness was assessed in three levels as desirable, mid desirable and undesirable. Structural preparedness included instruments, structures and facilities of the health centers. All calculations were performed by excel software. Results Risk rate, functional, non-structural and structural preparedness and final safety level were 58.62%, 51.48%, 54.82%, 33.97%, and 43.72%, respectively. Conclusions According to the results, the Iranian public health centers preparedness against disasters before, during and after accidents were in safety level 4 from 10, which was undesirable.

  14. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    Science.gov (United States)

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  16. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  17. SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA Splicing

    Directory of Open Access Journals (Sweden)

    Linlin Chen

    2017-12-01

    Full Text Available Dysregulated alternative splicing events have been implicated in many types of cancer, but the underlying molecular mechanisms remain unclear. Here, we observe that the splicing factor SRSF1 regulates DBF4B exon6 splicing by specifically binding and promoting its inclusion. Knockdown of the exon6-containing isoform (DBF4B-FL significantly inhibits the tumorigenic potential of colon cancer cells in vitro and in mice, and SRSF1 inactivation phenocopies DBF4B-FL depletion. DBF4B-FL and SRSF1 are required for cancer cell proliferation and for the maintenance of genomic stability. Overexpression of DBF4B-FL can protect against DNA damage induced by SRSF1 knockdown and rescues growth defects in SRSF1-depleted cells. Increased DBF4B exon6 inclusion parallels SRSF1 upregulation in clinical colorectal cancer samples. Taken together, our findings identify SRSF1 as a key regulator of DBF4B pre-mRNA splicing dysregulation in colon cancer, with possible clinical implications as candidate prognostic factors in cancer patients.

  18. Therapeutic efficacy of pedicle screw-rod internal fixation after one-stage posterior transforaminal lesion debridement and non-structural bone grafting for tuberculosis of lumbar vertebra

    Directory of Open Access Journals (Sweden)

    Jia-ming LIU

    2015-11-01

    Full Text Available Objective To evaluate the efficacy and safety of pedicle screw-rod internal fixation after one-stage posterior transforaminal lesion debridement and non-structural bone grafting in the treatment of tuberculosis of mono-segmental lumbar vertebra. Methods From January 2010 to April 2013, 21 patients (9 males and 12 females with an average age of 49.1 years with mono-segmental tuberculosis of lumbar vertebra underwent surgery in our hospital were included. Eight patients had neurological deficit. The focus of tuberculosis was located on one side of the vertebral body, and all the patients had obvious signs of bone destruction on CT and MRI. All the patients were given anti-tuberculosis chemotherapy for 2-3 weeks before surgery. The local bone chips and autologous iliac cancellous bone were used as the intervertebral bone graft. Postoperative plain radiographs and CT were obtained to evaluate the fusion rate and degree of lumbar lordosis. The visual analogue scale score (VAS, erythrocyte sedimentation rate (ESR, and C-reactive protein (CRP before and after operation, and at final follow-up date were recorded. Results All the patients were followed up for 25.3±4.2 months. The mean operation time was 157±39 minutes, and the average blood loss was 470±143ml. The fusion rate of the interbody bone graft was 95.2%, with an average fusion period of 6.1±2.5 months. The neurological function was improved by 100%, and no severe complication or neurological injury occured. The preoperative and postoperative lordosis angles of the lumbar spine were 21.4°±5.7° and 33.6°±3.1°, respectively, and it was 31.3°±2.7° at the final follow up. The preoperative and postoperative VAS scores were 7.8±2.6 and 2.4±1.7 respectively, and it was 0.9±0.7 at the final follow up. The ESR and CRP were significantly decreased 3 months after surgery, and they became normal at 6 months. Conclusion Pedicle screw-rod internal fixation after one-stage posterior

  19. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes.

    Science.gov (United States)

    Falconar, Andrew K I; Romero-Vivas, Claudia M E

    2013-04-22

    Detection of dengue virus (DENV) soluble/excreted (s/e) form of the nonstructural-1 (NS1) glycoprotein in patient acute-phase sera is ideal for diagnosis. The commercially-available detection assays are, however, too expensive for routine use and have low specificity, particularly for the s/e NS1 glycoprotein of DENV-2 and DENV-4, which are important causes of lethal human disease worldwide. Mouse monoclonal antibodies (MAbs) were generated and screened against s/e NS1 glycoprotein purified from each DENV serotype to obtain those that reacted equally with each serotype, but not with yellow fever virus (YFV) s/e NS1 glycoprotein or human serum proteins. One MAb, MAb 2C4.6, was further tested against these DENV glycoproteins in human sera using simple, peroxidase-labelled secondary antibody/substrate-developed dot-blot assays. Optimal quenching of endogenous human serum peroxidases was attained using 3% H(2)O(2) in H(2)0 for 5 min. MAb 2C4.6 showed an acceptable detection sensitivity of simple, inexpensive (US$ 0.05/sample), robust, sensitive and relatively rapid assays, using improved MAbs such as MAb 2C4.6, should be ideal for the diagnosis of all DENV serotypes in DENV endemic regions.

  20. Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase

    Indian Academy of Sciences (India)

    Unknown

    Cell-culture, molecular cloning and associated nucleic acid and protein techniques were as per the standard ... designed to amplify 3′ end of each transcript. 2.1 Cloning, expression and generation of antibodies ..... Chen X, Zhang Y, Douglas L and Zhou P 2001 UV-damaged. DNA binding Proteins Are Targets of CUL-4A- ...

  1. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication

    NARCIS (Netherlands)

    Cleef, K.W.R. van; Overheul, G.J.; Thomassen, M.C.; Kaptein, S.J.; Davidson, A.D.; Jacobs, M.; Neyts, J.; Kuppeveld, F.J.M. van; Rij, R.P. van

    2013-01-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV

  2. Molecular analysis of the murine C4b-binding protein gene. Chromosome assignment and partial gene organization

    DEFF Research Database (Denmark)

    Barum, Scott B; Kristensen, Torsten; Chaplin, David D

    1989-01-01

    . Only the latter half of the second SCR was present on the clone, and it was encoded by a single exon, demonstrating that murine C4BP has a split SCR at the genomic level. Structural mapping of this portion of the gene demonstrates that the region extending from the second half of the second SCR through...

  3. In silico approach towards H5N1 virus protein and transcriptomics ...

    African Journals Online (AJOL)

    Arli Parikesit

    2013-05-22

    May 22, 2013 ... based and transcriptomics analyses are getting more important in this field. The trends towards the integration of both protein-based and transcriptomics for H5N1 analysis are indeed feasible. Key words: H5N1, protein-based, transcriptomics, siRNA, hemagglutinin (HA), matrix1 (M1), non-structural 1.

  4. Association study of PDE4B gene variants in Scandinavian schizophrenia and bipolar disorder multicenter case-control samples

    DEFF Research Database (Denmark)

    Kähler, Anna K; Otnæss, Mona K; Wirgenes, Katrine V

    2010-01-01

    The phosphodiesterase 4B (PDE4B), which is involved in cognitive function in animal models, is a candidate susceptibility gene for schizophrenia (SZ) and bipolar disorder (BP). Variations in PDE4B have previously been associated with SZ, with a suggested gender-specific effect. We have genotyped......SNPs were nominally associated (0.0005 gender-specific subgroups. None of these findings remained significant after correction for multiple testing. However, a number of tagSNPs found to be nominally associated with SZ and BP...... were located in a high LD region spanning the splice site of PDE4B3, an isoform with altered brain expression in BP patients. Four tagSNPs were associated with SZ in women, but none in men, in agreement with the previously reported gender-specific effect. Proxies of two nominally associated SNPs...

  5. Relationship between LAPTM4B Gene Polymorphism and Prognosis of Patients following Tumor Resection for Colorectal and Esophageal Cancers

    Science.gov (United States)

    Xing, Xiaofang; Du, Hong; Zhou, Chunlian; Zhang, Qingyun; Hao, Chunyi; Wen, Xianzi; Ji, Jiafu

    2016-01-01

    Background Lysosome-associated transmembrane-4 beta (LAPTM4B) is an oncogene that participates tumorgenesis in a variety of human solid tumors, and it has two alleles named as LAPTM4B*1 and *2. The present study aimed to identify the association of LAPTM4B genotype with clinicopathological features and prognosis in colorectal and esophageal cancer patients. Method Genotypes of LAPTM4B were determined by PCR in 167 colon cancer cases (72 patients in a discovery cohort and 95 patients in a testing cohort), 160 rectal cancer cases and 164 esophageal cancer cases. Association between the LAPTM4B gene polymorphism and clinicopathological variables was calculated by Chi-square test or Fisher’s exact test. Patient survival differences were calculated by the Kaplan-Meier method. Prognostic factors were determined with Log-rank test and Cox regression model. Results LAPTM4B *1/1 was more frequently detected in colon cancer patients with lymph node metastasis and TNM III+IV stages in total colon cancer (discovery + testing cohorts). LAPTM4B *2/2 decreased in recurrent patients in total colon cancer patients (P = 0.045). Kaplan-Meier survival curves and Log-rank test showed that LAPTM4B*1 was correlated with shorter overall survival (OS) in discovery and testing cohorts of colon cancer (P = 0.0254 and 0.0292, respectively), but not in rectal and esophageal cancer cases (P = 0.7669 and 0.9356, respectively). Multivariate analysis showed that LAPTM4B genotype was an independent prognostic factor for OS in total colon cancer [P = 0.004, hazard ratio (HR) = 0.432; 95% confidence interval (CI) = 0.243–0.768], but not in rectal and esophageal cancers (P = 0.791, HR = 1.073, 95% CI = 0.638–1.804 and 0.998, HR = 1.000, 95% CI = 0.663–1.530, respectively). Conclusion These findings suggested that LAPTM4B allele *1 was a risk factor associated with poor prognosis in patients with colon cancer, but not in patients with rectal or esophageal cancers. LAPTM4B genotype status might

  6. Relationship between LAPTM4B Gene Polymorphism and Prognosis of Patients following Tumor Resection for Colorectal and Esophageal Cancers.

    Directory of Open Access Journals (Sweden)

    Xiaojing Cheng

    Full Text Available Lysosome-associated transmembrane-4 beta (LAPTM4B is an oncogene that participates tumorgenesis in a variety of human solid tumors, and it has two alleles named as LAPTM4B*1 and *2. The present study aimed to identify the association of LAPTM4B genotype with clinicopathological features and prognosis in colorectal and esophageal cancer patients.Genotypes of LAPTM4B were determined by PCR in 167 colon cancer cases (72 patients in a discovery cohort and 95 patients in a testing cohort, 160 rectal cancer cases and 164 esophageal cancer cases. Association between the LAPTM4B gene polymorphism and clinicopathological variables was calculated by Chi-square test or Fisher's exact test. Patient survival differences were calculated by the Kaplan-Meier method. Prognostic factors were determined with Log-rank test and Cox regression model.LAPTM4B *1/1 was more frequently detected in colon cancer patients with lymph node metastasis and TNM III+IV stages in total colon cancer (discovery + testing cohorts. LAPTM4B *2/2 decreased in recurrent patients in total colon cancer patients (P = 0.045. Kaplan-Meier survival curves and Log-rank test showed that LAPTM4B*1 was correlated with shorter overall survival (OS in discovery and testing cohorts of colon cancer (P = 0.0254 and 0.0292, respectively, but not in rectal and esophageal cancer cases (P = 0.7669 and 0.9356, respectively. Multivariate analysis showed that LAPTM4B genotype was an independent prognostic factor for OS in total colon cancer [P = 0.004, hazard ratio (HR = 0.432; 95% confidence interval (CI = 0.243-0.768], but not in rectal and esophageal cancers (P = 0.791, HR = 1.073, 95% CI = 0.638-1.804 and 0.998, HR = 1.000, 95% CI = 0.663-1.530, respectively.These findings suggested that LAPTM4B allele *1 was a risk factor associated with poor prognosis in patients with colon cancer, but not in patients with rectal or esophageal cancers. LAPTM4B genotype status might be a useful prognostic indicator for

  7. Genetic Analysis of the Listeria Pathogenicity Island 1 of Listeria monocytogenes 1/2a and 4b Isolates.

    Science.gov (United States)

    Hadjilouka, Agni; Paramithiotis, Spiros; Drosinos, Eleftherios H

    2018-02-21

    The aim of the present study was to apply descriptive, phylogenetic, recombination, and selection analyses on alignments of the Listeria Pathogenicity Island 1 (LIPI-1) of 1/2a and 4b Listeria monocytogenes isolates of different origin in order to gain insights into the evolution of this virulence gene cluster. For that purpose, a total of 19 L. monocytogenes isolates (9 meat isolates, serotype 1/2a; 5 meat isolates, serotype 4b; 5 strawberry isolates, serotype 4b) that have been previously separated at strain level were subjected to sequencing of their LIPI-1. Descriptive analysis revealed extensive nucleotide diversity mostly in the intragenic regions. The actA gene of 1/2a and 4b meat isolates and the hly gene of the 4b strawberry isolates exhibited the higher diversity; limited diversity was observed in prfA and plcA genes of the 4b isolates and mpl gene of the 1/2a isolates. Phylogenetic analysis of the complete island resulted in two major clusters that were consistent with serotype assignment of the isolates. Moreover, effective discrimination between serotypes was obtained by plcA, plcB, mpl, actA and the intergenic regions plcA-prfA and plcA-hly. In all cases but plcB and plcA-prfA 4b isolates were also differentiated according to their source of isolation as well. Selection analysis revealed that the island consisted of randomly evolving DNA with the exception of prfA gene of 1/2a isolates and actA gene of 4b meat isolates for which purifying selection or population expansion was indicated. Finally, no statistically significant evidence for recombination has been observed.

  8. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B

    International Nuclear Information System (INIS)

    Hernandez, Antonio Carlos

    2002-01-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN T = 1,35x10 8 n/cm , a fast neutron dose of 5,86x10 -10 Gy/N T and a gamma ray dose of 8,30x10 -14 Gy/N T . (author)

  9. Spectroscopic Remote Sensing of Non-Structural Carbohydrates in Forest Canopies

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2015-03-01

    Full Text Available Non-structural carbohydrates (NSC are products of photosynthesis, and leaf NSC concentration may be a prognostic indicator of climate-change tolerance in woody plants. However, measurement of leaf NSC is prohibitively labor intensive, especially in tropical forests, where foliage is difficult to access and where NSC concentrations vary enormously by species and across environments. Imaging spectroscopy may allow quantitative mapping of leaf NSC, but this possibility remains unproven. We tested the accuracy of NSC remote sensing at leaf, canopy and stand levels using visible-to-shortwave infrared (VSWIR spectroscopy with partial least squares regression (PLSR techniques. Leaf-level analyses demonstrated the high precision (R2 = 0.69–0.73 and accuracy (%RMSE = 13%–14% of NSC estimates in 6136 live samples taken from 4222 forest canopy species worldwide. The leaf spectral data were combined with a radiative transfer model to simulate the role of canopy structural variability, which led to a reduction in the precision and accuracy of leaf NSC estimation (R2 = 0.56; %RMSE = 16%. Application of the approach to 79 one-hectare plots in Amazonia using the Carnegie Airborne Observatory VSWIR spectrometer indicated the good precision and accuracy of leaf NSC estimates at the forest stand level (R2 = 0.49; %RMSE = 9.1%. Spectral analyses indicated strong contributions of the shortwave-IR (1300–2500 nm region to leaf NSC determination at all scales. We conclude that leaf NSC can be remotely sensed, opening doors to monitoring forest canopy physiological responses to environmental stress and climate change.

  10. The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds.

    Science.gov (United States)

    Rosnoblet, Claire; Aubry, Catherine; Leprince, Olivier; Vu, Benoit Ly; Rogniaux, Hélène; Buitink, Julia

    2007-07-01

    The sucrose non-fermenting-related kinase complex (SnRK1) is a heterotrimeric complex that plays a central role in metabolic adaptation to nutritional or environmental stresses. Here we investigate the role of a regulatory gamma-subunit of the complex, MtSNF4b, in Medicago truncatula seeds. Western blot indicated that MtSNF4b accumulated during seed filling, whereas it disappeared during imbibition of mature seeds. Gel filtration chromatography suggested that MtSNF4b assembled into a complex (450-600 kDa) at the onset of maturation drying, and dissociated during subsequent imbibition. Drying of desiccation-tolerant radicles led to a reassembly of the complex, in contrast to sensitive tissues. Silencing of MtSNF4b using a RNA interference (RNAi) approach resulted in a phenotype with reduced seed longevity, evident from the reduction in both germination percentage and seedling vigour in aged RNAi MtSNF4b seeds compared with the wild-type seeds. In parallel to the assembly of the complex, seeds of the RNAi MtSNF4b lines showed impaired accumulation of raffinose family oligosaccharides compared with control seeds. In mature seeds, the amount of stachyose was reduced by 50-80%, whereas the sucrose content was 60% higher. During imbibition, the differences in non-reducing sugar compared with the control disappeared in parallel to the disassembly of the complex. No difference was observed in dry weight or reserve accumulation such as proteins, lipids and starch. These data suggest that the regulatory gamma-subunit MtSNF4b confers a specific and temporal function to SnRK1 complexes in seeds, improving seed longevity and affecting the non-reducing sugar content at later stages of seed maturation.

  11. West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion.

    Science.gov (United States)

    Ambrose, Rebecca L; Mackenzie, Jason M

    2011-03-01

    For intracellular survival it is imperative that viruses have the capacity to manipulate various cellular responses, including metabolic and biosynthetic pathways. The unfolded protein response (UPR) is induced by various external and internal stimuli, including the accumulation of misfolded proteins in the endoplasmic reticulum (ER). Our previous studies have indicated that the replication and assembly of the flavivirus West Nile virus strain Kunjin virus (WNV(KUN)) is intimately associated with the ER. Thus, we sought to determine whether the UPR was induced during WNV(KUN) infection. WNV(KUN) induces UPR signaling during replication, which is coordinated with peak replication. Interestingly, signaling is biased toward the ATF6/IRE-1 arm of the response, with high levels of Xbp-1 activation but negligible eukaryotic translation initiation factor 2α phosphorylation and downstream transcription. We show that the PERK-mediated response may partially regulate replication, since external UPR stimulation had a limiting effect on early replication events and cells deficient for PERK demonstrated increased replication and virus release. Significantly, we show that the WNV(KUN) hydrophobic nonstructural proteins NS4A and NS4B are potent inducers of the UPR, which displayed a high correlation in inhibiting Jak-STAT signaling in response to alpha interferon (IFN-α). Sequential removal of the transmembrane domains of NS4A showed that reducing hydrophobicity decreased UPR signaling and restored IFN-α-mediated activation. Overall, these results suggest that WNV(KUN) can stimulate the UPR to facilitate replication and that the induction of a general ER stress response, regulated by hydrophobic WNV(KUN) proteins, can potentiate the inhibition of the antiviral signaling pathway.

  12. Efficacy of double-stranded RNA against white spot syndrome virus (WSSV non-structural (orf89, wsv191 and structural (vp28, vp26 genes in the Pacific white shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    César M. Escobedo-Bonilla

    2015-04-01

    Full Text Available White spot syndrome virus (WSSV is a major pathogen in shrimp aquaculture. RNA interference (RNAi is a promising tool against viral infections. Previous works with RNAi showed different antiviral efficacies depending on the silenced gene. This work evaluated the antiviral efficacy of double-stranded (ds RNA against two non-structural (orf89, wsv191 WSSV genes compared to structural (vp26, vp28 genes to inhibit an experimental WSSV infection. Gene orf89 encodes a putative regulatory protein and gene white spot virus (wsv191 encodes a nonspecific nuclease; whereas genes vp26 and vp28 encode envelope proteins, respectively. Molecules of dsRNA against each of the WSSV genes were intramuscularly injected (4 μg per shrimp into a group of shrimp 48 h before a WSSV challenge. The highest antiviral activity occurred with dsRNA against orf89, vp28 and vp26 (cumulative mortalities 10%, 10% and 21%, respectively. In contrast, the least effective treatment was wsv191 dsRNA (cumulative mortality 83%. All dead animals were WSSV-positive by one-step PCR, whereas reverse-transcription PCR of all surviving shrimp confirmed inhibition of virus replication. This study showed that dsRNA against WSSV genes orf89, vp28 and vp26 were highly effective to inhibit virus replication and suggest an essential role in WSSV infection. Non-structural WSSV genes such as orf89 can be used as novel targets to design therapeutic RNAi molecules against WSSV infection.

  13. Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna S Nagy

    Full Text Available IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK1-3/and Signal Transducer and Activator of Transcription (STAT 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B (commonly referred to as STAT5 which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT(2PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases.

  14. Newly isolated Penicillium oxalicum A592-4B secretes enzymes that degrade milled rice straw with high efficiency.

    Science.gov (United States)

    Aoyama, Akihisa; Kurane, Ryuichiro; Matsuura, Akira; Nagai, Kazuo

    2015-01-01

    An enzyme producing micro-organism, which can directly saccharify rice straw that has only been crushed without undergoing the current acid or alkaline pretreatment, was found. From the homology with the ITS, 28S rDNA sequence, the strain named A592-4B was identified as Penicillium oxalicum. Activities of the A592-4B enzymes and commercial enzyme preparations were compared by Novozymes Cellic CTec2 and Genencore GC220. In the present experimental condition, activity of A592-4B enzymes was 2.6 times higher than that of CTec2 for degrading milled rice straw. Furthermore, even when a quarter amount of A592-4B enzyme was applied to the rice straw, the conversion rate was still higher than that by CTec2. By utilizing A592-4B enzymes, improved lignocellulose degradation yields can be achieved without pre-treatment of the substrates; thus, contributing to cost reduction as well as reducing environmental burden.

  15. FcRL4(+) B-cells in salivary glands of primary Sjogren's syndrome patients

    NARCIS (Netherlands)

    Haacke, Erlin A.; Bootsma, Hendrika; Spijkervet, Fred K. L.; Visser, Annie; Vissink, Arjan; Kluin, Philip M.; Kroese, Frans G. M.

    Fc receptor-like protein 4 (FcRL4) is normally expressed on a small subset of mucosa-associated B-cells, as well as on mucosa-associated lymphoid tissue (MALT) lymphoma B-cells. Primary Sjogren's syndrome (pSS) patients have an increased risk of developing MALT lymphomas, preferentially in the

  16. Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Introduction. Wingless-type MMTV integration site family member. (Wnt) signalling is one of the important signal transduction pathways regulating several events during growth and development, and is also implicated in a variety of cancers. (reviewed in Polakis 1997). Stabilization of β-catenin, a highly oncogenic protein, is ...

  17. Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase

    Indian Academy of Sciences (India)

    Unknown

    Mintz B, Chin L and Jaenisch R 2004 Nuclear cloning of embryonal carcinoma cells; Proc. Natl. Acad. Sci. USA 101. 13985–13990. Bisht K S, Revathi C J and Srinivas U K 1994 Differentiation of mouse embryonal carcinoma cells PCC4 by heat shock and the kinetics of induction of heat shock proteins; Indian. J. Biochem.

  18. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat

    Science.gov (United States)

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice. PMID:29491869

  19. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq in Wheat

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2018-02-01

    disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family. The markers developed in the present study facilitate identification of Pm4b during its MAS practice.

  20. Alterations of INPP4B, PIK3CA and pAkt of the PI3K pathway are associated with squamous cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Stjernström, Annika; Karlsson, Christina; Fernandez, Oswaldo J; Söderkvist, Peter; Karlsson, Mats G; Thunell, Lena K

    2014-01-01

    The aim of the study was to investigate how alterations in the PI3K pathway correlate with non-small cell lung cancer subtypes squamous cell carcinoma (SSC) and adenocarcinoma (ADCA). We analyzed copy number variation and protein expression of INPP4B, protein expression of pAkt, PDPK1, and PTEN and mutational status of PIK3CA and PTEN in 180 cases. Nineteen% displayed loss of INPP4B copy, whereas 47% lacked expression, both showing correlation with SCC. Elevated pAkt expression was seen in 63% of all cases, also correlating to SCC. PDPK1 was expressed in 70%, more in male than female patients. Regarding PTEN, 50% displayed loss of expression, of which seven were identified with mutations in the phosphatase domain. We detected nine cases (5%) of PIK3CA mutations, all identified as the E545K hot spot mutation in the helical domain, all except one in SCC. When analyzing all PI3K pathway components together, we show that patients with at least one alteration in the PI3K pathway are twice as likely to have SCC, than ADCA. Interestingly, we also found a strong correlation between high pAkt expression and PTEN expression. As comparison, we also analyzed mitogen-activated protein kinase (MAPK) pathway genes, where we identified fifteen KRAS mutations (8%) and one BRAF mutation (1%), significantly associated to ADCA. No association was found to the Gly972Arg polymorphism of IRS-1, involved in activation of both PI3K and MAPK pathways. In conclusion, we show here that several components of the PI3K pathway, alone and in combination, are correlated to development of SCC of the lung

  1. Subcellular localization of Aleutian mink disease parvovirus proteins and DNA during permissive infection of Crandell feline kidney cells

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Costello, F.; Huhtanen, M.

    1996-01-01

    Confocal microscopy allowed us to localize viral nonstructural (NS) and capsid (VP) proteins and DNA simultaneously in cells permissively infected with Aleutian mink disease parvovirus (ADV). Early after infection, NS proteins colocalized with viral DNA to form intranuclear inclusions, whereas VP...

  2. Transcriptional analysis and molecular dynamics simulations reveal the mechanism of toxic metals removal and efflux pumps in Lysinibacillus sphaericus OT4b.31

    KAUST Repository

    Shaw, Dario Rangel

    2017-11-23

    Lysinibacillus sphaericus strain OT4b.31 is a bacterium widely applied in bioremediation processes of hydrocarbon and metal polluted environments. In this study, we identified the molecular mechanism underlying the Pb2+ and Cr6+ resistance. Metal uptake and temporal transcription patterns of metal resistance operons were evaluated using reverse-transcribed quantitative PCR amplification. The function of the resistance determinants was studied applying docking and in silico mutagenesis methods. The results revealed that the adaptation of Lysinibacillus sphaericus OT4b.31 to elevated levels of lead and chromium involves the pbr and chr operons which comprise a transcriptional regulatory component (pbrR and chrB) and efflux ATPases (pbrA and chrA) to expel ions from the cytoplasm. Expression of metal resistance genes was constitutive and specifically inducible to the exposure of Pb2+ and Cr6+. The simultaneous presence of cations didn\\'t affect the bioaccumulation of metals, evidencing the multimetal resistance of L. sphaericus. Docking analysis revealed the key metal-protein interactions and the conformational changes after metal or ATP binding. Results showed that residues with aromatic rings or imidazole in the catalytic domain are crucial for metal binding and achievement of the function. To our knowledge, this is the first report of a specific mechanism for lead and chromium resistance in Lysinibacillus genus. From the findings of this study, it is possible to suggest the bacterium as a suitable candidate for rapid toxic metals bioremediation processes.

  3. The Development of a Degree 360 Expansion of the Dynamic Ocean Topography of the POCM_4B Global Circulation Model

    Science.gov (United States)

    Rapp, Richard H.

    1998-01-01

    This paper documents the development of a degree 360 expansion of the dynamic ocean topography (DOT) of the POCM_4B ocean circulation model. The principles and software used that led to the final model are described. A key principle was the development of interpolated DOT values into land areas to avoid discontinuities at or near the land/ocean interface. The power spectrum of the POCM_4B is also presented with comparisons made between orthonormal (ON) and spherical harmonic magnitudes to degree 24. A merged file of ON and SH computed degree variances is proposed for applications where the DOT power spectrum from low to high (360) degrees is needed.

  4. Escape Mutations in NS4B Render Dengue Virus Insensitive to the Antiviral Activity of the Paracetamol Metabolite AM404.

    Science.gov (United States)

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Marjakangas, Jenni M; van Rij, Ronald P

    2016-04-01

    Despite the enormous disease burden associated with dengue virus infections, a licensed antiviral drug is lacking. Here, we show that the paracetamol (acetaminophen) metabolite AM404 inhibits dengue virus replication. Moreover, we find that mutations in NS4B that were previously found to confer resistance to the antiviral compounds NITD-618 and SDM25N also render dengue virus insensitive to AM404. Our work provides further support for NS4B as a direct or indirect target for antiviral drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Substitutes of structural and non-structural autologous bone grafts in hindfoot arthrodeses and osteotomies: a systematic review.

    Science.gov (United States)

    Müller, Marc Andreas; Frank, Alexander; Briel, Matthias; Valderrabano, Victor; Vavken, Patrick; Entezari, Vahid; Mehrkens, Arne

    2013-02-07

    Structural and non-structural substitutes of autologous bone grafts are frequently used in hindfoot arthrodeses and osteotomies. However, their efficacy is unclear.The primary goal of this systematic review was to compare autologous bone grafts with structural and non-structural substitutes regarding the odds of union in hindfoot arthrodeses and osteotomies. The Medline and EMBASE and Cochrane databases were searched for relevant randomized and non-randomized prospective studies as well as retrospective comparative chart reviews. 10 studies which comprised 928 hindfoot arthrodeses and osteotomies met the inclusion criteria for this systematic review. The quality of the retrieved studies was low due to small samples sizes and confounding variables. The pooled random effect odds for union were 12.8 (95% CI 12.7 to 12.9) for structural allografts, 5.7 (95% CI 5.5 to 6.0) for cortical autologous grafts, 7.3 (95% CI 6.0 to 8.6) for cancellous allografts and 6.0 (95% CI 5.7 to 6.4) for cancellous autologous grafts. In individual studies, the odds of union in hindfoot arthrodeses achieved with cancellous autologous grafts was similar to those achieved with demineralised bone matrix or platelet derived growth factor augmented ceramic granules. Our results suggest an equivalent incorporation of structural allografts as compared to autologous grafts in hindfoot arthrodeses and osteotomies. There is a need for prospective randomized trials to further clarify the role of substitutes of autologous bone grafts in hindfoot surgery.

  6. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    Directory of Open Access Journals (Sweden)

    L. Campo

    2013-05-01

    Full Text Available The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS to predict non-structural carbohydrates (NSC, water soluble carbohydrates (WSC, in vitro organic dry matter digestibility (IVOMD, organic matter (OM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. Four hundred and fifty samples of wide spectrum from different origin were selected out of 3000 scanned for the calibration set, whereas 87 independent random samples were used in the external validation. The goodness of the calibration models was evaluated using the following statistics: coefficient of determination (R2, standard error of cross-validation (SECV, standard error of prediction for external validation (SEP and the RPDCV and RPDP indexes [ratios of standard deviation (SD of reference analysis data to SECV and SEP, respectively]. The smaller the SECV and SEP and the greater the RPDCV and RPDP, the predictions are better. Trait measurement units were g/100g of dry matter (DM, except for IVOMD (g/100g OM. The SECV and RPDCV statistics of the calibration set were 1.34 and 3.2 for WSC, 2.57 and 3 for NSC and 2.3 and 2.2 for IVOMD, respectively. The SEP and RPDP statistics for external validation were 0.74 and 4.7 for WSC, 2.14 and 2.5 for NSC and 1.68 and 1.6 for IVOMD respectively. It can be concluded that the NIRS technique can be used to predict WSC and NSC with good accuracy, whereas prediction of IVOMD showed a lesser accuracy. NIRS predictions of OM, CP, NDF, ADF and starch also showed good accuracy.

  7. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  8. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    International Nuclear Information System (INIS)

    Min, Joong Won; Kim, Kwang Il; Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul; Jeon, Hong Bae; Cho, Dong-Hyung; Oh, Jeong Su; Park, In-Chul; Hwang, Sang-Gu; Kim, Jae-Sung

    2013-01-01

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells

  9. 75 FR 71145 - San Joaquin River Restoration Program: Reach 4B, Eastside Bypass, and Mariposa Bypass Channel and...

    Science.gov (United States)

    2010-11-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation San Joaquin River Restoration Program: Reach 4B... Improvements Project under the San Joaquin River Restoration Program. The original notice of intent was... the San Joaquin River Restoration Settlement (SJRRS) Act. Construction of the Proposed Action is...

  10. The mixed-valence state of Ce in the hexagonal CeNi sub 4 B compound

    CERN Document Server

    Tolinski, T; Pugaczowa-Michalska, M; Chelkowska, G

    2003-01-01

    Measurements of the magnetic susceptibility chi, x-ray photoemission spectra (XPS), electrical resistivity rho and electronic structure calculations for CeNi sub 4 B are reported. In the paramagnetic region, CeNi sub 4 B follows the Curie-Weiss law with mu sub e sub f sub f = 0.52 mu sub B /fu and theta -10.7 K. The effective magnetic moment is lower than the free Ce sup 3 sup + -ion value. The Ce(3d) XPS spectra have confirmed the mixed-valence state of Ce ions in CeNi sub 4 B. The f occupancy, n sub f , and the coupling DELTA between the f level and the conduction states were derived to be about 0.83 and 85 meV, respectively. Both susceptibility data and XPS spectra show that Ce ions in CeNi sub 4 B are in the intermediate-valence state. At low temperatures (below 12 K), the magnetic contribution to the electrical resistivity reveals a logarithmic slope characteristic of Kondo-like systems.

  11. Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients

    Science.gov (United States)

    In Listeria monocytogenes serotype 4b from sporadic listeriosis, heavy metal resistance was primarily encountered in certain clonal groups (ECI, ECII, ECIa). All arsenic-resistant isolates harbored the arsenic resistance cassette previously identified in pLI100; ECIa harbored additional arsenic resi...

  12. Listeria monocytogenes source distribution analysis indicates regional heterogeneity and ecological niche preference among serotype 4b clones

    Science.gov (United States)

    Human illness due to the foodborne bacterial pathogen Listeria monocytogenes frequently involves certain widely disseminated clonal complexes (CCs), primarily of serotype 4b. CC1, CC2 and CC6, previously also designated epidemic clone (EC) I, Ia and II, respectively, have been frequently implicate...

  13. Duration of Acute and Chronic Toxicity Testing in Animals (ICH S4A and S4B)

    DEFF Research Database (Denmark)

    Spindler, Per; Van Cauteren, Herman

    2013-01-01

    To support approval of pharmaceuticals for long term use in humans it is required that product safety is supported by acute and chronic toxicity studies in rodents and non-rodents. The duration of acute toxicity studies (S4A) and chronic rodent studies (S4B) were harmonised between the three ICH ...

  14. Occurrence of Optic Neuritis and Cervical Cord Schwannoma with Charcot-Marie-Tooth Type 4B1 Disease

    Directory of Open Access Journals (Sweden)

    Patrick Scott

    2016-05-01

    Full Text Available Charcot-Marie-Tooth neuropathy type 4B1 (CMT4B1 disease is a rare subtype of CMT4 with reported association of facial weakness, vocal cord paresis, chest deformities, and claw hands. We report the unusual occurrence of optic neuritis and cervical cord schwannoma in a male individual with confirmed CMT4B1 disease. Sequencing of the MTMR2 gene revealed a novel nonsense homozygous mutation c.1768C>T (p.Gln590*. The mutation was identified in affected relatives of the proband and a second, apparently unrelated, family. The rare association of optic neuritis or schwannoma with genetically confirmed CMT1A has been individually observed, but never with recessive CMT. To the best of our knowledge, the occurrence of optic neuritis and cervical cord schwannoma in the same patient has never been reported with any form of CMT including CMT4B1. In similar cases, we recommend immediate medical attention to rule out the possibility of schwannomas in patients with all demyelinating CMT subtypes in case of the development of focal neurological signs or acute worsening of clinical status.

  15. Porcine reproductive and respiratory syndrome virus nonstructural protein 2 (nsp2) topology and selective isoform integration in artificial membranes

    Science.gov (United States)

    Membrane modification of host subcellular compartments is critical to the replication of many RNA viruses. Enveloped viruses additionally require the ability to requisition cellular membranes during egress for the development of infectious progeny. Porcine reproductive and respiratory syndrome virus...

  16. Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production

    Directory of Open Access Journals (Sweden)

    Kidong Son

    2017-07-01

    Full Text Available Hepatitis C virus (HCV is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV.

  17. Synthesis, characterization, antimicrobial and enzymatic activity of 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione

    Science.gov (United States)

    Mehdi, Sayed Hasan; Hashim, Rokiah; Ghalib, Raza Murad; Fátima C. Guedes da Silva, M.; Sulaiman, Othman; Rahman, Syed Ziaur; Murugaiyah, Vikneswaran; Marimuthu, Mani Maran

    2011-12-01

    The crystal structure of the title compound, 4b,9b-dihydroxy-7,8-dihydro-4bH-indeno[1,2-b]benzofuran-9,10(6H,9bH)-dione has been determined by single crystal X-ray diffraction. It crystallizes in the monoclinic space group P2 1/c with Z = 4. The FTIR as well as the 1H and 13C NMR spectra of the compound were also recorded and briefly discussed. The compound showed potential antimicrobial activity comparable to that of clinically used antimicrobial agents against selected microorganisms. It has selective and moderate inhibitory activity on butyryl cholinesterase enzyme and could serve as potential lead compound for synthesis of more bioactive derivatives.

  18. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients

    Science.gov (United States)

    Lahner, Edith; Brigatti, Cristina; Marzinotto, Ilaria; Carabotti, Marilia; Scalese, Giulia; Davidson, Howard W; Wenzlau, Janet M; Bosi, Emanuele; Piemonti, Lorenzo; Annibale, Bruno; Lampasona, Vito

    2017-01-01

    Objectives: Circulating autoantibodies targeting the H+/K+-ATPase proton pump of gastric parietal cells are considered markers of autoimmune gastritis, whose diagnostic accuracy in atrophic body gastritis, the pathological lesion of autoimmune gastritis, remains unknown. This study aimed to assess autoantibodies against ATP4A and ATP4B subunits of parietal cells H+, K+-ATPase in atrophic body gastritis patients and controls. Methods: One-hundred and four cases with atrophic body gastritis and 205 controls were assessed for serological autoantibodies specific for ATP4A or ATP4B subunits using luminescent immunoprecipitation system (LIPS). Recombinant luciferase-reporter-fused-antigens were expressed by in vitro transcription-translation (ATP4A) or after transfection in Expi293F cells (ATP4B), incubated with test sera, and immune complexes recovered using protein-A-sepharose. LIPS assays were compared with a commercial enzyme immunoassay (EIA) for parietal cell autoantibodies. Results: ATP4A and ATP4B autoantibody titers were higher in cases compared to controls (Pgastritis. Both assays had the highest sensitivity, at the cost of diagnostic accuracy (89 and 90% specificity), outperforming traditional EIA. Once validated, these LIPS assays should be valuable screening tools for detecting biomarkers of damaged atrophic oxyntic mucosa. PMID:28102858

  19. Effects of structured versus non-structured learning on achievement and attitudes of fifth graders in a public aquarium

    Science.gov (United States)

    Kafka, Merryl Audrey

    The investigator analyzed the main effect of a structured-learning experience in an informal setting, as well as interactions between the students' learning-style variations toward the element of structure and the imposed instructional conditions. The subjects consisted of 170 students enrolled in two public schools located in Brooklyn, New York. The students were predominantly a White multi-ethnic population consisting of 118 Caucasians, 25 Hispanics, 24 Asians, and 3 African-Americans. Three randomly assigned classes (n = 81) were provided trip sheets, which directed students on how to learn new information with written questions and directives. Three randomly assigned non-structured classes (n = 89) experienced the same exhibit in a free-form manner. Science-based criterion-referenced pre- and posttests were administered, in addition to Learning Style Inventories (Dunn, Dunn, & Price, 1996) and a modified Semantic Differential Scale (Pizzo, 1981), which was used to measure attitudinal levels. The non-structured group had access to similar content information in the form of exhibit graphics, but apparently they chose not to read it as carefully or engage in the information-seeking process as intensely as the students equipped with trip sheets. Analysis of covariance (ANCOVA) indicated that a structured-learning experience produced significantly higher science-achievement test scores than in a non-structured-learning experience (p = .0001). In addition, there was no single learning-style variation (preference, aversion, or no preference) to structure that produced significantly higher gains than another. Furthermore, attitudinal scores were not significantly different between structured and non-structured groups, as well as among homogeneous subsets of students with learning-style variations that matched, mismatched, or indicated no-preferenced positions on the element of structure. Hence, a moderate amount of structure resulted in academic gains without

  20. Production performance and milk fatty acids profile in grazing dairy cows offered ground corn or liquid molasses as the sole supplemental nonstructural carbohydrate source

    Science.gov (United States)

    The objective of this study was to compare the effects of corn meal or liquid molasses fed as the sole supplemental nonstructural carbohydrate source on milk yield and composition, milk fatty acids, and N use efficiency in grazing dairy cows. Ten multiparous organically-certified Jersey cows averagi...

  1. Low Non-structured Antiretroviral Therapy Interruptions in HIV-Infected Persons Who Inject Drugs Receiving Multidisciplinary Comprehensive HIV Care at an Outpatient Drug Abuse Treatment Center.

    Science.gov (United States)

    Vallecillo, Gabriel; Mojal, Sergio; Roquer, Albert; Samos, Pilar; Luque, Sonia; Martinez, Diana; Martires, Paula Karen; Torrens, Marta

    2016-05-01

    Continuous HIV treatment is necessary to ensure successful combined antiretroviral therapy (cART). The aim of this study was to evaluate the incidence of patient-initiated non-structured treatment interruptions in HIV-infected persons who inject drugs and who received a multidisciplinary comprehensive program, including medical HIV care, drug-dependence treatment and psychosocial support, at a drug outpatient addiction center. Non-structured treatment interruptions were defined as ≥30 consecutive days off cART without medical indication. During a median follow-up of 53.8 months, 37/132 (28 %) patients experienced the first non-structured treatment interruptions. The cumulative probability of cART interruption at 5 years was 31.2 % (95 % CI 22.4-40.0). Current drug use injection ≥1/day (HR 14.77; 95 % CI 5.90-36.96) and cART naive patients (HR 0.35, 95 % CI 0.14-0.93) were predictive factors for non-structured treatment interruptions. HIV care provided at a drug addiction center is a useful strategy to sustain continuous cART, however, drug abstinence is essential for the long-term maintenance of cART.

  2. INPP4B reverses docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiwen; Li, Hongliang, E-mail: honglianglity@sina.com; Chen, Qi

    2016-08-26

    Docetaxel efficiency in the therapy of prostate cancer (PCa) patients is limited due to the development of chemoresistance. Recent studies have implied a role of INPP4B in tumor chemoresistance, while the effects of INPP4B on docetaxel resistance in PCa have not been elucidated. In the present study, the docetaxel-resistant human PCa cell lines PC3-DR and DU-145-DR were established from the parental cell lines PC3 and DU-145, and the expression and role of INPP4B in docetaxel-resistant PCa cells were investigated. The results demonstrated that INPP4B expression was significantly downregulated in docetaxel-resistant cells. Overexpression of INPP4B increased the sensitivity to docetaxel and promoted cell apoptosis in PC3-DR and DU-145-DR cells. In addition, INPP4B overexpression downregulated the expression of the mesenchymal markers fibronectin, N-cadherin, and vimentin, and upregulated the expression level of the epithelial maker E-cadherin. Furthermore, INPP4B overexpression markedly inhibited the PI3K/Akt pathway. We also found that IGF-1, the inhibitor of PI3K/Akt, markedly blocked the change in EMT markers induced by overexpression of INPP4B, and reversed the resistance of PC3-DR and DU-145-DR cells to docetaxel, which is sensitized by Flag-INPP4B. In summary, the presented data indicate that INPP4B is crucial for docetaxel-resistant PCa cell survival, potentially by regulating EMT through the PI3K/Akt signaling pathway. - Highlights: • INPP4B is downregulated in docetaxel-resistant PCa cells. • INPP4B inhibits cell proliferation. • INPP4B induces cell apoptosis. • INPP4B inhibits PCa cell EMT.

  3. Evidence of a New Current-Induced Magnetoelectric Effect in a Toroidal Magnetic Ordered State of UNi4B

    Science.gov (United States)

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-03-01

    Magnetization measurements under direct electric current were performed in a toroidal magnetic ordered state of UNi4B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local-inversion symmetry. We found that electric current parallel to [2\\bar{1}\\bar{1}0] and [0001] in the hexagonal 4-index notation induces a uniform magnetization along the [01\\bar{1}0] direction. The observed behavior of the induced magnetization is essentially consistent with the theoretical prediction; however, it also shows an inconsistency suggesting that the antiferromagnetic state of UNi4B could not be simply regarded as a uniform toroidal order in the ideal honeycomb layered structure.

  4. Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b

    International Nuclear Information System (INIS)

    Huitson, C. M.; Désert, J.-M.; Bean, J. L.; Fortney, J. J.; Stevenson, K. B.; Bergmann, M.

    2017-01-01

    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440 to 940 nm at R  ∼ 400–1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to its large scale height (370 km). We derive the transmission spectrum of WASP-4b using four transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain sizes of ∼1  μ m. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time-dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.

  5. Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the Hot Jupiter WASP-4b

    Energy Technology Data Exchange (ETDEWEB)

    Huitson, C. M. [CASA, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Désert, J.-M. [API, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Bean, J. L. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fortney, J. J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Stevenson, K. B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bergmann, M., E-mail: catherine.huitson@colorado.edu [NOAO and Gemini Observatory, present address Palo Alto, CA (United States)

    2017-09-01

    We present the complete optical transmission spectrum of the hot Jupiter WASP-4b from 440 to 940 nm at R  ∼ 400–1500 obtained with the Gemini Multi-Object Spectrometers (GMOS); this is the first result from a comparative exoplanetology survey program of close-in gas giants conducted with GMOS. WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in transmission due to its large scale height (370 km). We derive the transmission spectrum of WASP-4b using four transits observed with the MOS technique. We demonstrate repeatable results across multiple epochs with GMOS, and derive a combined transmission spectrum at a precision about twice above photon noise, which is roughly equal to one atmospheric scale height. The transmission spectrum is well fitted with a uniform opacity as a function of wavelength. The uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest that the atmosphere is dominated by clouds with condensate grain sizes of ∼1  μ m. This result is consistent with previous observations of hot Jupiters since clouds have been seen in planets with similar equilibrium temperatures to WASP-4b. We describe a custom pipeline that we have written to reduce GMOS time-series data of exoplanet transits, and present a thorough analysis of the dominant noise sources in GMOS, which primarily consist of wavelength- and time-dependent displacements of the spectra on the detector, mainly due to a lack of atmospheric dispersion correction.

  6. Seasonality of nitrogen partitioning (non-structural vs structural) in the leaves and woody tissues of tropical eucalypts experiencing a marked dry season.

    Science.gov (United States)

    Gérant, Dominique; Pluchon, Morgane; Mareschal, Louis; Koutika, Lydie Stella; Epron, Daniel

    2017-06-01

    Numerous studies have shown that internal nitrogen (N) translocation in temperate tree species is governed by photoperiod duration and temperature. For tropical tree species, the seasonality of rainfall is known to affect growth and foliage production, suggesting that efficient internal N recycling also occurs throughout the year. We tested this hypothesis by comparing the N budgets and N partitioning (non-structural vs structural N) in the different organs of 7-year-old Eucalyptus urophylla (S.T. Blake) × E. grandis (W. Hill ex Maiden) trees from a plantation in coastal Congo on poor sandy soil. The trees were sampled at the end of the dry season and late in the rainy season. Lower N concentrations and N investment in the non-structural fraction were observed in leaves during the dry season, which indicates resorption of non-structural N from senescing leaves. Stem wood, which contributes to about 60% of the total biomass of the trees, accumulated high amounts of non-structural N at the end of the dry season, most of which was remobilized during the following rainy season. These results support the hypothesis of efficient internal N recycling, which may be an important determinant for the growth potential of eucalypts on N-poor soils. Harvesting trees late in the rainy season when stem wood is depleted in non-structural N should be recommended to limit the export of nutrients off-site and to improve the sustainability of tropical eucalypt plantations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Non-canonical CRL4A/4B(CDT2 interacts with RAD18 to modulate post replication repair and cell survival.

    Directory of Open Access Journals (Sweden)

    Sarah Sertic

    Full Text Available The Cullin-4(CDT2 E3 ubiquitin ligase plays an essential role in DNA replication origin licensing directing degradation of several licensing factors at the G1/S transition in order to prevent DNA re-replication. Recently a RAD18-independent role of Cullin-4(CDT2 in PCNA monoubiquitylation has been proposed. In an effort to better understand the function of Cullin-4(CDT2 E3 ubiquitin ligase in mammalian Post-Replication Repair during an unperturbed S-phase, we show that down-regulation of Cullin-4(CDT2 leads to two distinguishable independent phenotypes in human cells that unveil at least two independent roles of Cullin-4(CDT2 in S-phase. Apart from the re-replication preventing activity, we identified a non-canonical Cullin-4(CDT2 complex, containing both CUL4A and CUL4B, associated to the COP9 signalosome, that controls a RAD18-dependent damage avoidance pathway essential during an unperturbed S-phase. Indeed, we show that the non-canonical Cullin-4A/4B(CDT2 complex binds to RAD18 and it is required to modulate RAD18 protein levels onto chromatin and the consequent dynamics of PCNA monoubiquitylation during a normal S-phase. This function prevents replication stress, ATR hyper-signaling and, ultimately, apoptosis. A very similar PRR regulatory mechanism has been recently described for Spartan. Our findings uncover a finely regulated process in mammalian cells involving Post-Replication Repair factors, COP9 signalosome and a non-canonical Cullin4-based E3 ligase which is essential to tolerate spontaneous damage and for cell survival during physiological DNA replication.

  8. A ß-D: -xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance.

    Science.gov (United States)

    Falara, Vasiliki; Manganaris, George A; Ziliotto, Fiorenza; Manganaris, Athanasios; Bonghi, Claudio; Ramina, Angelo; Kanellis, Angelos K

    2011-06-01

    A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify genes that might be involved in tolerance to extended low temperature storage. Peach fruit from 'Morettini No2' to 'Royal Glory', cultivars sensitive and tolerant to chilling injury (CI), respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (shelf-life, 25°C) or subjected to 4 and 6 weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. The use of μPEACH 1.0 microarray platform identified a number of genes that were differentially expressed in 'Morettini No2' and 'Royal Glory' fruit after the extended storage period. Based on their possible involvement in physiological processes related to cold storage and on their differential expression pattern, two heat shock proteins, a β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related (PR) protein were further selected for detailed analysis via RNA blot analysis. It is suggested that β-D: -xylosidase and PR-4B precursor genes could be related to the different tolerance to CI observed in the two peach cultivars since generally higher expression levels were observed in cv. 'Royal Glory', the tolerant one. These two genes could play a role in peach tolerance to chilling injury.

  9. QTLs for uniform grain dimensions and germination selected during wheat domestication are co-located on chromosome 4B.

    Science.gov (United States)

    Nave, Moran; Avni, Raz; Ben-Zvi, Batsheva; Hale, Iago; Distelfeld, Assaf

    2016-07-01

    A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet. Here, in addition to characterizing these associations, we elucidate the genetic mechanism controlling differential grain dimensions and dormancy within wild tetraploid wheat spikelets using phenotypic data from a wild emmer × durum wheat population and a high-density genetic map. We show that in wild emmer, the lower grain within the spikelet is about 30 % smaller and more dormant than the larger, upper grain that germinates usually within 3 days. We identify a major locus on the long arm of chromosome 4B that explains >40 % of the observed variation in grain dimensions and seed dormancy within spikelets. This locus, designated QGD-4BL, is validated using an independent set of wild emmer × durum wheat genetic stocks. The domesticated variant of this novel locus on chromosome 4B, likely fixed during the process of wheat domestication, favors spikelets with seeds of uniform size and synchronous germination. The identification of locus QGD-4BL enhances our knowledge of the genetic basis of the domestication syndrome of one of our most important crops.

  10. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    NARCIS (Netherlands)

    Dijkman, Ronald; Jebbink, Maarten F.; Wilbrink, Berry; Pyrc, Krzysztof; Zaaijer, Hans L.; Minor, Philip D.; Franklin, Sally; Berkhout, Ben; Thiel, Volker; van der Hoek, Lia

    2006-01-01

    BACKGROUND: The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV) 229E. The prototype virus has a

  11. Oscillatory magnetic fluctuations near the superconductor-to-ferromagnet transition in ErRh/sub 4/B/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, D.E.; McWhan, D.B.; Schmidt, P.H.; Shirane, G.; Thomlinson, W.; Maple, M.B.; MacKay, H.B.; Woolf, L.D.; Fisk, Z.; Johnston, D.C.

    1980-12-22

    Small-angle neutron experiments show that near the transition from superconductor to ferromagnet in ErRh/sub 4/B/sub 4/ scattering peaks occur at a wave vector Vertical Barq/sub s/Vertical Bar=0.06 A/sup -1/. The temperature and wave-vector dependence suggest this signal is due to oscillatory magnetization fluctuations caused by the electromagnetic coupling of magnetic and superconducting order parameters. The ferromagnetic Bragg scattering shows a 5% hysteresis and transition-temperature--smearing effects which are also due to magnetic-superconducting interactions.

  12. Heteropolyacides as green and reusable catalysts for the synthesis of [3,4-b][1,3,4] thiadiazines

    Directory of Open Access Journals (Sweden)

    F. Hakimi

    2014-01-01

    Full Text Available Synthesis of [3,4-b][1,3,4]thiadiazines from the condensation of 4-amino-6-methyl-3-thioxo-1,2,4-triazine-5(2H-one (AMTTO or 4-amino-1,4-dihydro-5-methyle-1,2,4-triazole-5-thione (AMTT with phenacyl bromide in the presence of a catalytic amount of various heteropolyacids (HPAs under refluxing conditions is reported. DOI: http://dx.doi.org/10.4314/bcse.v28i1.8

  13. Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices

    Science.gov (United States)

    Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy

    2014-06-01

    Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].

  14. Nonstructural 5A impairs DNA damage repair: Implication of hepatitis C virus-mediated hepatocarcinogenesis.

    Science.gov (United States)

    Nguyen, Tram T; Park, Eun-Mee; Lim, Yun-Sook; Hwang, Soon B

    2018-03-21

    RAD51-associated protein 1 (RAD51AP1) is a member of the multiprotein complexes postulated to carry out RAD51-mediated homologous recombination and DNA repair in mammalian cells. In the present study, we showed that hepatitis C virus (HCV) NS5A directly bound RAD51AP1 and increased protein level of RAD51AP1 through modulation of the ubiquitin-proteasome pathway. We also demonstrated that RAD51AP1 protein levels were increased in the liver tissues of HCV-infected patients and NS5A transgenic mice. Importantly, NS5A impaired DNA repair by disrupting RAD51/RAD51AP1/UAF1 complex and rendered HCV-infected cells more sensitive to DNA damage. Silencing of RAD51AP1 expression resulted in a decrease of viral propagation. We further demonstrated that RAD51AP1 was involved in the assembly step of the HCV life cycle by protecting viral RNA. These data suggest that HCV exploits RAD51AP1 to promote viral propagation and thus host DNA repair is compromised in HCV-infected cells. Overall, our findings provide mechanistic insight into the pathogenesis of HCV infection IMPORTANCE Chronic infection with HCV is the leading cause of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCV-induced HCC are not fully understood. Here, we demonstrated that HCV NS5A protein physically interacted with RAD51AP1 and increased RAD51AP1 protein level through modulation of the ubiquitin-proteasome pathway. HCV coopts host RAD51AP1 to protect viral RNA at an assembly step of the HCV life cycle. Of note, RAD51 protein was accumulated in the cytoplasm of the HCV-infected cells and thus RAD51/RAD51AP1/UAF1-mediated DNA damage repair system in the nucleus is compromised in HCV-infected cells. Our data may provide new insight into the molecular mechanisms of HCV-induced pathogenesis. Copyright © 2018 American Society for Microbiology.

  15. triazolo [3, 4-b

    Indian Academy of Sciences (India)

    c. kurumurthy

    Minimum bactericidal/fungicidal concentration (µg/mL). Staphyloc occus aureus. MTCC 96. Bacillus subtilis. MTCC. 121. S. aureus. MLS16. MTCC. 2940. Micrococc us luteus. MTCC. 2470. Klebsiella planticola. MTCC. 530. Escheri chia coli. MTCC. 739. Pseudom onas aerugino sa. MTCC. 2453. Candida albicans. MTCC.

  16. triazolo [3, 4-b

    Indian Academy of Sciences (India)

    c. kurumurthy

    Table 1. Antimicrobial activity of the synthesized compounds. Table 2. Minimum bactericidal concentration (MBC) of synthesized compounds. Test compounds. Minimum bactericidal/fungicidal concentration (µg/mL). Staphyloc occus aureus. MTCC 96. Bacillus subtilis. MTCC. 121. S. aureus. MLS16. MTCC. 2940. Micrococc.

  17. Phase 4B: Commissioning

    Science.gov (United States)

    1998-08-01

    Report 26-04-R-014 Revision: 0 Phase 3D , entitled "Integration" (Contract number N68171-94-C-9066), addressed the preliminary experiments being...a set of operating procedures were prepared for general use, Schofield and Steedman(1995). Phase 3D was followed by Phases 4 (Contract Number N68171...For example, the Druck pore pressure transducers which were recommended to the Army had already been used at 300g in the drum centrifuge. ANS&A

  18. Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Scott F Winter

    2012-05-01

    Full Text Available Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT-rich interactive domain 4B (Arid4b; NM_194262 as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA-mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.

  19. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user's manual

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User's Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code's capabilities and limitations; Chapter 2 describes the code's structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs

  20. "On-Water" Facile Synthesis of Novel Pyrazolo[3,4-b]pyridinones Possessing Anti-influenza Virus Activity.

    Science.gov (United States)

    Zeng, Li-Yan; Liu, Teng; Yang, Jie; Yang, Yueli; Cai, Chun; Liu, Shuwen

    2017-07-10

    A facile and versatile "on-water" protocol for the synthesis of pyrazolo[3,4-b]pyridinones was developed by the unprecedented construction of two rings and five new bonds in one-pot. It was proved that water was an important promoter of the reaction and PEG2000 was found to improve the reaction in terms of yield. 32 Derivatives were newly synthesized and most of them were prepared in an hour. The scope and limitation indicated that electron withdrawing groups substituted on synthons, substituted benzoyl acetonitriles or aryl aldehydes, were helpful to construct the pyrazolo[3,4-b]pyridinones. The reaction media PEG2000/H 2 O was successfully recycled and reused at least 5 times without any obvious decrease in yield. The anti-influenza activities of the derivatives were evaluated and the screening results highlighted two derivatives, which exhibited strong inhibitory activity against H5N1 pseudovirus. These positive bioassay results implied that the library of potential anti-influenza virus agent candidates could be rapidly prepared in an eco-friendly manner, and provided a new insight into drug discovery for medicinal chemists.

  1. Behavior of non-structural masonry in the Lorca earthquake; Comportamiento de las fabricas no estructurales en el terremoto de Lorca

    Energy Technology Data Exchange (ETDEWEB)

    Hermmans, L.; Fraile de Lerma, A.; Alarcon Alvarez, E.; Alvarez Cabal, R.

    2012-07-01

    Lorca 11 May 2011 earthquake effects are described on both facades and partitions of Lorca buildings and the relationship among these elements, traditionally regarded as non-structural, and the structure itself is analysed. In addition, field observations are reproduced with simple numerical models. From this study we prove the high importance of the masonry in the building behaviour during this earthquake. (Author) 8 refs.

  2. [Estimating nonstructural carbon content of tree crown considering its spatial variability: A case study on Juglans mandshurica and Ulmus japonica].

    Science.gov (United States)

    Cheng, Fang-yan; Wang, Chuan-kuan

    2015-08-01

    Using Juglans mandshurica and Ulmus japonica as test materials, we examined the variability in nonstructural carbohydrates (NSC) concentrations in the branches with different basal diameters with a branch analysis method and explored potential errors in estimating the crown-scale NSC content introduced from various sampling protocols. The results showed that organs significantly influenced the crown NSC concentrations for both species. The mean concentrations of the sum of soluble sugars and starch (TNC) of the leaves, new twigs, old branches, and dead branches were 17.6%, 12.6%, 5.7% and 2.9%, respectively. Most of the NSC concentrations in leaves and new twigs varied insignificantly with basal diameter, age, length and height of the branch. However, the NSC concentration in old branches increased significantly with decreasing the basal diameter, age and length of the branch, and with increasing the relative height of the branch. Among the branch traits, basal diameter was the best predictor for the NSC concentration of the old branch (the R2 between 0.87 and 0.95). The mean TNC contents of leaves, new branches, and old branches for the two species accounted for 28%, 2% and 70% of the crown TNC content, respectively. Considering the effect of the spatial variability in the estimation of NSC content, we recommend the sampling protocol that applies the NSC concentration of new twigs and old branches with a diameter of 3 cm to up-scale the crown NSC content as a simple and practical method.

  3. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know.

    Science.gov (United States)

    Hartmann, Henrik; Trumbore, Susan

    2016-07-01

    Contents 386 I. 386 II. 388 III. 392 IV. 392 V. 396 VI. 399 399 References 399 SUMMARY: Carbohydrates provide the building blocks for plant structures as well as versatile resources for metabolic processes. The nonstructural carbohydrates (NSC), mainly sugars and starch, fulfil distinct functional roles, including transport, energy metabolism and osmoregulation, and provide substrates for the synthesis of defence compounds or exchange with symbionts involved in nutrient acquisition or defence. At the whole-plant level, NSC storage buffers the asynchrony of supply and demand on diel, seasonal or decadal temporal scales and across plant organs. Despite its central role in plant function and in stand-level carbon cycling, our understanding of storage dynamics, its controls and response to environmental stresses is very limited, even after a century of research. This reflects the fact that often storage is defined by what we can measure, that is, NSC concentrations, and the interpretation of these as a proxy for a single function, storage, rather than the outcome of a range of NSC source and sink functions. New isotopic tools allow direct quantification of timescales involved in NSC dynamics, and show that NSC-C fixed years to decades previously is used to support tree functions. Here we review recent advances, with emphasis on the context of the interactions between NSC, drought and tree mortality. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.

    Science.gov (United States)

    Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana

    2013-06-01

    Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.

  5. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees.

    Science.gov (United States)

    Plavcová, Lenka; Hoch, Günter; Morris, Hugh; Ghiasi, Sara; Jansen, Steven

    2016-04-01

    Concentrations of nonstructural carbohydrates (NSCs) are used as proxies for the net carbon balance of trees and as indicators of carbon starvation resulting from environmental stress. Woody organs are the largest NSC-storing compartments in forest ecosystems; therefore, it is essential to understand the factors that affect the size of this important storage pool. In wood, NSC are predominantly deposited in ray and axial parenchyma (RAP); however, direct links between nutrient storage and RAP anatomy have not yet been established. Here, we tested whether the NSC storage capacity of wood is influenced by the amount of RAP. We measured NSC concentrations and RAP fractions in root and stem sapwood of 12 temperate species sampled at the onset of winter dormancy and in stem sapwood of four tropical trees growing in an evergreen lowland rainforest. The patterns of starch distribution were visualized by staining with Lugol's solution. The concentration of NSCs in sapwood of temperate trees scales tightly with the amount of RAP and living fibers (LFs), with almost all RAP and LFs being densely packed with starch grains. In contrast, the tropical species had lower NSC concentrations despite their higher RAP and LFs fraction and had considerable interspecific differences in starch distribution. The differences in RAP and LFs abundance affect the ability of sapwood to store NSC in temperate trees, whereas a more diverse set of functions of RAP might be pronounced in species growing in a tropical environment with little seasonality. © 2016 Botanical Society of America.

  6. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    Science.gov (United States)

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  7. Evaluation of a 50-MV photon therapy beam from a racetrack microtron using MCNP4B Monte Carlo code

    International Nuclear Information System (INIS)

    Gudowska, I.; Svensson, R.

    2001-01-01

    High energy photon therapy beam from the 50 MV racetrack microtron has been evaluated using the Monte Carlo code MCNP4B. The spatial and energy distribution of photons, radial and depth dose distributions in the phantom are calculated for the stationary and scanned photon beams from different targets. The calculated dose distributions are compared to the experimental data using a silicon diode detector. Measured and calculated depth-dose distributions are in fairly good agreement, within 2-3% for the positions in the range 2-30 cm in the phantom, whereas the larger discrepancies up to 10% are observed in the dose build-up region. For the stationary beams the differences in the calculated and measured radial dose distributions are about 2-10%. (orig.)

  8. Study of coexistence of ferromagnetism and superconductivity in single-crystal ErRh4B4

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.

    1981-01-01

    Neutron diffraction and resistivity measurements on single crystals of ErRh 4 B 4 have revealed that both superconductivity and ferromagnetic order coexist in this material between 0.71 and 1.2 0 K. In this intermediate phase, a linear polarized modulated structure with a wavelength of approximately 100 A is observed. The modulated moment increases faster than the ferromagnetic moment down to 0.71 K and then disappears suddenly, with loss of superconductivity and a transition to a normal ferromagnetic state. This transition is accompanied by temperature hysteresis of about 60 mK. The same hysteresis, in the inverse sense, is exhibited by the ferromagnetic component. We interpret the intermediate phase as being one of coexisting normal ferromagnetic domains and superconducting sinusoidally ordered domains. Evidence of a small percentage of small ferromagnetic regions of size approx. 100 A is also seen in both the intermediate and ferromagnetic phases. 3 figures

  9. EGS4 and MCNP4b MC Simulation of a Siemens KD2 Accelerator in 6 MV Photon Mode

    CERN Document Server

    Chaves, A; Fragoso, M; Lopes, C; Oliveira, C; Peralta, L; Rodrigues, P; Seco, J; Trindade, A

    2001-01-01

    The geometry of a Siemens Mevatron KD2 linear accelerator in 6 MV photon mode was modeled with EGS4 and MCNP4b. Energy spectra and other phase space distributions have been extensively compared in different plans along the beam line. The differences found have been evaluated both qualitative and quantitatively. The final aim was that both codes, running in different operating systems and with a common set of simulation conditions, met the requirement of fitting the experimental depth dose curves and dose profiles, measured in water for different field sizes. Whereas depth dose calculations are in a certain extent insensible to some simulation parameters like electron nominal energy, dose profiles have revealed to be a much better indicator to appreciate that feature. Fine energy tuning has been tried and the best fit was obtained for a nominal electron energy of 6.15 MeV.

  10. Monte Carlo Simulation of Electron Beams for Radiotherapy - EGS4, MCNP4b and GEANT3 Intercomparison

    CERN Document Server

    Trindade, A; Alves, C M; Chaves, A; Lopes, C; Oliveira, C; Peralta, L

    2000-01-01

    In medical radiation physics, an increasing number of Monte Carlo codes are being used, which requires intercomparison between them to evaluated the accuracy of the simulated results against benchmark experiments. The Monte Carlo code EGS4, commonly used to simulate electron beams from medical linear accelerators, was compared with GEANT3 and MCNP4b. Intercomparison of electron energy spectra, angular and spatial distribution were carried out for the Siemens KD2 linear accelerator, at beam energies of 10 and 15 MeV for a field size of 10x10 cm2. Indirect validation was performed against electron depth doses curves and beam profiles measured in a MP3-PTW water phantom using a Markus planar chamber. Monte Carlo isodose lines were reconstructed and compared to those from commercial treatment planning systems (TPS's) and with experimental data.

  11. Spectral properties of 1H-pyrazolo[3,4-b]quinoline substituted with N,N-diethylamine moiety

    Science.gov (United States)

    Kolbus, Anna; Grabka, Danuta; Danel, Andrzej; Szary, Karol

    2016-07-01

    Photophysical properties of 6-N,N-diethyl-3-methyl-1-phenyl-1H-pyrazol[3,4-b]quinoline (DEPQ), a potential material for electroluminescent applications, were investigated. The absorption and fluorescence spectra and fluorescence lifetimes were recorded in a great number of solvents with different polarity. The red shifts in absorption and fluorescence maxima with the solvent's polarity were observed. Different trends in values of quantum yield for non-polar and polar solvents suggest two different deactivation ways of the excited state, depending on solvent polarity. DEPQ in non-polar solvents emits from locally excited states while deactivation DEPQ in polar solvents indicates charge transfer (CT) fluorescence. Several electro-optical parameters were also calculated.

  12. The HMG-box transcription factor Sox4b is required for pituitary expression of gata2a and specification of thyrotrope and gonadotrope cells in zebrafish.

    Science.gov (United States)

    Quiroz, Yobhana; Lopez, Mauricio; Mavropoulos, Anastasia; Motte, Patrick; Martial, Joseph A; Hammerschmidt, Matthias; Muller, Marc

    2012-06-01

    The pituitary is a complex gland comprising different cell types each secreting specific hormones. The extensive network of signaling molecules and transcription factors required for determination and terminal differentiation of specific cell types is still not fully understood. The SRY-like HMG-box (SOX) transcription factor Sox4 plays important roles in many developmental processes and has two homologs in zebrafish, Sox4a and Sox4b. We show that the sox4b gene is expressed in the pituitary anlagen starting at 24 h after fertilization (hpf) and later in the entire head region including the pituitary. At 48 hpf, sox4b mRNA colocalizes with that for TSH (tshβ), glycoprotein subunit α (gsuα), and the Zn finger transcription factor Gata2a. Loss of Sox4b function, using morpholino knockdown or expression of a dominant-negative Sox4 mutant, leads to a drastic decrease in tshβ and gsuα expression and reduced levels of gh, whereas other anterior pituitary gland markers including prl, slβ, pomc, and lim3 are not affected. Sox4b is also required for expression of gata2a in the pituitary. Knockdown of gata2a leads to decreased tshβ and gsuα expression at 48 hpf, similar to sox4b morphants. Injection of gata2a mRNA into sox4b morphants rescued tshβ and gsuα expression in thyrotrope cells. Finally, sox4b or gata2a knockdown causes a significant decrease of gonadotropin expression (lhβ and fshβ) at 4 d after fertilization. In summary, our results indicate that Sox4b is expressed in zebrafish during pituitary development and plays a crucial role in the differentiation of thyrotrope and gonadotrope cells through induction of gata2a expression in the developing pituitary.

  13. Radiation field characterization of a BNCT research facility using Monte Carlo Method - Code MCNP-4B; Caracterizacao do campo de radiacao numa instalacao para pesquisa em BNCT o metodo de Monte Carlo Codigo - MCNP-4B

    Energy Technology Data Exchange (ETDEWEB)

    Hernandes, Antonio Carlos

    2002-07-01

    Boron Neutron Capture Therapy - BNCT- is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an AmBe neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these BNCT studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluency {Nu}{sub {Tau}} = 1,35x10{sup 8} n/cm{sup 2}, a fast neutron dose of 5,86x{sup -1}0 Gy/{Nu}{sub {Tau}} and a gamma ray dose of 8,30x{sup -14} Gy/{Nu}{sub {Tau}}. (author)

  14. Radiation field characterization of a BNCT research facility using Monte Carlo method - code MCNP-4B; Caracterizacao do campo de radiacao numa instalacao para pesquisa em BNCT utilizando o metodo de Monte Carlo - codigo MCNP-4B

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Antonio Carlos

    2002-07-01

    Boron Neutron Capture Therapy - BNCT - is a selective cancer treatment and arises as an alternative therapy to treat cancer when usual techniques - surgery, chemotherapy or radiotherapy - show no satisfactory results. The main proposal of this work is to project a facility to BNCT studies. This facility relies on the use of an Am Be neutron source and on a set of moderators, filters and shielding which will provide the best neutron/gamma beam characteristic for these Becton studies, i.e., high intensity thermal and/or epithermal neutron fluxes and with the minimum feasible gamma rays and fast neutrons contaminants. A computational model of the experiment was used to obtain the radiation field in the sample irradiation position. The calculations have been performed with the MCNP 4B Monte Carlo Code and the results obtained can be regarded as satisfactory, i.e., a thermal neutron fluencyN{sub T} = 1,35x10{sup 8} n/cm , a fast neutron dose of 5,86x10{sup -10} Gy/N{sub T} and a gamma ray dose of 8,30x10{sup -14} Gy/N{sub T}. (author)

  15. The Non-structural Protein 5 and Matrix Protein Are Antigenic Targets of T Cell Immunity to Genotype 1 Porcine Reproductive and Respiratory Syndrome Viruses

    DEFF Research Database (Denmark)

    Mokhtar, Helen; Pedrera, Miriam; Frossard, Jean-Pierre

    2016-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) is the cause of one of the most economically important diseases affecting swine worldwide. Efforts to develop a next-generation vaccine have largely focused on envelope glycoproteins to target virus-neutralizing antibody responses....... However, these approaches have failed to demonstrate the necessary efficacy to progress toward market. T cells are crucial to the control of many viruses through cytolysis and cytokine secretion. Since control of PRRSV infection is not dependent on the development of neutralizing antibodies, it has been...

  16. Nucleocytoplasmic Shuttling of Influenza A Virus Proteins

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-05-01

    Full Text Available Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1, nucleoprotein (NP, nonstructural protein (NS1, and nuclear export protein (NEP, summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.

  17. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

    Science.gov (United States)

    Pérez-de-Lis, Gonzalo; García-González, Ignacio; Rozas, Vicente; Olano, José Miguel

    2016-10-01

    Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88-5.08 % dry matter) than Q. pyrenaica (4.06-5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

  18. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 4B : material & construction specifications : final report.

    Science.gov (United States)

    2015-07-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...

  19. A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US

    OpenAIRE

    Burall, Laurel S.; Grim, Christopher J.; Datta, Atin R.

    2017-01-01

    Four listeriosis incidences/outbreaks, spanning 19 months, have been linked to Listeria monocytogenes serotype 4b variant (4bV) strains. Three of these incidents can be linked to a defined geographical region, while the fourth is likely to be linked. In this study, whole genome sequencing (WGS) of strains from these incidents was used for genomic comparisons using two approached. The first was JSpecies tetramer, which analyzed tetranucleotide frequency to assess relatedness. The second, the C...

  20. Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes

    Science.gov (United States)

    Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P.

    2000-09-01

    A multilayer organic light-emitting diode was fabricated using a fluorescent compound {6-N,N-diethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline} (PAQ-NEt2) doped into the hole-transporting layer of NPB {4,4'-bis[N-(1-naphthyl-1-)-N-phenyl-amino]-biphenyl}, with the TPBI {2,2',2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole]} as an electrontransporting material. At 16% PAQ-NEt2 doping concentration, the device gave a sharp, bright, and efficient green electroluminescence (EL) peaked at around 530 nm. The full width at half maximum of the EL is 60 nm, which is 60% of the green emission from typical NPB/AlQ [where AlQ=tris(8-hydroxyquinoline) aluminum] device. For the same concentration, a maximum luminance of 37 000 cd/m2 was obtained at 10.0 V and the maximum power, luminescence, and external quantum efficiencies were obtained 4.2 lm/W, 6.0 cd/A, and 1.6%, respectively, at 5.0 V.

  1. Dual action of a dinoflagellate-derived precursor of Pacific ciguatoxins (P-CTX-4B) on voltage-dependent K(+) and Na(+) channels of single myelinated axons.

    Science.gov (United States)

    Schlumberger, Sébastien; Mattei, César; Molgó, Jordi; Benoit, Evelyne

    2010-10-01

    The effects of Pacific ciguatoxin-4B (P-CTX-4B, also named gambiertoxin), extracted from toxic Gambierdiscus dinoflagellates, were assessed on nodal K(+) and Na(+) currents of frog myelinated axons, using a conventional voltage-clamp technique. P-CTX-4B decreased, within a few minutes, both K(+) and Na(+) currents in a dose-dependent manner, without inducing any marked change in current kinetics. The toxin was more effective in blocking K(+) than Na(+) channels. P-CTX-4B shifted the voltage-dependence of Na(+) conductance by about 14 mV towards more negative membrane potentials. This effect was reversed by increasing Ca(2+) in the external solution. A negative shift of about 16 mV in the steady-state Na(+) inactivation-voltage curve was also observed in the presence of the toxin. Unmodified and P-CTX-4B-modified Na(+) currents were similarly affected by the local anaesthetic lidocaine. The decrease of the two currents by lidocaine was dependent on both the concentration and the membrane potential during pre-pulses. In conclusion, P-CTX-4B appears about four times more effective than P-CTX-1B to affect K(+) channels, whereas it is about 50 times less efficient to affect Na(+) channels of axonal membranes. These actions may be related to subtle differences between the two chemical structures of molecules. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Brief report: Loss of p15Ink4b accelerates development of myeloid neoplasms in Nup98-HoxD13 transgenic mice.

    Science.gov (United States)

    Humeniuk, Rita; Koller, Richard; Bies, Juraj; Aplan, Peter; Wolff, Linda

    2014-05-01

    Homeostasis of hematopoietic stem and progenitor cells is a tightly regulated process. The disturbance of the balance in the hematopoietic progenitor pool can result in favorable conditions for development of diseases such as myelodysplastic syndromes and leukemia. It has been shown recently that mice lacking p15Ink4b have skewed differentiation of common myeloid progenitors toward the myeloid lineage at the expense of erythroid progenitors. The lack of p15INK4B expression in human leukemic blasts has been linked to poor prognosis and increased risk of myelodysplastic syndromes transformation to acute myeloid leukemia. However, the role of p15Ink4b in disease development is just beginning to be elucidated. This study examines the collaboration of the loss of p15Ink4b with Nup98-HoxD13 translocation in the development of hematological malignancies in a mouse model. Here, we report that loss of p15Ink4b collaborates with Nup98-HoxD13 transgene in the development of predominantly myeloid neoplasms, namely acute myeloid leukemia, myeloproliferative disease, and myelodysplastic syndromes. This mouse model could be a very valuable tool for studying p15Ink4b function in tumorigenesis as well as preclinical drug testing. © 2014 AlphaMed Press.

  3. Expression of hepatitis C virus proteins does not interfere with major histocompatibility complex class I processing and presentation in vitro

    OpenAIRE

    Moradpour, Darius; Grabscheid, Benno; Kammer, Andreas R.; Schmidtke, Gunter; Gröttrup, Marcus; Blum, Hubert E.; Cerny, Andreas

    2001-01-01

    Hepatitis C virus (HCV) infection takes a chronic course in the majority of patients. The mechanisms underlying the evasion of the host immune response and viral persistence are poorly understood. In this context, we investigated interactions of HCV proteins with major histocompatibility complex (MHC) class I processing and presentation pathways using cell lines that allow the tetracycline-regulated expression of viral structural and nonstructural proteins. These well-characterized inducible ...

  4. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Tae Sup; Kim, Sung Joo; Kim, Kwang Il; Lee, Yong Jin; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2010-09-15

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  5. Human wound infections caused by Neisseria animaloris and Neisseria zoodegmatis, former CDC Group EF-4a and EF-4b

    Directory of Open Access Journals (Sweden)

    Anna Heydecke

    2013-08-01

    Full Text Available Background : Neisseria animaloris and Neisseria zoodegmatis, former CDC Group EF-4a and -4b, are considered to be rare zoonotic pathogens, usually associated with dog or cat bites. The aim of the study was to phenotypicaly characterize 13 EF-4 isolates from wound infections, determine their antibiotic susceptibility and to follow the clinical outcome of the patients. Methods : 13 of the EF-4 isolates were cultured on agar plates. Conventional biochemical tests and the Biolog system were used for phenotypical identification. An arbitrary primed polymerase chain reaction (AP-PCR was carried out to determine the genetic profiles. Minimum inhibitory concentration (MIC values were determined for different antibiotics were determined. According to this, clinical data for the patients were recorded. Results : 11 isolates were identified as N. animaloris and 2 as N. zoodegmatis due to the production of arginine dihydrolase. A majority of the patients had a history of dog bite. In 6 cases only grewth of N. animaloris or zoodegmatis was registered. When a patient received antibiotic treatment the most common drug of choice was penicillin V. Only 3 patients received treatment for which the isolated EF-4 bacterium was fully susceptible. Conclusion : Human infections involving N. animaloris and N. zoodegmatis usually present themselves as local wound infection, but severe complications can occur. Despite their pathogenic potentia, l N. animaloris and N. zoodegmatis are often misidentified, dismissed as skin contaminants or not recognized at all. Due to the fact that N. animaloris and N. zoodegmatis are significant pathogens in animal bites, physicians should keep these bacteria in mind when choosing antibiotic therapy.

  6. Osmolality and non-structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe

    Directory of Open Access Journals (Sweden)

    Anna eLintunen

    2016-06-01

    Full Text Available Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% towards northern Europe and 38% towards southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased towards north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e. glucose and fructose high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased towards the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble

  7. Genetic effects on total phenolics, condensed tannins and non-structural carbohydrates in loblolly pine (Pinus taeda L.) needles.

    Science.gov (United States)

    Aspinwall, Michael J; King, John S; Booker, Fitzgerald L; McKeand, Steven E

    2011-08-01

    Carbon allocation to soluble phenolics (total phenolics, proanthocyanidins (PA)) and total non-structural carbohydrates (TNC; starch and soluble sugars) in needles of widely planted, highly productive loblolly pine (Pinus taeda L.) genotypes could impact stand resistance to herbivory, and biogeochemical cycling in the southeastern USA. However, genetic and growth-related effects on loblolly pine needle chemistry are not well characterized. Therefore, we investigated genetic and growth-related effects on foliar concentrations of total phenolics, PA and TNC in two different field studies. The first study contained nine different genotypes representing a range of genetic homogeneity, growing in a 2-year-old plantation on the coastal plain of North Carolina (NC), USA. The second study contained eight clones with different growth potentials planted in a 9-year-old clonal trial replicated at two sites (Georgia (GA) and South Carolina (SC), USA). In the first study (NC), we found no genetic effects on total phenolics, PA and TNC, and there was no relationship between genotype size and foliar biochemistry. In the second study, there were no differences in height growth between sites, but the SC site showed greater diameter (diameter at breast height (DBH)) and volume, most likely due to greater tree mortality (lower stocking) which reduced competition for resources and increased growth of remaining trees. We found a significant site × clone effect for total phenolics with lower productivity clones showing 27-30% higher total phenolic concentrations at the GA site where DBH and volume were lower. In contrast to the predictions of growth-defense theory, clone volume was positively associated with total phenolic concentrations at the higher volume SC site, and PA concentrations at the lower volume GA site. Overall, we found no evidence of a trade-off between genotype size and defense, and genetic potential for improved growth may include increased allocation to some

  8. Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe.

    Science.gov (United States)

    Lintunen, Anna; Paljakka, Teemu; Jyske, Tuula; Peltoniemi, Mikko; Sterck, Frank; von Arx, Georg; Cochard, Hervé; Copini, Paul; Caldeira, Maria C; Delzon, Sylvain; Gebauer, Roman; Grönlund, Leila; Kiorapostolou, Natasa; Lechthaler, Silvia; Lobo-do-Vale, Raquel; Peters, Richard L; Petit, Giai; Prendin, Angela L; Salmon, Yann; Steppe, Kathy; Urban, Josef; Roig Juan, Sílvia; Robert, Elisabeth M R; Hölttä, Teemu

    2016-01-01

    Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter

  9. Effect of regulated deficit irrigation on the morphology, physiology, carbon allocation and nonstructural carbohydrates of three Kentucky bluegrasses

    International Nuclear Information System (INIS)

    Liu, J. R.; Ma, L.; Liu, Y. K.; Liu, T. J.; Lu, J. N.; Wang, D. N.

    2015-01-01

    Regulated deficit irrigation (RDI) has been assessed in a wide number of field and fruit crops. However, few are the studies dealing with turfgrass. This study was conducted to investigate the morphology, physiology and carbon metabolic responses to regulated deficit irrigation for three Kentucky bluegrass (Poa pratensis L.) cultivars. Three Kentucky bluegrass cultivars were grown in PVC (polyvinyl chloride) tubes in a greenhouse and subjected to three soil water treatments in a growth chamber: 1) full irrigation; 2) drought stress, 21 days without water after full irrigation; and 3) drought recovery, stressed plants were re-watered for an additional 21 d. The present study indicated that drought resulted in a decline in turf quality (TQ), leaf relative water content (RWC), and photochemical efficiency (Fv/Fm) and an increase in electrolyte leakage (EL) for the cultivars. The turf quality, RWC, and Fv/Fm of the three Kentucky bluegrass cultivars increased with re-watering. The allocation of /sup 14/ C increased in the roots of these cultivars during the initial phase of drought stress, where a /sup 14/ C distribution shift from the roots to the stem and leaves appeared with further drought stress. Moreover, there was a significant accumulation of total nonstructural carbohydrates (TNC) in the leaves and stem. The TNC content in the leaves, stem, and roots did not completely return to the control levels following 21 d of re-watering, which was consistent with the recovery of TQ, RWC, Fv/Fm, and EL. In addition, during the re-watering treatment, the reduction in the TNC content may be due to increases in the demand or usage as a result of a rapid recovery in the growth and physiological activities as shown by increased TQ, RWC, and Fv/Fm and decreased EL. Our results suggested that the changes in the carbon allocation model and the accumulation and storage of TNC, as well as the changes in TQ, RWC, Fv/Fm, and EL, for the three cultivars are an adaptive reaction to

  10. Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

    Directory of Open Access Journals (Sweden)

    Nam Su Oh

    Full Text Available A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15 with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of α-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15 and L. gasseri 4M13 (4M13 showed considerably higher anti-oxidation, inhibition of α-glucosidase activity, and cholesterol-lowering, and greater inhibition of nitric oxide production than other strains. Moreover, the two selected strains substantially inhibited the release of inflammatory mediators such as TNF-α, IL-6, IL-1β, and IL-10 stimulated the treatment of RAW 264.7 macrophages with LPS. In addition, whole genome sequencing and comparative genomic analysis of 4B15 and 4M13 indicated them as novel genomic strains. These results suggested that 4B15 and 4M13 showed the highest probiotic potential and have an impact on immune health by modulating pro-inflammatory cytokines.

  11. MicroRNA-216a inhibits the growth and metastasis of oral squamous cell carcinoma by targeting eukaryotic translation initiation factor 4B.

    Science.gov (United States)

    Li, Lei; Ma, Hui-Qiang

    2015-08-01

    There is increasing evidence to suggest that microRNAs (miRNAs; miRs) are involved in the development of oral squamous cell carcinoma (OSCC). miR-216a has been identified as being involved in tumorigenesis, however, the mechanisms of miR-216a in various types of cancer, either as a tumor suppressor or as an oncogenic miRNA, and the specific regulatory role of miR-216a in OSCC remain to be elucidated. The present study demonstrated that the expression of miR-216a was significantly reduced in OSCC tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, colony formation, migration and invasion of the OSCC cells. In addition, eukaryotic translation initiation factor 4B (EIF4B) was identified as a direct target of miR-216a, which was observed to be upregulated in the OSCC tissues. Furthermore, overexpression of EIF4B significantly attenuated the antitumor effect of miR-216a, and a negative correlation was observed between miR-216a and EIF4B in the OSCC tissues. Taken together, these findings indicated that miR-216a has a suppressive role in OSCC cells by directly targeting EIF4B, and may function as a potential prognostic biomarker and novel therapeutic target.

  12. Sub-tropical urban environment affecting content and composition of non-structural carbohydrates of Lolium multiflorum ssp. italicum cv. Lema

    Energy Technology Data Exchange (ETDEWEB)

    Sandrin, Carla Zuliani; Figueiredo-Ribeiro, Rita de Cassia Leone; Carvalho, Maria Angela Machado de [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil); Carvalho Delitti, Welington Braz [Instituto de Biociencias, Universidade de Sao Paulo, Departamento de Ecologia, Caixa Postal 11461, 05422-970 Sao Paulo, SP (Brazil); Domingos, Marisa [Instituto de Botanica, Caixa Postal 3005, 01061-970 Sao Paulo, SP (Brazil)], E-mail: mmingos@superig.com.br

    2008-12-15

    This study analyzed the relationship between environmental factors, especially air pollution and climatic conditions, and non-structural carbohydrates (NSC) in plants of Lolium multiflorum exposed during 10 consecutive periods of 28 days at a polluted site (Congonhas) and at a reference site in Sao Paulo city (Brazil). After exposure, NSC composition and leaf concentrations of Al, Fe, Cu, Zn, Pb and Cd were measured. The seasonal pattern of NSC accumulation was quite similar in both sites, but plants at Congonhas showed higher concentrations of these compounds, especially fructans of low and medium degree of polymerization. Regression analysis showed that NSC in plants growing at the polluted site were explained by variations on temperature and leaf concentration of Fe (positive effect), as well as relative humidity and particulate material (negative effect). NSC in the standardized grass culture, in addition to heavy metal accumulation, may indicate stressing conditions in a sub-tropical polluted environment. - Particulate matter and air temperature increased non-structural carbohydrates in the standardized biomonitor grass in Sao Paulo.

  13. Sub-tropical urban environment affecting content and composition of non-structural carbohydrates of Lolium multiflorum ssp. italicum cv. Lema

    International Nuclear Information System (INIS)

    Sandrin, Carla Zuliani; Figueiredo-Ribeiro, Rita de Cassia Leone; Carvalho, Maria Angela Machado de; Carvalho Delitti, Welington Braz; Domingos, Marisa

    2008-01-01

    This study analyzed the relationship between environmental factors, especially air pollution and climatic conditions, and non-structural carbohydrates (NSC) in plants of Lolium multiflorum exposed during 10 consecutive periods of 28 days at a polluted site (Congonhas) and at a reference site in Sao Paulo city (Brazil). After exposure, NSC composition and leaf concentrations of Al, Fe, Cu, Zn, Pb and Cd were measured. The seasonal pattern of NSC accumulation was quite similar in both sites, but plants at Congonhas showed higher concentrations of these compounds, especially fructans of low and medium degree of polymerization. Regression analysis showed that NSC in plants growing at the polluted site were explained by variations on temperature and leaf concentration of Fe (positive effect), as well as relative humidity and particulate material (negative effect). NSC in the standardized grass culture, in addition to heavy metal accumulation, may indicate stressing conditions in a sub-tropical polluted environment. - Particulate matter and air temperature increased non-structural carbohydrates in the standardized biomonitor grass in Sao Paulo

  14. Syntheses of dibenzo[d,d']benzo[2,1-b:3,4-b']difuran derivatives and their application to organic field-effect transistors

    Directory of Open Access Journals (Sweden)

    Minh Anh Truong

    2016-04-01

    Full Text Available Ladder-type π-conjugated compounds containing a benzo[2,1-b:3,4-b']difuran skeleton, such as dibenzo[d,d']benzo[2,1-b:3,4-b']difuran (syn-DBBDF and dinaphtho[2,3-d:2',3'-d']benzo[2,1-b:3,4-b']difuran (syn-DNBDF were synthesized. Their photophysical and electrochemical properties were revealed by UV–vis absorption and photoluminescence spectroscopy and cyclic voltammetry. Organic field-effect transistors (OFETs were fabricated with these compounds as organic semiconductors, and their semiconducting properties were evaluated. OFETs with syn-DBBDF and syn-DNBDF showed typical p-type characteristics with hole mobilities of −3 cm2·V−1·s−1 and −1 cm2·V−1·s−1, respectively.

  15. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site.

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-11-27

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4B(WT)-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4B(WT)-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. What do we know about the role and regulation of stored non-structural carbon compounds in trees?

    Science.gov (United States)

    Sala, A.; Martinez-Vilalta, J.; Lloret, F.

    2012-12-01

    Despite the critical role of forests on the global C cycle and recent increases in drought-induced forest mortality, remarkable knowledge gaps exist to accurately predict tree growth and survival under climate change. In particular, storage of non-structural carbon compounds (NSCC) is thought to be critical for tree survival under drought but its regulation and function is the least understood of the tree's C budget components. Our current understanding of the role and regulation of stored NSCC relies on several assumptions. First, stored NSCC is generally assumed to be a passive buffer between source and sink demand for growth and respiration and, therefore, is an integrator of the tree C balance. Second, most process-based models commonly assume that C availability drives growth and ignore storage and environmental regulation of sink activity. Third, trees under C deficits are assumed to rely on stored C until normal conditions are restored or reserves are exhausted, whichever comes first. Implicit is this is that stored NSCC increases survival under drought, and that access to stored NSCC is unlimited. For the most part, these assumptions have not been experimentally tested, and increasing evidence suggests that some of them are not necessarily correct. Here we assess the validity of some of the assumptions above from a review of the published data. Several studies so far are consistent with the notion that stored NSCC serve as a passive buffer between C assimilation and C demand for growth and respiration. In contrast, other studies indicate that C may be partitioned to storage at the expense of growth. In any case, unequivocal evidence of whether and when C is or is not partitioned to storage at the expense of growth in woody plants is lacking, leaving a critical void in our knowledge. Many studies in woody plants indicate that growth is more sensitive to water availability than photosynthesis, and that NSCC accumulate as a result. This indicates that growth

  17. SAT: a late NS protein of porcine parvovirus.

    Science.gov (United States)

    Zádori, Zoltán; Szelei, József; Tijssen, Peter

    2005-10-01

    The genomes of all members of the Parvovirus genus were found to contain a small open reading frame (ORF), designated SAT, with a start codon four or seven nucleotides downstream of the VP2 initiation codon. Green fluorescent protein or FLAG fusion constructs of SAT demonstrated that these ORFs were expressed. Although the SAT proteins of the different parvoviruses are not particularly conserved, they were all predicted to contain a membrane-spanning helix, and mutations in this hydrophobic stretch affected the localization of the SAT protein. SAT colocalized with calreticulin in the membranes of the endoplasmic reticulum and the nucleus. A knockout mutant (SAT(-)), with an unmodified VP sequence, showed a "slow-spreading" phenotype. These knockout mutants could be complemented with VP2(-) SAT(+) mutant. The SAT protein is a late nonstructural (NS) protein, in contrast to previously identified NS proteins, since it is expressed from the same mRNA as VP2.

  18. QTL list: SpRg-4b [PGDBj Registered plant list, Marker list, QTL list, Plant DB link and Genome analysis methods[Archive

    Lifescience Database Archive (English)

    Full Text Available QT74937 Solanum lycopersicum Solanaceae SpRg-4b In vitro plant regeneraion Product...ivity Rate concerning shoot regeneration 2 SSR214 ... Chr04 86.33 3.08 ... 10.1186/1471-2229-11-140 22014149

  19. Mean-field theory for the Tsub(c2)-minimum in the phase diagram of Ersub(1-x)Hosub(x)Rh4B4

    International Nuclear Information System (INIS)

    Schuh, B.; Grewe, N.

    1981-01-01

    The experimentally observed shape of the phase boundary between the superconducting and the ferromagnetically ordered state in the reentrant ferromagnetic superconductor compound Ersub(1-x)Hosub(x)Rh 4 B 4 is explained within a simple Ginsburg-Landau mean field theory as resulting from a competition of two order parameters corresponding to the magnetic Ho- and Er-moments respectively. (author)

  20. The discovery and structure-activity relationships of pyrano[3,4-b]indole based inhibitors of hepatitis C virus NS5B polymerase.

    Science.gov (United States)

    LaPorte, Matthew G; Draper, Tandy L; Miller, Lori E; Blackledge, Charles W; Leister, Lara K; Amparo, Eugene; Hussey, Alison R; Young, Dorothy C; Chunduru, Srinivas K; Benetatos, Christopher A; Rhodes, Gerry; Gopalsamy, Ariamala; Herbertz, Torsten; Burns, Christopher J; Condon, Stephen M

    2010-05-01

    We describe the structure-activity relationship of the C1-group of pyrano[3,4-b]indole based inhibitors of HCV NS5B polymerase. Further exploration of the allosteric binding site led to the discovery of the significantly more potent compound 12. 2010 Elsevier Ltd. All rights reserved.

  1. A New Synthetic Route to Polyhydrogenated Pyrrolo[3,4-b]pyrroles by the Domino Reaction of 3-Bromopyrrole-2,5-Diones with Aminocrotonic Acid Esters

    Directory of Open Access Journals (Sweden)

    Khidmet Shikhaliev

    2017-11-01

    Full Text Available A new synthetic approach to polyfunctional hexahydropyrrolo[3,4-b]pyrroles was developed based on cyclization of N-arylbromomaleimides with aminocrotonic acid esters. A highly chemo- and stereoselective reaction is a Hantzsch-type domino process, involving the steps of initial nucleophilic C-addition or substitution and subsequent intramolecular nucleophilic addition without recyclyzation of imide cycle.

  2. Structure, growth and properties of a novel polar material, KSr{sub 4}B{sub 3}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenwu [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Pan, Shilie, E-mail: slpan@ms.xjb.ac.cn [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Wang, Yongjiang [Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), CAS (China); Yang, Zhihua; Wang, Xian; Han, Jian [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China)

    2012-11-15

    A novel polar material, KSr{sub 4}B{sub 3}O{sub 9}, has been obtained by the high temperature solution method for the first time. It crystallizes in the polar space group Ama2. The material exhibits a three-dimensional structure consisting of interconnecting KO{sub 10} groups, SrO{sub x} (x=8, 9) units and isolated BO{sub 3} triangles. DSC/TG curve shows that KSr{sub 4}B{sub 3}O{sub 9} melts incongruently. The calculated band structures and the density of states of KSr{sub 4}B{sub 3}O{sub 9} suggest that its direct gap is 3.897 eV. The absorption spectrum indicates the absorption edge of KSr{sub 4}B{sub 3}O{sub 9} is about 302 nm. It produces SHG intensity about as large as that of KH{sub 2}PO{sub 4} (KDP) and is phase matchable. - Graphical abstract: Viewed along the c-axis, B(2)O{sub 3} triangles and B(3)O{sub 3} triangles are parallel with the (0 1 0) face and opposite to each other. However, all the B(1)O{sub 3} triangles have the same direction along the c-axis. So the main SHG efficiency of the compound comes from B(1)O{sub 3} triangles according to the anion group theory. Highlights: Black-Right-Pointing-Pointer A polar material, KSr{sub 4}B{sub 3}O{sub 9}, has been obtained by high temperature solution method. Black-Right-Pointing-Pointer The material consists of KO{sub 10} units, SrO{sub x}(x=8, 9) units and isolated BO{sub 3} units. Black-Right-Pointing-Pointer KSr{sub 4}B{sub 3}O{sub 9} produces SHG intensity as large as that of KDP and is phase matchable. Black-Right-Pointing-Pointer The absorption edge of KSr{sub 4}B{sub 3}O{sub 9} is about 302 nm.

  3. Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

    Science.gov (United States)

    Chen, Jianshun; Jiang, Lingli; Chen, Xueyan; Luo, Xiaokai; Chen, Yang; Yu, Ying; Tian, Guoming; Liu, Dongyou; Fang, Weihuan

    2009-03-01

    The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes- L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascBdapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

  4. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  5. Development of NIR calibration models to assess year-to-year variation in total non-structural carbohydrates in grasses using PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, René; Jensen, Anne Mette Dahl

    2012-01-01

    Near-infrared (NIR) spectroscopy was used in combination with chemometrics to quantify total nonstructural carbohydrates (TNC) in grass samples in order to overcome year-to-year variation. A total of 1103 above-ground plant and root samples were collected from different field and pot experiments...... and with various experimental designs in the period from 2001 to 2005. A calibration model was developed using partial least squares regression (PLSR). The calibration model on a large data set spanning five years demonstrated that quantification of TNC using NIR spectroscopy was possible with an acceptable low...... to improve model performance, but still it was not possible to avoid year-to-year variation using iPLS, however iPLS simplified the interpretation of the regression model. The best option was to expand the database with samples from a new year, to include these samples in the calibration model and to apply...

  6. Ambient ozone effects on gas exchange and total non-structural carbohydrate levels in cutleaf coneflower (Rudbeckia laciniata L.) growing in Great Smoky Mountains National Park.

    Science.gov (United States)

    Neufeld, Howard S; Peoples, Seth J; Davison, Alan W; Chappelka, Arthur H; Somers, Greg L; Thomley, Jill E; Booker, Fitzgerald L

    2012-01-01

    Ozone-sensitive and -tolerant individuals of cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates at Purchase Knob, a high elevation site in Great Smoky Mountains National Park, USA. Photosynthesis and stomatal conductance decreased with increased foliar stipple. Sensitive plants had lower photosynthetic rates for all leaves, except the very youngest and oldest when compared to tolerant plants. Stomatal conductance decreased with increasing leaf age, but no ozone-sensitivity differences were found. Lower leaves had less starch than upper ones, while leaves on sensitive plants had less than those on tolerant plants. These results show that ambient levels of ozone in Great Smoky Mountains National Park can adversely affect gas exchange, water use efficiency and leaf starch content in sensitive coneflower plants. Persistence of sensitive genotypes in the Park may be due to physiological recovery in low ozone years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Physical qualification and improvements of the numerical model of a method of characteristics for the resolution of the neutron transport equation in non-structured grids

    International Nuclear Information System (INIS)

    Santandrea, Simone

    2001-01-01

    This research thesis addresses the resolution of the neutron transport equation inside reactor cells in non-structured grids and in general geometry by using the method of characteristics (MoC) and two acceleration methods developed during this research. The author introduces the MoC with a flat approximation of the neutron collision source within each computation area. This formulation leads to a linear approximation. The next part presents the mathematical framework for the use of the Lanczos iterative scheme. A new acceleration method is then introduced. The last part reports realistic cases with a high spatial and angular heterogeneity. Results obtained by using the Apollo2-TDT code are compared with those obtained with the Tripoli4 Monte-Carlo code [fr

  8. Fine tuning the HOMO energy levels of polythieno[3,4-b]thiophene derivatives by incorporation of thiophene-3,4-dicarboxylate moiety for photovoltaic applications

    DEFF Research Database (Denmark)

    Hu, Xiao-Lian; Zuo, Li-Jian; Nan, Ya-Xiong

    2012-01-01

    To lower the HOMO (highest occupied molecular orbital) energy level of polythieno[3,4-b]thiophene (∼−4.5eV), a series of ester-functionalized polythieno[3,4-b]thiophene derivatives (P1–P3) were designed and synthesized by Stille cross coupling reaction. The resulting copolymers exhibited broad...... voltage (Voc) of 0.54V, a short circuit current density (Isc) of 3.3mA/cm2, a fill factor (FF) of 0.57, and a power conversion efficiency (PCE) of 1.02%. A high Voc up to 0.71V was achieved in the solar cell based on a P3:PCBM blend....

  9. Nuclear magnetic resonance of Ce(Co sub 1 sub - sub x Fe sub x) sub 4 B (0 <= x <= 0.20)

    CERN Document Server

    Yoshie, H; Honda, H; Takahashi, W; Amako, Y; Nagai, H; Wada, H; Shiga, M; Yoshimura, K

    2002-01-01

    The nuclear magnetic resonance of sup 5 sup 9 Co nuclei in magnetic domains of Ce(Co sub 1 sub - sub x Fe sub x) sub 4 B (0 <= x <= 0.20) has been measured under external magnetic fields up to 5T at 4.2K. Spin reorientation was observed, which is a change in the magnetization direction from that parallel to the c-axis below Fe concentration x=0.1 to that perpendicular to the c axis above x=0.20. The sup 5 sup 9 Co hyperfine field at the 6i site in Ce(Co sub 1 sub - sub x Fe sub x) sub 4 B is divided into two above x=0.20 associated with the spin reorientation.

  10. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    Science.gov (United States)

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  11. Evidence for a New Magnetoelectric Effect of Current-Induced Magnetization in a Toroidal Magnetic Ordered State of UNi$_4$B

    OpenAIRE

    Saito, Hiraku; Uenishi, Kenta; Miura, Naoyuki; Tabata, Chihiro; Hidaka, Hiroyuki; Yanagisawa, Tatsuya; Amitsuka, Hiroshi

    2018-01-01

    Magnetization measurements under direct electric currents were performed for toroidal magnetic ordered state of UNi$_4$B to test a recent theoretical prediction of current-induced magnetization in a metallic system lacking local inversion symmetry.We found that each of the electric currents parallel to [$2\\bar{1}\\bar{1}0$] and [$0001$] in the hexagonal 4-index notation induces uniform magnetization in the direction of [$01\\bar{1}0$].The observed behavior of the induced magnetization is essent...

  12. Photophysical properties of 6-N,N-dimethylpyrazolo[3,4-b]quinoline substituted with pyridyl in the 3-position

    Science.gov (United States)

    Grabka, Danuta; Danel, Andrzej; Kolbus, Anna; Szary, Karol

    2017-04-01

    The new electron donor-acceptor dye, 6-N,N-dimethyl-3-pyridyl-1-phenyl-1H-pyrazolo[3,4-b]quinoline (DMA-3PPhPQ) was synthesized. Spectral properties of DMA-3PPhPQ were investigated in a great number of organic solvents with different polarity. The red shifts in absorption and fluorescence maxima with increasing polarity of the solvents was observed for various functions of polarity of the solvents. This compound exhibit a CT fluorescence.

  13. The Application of Red Pigments from Streptomyces K-4B and Dayak Onions (Eleutherine palmifolia (L.) Merr.) In Colouring Glycerine Soap

    Science.gov (United States)

    Herlina; Asnani, A.; Diastuti, H.

    2017-02-01

    Glycerin soap has been colored with red pigment from Streptomyces K-4 B and Dayak onion (Eleutherine palmifolia (L.) Merr). Both red pigments from Streptomyces K-4B and Dayak onion were extracted with ethanol by maceration method, followed with soxhlet extraction. The concentration of red pigment added was varied (0, 200, 300, 400 μL) to evaluate the best product. The resulted glycerine soaps were characterized and analyzed based on SNI 06-3532-1994. The research results indicated that the glycerine soap has water content ranged from 0.36% to 12.56%; the amount of fatty acid ranged from 14% to 36.75%; the amount of free fatty acids ranged from 0% to 0.37%; the non-saponifiable fat ranged from 0.001 to 0.019%; the pH ranged from 10.33 to 11.06; the foam stability ranged from 0.61% to 89.09%. The results of analysis of variance showed that the effect between treatments significantly different at 95% confidence level (α = 0.05) on the characteristics of glycerine soap. The results of an organoleptic test with parameters observed were color, aroma, texture, foam, rough impression upon usage and rough impression after usage, gave “like to very like soap” with a maximum score of 4.67 (1 to 5 scale). Based on the color assessment, the organoleptic panelists preferred the glycerine soap of SK-4B3 (red pigment from Streptomyces K-4B, 200 μL) with the score of 4.30 (like to very like).

  14. New 1-hydroxy-1,1-bisphosphonates derived from 1H-pyrazolo[3,4-b]pyridine: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Fatima C.; Lucas, Carla; Curto, M. Joao M., E-mail: fatima.teixeira@lneg.pt [Laboratorio Nacional de Energia e Geologia, Lisboa (Portugal); Neves, M. [Instituto Superior Tecnico, Instituto Tecnologico e Nuclear (IST/ITN), Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, Sacavem (Portugal); Duarte, M. Teresa; Andre, Vania; Teixeira, Antonio P.S. [Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (Portugal)

    2013-07-15

    A number of 1H-pyrazolo[3,4-b]pyridine derivatives, starting from 2-chloro-3-formyl pyridine, was synthesized to obtain new 1-hydroxybisphosphonates, a class of compounds with potential biological interest. Spectroscopic data were used to characterize all compounds and to identify N-1 and N-2 regioisomers, and mono- and bisphosphonates derivatives. X-ray diffractometry studies of compound 7a confirmed the proposed structure. (author)

  15. Formalin-inactivated EV71 vaccine candidate induced cross-neutralizing antibody against subgenotypes B1, B4, B5 and C4A in adult volunteers.

    Directory of Open Access Journals (Sweden)

    Ai-Hsiang Chou

    Full Text Available Enterovirus 71 (EV71 has caused several epidemics of hand, foot and mouth diseases (HFMD in Asia. No effective EV71 vaccine is available. A randomized and open-label phase I clinical study registered with ClinicalTrials.gov #NCT01268787, aims to evaluate the safety, reactogenicity and immunogenicity of a formalin-inactivated EV71 vaccine candidate (EV71vac at 5- and 10-µg doses. In this study we report the cross-neutralizing antibody responses from each volunteer against different subgenotypes of EV71 and CVA16.Sixty eligible healthy adults were recruited and vaccinated. Blood samples were obtained on day 0, 21 and 42 and tested against B1, B4, B5, C2, C4A, C4B and CVA16 for cross-neutralizing antibody responses.The immunogenicity of both 5- and 10- µg doses were found to be very similar. Approximately 45% of the participants had 4-fold increase in Nt, but there was no further increase in Nt after the second dose. EV71vac induced very strong cross-neutralizing antibody responses in >85% of volunteers without pre-existing Nt against subgenotype B1, B5 and C4A. EV71vac elicited weak cross-neutralizing antibody responses (∼20% of participants against a C4B and Coxsackie virus A16. Over 90% of vaccinated volunteers did not develop cross-neutralizing antibody responses (Nt<8 against a C2 strain. EV71vac can boost and significantly enhance the neutralizing antibody responses in volunteers who already had pre-vaccination antibodies against EV71 and/or CVA16.EV71vac is efficient in eliciting cross-neutralizing antibody responses against EV71 subgenotypes B1, B4, B5, and C4A, and provides the rationale for its evaluation in phase II clinical trials.ClinicalTrials.gov NCT01268787.

  16. Syntheses of dibenzo[d,d']benzo[2,1-b:3,4-b']difuran derivatives and their application to organic field-effect transistors

    Science.gov (United States)

    Truong, Minh Anh

    2016-01-01

    Summary Ladder-type π-conjugated compounds containing a benzo[2,1-b:3,4-b']difuran skeleton, such as dibenzo[d,d']benzo[2,1-b:3,4-b']difuran (syn-DBBDF) and dinaphtho[2,3-d:2',3'-d']benzo[2,1-b:3,4-b']difuran (syn-DNBDF) were synthesized. Their photophysical and electrochemical properties were revealed by UV–vis absorption and photoluminescence spectroscopy and cyclic voltammetry. Organic field-effect transistors (OFETs) were fabricated with these compounds as organic semiconductors, and their semiconducting properties were evaluated. OFETs with syn-DBBDF and syn-DNBDF showed typical p-type characteristics with hole mobilities of <1.5 × 10−3 cm2·V−1·s−1 and <1.0 × 10−1 cm2·V−1·s−1, respectively. PMID:27340471

  17. Discovery of imidazo[2,1-b]thiazole HCV NS4B inhibitors exhibiting synergistic effect with other direct-acting antiviral agents.

    Science.gov (United States)

    Wang, Ning-Yu; Xu, Ying; Zuo, Wei-Qiong; Xiao, Kun-Jie; Liu, Li; Zeng, Xiu-Xiu; You, Xin-Yu; Zhang, Li-Dan; Gao, Chao; Liu, Zhi-Hao; Ye, Ting-Hong; Xia, Yong; Xiong, Ying; Song, Xue-Jiao; Lei, Qian; Peng, Cui-Ting; Tang, Hong; Yang, Sheng-Yong; Wei, Yu-Quan; Yu, Luo-Ting

    2015-03-26

    The design, synthesis, and SAR studies of novel inhibitors of HCV NS4B based on the imidazo[2,1-b]thiazole scaffold were described. Optimization of potency with respect to genotype 1b resulted in the discovery of two potent leads 26f (EC50 = 16 nM) and 28g (EC50 = 31 nM). The resistance profile studies revealed that 26f and 28g targeted HCV NS4B, more precisely the second amphipathic α helix of NS4B (4BAH2). Cross-resistance between our 4BAH2 inhibitors and other direct-acting antiviral agents targeting NS3/4A, NS5A, and NS5B was not observed. For the first time, the synergism of a series of combinations based on 4BAH2 inhibitors was evaluated. The results demonstrated that our 4BAH2 inhibitor 26f was synergistic with NS3/4A inhibitor simeprevir, NS5A inhibitor daclatasvir, and NS5B inhibitor sofosbuvir, and it could also reduce the dose of these drugs at almost all effect levels. Our study suggested that favorable effects could be achieved by combining 4BAH2 inhibitors such as 26f with these approved drugs and that new all-oral antiviral combinations based on 4BAH2 inhibitors were worth developing to supplement or even replace current treatment regimens for curing HCV infection.

  18. A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US.

    Directory of Open Access Journals (Sweden)

    Laurel S Burall

    Full Text Available Four listeriosis incidences/outbreaks, spanning 19 months, have been linked to Listeria monocytogenes serotype 4b variant (4bV strains. Three of these incidents can be linked to a defined geographical region, while the fourth is likely to be linked. In this study, whole genome sequencing (WGS of strains from these incidents was used for genomic comparisons using two approached. The first was JSpecies tetramer, which analyzed tetranucleotide frequency to assess relatedness. The second, the CFSAN SNP Pipeline, was used to perform WGS SNP analyses against three different reference genomes to evaluate relatedness by SNP distances. In each case, unrelated strains were included as controls. The analyses showed that strains from these incidents form a highly related clade with SNP differences of ≤101 within the clade and >9000 against other strains. Multi-Virulence-Locus Sequence Typing, a third standardized approach for evaluation relatedness, was used to assess the genetic drift in six conserved, known virulence loci and showed a different clustering pattern indicating possible differences in selection pressure experienced by these genes. These data suggest a high degree of relatedness among these 4bV strains linked to a defined geographic region and also highlight the possibility of alterations related to adaptation and virulence.

  19. A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US.

    Science.gov (United States)

    Burall, Laurel S; Grim, Christopher J; Datta, Atin R

    2017-01-01

    Four listeriosis incidences/outbreaks, spanning 19 months, have been linked to Listeria monocytogenes serotype 4b variant (4bV) strains. Three of these incidents can be linked to a defined geographical region, while the fourth is likely to be linked. In this study, whole genome sequencing (WGS) of strains from these incidents was used for genomic comparisons using two approached. The first was JSpecies tetramer, which analyzed tetranucleotide frequency to assess relatedness. The second, the CFSAN SNP Pipeline, was used to perform WGS SNP analyses against three different reference genomes to evaluate relatedness by SNP distances. In each case, unrelated strains were included as controls. The analyses showed that strains from these incidents form a highly related clade with SNP differences of ≤101 within the clade and >9000 against other strains. Multi-Virulence-Locus Sequence Typing, a third standardized approach for evaluation relatedness, was used to assess the genetic drift in six conserved, known virulence loci and showed a different clustering pattern indicating possible differences in selection pressure experienced by these genes. These data suggest a high degree of relatedness among these 4bV strains linked to a defined geographic region and also highlight the possibility of alterations related to adaptation and virulence.

  20. Surface radiological investigations of Trench 6 and low-level waste Line Leak Site 7. 4b at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1991-08-01

    A surface radiological investigation of Trench 6 and low-level radioactive waste (LLW) Line Leak Site 7.4b was conducted in July and August 1989 and January 1990 by the Measurement Applications and Development Group, Oak Ridge National Laboratory. The purposes of this survey were (1) to determine the presence, nature, and extent of surface radiological contamination and (2) to recommend interim corrective action to limit human exposures to radioactivity and minimize the potential for contaminant dispersion. Highest surface gamma levels encountered during the survey (39 mR/h) were found just south of the asphalt covering LLW Line Leak Site 7.4b. Elevated surface gamma levels (measuring 28 to 560 {mu}R/h) extended from this area to a width of 100 ft, westward 250 ft, and beyond the survey boundary. Beta-gamma levels up to 17 mrad/h measured on contact with the trunks of trees growing in the area southwest of Trench 6 suggest that three roots are reaching contamination deep within the ground. Since no gamma activity is associated with the trees or their leaves, the elevated beta levels are probably due to the uptake of residual {sup 90}Sr originating from the documented seepage at the Trench 6/Leak Site 7.4b area. Beta activity present in the leaf litter and surface soil indicate that decaying leaves are depositing measurable contaminants on the ground surface. Recommendations for corrective actions are included. 7 refs., 20 figs., 3 tabs.

  1. Novel Thiazolo[5,4-b]phenothiazine Derivatives: Synthesis, Structural Characterization, and In Vitro Evaluation of Antiproliferative Activity against Human Leukaemia

    Directory of Open Access Journals (Sweden)

    Balazs Brem

    2017-06-01

    Full Text Available The molecular frame of the reported series of new polyheterocyclic compounds was intended to combine the potent phenothiazine and benzothiazole pharmacophoric units. The synthetic strategy applied was based on oxidative cyclization of N-(phenothiazin-3-yl-thioamides and it was validated by the preparation of new 2-alkyl- and 2-aryl-thiazolo[5,4-b]phenothiazine derivatives. Optical properties of the series were experimentally emphasized by UV-Vis absorption/emission spectroscopy and structural features were theoretically modelled using density functional theory (DFT. In vitro activity as antileukemic agents of thiazolo[5,4-b]phenothiazine and N-(phenothiazine-3-yl-thioamides were comparatively evaluated using cultivated HL-60 human promyelocytic and THP-1 human monocytic leukaemia cell lines. Some representatives proved selectivity against tumour cell lines, cytotoxicity, apoptosis induction, and cellular metabolism impairment capacity. 2-Naphthyl-thiazolo[5,4-b]phenothiazine was identified as the most effective of the series by displaying against THP-1 cell lines a cytotoxicity close to cytarabine antineoplastic agent.

  2. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells

    Directory of Open Access Journals (Sweden)

    Chen Jiapei

    2005-08-01

    Full Text Available Abstract Severe Acute Respiratory Syndrome coronavirus (SARS-CoV, cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4 is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis.

  3. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle.

    NARCIS (Netherlands)

    Paton, D.J.; Clerq, De K.; Greiner, M.; Dekker, A.; Brocchi, E.; Bergmann, I.E.; Sammin, D.J.; Gubbins, S.; Parida, S.

    2006-01-01

    There has been much debate about the use of the so-called ¿vaccinate-to-live¿ policy for the control of foot-and-mouth disease (FMD) in Europe, according to which, spread of the FMD virus (FMDV) from future outbreaks could be controlled by a short period of ¿emergency¿ vaccination of surrounding

  4. The thiazolobenzimidazole TBZE-029 inhibits enterovirus replication by targeting a short region immediately downstream from motif C in the nonstructural protein 2C.

    NARCIS (Netherlands)

    Palma, A.M. de; Heggermont, W.; Lanke, K.H.W.; Coutard, B.; Bergmann, M.; Monforte, A.M.; Canard, B.; Clercq, E. de; Chimirri, A.; Purstinger, G.; Rohayem, J.; Kuppeveld, F.J.M. van; Neyts, J.

    2008-01-01

    TBZE-029 {1-(2,6-difluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole} is a novel selective inhibitor of the replication of several enteroviruses. We show that TBZE-029 exerts its antiviral activity through inhibition of viral RNA replication, without affecting polyprotein

  5. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    Science.gov (United States)

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  6. Highly efficient infectious cell culture of three hepatitis C virus genotype 2b strains and sensitivity to lead protease, nonstructural protein 5A, and polymerase inhibitors

    DEFF Research Database (Denmark)

    Ramirez, Santseharay; Li, Yi-Ping; Jensen, Sanne B

    2014-01-01

    UNLABELLED: Hepatitis C virus (HCV) is a genetically diverse virus with multiple genotypes exhibiting remarkable differences, particularly in drug susceptibility. Drug and vaccine development will benefit from high-titer HCV cultures mimicking the complete viral life cycle, but such systems only...... exist for genotypes 1a and 2a. We developed efficient culture systems for the epidemiologically important genotype 2b. Full-length molecular clones of patient strains DH8 and DH10 were adapted to efficient growth in Huh7.5 cells by using F1468L/A1676S/D3001G (LSG) mutations. The previously developed J8......cc prototype 2b recombinant was further adapted. DH8 and J8 achieved infectivity titers >4.5 log10 Focus-Forming Units/mL. A defined set of DH8 mutations had cross-isolate adapting potential. A chimeric genome with the DH10 polyprotein coding sequence inserted into a vector with J8 untranslated...

  7. Adhesive strength of pilot-scale washed cottonseed meal in comparison with a synthetic adhesive for non-structural application

    Science.gov (United States)

    Great progress has been made on developing bio-based wood adhesives from renewable natural resources over last couple of decades . Water-washed cottonseed meal (WCSM) showed the adhesive performance comparable to cottonseed protein isolate. To promote WCSM as an industrial wood adhesive for non-stru...

  8. Influenza pathogenesis: mechanisms of modulation by agent proteins

    Directory of Open Access Journals (Sweden)

    M. Yu. Shchelkanov

    2015-01-01

    Full Text Available Modern concepts of the influence of the proteins from viruses-etiological agents of flu – Influenzavirus A, B and C (Orthomyxoviridae – on the development of different elements of the main disease pathogenesis are analyzed in the review. In particular, the short description of life cycle of Influenza viruses is alleguered with special attention to those its stages which are capable to modulate pathogenetic mechanisms. The interrelation between the structure of hemagglutinin receptor-binding site and virus tropism as well as the influence of the receptor-destroying virus proteins on this phenomenon is described. The mechanism of suppression of interferon production in the infected cell by virus NS1 protein is presented. The induction of apoptosis by nonstructural PB1-F2 protein of Influenza A virusis described. 

  9. Elucidating structural order and disorder phenomena in mullite-type Al{sub 4}B{sub 2}O{sub 9} by automated electron diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haishuang; Krysiak, Yaşar [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Hoffmann, Kristin [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); Barton, Bastian [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Molina-Luna, Leopoldo [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Neder, Reinhard B. [Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr.3, 91058 Erlangen (Germany); Kleebe, Hans-Joachim [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Gesing, Thorsten M. [Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); Schneider, Hartmut [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Fischer, Reinhard X. [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); and others

    2017-05-15

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.

  10. Syntheses and Biological Activities of 6-Aryl-3-(3-hydroxy- propyl-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines

    Directory of Open Access Journals (Sweden)

    Hai-le Zhang

    2007-03-01

    Full Text Available A series of 6-aryl-3-(3-hydroxypropyl-7H-1,2,4-triazolo[3,4-b][1,3,4]-thia-diazines were synthesized by the reaction of 4-amino-3-(3-hydroxypropyl-5-mercapto-1,2,4-triazole (1 with substituted ω-haloacetophenones. Their structures were confirmed by elemental analysis, IR, 1H-NMR, and 13C-NMR. Tests of plant growth regulating effects showed that the title compounds display remarkable inhibitory activities on the growth of radish and wheat.

  11. 6,6′-(Pyridine-2,6-diylbis(pyrrolo[3,4-b]pyridine-5,7-dione

    Directory of Open Access Journals (Sweden)

    P. C. W. Van der Berg

    2011-11-01

    Full Text Available The title compound, C19H9N5O4, has crystallographically imposed twofold rotational symmetry. The asymmetric unit contains one half-molecule. The crystal structure is stabilized by π–π stacking of inversion-related pyrrolo[3,4-b]pyridine rings, with a centroid–centroid distance between stacked pyridines of 3.6960 (8 Å. The dihedral angle between the central pyridine ring and the pyrrolo-pyridine side rings is 77.86 (2° while the angle between the two side chains is 60.87 (2°.

  12. Listeria monocytogenes serotype 1/2b and 4b isolates from human clinical cases and foods show differences in tolerance to refrigeration and salt stress.

    Science.gov (United States)

    Ribeiro, V B; Destro, M T

    2014-09-01

    Control of Listeria monocytogenes in food processing facilities is a difficult issue because of the ability of this microorganism to form biofilms and adapt to adverse environmental conditions. Survival at high concentrations of sodium chloride and growth at refrigeration temperatures are two other important characteristics of L. monocytogenes isolates. The aim of this study was to compare the growth characteristics under stress conditions at different temperatures of L. monocytogenes serotypes responsible for the majority of clinical cases from different sources. Twenty-two L. monocytogenes isolates, 12 from clinical cases (8 serotype 4b and 4 serotype 1/2a) and 10 from food (6 serotype 4b and 4 serotype 1/2a), and an L. monocytogenes Scott A (serotype 4b) reference strain were analyzed for the ability to grow in brain heart infusion broth plus 1.9 M NaCl (11%) at 4, 10, and 25°C for 73, 42, and 15 days, respectively. The majority of L. monocytogenes strains was viable or even grew at 4°C and under the high osmotic conditions usually used to control pathogens in the food industry. At 10°C, most strains could adapt and grow; however, no significant difference (P > 0.05) was found for lag-phase duration, maximum growth rate, and maximum cell density. At 25°C, all strains were able to grow, and populations increased by up 5 log CFU/ml. Clinical strains had a significantly longer lag phase and lower maximum cell density (P < 0.05) than did food strains. Regarding virulence potential, no significant differences in hemolytic activity were found among serotypes; however, serotype 4b strains were more invasive in Caco-2 cells than were serotype 1/2a strains (P < 0.05). The global tendency of decreasing NaCl concentrations in processed foods for health reasons may facilitate L. monocytogenes survival and growth in these products. Therefore, food companies must consider additional microbial growth barriers to assure product safety.

  13. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    Science.gov (United States)

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed

  14. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - models and correlations

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document describes the major modifications and improvements made to the modeling of the RAMONA-3B/MOD0 code since 1981, when the code description and assessment report was completed. The new version of the code is RAMONA-4B. RAMONA-4B is a systems transient code for application to different versions of Boiling Water Reactors (BWR) such as the current BWR, the Advanced Boiling Water Reactor (ABWR), and the Simplified Boiling Water Reactor (SBWR). This code uses a three-dimensional neutron kinetics model coupled with a multichannel, non-equilibrium, drift-flux, two-phase flow formulation of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients and instability issues. Chapter 1 is an overview of the code's capabilities and limitations; Chapter 2 discusses the neutron kinetics modeling and the implementation of reactivity edits. Chapter 3 is an overview of the heat conduction calculations. Chapter 4 presents modifications to the thermal-hydraulics model of the vessel, recirculation loop, steam separators, boron transport, and SBWR specific components. Chapter 5 describes modeling of the plant control and safety systems. Chapter 6 presents and modeling of Balance of Plant (BOP). Chapter 7 describes the mechanistic containment model in the code. The content of this report is complementary to the RAMONA-3B code description and assessment document. 53 refs., 81 figs., 13 tabs

  15. Synthesis, characterization and anti cancer activity of some fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles

    Directory of Open Access Journals (Sweden)

    Deepak Chowrasia

    2017-05-01

    Full Text Available A series of fluorinated 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (2a–2i was synthesized by condensation of various substituted 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiols (1a–1i with penta fluoro benzoic acid in good yields (60–80%. The synthesized compounds were screened for anticancer activity against three cancerous cell lines MCF7 (human breast cancer, SaOS-2 (human osteosarcoma and K562 (human myeloid leukemia. The compounds showed moderate to good antiproliferative potency against the studied cell lines. Among these, compound 2b showed higher antiproliferative activity (IC50 22.1, 19 and 15 μM against MCF7, SaOS-2 and K562, respectively while 2a exhibited least antiproliferative activity (IC50 30.2, 39 and 29.4 μM against MCF7, SaOS-2 and K562 cells, respectively. Therefore, the present study demonstrates that fluorine substituted 3,6-diaryl-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles would be a better prospective in the development of anticancer drugs.

  16. Quinolino[3,4-b]quinoxalines and pyridazino[4,3-c]quinoline derivatives: Synthesis, inhibition of topoisomerase IIα, G-quadruplex binding and cytotoxic properties.

    Science.gov (United States)

    Palluotto, Fausta; Sosic, Alice; Pinato, Odra; Zoidis, Grigoris; Catto, Marco; Sissi, Claudia; Gatto, Barbara; Carotti, Angelo

    2016-11-10

    The quinoline motif fused with other heterocyclic systems plays an important role in the field of anticancer drug development. An extensive series of tetracyclic quinolino[3,4-b]quinoxalines N-5 or C-6 substituted with basic side chain and a limited number of tricyclic pyridazino[4,3-c]quinolines N-6 substituted were designed, synthesized and evaluated for topoisomerase IIα (Topo IIα) inhibitory activity, ability to bind and stabilize G-quadruplex structures and cytotoxic properties against two human cancer cell lines (HeLa and MCF-7). Almost all of the tested agents showed a high activity as Topo IIα inhibitors and G-quadruplex stabilizers. Among all the derivatives studied, the quinolino[3,4-b]quinoxalines 11 and 23, N-5 and C-6 substituted respectively, stand out as the most promising compounds. Derivative 11 resulted a selective binder to selected G-quadruplex sequences, while derivative 23 displayed the most interesting Topo IIα inhibitory activity (IC50 = 5.14 μM); both showed high cytotoxic activity (IC50 HeLa = 2.04 μM and 2.32 μM, respectively). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Vision development over an extended follow-up period in babies after successful vitrectomy for stage 4b retinopathy of prematurity.

    Science.gov (United States)

    Gadkari, Salil; Kamdar, Rushita; Kulkarni, Sucheta; Deshpande, Madan; Taras, Sudhir

    2015-05-01

    To demonstrate improvement in the vision of babies after successful vitrectomy for stage 4b retinopathy of prematurity (ROP) over an extended period of time. This was an observational prospective case series. Eight babies who had undergone successful vitrectomy in either their only seeing eye (or both eyes) with stage 4b ROP were followed up post-operatively for a period of 80 weeks or more. Vision with Teller acuity chart, refraction, binocular indirect ophthalmoscopy, and documentation with RetCam was done at each visit. Vision of the (only/better) seeing operated eye with corrective glasses was graded for the purpose of statistical evaluation. Paired t test was performed to compare the vision prior to 30 weeks and at or after 80 weeks. Statistically significant improvement in vision was noted at or after 80 weeks as compared to the vision recorded before 30 weeks (p = 0.0062). Unlike in adult intraocular surgeries where stable visual acuity is reached well before 30 weeks, continuing improvement at 80 weeks and beyond is noted. Gradual restoration of the retinal architecture and plasticity of the infant's developing brain are thought to be responsible.

  18. RAMONA-4B a computer code with three-dimensional neutron kinetics for BWR and SBWR system transient - user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Mallen, A.N.; Neymotin, L.Y.

    1998-03-01

    This document is the User`s Manual for the Boiling Water Reactor (BWR), and Simplified Boiling Water Reactor (SBWR) systems transient code RAMONA-4B. The code uses a three-dimensional neutron-kinetics model coupled with a multichannel, nonequilibrium, drift-flux, phase-flow model of the thermal hydraulics of the reactor vessel. The code is designed to analyze a wide spectrum of BWR core and system transients. Chapter 1 gives an overview of the code`s capabilities and limitations; Chapter 2 describes the code`s structure, lists major subroutines, and discusses the computer requirements. Chapter 3 is on code, auxillary codes, and instructions for running RAMONA-4B on Sun SPARC and IBM Workstations. Chapter 4 contains component descriptions and detailed card-by-card input instructions. Chapter 5 provides samples of the tabulated output for the steady-state and transient calculations and discusses the plotting procedures for the steady-state and transient calculations. Three appendices contain important user and programmer information: lists of plot variables (Appendix A) listings of input deck for sample problem (Appendix B), and a description of the plotting program PAD (Appendix C). 24 refs., 18 figs., 11 tabs.

  19. Synthesis and antimicrobial activity of some novel fused heterocyclic 1,2,4-triazolo [3,4-b][1,3,4] thiadiazine derivatives

    Directory of Open Access Journals (Sweden)

    Jagdish K. Sahu

    2014-01-01

    Full Text Available In the present investigation, the synthesis and antimicrobial evaluation of 1,2,4-triazolo [3,4-b][1,3,4] thiadiazine including different pharmacophores are aimed at. In this study, a series of 6-aryl-3- (3,4 -dialkoxyphenyl-7H -[1,2,4]triazolo [3,4-b][1,3,4] thiadiazine (7a-7k was synthesized by condensing 4-amino-5-(3,4-dialkoxyphenyl-4H-[1,2,4]- triazole-3-thiol (6 with various aromatic carboxylic acids in the presence of phenacyl bromides through one-pot reaction. Eleven fused heterocyclic derivatives were successfully synthesized. The structures of these newly synthesized compounds were characterized by IR, 1 H NMR and mass spectroscopic studies. All the synthesized compounds were screened for their antimicrobial evaluation. Some of the compounds exhibited promising antimicrobial activity. From the present study it may be concluded that synthesized compounds are fruitful in terms of their structural novelty and marked biological activities. These compounds could be further modified to develop potential and safer antifungal agents.

  20. A Twisted Thieno[3,4-b]thiophene-Based Electron Acceptor Featuring a 14-π-Electron Indenoindene Core for High-Performance Organic Photovoltaics.

    Science.gov (United States)

    Xu, Sheng Jie; Zhou, Zichun; Liu, Wuyue; Zhang, Zhongbo; Liu, Feng; Yan, Hongping; Zhu, Xiaozhang

    2017-11-01

    With an indenoindene core, a new thieno[3,4-b]thiophene-based small-molecule electron acceptor, 2,2'-((2Z,2'Z)-((6,6'-(5,5,10,10-tetrakis(2-ethylhexyl)-5,10-dihydroindeno[2,1-a]indene-2,7-diyl)bis(2-octylthieno[3,4-b]thiophene-6,4-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (NITI), is successfully designed and synthesized. Compared with 12-π-electron fluorene, a carbon-bridged biphenylene with an axial symmetry, indenoindene, a carbon-bridged E-stilbene with a centrosymmetry, shows elongated π-conjugation with 14 π-electrons and one more sp 3 carbon bridge, which may increase the tunability of electronic structure and film morphology. Despite its twisted molecular framework, NITI shows a low optical bandgap of 1.49 eV in thin film and a high molar extinction coefficient of 1.90 × 10 5 m -1 cm -1 in solution. By matching NITI with a large-bandgap polymer donor, an extraordinary power conversion efficiency of 12.74% is achieved, which is among the best performance so far reported for fullerene-free organic photovoltaics and is inspiring for the design of new electron acceptors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Non-structural carbohydrates regulated by season and species in the subtropical monsoon broad-leaved evergreen forest of Yunnan Province, China.

    Science.gov (United States)

    Liu, Wande; Su, Jianrong; Li, Shuaifeng; Lang, Xuedong; Huang, Xiaobo

    2018-01-18

    Non-structural carbohydrates (NSC) play important roles in adapting to environments in plants. Despite extensive research on the seasonal dynamics and species differences of NSC, the relative contributions of season and species to NSC is not well understood. We measured the concentration of starch, soluble sugar, NSC, and the soluble sugar:starch ratio in leaves, twigs, trunks and roots of twenty dominant species for dry and wet season in monsoon broad-leaved evergreen forest, respectively. The majority of concentration of NSC and starch in the roots, and the leaves contained the highest concentration of soluble sugar. A seasonal variation in starch and NSC concentrations higher in the dry season. Conversely, the wet season samples had higher concentration of soluble sugar and the sugar:starch ratio. Significant differences exist for starch, soluble sugar and NSC concentrations and the sugar:starch ratio across species. Most species had higher starch and NSC concentrations in the dry season and higher soluble sugar concentration and the sugar:starch ratio in wet season. Repeated variance analysis showed that starch and NSC concentrations were strongly affected by season although the effect of seasons, species, and the interaction of the two on the starch, soluble sugar, and NSC concentrations were significant.

  2. Determination of water-extractable nonstructural carbohydrates, including inulin, in grass samples with high-performance anion exchange chromatography and pulsed amperometric detection.

    Science.gov (United States)

    Raessler, Michael; Wissuwa, Bianka; Breul, Alexander; Unger, Wolfgang; Grimm, Torsten

    2008-09-10

    The exact and reliable determination of carbohydrates in plant samples of different origin is of great importance with respect to plant physiology. Additionally, the identification and quantification of carbohydrates are necessary for the evaluation of the impact of these compounds on the biogeochemistry of carbon. To attain this goal, it is necessary to analyze a great number of samples with both high sensitivity and selectivity within a limited time frame. This paper presents a rugged and easy method that allows the isocratic chromatographic determination of 12 carbohydrates and sugar alcohols from one sample within 30 min. The method was successfully applied to a variety of plant materials with particular emphasis on perennial ryegrass samples of the species Lolium perenne. The method was easily extended to the analysis of the polysaccharide inulin after its acidic hydrolysis into the corresponding monomers without the need for substantial change of chromatographic conditions or even the use of enzymes. It therefore offers a fundamental advantage for the analysis of the complex mixture of nonstructural carbohydrates often found in plant samples.

  3. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla)

    Science.gov (United States)

    Song, Xinzhang; Peng, Changhui; Zhou, Guomo; Gu, Honghao; Li, Quan; Zhang, Chao

    2016-01-01

    Moso bamboo can rapidly complete its growth in both height and diameter within only 35–40 days after shoot emergence. However, the underlying mechanism for this “explosive growth” remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches, and especially trunks and rhizomes to the “explosively growing” shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the “explosive growth” of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo. PMID:27181522

  4. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought.

    Science.gov (United States)

    Nardini, Andrea; Casolo, Valentino; Dal Borgo, Anna; Savi, Tadeja; Stenni, Barbara; Bertoncin, Paolo; Zini, Luca; McDowell, Nathan G

    2016-03-01

    In 2012, an extreme summer drought induced species-specific die-back in woody species in Northeastern Italy. Quercus pubescens and Ostrya carpinifolia were heavily impacted, while Prunus mahaleb was largely unaffected. By comparing seasonal changes in isotopic composition of xylem sap, rainfall and deep soil samples, we show that P. mahaleb has a deeper root system than the other two species. This morphological trait allowed P  mahaleb to maintain higher water potential (Ψ), gas exchange rates and non-structural carbohydrates content (NSC) throughout the summer, when compared with the other species. More favourable water and carbon states allowed relatively stable maintenance of stem hydraulic conductivity (k) throughout the growing season. In contrast, in Quercus pubescens and Ostrya carpinifolia, decreasing Ψ and NSC were associated with significant hydraulic failure, with spring-to-summer k loss averaging 60%. Our data support the hypothesis that drought-induced tree decline is a complex phenomenon that cannot be modelled on the basis of single predictors of tree status like hydraulic efficiency, vulnerability and carbohydrate content. Our data highlight the role of rooting depth in seasonal progression of water status, gas exchange and NSC, with possible consequences for energy-demanding mechanisms involved in the maintenance of vascular integrity. © 2015 John Wiley & Sons Ltd.

  5. Measurement of the distribution of non-structural carbohydrate composition in onion populations by a high-throughput microplate enzymatic assay.

    Science.gov (United States)

    Revanna, Roopashree; Turnbull, Matthew H; Shaw, Martin L; Wright, Kathryn M; Butler, Ruth C; Jameson, Paula E; McCallum, John A

    2013-08-15

    Non-structural carbohydrate (NSC; glucose, fructose, sucrose and fructan) composition of onions (Allium cepa L.) varies widely and is a key determinant of market usage. To analyse the physiology and genetics of onion carbohydrate metabolism and to enable selective breeding, an inexpensive, reliable and practicable sugar assay is required to phenotype large numbers of samples. A rapid, reliable and cost-effective microplate-based assay was developed for NSC analysis in onions and used to characterise variation in tissue hexose, sucrose and fructan content in open-pollinated breeding populations and in mapping populations developed from a wide onion cross. Sucrose measured in microplates employing maltase as a hydrolytic enzyme was in agreement with HPLC-PAD results. The method revealed significant variation in bulb fructan content within open-pollinated 'Pukekohe Longkeeper' breeding populations over a threefold range. Very wide segregation from 80 to 600 g kg(-1) in fructan content was observed in bulbs of F2 genetic mapping populations from the wide onion cross 'Nasik Red × CUDH2150'. The microplate enzymatic assay is a reliable and practicable method for onion sugar analysis for genetics, breeding and food technology. Open-pollinated onion populations may harbour extensive within-population variability in carbohydrate content, which may be quantified and exploited using this method. The phenotypic data obtained from genetic mapping populations show that the method is well suited to detailed genetic and physiological analysis. © 2013 Society of Chemical Industry.

  6. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species.

    Science.gov (United States)

    Rodríguez-Calcerrada, Jesús; Li, Meng; López, Rosana; Cano, Francisco Javier; Oleksyn, Jacek; Atkin, Owen K; Pita, Pilar; Aranda, Ismael; Gil, Luis

    2017-01-01

    Combining hydraulic- and carbon-related measurements helps to understand drought-induced plant mortality. Here, we investigated the role that plant respiration (R) plays in determining carbon budgets under drought. We measured the hydraulic conductivity of stems and roots, and gas exchange and nonstructural carbohydrate (NSC) concentrations of leaves, stems and roots of seedlings of two resprouting species exposed to drought or well-watered conditions: Ulmus minor (riparian tree) and Quercus ilex (dryland tree). With increasing water stress (occurring more rapidly in larger U. minor), declines in leaf, stem and root R were less pronounced than that in leaf net photosynthetic CO 2 uptake (P n ). Daytime whole-plant carbon gain was negative below -4 and -6 MPa midday xylem water potential in U. minor and Q. ilex, respectively. Relative to controls, seedlings exhibiting shoot dieback suffered c. 80% loss of hydraulic conductivity in both species, and reductions in NSC concentrations in U. minor. Higher drought-induced depletion of NSC reserves in U. minor was related to higher plant R, faster stomatal closure, and premature leaf-shedding. Differences in drought resistance relied on the ability to maintain hydraulic conductivity during drought, rather than tolerating conductivity loss. Root hydraulic failure elicited shoot dieback and precluded resprouting without root NSC reserves being apparently limiting for R. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Prospective evaluation of nonstructural 1 enzyme-linked immunosorbent assay and rapid immunochromatographic tests to detect dengue virus in patients with acute febrile illness.

    Science.gov (United States)

    Najioullah, Fatiha; Combet, Emilie; Paturel, Laure; Martial, Jenny; Koulmann, Laurence; Thomas, Laurent; Hatchuel, Yves; Cabié, André; Cesaire, Raymond

    2011-02-01

    We prospectively evaluated the Bio-Rad nonstructural 1 (NS1) enzyme-linked immunosorbent assay (ELISA) and lateral flow immunochromatographic assay (LFIA) in comparison to an in-place reverse transcription-polymerase chain reaction for dengue diagnosis. Among 537 consecutive samples from patients with acute febrile disease, 264 (49.2%) tested positive in reverse transcription-polymerase chain reaction (RT-PCR), 156 (29.1%) in NS1-antigen (Ag) ELISA, and 125 (23.3%) in NS1-Ag LFIA. Compared to the RT-PCR status, the specificity was 100% for the NS1-Ag ELISA and LFIA, but their respective sensitivities were 61.2% [95% confidence interval (CI), 55.2-67.2] and 49.4% (95% CI, 43.2-55.6), with nadirs of 37.9% and 24.1% on day 6 of illness. The NS1-Ag ELISA and LFIA were positive, respectively, for 48.0% and 40.7% of the secondary infections versus 85.0% and 66.7% of the primary infections. For patients LFIA reached respective sensitivities of 100% and 90.5%. Reports of results of dengue NS1-Ag assays should specify that negativity does not preclude DENV infection, and require further investigations in the case of severe disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Predicción de epítopos T y B de la proteína NS4b del virus dengue tipo 3

    Directory of Open Access Journals (Sweden)

    Nevis Amin

    2013-12-01

    Full Text Available El dengue se considera una enfermedad emergente y la principal de las afecciones virales transmitidas por artrópodos en términos de morbilidad y mortalidad. A pesar de los múltiples esfuerzos realizados por la comunidad científica internacional, aún no existe una vacuna licenciada contra esta entidad. La NS4b, una de las más pequeñas proteínas del virus del dengue induce respuesta de anticuerpo y de inmunomediadores en pacientes infectados por este virus. Sin embargo, poco es conocido sobre su estructura antigénica. En el campo de diseño de vacunas es muy útil la aplicación de las técnicas in silico, tanto para el descubrimiento y desarrollo de vacunas nuevas como para las existentes. Numerosos epítopos predichos se han verificado experimentalmente, lo que demostró la utilidad de tales predicciones. En este trabajo fueron aplicados los programas de predicción: BcePred, ABCpred, HLApred, ProPred y Proped1, para la búsqueda de nuevos epítopos de la proteína NS4b del virus dengue tipo 3. Se identificaron 27 epítopos de células B y 126 de la T. La secuencia de aminoácidos del mimotopo de la proteína NS4b (FEKQLGQV fue predicha como epítopo B por el servidor Bcepred, con la puntuación más alta. El análisis teórico de la potencialidad del epítopo T-FEKQLGQV tuvo una alta cobertura para ser presentado por una muestra de la población cubana. Del total de epítopos T predichos, 13 resultaron promiscuos, que pudieran ser potenciales candidatos vacunales. La importancia de estos resultados radica en sentar las bases moleculares para el desarrollo de una vacuna profiláctica de subunidades.

  9. Preliminary Results of Altitude-Wind-Tunnel Investigation of X24C-4B Turbojet Engine. IV - Performance of Modified Compressor. Part 4; Performance of Modified Compressor

    Science.gov (United States)

    Thorman, H. Carl; Dupree, David T.

    1947-01-01

    The performance of the 11-stage axial-flow compressor, modified to improve the compressor-outlet velocity, in a revised X24C-4B turbojet engine is presented and compared with the performance of the compressor in the original engine. Performance data were obtained from an investigation of the revised engine in the MACA Cleveland altitude wind tunnel. Compressor performance data were obtained for engine operation with four exhaust nozzles of different outlet area at simulated altitudes from 15,OOO to 45,000 feet, simulated flight Mach numbers from 0.24 to 1.07, and engine speeds from 4000 to 12,500 rpm. The data cover a range of corrected engine speeds from 4100 to 13,500 rpm, which correspond to compressor Mach numbers from 0.30 to 1.00.

  10. Crystal structure features in a new compound C{sub 4}B{sub 25}Mg{sub 1.42}

    Energy Technology Data Exchange (ETDEWEB)

    Konovalikhin, S. V., E-mail: ksv17@ism.ac.ru; Ponomarev, V. I. [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

    2015-09-15

    The composition of C{sub 4}B{sub 25}Mg{sub 1.42} crystal obtained by self-propagating high-temperature synthesis was determined using X-ray diffraction. This is the first crystalline structure where all boron atoms in the B{sub 12} icosahedron occupy crystallographically independent positions; this circumstance allowed us to analyze the effect of substituents on bond lengths in the icosahedron. The crystal structure features, including the channels filled with disordered Mg atoms and the spread of B—B endo- and exo-bond lengths in the icosahedra, are described. A crystallochemical analysis of pair bonds has been performed for the first time.

  11. The influence of short-term cold stress on the metabolism of non-structural carbohydrates in polar grasses

    Directory of Open Access Journals (Sweden)

    Łopieńska-Biernat Elżbieta

    2017-06-01

    Full Text Available Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.

  12. A combination of STI571 and BCR-ABL1 siRNA with overexpressed p15INK4B induced enhanced proliferation inhibition and apoptosis in chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Xia, D.Y.; Liu, L.; Hao, M.W.; Liu, Q.; Chen, R.A.; Liang, Y.M.

    2014-01-01

    p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML

  13. A combination of STI571 and BCR-ABL1 siRNA with overexpressed p15INK4B induced enhanced proliferation inhibition and apoptosis in chronic myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Xia, D.Y.; Liu, L.; Hao, M.W.; Liu, Q.; Chen, R.A.; Liang, Y.M. [Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi' an (China)

    2014-10-14

    p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.

  14. The role of matricellular proteins in glaucoma.

    LENUS (Irish Health Repository)

    Wallace, Deborah M

    2014-07-01

    Glaucoma is an optic neuropathy affecting approximately 60million people worldwide and is the second most common cause of irreversible blindness. Elevated intraocular pressure (IOP) is the main risk factor for developing glaucoma and is caused by impaired aqueous humor drainage through the trabecular meshwork (TM) and Schlemm\\'s canal (SC). In primary open angle glaucoma (POAG), this elevation in IOP in turn leads to deformation at the optic nerve head (ONH) specifically at the lamina cribrosa (LC) region where there is also a deposition of extracellular matrix (ECM) molecules such as collagen and fibronectin. Matricellular proteins are non-structural secreted glycoproteins that help cells communicate with their surrounding ECM. This family of proteins includes connective tissue growth factor (CTGF), also known as CCN2, thrombospondins (TSPs), secreted protein acidic and rich in cysteine (SPARC), periostin, osteonectin, and Tenascin-C and -X and other ECM proteins. All members appear to play a role in fibrosis and increased ECM deposition. Most are widely expressed in tissues particularly in the TM and ONH and deficiency of TSP1 and SPARC have been shown to lower IOP in mouse models of glaucoma through enhanced outflow facility. The role of these proteins in glaucoma is emerging as some have an association with the pathophysiology of the TM and LC regions and might therefore be potential targets for therapeutic intervention in glaucoma.

  15. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein

    OpenAIRE

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-01-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackieviru...

  16. Mutagenicity, stable DNA adducts, and abasic sites induced in Salmonella by phenanthro[3,4-b]- and phenanthro[4,3-b]thiophenes, sulfur analogs of benzo[c]phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Carol D. [Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); King, Leon C.; Nesnow, Stephen [Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC, 27711 (United States); Umbach, David M. [Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709 (United States); Kumar, Subodh [Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, NY 14222 (United States); DeMarini, David M. [Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC, 27711 (United States)], E-mail: demarini.david@epa.gov

    2009-02-10

    Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, but only a few have been studied for health effects. We evaluated the mutagenicity in Salmonella TA98, TA100, and TA104 of two sulfur-containing derivatives of benzo[c]phenanthrene, phenanthro[3,4-b]thiophene (P[3,4-b]T), and phenanthro[4,3-b]thiophene (P[4,3-b]T) as well as their dihydrodiol and sulfone derivatives. In addition, we assessed levels of stable DNA adducts (by {sup 32}P-postlabeling) as well as abasic sites (by an aldehydic-site assay) produced by six of these compounds in TA100. P[3,4-b]T and its 6,7- and 8,9-diols, P[3,4-b]T sulfone, P[4,3-b]T, and its 8,9-diol were mutagenic in TA100. P[3,4-b]T sulfone, the most potent mutagen, was approximately twice as potent as benzo[a]pyrene in both TA98 and TA100. Benzo-ring dihydrodiols were much more potent than K-region dihydrodiols, which had little or no mutagenic activity in any strain. P[3,4-b]T sulfone produced abasic sites and not stable DNA adducts; the other five compounds examined, B[c]P, B[c]P 3,4-diol, P[3,4-b]T, P[3,4-b]T 8,9-diol, and P[4,3-b]T 8,9-diol, produced only stable DNA adducts. P[3,4-b]T sulfone was the only compound that produced significant levels of frameshift mutagenicity and induced mutations primarily at GC sites. In contrast, B[c]P, its 3,4-diol, and the 8,9 diols of the phenanthrothiophenes induced mutations primarily at AT sites. P[3,4-b]T was not mutagenic in TA104, whereas P[3,4-b]T sulfone was. The two isomeric forms (P[3,4-b]T and P[4,3-b]T) are apparently activated differently, with the latter, but not the former, involving a diol pathway. This study is the first illustrating the potential importance of abasic sites in the mutagenicity of thia-PAHs.

  17. Modulation of carbon and nitrogen allocation in Urtica dioica and Plantago major by elevated CO{sub 2}. Impact of accumulation of nonstructural carbohydrates and ontogenetic drift

    Energy Technology Data Exchange (ETDEWEB)

    Hertog, J. den; Stulen, I.; Fonseca, F.; Delea, P.

    1996-10-01

    Doubling the atmospheric CO{sub 2} concentration from 350 to 700 {mu} l{sup -1} increased the relative growth rate (RGR) of hydroponically grown Urtica dioica L. and Plantagomajor ssp. pleiospherma Pilger only for the first 10-14 days. Previous experiments with P. major indicated that RGR did not respond i proportion to the rate of photosynthesis. The impact of changes in leaf morphology, dry matter partitioning, dry matter chemical composition and ontogenetic drift on this discrepancy is analysed. Soon after the start of the treatment, carbohydrate concentrations were higher at elevated CO{sub 2}; largely due to starch accumulation. An increase in the percentage of leaf dry matter and decreases in the specific leaf area (SLA) and the shoot nitrogen concentration were correlated with an increase in the total nonstructural carbohydrate concentration (TNC). A combination of accumulation of soluble sugars and starch and ontogenetic drift explains the decrease in SLA at the elevated CO{sub 2} level. A similar ontogenetic effect of elevated CO{sub 2} was observed on the specific root length (SRL). Shoot nitrogen concentration and percentage leaf dry matter were not affected. The net diurnal fluctuation of the carbohydrate pool in P. major was equal for both CO{sub 2} concentrations, indicating that the growth response to elevated CO{sub 2} may be ruled by other variables such as sink strength. Elevated CO{sub 2} did not greatly influence the partitioning of nitrogen between soluble and insoluble, reduced N and nitrate, nor the allocation of dry matter between leaf, stem and root. That the root to shoot ratio (F/S) was not affected by elevated CO{sub 2} implies that, to maintain a balanced activity between roots and shoot, no shift in partitioning of dry matter upon doubling of the atmospheric CO{sub 2} concentration is required. (AB)

  18. Potential of semi-structural and non-structural adaptation strategies to reduce future flood risk: case study for the Meuse

    Directory of Open Access Journals (Sweden)

    J. K. Poussin

    2012-11-01

    Full Text Available Flood risk throughout Europe has increased in the last few decades, and is projected to increase further owing to continued development in flood-prone areas and climate change. In recent years, studies have shown that adequate undertaking of semi-structural and non-structural measures can considerably decrease the costs of floods for households. However, there is little insight into how such measures can decrease the risk beyond the local level, now and in the future. To gain such insights, a modelling framework using the Damagescanner model with land-use and inundation maps for 2000 and 2030 was developed and applied to the Meuse river basin, in the region of Limburg, in the southeast of the Netherlands. The research suggests that annual flood risk may increase by up to 185% by 2030 compared with 2000, as a result of combined land-use and climate changes. The independent contributions of climate change and land-use change to the simulated increase are 108% and 37%, respectively. The risk-reduction capacity of the implementation of spatial zoning measures, which are meant to limit and regulate developments in flood-prone areas, is between 25% and 45%. Mitigation factors applied to assess the potential impact of three mitigation strategies (dry-proofing, wet-proofing, and the combination of dry- and wet-proofing in residential areas show that these strategies have a risk-reduction capacity of between 21% and 40%, depending on their rate of implementation. Combining spatial zoning and mitigation measures could reduce the total increase in risk by up to 60%. Policy implications of these results are discussed. They focus on the undertaking of effective mitigation measures, and possible ways to increase their implementation by households.

  19. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2013-07-01

    Seasonal and inter-annual dynamics of growth, non-structural carbohydrates (NSC) and carbon isotope composition (δ(13)C) of NSC were studied in a beech forest of Central Italy over a 2-year period characterized by different environmental conditions. The net C assimilated by forest trees was mainly used to sustain growth early in the season and to accumulate storage carbohydrates in trunk and root wood in the later part of the season, before leaf shedding. Growth and NSC concentration dynamics were only slightly affected by the reduced soil water content (SWC) during the drier year. Conversely, the carbon isotope analysis on NSC revealed seasonal and inter-annual variations of photosynthetic and post-carboxylation fractionation processes, with a significant increase in δ(13)C of wood and leaf soluble sugars in the drier summer year than in the wetter one. The highly significant correlation between δ(13)C of leaf soluble sugars and SWC suggests a decrease of the canopy C isotope discrimination and, hence, an increased water-use efficiency with decreasing soil water availability. This may be a relevant trait for maintaining an acceptable plant water status and a relatively high C sink capacity during dry seasonal periods. Our results suggest a short- to medium-term homeostatic response of the Collelongo beech stand to variations in water availability and solar radiation, indicating that this Mediterranean forest was able to adjust carbon-water balance in order to prevent C depletion and to sustain plant growth and reserve accumulation during relatively dry seasons.

  20. The effectiveness of the Pilates method: reducing the degree of non-structural scoliosis, and improving flexibility and pain in female college students.

    Science.gov (United States)

    Alves de Araújo, Maria Erivânia; Bezerra da Silva, Elirez; Bragade Mello, Danielli; Cader, Samária Ali; Shiguemi Inoue Salgado, Afonso; Dantas, Estélio Henrique Martin

    2012-04-01

    To evaluate the effectiveness of Pilates with regard to the degree of scoliosis, flexibility and pain. The study included 31 female students divided into two groups: a control group (CG = 11), which had no therapeutic intervention, and an experimental group (EG = 20), which underwent Pilates-based therapy. We used radiological goniometry measurements to assess the degree of scoliosis, standard goniometry measurements to determine the degree of flexibility and the scale of perceived pain using the Borg CR 10 to quantify the level of pain. The independent t test of the Cobb angle (t = - 2.317, p = 0.028), range of motion of trunk flexion (t = 3.088, p = 0.004) and pain (t = -2.478, p = 0.019) showed significant differences between the groups, with best values in the Pilates group. The dependent t test detected a significa