WorldWideScience

Sample records for nonstoichiometric phases formed

  1. REVIEWS OF TOPICAL PROBLEMS: Order-disorder transformations and phase equilibria in strongly nonstoichiometric compounds

    Science.gov (United States)

    Gusev, Aleksandr I.

    2000-01-01

    Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.

  2. Rare-earth-free luminescent non-stoichiometric phases formed in SrO-HfO.sub.2./sub. ternary compositions

    Czech Academy of Sciences Publication Activity Database

    Boháček, Pavel; Trunda, Bohumil; Beitlerová, Alena; Drahokoupil, Jan; Jarý, Vítězslav; Studnička, Václav; Nikl, Martin

    2013-01-01

    Roč. 580, Dec (2013), s. 468-474 ISSN 0925-8388 R&D Projects: GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : solid state sintering * nonstoichiometric phase * SrHfO3 * X-ray phosphor * luminescence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.726, year: 2013

  3. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  4. Structure and stability of nonstoichiometric cubic phase δ-NbN1.2(O,C)

    International Nuclear Information System (INIS)

    Shalaeva, E.V.; Mitrofanov, B.V.; Shveikin, G.P.

    1996-01-01

    The nonstoichiometric δ-niobium nitride with surplus content of nitrogen atoms and the NaCl-type structure (a=0.439 nm), i.e. δ-NbN 1.2 (O, C), is stabilized in epitaxial deposited films. The diffraction patterns of these films display intensive diffuse scattering with regular intensity vanishings in the form of plane regions in the vicinity of structural and superstructural reciprocal space points of the δ-phase and in the form of spherical surfaces in the neighbourhood of structural points. The analysis performed shows that this scattering can be associated with the presence of mixed-nature short-range order regions in the nonstoichiometric δ-NbN 1.2 (O, C) phase which are characterized by longitudinal uncorrelated atomic displacement waves, as well as by concentration-type waves. The ordered oxycarbonitride phase (X-phase) described in the first approximation by the cubic lattice with parameter a=0.392 nm is found to precipitate when annealing the films at T=873 K. It has been established that the diffuse scattering occurring in δ-NbN 1.2 (O, C) and the structure of short-range order regions exhibit certain correlation with the structure of the precipitated ordered phase - G 100 x ∼1.1G 100 δ = K 1 ; G 010 x ∼1.1G 010 δ = K 2 (where K 1 and K 2 are wave vectors of longitudinal atomic displacement waves characterizing short-range order). (orig.)

  5. Ordering effects on structure and specific heat of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    The experimental results on the change in the crystal structure and specific heat of the nonstoichiometric titanium carbide TiC y (0.5 2 C phases with cubic and trigonal symmetry and the rhombic ordered Ti 3 C 2 phase are formed in the titanium carbide at the temperature below 1000 K by the phase transitions mechanism. The temperatures and heats of the order-disorder phase transitions are determined [ru

  6. Vaporization study on nonstoichiometric NbOsub(2+-x) by mass-spectrometric method

    International Nuclear Information System (INIS)

    Matsui, T.; Naito, K.

    1981-01-01

    The vapor pressures over nonstoichiometric NbOsub(2+-x)(s) (1.972 2 (g) and NbO(g) over nonstoichiometric NbOsub(2+-x), from which the partial molar enthalpies and entropies of oxygen were calculated as a function of O/Nb composition. The composition dependence of the partial molar enthalpy and entropy obtained suggested the existence of some kind of short-range ordering in the nonstoichiometric Nbsub(2+-x) (s) phase. The enthalpies of formation of nonstoichiometric NbOsub(2+-x) (s) were also determined as a function of composition by combining the partial molar enthalpies of oxygen with the enthalpy of formation of stoichiometric NbOsub(2.000) (s). The phase diagram around NbOsub(2+-x) at high temperatures was determined from the vaporization study. (orig.)

  7. Self-propagating high-temperature synthesis of nonstoichiometric wuestite

    Energy Technology Data Exchange (ETDEWEB)

    Hiramoto, Maki [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Okinaka, Noriyuki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Akiyama, Tomohiro, E-mail: takiyama@eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The manuscript describes an SHS method of producing Fe{sub x}O. Black-Right-Pointing-Pointer Focus on the effects of nonstoichiometric Fe content and diluent addition on the phase of the SHS product. Black-Right-Pointing-Pointer Without the NaCl diluent, the lattice parameter of SHS Fe{sub 0.947}O corresponded to the theoretical lattice parameter. Black-Right-Pointing-Pointer Nonstoichiometric compounds of Fe{sub x}O (0.942 {<=} x {<=} 0.952) were obtained through SHS without additional external heating. - Abstract: This paper describes the self-propagating high-temperature synthesis (SHS) of nonstoichiometric Fe{sub x}O (x = 0.833-1), with particular focus on the effects of nonstoichiometric Fe content and diluent addition on the phase of the SHS product. In the SHS process, the raw materials Fe, NaClO{sub 4} (oxidizer), and NaCl (diluent) were thoroughly mixed in the desired ratio by ball milling, and the lower surfaces of the disk-shaped green compacts were subsequently electrically ignited to produce Fe{sub x}O through the propagation of the sustainable exothermic reaction. X-ray diffraction analysis showed that the SHS products comprised double phases of Fe{sub x}O and Fe{sub 3}O{sub 4}. The peaks of products with 0.947 {<=} x {<=} 1.00 shifted to lower angles in comparison to those of the product with x = 0.833 attributed to the lattice parameter distortion of the crystal structure because of the Fe defects. In the presence of the NaCl diluent, the raw materials were converted to high-purity Fe{sub x}O powders during the SHS process. Without the NaCl diluent, the lattice parameter of SHS Fe{sub 0.947}O corresponded to the theoretical lattice parameter. Nonstoichiometric compounds of Fe{sub x}O (0.942 {<=} x {<=} 0.952) were obtained through SHS without additional external heating.

  8. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  9. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  10. Vacancy distribution in nonstoichiometric vanadium monoxide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Davydov, D.A.; Valeeva, A.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A certain fraction of vanadium atoms in disordered cubic vanadium monoxide VO y and ordered tetragonal phase V 52 O 64 is located in tetrahedral positions of a basic cubic lattice. → These positions are never occupied by any atoms in other strongly nonstoichiometric carbides, nitrides and oxides. → Both disordered and ordered structures of vanadium monoxide are characterized by the presence of short-range order of displacements in the oxygen sublattice and short-range order of substitution in the metal sublattice. → The short-range order of displacement is caused by the local displacements of O atoms from V (t) atoms occupying tetrahedral positions. The short-range order of substitution appears because V (t) atoms in the tetrahedral positions are always in the environment of four vacancies □ of the vanadium sublattice. - Abstract: Structural vacancy distribution in the crystal lattice of the tetragonal V 52 O 64 superstructure which is formed on the basis of disordered superstoichiometric cubic vanadium monoxide VO y ≡V x O z is experimentally determined and the presence of significant local atomic displacements and large local microstrains in a crystal lattice of real ordered phase is established. It is shown that the relaxation of local microstrains takes place owing to the basic disordered cubic phase grain refinement and a formation of ordered phase domains. The ordered phase domains grow in the direction from the boundaries to the centre of grains of the disordered basic cubic phase. Isothermal evolution at 970 K of the average domain size in ordered VO 1.29 vanadium monoxide is established. It is shown that the short-range order presents in a metal sublattice of disordered cubic VO y vanadium monoxide. The character of the short-range order is such that vanadium atoms occupying tetrahedral positions are in the environment of four vacant sites of the vanadium sublattice. This means that the

  11. Kinematics and thermodynamics of non-stoichiometric oxidation phase transitions in spent fuel

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-01-01

    At low temperatures ( 2 lattice to a U 4 O 9 lattice but with an oxygen-to-uranium (O/U) ratio of ∼2.4. Also, the weight gain time response has a plateau as the O/U approaches 2.4. Part of this response results from a geometrical dependency as a U 4 O 9 oxidation front propagates into grain volumes Of UO 2 It may also be indicative of a metastable, non-stoichiometric U 4 O 9 phase whose existence may inhibit the transition kinetics to the next expected phase Of U 3 O 8 . To gain a mechanistic understanding and to plan future oxidation tests, lattice kinematic and thermodynamic models are developed for lattice deformations and energetics of lattice phase changes (UO 2 → U 4 O 9 → U 3 0 7 → U 3 O 8) that include zeroth order influences on oxidation kinetics due to interstitial oxygen atoms and vacancies plus interstitial and substitutional actinides and fission decay products in spent fuel

  12. Thermodynamic Studies of the Phase Relationships of Nonstoichiometric Cerium Oxides at Higher Temperatures

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater-or-equal, slan......Partial molar thermodynamic quantities for oxygen in nonstoichiometric cerium oxides were determined by thermogravimetric analysis in CO/CO2 mixtures in the temperature range 900–1400°C. Under these conditions compositions within the range 2.00 greater-or-equal, slanted O/M greater...

  13. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery

    International Nuclear Information System (INIS)

    Lapp, J.; Davidson, J.H.; Lipiński, W.

    2012-01-01

    Improvements in the effectiveness of solid phase heat recovery and in the thermodynamic properties of metal oxides are the most important paths to achieving unprecedented thermal efficiencies of 10% and higher in non-stoichiometric solar redox reactors. In this paper, the impact of solid and gas phase heat recovery on the efficiency of a non-stoichiometric cerium dioxide-based H 2 O/CO 2 splitting cycle realized in a solar-driven reactor are evaluated in a parametric thermodynamic analysis. Application of solid phase heat recovery to the cycling metal oxide allows for lower reduction zone operating temperatures, simplifying reactor design. An optimum temperature for metal oxide reduction results from two competing phenomena as the reduction temperature is increased: increasing re-radiation losses from the reactor aperture and decreasing heat loss due to imperfect solid phase heat recovery. Additionally, solid phase heat recovery increases the efficiency gains made possible by gas phase heat recovery. -- Highlights: ► Both solid and gas phase heat recovery are essential to achieve high thermal efficiency in non-stoichiometric ceria-based solar redox reactors. ► Solid phase heat recovery allows for lower reduction temperatures and increases the gains made possible by gas phase heat recovery. ► The optimum reduction temperature increases with increasing concentration ratio and decreasing solid phase heat recovery effectiveness. ► Even moderate levels of heat recovery dramatically improve reactor efficiency from 3.5% to 16%.

  14. The influence of Mn on the crystallography and electrochemistry of nonstoichiometric AB5-type hydride-forming compounds

    International Nuclear Information System (INIS)

    Notten, P.H.L.; Latroche, M.; Percheron-Guegan, A.

    1999-01-01

    To design Co-free, low-pressure, hydride-forming compounds for application in rechargeable nickel metal hydride batteries, nonstoichiometric AB x materials were investigated. The influence of both the Mn content and the degree of nonstoichiometry on the crystallography, electrochemical cycling stability, and electrode morphology were studied. The investigated composition was in the range of La(Ni 1-z Mn z ) x with 5.0 le x le 6.0 and 0 le xz le 2.0. The annealing temperature was essential in preparing homogeneous compounds. In agreement with geometric considerations, both the a and c axis of the hexagonal unit cell increase with increasing Mn content. In contrast, the a axis decreases with increasing degree of nonstoichiometry. As proved by neutron-diffraction experiments, the introduction of dumbbell pairs of Ni or Mn atoms on the La positions in the crystal lattice is responsible for this behavior. The electrochemical cycling stability is found to be strongly dependent on both the chemical and nonstoichiometric composition. Electrochemically stable materials are characterized by the absence of a significant particle-size reduction upon electrode cycling, reducing the overall oxidation rate. Unstable materials suffer from severe mechanical cracking through which the oxidation rate is increased. The improved mechanical stability is attributed to the reduced discrete lattice expansion. The most stable compound has a partial hydrogen pressure of only 0.1 bar, which matches well with that desirable in practical NiMH batteries. Neutron-diffraction experiments confirmed the hypothesis that La atoms are replaced by dumbbell pairs of Ni, in the case of the binary LaNi 5.4 , and by Mn atoms in the case of the mn-containing nonstoichiometric compounds. Electron-probe microanalyses and density measurements support the dumbbell hypothesis

  15. Ordering effects on the microstructure and microhardness of nonstoichiometric titanium carbide TiCy

    International Nuclear Information System (INIS)

    Zueva, L.V.; Lipatnikov, V.N.; Gusev, A.I.

    2000-01-01

    The effect of transition from the disordered state to the ordered one on the microstructure and microhardness of the nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.97) is studied. It is shown that the Ti 2 C and Ti 3 C 2 ordered phases are formed due to annealing at the temperature about 1073 K in the field of TiC 0.50 -TiC 0.70 . It is established that the grains growth by annealing leads to decrease in and ordering to increase in the TiC y carbide microhardness [ru

  16. Coulometric titration at low temperatures-nonstoichiometric silver selenide

    OpenAIRE

    Beck, Gesa K.; Janek, Jürgen

    2003-01-01

    A modified coulometric titration technique is described for the investigation of nonstoichiometric phases at low temperatures. It allows to obtain titration curves at temperatures where the conventional coulometric titration technique fails because of too small chemical diffusion coefficients of the mobile component. This method for indirect coulometric titration is applied to silver selenide between -100 and 100 °C. The titration curves are analyzed on the basis of a defect chemical model an...

  17. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  18. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  19. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  20. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    Science.gov (United States)

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  1. Atom-vacancy ordering and magnetic susceptibility of nonstoichiometric hafnium carbide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Zyryanova, A.N.

    1999-01-01

    Experimental results on magnetic susceptibility of nonstoichiometric hafnium carbide HfC y (0.6 0.71 , HfC 0.78 and HfC 0.83 in the range of 870-930 K the anomalies are revealed which are associated with superstructure short-range ordering in a non-metallics sublattice. It is shown that a short-range order in HfC 0.71 and HfC 0.78 carbides corresponds to Hf 3 C 2 ordered phase, and in HfC 0.83 carbide - to Hf 6 C 5 ordered phase. HfC 0.78 carbide is found to possesses zero magnetic susceptibility in temperature range 910-980 K [ru

  2. Diffraction study on the nonstoichiometric α-U2N3+x phase

    International Nuclear Information System (INIS)

    Serizawa, H.; Fukuda, K.; Ishii, Y.; Funahashi, S.; Katsura, M.

    1993-01-01

    X-ray and neutron diffraction studies were performed on nonstoichiometric α-U 2 N 3+ x having a composition range 1.68 2 N 3+x in this composition range was distorted Mn 2 O 3 -type. Structure parameters of U and N atoms were determined. The results showed that positions of U atoms varied continuously with nitrogen content. No evidence of the modification from bcc to fcc could be obtained. Interatomic distances of U-U and U-N were determined. The position parameter of N atoms showed that N atoms were slightly deviated from the tetrahedral site. (author)

  3. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  4. Kinematics and thermodynamics across a propagating non-stoichiometric oxidation phase front in spent fuel grains

    International Nuclear Information System (INIS)

    Stout, R.B.; Kansa, E.J.; Wijesinghe, A.M.

    1993-09-01

    Spent fuel contains mixtures, alloy and compound, but are dominated by U and O except for some UO 2 fuels with burnable poisons (gadolinia in BWR rods), the other elements evolve during reactor operation from neutron reaction and fission + fission decay events. Due to decay, chemical composition and activity of spent fuel will continue to evolve after removal from reactors. During the time interval with significant radioactivity levels relevant for a geological repository, it is important to develop models for potential chemical responses in spent fuel and potential degradation of repository. One such potential impact is the oxidation of spent fuel, which results in initial phase change of UO 2 lattice to U 4 O 9 and the next phase change is probably to U 3 O 8 although it has not been observed yet below 200C. The U 4 O 9 lattice is nonstoichiometric with a O/U weight ratio at 2.4. Preliminary indications are that the UO 2 has a O/U of 2. 4 at the time just before it transforms into the U 4 O 9 phase. In the oxygen weight gain versus time response, a plateau appears as the O/U approaches 2.4. Part of this plateau is due to geometrical effects of a U 4 O 9 phase change front propagating into UO 2 grain volumes; however, this may indicate a metastable phase change delay kinetics or a diffusional related delay time until the oxygen density can satisfy stoichiometry and energy conditions for phase changes. Experimental data show a front of U 4 O 9 lattice structure propagating into grains of the UO 2 lattice. To describe this spatially inhomogenous oxidation phase transition, as well as the expected U 3 O 8 phase transition from the U 4 O 9 lattice, lattice models are developed and spatially discontinuous kinematic and energetic expressions are derived. 9 refs

  5. DC conductivity and Seebeck coefficient of nonstoichiometric MgCuZn ferrites

    Directory of Open Access Journals (Sweden)

    Madhuri W.

    2017-02-01

    Full Text Available Nonstoichiometric series of Mg0.5−xCuxZn0.5Fe1.9O4−δ where x = 0.0, 0.1, 0.15, 0.2 and 0.25 has been synthesized by conventional solid state reaction route. The single phase spinel structure of the double sintered ferrites was confirmed by X-ray diffraction patterns (XRD. The ferrite series was studied in terms of DC electrical conductivity and thermoelectric power in the temperature ranging from room temperature to 300 °C and 400 °C, respectively. It was observed that DC electrical conductivity and Seebeck coefficient α decreased with the increase in x. DC electrical conductivity was found to decrease by about 4 orders. All the compositions showed a negative Seebeck coefficient exhibiting n-type semiconducting nature. From the above experimental results, activation energy and mobility of all the samples were estimated. Small polaron hopping conduction mechanism was suggested for the series of ferrites. Owing to their low conductivity the nonstoichiometric MgCuZn ferrites are the best materials for transformer core and high definition television deflection yokes.

  6. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  7. Study of non-stoichiometric BaSrTiFeO3 oxide dedicated to semiconductor gas sensors

    International Nuclear Information System (INIS)

    Fasquelle, D.; Verbrugghe, N.; Deputier, S.

    2016-01-01

    Developing instrumentation systems compatible with the European RoHS directive (restriction of hazardous substances) to monitor our environment is of great interest for our society. Our research therefore aims at developing innovating integrated systems of detection dedicated to the characterization of various environmental exposures. These systems, which integrate new gas sensors containing lead-free oxides, are dedicated to the detection of flammable and toxic gases. We have firstly chosen to study semiconductor gas sensors implemented with lead-free oxides in view to develop RoHS devices. Therefore thick films deposited by spin-coating and screen-printing have been chosen for their robustness, ease to realize and ease to finally obtain cost-effective sensors. As crystalline defects and ionic vacancies are of great interest for gas detection, we have decided to study a non-stoichiometric composition of the BaSrTiFeO 3 sensible oxide. Nonstoichiometric BaSrTiFeO 3 lead-free oxide thick films were deposited by screen-printing on polycrystalline AFO 3 substrates covered by a layer of Ag-Pd acting as bottom electrode. The physical characterizations have revealed a crystalline structure mainly composed of BaTiO 3 pseudo-cubic phase and Ba 4 Ti 12 O 27 monoclinic phase for the powder, and a porous microstructure for the thick films. When compared to a BSTF thick film with a stoichiometric composition, a notable increase in the BSTF dielectric constant value was observed when taking into account of a similar microstructure and grain size. The loss tangent mean value varies more softly for the non-stoichiometric BaSrTiFeO 3 films than for the perovskite BSTF film as tanδ decreases from 0.45 to 0.04 when the frequency increases from 100 Hz to 1 MHz. (paper)

  8. First-principles study of hydrogen storage in non-stoichiometric TiCx

    International Nuclear Information System (INIS)

    Ding, Haimin; Fan, Xiaoliang; Li, Chunyan; Liu, Xiangfa; Jiang, Dong; Wang, Chunyang

    2013-01-01

    Highlights: ► The absorption of hydrogen in non-stoichiometric TiC x is thermally favorable. ► As many as four hydrogen atoms can be trapped by a carbon vacancy. ► The diffusion of hydrogen in TiC x is difficult, especially in TiC x with high x. - Abstract: In this work, the first principles calculation has been performed to study the hydrogen storage in non-stoichiometric TiC x . It is found that hydrogen absorption in stoichiometric TiC is energetically unfavorable, while it is favorable in non-stoichiometric TiC x . This indicates that the existence of carbon vacancies is essential for hydrogenation storage in TiC x . At the same time, multiple hydrogen occupancy of the vacancy has been confirmed and it is calculated that as many as four hydrogen atoms can be trapped by a carbon vacancy. These absorbed hydrogen atoms tend to uniformly distribute around the vacancy. However, it is also found that the diffusion of hydrogen atoms in TiC x is difficult, especially in TiC x with high x.

  9. Electronic structure and charge transport in nonstoichiometric tantalum oxide

    Science.gov (United States)

    Perevalov, T. V.; Gritsenko, V. A.; Gismatulin, A. A.; Voronkovskii, V. A.; Gerasimova, A. K.; Aliev, V. Sh; Prosvirin, I. A.

    2018-06-01

    The atomic and electronic structure of nonstoichiometric oxygen-deficient tantalum oxide TaO x<2.5 grown by ion beam sputtering deposition was studied. The TaO x film content was analyzed by x-ray photoelectron spectroscopy and by quantum-chemistry simulation. TaO x is composed of Ta2O5, metallic tantalum clusters and tantalum suboxides. A method for evaluating the stoichiometry parameter of TaO x from the comparison of experimental and theoretical photoelectron valence band spectra is proposed. The charge transport properties of TaO x were experimentally studied and the transport mechanism was quantitatively analyzed with four theoretical dielectric conductivity models. It was found that the charge transport in almost stoichiometric and nonstoichiometric tantalum oxide can be consistently described by the phonon-assisted tunneling between traps.

  10. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain l-fucosylation.

    Science.gov (United States)

    Naumenko, Olesya I; Zheng, Han; Xiong, Yanwen; Senchenkova, Sof'ya N; Wang, Hong; Shashkov, Alexander S; Li, Qun; Wang, Jianping; Knirel, Yuriy A

    2018-05-22

    An O-polysaccharide was isolated from the lipopolysaccharide of Escherichia albertii O2 and studied by chemical methods and 1D and 2D 1 H and 13 C NMR spectroscopy. The following structure of the O-polysaccharide was established: . The O-polysaccharide is characterized by masked regularity owing to a non-stoichiometric O-acetylation of an l-fucose residue in the main chain and a non-stoichiometric side-chain l-fucosylation of a β-GlcNAc residue. A regular linear polysaccharide was obtained by sequential Smith degradation and alkaline O-deacetylation of the O-polysaccharide. The content of the O-antigen gene cluster of E. albertii O2 was found to be essentially consistent with the O-polysaccharide structure established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Spontaneous polarization of a nonstoichiometric ferroelectric NaNO2 at low temperatures

    Science.gov (United States)

    Matyjasik, S.; Shaldin, Yu.

    2017-10-01

    We report measurements of the temperature dependence of the pyroelectric charge in a nonstoichiometric z-cut sample of sodium nitrite in the temperature range 4.2-300 K. The obtained data are supplemented by the measurements of thermally stimulated depolarization (TSD) in electric fields of different magnitudes and polarities. All the experimental results serve as the basis for constructing the temperature dependence of the spontaneous polarization ΔPs(T,U) and the pyroelectric coefficient γ(U,T) for fixed external stimuli. It is found that the value of ΔPs in the sample of sodium nitrite is negligible at low temperatures, up to 40 K. This indicates (for known experimental values of the linear expansion coefficients) a minor contribution of the sample piezoelectricity to the spontaneous polarization in this temperature range. Starting from T = 75 K, an exponential increase in the contribution to the total charge of the TSD is found only in the defect subsystem of the crystal. Based on the data of physical studies, a crystal-physics model is proposed, which differs from the model presented by Lines and Glass. Due to the splitting of ion positions in all three sublattices upon the transition to the paraelectric phase, NaNO2 crystals can be assigned to the three-dimensional type of ferroelectrics, according to the classification by Abrahams and Keve. This agrees with the estimate of the spontaneous polarization Ps ˜ 0.01 C/m2 given in the paper. This value is significantly different from the data obtained by repolarization of nonstoichiometric samples in strong electric fields up to the phase transition temperature.

  12. Effect of lead content on nonstoichiometric Bi2-xPbySr2Ca2Cu3Oδ ceramic superconductors

    International Nuclear Information System (INIS)

    Diaz-Valdes, E.; Pacheco-Malagon, G.; Contreras-Puente, G.; Mejia-Garcia, C.; Andrade-Garay, G.; Ortiz-Lopez, J.; Conde-Gallardo, A.; Falcony, C.

    1993-01-01

    Ceramic superconducting samples of the type Bi 2-x Pb y Sr 2 Ca 2 Cu 3 O δ were processed with a nonstoichiometric content of Bi and Pb (x≠y) with respect to the 2223 phase in this system. The resistance vs. temperature characteristics and the presence of the 2223 and 2212 phases as a function of the sample preparation conditions and the lead content (Bi/Pb ratio) are reported. The growth of unwanted phases such as PbO was observed for those samples with a high content of Pb (y=0.9) and Bi (x=0.1). (orig.)

  13. Sintering of nonstoichiometric UO2

    International Nuclear Information System (INIS)

    Susnik, D.; Holc, J.

    1983-01-01

    Activated sintering of UO 2 pellets at 1100 deg C is described. In CO 2 atmosphere is UO 2 is nonstoichiometric and pellets from active UO 2 powders sinter at 900 deg C to high density. At 1100 deg C the final sintered density is practically achieved at heating on sintering temperature. After reduction and cooling in H 2 atmosphere which is followed sintering in CO 2 the structure is identical to the structured UO 2 pellets sintered at high temperature in H 2 . Density of activated sintered UO 2 pellets is stable, even after additional sintering at 1800 deg C. (author)

  14. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    Science.gov (United States)

    Lagowski, J.; Gatos, H. C.

    1985-09-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  15. Model of the thermodynamic properties and structure of the non-stoichiometric plutonium and cerium oxides

    International Nuclear Information System (INIS)

    Manes, L.; Mari, C.; Ray, I.

    1979-01-01

    The tetrahedral defect consisting of one oxygen vacancy bonded to two reduced cations - is an important concept, which, as shown in the present work, can explain both the thermodynamic properties and the structures of the phases of the PuO 2 -x and CeO 2 -x systems. Based on this concept a statistical thermodynamic model has been developed and this model is described along with some preliminary calculations. A relatively good agreement with experimental thermodynamic data was obtained in this calculation. Using the exclusion principle, defect complexes each containing one tetrahedral defect are derived and it is shown that a systematic packing of these gives a good description both of the non-stoichiometric and the ordered phases observed for these oxide systems. (orig.) [de

  16. Study of the defect structure of ''pure'' and doped nonstoichiometric CeO2. Final report, January 1, 1965--May 31, 1977

    International Nuclear Information System (INIS)

    Blumenthal, R.N.

    1977-11-01

    The defect structure and transport properties of defects in nonstoichiometric oxides was studied based on their electrical and thermodynamic behavior. Similar studies were also made on doped-nonstoichiometric oxides to determine the effect of the ionic radii, valence and concentration of the dopant cation on the nonstoichiometric defect structure and the transport properties of these defects. The thermodynamic and electrical property study on ''pure'' and doped-nonstoichiometric CeO 2 /sub -x/ is reviewed. The combined study of the electrical conductivity, ionic transference, and thermodynamic measurements initiated on CaO-doped CeO 2 as a function of temperature, oxygen pressure and CaO content is discussed. The results of similar measurements on CeO 2 doped with other oxides (e.g., ThO 2 , Ta 2 O 5 , etc.) which have cations with different valences and ionic radii are also discussed. The primary objective of these studies was to determine the effect of ionic radii, valence and concentration of the dopant cation on (1) the nonstoichiometric behavior, (2) the thermodynamic quantities ΔantiH/sub O 2 / and ΔantiS/sub O 2 /, (3) the nonstoichiometric defect structure, (4) the electronic and ionic conductivities, and (5) the mobility of electrons and oxygen vacancies in doped CeO 2 /sub -x/

  17. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  18. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  19. Phase transformation order-disorder in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Vlasov, V.A.; Karmo, Yu.S.; Kustova, L.V.

    1986-01-01

    Titanium carbide delta-phase is studied using the methods of electric conductivity and differential thermal analysis (DTA). It is shown on the Ti-C system phase diagram that two regions of TiCsub(0.46-0.60) and TiCsub(0.65-1.00) compositions, different in their properties, correspond to delta-phase. Both ordered and disordered phases exist within the TiCsub(0.046-0.60) concentration range, and in equilibrium heating or cooling one phase converts to another at 590 deg C (the first order phase transformation). Samples of the TiCsub(0.65-1.00) composition are characterized by low electric conductivity stability, that is explained by strong titanium carbide electric conductivity sensitivity to defects and impurities

  20. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal; Lardhi, Sheikha F.; Ziani, Ahmed; Harb, Moussab; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin

  1. On the composition of nonstoichiometric europium monoxide

    International Nuclear Information System (INIS)

    Ignat'eva, N.I.

    1990-01-01

    Consideration is given to results of of investigation into chemical composition, homogeneity region, type of disordering of nonstoichiometric europium monoxide. Precision methods of X-ray diffraction, electron-microscopic, atomic-absorption chemical analysis were used. It is shown that lattice volume reduces with increase of oxygen content in the oxide. For monocrystal of EuO 1.01 composition a=5.146 A. All samples of europium monoxide are characterized by low conductivity. Conductivity value changes by two orders (from 10 -8 to 10 -6 Θ -1 ·cm -1 ) when passing from the sample of stoichiometric composition to maximally disordered one. The disordering is considered according to the type of charged cation vacancies, leading to occurrence of equivalent number of electron defects of positive holes. 4 refs.; 1 tab

  2. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C. [Department of Solid-State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium); Van Stiphout, K.; Santos, N. M.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Bladt, E.; Bals, S. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Comrie, C. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.

  3. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    International Nuclear Information System (INIS)

    Zima, Tatyana; Bataev, Ivan

    2016-01-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO 2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. A single-phase Sn 3 O 4 in the form of the well-separated hexagonal nanoplates and mixed SnO 2 /Sn 3 O 4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO 2 in crystal structure. • A pure phase Sn 3 O 4 nanoplates and SnO 2 /Sn 3 O 4 hierarchical structures are formed.

  4. Study of Nd-Fe-B alloys with nonstoichiometric Nd content in optimal magnetic state

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2009-01-01

    Full Text Available Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD, 57Fe Mössbauer spectroscopic phase analysis (MS, electron microscopy (TEM, high resolution TEM (HREM and Superconducting Quantum Interference Device (SQUID magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5 was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly α-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. % and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment.

  5. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal

    2015-10-27

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin-film material synthesis revealed that a non-stoichiometric Bi2−xTi2O7−1.5x structure with an x value of ∼0.25 is the primary product, consistent with the thermodynamic stability of the defect-containing structure computed using density functional theory (DFT). The approach of density functional perturbation theory (DFPT) was used along with the standard GGA PBE functional and the screened Coulomb hybrid HSE06 functional, including spin–orbit coupling, to investigate the electronic structure, the effective electron and hole masses, the dielectric constant, and the absorption coefficient. The calculated values for these properties are in excellent agreement with the measured values, corroborating the overall analysis. This study indicates potential applications of bismuth titanate as a wide-bandgap material, e.g., as a substitute for TiO2 in dye-sensitized solar cells and UV-light-driven photocatalysis.

  6. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  7. Dependence of electrical resistance in nonstoichiometric titanium carbide TiCy on carbon vacancy concentration and distribution

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    Electric conductivity in nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.98) is studied depending on concentration and distribution of carbon sublattice vacancies as well as on temperature. It is established that in TiC y at y y on the one hand and by the atom-vacancy interaction on the other hand [ru

  8. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  9. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    Science.gov (United States)

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nonstoichiometric complex of gramicidin D with KI at 0.80 (angstrom) resolution

    International Nuclear Information System (INIS)

    Olczak, A.; Glowka, M.L.; Szczesio, M.; Bojarsk, J.; Duax, W.L.; Burkhart, B.M.; Wawrzak, Z.

    2007-01-01

    The crystal structure of a nonstoichiometric complex of gramicidin D (gD) with KI has been determined at 100 K using synchrotron radiation. The final R factor was 0.106 for 83 988 observed reflections (Friedel pairs were not merged) collected to 0.80 (angstrom). The structure consists of four independent pentadecapeptides and numerous solvent molecules and salt ions. The general architecture of the antiparallel double-stranded gramicidin dimers in the crystal (a right-handed antiparallel DSβH R form) closely resembles that of previously published cation complexes of gD. However, a significantly different mixture of gramicidin isomers is found in the crystal of the KI complex, including partial occupancy of phenylalanine at position 11. Only three sites in each of the two crystallographically independent channels are partially occupied by potassium cations instead of the commonly observed seven sites. The sum of the partial occupancies of K + (1.10 per two dimers) is consistent with the sum of the iodide occupancies (1.095 over eight sites), which is also confirmed by the anomalous signal of the iodide. There was a significant asymmetry of the distribution and occupancies of cations in the crystallographically independent gramicidin channels, in contrast to the distribution found in the rubidium chloride complex with gD.

  11. Phase equilibria, phases and compounds in the Ti-C system

    International Nuclear Information System (INIS)

    Gusev, A.I.

    2002-01-01

    The results of experimental and theoretical investigations related to the phase equilibria in the titanium-carbon system are generalized. The generalized thermodynamic characteristics of the disordered titanium carbide TiC y are given. The crystal structure of all the discovered and hypothetical compounds of titanium with carbon are considered in detail. The x-ray diffraction patterns which allow one to identify all these compounds are given. The phase diagrams of the Ti-C system constructed with allowance for atomic ordering of non-stoichiometric TiC y carbide and for the existence of the compounds Ti 8 C 12 and Ti 13 C 22 (TiC 2 ) of the molecule cluster type are discussed [ru

  12. Study of the defect structure of ''pure'' and doped nonstoichiometric CeO2

    International Nuclear Information System (INIS)

    Blumenthal, R.N.

    1975-09-01

    Electrical conductivity and thermogravimetric measurements were made on Ta 2 O 5 -doped nonstoichiometric CeO 2 (i.e. Ce/sub 1-y/Ta/sub y/O/sub 2-x/ ) as a function of temperature and oxygen partial pressure. Over a limited range of temperature and nonstoichiometry, the isothermal dependence of the electrical conductivity on nonstoichiometry may be described by the equation sigma = A + Bx, where A is the electronic conductivity associated with the electronic defects produced by doping CeO 2 with Ta 2 O 5 . The electronic conductivity resulting from the nonstoichiometric defect reaction O/sup x/ + 2Ce/sub Ce//sup x/ = V 0 + 2Ce'sub Ce/ + 1 / 2 O 2 (g) is equal to Bx. The ionic conductivity may be described by the relation sigma/sub i/ = B[y+x]eμ'/sub V 0 / exp (--E/sub i//kT), and the electronic conductivity by the isothermal expressions sigma/sub e/ proportional to P/sub O 2 //sup -1/4/ and sigma/sub e/ proportional to x; x less than 3 x 10 -2 . These results are consistent with defect models involving doubly ionized oxygen vacancies. An empirical expression (i.e. Δ anti H/sub O 2 / proportional to y/2 or z/4) was obtained relating the dependence of Δ anti H/sub O 2 / on the dopant concentration of lower valent foreign cations (e.g. y/2 for Ce/sub 1-y/M/sub y/O/sub 2-y-x/ and z/4 for Ce/sub 1-z/M/sub z/O/sub 2-z/2-x/ where M = Ca, Sr and M' = Y, La). (auth)

  13. Influence of uranium dioxide nonstoichiometric oxygen on the work function of Mo(110) single crystal

    International Nuclear Information System (INIS)

    Bekmukhabetov, E.S.; Dzhajmurzin, A.A.; Imanbekov, Zh.Zh.

    1985-01-01

    The influence of the uranium dioxide nonstoichiometric oxygen on the work function of a Mo(110) single crystal has been studied. When the surface diffusion of oxygen on the tested surface takes place, the work function is shown to decrease and, subsequently, to increase until it becomes stable. The dependence of the work function on the temperature of the specimen in the range of 1600-1900 K with a minimum at 1730 K has been found. The minimum is attributed to the dipole layer formation

  14. Short-range order studies in nonstoichiometric transition metal carbides and nitrides by neutron diffuse scattering

    International Nuclear Information System (INIS)

    Priem, Thierry

    1988-01-01

    Short-range order in non-stoichiometric transition metal carbides and nitrides (TiN 0.82 , TiC 0.64 , TiC 0.76 , NbC 0.73 and NbC 0.83 ) was investigated by thermal neutron diffuse scattering on G4-4 (L.L.B - Saclay) and D10 (I.L.L. Grenoble) spectrometers. From experimental measurements, we have found that metalloid vacancies (carbon or nitrogen) prefer the f.c.c. third neighbour positions. Ordering interaction energies were calculated within the Ising model framework by three approximations: mean field (Clapp and Moss formula), Monte-Carlo simulation, Cluster variation Method. The energies obtained by the two latter methods are very close, and in qualitative agreement with theoretical values calculated from the band structure. Theoretical phase diagrams were calculated from these ordering energies for TiN x and TiC x ; three ordered structures were predicted, corresponding to compositions Ti 6 N 5 Ti 2 C and Ti 3 C 2 . On the other hand, atomic displacements are induced by vacancies. The metal first neighbours were found to move away from a vacancy, whereas the second neighbours move close to it. Near neighbour atomic displacements were theoretically determined by the lattice statics formalism with results in good agreement with experiment. (author) [fr

  15. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  16. Composition and properties tailoring in Mg.sup.2+./sup. codoped non-stoichiometric LuAG:Ce,Mg scintillation ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1689-1694 ISSN 0955-2219 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : non-stoichiometric ceramic s * LuAG:Ce * Mg scintillator * Mg 2+ codopant * antisite defects * afterglow Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  17. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  18. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jian, E-mail: dhjfeng@ciac.jl.cn; Yang Xiurong, E-mail: xryang@ciac.jl.cn [Chinese Academy of Sciences, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry (China)

    2012-08-15

    Low toxic, nonstoichiometric colloidal Ag-In-S ternary quantum dots with different Ag content were synthesized by a one-pot hot-injection method based on the reaction of metal acetylacetonates with sulfur dissolved in octadecene. X-ray diffraction (XRD), transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure, and morphology of these samples. ICP-MS was employed to analyze the compositions of Ag-In-S nanocrystals. The optical properties were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, and time-resolved photoluminescence. Varying the fraction of cationic and capping agents, the compositions of Ag-In-S nanocrystals were precisely controlled. XRD and HRTEM results indicate the compositional homogeneity of Ag-In-S. The emission spectra across the different compositions exhibiting a single bandgap feature further confirm the formation of Ag-In-S alloy NCs, rather than phase separated Ag{sub 2}S and In{sub 2}S{sub 3}. Composition-dependent tunable PL emissions have been observed. The relative PL quantum yield is up to 16 %, which exhibited substantially enhanced comparing with the stoichiometric AgInS{sub 2} semiconductor core QDs reported in previous literature. The PL decay curve of Ag-In-S has a biexponential characteristic, which indicates that the recombination of an electron and a hole is dominated by the surface defect and the recombination process associated with internal traps is reduced significantly. The large Stokes shift between the absorption peaks and their emissions should inhibit the reabsorption and Foerster energy transfer between Ag-In-S nanocrystals, which provides the alternative in the further applications where high-concentrations of nanocrystals are needed.

  19. Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2011-01-01

    The effect of thickness and composition on the electrical conductivity and optical transparency, mainly in the infrared, of ultrathin In x O y films was studied. In x O y films 35-470 A thick with oxygen atomic fractions of ∼0.3 and ∼0.5 were prepared via dc magnetron sputtering. All films were polycrystalline, consisting of only the cubic bixbiyte phase of In 2 O 3 . The average grain size of the films increased from 30 to 95 nm as the film thickness increased. The weak dependence of the electrical conductivity on the frequency and the low activation energies for conduction, a few hundredths of an eV, provided an indication that free band conduction was the primary electrical conduction mechanism in the case of all ultrathin In x O y films. It was found that introducing a high degree of nonstoichiometry in the form of oxygen deficiency did not help improve the electrical conductivity, since not all vacancies contributed two free electrons for conduction and due to impurity scattering. The optical nature of these films, studied mainly by ellipsometry, was found to be dependent on the film's composition and thickness. In the infrared, the dielectric function of all In x O y films was consistent with the Drude model, inferring that the transparency loss in this region was a result of free charge carriers. In the visible however, In x O y films under 170 A, which had an oxygen atomic fraction of ∼0.5, were modeled by extending the Drude model to the shorter wavelengths. Films over 170 A, with the same composition, were modeled using the Cauchy dispersion model, meaning that no absorption was measured. These results indicate that, optically, under specific compositions, ultrathin In x O y films undergo a transition from metalliclike behavior to dielectric behavior with increasing film thickness. Using a figure of merit approach, it was determined that a nonstoichiometric 230 A thick In x O y film, with an oxygen atomic fraction of ∼0.3, had the best combination

  20. On the phase form of a deformation quantization with separation of variables

    Science.gov (United States)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  1. Ferroelectric and piezoelectric properties of non-stoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics prepared from sol-gel derived powders

    International Nuclear Information System (INIS)

    Jain, Rajni; Gupta, Vinay; Mansingh, Abhai; Sreenivas, K.

    2004-01-01

    Ceramic compositions of strontium bismuth tantalate (SBT) [Sr 1-x Bi 2+2x/3 Ta 2 O 9 ] with x = 0.0, 0.15, 0.30, 0.45 prepared from a sol-gel process have been studied. Stoichiometric and non-stoichiometric phases stable within the series have been investigated for their structural, dielectric, ferroelectric, and piezoelectric properties. Sintering at 1000 deg. C produces a single homogeneous phase up to x = 0.15. With x > 0.15 an undesirable BiTaO 4 phase is detected and a higher sintering temperature (1100 deg. C) prevents the formation of this phase. The ferroelectric to paraelectric phase transition temperature (T c ) increases linearly from 325 to 455 deg. C up to x = 0.30, and with x > 0.30, it tends to deviate from the linear behavior. At x = 0.45 a broad and a weak transition is observed and the peak value of dielectric constant (ε' max ) is significantly reduced. The piezoelectric coefficient (d 33 ), remnant polarization (2P r ), and coercive field (2E c ) values increase linearly up to x = 0.30. The degradation in the electrical properties for x > 0.30 are attributed to the presence of undesirable BiTaO 4 phase, which is difficult to identify by X-ray powder diffraction analysis (XRD) due to the close proximity of the peaks positions of BiTaO 4 and the SBT phase

  2. Hermite-Gaussian beams with self-forming spiral phase distribution

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2014-05-01

    Spiral laser beams is a family of laser beams that preserve the structural stability up to scale and rotate with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Spiral beams have a complicated phase distribution in cross section. This paper describes the results of analytical and computer simulation of Hermite-Gaussian beams with self-forming spiral phase distribution. In the simulation used a laser beam consisting of the sum of the two modes HG TEMnm and TEMn1m1. The coefficients n1, n, m1, m were varied. Additional phase depending from the coefficients n, m, m1, n1 imposed on the resulting beam. As a result, formed the Hermite Gaussian beam phase distribution which takes the form of a spiral in the process of distribution. For modeling was used VirtualLab 5.0 (manufacturer LightTrans GmbH).

  3. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  4. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  5. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  6. Synthesis of highly non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with tunable bandgaps

    Energy Technology Data Exchange (ETDEWEB)

    Hamanaka, Yasushi, E-mail: hamanaka@nitech.ac.jp; Oyaizu, Wataru; Kawase, Masanari [Nagoya Institute of Technology, Department of Materials Science and Engineering (Japan); Kuzuya, Toshihiro [Muroran Institute of Technology, College of Design and Manufacturing Technology (Japan)

    2017-01-15

    Non-stoichiometric Cu{sub 2}ZnSnS{sub 4} nanoparticles with average diameters of 4–15 nm and quasi-polyhedral shape were successfully synthesized by a colloidal method. We found that a non-stoichiometric composition of Zn to Cu in Cu{sub 2}ZnSnS{sub 4} nanoparticles yielded a correlation where Zn content increased with a decrease in Cu content, suggesting formation of lattice defects relating to Cu and Zn, such as a Cu vacancy (V{sub Cu}), antisite with Zn replacing Cu (Zn{sub Cu}), and/or defect cluster of V{sub Cu} and Zn{sub Cu}. The bandgap energy of Cu{sub 2}ZnSnS{sub 4} nanoparticles systematically varies between 1.56 and 1.83 eV depending on the composition ratios of Cu and Zn, resulting in a wider bandgap for Cu-deficient Cu{sub 2}ZnSnS{sub 4} nanoparticles. These characteristics can be ascribed to the modification in electronic band structures due to formation of V{sub Cu} and Zn{sub Cu} on the analogy of ternary copper chalcogenide, chalcopyrite CuInSe{sub 2}, in which the top of the valence band shifts downward with decreasing Cu contents, because much like the structure of CuInSe{sub 2}, the top of the valence band is composed of a Cu 3d orbital in Cu{sub 2}ZnSnS{sub 4}.

  7. Spontaneous and continuous anti-virus disinfection from nonstoichiometric perovskite-type lanthanum manganese oxide

    Directory of Open Access Journals (Sweden)

    Ding Weng

    2015-06-01

    Full Text Available Viral pathogens have threatened human being׳s health for a long time, from periodically breakout flu epidemics to recent rising Ebola virus disease. Herein, we report a new application of nonstoichiometric Perovskite-type LaxMnO3 (x=1, 0.95, and 0.9 compounds in spontaneous and continuous disinfection of viruses. Perovskite-type LaxMnO3 (x=1, 0.95, and 0.9 is well-known for their catalytic properties involving oxidization reactions, which are usually utilized as electrodes in fuel cells. By utilizing superb oxidative ability of LaxMnO3 (x=1, 0.95, and 0.9, amino acid residues in viral envelope proteins are oxidized, thus envelope proteins are denatured and infectivity of the virus is neutralized. It is of great importance that this process does not require external energy sources like light or heat. The A/PR/8/34H1N1 influenza A virus (PR8 was employed as the sample virus in our demonstration, and high-throughput disinfections were observed. The efficiency of disinfection was correlated to oxidative ability of LaxMnO3 (x=1, 0.95, and 0.9 by EPR and H2-TPR results that La0.9MnO3 had the highest oxidative ability and correspondingly gave out the best disinfecting results within three nonstoichiometric compounds. Moreover, denaturation of hemagglutinin and neuraminidase, the two key envelope proteins of influenza A viruses, was demonstrated by HA unit assay with chicken red blood cells and NA fluorescence assay, respectively. This unique disinfecting application of La0.9MnO3 is considered as a great make up to current sterilizing methods especially to photocatalyst based disinfectants and can be widely applied to cut-off spread routes of viruses, either viral aerosol or contaminated fluid, and help in controlling the possibly upcoming epidemics like flus and hemorrhagic fever.

  8. On the phase form of a deformation quantization with separation of variables

    OpenAIRE

    Karabegov, Alexander

    2015-01-01

    Given a star product with separation of variables on a pseudo-Kaehler manifold, we obtain a new formal (1,1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star prod...

  9. Infrared transparency and electrical conductivity of non-stoichiometric InxOy films

    International Nuclear Information System (INIS)

    Joseph, Shay; Berger, Shlomo

    2010-01-01

    In an effort to achieve both high infrared transparency and electrical conductivity, In x O y films having different oxygen atomic fractions, ranging from 0.27 to 0.6 were prepared. From AC electrical measurements it was determined that conductivity of In x O y films, having oxygen atomic fraction near 0.6, is governed by the hopping conduction mechanism via energy states located in the band gap. Conductivity of In x O y films having non-stoichiometric compositions was found to be governed by the free band conduction mechanism. The conduction activation energy was decreased from about 0.47 eV to about 0.02 eV as the deviation of the oxygen atomic fraction from the stoichiometric value of 0.6 was increased. The dielectric function of the films was determined by applying the Drude-Lorentz model to ellipsometric measurements in the infrared and visible wavelengths. In the visible range, the major source for optical transmission loss is interband absorption, which was modeled by the Lorentz model. In the infrared range, optical absorption was measured and attributed to the presence of free charge carriers according to the Drude model. Fitting the model to the optical measurements required a correction factor, which was correlated with the films polarizability. In order to determine the optimal tradeoff between optical transparency in the infrared and electrical conductivity, which were found to be affected mainly by the oxygen concentration in the films, a figure of merit parameter was established. It was found that by introducing non-stoichiometry in the form of oxygen deficiency, the electrical conductivity was improved by as much as two orders of magnitude while the infrared transparency was decreased by no more than 30% with respect to stoichiometric In 2 O 3 films.

  10. Magnetic susceptibility as a method of investigation of short-range order in strongly nonstoichiometric carbides

    International Nuclear Information System (INIS)

    Nazarova, S.Z.; Gusev, A.I.

    2001-01-01

    Magnetic susceptibility in disordered and ordered carbides of transition metals (M = Ti, Zr, Hf, Nb, Ta) was studied, the results are generalized. It was ascertained that the change in carbide susceptibility induced by deviation from stoichiometry stems from specific features of electronic spectra of the compounds. The use of magnetic susceptibility for determining structural disorder-order transitions is discussed. It is shown that change in the contribution made by orbital paramagnetism, resulting from short-range order formation, is the reason of decrease in susceptibility of nonstoichiometric carbides during the ordering. Experimentally obtained data on susceptibility permitted evaluating short- and far-range order parameters in NbC y , TaC y , TiC y and HfC y carbides [ru

  11. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  12. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  13. Naturally occurring crystalline phases: analogues for radioactive waste forms

    International Nuclear Information System (INIS)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included

  14. Naturally occurring crystalline phases: analogues for radioactive waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  15. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  16. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  17. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  18. High-resolution electron-microscopic studies of the polymorphs in Ag2±δSe films

    International Nuclear Information System (INIS)

    Okabe, Toshio; Ura, Katsuhiko

    1994-01-01

    The polymorphs that appear in the low-temperature phase of silver selenide have been studied by high-resolution electron microscopy. The specimen films are intentionally prepared with excess silver or selenium over stoichiometric composition by flash evaporation, as-depositing carbon films on both sides of the specimen films to protect them from selenium sublimation and to maintain the composition throughout the heat treatment. It is shown that four different types of low-temperature phase exist: tetragonal (a = 6.98, c = 4.96 A) for a metastable phase only formed with a small grain size of less than 50 nm; face-centred cubic (a = 10.9 A) for a non-stoichiometric phase with excess silver; monoclinic (a = 7.05, b = 8.17, c = 4.34 A, α = 101.0 ) for a non-stoichiometric phase with excess selenium; and orthorhombic (a = 7.05, b 7.82, c = 4.34 A) for the stoichiometric stable phase. The topotactic relations between the orthorhombic and monoclinic types are found to be fully coherent, having the same a and c lattice parameters. (orig.)

  19. CEMS Investigations of Fe-Silicide Phases Formed by the Method of Concentration Controlled Phase Selection

    Energy Technology Data Exchange (ETDEWEB)

    Moodley, M. K.; Bharuth-Ram, K. [University of Durban-Westville, Physics Department (South Africa); Waal, H. de; Pretorius, R. [University of Stellenbosch, Physics Department (South Africa)

    2002-03-15

    Conversion electron Moessbauer spectroscopy (CEMS) measurements have been made on Fe-silicide samples formed using the method of concentration controlled phase selection. To prepare the samples a 10 nm layer of Fe{sub 30}M{sub 70} (M=Cr, Ni) was evaporated onto Si(100) surfaces, followed by evaporation of a 60 nm Fe layer. Diffusion of the Fe into the Si substrate and the formation of different Fe-Si phases was achieved by subjecting the evaporated samples to a series of heating stages, which consisted of (a) a 10 min anneal at 800 deg. C plus etch of the residual surface layer, (b) a further 3 hr anneal at 800 deg. C, (c) a 60 mJ excimer laser anneal to an energy density of 0.8 J/cm{sup 2}, and (d) a final 3 hr anneal at 800 deg. C. CEMS measurements were used to track the Fe-silicide phases formed. The CEMS spectra consisted of doublets which, based on established hyperfine parameters, could be assigned to {alpha}- or {beta}-FeSi{sub 2} or cubic FeSi. The spectra showed that {beta}-FeSi{sub 2} had formed already at the first annealing stage. Excimer laser annealing resulted in the formation of a phase with hyperfine parameters consistent with those of {alpha}-FeSi{sub 2}. A further 3 hr anneal at 800 deg. C resulted in complete reversal to the semiconducting {beta}-FeSi{sub 2} phase.

  20. Self-consolidating concrete, applications for slip-form paving : phase II.

    Science.gov (United States)

    2011-05-01

    The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction and make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TP...

  1. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  2. Ferroelectric and piezoelectric properties of non-stoichiometric Sr{sub 1-x}Bi{sub 2+2x/3}Ta{sub 2}O{sub 9} ceramics prepared from sol-gel derived powders

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajni [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Mansingh, Abhai [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)]. E-mail: kondepudysreenivas@rediffmail.com

    2004-09-15

    Ceramic compositions of strontium bismuth tantalate (SBT) [Sr{sub 1-x}Bi{sub 2+2x/3}Ta{sub 2}O{sub 9}] with x = 0.0, 0.15, 0.30, 0.45 prepared from a sol-gel process have been studied. Stoichiometric and non-stoichiometric phases stable within the series have been investigated for their structural, dielectric, ferroelectric, and piezoelectric properties. Sintering at 1000 deg. C produces a single homogeneous phase up to x = 0.15. With x > 0.15 an undesirable BiTaO{sub 4} phase is detected and a higher sintering temperature (1100 deg. C) prevents the formation of this phase. The ferroelectric to paraelectric phase transition temperature (T{sub c}) increases linearly from 325 to 455 deg. C up to x = 0.30, and with x > 0.30, it tends to deviate from the linear behavior. At x = 0.45 a broad and a weak transition is observed and the peak value of dielectric constant ({epsilon}'{sub max}) is significantly reduced. The piezoelectric coefficient (d{sub 33}), remnant polarization (2P{sub r}), and coercive field (2E{sub c}) values increase linearly up to x = 0.30. The degradation in the electrical properties for x > 0.30 are attributed to the presence of undesirable BiTaO{sub 4} phase, which is difficult to identify by X-ray powder diffraction analysis (XRD) due to the close proximity of the peaks positions of BiTaO{sub 4} and the SBT phase.

  3. Cationic Phospholipids Forming Cubic Phases: Lipoplex Structure and Transfection Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; MacDonald, Robert C. (NWU)

    2008-10-29

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl-sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl-sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  4. Cationic phospholipids forming cubic phases: lipoplex structure and transfection efficiency.

    Science.gov (United States)

    Koynova, Rumiana; Wang, Li; Macdonald, Robert C

    2008-01-01

    The transfection activity and the phase behavior of two novel cationic O-alkyl-phosphatidylcholines, 1,2-dioleoyl- sn-glycero-3-hexylphosphocholine (C6-DOPC) and 1,2-dierucoyl- sn-glycero-3-ethylphosphocholine (di22:1-EPC), have been examined with the aim of more completely understanding the mechanism of lipid-mediated DNA delivery. Both lipids form cubic phases: C6-DOPC in the entire temperature range from -10 to 90 degrees C, while di22:1-EPC exhibits an irreversible lamellar-cubic transition between 50 and 70 degrees C on heating. The lipoplexes formed by C6-DOPC arrange into hexagonal phase, while the lipoplexes of di22:1-EPC are lamellar. Both lipids exhibit lower transfection activity than the lamellar-forming 1,2-dioleoyl- sn-glycero-3-ethylphosphocholine (EDOPC). Thus, for the studied cationic phospholipid-DNA systems, the lipoplex phase state is a factor that does not seem to correlate with transfection activity. The parameter that exhibits better correlation with the transfection activity within the present data set is the phase state of the lipid dispersion prior to the addition of DNA. Thus, the lamellar lipid dispersion (EDOPC) produces more efficient lipoplexes than the dispersion with coexisting lamellar and cubic aggregates (diC22:1-EPC), which is even more efficient than the purely cubic dispersions (C6-DOPC; diC22:1-EPC after heating). It could be inferred from these data and from previous research that cubic phase lipid aggregates are unlikely to be beneficial to transfection. The lack of correlation between the phase state of lipoplexes and their transfection activity observed within the present data set does not mean that lipid phase state is generally unimportant for lipofection: a viewpoint now emerging from our previous studies is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids.

  5. Solid Phases Precipitating in Artificial Urine in the Absence and Presence of Bacteria Proteus mirabilis—A Contribution to the Understanding of Infectious Urinary Stone Formation

    Directory of Open Access Journals (Sweden)

    Jolanta Prywer

    2018-04-01

    Full Text Available Magnesium ammonium phosphate hexahydrate, called struvite, is the dominant component of infectious urinary stones. In addition to struvite, infectious urinary stones include solid phases with poor crystallinity as well as amorphous matter. This article is devoted to the analysis of these solid phases, because they have not been characterized well until now. The solid phases tested were obtained from artificial urine in the absence and presence of Proteus mirabilis. The solid phases were characterized by different techniques (X-ray Diffraction, Energy Dispersive X-ray, Scanning Electron Microscopy, as well as Raman and Infrared Spectroscopies. According to the results these phases are carbonate apatite (CA, hydroxylapatite (HAP, amorphous calcium carbonate (ACC, amorphous calcium phosphate (ACP and/or amorphous carbonated calcium phosphate (ACCP. Carbonate apatite and hydroxylapatite may occur in non-stoichiometric forms, i.e., various anions can be substituted for CO32−, OH−, and PO43− groups in them. The non-stoichiometry of carbonate apatite and hydroxylapatite also implies a deficiency of calcium ions, i.e., calcium ions may be partially replaced by other cations. Experimental techniques and chemical speciation analysis demonstrate that the presence of magnesium influences the formation of CA and HAP.

  6. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Haruaki [Department of Planetology, Kobe University, Kobe 657-8501 (Japan); Tsukamoto, Yusuke [Riken, 2-1 Hirosawa, Wako, Saitama (Japan); Furuya, Kenji; Aikawa, Yuri, E-mail: aikawa@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba (Japan)

    2016-12-10

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10{sup 5} years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10{sup 3} SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H{sub 2}O, CH{sub 4}, NH{sub 3}, and CH{sub 3}OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H{sub 2}S ice is abundant in the collapse phase. In the warm regions in the disk, H{sub 2}S is sublimated to be destroyed, while SO, H{sub 2}CS, OCS, and SO{sub 2} become abundant.

  7. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    International Nuclear Information System (INIS)

    Yoneda, Haruaki; Tsukamoto, Yusuke; Furuya, Kenji; Aikawa, Yuri

    2016-01-01

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10 5 years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10 3 SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H 2 O, CH 4 , NH 3 , and CH 3 OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H 2 S ice is abundant in the collapse phase. In the warm regions in the disk, H 2 S is sublimated to be destroyed, while SO, H 2 CS, OCS, and SO 2 become abundant.

  8. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  9. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  10. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  11. Chalcogenides formed by trivalent rare earth elements with d-elements

    International Nuclear Information System (INIS)

    Flao, Zh.; Laruehl', P.; Olitro, R.

    1981-01-01

    Data on ternary compounds formed by trivalent rare earth elements with 3d-, 4d- and 5d-elements of the Periodic system is presented. Compounds of 3d-elements both in bivalent and trivalent states are considered. The main attention is paid to the structure of the compounds. Description of a great number of new structural types of compounds is given. In certain cases the structure has not been deciphered and, besides, structural investigations with monocrystals are not numerous. Attention is drawn to the existence of nonstoichiometric compounds. References to the works on investigation of thermal (melting temperature), magnetic, optical and electric properties as well as Moessbauer effect are presented

  12. Nonstoichiometric control of tunnel-filling order, thermal expansion, and dielectric relaxation in tetragonal tungsten Bronzes Ba0.5-xTaO3-x.

    Science.gov (United States)

    Pan, Fengjuan; Li, Xiaohui; Lu, Fengqi; Wang, Xiaoming; Cao, Jiang; Kuang, Xiaojun; Véron, Emmanuel; Porcher, Florence; Suchomel, Matthew R; Wang, Jing; Allix, Mathieu

    2015-09-21

    Ordering of interpolated Ba(2+) chains and alternate Ta-O rows (TaO)(3+) in the pentagonal tunnels of tetragonal tungsten bronzes (TTB) is controlled by the nonstoichiometry in the highly nonstoichiometric Ba0.5-xTaO3-x system. In Ba0.22TaO2.72, the filling of Ba(2+) and (TaO)(3+) groups is partially ordered along the ab-plane of the simple TTB structure, resulting in a √2-type TTB superstructure (Pbmm), while in Ba0.175TaO2.675, the pentagonal tunnel filling is completely ordered along the b-axis of the simple TTB structure, leading to a triple TTB superstructure (P21212). Both superstructures show completely empty square tunnels favoring Ba(2+) conduction and feature unusual accommodation of Ta(5+) cations in the small triangular tunnels. In contrast with stoichiometric Ba6GaTa9O30, which shows linear thermal expansion of the cell parameters and monotonic decrease of permittivity with temperature within 100-800 K, these TTB superstructures and slightly nonstoichiometric simple TTB Ba0.4TaO2.9 display abnormally broad and frequency-dependent extrinsic dielectric relaxations in 10(3)-10(5) Hz above room temperature, a linear deviation of the c-axis thermal expansion around 600 K, and high dielectric permittivity ∼60-95 at 1 MHz at room temperature.

  13. Secondary phases formed during nuclear waste glass-water interactions: Thermodynamic and derived properties

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-08-01

    The thermodynamic properties of secondary phases observed to form during nuclear waste glass-water interactions are of particular interest as it is with the application of these properties together with the thermodynamic properties of other solid phases, fluid phases, and aqueous species that one may predict the environmental consequences of introducing radionuclides contained in the glass into groundwater at a high-level nuclear waste repository. The validation of these predicted consequences can be obtained from laboratory experiments and field observations at natural analogue sites. The purpose of this report is to update and expand the previous compilation (McKenzie, 1991) of thermodynamic data retrieved from the literature and/or estimated for secondary phases observed to form (and candidate phases from observed chemical compositions) during nuclear waste glass-water interactions. In addition, this report includes provisionally recommended thermodynamic data of secondary phases

  14. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    Science.gov (United States)

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils.

  15. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films

    Science.gov (United States)

    Yang, J. K.; Liang, B.; Zhao, M. J.; Gao, Y.; Zhang, F. C.; Zhao, H. L.

    2015-10-01

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~ 300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10-4 Ω•cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  16. Microstructure and phase transformations in laser clad CrxSy/Ni coating on H13 steel

    Science.gov (United States)

    Lei, Yiwen; Sun, Ronglu; Tang, Ying; Niu, Wei

    2015-03-01

    Laser cladding was carried out onto H13 steel with preplaced NiCrBSi+Ni/MoS2 powders using CO2 laser under the optimized experimental parameters of laser power 2 kW, scanning velocity 6 mm/s and laser beam diameter 3 mm. An X-ray diffractometer and scanning electron microscope with energy dispersive spectroscopy were applied to analyze the microstructure and phase compositions of the coating. Thermodynamic calculation was performed with Thermo-Calc software on the basis of a commercially available Ni-based Alloys' database. The experimental results show that MoS2 decomposed and S reacted with Cr to form nonstoichiometric CrxSy during the laser cladding process. The coating consists of spherical CrxSy particles, primary γ-Ni dendrite, interdendritic eutectic (γ-Ni+NiMo) and precipitated NiMo. The precipitated NiMo was fine and uniformly distributed in primary γ-Ni dendrite. The calculated results and experimental data indicate that the solidification process in the coating during laser cladding process was liquid→liquid+CrxSy→ liquid+CrxSy+γ-Ni→liquid+CrxSy+γ-Ni+ eutectic (γ-Ni+NiMo). A solid state phase transformation (fine and uniformly distributed NiMo precipitated from γ-Ni) occurred after the solidification process. The calculations agree well with the experimental data and it is helpful to understand the phase transformation and microstructure evolution in the coating.

  17. High-pressure phase transformations of fluorite-type dioxides

    International Nuclear Information System (INIS)

    Lin-Gun Liu

    1980-01-01

    Phase transformations in six fluorite-type dioxides ('TbO 2 ', PbO 2 , 'PrO 2 ', CeO 2 , UO 2 and ThO 2 in the order of increasing cation size, where the quotation marks indicate non-stoichiometric materials) have been investigated in the diamond-anvil press coupled with laser heating. Together with earlier work, the results show that the post-fluorite phase transformations of these dioxides fall into two groups. The smaller cation group (HfO 2 , ZrO 2 and 'TbO 2 ') transforms to a cotunnite or a distorted cotunnite-type structure at pressures in the vicinity of 100 kbar and at about 1000 0 C. The larger cation group (from PbO 2 to ThO 2 ) is believed to transform to a different type of orthorhombic modification at high pressures. It is plausible that this high-pressure phase may possess a Ni 2 Si-related structure, as was observed in ThO 2 and 'PrO 2 ' at pressures greater than 150 and 200 kbar, respectively. (orig./ME)

  18. Effect of phase transformations on laser forming of Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Fan, Y.; Cheng, P.; Yao, Y.L.; Yang, Z.; Egland, K.

    2005-01-01

    In laser forming, phase transformations in the heat-affected zone take place under steep thermal cycles, and have a significant effect on the flow behavior of Ti-6Al-4V alloy and the laser-forming process. The flow-stress data of a material are generally provided as only dependent on strain, strain rate, and temperature, while phase transformations are determined by both temperature and temperature history. Therefore, effect of phase transformations on the flow behavior of materials in thermomechanical processing is not given necessary considerations. In the present work, both the α→β transformation during heating and the decomposition of β phase, producing martensite α ' or lamellae α dependent on cooling rate, are numerically investigated. The spatial distribution of volume fractions of phases is obtained by coupling thermal and phase transformation kinetic modeling. Consequently, the flow stress of Ti-6Al-4V alloy is calculated by the rule of mixtures based on the phase ratio and the flow stress of each single phase, which is also a function of temperature, strain, and strain rate. According to the obtained flow-stress data, the laser-forming process of Ti-6Al-4V alloy is modeled by finite element method, and the deformation is predicted. A series of carefully controlled experiments are conducted to validate the theoretically predicted results

  19. Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels

    Directory of Open Access Journals (Sweden)

    Darlene Yuko Kobayashi

    1999-10-01

    Full Text Available The duplex stainless steels, having a volumetric fraction of 50% ferrite and 50% austenite, conciliate high corrosion resistance with good mechanical properties. But, in many circumstances different phase transformations may occur, such as that responsible for sigma phase precipitation, which make the steel susceptible to localized corrosion. During the sigma phase precipitation a new austenitic phase is formed with a very low corrosion resistance. In the present research the composition of this new austenitic phase was evaluated in four duplex stainless steels, with different Mo, N and Cu contents. After the solution anneal at 1050 °C, samples of these steels were aged at 850 °C during 1 h and 5 h for sigma phase precipitation. Using the ferritoscope and an image analyzer it was possible to determine the volumetric fractions of ferrite and sigma phase, respectively, while those of austenite and the new austenitic phase were determined by difference to 100% volume. Finally, by using mass balance it was possible to determine theoretically the composition of the new austenitic phase. This phase is poor in Cr and Mo free, which explains its poor corrosion resistance.

  20. Crystal phases of a glass-forming Lennard-Jones mixture

    International Nuclear Information System (INIS)

    Fernandez, Julian R.; Harrowell, Peter

    2003-01-01

    We compare the potential energy at zero temperature of a range of crystal structures for a glass-forming binary mixture of Lennard-Jones particles. The lowest-energy ordered state consists of coexisting phases of a single component face centered cubic structure and an equimolar cesium chloride structure. An infinite number of layered crystal structures are identified with energies close to this ground state. We demonstrate that the finite size increase of the energy of the coexisting crystal with incoherent interfaces is sufficient to destabilize this ordered phase in simulations of typical size. Two specific local coordination structures are identified as of possible structural significance in the amorphous state. We observe rapid crystal growth in the equimolar mixture

  1. Thermodynamic modeling of mineralogical phases formed by continuous casting powders

    International Nuclear Information System (INIS)

    Romo-Castaneda, Julio; Cruz-Ramirez, Alejandro; Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel

    2011-01-01

    A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4 Si 2 O 7 F 2 ) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2 ). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.

  2. Thermodynamic modeling of mineralogical phases formed by continuous casting powders

    Energy Technology Data Exchange (ETDEWEB)

    Romo-Castaneda, Julio [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Cruz-Ramirez, Alejandro, E-mail: alcruzr@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico)

    2011-01-10

    A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca{sub 4}Si{sub 2}O{sub 7}F{sub 2}) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF{sub 2}). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.

  3. Optical studies on Sn, K, Hg{sub 2} I{sub 2}, and I{sub 2}-doped {alpha}-HgI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Ibarra, A.; Willmott, C.; Pascual, J. L.; Dieguez, E.

    1997-07-01

    The influence on the optical properties of {alpha}-mercuric iodide stoichiometric deviations have been investigated. The optical behaviour of samples doped with Sn (IV) and K were also studied. To prepare mercury-rich and iodide rich samples (non-stoichiometric compounds), vapour phase crystal growth was performed on a closed ampoule with a mercurous iodide or iodine atmosphere, respectively. Dopants were introduced through the vapour phase by means of Snl{sub 4} and KI vapours during crystal growth. A decrease in the energy gap is deduced from the optical absorption spectra taken on non-stoichiometric and doped samples. Photoluminescence was also performed as a function of temperature while samples were under uniaxial pressure. Differences between doped, non-stoichiometric and pure samples are observed on luminescence emission wavelength and intensity.

  4. Comparison of the thermodynamic properties and high temperature chemical behavior of lanthanide and actinide oxides

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Rauh, E.G.

    1977-01-01

    The thermodynamic properties of the lanthanide and actinide oxides are examined, compared, and associated with a variety of high temperature chemical behavior. Trends are cited resulting from a number of thermodynamic and spectroscopic correlations involving solid phases, species in aqueous solution, and molecules and ions in the vapor phase. Inadequacies in the data and alternative approaches are discussed. The characterization of nonstoichiometric phases stable only at high temperatures is related to a network of heterogeneous and homogeneous equilibria. A broad perspective of similarity and dissimilarity between the lanthanides and actinides emerges and forms the basis of the projected needs for further study

  5. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  6. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  7. Study of the carbon reduction of thorium dioxide with the aid of high temperature X-ray diffractometry under controlled pressure, then under vacuum

    International Nuclear Information System (INIS)

    Pialoux, A.; Zaug, J.

    1976-01-01

    Compressed samples of various initial compositions in the range ThO 2 +nC(0 0 C. In this way, the lattice parameters of 'ThO 2 ' (fcc), 'ThC 2 ' (monoclinic, tetragonal and cubic forms) and 'ThC' (fcc) were measured and the compositions of these nonstoichiometric phases which coexist at high temperatures evaluated. Most of the thorium carbides observed contained, by all appearance, very little oxygen, and from this it was possible to refine some of the phase boundaries in the Th-C system previously established by some investigators. (Auth.)

  8. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  9. Study of the stability of ordered phases in non-stoichiometric transition metal carbides and nitrides

    International Nuclear Information System (INIS)

    Landesman, J.P.

    1986-03-01

    After presenting the results of neutron diffraction experiments on the ordered compounds Nb 6 C 5 and Ti 2 N, we propose a classification of the ordered phases encountered in this class of compounds, and, using a tight-binding description of the electronic structure, we calculate the band energy for several ordered configurations and the disordered configuration, for a given metalloid vacancy concentration. We can then, on one hand, predict the relative stability (at O K) of the various ordered phases possible at this concentration - and these predictions are in good agreement with the experimental observations, mainly in the case of carbides - and on the other hand calculate the effective pair interactions V 1 and V 2 which appear in the Ising model and reconstruct theoretical stability maps, for any vacancy concentration, which are again in agreement with the phenomenological stability maps (overall agreement in the case of nitrides, more precise agreement in the case of carbides) [fr

  10. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    CERN Document Server

    Berti, D; Baglioni, P; Dante, S; Hauss, T

    2002-01-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considere...

  11. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    Science.gov (United States)

    Tarascon, J. M.; Murphy, D. W.

    1986-02-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo15Se19, which can exist in two crystallographic forms, denoted AA and BB, when prepared from In3Mo15Se19 and In2Mo15Se19, respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula LixMo15Se19. This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both LixMo15Se19 systems as a function of x has been established using electrochemical test cells (based on Mo15Se19 as the cathode), and in situ x-ray measurements as the cells discharge. Both LixMo15Se19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo15Se19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In2Mo15Se19 and In3Mo15Se19. We found that In2Mo15Se19 can reversibly incorporate 6.4 lithium atoms while In3Mo15Se19 does not react. This behavior is explained on the basis of structural considerations.

  12. Spin Forming Aluminum Crew Module (CM) Metallic Aft Pressure Vessel Bulkhead (APVBH) - Phase II

    Science.gov (United States)

    Hoffman, Eric K.; Domack, Marcia S.; Torres, Pablo D.; McGill, Preston B.; Tayon, Wesley A.; Bennett, Jay E.; Murphy, Joseph T.

    2015-01-01

    The principal focus of this project was to assist the Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the Orion crew module (CM) aft pressure vessel bulkhead. The spin forming process will enable a single piece aluminum (Al) alloy 2219 aft bulkhead resulting in the elimination of the current multiple piece welded construction, simplify CM fabrication, and lead to an enhanced design. Phase I (NASA TM-2014-218163 (1)) of this assessment explored spin forming the single-piece CM forward pressure vessel bulkhead. The Orion MPCV Program and Lockheed Martin (LM) recently made two critical decisions relative to the NESC Phase I work scope: (1) LM selected the spin forming process to manufacture a single-piece aft bulkhead for the Orion CM, and (2) the aft bulkhead will be manufactured from Al 2219. Based on the Program's new emphasis related to the spin forming process, the NESC was asked to conduct a Phase II assessment to assist in the LM manufacture of the aft bulkhead and to conduct a feasibility study into spin forming the Orion CM cone. This activity was approved on June 19, 2013. Dr. Robert Piascik, NASA Technical Fellow for Materials at the Langley Research Center (LaRC), was selected to lead this assessment. The project plan was approved by the NASA Engineering and Safety Center (NESC) Review Board (NRB) on July 18, 2013. The primary stakeholders for this assessment were the NASA and LM MPCV Program offices. Additional benefactors are commercial launch providers developing CM concepts.

  13. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  14. A structural study of lamellar phases formed by nucleoside-functionalized lipids

    Energy Technology Data Exchange (ETDEWEB)

    Berti, D.; Fratini, E.; Baglioni, P. [Department of Chemistry and CSGI, University of Florence, Via G. Capponi 9, 50121 Florence (Italy); Dante, S.; Hauss, T. [Berlin Neutron Scattering Center, Hahn Meitner Institut, Glienicker Strasse 100, Wannsee, 14109 Berlin (Germany)

    2002-07-01

    We report a neutron-scattering investigation of lamellar phases formed by novel phospholipids bearing nucleosides at the polar-head-group region. These nucleolipids can interact through stacking and H-bond interactions, following a pattern that resembles base-base coupling in natural nucleic acids (DNA, RNA), i.e. they have similar recognition properties. Bilayer stacks formed of DPP-adenosine, DPP-uridine and their 1:1 mixture were investigated after equilibration in a 98% relative humidity atmosphere. The DPP-adenosine spectrum can be accounted for (in analogy to DPPC) by a lamellar phase with a smectic period of about 60 A. DPP-uridine displays a not so straightforward behavior that we have tentatively ascribed to the coexistence of lamellae with different smectic periods. In the 1:1 mixture the lamellar mesophase of DPP-uridine is retained, suggesting a specific interaction of the uridine polar-head group with the adenosine moiety of DPP-adenosine. It should be stressed that this behavior can be considered as an indication of the recognition process occurring at the polar-head-group region of the mixed phospholiponucleoside membrane. (orig.)

  15. Lithium insertion in the two crystallographic forms of the binary-phase Mo15Se19

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Murphy, D.W.

    1986-01-01

    Compounds which can undergo topotactic insertion of lithium are of potential technological importance in secondary lithium batteries. In this paper we present the chemical and electrochemical insertion of lithium into the binary-phase Mo 15 Se 19 , which can exist in two crystallographic forms, denoted AA and BB, when prepared from In 3 Mo 15 Se 19 and In 2 Mo 15 Se 19 , respectively. We show that both forms can reversibly accommodate up to eight lithium atoms, yielding two new series of compounds of formula Li/sub x/Mo 15 Se 19 . This behavior is consistent with the electronic structure of the host material predicted from band-structure calculations. The room-temperature phase diagram of both Li/sub x/Mo 15 Se 19 systems as a function of x has been established using electrochemical test cells (based on Mo 15 Se 19 as the cathode), and in situ x-ray measurements as the cells discharge. Both Li/sub x/Mo 15 Se 19 systems contain three single-phase domains as a function of x: two hexagonal phases and an orthorhombic phase. The nature of the transitions between these single phases and the variation of the lattice parameters within a single-phase domain are reported. While the mechanism of intercalation of lithium is similar for both Mo 15 Se 19 forms, there is a drastic difference in Li intercalation behavior for the parent indium phases In''Mo 15 Se 19 and In 3 Mo 15 Se 19 . We found that In 2 Mo 15 Se 19 can reversibly incorporate 6.4 lithium atoms while In 3 Mo 15 Se 19 does not react. This behavior is explained on the basis of structural considerations

  16. On the form invariant volume transformation in phase space by focusing neutron guides: An analytic treatment

    International Nuclear Information System (INIS)

    Stüßer, N.; Hofmann, T.

    2013-01-01

    Tapered guides with supermirror coating are frequently used to focus neutron beams on specimens. The divergence distribution in the focused beam is of a great importance for the quality of neutron instrumentation. Using an analytic approach we derive the tapering which is needed to achieve a form invariant phase space transformation of a rectangular phase volume. In addition we consider the effect of beam attenuation by the finite reflectivity of supermirrors. -- Highlights: • Form invariant volume transformation in phase space. • Focusing modules for neutron beams. • Analytical approach. • Attenuation effects in linearly and nonlinearly tapered guides

  17. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Fang Guiyin; Li Hui; Liu Xu

    2010-01-01

    Form-stable lauric acid (LA)/silicon dioxide (SiO 2 ) composite phase change materials were prepared using sol-gel methods. The LA was used as the phase change material for thermal energy storage, with the SiO 2 acting as the supporting material. The structural analysis of these form-stable LA/SiO 2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR). The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the LA was well dispersed in the porous network of SiO 2 . The DSC results indicated that the melting latent heat of the form-stable composite phase change material is 117.21 kJ kg -1 when the mass percentage of the LA in the SiO 2 is 64.8%. The results of the TGA showed that these materials have good thermal stability. The form-stable composite phase change materials can be used for thermal energy storage in waste heat recovery and solar heating systems.

  18. Simulation of bulk phases formed by polyphilic liquid crystal dendrimers

    Directory of Open Access Journals (Sweden)

    J.M. Ilnytskyi

    2010-01-01

    Full Text Available A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32 grafted chains each terminated by a mesogen group. The mesogenic pair interactions are modelled by the recently proposed soft core spherocylinder model of Lintuvuori and Wilson [J. Chem. Phys, 128, 044906, (2008]. Coarse-grained (CG molecular dynamics (MD simulations are performed on a melt of 100 molecules in the anisotropic-isobaric ensemble. The model LCDr shows conformational bistability, with both rod-like and disc-like conformations stable at lower temperatures. Each conformation can be induced by an external aligning field of appropriate symmetry that acts on the mesogens (uniaxial for rod-like and planar for disc-like, leading to formation of a monodomain smectic A (SmA or a columnar (Col phase, respectively. Both phases are stable for approximately the same temperature range and both exhibit a sharp transition to an isotropic cubic-like phase upon heating. We observe a very strong coupling between the conformation of the LCDr and the symmetry of a bulk phase, as suggested previously by theory. The study reveals rich potential in terms of the application of this form of CG modelling to the study of molecular self-assembly of liquid crystalline macromolecules.

  19. Effect of Native Defects on Transport Properties in Non-Stoichiometric CoSb3

    Directory of Open Access Journals (Sweden)

    Paula R. Realyvázquez-Guevara

    2017-03-01

    Full Text Available The effect of native defects originated by a non-stoichiometric variation of composition in CoSb3 on I-V curves and Hall effect was investigated. Hysteretic and a non-linear behavior of the  I-V curves at cryogenic temperatures were observed; the non-linear behavior originated from the Poole-Frenkel effect, a field-dependent ionization mechanism that lowers Coulomb barriers and increases emission of charge carriers, and the hysteresis was attributed to the drastic decrease of specific heat which produces Joule heating at cryogenic temperatures. CoSb3 is a narrow gap semiconductor and slight variation in the synthesis process can lead to either n- or p-type conduction. The Sb-deficient CoSb3 presented an n-type conduction. Using a single parabolic model and assuming only acoustic-phonon scattering the charge transport properties were calculated at 300 K. From this model, a carrier concentration of 1.18 × 1018 cm−3 and a Hall factor of 1.18 were calculated. The low mobility of charge carriers, 19.11 cm2/V·s, and the high effective mass of the electrons, 0.66 m0, caused a high resistivity value of 2.75 × 10−3 Ω·m. The calculated Lorenz factor was 1.50 × 10−8 V2/K2, which represents a decrease of 38% over the degenerate limit value (2.44 × 10−8 V2/K2.

  20. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  1. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  2. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  3. Thermogravimetric study of the kinetics of lithium titanate reduction by hydrogen

    International Nuclear Information System (INIS)

    Sonak, Sagar; Rakesh, R.; Jain, Uttam; Mukherjee, Abhishek; Kumar, Sanjay; Krishnamurthy, Nagaiyar

    2014-01-01

    Highlights: • Li 2 TiO 3 powder is synthesized by the gel combustion route. • Activation energy of reduction of Li 2 TiO 3 by H 2 found out to be 27.45 kJ/mol H 2 . • Non-stoichiometric phase of Li 2 TiO 3 is formed in hydrogen atmosphere. • One-dimensional diffusion appears to be the most probable mechanism of reduction. - Abstract: The lithium titanate powder was synthesized by gel-combustion route. The mechanism and the kinetics of hydrogen interaction with lithium titanate powder were studied using non-isothermal thermogravimetric technique. Lithium titanate underwent reduction in hydrogen atmosphere which led to the formation of oxygen deficient non-stoichiometric compound in lithium titanate. One-dimensional diffusion appeared to be the most probable reaction mechanism. The activation energy for reduction of lithium titanate under hydrogen atmosphere was found to be 27.4 kJ/mol/K. Structural changes after hydrogen reduction in lithium titanate were observed in X-ray diffraction analysis

  4. Preparation and characterization of the non-stoichiometric La–Mn perovskites

    International Nuclear Information System (INIS)

    Gao, Zhiming; Wang, Huishu; Ma, Hongwei; Li, Zhanping

    2015-01-01

    Six La–Mn oxide samples with La/Mn atomic ratio x = 1.03–0.56 (denoted as sample LaxMn) were prepared by the citrate method with calcination at 700 °C for 5 h, and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the four samples with La/Mn atomic ratio at 1.03–0.72 are all single phase perovskites by XRD patterns. Lattice parameters of the perovskites are varying with the La/Mn atomic ratio. As the La/Mn atomic ratio further lowers to 0.63 and 0.56, Mn 3 O 4 phase is formed besides the main phase of perovskite. Lattice vacancy at the A-sites of the perovskites is present for all the six samples, and there are an appreciable number of Mn 4+ ions in the perovskite crystal according to the refinement results of the Rietveld method. XPS analyses indicate that Mn ions are enriched on the surfaces of all the samples. In addition, catalytic activity for methane oxidation is in an order of sample La 0.89 Mn > La 1.03 Mn > La 0.81 Mn > La 0.72 Mn > La 0.63 Mn > La 0.56 Mn. - Highlights: • The samples with La/Mn atomic ratio at 1.03–0.72 are single phase perovskites. • Cationic lattice vacancies are present in the perovskite crystal of the samples. • Surface of the samples is enriched by Mn ions. • The sample La 0.89 Mn is most catalytically active for methane oxidation

  5. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  6. Ordering effects in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.; Kottar, A.

    2000-01-01

    The effect of nonstoichiometry and ordering on crystalline structure and specific electric resistance (ρ) of TiC y (0.52≤y≤0.98) is studied within the temperature range of 300-1100 K. It is shown that the titanium carbide ordering in the areas 0.52≤y≤0.55, 0.56≤y≤0.58 and 0.62≤y≤0.68 leads to formation of the Ti 2 C cubic and trigonal ordered phase and the Ti 3 C 2 rhombic ordered phase correspondingly. Availability of hysteresis on the ρ(T) dependences in the area of the disorder-order reversible equilibrium transition points out to the fact that the TiC y ↔Ti 2 C and TiC y ↔Ti 3 C 2 transformations are the first order phase transitions [ru

  7. Liquid phase interaction in TiC0,5N0,5-TiNi-Mo and TiC0,5N0,5-TiNi-Ti-Mo

    International Nuclear Information System (INIS)

    Askarova, L.Kh; Grigorov, I.G.; Zajnulin, Yu.G.

    1998-01-01

    Using the methods of X ray diffraction analysis, electron microscopy and X ray spectrum microanalysis a study was made into specific features of phase and structure formation in alloys TiC 0,5 N 0,5 -TiNi-Mo and TiC 0,5 N 0,5 -TiNi-Mo in the presence of a liquid phase at temperatures of 1380-1600 deg C. It is revealed that the physical and chemical processes taking place during the liquid-phase sintering result in the formation of a three-phase alloy consisting of nonstoichiometric titanium carbonitride TiC 0.5-x N 0.5-x , a molybdenum base solid solution of titanium, nickel and carbon Mo(Ti, Ni, C) and one of two intermetallic compounds, either TiNi or Ni 3 Ti. Metallic element concentration in individual phase constituents of the alloy is determined by means of X ray spectrum microanalysis

  8. The phase system Fe-Ir-S at 1100, 1000 and 800 degree C

    DEFF Research Database (Denmark)

    Makovicky, Emil; Karup-Møller, Sven

    1999-01-01

    Phase relations in the dry condensed Fe-Ir-S system were determined at 1100, 1000 and 800 degrees C. Orientational runs were performed at 500 degrees C. Between 1100 and 800 degrees C, the system comprises five sulphides and an uninterrupted field of gamma(Fe, Ir). Fe1-xS dissolves 5.8 at.% Ir...... at 1100 degrees C, 3.4 at.% Ir at 1000 degrees C and 1.0 at.% Ir at 800 degrees C. The solubility of Fe in Ir2S3, IrS2 and IrSsimilar to 3 increases with decreasing temperature, reaching 2.5 at.% in the latter two sulphides at 800 degrees C. Thiospinel 'FeIr2S4' is nonstoichiometric, from Fe22.3Ir19.8S58...

  9. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming.

    Science.gov (United States)

    Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2012-04-23

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser illumination. The devices are subsequently placed into the object and Fourier plane of a standard 4f-setup according to the mGPC spatial filtering configuration. Having a reconfigurable spatial phase filter, instead of a fixed and fabricated one, allows the beam shaper to adapt to different input phase patterns suited for different requirements. Despite imperfections in these consumer pico-projectors, the mGPC approach tolerates phase aberrations that would have otherwise been hard to overcome by standard phase projection. © 2012 Optical Society of America

  10. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described.

  11. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    International Nuclear Information System (INIS)

    McHugh, K.M.; Lin, Y.; Zhou, Y.; Lavernia, E.J.

    2008-01-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described

  12. Crystallization, X-ray diffraction analysis and SIRAS/molecular-replacenent phasing of three crystal forms of Anabaena sensory rhodopsin transducer

    International Nuclear Information System (INIS)

    Vogeley, Lutz; Luecke, Hartmut

    2006-01-01

    Crystals of Anabaena sensory rhodopsin transducer, the transducer for the cyanobacterial photosensor Anabaena sensory rhodopsin, obtained in the space groups P4, C2 and P2 1 2 1 2 1 diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for these crystal forms were obtained by SIRAS phasing using an iodide quick-soak derivative (P4) and molecular replacement (C2 and P2 1 2 1 2 1 ). Anabaena sensory rhodopsin transducer (ASRT) is a 14.7 kDa soluble signaling protein associated with the membrane-embedded light receptor Anabaena sensory rhodopsin (ASR) from Anabaena sp., a freshwater cyanobacterium. Crystals of ASRT were obtained in three different space groups, P4, C2 and P2 1 2 1 2 1 , which diffract to 1.8, 2.1 and 2.0 Å, respectively. Phases for one of these crystal forms (P4) were obtained by SIRAS phasing using an iodide quick-soak derivative and a partial model was built. Phases for the remaining crystal forms were obtained by molecular replacement using the partial model from the P4 crystal form

  13. Fluctuations in an Inorganic Glass Forming System Capable of Liquid-Liquid Phase Separation

    Science.gov (United States)

    Bogdanov, V.; Maksimov, L.; Anan'ev, A.; Nemilov, S.; Rusan, V.

    2012-08-01

    Rayleigh and Mandel'shtam-Brillouin scattering (RMBS) spectroscopy and high temperature ultrasonic study (HTUS) are applied to PbO-Al2O3-B2O3 glass forming system characterized by over liquidus miscibility gap. Temperature dependences of ultrasonic velocity of glass melts were measured in 600-1200°C range. "Frozen-in" density fluctuations in two phase glasses were estimated from HTUS data by Macedo-Shroeder formulation. Landau-Placzek ratios were found from RMBS spectra of single phase glasses at room temperature. Results of RMBS and HTUS were compared with well-known SAXS data. It was found that contribution of "frozen-in" density fluctuations into light scattering by two-phase glasses is much smaller than the scattering on particles of the second glassy phase causing opalescence of the glasses. Abnormal "water-like" growth of ultrasonic velocity with melt temperature can be explained by coexistence of two types of packaging of structural elements.

  14. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  15. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  16. Study on thermal property of lauric–palmitic–stearic acid/vermiculite composite as form-stable phase change material for energy storage

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2015-09-01

    Full Text Available The form-stable composite phase change material of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite was prepared by vacuum impregnation method for thermal energy storage. The maximum mass fraction of lauric–palmitic–stearic acid ternary eutectic mixture retained in vermiculite was determined as 50 wt% without melted phase change material seepage from the composite phase change material. Fourier transformation infrared spectroscope and scanning electron microscope were used to characterize the structure and morphology of the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material, and the results indicate that lauric–palmitic–stearic acid ternary eutectic mixture was well confined into the layer porous structure of vermiculite by physical reaction. The melting and freezing temperatures and latent heats were measured by differential scanning calorimeter as 31.4°C and 30.3°C, and 75.8 and 73.2 J/g, respectively. Thermal cycling test showed that there was no significant change in the thermal properties of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material after 1000 thermal cycles. Moreover, 2 wt% expanded graphite was added to improve the thermal conductivity of lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material. All results indicated that the prepared lauric–palmitic–stearic acid ternary eutectic mixture/vermiculite form-stable composite phase change material had suitable thermal properties and good thermal reliability for the application of thermal energy storage in building energy efficiency.

  17. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    International Nuclear Information System (INIS)

    Lemmens, B.; Springer, H.; Duarte, M.J.; De Graeve, I.; De Strycker, J.; Raabe, D.; Verbeken, K.

    2016-01-01

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe 4 Al 13 ) and η (Fe 2 Al 5 ) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dip aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.

  18. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  19. Structural investigation of the spinel phase formed in fuel CRUD before and after zinc injection

    International Nuclear Information System (INIS)

    Chen, J.

    2002-01-01

    Spinel phase is an important constituent of fuel CRUD. Since it can accommodate 60 Co in its crystal structure, its stability in reactor water environment is crucial for the radioactivity control in LWR plants. With increasing curiosity about zinc injection technology, the mechanism of the interaction of zinc with the spinel has drawn much attention. This paper describes the crystal and microstructures of spinel phase in the fuel CRUD collected on four fuel rods of 1- and 5-cycle, respectively, from Barsebaeck 2 BWR before and after zinc injection operation. High precision X-ray powder diffraction technique has been applied to identify the phase compositions of fuel CRUD and to measure the cell length of the spinel phase formed. The results show that, after about 1-cycle zinc injection operation, the tenacious CRUD formed on the fresh fuel rod contains defective zinc oxide, in addition to hematite and spinel as commonly seen. Moreover, the phase ratio of spinel to hematite is much increased. The cell length of the spinel is increased accordingly, which is the direct evidence for the presence of zinc in the spinel structure. For the 5-cycle rod, however, neither zinc oxide nor any change in the phase ratio has been detected. The cell length of the spinel has been increased, in a less degree, however, as compared to that for the 1-cycle rod. The cell lengths of spinel are similar in both tenacious and loose CRUD layers, indicating that zinc was able to easily penetrate through the tenacious CRUD layer. (authors)

  20. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    Science.gov (United States)

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  1. Study of phase equilibrium of Pu2O3-PuO2 system by the first-principles calculation and CALPHAD approach

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji

    2010-01-01

    A combination of a first-principles calculation, lattice dynamics and CALPHAD (CALculation of PHAse Diagrams) modeling is proven as a powerful tool so as to evaluate the Gibbs free energy and a phase equilibrium between compounds including large amount of vacancies. In this work, non-stoichiometric PuO 2-x (dioxide) and Pu 2 O 3 (sesquioxide) has been studied. An electron cohesive energy was evaluated from a first-principles calculations to estimate total energy of the compounds and a vacancy formation energy, and the theory of statistical mechanics was applied to evaluate enthalpy/entropy change due to oxygen vacancies for the non-stoichiometry of the PuO 2 (i.e. PuO 2-x ). Then a vacancy-vacancy interaction energy was determined by fitting to the experimental data of a quantity of non-stoichiometry of the PuO 2 compounds as a function of oxygen potentials at large deviation from stoichiometry. The resulting Gibbs free energy yields phase boundary between the phases with good agreement with to the experimental data.

  2. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  3. Differential thermal, Thermogravimetric and X-ray diffraction investigation of hydration phases in cementitious waste form

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Nagy, M.E.; El-Sourougy, M.R.; Zaki, A.A.

    1996-01-01

    Hydration phases of cement determine the final properties of the product. Adding other components to the cement paste may alter the final phases formed and affect properties of the hardened products. In this work ordinary portland cement and/or blast furnace slag cement were hardened with low-or intermediate-level radioactive liquid wastes and different additives. Hydration phases were investigated using differential thermal, thermogravimetric, and X-ray diffraction techniques. Low-and intermediate-level liquid wastes were found not to affect the hydration phases of cement. The addition of inorganic exchangers and latex were found to affect the hydration properties of the cement waste system. This resulted in a reduction of compressive strength. On the contrary, addition of epoxy also affected the hydration causing increase in compressive strength. 10 figs., 2 tabs

  4. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  5. The microstructure and composition of equilibrium phases formed in hypoeutectic Te-In alloy during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoguang [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Hu, Jinwu [Center of Failure Analysis, Central Iron and Steel Research Institute, Beijing 100081 (China); Wang, Chongyun; Yang, Wenhui [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Tian, Wenhuai, E-mail: wenhuaitian@ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-03-15

    As a key tellurium atoms evaporation source for ultraviolet detection photocathode, the hypoeutectic Te{sub 75}In{sub 25} alloy was prepared by employing a slow solidification speed of about 10{sup −2} K/s. The microstructure and chemical composition of the equilibrium phases formed in the as-prepared alloy were studied in this research work. The experimental results show that the as-prepared Te-In alloy was constituted by primary In{sub 2}Te{sub 5} phase and eutectic In{sub 2}Te{sub 5}/Te phases. The eutectic In{sub 2}Te{sub 5}/Te phases are distributed in the grain boundaries of primary In{sub 2}Te{sub 5} phase. With the slow solidification speed, a pure eutectic Te phase without any excessive indium solute was obtained, where Te content of eutectic Te phase is 100 mass%. Moreover, it can be considered that the stress between the In{sub 2}Te{sub 5} and Te phases plays an important role in reducing the tellurium vapor pressure in Te{sub 75}In{sub 25} alloy. - Highlights: • The microstructure of Te-In alloy as an evaporation source was analyzed. • A pure eutectic Te phase was obtained by using a slow solidification speed method. • The relation between vapor pressure and inner-stress in the alloy was discussed.

  6. Study of phase equilibrium of Pu{sub 2}O{sub 3}-PuO{sub 2} system by the first-principles calculation and CALPHAD approach

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi [ITOCHU Techno-Solutions Corporation, Kasumigaseki 3, Chiyoda-ku, Tokyo, Energy and Industrial Systems Department (Japan); Kato, Masato [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Konashi, Kenji, E-mail: satoshi.minamoto@ctc-g.co.jp, E-mail: masato.kato@jaea.go.jp, E-mail: konashi@imr.tohoku-u.ac.jp [Institute for Materials Research, Tohoku University, Oarai-chou, Ibaraki (Japan)

    2010-03-15

    A combination of a first-principles calculation, lattice dynamics and CALPHAD (CALculation of PHAse Diagrams) modeling is proven as a powerful tool so as to evaluate the Gibbs free energy and a phase equilibrium between compounds including large amount of vacancies. In this work, non-stoichiometric PuO{sub 2-x} (dioxide) and Pu{sub 2}O{sub 3} (sesquioxide) has been studied. An electron cohesive energy was evaluated from a first-principles calculations to estimate total energy of the compounds and a vacancy formation energy, and the theory of statistical mechanics was applied to evaluate enthalpy/entropy change due to oxygen vacancies for the non-stoichiometry of the PuO{sub 2} (i.e. PuO{sub 2-x}). Then a vacancy-vacancy interaction energy was determined by fitting to the experimental data of a quantity of non-stoichiometry of the PuO{sub 2} compounds as a function of oxygen potentials at large deviation from stoichiometry. The resulting Gibbs free energy yields phase boundary between the phases with good agreement with to the experimental data.

  7. Photophysical properties of columnar phases formed by triphenylene derivatives

    International Nuclear Information System (INIS)

    Sigal, Herve

    1997-01-01

    This research thesis reports the study of the spectroscopic properties and of the migration of excitation energy in the singlet state in columnar phases formed by alkyloxy and alkylthio derivatives of triphenylene. First, the author studied the spectroscopic properties of chromophores in solutions, and characterized excited states by using computation codes (CS-INDO-CIPSI). Then, by using the excitonic theory in the case of the considered triphenylene derivatives, the author studied the influence of molecular movements and of the intra-columnar order on the spectroscopic properties. In some circumstances, the non-radiative transfer of excitation energy is governed by a mechanism displaying a random evolution. This stochastic movement is studied by using Monte Carlo simulations. The author shows that the energy migration is one-dimensional on short times, and then becomes three-dimensional. The evolution of excitation energy in space and in time is determined [fr

  8. Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies

    Science.gov (United States)

    Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.

    1986-01-01

    Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.

  9. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation

    International Nuclear Information System (INIS)

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R.; Plishker, William L.; D'Souza, Warren D.

    2007-01-01

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  10. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  11. The shape and dynamics of the generation of the splash forms in single-phase systems after drop hitting

    Science.gov (United States)

    Sochan, Agata; Beczek, Michał; Mazur, Rafał; RyŻak, Magdalena; Bieganowski, Andrzej

    2018-02-01

    The splash phenomenon is being increasingly explored with the use of modern measurement tools, including the high-speed cameras. Recording images at a rate of several thousand frames per second facilitates parameterization and description of the dynamics of splash phases. This paper describes the impact of a single drop of a liquid falling on the surface of the same liquid. Three single-phase liquid systems, i.e., water, petrol, and diesel fuel, were examined. The falling drops were characterized by different kinetic energy values depending on the height of the fall, which ranged from 0.1 to 7.0 m. Four forms, i.e., waves, crowns, semi-closed domes, and domes, were distinguished depending on the drop energy. The analysis of the recorded images facilitated determination of the static and dynamic parameters of each form, e.g., the maximum height of each splash form, the width of the splash form at its maximum height, and the rate of growth of the splash form. We, Re, Fr, and K numbers were determined for all analyzed liquid systems. On the basis of the obtained values of dimensionless numbers, the areas of occurrence of characteristic splash forms were separated.

  12. PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Bingtao; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-01-01

    The thermal conductivity of form-stable PEG/SiO 2 phase change material (PCM) was enhanced by in situ doping of Al 2 O 3 using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO 2 –Al 2 O 3 reached 124 J g −1 , and thermal conductivity improved by 12.8% for 3.3 wt% Al 2 O 3 in the PCM compared with PEG/SiO 2 . The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO 2 –Al 2 O 3 hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects

  13. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  14. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    Science.gov (United States)

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  15. Study of the catalytic activity of mixed non-stoichiometric uranium-thorium oxides in carbon monoxide oxidation; Etude de l'activite catalytique des oxydes mixtes d'uranium et de thorium non stoechiometriques dans l'oxydation du monoxyde de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Brau, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-06-01

    The aim of this work has been to study the catalytic properties of non-stoichiometric uranium-thorium oxides having the general formula U{sub x}Th{sub 1-x}O{sub 2+y}, for the oxidation of carbon monoxide. The preparation of pure, homogeneous, isotropic solids having good structural stability and a surface area as high as possible calls for a strict control of the conditions of preparation of these oxides right from the preparation of 'mother salts': the mixed oxalates U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2H{sub 2}O. A study has been made of their physico-chemical properties (overall and surface chemical constitution, texture, structure, electrical conductivity), as well as of their adsorption properties with respect to gaseous species occurring in the catalytic reaction. This analysis has made it possible to put forward a reaction mechanism based on successive oxidations and reductions of the active surface by the reactants. A study of the reactions kinetics has confirmed the existence of this oxidation-reduction mechanism which only occurs for oxides having a uranium content of above 0.0014. The carbon dioxide produced by the reaction acts as an inhibitor by blocking the sites on which carbon monoxide can be adsorbed. These non-stoichiometric mixed oxides are a particularly clear example of catalysis by oxygen exchange between the solid and the gas phase. (author) [French] Ce travail a pour but l'etude des proprietes catalytiques des oxydes mixtes d'uranium et de thorium non stoechiometriques de formule generale U{sub x}Th{sub 1-x}O{sub 2+y} dans l'oxydation du monoxyde de carbone. L'obtention de solides purs, homogenes, isotropes, de bonne stabilite structurale et d'aire specifique aussi elevee que possible, exige de controler rigoureusement les conditions de preparation de ces oxydes des l'elaboration de leurs 'ascendants': les oxalates mixtes U{sub x}Th{sub 1-x}(C{sub 2}O{sub 4}){sub 2}, 2H{sub 2}O. Leurs proprietes physico-chimiques (composition

  16. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  17. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming

    OpenAIRE

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We report on a new beam-forming system for generating high intensity programmable optical spikes using so-called matched-filtering Generalized Phase Contrast (mGPC) applying two consumer handheld pico-projectors. Such a system presents a low-cost alternative for optical trapping and manipulation, optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as...

  18. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    Science.gov (United States)

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  19. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides - relevance to biomineralization

    NARCIS (Netherlands)

    Schenk, A.S.; Zope, H.; Kim, Y.; Kros, A.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Polymer-induced liquid precursor (PILP) phases of calcium carbonate have attracted significant interest due to possible applications in materials synthesis, and their resemblance to intermediates seen in biogenic mineralisation processes. Further, these PILP phases have been formed in vitro using

  20. Preparation and characterization of form-stable paraffin/polyurethane composites as phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Chen, Keping; Yu, Xuejiang; Tian, Chunrong; Wang, Jianhua

    2014-01-01

    Highlights: • Paraffin/polyurethane composite as form-stable phase change material was prepared by bulk polymerization. • Paraffin/polyurethane composite possesses typical character of dual phase transition. • Total latent heat of n-eicosane/PUPCM is as high as 141.2 J/g. • Maximum encapsulation ratio for n-octadecane/PUPCM composites is 25% w/w. - Abstract: Polyurethane phase change material (PUPCM) has been demonstrated to be effective solid–solid phase change material for thermal energy storage. However, the high cost and complex process on preparation of PUPCMs with high enthalpy and broad phase transition temperature range can prohibit industrial-scale applications. In this work, a series of novel form-stable paraffin/PUPCMs composites (n-octadecane/PUPCM, n-eicosane/PUPCM and paraffin wax/PUPCM) with high enthalpy and broad phase transition temperature range (20–65 °C) were directly synthesized via bulk polymerization. The composites were prepared at different mass fractions of n-octadecane (10, 20, 25, 30% w/w). The results indicated that the maximum encapsulation ratio for n-octadecane/PUPCM10000 composites was around 25% w/w. The chemical structure and crystalline properties of these composites were characterized by Fourier transform infrared spectroscopy (FT-IR), polarizing optical microscopy (POM), wide-angle X-ray diffraction (WAXD). Thermal properties and thermal reliability of the composites were determined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). From DSC analysis, the composites showed a typical dual phase change temperature. The enthalpy for the composite with 25% w/w n-eicosane was as high as 141.2 J/g. TGA analysis indicated that the composites degraded at considerably high temperatures. The process of preparation of PUPCMs and their composites was very simple, inexpensive, environmental friendly and easy to process into desired shapes, which could find the promising applications in solar

  1. Methods for forming particles

    Science.gov (United States)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  2. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  3. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.

    Science.gov (United States)

    Cui, Wenguo; Li, Xiaohong; Zhou, Shaobing; Weng, Jie

    2007-09-15

    Development of nanocomposites of hydroxyapatite (HA) and polylactic acid (PLA) is attractive, as the advantageous properties of the two types of materials can be combined to suit better the mechanical and biological demands for biomedical uses. To solve the problematic issue of agglomeration of HA crystallites in the PLA matrix, a novel method is introduced in the present study to use electrospun nanofibers as the reaction confinement for composite fabrication. Poly(DL-lactide) ultrafine fibers with calcium nitrate entrapment were prepared by electrospinning and then incubated in phosphate solution to form in situ calcium phosphate on the polymer matrix. The formation of nonstoichiometric nanostructured HA and well dispersion of HA particles on the electrospun fibers were observed. Higher crystalline HA phase was indicated in samples after sintering at 1200 degrees C. The formation of the calcium-phosphate phase was dependent upon the precipitation conditions, and the effects of the incubation time, temperature, and the pH values of the incubation medium were investigated on the spontaneous precipitation and amorphous-crystalline transformation of HA in the current study. Considering the biodegradability of matrix polymer and the crystallinity and uniform dispersal of HA, optimal conditions for composite preparation were incubating calcium-containing ultrafine fibers at 37 degrees C in pH 7.4 or at 25 degrees C in pH 9.0 of diammonium hydrogen phosphate solutions for 7 days. Around 25%-34% of mineral contents can be synthesized in the resulting composites, which was higher than the theoretical value due to the nonstoichiometric HA formed in the composite, and the fiber degradation and partial calcium nitrate involved in the HA formation. Copyright 2007 Wiley Periodicals, Inc.

  4. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  5. Stoichiometry of the U3O8 phase formed during calcination of some uranium compounds

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Farah, M.Y.; Rofail, N.H.

    1981-01-01

    Although recent work has shown U 3 O 8 phase to be the decomposition product obtained after calcining uranyl nitrate, sulphate or ammonium uranate, neither the necessary conditions for obtaining stoichiometric U 3 O 8 nor the details of the reaction have been established. Presence of sulphate or nitrate ions during preparation greatly affects the O/U of the obtained oxides and the physico-chemical properties of uranium tetrafluoride prepared afterwards from it (1-3). The aim of the present investigation was to study the effect of calcination regimes on the stoichiometry of the U 3 O 8 phase produced by the thermal decomposition of uranyl nitrate, sulphate, and ammonium uranate, which was prepared by precipitation from nuclear-pure uranyl sulphate. Stoichiometry of the U 3 O 8 phase formed during calcination of ammonium uranate precipitated from nuclear pure uranyl nitrate solution was reported before (1)

  6. Experimental and numerical investigation of form-stable dodecane/hydrophobic fumed silica composite phase change materials for cold energy storage

    International Nuclear Information System (INIS)

    Chen, Jiajie; Ling, Ziye; Fang, Xiaoming; Zhang, Zhengguo

    2015-01-01

    Highlights: • Form-stable dodecane/fumed silica composite for cold storage is prepared. • A suggesting hypothesis that explains infiltration mechanism is proposed. • The performance of the composite phase change material is investigated. • Numerical simulation of system is carried out and results fit well. - Abstract: A kind of form-stable composite phase change materials used for cold thermal energy storage is prepared by absorbing dodecane into the hydrophobic fumed silica. With relatively suitable pore diameter and hydrophobic groups, hydrophobic fumed silica is beneficial to the penetration and infiltration of dodecane and the leakage problem solving. Scanned by electron micrographs and Fourier transformation infrared, the composite phase change material is characterized to be just physical penetration. Besides, the differential scanning calorimeter and thermo gravimetric analysis reveals the high enthalpy, good thermal stability and cycling performance of this composite phase change material. What’s more, Hot-Disk thermal constants analyzer demonstrates that the composite phase change material has low thermal conductivity which is desired in cold storage application. In the experiment, a cold energy storage system is set up and the results from the experiment show that the system has excellent performance of cold storage by incorporating composite phase change material. Apart from that, the experimental data is found to have a great agreement with the numerical simulation which is carried out by using the commercial computational fluid dynamics software FLUENT.

  7. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  8. Oxidation-induced phase transformations and lifetime limits of chromia-forming nickel-base alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Chyrkin, Anton

    2011-12-05

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of δ-Ni{sub 3}Nb and (Ni,Mo,Si){sub 6}C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900-1000 C in oxidation-induced chromium depletion in the subsurface zone of the alloy. Microstructural analyses of the cross-sectioned specimens revealed that this process results in formation of a wide subsurface zone in which the mentioned strengthening phases are dissolved, in spite of the fact that both phases do not contain substantial amounts of the scale-forming element chromium. The cross-sectional analyses revealed that, in parallel to the formation of a precipitate depleted zone, a thin, continuous layer of niobium-rich intermetallic precipitates formed in the immediate vicinity of the scale/alloy interface. The Subsurface Phase Enrichment (abbreviated as SPE) was shown to be the result of an uphill-diffusion of niobium, i.e. the element stabilizing the strengthening precipitates δ-Ni{sub 3}Nb, in the chromium activity gradient and is thus a natural consequence of the oxidation-induced chromium depletion beneath the chromia scale. The thermodynamic calculations carried out using the Thermo-Calc/DICTRA software packages revealed that in alloy 625 the chemical activity of niobium decreases with decreasing chromium content. As chromium is being continuously removed from the alloy as the result of the chromia scale growth, the zone of lowest Nb-activity is formed in the location with the lowest chromium concentration, i.e. the scale/alloy interface. This creates a driving force for Nb to diffuse towards the scale/alloy interface against its own concentration gradient, which is known

  9. On the effect of incremental forming on alpha phase precipitation and mechanical behavior of beta-Ti-10V-2Fe-3Al

    Science.gov (United States)

    Winter, S.; F-X Wagner, M.

    2016-03-01

    A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.

  10. COMPARISON OF PHYSICAL STABILITY PROPERTIES OF POMEGRANATE SEED OIL NANOEMULSION DOSAGE FORMS WITH LONG-CHAIN TRIGLYCERIDE AND MEDIUM-CHAIN TRIGLYCERIDE AS THE OIL PHASE

    Directory of Open Access Journals (Sweden)

    Sri Hartanti Yuliani

    2016-08-01

    Full Text Available Pomegranate seed oil has antioxidant, anti-inflammatory, and chemo preventive activities. Pomegranate seed oil is lipophilic substance suitable to be prepared in emulsion dosage forms. Long-chain triglyceride (LCT and medium-chain triglyceride (MCT are commonly used as oil phase in emulsion dosage forms. This research aimed to compare the use of LCT and MCT in the Nano emulsion formula of pomegranate seed oil dosage forms. Formulation of pomegranate seed oil Nano emulsion was conducted using high energy emulsification. Parameters observed were pH, Nano emulsion type, percent transmittance, viscosity, turbidity, and droplet size before and after 3 cycles of freeze-thaw. The result showed that there was no significant difference between physical properties of pomegranate oil Nano emulsion with LCT as oil phase and pomegranate oil Nano emulsion with MCT as oil phase. Moreover, physical stability of pomegranate oil Nano emulsion with LCT as oil phase was better than pomegranate oil Nano emulsion with MCT as oil phase.

  11. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bulk synthesis by spray forming of Al–Cu–Fe and Al–Cu–Fe–Sn alloys containing a quasicrystalline phase

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Huttunen-Saarivirta, E.; Cui, C.; Uhlenwinkel, V.; Schulz, A.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 40 kg Bulk material spray formed based on Al–Cu–Fe and Al–Cu–Fe + Sn. • Deposited Al–Cu–Fe alloy showed single phase bulk quasicrystals(QC). • DSC, XRD and microscopic analyses were done to ascertain the QC nature. • Sn does not help in single phase quasicrystal formation in the deposit. • The possible structural evolution mechanisms have been discussed in detail. - Abstract: In this study, Al–Cu–Fe alloys without and with the addition of Sn and containing a quasicrystalline phase were spray deposited. The spray-deposited bulk materials were characterized in terms of microstructure and hardness. The results showed that the Al 62.5 Cu 25 Fe 12.5 alloy contains the icosahedral quasicrystalline phase (i-phase) along with the minor λ-Al 13 Fe 4 phase, whereas the Al 62.5 Cu 25 Fe 12.5 + Sn alloy contains five phases: the major i-phase and the crystalline phases of Sn, θ-Al 2 Cu, λ-Al 13 Fe 4 and β-AlFe(Cu) phases. These results have been corroborated by X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM) and differential scanning calorimetry (DSC). The hardness value of the Al–Cu–Fe alloy reached 10.5 GPa at 50 g load and then decreased steadily with increase in the applied load, while that for Al–Cu–Fe–Sn alloy it was originally somewhat lower, then decreased dramatically with slight increase in the applied load but stayed constant with further load increase. The hardness indentations in Al–Cu–Fe alloy introduced cracking in the material, whereas in the case of Al–Cu–Fe–Sn alloy the Sn-rich areas inhibited the crack growth. The present study provides an insight into the mechanism of phase and microstructural evolutions during spray forming of the studied alloys. Furthermore, the role of Sn in terms of microstructure and properties is highlighted

  13. XP S, DRUV-Vis and ESR characterization of the non-stoichiometric compound Ge{sub 0.74}V{sub 0.21} □{sub 0.05}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Boldu, J. L.; Barreto, J.; Rosales, I.; Bucio, L.; Orozco, E., E-mail: eligio@fisica.unam.mx [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Ciudad de Mexico (Mexico)

    2017-11-01

    Microcrystalline powders of the nonstoichiometric Ge{sub 0.74}V{sub 0.21} □{sub 0.05}O{sub 2} compound were prepared by conventional high temperature solid-state reactions. The powders were characterized by X-ray diffraction (XRD); scanning electron microscopy (Sem); X-ray photoelectron spectroscopy (XP S); diffuse reflectance ultraviolet-visible spectroscopy (DRUV-Vis) and electron spin resonance (ESR) spectroscopy. From the analysis performed on compound, it was found that: the powders showed a rutile type crystalline structure with a rectangular prismatic crystalline habit. The XP S analysis, confirm the presence of V{sup 4+} and V{sup 5+} vanadium ions, the DRUV-Vis spectra show absorption bands in the 200-800 nm wave length interval and the ESR analysis confirms that the V{sup 4+} ions are within microcrystals, hosted as VO{sup 2+} at sites of rhombic (C{sub 2v}) symmetry. (Author)

  14. Characterization of condensed phase nitric acid particles formed in the gas phase

    Institute of Scientific and Technical Information of China (English)

    Long Jia; Yongfu Xu

    2011-01-01

    The formation of nitric acid hydrates has been observed in a chamber during the dark reaction of NO2 with O3 in the presence of air.The size of condensed phase nitric acid was measured to be 40-100 nm and 20-65 nm at relative humidity (RH) ≤ 5% and RH = 67% under our experimental conditions, respectively.The nitric acid particles were collected on the glass fiber membrane and their chemical compositions were analyzed by infrared spectrum.The main components of nitric acid hydrates in particles are HNO3·3H2O and NO3-·xH2O (x≥ 4) at low RH, whereas at high RH HNO3·H2O, HNO3·2H2O, HNO3·3H2O and NO3-·xH2O (x≥ 4) all exist in the condensed phase.At high RH HNO3·xH2O (x ≤ 3) collected on the glass fiber membrane is greatly increased, while NO3-·xH2O (x ≥4) decreased, compared with low RH.To the best of our knowledge, this is the first time to report that condensed phase nitric acid can be generated in the gas phase at room temperature.

  15. Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics for capacitor applications

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2018-03-01

    Full Text Available Microstructure and dielectric properties of La2O3 doped Ti-rich barium strontium titanate ceramics, prepared by solid state method, were investigated with non-stoichiometric level and various La2O3 content, using XRD, SEM and LCR measuring system. With an increase of non-stoichiometric level, the unit cell volumes of perovskite lattices for the single phase Ti-rich barium strontium titanate ceramics increased due to the decreasing A site vacancy concentration V″A. The unit cell volume increased and then decreased slightly with the increasing La2O3 content. Relatively high non-stoichiometric level and high La2O3 content in Ti-rich barium strontium titanate ceramics contributed to the decreased average grain size as well as fine grain size distribution, which correspondingly improved the temperature stability of the relative dielectric constant. The relative dielectric constant єrRT, dielectric loss tanδRT and the maximum relative dielectric constant єrmax decreased and then increased with the increasing non-stoichiometric level. With the increase of La2O3 doping content, the relative dielectric constant єrRT increased initially and then decreased. The maximum relative dielectric constant єrmax can be increased by applying low doping content of La2O3 in Ti-rich barium strontium titanate ceramics due to the increased spontaneous polarization.

  16. Evaluation of ΔGsub(f) values for unstable compounds: a Fortran program for the calculation of ternary phase equilibria

    International Nuclear Information System (INIS)

    Throop, G.J.; Rogl, P.; Rudy, E.

    1978-01-01

    A Fortran IV program was set up for the calculation of phase equilibria and tieline distributions in ternary systems of the type: transition metal-transition metal-nonmetal (interstitial type of solid solutions). The method offers the possibility of determining the thermodynamic values for unstable compounds through their influence upon ternary phase equilibria. The variation of the free enthalpy of formation of ternary solid solutions is calculated as a function of nonmetal content, thus describing the actual curvature of the phase boundaries. The integral and partial molar free enthalpies of formation of binary nonstoichiometric compounds and of phase solutions are expressed as analytical functions of the nonmetal content within their homogeneity range. The coefficient of these analytical expressions are obtained by the use either of the Wagner-Schottky vacancy model or polynomials second order in composition (parabolic approach). The free energy of formation, ΔGsub(f) has been calculated for the systems Ti-C, Zr-C, and Ta-C. Calculations of the ternary phase equilibria yielded the values for ΔGsub(f) for the unstable compounds Ti 2 C at 1500 0 C and Zr 2 C at 1775 0 C of -22.3 and 22.7 kcal g atom metal respectively. These values were used for the calculation of isothermal sections within the ternary systems Ti-Ta-C (at 1500 0 C) and Zr-Ta-C (at 1775 0 C). The ideal case of ternary phase solutions is extended to regular solutions. (author)

  17. Thermodynamic Studies at Higher Temperatures of the Phase Relationships of Substoichiometric Plutonium and Uranium/Plutonium Oxides

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in non-stoichiometric Pu and U/Pu oxides were determined by thermogravimetric measurements in CO/CO2 mixtures in the temperature range 900-1450°C. A detailed analysis of the thermodynamic data obtained, as well as data previously published...

  18. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    Science.gov (United States)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  19. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  20. Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca-P phases

    Energy Technology Data Exchange (ETDEWEB)

    Karanjai, Malobika [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India)]. E-mail: malobika@arci.res.in; Sundaresan, Ranganathan [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Rao, Gummididala Venkata Narasimha [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Mohan, Tallapragada Raja Rama [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India); Kashyap, Bhagwati Prasad [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India)

    2007-02-25

    Composites of titanium and calcium-phosphorus phases were developed by powder metallurgy processing and evaluated for bioactivity. Titanium hydride powder and precursors of calcium and phosphorus in the form of calcium carbonate and di-ammonium hydrogen orthophosphate were mixed in different proportions, compacted and calcined in different atmospheres. The calcined compacts were subsequently crushed, recompacted and sintered in vacuum. In situ formation of bioactive phases like hydroxylapatite, tricalcium phosphate and calcium titanate during the calcination and sintering steps was studied using X-ray diffraction. The effect of calcination atmosphere on density, interconnected porosity, phase composition and modulus of rupture of sintered composites was examined. The sintered composites were immersed in simulated body fluid for 7 days to observe their in vitro behaviour with XRD and FTIR spectroscopic identification of deposits. Composites with 10 wt% precursors sintered from vacuum calcined powder gave the best results in terms of bioactive phases, density and strength.

  1. SELENE - Self-Forming Extensible Lunar EVA Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research effort (Phase I and Phase II) by Scientific Systems Company, Inc. and BBN Technologies is to develop the SELENE network --...

  2. Etude de la transition ferroelectrique-ferroelastique du KD2PO4 forme du front de phase en fonction du gradient thermique

    OpenAIRE

    Kvítek, Zdeněk

    2010-01-01

    Etude de la transition ferroelectrique-ferroelastique du KD2PO4 forme du front de phase en fonction du gradient thermique The thesis explores complex process of first order transition of KD2PO4 crystal from tetragonal phase to ferroelectric - ferroelastic orthorhombic phase and back at temperature 209 K. The experimental set up of nitrogeneous cryostat allowes temperature and temperature gradient variations during simultaneous three axes optical sample observations, dielectric measurements. T...

  3. Spatial-area selective retrieval of multiple object-place associations in a hierarchical cognitive map formed by theta phase coding.

    Science.gov (United States)

    Sato, Naoyuki; Yamaguchi, Yoko

    2009-06-01

    The human cognitive map is known to be hierarchically organized consisting of a set of perceptually clustered landmarks. Patient studies have demonstrated that these cognitive maps are maintained by the hippocampus, while the neural dynamics are still poorly understood. The authors have shown that the neural dynamic "theta phase precession" observed in the rodent hippocampus may be capable of forming hierarchical cognitive maps in humans. In the model, a visual input sequence consisting of object and scene features in the central and peripheral visual fields, respectively, results in the formation of a hierarchical cognitive map for object-place associations. Surprisingly, it is possible for such a complex memory structure to be formed in a few seconds. In this paper, we evaluate the memory retrieval of object-place associations in the hierarchical network formed by theta phase precession. The results show that multiple object-place associations can be retrieved with the initial cue of a scene input. Importantly, according to the wide-to-narrow unidirectional connections among scene units, the spatial area for object-place retrieval can be controlled by the spatial area of the initial cue input. These results indicate that the hierarchical cognitive maps have computational advantages on a spatial-area selective retrieval of multiple object-place associations. Theta phase precession dynamics is suggested as a fundamental neural mechanism of the human cognitive map.

  4. EFFECT OF THE PHASE STRUCTURE EVOLUTION ON THE PROPERTIES OF FILMS FORMED FROM PBA/P(ST-CO-MMA)COMPOSITE LATEX

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A group of heterogeneous latexes poly(butyl acrylate)/poly(styrene-co-methyl methacrylate)(PBA/P(St-co-MMA))were prepared by a semi-continuous seeded emulsion polymerization process under monomer starved conditions.The glass transition temperature(Tg)and the mechanical properties of the film formed from the composite latex changed with the evolution of the particle morphology.A photon transmission method was used to monitor the phase structure evolution of films which were prepared from core-shell PBA/P(St-co-MMA)latex at room temperature and annealed at 383 K above Tg of the polymers.In addition,the changes of the surface of the film formed from the composite latex with time at 383 K were observed by AFM.The evidence illustrated that the film formed from the core-shell latex particles was metastable.The rearrangement of the phases could occur under proper conditions.

  5. Unconventional field induced phases in a quantum magnet formed by free radical tetramers

    Science.gov (United States)

    Saúl, Andrés; Gauthier, Nicolas; Askari, Reza Moosavi; Côté, Michel; Maris, Thierry; Reber, Christian; Lannes, Anthony; Luneau, Dominique; Nicklas, Michael; Law, Joseph M.; Green, Elizabeth Lauren; Wosnitza, Jochen; Bianchi, Andrea Daniele; Feiguin, Adrian

    2018-02-01

    We report experimental and theoretical studies on the magnetic and thermodynamic properties of NIT-2Py, a free radical based organic magnet. From magnetization and specific-heat measurements we establish the temperature versus magnetic field phase diagram which includes two Bose-Einstein condensates (BEC) and an infrequent half-magnetization plateau. Calculations based on density functional theory demonstrate that magnetically this system can be mapped to a quasi-two-dimensional structure of weakly coupled tetramers. Density matrix renormalization group calculations show the unusual characteristics of the BECs where the spins forming the low-field condensate are different than those participating in the high-field one.

  6. Phase formation and stability in TiO{sub x} and ZrO{sub x} thin films. Extremely sub-stoichiometric functional oxides for electrical and TCO applications

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Ralph A.; Leichtweiss, Thomas; Decker, Yannic; Janek, Juergen [Giessen Univ. (Germany). Inst. of Physical Chemistry; Dorow-Gerspach, Daniel; Schmidt, Ruediger; Wuttig, Matthias [RWTH Aachen Univ. (Germany). Inst. of Physics; Wolff, Niklas; Schuermann, Ulrich; Kienle, Lorenz [Kiel Univ. (Germany). Faculty of Engineering

    2017-03-01

    pressure. Slightly non-stoichiometric TiO{sub 2-x} films form a degenerate semiconductor with room temperature conductivities as high as 170 S/cm. Moreover, controlling both, the doping level and the vacancy concentration of these films allows to control the phase formation and the transition temperature between the rutile and anatase TiO{sub 2} polymorphs. Niobium doping of sputter deposited TiO{sub 2} can lead to films with very high electrical conductivities while maintaining a high optical transmittance demonstrating the potential of the material as an alternative transparent conducting oxide (TCO) with extraordinary properties.

  7. Detection of Life Forms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gaia Genomics proposes to develop an instrument for the detection of earthborn and/or planetary life forms that are based on a nucleic acid paradigm. Highly...

  8. PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change materials with enhanced thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tangbt@dlut.edu.cn; Wu, Cheng; Qiu, Meige; Zhang, Xiwen; Zhang, Shufen

    2014-03-01

    The thermal conductivity of form-stable PEG/SiO{sub 2} phase change material (PCM) was enhanced by in situ doping of Al{sub 2}O{sub 3} using an ultrasound-assisted sol–gel method. Fourier transform infrared spectroscopy (FT-IR) was used to characterize the structure, and the crystal performance was characterized by the X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to determine the thermal properties. The phase change enthalpy of PEG/SiO{sub 2}–Al{sub 2}O{sub 3} reached 124 J g{sup −1}, and thermal conductivity improved by 12.8% for 3.3 wt% Al{sub 2}O{sub 3} in the PCM compared with PEG/SiO{sub 2}. The hybrid PCM has excellent thermal stability and form-stable effects. - Highlights: • The PEG/SiO{sub 2}–Al{sub 2}O{sub 3} hybrid form-stable phase change material (PCM) was obtained through the sol–gel method. • The inexpensive aluminum nitrate and tetraethyl orthosilicate were used as sol precursors. • This organic–inorganic hybrid process can effectively enhance the thermal conductivity of PCMs. • The PCM exhibited high thermal stability and excellent form-stable effects.

  9. Determination of the stoichiometric rate in UO2 samples

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Sassine, Andre; Bustillos, Jose Oscar Vega

    2000-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. Gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by X-ray diffraction data to identify the uranium oxide phase changes. (author)

  10. Study of non stoichiometric uranium dioxide samples (UO2)

    International Nuclear Information System (INIS)

    Moura, Sergio C.; Lima, Nelson B. de; Bustillos, Jose O.V.

    1999-01-01

    The gravimetric and voltammetric methods for determination of non-stoichiometric O/U ratio in uranium dioxide used as nuclear fuel are discussed in this work. The oxidation of uranium oxide is very complex due to many phase changes. gravimetric and voltammetric methods do not detect phase changes. The results of this work shown that, to evaluate both methods is requiring to be done Rietveld methods by x-ray diffraction data to identify the uranium oxide phase changes. (author)

  11. Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling

    Science.gov (United States)

    Li, M. P.; Sun, Q. P.

    2018-01-01

    We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.

  12. Nano-scale clusters formed in the early stage of phase decomposition of Al-Mg-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hirosawa, S.; Sato, T. [Dept. of Metallurgy and Ceramics Science, Tokyo Inst. of Tech. (Japan)

    2005-07-01

    The formation of nano-scale clusters (nanoclusters) prior to the precipitation of the strengthening {beta}'' phase significantly influences two-step aging behavior of Al-Mg-Si alloys. In this work, the existence of two kinds of nanoclusters has been verified in the early stage of phase decomposition by differential scanning calorimetry (DSC) and three-dimensional atom probe (3DAP). Pre-aging treatment at 373 K before natural aging was also found to form preferentially one of the two nanoclusters, resulting in the remarkable restoration of age-hardenability at paint-bake temperatures. Such microstructural control by means of optimized heat-treatments; i.e. nanocluster assist processing (NCAP), possesses great potential for enabling Al-Mg-Si alloys to be used more widely as a body-sheet material of automobiles. (orig.)

  13. Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.

    2014-07-17

    We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotine prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.

  14. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    Science.gov (United States)

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  15. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  16. A Kinetic Insight into the Activation of n-Octane with Alkaline-Earth ...

    African Journals Online (AJOL)

    NICOLAAS

    The metal present in the hydroxyapatite influences the acidity of the catalyst. ... reactions carried out in a continuous flow fixed bed reactor showed that the selectivity towards ... calcium-deficient non-stoichiometric HAp has 0 £ x £ 1.6 .... Gas phase oxidation reactions were carried out in a continuous ... Gaseous and liquid.

  17. The pion form factor and δ11-phase of ππ-scattering in the quark confinement model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.; Mashnik, S.G.

    1988-01-01

    The pion form factor F π 1 (t) in the space- and time-like regions, p-wave phase of the ππ-scattering σ 1 1 (t) and the pion electromagnetic radius r π 2 =0.43 fm 2 are calculated in the quark confinement model. The comparison with experimental data and other approaches is performed. The agreement with experimental data in the region -10 GeV 2 2 is obtained

  18. The lanthanum(III molybdate(VI La4Mo7O27

    Directory of Open Access Journals (Sweden)

    Petra Becker

    2009-08-01

    Full Text Available Crystals of the orthorhombic phase La4Mo7O27 (lanthanum molybdenum oxide were obtained from a non-stoichiometric melt in the pseudo-ternary system La2O3–MoO3–B2O3. In the crystal structure, distorted square-antiprismatic [LaO8] and monocapped square-antiprismatic [LaO9] polyhedra are connected via common edges and faces into chains along [010]. These chains are arranged in layers that alternate with layers of [MoO4] and [MoO5] polyhedra parallel to (001. In the molybdate layers, a distorted [MoO5] trigonal bipyramid is axially connected to two [MoO4] tetrahedra, forming a [Mo3O11] unit.

  19. ON THE HISTORY AND RECENT APPLICATIONS OF HYPERFREE ENERGY DESCRIBING THERMODYNAMICS OF MOBILE COMPONENTS IN PARTLY OPEN CERAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    David Sedmidubsky

    2017-07-01

    Full Text Available Nonstoichiometric oxides form a new chapter in tailored materials. Founding and construction of thermodynamic functions related to solid (geologic materials is traced showing interactions between Czech Professor F. Wald and Russians R.S. Kurnakov and D.S. Korzhinskiy in the early definition of phases and characterization of partly open systems. Development of thermodynamic concepts regarding solid-state description is reviewed. For the associated definition of a mobile component the hyperfree energy was invented and recently applied on several systems. A novel term plutability is put forward as a measure of material susceptibility towards free component uptake as a result of varying predictors such as temperature, pressure and activity. Ehrenfest-like equations involving the changes of plutabilities were derived.

  20. Spin Forming of an Aluminum 2219-T6 Aft Bulkhead for the Orion Multi-Purpose Crew Vehicle: Phase II Supplemental Report

    Science.gov (United States)

    Piascik, Robert S.; Squire, Michael D.; Domack, Marcia S.; Hoffman, Eric K.

    2015-01-01

    The principal focus of this project was to assist the Orion Multi-Purpose Crew Vehicle (MPCV) Program in developing a spin forming fabrication process for manufacture of the aft bulkhead of the pressure vessel. The spin forming process will enable a single piece aluminum (Al) 2219 aft bulkhead which will eliminate the current multiple piece welded construction, simplify fabrication, and lead to an enhanced design that will reduce vehicle weight by eliminating welds. Phase I of this assessment explored spin forming the single-piece forward pressure vessel bulkhead from aluminum-lithium 2195.

  1. Diffuse Phase Transition In Non-Stoichiometric LiRbSO4 Crystals

    OpenAIRE

    Al Houty, L.; Kassem, M. E.; El-Muraikhi, M.; Mohammad, A. A.

    1992-01-01

    The influence of changing the ratio of Li2S04 on the structure transition of (RbxLi1-x)2S04 , LRS crystals, where x ranged from 0.1 to 0. 7, was studied by thermal analysis techniques in the temperature range 300 - 600 K. Multiple peaks in the DT A traces were observed for crystals having x = 0.1 and x = 0.2. The values of CP decreased while that ofT, increased with increasing Rb+ content. The excess of the specific heat for LRS crystals showed a broadening in the temperature dependence espec...

  2. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI 2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe 2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  3. Phase equilibrium of PuO2-x - Pu2O3 based on first-principles calculations and configurational entropy change

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji

    2011-01-01

    Combination of an oxygen vacancy formation energy calculated using first-principles approach and the configurational entropy change treated within the framework of statistical mechanics gives an expression of the Gibbs free energy at large deviation from stoichiometry of plutonium oxide PuO 2 . An oxygen vacancy formation energy 4.20 eV derived from our previously first-principles calculation was used to evaluate the Gibbs free energy change due to oxygen vacancies in the crystal. The oxygen partial pressures then can be evaluated from the change of the free energy with two fitting parameters (a vacancy-vacancy interaction energy and vibration entropy change due to induced vacancies). Derived thermodynamic expression for the free energy based on the SGTE thermodynamic data for the stoichiometric PuO 2 and the Pu 2 O 3 compounds was further incorporated into the CALPHAD modeling, then phase equilibrium between the stoichiometric Pu 2 O 3 and non-stoichiometric PuO 2-x were reproduced.

  4. Hydrothermal precipitation of artificial violarite

    DEFF Research Database (Denmark)

    Jørgensen, W. H.; Toftlund, H.; Warner, T. E.

    2012-01-01

    The nonstoichiometric nickel-ore mineral, violarite, (Ni,Fe)3S4 was prepared as a phase-pure fine powder by a comparatively quick hydrothermal method from an aqueous solution of iron(II) acetate, nickel(II) acetate and DL-penicillamine in an autoclave at 130 °C for 45 h. Powder-XRD showed that th...

  5. Preparation, thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly(ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds

    International Nuclear Information System (INIS)

    Cai Yibing; Song Lei; He Qingliang; Yang Dandan; Hu Yuan

    2008-01-01

    The paraffin is one of important thermal energy storage materials with many desirable characteristics (i.e., high heat of fusion, varied phase change temperature, negligible supercooling, self-nucleating, no phase segregation and cheap, etc.), but has low thermal stability and flammable. Hence, a novel form-stable phase change materials (PCM) based on high density polyethylene (HDPE)/poly(ethylene-co-vinyl acetate) (EVA)/organophilic montmorillonite (OMT) nanocomposites and paraffin are prepared by twin-screw extruder technique. The structures of the HDPE-EVA/OMT nanocomposites and the form-stable PCM are evidenced by the X-ray diffraction (XRD), transmission electronic microscopy (TEM) and scanning electronic microscope (SEM). The results of XRD and TEM show that the HDPE-EVA/OMT nanocomposites form the ordered intercalated nanomorphology. The form-stable PCM consists of the paraffin, which acts as a dispersed phase change material and the HDPE-EVA/OMT nanocomposites, which acts as the supporting material. The paraffin disperses in the three-dimensional net structure formed by HDPE-EVA/OMT nanocomposites. The thermal stability, latent heat and flammability properties are characterized by thermogravimetry analysis (TGA), dynamic Fourier-transform infrared (FTIR), differential scanning calorimeter (DSC) and cone calorimeter, respectively. The TGA and dynamic FTIR analyses indicate that the incorporation of suitable amount of OMT into the form-stable PCM increase the thermal stability. The DSC results show that the latent heat of the form-stable PCM has a certain degree decrease. The cone calorimeter shows that the heat release rate (HRR) has remarkably decreases with loading of OMT in the form-stable PCM, contributing to the improved flammability properties

  6. A scanning tunneling microscopy investigation of the phases formed by the sulfur adsorption on Au(100) from an alkaline solution of 1,4-piperazine(bis)-dithiocarbamate of potassium

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, Javier A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Valenzuela B, José [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Cao Milán, R. [Facultad de Química, Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Herrera, José [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba); Farías, Mario H. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM) , km 107 Carretera Tijuana-Ensenada, Ensenada, BC 22860 (Mexico); Hernández, Mayra P., E-mail: mayrap@fisica.uh.cu [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana, Zapata y G, El Vedado, Plaza de la Revolución, La Habana 10400 (Cuba)

    2014-11-30

    Highlights: • New phases of sulfur on gold: hexamer and (√(2)×√(2)) were observed by STM. • Hexamers and (√(2)×√(2)) structures coexist with well-known octomers. • Formation of sulfur multilayer by K{sub 2}DTC{sub 2}pz hydrolysis under alkaline condition. • Top octomer layer have dynamic behavior while (√(2)×√(2)) and hexamer were static. • A model is presented to explain sulfur multilayer formation on Au(100). - Abstract: Piperazine-dithiocarbamate of potassium (K{sub 2}DTC{sub 2}pz) was used as a new precursor for the spontaneous deposition of sulfur on the Au(100) surface in alkaline solution. Two new sulfur phases were studied by scanning tunneling microscopy (STM). These phases were formed by six sulfur atoms (S{sub 6} phase, hexamer) and by four sulfur atoms (S{sub 4} phase, tetramer with (√(2)×√(2)) structure), and they were observed in coexistence with the well-known quasi-square patterns formed by eight sulfur atoms (S{sub 8} phase, octomer). A model was proposed where sulfur multilayers were formed by a (√(2)×√(2)) phase adsorbed directly on the gold surface while one of the other structures: hexamers or octomers were deposited on top. Sulfur layers were formed on gold terraces, vacancies and islands produced by lifting reconstructed surface. Sequential high-resolution STM images allowed the direct observation of the dynamic of the octomers, while the (√(2)×√(2)) structure remained static. Images also showed the reversible association/dissociation of the octomer.

  7. A scanning tunneling microscopy investigation of the phases formed by the sulfur adsorption on Au(100) from an alkaline solution of 1,4-piperazine(bis)-dithiocarbamate of potassium

    International Nuclear Information System (INIS)

    Martínez, Javier A.; Valenzuela B, José; Cao Milán, R.; Herrera, José; Farías, Mario H.; Hernández, Mayra P.

    2014-01-01

    Highlights: • New phases of sulfur on gold: hexamer and (√(2)×√(2)) were observed by STM. • Hexamers and (√(2)×√(2)) structures coexist with well-known octomers. • Formation of sulfur multilayer by K 2 DTC 2 pz hydrolysis under alkaline condition. • Top octomer layer have dynamic behavior while (√(2)×√(2)) and hexamer were static. • A model is presented to explain sulfur multilayer formation on Au(100). - Abstract: Piperazine-dithiocarbamate of potassium (K 2 DTC 2 pz) was used as a new precursor for the spontaneous deposition of sulfur on the Au(100) surface in alkaline solution. Two new sulfur phases were studied by scanning tunneling microscopy (STM). These phases were formed by six sulfur atoms (S 6 phase, hexamer) and by four sulfur atoms (S 4 phase, tetramer with (√(2)×√(2)) structure), and they were observed in coexistence with the well-known quasi-square patterns formed by eight sulfur atoms (S 8 phase, octomer). A model was proposed where sulfur multilayers were formed by a (√(2)×√(2)) phase adsorbed directly on the gold surface while one of the other structures: hexamers or octomers were deposited on top. Sulfur layers were formed on gold terraces, vacancies and islands produced by lifting reconstructed surface. Sequential high-resolution STM images allowed the direct observation of the dynamic of the octomers, while the (√(2)×√(2)) structure remained static. Images also showed the reversible association/dissociation of the octomer

  8. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    Science.gov (United States)

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  9. Electrical properties of chemically prepared nonstoichiometric CuIn ...

    Indian Academy of Sciences (India)

    TECS

    2; thin films; chemical bath deposition technique; d.c. conductivity; thermoelectric .... In a semiconductor, temperature gradient yields the thermo- ... to form the metal complex (Chavan and Sharma 2005) .... Thesis, University of Rajasthan, Jaipur.

  10. Small Form Factor RFID Applicator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed development of a small form factor Astrobee dedicated RFID label applicator will allow current and future free flying vehicles to place RFID labels...

  11. Comparison between two forms of vaginally administered progesterone for luteal phase support in assisted reproduction cycles.

    Science.gov (United States)

    Geber, Selmo; Moreira, Ana Carolina Ferreira; de Paula, Sálua Oliveira Calil; Sampaio, Marcos

    2007-02-01

    The use of progesterone for luteal phase support has been demonstrated to be beneficial in assisted reproduction cycles using gonadotrophin-releasing hormone analogues (GnRHa). Two micronized progesterone preparations are available for vaginal administration: capsules and gel. The objective of this study was to compare the efficacy of these two forms for luteal phase support in assisted reproduction cycles. A total of 244 couples undergoing IVF/intracytoplasmic sperm injection cycles were included in the study and were randomly allocated (sealed envelopes) into two groups: group 1 (122) received vaginal capsules of 200 mg of micronized progesterone (Utrogestan), 3 times daily, and group 2 (122) received micronized progesterone in gel (Crinone 8%), once daily. Both groups received progesterone for 13 days beginning day 1 after oocyte retrieval, continuing until the pregnancy test was performed and until 12 weeks of pregnancy. Groups were compared by clinical data and assisted reproduction results and had similar ages and causes of infertility. Although the pregnancy rate was higher for those receiving progesterone gel than capsules (44.26 and 36.06% respectively), this difference was not statistically significant. The study showed that vaginal progesterone gel and capsules used for luteal phase support in assisted reproduction cycles with long protocol GnRHa result in similar pregnancy rates.

  12. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; MacDonald, Robert C. (NWU)

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored

  13. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  14. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    Science.gov (United States)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  15. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi2O3-ZnO-(Nb, Ta)2O5

    International Nuclear Information System (INIS)

    Tan, K.B.; Khaw, C.C.; Lee, C.K.; Zainal, Z.; Miles, G.C.

    2010-01-01

    Research highlights: → Combined XRD and ND Rietveld structural refinement of pyrochlores. → Structures and solid solution mechanisms of Bi-pyrochlores. → Bi and Zn displaced off-centre to different 96g A-site positions. → Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi 1.5 ZnTa 1.5 O 7 and non-stoichiometric Bi 1.56 Zn 0.92 Nb 1.44 O 6.86 . In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  16. Modeling of composite synthesis in conditions of controlled thermal explosion

    Science.gov (United States)

    Kukta, Yaroslav; Knyazeva, Anna

    2017-12-01

    The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.

  17. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  18. Phase equilibrium of PuO{sub 2-x} - Pu{sub 2}O{sub 3} based on first-principles calculations and configurational entropy change

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi, E-mail: satoshi.minamoto@ctc-g.co.jp [ITOCHU Techno-Solutions Corporation, Kasumigaseki, 2-5, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-6080 (Japan); Kato, Masato [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Konashi, Kenji [Institute for Materials Research, Tohoku University, Oarai-chou, Ibaraki (Japan)

    2011-05-31

    Combination of an oxygen vacancy formation energy calculated using first-principles approach and the configurational entropy change treated within the framework of statistical mechanics gives an expression of the Gibbs free energy at large deviation from stoichiometry of plutonium oxide PuO{sub 2}. An oxygen vacancy formation energy 4.20 eV derived from our previously first-principles calculation was used to evaluate the Gibbs free energy change due to oxygen vacancies in the crystal. The oxygen partial pressures then can be evaluated from the change of the free energy with two fitting parameters (a vacancy-vacancy interaction energy and vibration entropy change due to induced vacancies). Derived thermodynamic expression for the free energy based on the SGTE thermodynamic data for the stoichiometric PuO{sub 2} and the Pu{sub 2}O{sub 3} compounds was further incorporated into the CALPHAD modeling, then phase equilibrium between the stoichiometric Pu{sub 2}O{sub 3} and non-stoichiometric PuO{sub 2-x} were reproduced.

  19. The effect of organic ligands on the crystallinity of calcium phosphate

    Science.gov (United States)

    van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia

    2003-03-01

    Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.

  20. Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery

    Science.gov (United States)

    Melo Aguilera, Evelyn; Hernández Vera, María Cecilia; Viñals, Joan; Graber Seguel, Teófilo

    2016-04-01

    This work characterizes raw and decopperized slimes, with the objective of identifying the phases in these two sub-products. The main phases in copper anodes are metallic copper, including CuO, which are present in free form or associated with the presence of copper selenide or tellurides (Cu2(Se,Te)) and several Cu-Pb-Sb-As-Bi oxides. During electrorefining, the impurities in the anode release and are not deposited in the cathode, part of them dissolving and concentrated in the electrolyte, and others form a raw anode slime that contains Au, Ag, Cu, As, Se, Te and PGM, depending on the composition of the anode. There are several recovery processes, most of which involve acid leaching in the first step to dissolve copper, whose product is decopperized anode slime. SEM analysis revealed that the mineralogical species present in the raw anode slime under study were mainly eucarite (CuAgSe), naumannite (Ag2Se), antimony arsenate (SbAsO4), and lead sulfate (PbSO4). In the case of decopperized slime, the particles were mainly composed of SbAsO4 (crystalline appearance), non-stoichiometric silver selenide (Ag(2- x)Se), and chlorargyrite (AgCl).

  1. Structural Analyses of Phase Stability in Amorphous and Partially Crystallized Ge-Rich GeTe Films Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong

    2017-11-29

    The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.

  2. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    Science.gov (United States)

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  3. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

    International Nuclear Information System (INIS)

    Cai Yibing; Wei Qufu; Huang Fenglin; Gao Weidong

    2008-01-01

    The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 deg. C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites

  4. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Yiran li

    2013-10-01

    Full Text Available This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs, based on eutectic mixtures as phase change materials (PCMs for thermal energy storage and high-density polyethylene (HDPE-ethylene-vinyl acetate (EVA polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD–capric acid (CA, TD–lauric acid (LA, and TD–myristic acid (MA, which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC. The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM, 24.53 °C/24.92 °C (FS TD–LA PCM, and 33.15 °C/30.72 °C (FS TD–MA PCM, respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM and Fourier-transform infrared (FT-IR spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP. It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  5. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.

    Science.gov (United States)

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran

    2013-10-22

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  6. Thermal decomposition of ammonium uranate; X-ray study

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Rofail, N.H.; Khilla, M.A.

    1984-01-01

    Ammonium uranate was precipitated from a nuclear-pure uranyl nitrate solution using gaseous ammonia. Thermal decomposition of the obtained uranate, at different calcining temperatures, resulted in the formation of amorphous (A-)UO 3 , β-UO 3 , UOsub(2.9), U 3 O 8 (H) and U 3 O 8 (O). The influence of ammonia content, occluded nitrate ions and rate of heating, on the formation of these phases, was studied using X-ray powder diffraction analysis. The results indicated that ammonium uranate UO 2 (OH)sub(2-x)(ONH 4 )x . YH 2 O is a continuous non-stoichiometric system is a continuous non-stoichiometric system with no intermediate stoichiometric compounds and its composition varies according to mode of preparation. The results indicated also that the rate of heating and formation of hydrates are important factors for both UOsub(2.9) and U 3 O 8 (O) formation. (orig.)

  7. Formation of Ag nanoparticles in percolative Ag–PbTiO3 composite thin films through lead-rich Ag–Pb alloy particles formed as transitional phase

    International Nuclear Information System (INIS)

    Hu, Tao; Wang, Zongrong; Su, Yanbo; Tang, Liwen; Shen, Ge; Song, Chenlu; Han, Gaorong; Weng, Wenjian; Ma, Ning; Du, Piyi

    2012-01-01

    The Ag nanoparticle dispersed percolative PbTiO 3 ceramic thin film was prepared in situ by sol–gel method with excess lead introduced into a sol precursor. The influence of excess lead and the heat treatment time on the formation of Ag nanoparticles was investigated by energy dispersive X-ray spectra, scanning electron microscopy, X-ray diffraction, and ultraviolet–visible absorption spectra. Results showed that the excess lead introduced into the sol precursor was in favor of the crystallization of the thin film and in favor of formation of the perovskite phase without the pyrochlore phase. Lead-rich Ag–Pb alloy particles first formed in the thin films and then decomposed to become large numbers of Ag nanoparticles of about 3 nm in size in the thin films when the heat treatment time was longer than 2 min. The content of the Ag nanoparticles increased with increasing the heat treatment time. The percolative behavior appears typically in the Ag nanoparticle dispersed thin films. The dielectric constant of the thin film was about 3 times of that without Ag nanoparticles. - Highlights: ► The Ag nanoparticles formed in the PbTiO 3 percolative ceramic thin film. ► The Ag–Pb alloy particles formed as transitional phase during thin film preparation. ► The lead-rich Ag–Pb alloy particles decomposed to form Ag nanoparticles in the film. ► Permittivity of the thin film is 3 times higher than that without Ag nanoparticles.

  8. Small angle neutron scattering form polymer melts: structural investigation and phase behaviour

    International Nuclear Information System (INIS)

    Ertugrul, O.

    2004-01-01

    The Small-Angle Neutron Scattering (SANS) techniques have been used to study the structural properties and phase behavior of polymer melts. A model based on Random Phase Approximation (RPA) is proposed to predict the experimental data. By fitting the model to data we could be able to obtain radius of gyration (a measure of size of a polymer) and phase transition for the sample. (author)

  9. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  10. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  11. Gas phase hydrolysis of formaldehyde to form methanediol: impact of formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2013-11-21

    We find that formic acid (FA) is very effective at facilitating diol formation through its ability to reduce the barrier for the formaldehyde (HCHO) hydrolysis reaction. The rate limiting step in the mechanism involves the isomerization of a prereactive collision complex formed through either the HCHO···H2O + FA and/or HCHO + FA···H2O pathways. The present study finds that the effective barrier height, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state (TS) and the HCHO···H2O + FA and HCHO + FA···H2O starting reagents, are respectively only ∼1 and ∼4 kcal/mol. These barriers are substantially lower than the ∼17 kcal/mol barrier associated with the corresponding step in the hydrolysis of HCHO catalyzed by a single water molecule (HCHO + H2O + H2O). The significantly lower barrier heights for the formic acid catalyzed pathway reveal a new important role that organic acids play in the gas phase hydrolysis of atmospheric carbonyl compounds.

  12. Stability and activity of lysozyme in stoichiometric and non-stoichiometric protic ionic liquid (PIL)-water systems

    Science.gov (United States)

    Wijaya, Emmy C.; Separovic, Frances; Drummond, Calum J.; Greaves, Tamar L.

    2018-05-01

    There has been a substantial increase in enzyme applications within the biochemical and pharmaceutical industries, for example, as industrial biocatalysts. However, enzymes have narrow marginal stability which makes them prone to become inactive and/or denature with a slight change in the solvent environment. Typically industrial applications require harsher solvent environments than enzyme native environments, and hence there is a need to understand solvent-protein interactions in order to develop strategies to maintain, or enhance, the enzymatic activity under industrially relevant solvent conditions. Previously we have shown that protic ionic liquids (PILs) with water can have a stabilising effect on lysozyme, with a large variation dependent on which PIL ions are present, and the water concentration [E. C. Wijaya et al., Phys. Chem. Chem. Phys. 18(37), 25926-25936 (2016)]. Here we extend on this work using non-stoichiometric aqueous PIL solvents to investigate, and isolate, the role of pH and ionicity on enzymes. We have used the PILs ethylammonium nitrate (EAN) and ethanolammonium formate (EOAF) since our previous work has identified these as good solvents for lysozyme. Solvent libraries were made from these two PILs with an additional precursor acid or base to modify the acidity/basicity of the neutral stoichiometric PIL, and with water added, to have solutions with 4-17 mol. % of the PIL ions in water. Molar ratios of base:acid were varied between 1:1.05 and 2:1 for EAN and 1:1.25 and 2:1 for EOAF, which enabled from highly basic to highly acidic solutions to be obtained. This was to modify the acidity/basicity of the neutral stoichiometric PILs, without the addition of buffers. The structure and stability of hen egg white lysozyme (HEWL) were explored under these solvent conditions using synchrotron small angle X-ray scattering (SAXS), Fourier transform infrared (FTIR), and activity assays. The radius of gyration and Kratky plots obtained from the SAXS data

  13. Estimation of Rabeprazole Sodium and Itopride Hydrochloride in Tablet Dosage Form Using Reverse Phase High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Shaik Harum Rasheed

    2011-01-01

    Full Text Available A reversed phase high performance liquid chromatography (RP-HPLC method was developed, validated and used for the quantitative determination of rabeprazole sodium (RP and itopride hydrochloride (IH, from its tablet dosage form. Chromatographic separation was performed on a Phenomenex C18 column (250 mm × 4.6 mm, 5 μm, with a mobile phase comprising of a mixture of 50 mM ammonium acetate buffer and methanol (20:80v/v, pH 4.5 adjusted with acetic acid, at a flow rate of 1.3 mL/min with detection at 286 nm. Separation was completed in less than 10 min. As per International Conference on Harmonization (ICH guidelines the method was validated for linearity, accuracy, precision, limit of quantitation and limit of detection. Linearity of RP was found to be in the range of 37.5-375 μg/mL and IH was found to be in the range of 5-50 μg/mL. The correlation coefficients were 0.9997 and 0.9995 for RB and IH respectively. The accuracy of the developed method was found to be 98.6-100.7 for RP and 99.42 -100.81 for IH. The experiment shows the developed method is free from interference of excipients. It indicates the developed RP-HPLC method is simple, linear, precise and accurate and it can be conveniently adopted for the routine quality control analysis of the tablet dosage form.

  14. The phases formed by the dehydration of disodium zirconium (IV) bis(orthophosphate) trihydrate and their ion-exchange behavior

    International Nuclear Information System (INIS)

    Inoue, Yasushi; Yamada, Yoshimune

    1982-01-01

    The phase transformation of Na 2 Zr(PO 4 ) 2 .3H 2 O which had been obtained from zirconium (IV) bis(hydrogenphosphate) monohydrate(α-zirconium phosphate), prepared by the direct precipitation method, was studied by means of gravimetry, X-ray analysis, and acid-base titration. When the material was heated for 2d, it was transformed to a monohydrate at 80 0 C and then successively to three anhydrous phases, depending on the temperature. The monohydrate was also formed by letting the trihydrate stand over P 2 O 5 at room temperature for longer than two weeks. The processes were confirmed to be irreversible by an examination of the rehydration behavior, from which the conditions of the storage of five modifications of disodium zirconium (IV) bis(orthophosphate) were established. It is of special interest that the second anhydrous phase reverted to the first one when it was allowed to stand at room temperature in air or in a desiccator. The rate of the reversion decreased with the temperature of heat-treatment and with a decrease in the relative humidity of the surroundings. The difference between the present results and Clearfield's was clarified and attributed mainly to the difference in the crystallinity of the starting α-zirconium phosphate. (author)

  15. Gas-phase complexes formed between amidoxime ligands and vanadium or iron investigated using electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mustapha, Adetayo M; Pasilis, Sofie P

    2016-08-15

    Amidoxime-functionalized sorbents can be used to extract uranium from seawater. Iron(III) and vanadium(V) may compete with uranium for adsorption sites. We use 2,6-dihydroxyiminopiperidine (DHIP) and N(1) ,N(5) -dihydroxypentanediimidamide (DHPD) to model amidoxime functional groups and characterize the vanadium(V) and iron(III) complexes with these ligands. We also examine the effect of iron(III) and vanadium(V) on uranyl(VI) complexation by DHIP and DHPD. The experiments were carried out in positive ion mode using a quadrupole ion trap mass spectrometer equipped with an electrospray ionization source. The effect on the mass spectra of changes in ligand, metal:ligand mole ratio, and pH was examined. Iron(III) formed a 1:2 metal:ligand complex with DHIP at all metal:ligand mole ratios and pH values investigated; it formed both 1:2 and 1:3 metal:ligand complexes with DHPD. Vanadium(V) formed 1:1 and 1:2 metal:ligand complexes with DHIP. A 1:2 metal:ligand complex was formed with DHPD at all vanadium(V):DHPD mole ratios investigated. Changes in solution pH did not affect the ions observed. The relative binding affinities of the metal ions towards DHIP followed the order iron(III) > vanadium(V) > uranyl(VI). This study presents a first look at the gas-phase vanadium(V)- and iron(III)-DHIP and -DHPD complexes using electrospray ionization mass spectrometry. These metals form stronger complexes with amidoxime ligands than uranyl(VI), and will affect uranyl(VI) adsorption to amidoxime-based sorbents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Determination of basic components and oxidation power of Bi-Sr-Ca-Cu-O high temperature superconducting materials

    International Nuclear Information System (INIS)

    Vesene, T.B.

    1993-01-01

    A combination of methods is suggested for photometric determination of basic components of samples of bismuth-, strontium-, calcium-, and copper-based materials. A microchemical analysis is performed from one specimen without preliminary separation of components. Bismuth is singled out in the form of its complex with xylenol orange, calcium is defined in the form if its complex with calcion, strontium - in the form of its complex with chlorophosphonazo 3, and copper - in the form of its complex with PAR. Nonstoichiometric oxygen is detected via photometric evaluation of triiodine ions

  17. Direct visualization of β phase causing intergranular forms of corrosion in Al–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Young-Ki, E-mail: deltag@naver.com; Allen, Todd

    2013-06-15

    For a more effective examination of microstructure in Al–Mg alloys, a new etching solution has been developed; dissolved ammonium persulfate in water. It is demonstrated how β phase (Al{sub 3}Mg{sub 2}) in Al–Mg alloys respond to this solution using samples of a binary Al–Mg alloy and a commercial 5083 aluminum alloy. Nanometer sized β phase is clearly visualized for the first time using scanning electron microscopy (SEM) instead of transmission electron microscopy (TEM). It is anticipated that direct and unambiguous visualization of β phase will greatly augment intergranular corrosion research in 5xxx series aluminum alloys. - Highlights: • Nanometer sized β phase in Al-10% Mg is first clearly visualized with SEM. • Nanometer sized β phase in wrought alloy 5083 is first clearly visualized with SEM. • Grain boundary decorating β phase and isolated sponge-like β phase are shown. • This phase is confirmed to be β phase using composition analysis.

  18. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  19. A closed-form solution for moving source localization using LBI changing rate of phase difference only

    Directory of Open Access Journals (Sweden)

    Zhang Min

    2014-04-01

    Full Text Available Due to the deficiencies in the conventional multiple-receiver localization systems based on direction of arrival (DOA such as system complexity of interferometer or array and amplitude/phase unbalance between multiple receiving channels and constraint on antenna configuration, a new radiated source localization method using the changing rate of phase difference (CRPD measured by a long baseline interferometer (LBI only is studied. To solve the strictly nonlinear problem, a two-stage closed-form solution is proposed. In the first stage, the DOA and its changing rate are estimated from the CRPD of each observer by the pseudolinear least square (PLS method, and then in the second stage, the source position and velocity are found by another PLS minimization. The bias of the algorithm caused by the correlation between the measurement matrix and the noise in the second stage is analyzed. To reduce this bias, an instrumental variable (IV method is derived. A weighted IV estimator is given in order to reduce the estimation variance. The proposed method does not need any initial guess and the computation is small. The Cramer–Rao lower bound (CRLB and mean square error (MSE are also analyzed. Simulation results show that the proposed method can be close to the CRLB with moderate Gaussian measurement noise.

  20. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  1. Oxidation of Al2O3 Scale-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James L.

    2018-03-01

    High temperature oxidation of alumina-forming MAX phases, Ti2AlC and Cr2AlC, were examined under turbine engine environments and coating configurations. Thermogravimetric furnace tests of Ti2AlC showed a rapid initial transient due to non-protective TiO2 growth. Subsequent well-behaved cubic kinetics for alumina scale growth were shown from 1273 K to 1673 K (1000 °C to 1400 °C). These possessed an activation energy of 335 kJ/mol, consistent with estimates of grain boundary diffusivity of oxygen ( 375 kJ/mol). The durability of Ti2AlC under combustion conditions was demonstrated by high pressure burner rig testing at 1373 K to 1573 K (1100 °C to 1300 °C). Here good stability and cubic kinetics also applied, but produced lower weight gains due to volatile TiO(OH)2 formation in water vapor combustion gas. Excellent thermal stability was also shown for yttria-stabilized zirconia thermal barrier coatings deposited on Ti2AlC substrates in 2500-hour furnace tests at 1373 K to 1573 K (1100 °C to 1300 °C). These sustained a record 35 µm of scale as compared to 7 μm observed at failure for typical superalloy systems. In contrast, scale and TBC spallation became prevalent on Cr2AlC substrates above 1423 K (1150 °C). Cr2AlC diffusion couples with superalloys exhibited good long-term mechanical/oxidative stability at 1073 K (800 °C), as would be needed for corrosion-resistant coatings. However, diffusion zones containing a NiAl-Cr7C3 matrix with MC and M3B2 particulates were commonly formed and became extensive at 1423 K (1150 °C).

  2. Image forming apparatus

    DEFF Research Database (Denmark)

    2005-01-01

    An image H(x, y) for displaying a target image G(x, y) is displayed on a liquid-crystal display panel and illumination light from an illumination light source is made to pass therethrough to form an image on a PALSLM. Read light hv is radiated to the PALSLM and a phase-modulated light image alpha...... (x, y) read out of the PALSLM is subjected to Fourier transform by a lens. A phase contrast filter gives a predetermined phase shift to only the zero-order light component of Fourier light image alpha f(x, y). The phase-shifted light image is subjected to inverse Fourier transform by a lens...... to project an output image O(x, y) to an output plane. A light image O'(x, y) branched by a beam sampler is picked up by a pickup device and an evaluation value calculating unit evaluates conformity between the image O(x, y) and the image G(x, y).; A control unit performs feedback control of optical...

  3. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  4. Canted ferrimagnetism and giant coercivity in the nonstoichiometric double perovskite L a2N i1.19O s0.81O6

    Science.gov (United States)

    Feng, Hai L.; Reehuis, Manfred; Adler, Peter; Hu, Zhiwei; Nicklas, Michael; Hoser, Andreas; Weng, Shih-Chang; Felser, Claudia; Jansen, Martin

    2018-05-01

    The nonstoichiometric double perovskite oxide L a2N i1.19O s0.81O6 was synthesized by solid-state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. L a2N i1.19O s0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2B B'O6 ) with space group P 21/n , where the B site is fully occupied by Ni and the B ' site by 19% Ni and 81% Os atoms. Using x-ray absorption spectroscopy an O s4.5 + oxidation state was established, suggesting the presence of about 50% paramagnetic O s5 + (5 d3 , S =3 /2 ) and 50% nonmagnetic O s4 + (5 d4 , Jeff=0 ) ions at the B ' sites. Magnetization and neutron diffraction measurements on L a2N i1.19O s0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear N i2 + -spin chains extending along the c axis but a noncollinear spin alignment within the a b plane. The magnetization curve of L a2N i1.19O s0.81O6 features a hysteresis with a very high coercive field, HC=41 kOe , at T =5 K , which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder. Our results are encouraging to search for rare-earth-free hard magnets in the class of double perovskite oxides.

  5. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Rehakova, Maria; Fortunova, Lubica; Bastl, Zdenek; Nagyova, Stanislava; Dolinska, Silvia; Jorik, Vladimir; Jona, Eugen

    2011-01-01

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py) x ZSM5, Cu-CT and Cu-(py) x CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py) x zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  6. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    Science.gov (United States)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  7. Combination of a fast white-light interferometer with a phase shifting interferometric line sensor for form measurements of precision components

    Science.gov (United States)

    Laubach, Sören; Ehret, Gerd; Riebling, Jörg; Lehmann, Peter

    2017-06-01

    By means of an interferometric line sensor system, the form of a specimen can be measured by stitching several overlapping circular subapertures to form one 3D topography. This concept is very flexible and can be adapted to many different specimen geometries. The sensor is based on a Michelson interferometer configuration that consists of a rapidly oscillating reference mirror in combination with a high-speed line-scan camera. Due to the overlapping areas, movement errors of the scan axes can be corrected. In order to automatically adjust the line sensor in such a way that it is perpendicular to the measurement surface at a fixed working distance, a white-light interferometer was included in the line-based form-measuring system. By means of a fast white-light scan, the optimum angle of the sensor (with respect to the surface of the specimen) is determined in advance, before scanning the specimen using the line-based sinusoidal phase shifting interferometer. This produces accurate measurement results and makes it possible to also measure non-rotational specimens. In this paper, the setup of the line-based form-measuring system is introduced and the measurement strategy of the sensor adjustment using an additional white-light interferometer is presented. Furthermore, the traceability chain of the system and the main error influences are discussed. Examples of form measurement results are shown.

  8. Impact of cation stoichiometry on the early stage of growth of SrTiO{sub 3} deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chencheng, E-mail: c.xu@fz-juelich.de; Moors, Marco; Dittmann, Regina

    2015-12-30

    Highlights: • Stoichiometry dependence of SrTiO{sub 3} sub-monolayer growth monitored by RHEED/AFM. • Reduced surface diffusion of non-stoichiometric SrTiO{sub 3} was detected. • A modified step density model correlates surface diffusion and RHEED minimum. - Abstract: By performing in situ growth studies during pulsed laser deposition, we observed a strong reduction of the surface diffusion coefficients for slightly non-stoichiometric SrTiO{sub 3}. Both, stoichiometric and non-stoichiometric thin films exhibit 2D layer by layer growth. However, in the non-stoichiometric case the 2D island coalescence is significantly delayed, which goes along with a shift of the reflection high electron energy diffraction (RHEED) minimum. We could explain this shift of the RHEED minimum by developing a model for the step density evolution taking into account finite surface diffusion.

  9. Study of the Adherence Mechanism Between the Metal and Inorganic Coating with Mill Addition of Li2Ni8O10 Nano Powder

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-chun; JIANG Wei-zhong

    2009-01-01

    The adherence strength between the metal and the inorganic coating can be greatly increased by mill addition of Li2Ni8O10,. The interface structure between metal and the inorganic coating with excellent adherence has been studied by investigating the chemical composition and the microstructure as well as elements valence bond on the interface with the help of scanning electron microscope (SEM), electron microprobe, and Auger electron spectroscope (AES). The results show that there is a non-stoichiometrical transitional layer on the interface between metal and the inorganic coating with excellent adherence, the adherence between metal and the non-stoichiometrical transitional layer is achieved by the metallic bond and the adherence between the non-stoichiometrical transitional layer and the inorganic coating is produced by ionic and covalent bond. The non-stoichiometrical transitional layer results in the strong adherence.

  10. Quantum phase transitions

    International Nuclear Information System (INIS)

    Sachdev, S.

    1999-01-01

    Phase transitions are normally associated with changes of temperature but a new type of transition - caused by quantum fluctuations near absolute zero - is possible, and can tell us more about the properties of a wide range of systems in condensed-matter physics. Nature abounds with phase transitions. The boiling and freezing of water are everyday examples of phase transitions, as are more exotic processes such as superconductivity and superfluidity. The universe itself is thought to have passed through several phase transitions as the high-temperature plasma formed by the big bang cooled to form the world as we know it today. Phase transitions are traditionally classified as first or second order. In first-order transitions the two phases co-exist at the transition temperature - e.g. ice and water at 0 deg., or water and steam at 100 deg. In second-order transitions the two phases do not co-exist. In the last decade, attention has focused on phase transitions that are qualitatively different from the examples noted above: these are quantum phase transitions and they occur only at the absolute zero of temperature. The transition takes place at the ''quantum critical'' value of some other parameter such as pressure, composition or magnetic field strength. A quantum phase transition takes place when co-operative ordering of the system disappears, but this loss of order is driven solely by the quantum fluctuations demanded by Heisenberg's uncertainty principle. The physical properties of these quantum fluctuations are quite distinct from those of the thermal fluctuations responsible for traditional, finite-temperature phase transitions. In particular, the quantum system is described by a complex-valued wavefunction, and the dynamics of its phase near the quantum critical point requires novel theories that have no analogue in the traditional framework of phase transitions. In this article the author describes the history of quantum phase transitions. (UK)

  11. Lipid phase control of DNA delivery

    Energy Technology Data Exchange (ETDEWEB)

    Koynova, Rumiana; Wang, Li; Tarahovsky, Yury; MacDonald, Robert C. (NWU)

    2010-01-18

    Cationic lipids form nanoscale complexes (lipoplexes) with polyanionic DNA and can be utilized to deliver DNA to cells for transfection. Here we report the correlation between delivery efficiency of these DNA carriers and the mesomorphic phases they form when interacting with anionic membrane lipids. Specifically, formulations that are particularly effective DNA carriers form phases of highest negative interfacial curvature when mixed with anionic lipids, whereas less effective formulations form phases of lower curvature. Structural evolution of the carrier lipid/DNA complexes upon interaction with cellular lipids is hence suggested as a controlling factor in lipid-mediated DNA delivery. A strategy for optimizing lipofection is deduced. The behavior of a highly effective lipoplex formulation, DOTAP/DOPE, is found to conform to this 'efficiency formula'.

  12. Preparation of plutonium waste forms with ICPP calcined high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Staples, B.A.; Knecht, D.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); O`Holleran, T.P. [Argonne National Lab.-West, Idaho Falls, ID (United States)] [and others

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce{sup +4}) as a surrogate for plutonium (Pu{sup +4}) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study.

  13. Preparation of plutonium waste forms with ICPP calcined high-level waste

    International Nuclear Information System (INIS)

    Staples, B.A.; Knecht, D.A.; O'Holleran, T.P.

    1997-05-01

    Glass and glass-ceramic forms developed for the immobilization of calcined high-level wastes generated by Idaho Chemical Processing Plant (ICPP) fuel reprocessing activities have been investigated for ability to immobilize plutonium and to simultaneously incorporate calcined waste as an anti-proliferation barrier. Within the forms investigated, crystallization of host phases result in an increased loading of plutonium as well as its incorporation into potentially more durable phases than the glass. The host phases were initially formed and characterized with cerium (Ce +4 ) as a surrogate for plutonium (Pu +4 ) and samarium as a neutron absorber for criticality control. Verification of the surrogate testing results were then performed replacing cerium with plutonium. All testing was performed with surrogate calcined high-level waste. The results of these tests indicated that a potentially useful host phase, based on zirconia, can be formed either by devitrification or solid state reaction in the glass studied. This phase incorporates plutonium as well as samarium and the calcined waste becomes part of the matrix. Its ease of formation makes it potentially useful in excess plutonium dispositioning. Other durable host phases for plutonium and samarium, including zirconolite and zircon have been formed from zirconia or alumina calcine through cold press-sintering techniques and hot isostatic pressing. Host phase formation experiments conducted through vitrification or by cold press-sintering techniques are described and the results discussed. Recommendations are given for future work that extends the results of this study

  14. A study of the structural stability of TiC, TiN and TiO in the pressure range up to 65 GPa using synchrotron radiation

    International Nuclear Information System (INIS)

    Noerlund Christensen, A.; Gerward, L.; Staun Olsen, J.; Steenstrup, S.

    1990-01-01

    Structural phase transformations in TiC, TiN and TiO could possibly occur at high pressure because of the non-stoichiometric nature of these compounds. The NaCl structure could then possibly transform to the CsCl structure, in which case the coordination number would increase from six to eight. This is in agreement with the general rule that the coordination number increases with pressure. The present work was undertaken in order to investigate possible structural phase transformations in TiC, TiN and TiO in the pressure range up to 65 GPa (=650 kbar). (orig.)

  15. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  16. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  17. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  18. Dilatometry of nonstoichiometric titanium carbide in the range of order-disorder phase transformation

    International Nuclear Information System (INIS)

    Karpov, A.V.; Kobyakov, V.P.; Chernomorskaya, E.A.

    1995-01-01

    Method of dilatometry was used for investigation of TiC x (0.49 x in ordered and disordered states, as well as on transformation heat were obtained. Increase of bond strength in result of carbon atom ordering in carbon sublattice was noted. 14 refs., 6 figs

  19. Phase relations in crystalline ceramic nuclear waste forms the system UO/sub 2 + x/-CeO2-ZrO2-ThO2 at 12000C in air

    International Nuclear Information System (INIS)

    Pepin, J.G.; McCarthy, G.J.

    1981-01-01

    Steady-state phase relations in the system UO/sub 2 + x/-CeO 2 -ZrO 2 -ThO 2 were determined for application to phase relations in the high-level crystalline ceramic nuclear waste form Supercalcine-Ceramics. Samples were treated at 1200 0 C at an oxygen partial pressure of 0.21 atm and a total pressure of 1 atm. Phase assemblages were found to be composed of cubic solid solutions of the flourite structure type, solid solutions based on ZrO 2 , and orthorhombic solid solutions based on U 3 O 8

  20. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  1. Crystallization behavior of nuclear waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.; Lokken, R.O.; May, R.P.; Wald, J.W.

    1981-09-01

    Several waste form options have been or are being developed for the immobilization of high-level wastes. The final selection of a waste form must take into consideration both waste form product as well as process factors. Crystallization behavior has an important role in nuclear waste form technology. For glass or vitreous waste forms, crystallization is generally controlled to a minimum by appropriate glass formulation and heat treatment schedules. With glass ceramic waste forms, crystallization is essential to convert glass products to highly crystalline waste forms with a minimum residual glass content. In the case of ceramic waste forms, additives and controlled sintering schedules are used to contain the radionuclides in specific tailored crystalline phases

  2. Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: A first-principles viewpoint

    KAUST Repository

    Harb, Moussab

    2014-01-01

    Finding an ideal photocatalyst for achieving efficient overall water splitting still remains a great challenge. By applying accurate first-principles quantum calculations based on DFT with the screened non-local hybrid HSE06 functional, we bring rational insights at the atomic level into the influence of non-stoichiometric compositions on essential properties of tantalum (oxy)nitride compounds as visible-light-responsive photocatalysts for water splitting. Indeed, recent experiments show that such non-stoichiometry is inherent to the nitridation methods of tantalum oxide with unavoidable oxygen impurities. We considered here O-enriched Ta3N5 and N-enriched TaON materials. Although their structural parameters are found to be very similar to those of pure compounds and in good agreement with available experimental studies, their photocatalytic features for visible-light-driven overall water splitting reactions show different behaviors. Further partial nitration of TaON leads to a narrowed band gap, but partially oxidizing Ta3N5 causes only subtle changes in the gap. The main influence, however, is on the band edge positions relative to water redox potentials. The pure Ta3N5 is predicted to be a good candidate only for H+ reduction and H2 evolution, while the pure TaON is predicted to be a good candidate for water oxidation and O2 evolution. Non-stoichiometry has here a positive influence, since partially oxidized tantalum nitride, Ta(3-x)N(5-5x)O5x (for x ≥ 0.16) i.e. with a composition in between TaON and Ta3N5, reveals suitable band edge positions that correctly bracket the water redox potentials for visible-light-driven overall water splitting reactions. Among the various explored Ta(3-x)N(5-5x)O5x structures, a strong stabilization is obtained for the configuration displaying a strong interaction between the O-impurities and the created Ta-vacancies. In the lowest-energy structure, each created Ta-vacancy is surrounded by five O-impurity species substituting

  3. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  4. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  5. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  6. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage

    International Nuclear Information System (INIS)

    Fang, Guiyin; Li, Hui; Cao, Lei; Shan, Feng

    2012-01-01

    Form-stable palmitic acid (PA)/active aluminum oxide composites as phase change materials were prepared by adsorbing liquid palmitic acid into active aluminum oxide. In the composites, the palmitic acid was used as latent heat storage materials, and the active aluminum oxide was used as supporting material. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine the chemical structure, crystalloid phase and microstructure of the composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetry analyzer (TGA). The FT-IR analyses results indicated that there is no chemical interaction between the palmitic acid and active aluminum oxide. The SEM results showed that the palmitic acid was well adsorbed into porous network of the active aluminum oxide. The DSC results indicated that the composites melt at 60.25 °C with a latent heat of 84.48 kJ kg −1 and solidify at 56.86 °C with a latent heat of 78.79 kJ kg −1 when the mass ratio of the PA to active aluminum oxide is 0.9:1. Compared with that of the PA, the melting and solidifying time of the composites CPCM5 was reduced by 20.6% and 21.4% because of the increased heat transfer rate through EG addition. The TGA results showed that the active aluminum oxide can improve the thermal stability of the composites. -- Highlights: ► Form-stable PA/active aluminum oxide composites as PCMs were prepared. ► Chemical structure, crystalloid phase and microstructure of composites were determined. ► Thermal properties and thermal stability of the composites were investigated. ► Expanded graphite can improve thermal conductivity of the composites.

  7. Solid state chemistry of rare earth oxides. Final report, September 1, 1950--July 31, 1977

    International Nuclear Information System (INIS)

    Eyring, L.

    1977-07-01

    Work under Contract E(11-1)-1109 and its antecedents has been primarily for the purpose of obtaining detailed thermodynamic, kinetic and structural information on the complex rare earth oxides of praseodymium and terbium. These systems exhibit homologous series of ordered phases, order-disorder transformations, wide-range nonstoichiometric phases, chemical hysteresis in two-phase regions and many other solid state reaction phenomena. Fluorite-related materials of importance to ERDA occur as nuclear fuels, radiation power sources, insulators and solid electrolytes. The rare earth oxides serve directly as model systems for such similar materials and, in a more general sense, they serve as models of solids in general since they exhibit nearly the full range of solid state properties

  8. Structural Phase Transition Nomenclature, Report of an IUCr Working Group on Phase Transition Nomenclature

    NARCIS (Netherlands)

    Toleddano, J.C.; Glazer, A.M.; Hahn, Th.; Parthe, E.; Roth, R.S.; Berry, R.S.; Metselaar, R.; Abrahams, S.C.

    1998-01-01

    A compact and intuitive nomenclature is recommended for naming each phase formed by a given material in a sequence of phase transitions as a function of temperature and/or pressure. The most commonly used label for each phase in a sequence, such as [alpha], [beta], ..., I, II, ... etc., is included

  9. Two-phase flows in the formed tornado funnel

    Science.gov (United States)

    Sinkevich, O. A.; Bortsova, A. A.

    2017-10-01

    At present, it is obvious that the problem of the tornado is important not only for our planetЮ to determine the conditions for the formation of a tornado, it is required to take into account a number of hydrodynamic and plasma processes [1 - 6]. Along to prediction of a tornado generation conditions [1 - 3] it is necessary to evaluate the characteristics of its quasi-stationary motion in a formed funnel: the mass of the moving moist air involved in the funnel and the size and form of the funnel. For a complete description of the phenomena, it is necessary to involve numerical calculations. We note that even for numerical calculations using powerful computers, the problem is very difficult because of the need to calculate multiphase turbulent flows with free, self-organizing boundaries [1, 6]. However, “strict” numerical calculations, it is impossible to do without the use of many, often mutually exclusive, models. For example, how to choice an adequate model of turbulence (algebraic, k-ε model, etc.) or the use of additional, often not accepted, hypotheses about certain processes used in calculations (mechanisms on the nature of moisture condensation, etc.). Therefore, along with numerical calculations of such flows, modeling problems that allow an exact solution and allow to determine the most important and observed characteristics of a tornado.

  10. Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

    Science.gov (United States)

    Aranda, M. M.; Rementeria, R.; Capdevila, C.; Hackenberg, R. E.

    2016-02-01

    It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 ( γ/ α) and Acm ( γ/ θ) phase boundaries (the "Hultgren extrapolation"). This "mutual supersaturation" criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt's solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

  11. Cesium incorporation in hollandite-rich multiphasic ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, P.; Clark, B.M. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States); Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Amoroso, Jake [Savannah River National Laboratory, Aiken, SC 29808 (United States); Sundaram, S.K. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 (United States)

    2017-02-15

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.

  12. Synthesis, spectral properties and thermal behaviour of zinc(II) acetylsalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Lambi, John N.; Nsehyuka, Alfred T.; Egbewatt, Nkongho; Cafferata, Lazaro F.R.; Arvia, Alejandro J

    2003-03-05

    The thermal behaviour of zinc(II) acetylsalicylate [Zn(acsa){sub 2}(H{sub 2}O){sub 2}] with respect to phase transitions, pyrolysis both in air and inert (N{sub 2}) atmosphere, and product identification has been investigated. The complex was synthesised by metathesis in hot ethanol solution using aspirin (acetylsalicylic acid) as precursor and characterised via electronic and IR spectral analyses. Optical observations showed that the white salt does not undergo a direct transition from the solid to the liquid phase but rather goes slowly through an intermediate mesophase around 80 deg. C before melting rapidly to the brick-brown isotropic liquid around 134-136 deg. C. No liquid crystalline phases are however formed. This result was complemented by that from thermogravimetric (TG) studies in the ca. 25-600 deg. C range, which showed three main weight-loss phases of 8.0, 50.0 and 14.0% (around 200, 250 and 400 deg. C) corresponding, respectively, to the elimination of CO{sub 2}, xanthone and acetic acid. The pyrolysis products, as identified using a combination of instrumental (GC-MS) and wet chemical techniques are: CO{sub 2}; non-stoichiometric zinc oxide, most likely in the form: Zn{sub 1+x}O (where 0.0000{<=}x{<=}0.0003); and a mixture of organic products resulting from further decomposition, charring and other attendant thermal effects at the relatively high temperatures (ca. 600 deg. C) involved. Six of the principal organic products were identified and included salsalate and benorylate which are pro-drugs of salicylic acid, a well-known pharmaceutical.

  13. Possible superstructures of metallic ions in nonstoichiometric fullerites Mx C60

    International Nuclear Information System (INIS)

    Loktev, V.M.; Tatarenko, O.M.

    1993-01-01

    The ordered structures of alkali metal M=K,Rb,Cs atoms are considered in the M x C 60 systems for x<6 on the basis of symmetry analysis. Using the static concentration wave approach the x values and the corresponding vectors resulting in periodic structures are determined. The phase diagram that agrees qualitatively with the one observed experimentally is obtained. (author). 17 refs., 10 figs

  14. Effects of the sintering temperature on the diffused phase transition and the spin-glassy behavior in Pb0.95La0.05(Fe2/3W1/3)0.65Ti0.35O3 ceramics

    International Nuclear Information System (INIS)

    Hong, Cheng-Shong; Chu, Sheng-Yuan; Hsu, Chi-Cheng

    2010-01-01

    In this paper, the effect of the sintering temperature on the low-field dielectric behavior of nonstoichiometric Pb 0.95 La 0.05 (Fe 2/3 W 1/3 ) 0.65 Ti 0.35 O 3 relaxor ferroelectrics is investigated. The x-ray patterns and the scanning electron microscope images are used to detect the pyrochlore phase and the perovskite structure. The electric properties of the resistivity, the space charge polarization, the temperature-dependent dielectric constant and dielectric loss are discussed. The diffused phase transition and the ordering state are fitted and discussed by using the empirical law and two ordering models. Furthermore, the glassy behavior is determined by using the Curie-Weiss law and the spin-glass model. According to the experimental data and fitting results, the dielectric picture is changed from the short range order relaxorlike behavior to the long range order normal ferroelectric state as increasing the sintering temperature and the glassy behavior is weakened at the lowest and highest sintering temperature at which the pyrochlore phase PWO 4 is induced. Therefore, it is suggested that the 1:1 ordered domain is enhanced by increasing the sintering temperature and the glassy behavior is related to not only the ordering degree also the polar defect pairs. For more ordering degree and polar defect pairs, the glassy is weakened and the correlation of neighboring polar microregions is enhanced.

  15. Effect of alteration phase formation on the glass dissolution rate

    International Nuclear Information System (INIS)

    Ebert, W.L.

    1997-01-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests

  16. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W L [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  17. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  18. Effects of heat treatment and formulation on the phase composition and chemical durability of the EBR-II ceramic waste form

    International Nuclear Information System (INIS)

    Ebert, W. E.; Dietz, N. L.; Janney, D. E.

    2006-01-01

    High-level radioactive waste salts generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor-II will be immobilized in a ceramic waste form (CWF). Tests are being conducted to evaluate the suitability of the CWF for disposal in the planned federal high-level radioactive waste repository at Yucca Mountain. In this report, the results of laboratory tests and analyses conducted to address product consistency and thermal stability issues called out in waste acceptance requirements are presented. The tests measure the impacts of (1) variations in the amounts of salt and binder glass used to make the CWF and (2) heat treatments on the phase composition and chemical durability of the waste form. A series of CWF materials was made to span the ranges of salt and glass contents that could be used during processing: between 5.0 and 15 mass% salt loaded into the zeolite (the nominal salt loading is 10.7%, and the process control range is 10.6 to 11.2 mass%), and between 20 and 30 mass% binder glass mixed with the salt-loaded zeolite (the nominal glass content is 25% and the process control range is 20 to 30 mass%). In another series of tests, samples of two CWF products made with the nominal salt and glass contents were reheated to measure the impact on the phase composition and durability: long-term heat treatments were conducted at 400 and 500 C for durations of 1 week, 4 weeks, 3 months, 6 months, and 1 year; short-term heat treatments were conducted at 600, 700, 800, and 850 C for durations of 4, 28, 52, and 100 hours. All of the CWF products that were made with different amounts of salt, zeolite, and glass and all of the heat-treated CWF samples were analyzed with powder X-ray diffraction to measure changes in phase compositions and subjected to 7-day product consistency tests to measure changes in the chemical durability. The salt loading had the greatest impact on phase composition and durability. A

  19. Plutonium-238 alpha-decay damage study of the ceramic waste form

    International Nuclear Information System (INIS)

    Frank, S. M.; Barber, T. L.; Cummings, D.G.; DiSanto, T.; Esh, D.W.; Giglio, J. J.; Goff, K. M.; Johnson, S.G.; Kennedy, J.R.; Jue, J-F; Noy, M.; O'Holleran, T.P.; Sinkler, W.

    2006-01-01

    An accelerated alpha-decay damage study of a glass-bonded sodalite ceramic waste form has recently been completed. The purpose of this study was to investigate the physical and chemical durability of the waste form after significant exposure to alpha decay. This accelerated alpha-decay study was performed by doping the ceramic waste form with 238 Pu which has a much greater specific activity than 239 Pu that is normally present in the waste form. The alpha-decay dose at the end of the four year study was approximately 1 x 10 18 alpha-decays/gram of material. An equivalent time period for a similar dose of 239 Pu would require approximately 1100 years. After four years of exposure to 238 Pu alpha decay, the investigation observed little change to the physical or chemical durability of the ceramic waste form (CWF). Specifically, the 238 Pu-loaded CWF maintained it's physical integrity, namely that the density remained constant and no cracking or phase de-bonding was observed. The materials chemical durability and phase stability also did not change significantly over the duration of the study. The only significant measured change was an increase of the unit-cell lattice parameters of the plutonium oxide and sodalite phases of the material and an increase in the release of salt components and plutonium of the waste form during leaching tests, but, as mentioned, these did not lead to any overall loss of waste form durability. The principal findings from this study are: (1) 238 Pu-loaded CWF is similar in microstructure and phase composition to referenced waste form. (2) Pu was observed primarily as oxide comprised of aggregates of nano crystals with aggregates ranging in size from submicron to twenty microns in diameter. (3) Pu phases were primarily found in the intergranular glassy regions. (4) PuO phase shows expected unit cell volume expansion due to alpha decay damage of approximately 0.7%, and the sodalite phase unit cell volume has expanded slightly by 0.3% again

  20. THE USEFULNESS FOR ENSILING OF CHOSEN PLANT FORMS OF SPECIES OF SILPHIUM GENUS

    Directory of Open Access Journals (Sweden)

    Jarosław Piłat

    2007-12-01

    Full Text Available Chemical composition and usefulness for ensiling of the chosen forms of species: S. perfoliatum was determined in different stages of vegetation. Forage fermantation coefficient of species form: I, II ,III during vegetation period from vegetative phase to seed setting phase was lower than 35. The fermentation coefficient IV form of species during the initial phase of seed setting amounted to 36,54, which ensured the correct fermentation. The high phenol acids content in I, II, III species form limits the possibility of using them for forage purposes. These species may constitute a potentially good raw material for the pharmaceutical industry.

  1. Study of the corrosion products formed on carbon steels in the tropical atmosphere of Panama

    Directory of Open Access Journals (Sweden)

    Jaén, J. A.

    2003-12-01

    Full Text Available Mössbauer spectroscopy and X-ray powder diffraction (in selected samples have been used to characterize corrosion products on carbon steels after atmospheric exposure to the tropical Panamanian locations of Panama and Colon, classified according to ISO 9223 as C3 and C5, respectively. Goethite (α-FeOOH of intermediate particle size (20-100 nm, lepidocrocite (γ-FeOOH, a spinel phase consisting of non-stoichiometric magnetite (Fe3-xO4 and/or maghemite (γ-Fe2O3 and nano-sized particles were identified in the corrosion products. The spinel phase is related to short term atmospheric exposure transforms in time to other corrosion products. The corrosion resistance increased with fraction of goethite following a saturation-type behavior.

    Se caracterizaron los productos de corrosión de aceros al carbono expuestos a las atmósferas tropicales panameñas localizadas en Panamá y Colón, mediante el uso de la espectroscopia Mössbauer y difracción de rayos-X (en muestras seleccionadas. Las atmósferas se clasifican como C3 y C5, respectivamente, de acuerdo a la norma ISO 9223. Se lograron identificar los compuestos goethita (α-FeOOH de tamaño de partícula intermedio (20-100 nm, lepidocrocita (γ-FeOOH, una fase de espinela consistente en magnetita no estequiométrica (Fe3-xO4 y/o maghemita (γ-Fe2O3, y nanopartículas. La fase de espinela se puede correlacionar con exposiciones cortas a la atmósfera, transformándose en el tiempo en otros productos de corrosión. La resistencia a la corrosión se incrementa con la cantidad de goethita siguiendo una conducta de saturación.

  2. THE SCHMIDT-KENNICUTT LAW OF MATCHED-AGE STAR-FORMING REGIONS; Paα OBSERVATIONS OF THE EARLY-PHASE INTERACTING GALAXY TAFFY I

    International Nuclear Information System (INIS)

    Komugi, S.; Tateuchi, K.; Motohara, K.; Kato, N.; Konishi, M.; Koshida, S.; Morokuma, T.; Takahashi, H.; Tanabé, T.; Yoshii, Y.; Takagi, T.; Iono, D.; Kaneko, H.; Ueda, J.; Saitoh, T. R.

    2012-01-01

    In order to test a recent hypothesis that the dispersion in the Schmidt-Kennicutt law arises from variations in the evolutionary stage of star-forming molecular clouds, we compared molecular gas and recent star formation in an early-phase merger galaxy pair, Taffy I (UGC 12915/UGC 12914, VV 254) which went through a direct collision 20 Myr ago and whose star-forming regions are expected to have similar ages. Narrowband Paα image is obtained using the ANIR near-infrared camera on the mini-TAO 1 m telescope. The image enables us to derive accurate star formation rates within the galaxy directly. The total star formation rate, 22.2 M ☉ yr –1 , was found to be much higher than previous estimates. Ages of individual star-forming blobs estimated from equivalent widths indicate that most star-forming regions are ∼7 Myr old, except for a giant H II region at the bridge which is much younger. Comparison between star formation rates and molecular gas masses for the regions with the same age exhibits a surprisingly tight correlation, a slope of unity, and star formation efficiencies comparable to those of starburst galaxies. These results suggest that Taffy I has just evolved into a starburst system after the collision, and the star-forming sites are at a similar stage in their evolution from natal molecular clouds except for the bridge region. The tight Schmidt-Kennicutt law supports the scenario that dispersion in the star formation law is in large part due to differences in evolutionary stage of star-forming regions.

  3. Atomic-scale understanding of non-stoichiometry effects on the electrochemical performance of Ni-rich cathode materials

    Science.gov (United States)

    Kong, Fantai; Liang, Chaoping; Longo, Roberto C.; Zheng, Yongping; Cho, Kyeongjae

    2018-02-01

    As the next-generation high energy capacity cathode materials for Li-ion batteries, Ni-rich oxides face the problem of obtaining near-stoichiometric phases due to excessive Ni occupying Li sites. These extra-Ni-defects drastically affect the electrochemical performance. Despite of its importance, the fundamental correlation between such defects and the key electrochemical properties is still poorly understood. In this work, using density-functional-theory, we report a comprehensive study on the effects of non-stoichiometric phases on properties of Ni-rich layered oxides. For instance, extra-Ni-defects trigger charge disproportionation reaction within the system, alleviating the Jahn-Teller distortion of Ni3+ ions, which constitutes an important reason for their low formation energies. Kinetic studies of these defects reveal their immobile nature, creating a "pillar effect" that increases the structural stability. Ab initio molecular dynamics revealed Li depletion regions surrounding extra-Ni-defects, which are ultimate responsible for the arduous Li diffusion and re-intercalation, resulting in poor rate performance and initial capacity loss. Finally, the method with combination of high valence cation doping and ion-exchange synthesis is regarded as the most promising way to obtain stoichiometric oxides. Overall, this work not only deepens our understanding of non-stoichiometric Ni-rich layered oxides, but also enables further optimizations of high energy density cathode materials.

  4. Novel Non-Stoichiometric Manganese – Cobalt – Nickel – Oxide Composite as Humidity Sensor Through Solid-State Electrical Conductivity Measurements

    Directory of Open Access Journals (Sweden)

    R. Sundaram

    2006-08-01

    Full Text Available Equimolar amounts of manganese(II chloride, cobalt(III nitrate and nickel(II chloride in aqueous solution were reacted with ammonia and the resulting precipitate of hydroxides was heated to 7500 C in 6h to yield a non stoichiometric oxides having a composition of Mn0.06Co0.6Ni0.6O2.5 as analyzed by atomic absorption spectroscopy to a pellet and sintered at 6000 C. Characterization of the material has been made with AAS, Far-IR, TG-DTA, XRD, SEM, VSM and electrical conductance measurement. The far-IR spectra indicated the presence of metal-oxygen bonds and the discrete nature of the oxide was established from power X-ray diffraction pattern recorded at room temperature. The thermogravimetric data indicated the successive loss and gain of fraction of oxygen atoms, a specific feature of non-stoichiometric metal oxides. It was subjected to solid-state DC electrical conductivity measurements at room temperature. The current increases linearly with applied field and exponentially with increase in temperature showing conformance to ohmic law and semiconducting nature. The scanning electron microscopy (SEM studies were carried out to study the surface and pores structure of the sensor materials. The Brunauer-Emmett-Teller (BET surface adsorption studies showed that the radiuses of the pore sizes were found to be distributed from 10-45A with the pore specific volume being 0.01 cm3 g-1. As the composites having micropores are preferred for humidity sensing properties, the material was subjected to water vapour of different humidity achieved by various water buffers at room temperature and the electrical conductivity was measured as a function of relative humidity (RH. The electrical resistivity drastically decreases with increase in humidity, proving the material to be a good water vapour sensor. The sensitivity factor (Sf was 55000 in the range 5–98% RH, meaning the resistivity falls by a factor of 5.5 x 104 when the atmospheric RH increases from 5

  5. Hydrothermal replacement of biogenic and abiogenic aragonite by Mg-carbonates - Relation between textural control on effective element fluxes and resulting carbonate phase

    Science.gov (United States)

    Jonas, Laura; Müller, Thomas; Dohmen, Ralf; Immenhauser, Adrian; Putlitz, Benita

    2017-01-01

    Dolomitization, i.e., the secondary replacement of calcite or aragonite (CaCO3) by dolomite (CaMg[CO3]2), is one of the most volumetrically important carbonate diagenetic processes. It occurs under near surface and shallow burial conditions and can significantly modify rock properties through changes in porosity and permeability. Dolomitization fronts are directly coupled to fluid pathways, which may be related to the initial porosity/permeability of the precursor limestone, an existing fault network or secondary porosity/permeability created through the replacement reaction. In this study, the textural control on the replacement of biogenic and abiogenic aragonite by Mg-carbonates, that are typical precursor phases in the dolomitization process, was experimentally studied under hydrothermal conditions. Aragonite samples with different textural and microstructural properties exhibiting a compact (inorganic aragonite single crystal), an intermediate (bivalve shell of Arctica islandica) and open porous structure (skeleton of coral Porites sp.) were reacted with a solution of 0.9 M MgCl2 and 0.015 M SrCl2 at 200 °C. The replacement of aragonite by a Ca-bearing magnesite and a Mg-Ca carbonate of non-stoichiometric dolomitic composition takes place via a dissolution-precipitation process and leads to the formation of a porous reaction front that progressively replaces the aragonite precursor. The reaction leads to the development of porosity within the reaction front and distinctive microstructures such as gaps and cavities at the reaction interface. The newly formed reaction rim consists of chemically distinct phases separated by sharp boundaries. It was found that the number of phases and their chemical variation decreases with increasing initial porosity and reactive surface area. This observation is explained by variations in effective element fluxes that result in differential chemical gradients in the fluid within the pore space of the reaction rim. Observed

  6. Structural evolution of calcite at high temperatures: Phase V unveiled

    Science.gov (United States)

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  7. Contributions to the investigation of inorganic non-stoichiometric compounds. 23

    International Nuclear Information System (INIS)

    Groh, H.; Gruehn, R.

    1984-01-01

    Under equilibrium conditions the region of existence of block structures in the system Nb 2 O 5 /WO 3 ends with a phase having the composition 9 Nb 2 O 5 :8 WO 3 corresponding to values of O/ΣM = 2.654 (M = Nb, W) and W/Nb = 0.44. We now investigated to what extent this region of existence of block structures could be expanded towards a higher content of WO 3 . Starting out from the known phases Nb 2 O 5 :WO 3 = 6:1, 7:3, 8:5 and 9:8 in which Nb and W are present in their maximum states of oxidation, we obtained series of solid solutions by substituting W for Nb. Thereby the initial structure (block sizes [3x4], [4x4], [4x5] and [5x5] M-O-octahedra) and also the respective O/ΣM remained unchanged. Upon complete oxidation of these series of solid solutions which led into reduced systems (e.g. NbO 2 /Nb 2 O 5 /WO 3 ) at approximately 500 0 C metastable products were gained, which also have block structures. Corresponding to the extent of substitution of the initial series of solid solution and the resulting ratio OΣM of the oxidation products the new structures are to a wide extent built of large blocks that have an extension (at maximum [5x15] M-O-octahedra) we have not observed so far. These blocks could be seen using high resolution transmission electron microscopy. The investigations on the oxidation products of the solid solutions of the 8:5 and 9:8 series and also a model concerning the mechanism of oxidation are described. (author)

  8. Temperature- and moisture-dependent phase changes in crystal forms of barbituric acid

    International Nuclear Information System (INIS)

    Zencirci, Neslihan; Gstrein, Elisabeth; Langes, Christoph; Griesser, Ulrich J.

    2009-01-01

    The dihydrate of barbituric acid (BAc) and its dehydration product, form II were investigated by means of moisture sorption analysis, hot-stage microscopy, differential scanning calorimetry, thermogravimetry, solution calorimetry, IR- and Raman-spectroscopy as well as powder X-ray diffraction. The dihydrate desolvates already at and below 50% relative humidity (RH) at 25 deg. C whereas form II is stable up to 80% RH, where it transforms back to the dihydrate. The thermal dehydration of barbituric acid dihydrate (BAc-H2) is a single step, nucleation controlled process. The peritectic reaction of the hydrate was measured at 77 deg. C and a transformation enthalpy of Δ trs H H2-II = 17.3 kJ mol -1 was calculated for the interconversion between the hydrate and form II. An almost identical value of 17.0 kJ mol -1 was obtained from solution calorimetry in water as solvent (Δ sol H H2 = 41.5, Δ sol H II = 24.5 kJ mol -1 ). Additionally a high-temperature form (HT-form) of BAc, which is enantiotropically related to form II and unstable at ambient conditions has been characterized. Furthermore, we observed that grinding of BAc with potassium bromide (KBr) induces a tautomeric change. Therefore, IR-spectra recorded with KBr-discs usually display a mixture of tautomers, whereas the IR-spectra of the pure trioxo-form of BAc are obtained if alternative preparation techniques are used

  9. Temperature- and moisture-dependent phase changes in crystal forms of barbituric acid

    Energy Technology Data Exchange (ETDEWEB)

    Zencirci, Neslihan; Gstrein, Elisabeth; Langes, Christoph [Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Griesser, Ulrich J. [Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria)], E-mail: ulrich.griesser@uibk.ac.at

    2009-03-10

    The dihydrate of barbituric acid (BAc) and its dehydration product, form II were investigated by means of moisture sorption analysis, hot-stage microscopy, differential scanning calorimetry, thermogravimetry, solution calorimetry, IR- and Raman-spectroscopy as well as powder X-ray diffraction. The dihydrate desolvates already at and below 50% relative humidity (RH) at 25 deg. C whereas form II is stable up to 80% RH, where it transforms back to the dihydrate. The thermal dehydration of barbituric acid dihydrate (BAc-H2) is a single step, nucleation controlled process. The peritectic reaction of the hydrate was measured at 77 deg. C and a transformation enthalpy of {delta}{sub trs}H{sub H2-II} = 17.3 kJ mol{sup -1} was calculated for the interconversion between the hydrate and form II. An almost identical value of 17.0 kJ mol{sup -1} was obtained from solution calorimetry in water as solvent ({delta}{sub sol}H{sub H2} = 41.5, {delta}{sub sol}H{sub II} = 24.5 kJ mol{sup -1}). Additionally a high-temperature form (HT-form) of BAc, which is enantiotropically related to form II and unstable at ambient conditions has been characterized. Furthermore, we observed that grinding of BAc with potassium bromide (KBr) induces a tautomeric change. Therefore, IR-spectra recorded with KBr-discs usually display a mixture of tautomers, whereas the IR-spectra of the pure trioxo-form of BAc are obtained if alternative preparation techniques are used.

  10. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  11. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibing; Wang, Jun; Wang, Yan

    2012-01-01

    Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability. -- Highlights: ► GnPs were employed to simultaneously enhance the k and σ of organic FSPCMs. ► PEG/PMMA/GnPs composite FSPCMs were prepared by in situ polymerization method. ► The composite FSPCMs exhibited well package and self-supporting properties. ► GnPs additives effectively enhanced the k and σ of composite FSPCMs. ► All the composites possessed available thermal storage density and thermal stability.

  12. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  13. Contribution to the thermodynamic study of the non-stoichiometric oxides UO{sub 2+x} et FeO{sub 1+x}; Contribution a l'etude thermodynamique des oxydes non stoechiometriques UO{sub 2+x} et FeO{sub 1+x}

    Energy Technology Data Exchange (ETDEWEB)

    Gerdanian, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-04-15

    This thermodynamic study has provided new results concerning the oxide UO{sub 2+X} and FeO{sub 1+x}. For the oxides UO{sub 2+X} correct values have been obtained for {mu}{sub O{sub 2}}{sup M} at 900, 1000 and 1100 deg. C using an improved method based on physico-chemical equilibria. For the oxides FeO{sub 1+x} the use of an E. Calvet high temperature calorimeter has made it possible to measure for the first time the values of h{sub O{sub 2}}{sup M} at 800 deg. C over the whole iron monoxide range. The method of oxygen transfer between oxides, usually used to determine the phase limits, has been improved by using a thermo-balance; this has made it possible to draw up simple rules which have to be respected in order to detect the phenomena under study. The theory due to J.S. Anderson has been applied to the oxides UO{sub 2+X} and a new method is given for improving the representation of non-stoichiometric oxides by models. (author) [French] Cette etude thermodynamique presente des resultats nouveaux en ce qui concerne les oxydes UO{sub 2+X} et FeO{sub 1+x}. Pour les oxydes UO{sub 2+X} les valeurs correctes de {mu}{sub O{sub 2}}{sup M} a 900, 1000 et 1100 deg. C ont pu etre obtenues, grace a la methode des equilibres physico-chimiques qui a ete amelioree. Pour les oxydes FeO{sub 1+x} l'emploi du microcalorimetre a haute temperature de Ed. CALVET a permis de mesurer pour la premiere fois les valeurs de h{sub O{sub 2}}{sup M} a 800 deg. C dans toute l'etendue du domaine du protoxyde de fer. La metode de transfert d'oxygene entre oxydes, habituellement utilisee pour determiner les limites de phase a ete perfectionnee par l'emploi d'une thermo-balance ce qui a permis d'enoncer les regles simples auxquelles il est indispensable de se conformer pour obtenir les limites cherchees. La theorie de J.S. Anderson a ete appliquee aux oxydes UO{sub 2+X} et une nouvelle voie est indiquee qui peut permettre de perfectionner la representation des oxydes non-stoechiometriques par des

  14. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    Science.gov (United States)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  15. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Onal, Adem

    2008-01-01

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  16. Prediction of Chevrel superconducting phases

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Kiseleva, N.N.

    1978-01-01

    Made is an attempt of predicting the possibility of formation of compounds of Mo 3 Se 4 type structure having critical temperatures of transition into superconducting state more than 4.2 K. Cybernetic method of teaching an electronic computer to form notions is used for prediction. Prediction system constructs logic dependence of forming Chevrel superconducting phase of the Asub(x)Bsub(6)Ssub(8) composition (A being an element of the periodic system; B=Cr, Mo, W, Re) and Asub(x)Bsub(6)Ssub(8) compounds having a critical temperature of more than 4.2 K on the properties of A and B elements. A conclusion is made that W, Re, Cr do not form Chevrel phases of the Asub(x)Bsub(6)Ssub(8) composition as B component. Be, Hg, Ra, B, Ac are the reserve for obtaining Asub(x)Mosub(6)Ssub(8) phases. Agsub(x)Mosub(6)Ssub(8) compound may have a high critical temperature. The ways of a critical temperature increase for Chevrel phases are connected with the search of optimal technological conditions for already known superconducting compounds and also with introduction of impurities fixing a distance between sulfur cubes

  17. Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zinc blende phase

    International Nuclear Information System (INIS)

    Gonzalez, D; Lozano, J G; Herrera, M; Morales, F M; GarcIa, R; Ruffenach, S; Briot, O

    2010-01-01

    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by transmission electron microscopy (TEM)-related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from the original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings and RGB multilayered image reconstructions allows us to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zinc blende (zb) volumes, which act as the intermediate phase between the initial InN-w and the most stable cubic In 2 O 3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason for the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.

  18. CrowdPhase: crowdsourcing the phase problem

    International Nuclear Information System (INIS)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O.

    2014-01-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  19. CrowdPhase: crowdsourcing the phase problem

    Energy Technology Data Exchange (ETDEWEB)

    Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)

    2014-06-01

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it

  20. Stability Indicating Reverse Phase HPLC Method for Estimation of Rifampicin and Piperine in Pharmaceutical Dosage Form.

    Science.gov (United States)

    Shah, Umang; Patel, Shraddha; Raval, Manan

    2018-01-01

    High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  2. Phase formation in contact of dissimilar metals

    Energy Technology Data Exchange (ETDEWEB)

    Savvin, V S; Kazachkova, Yu A; Povzner, A A [Ural State Technical University-UPI, Mira st., 19, A-203, Yekaterinburg 620002 (Russian Federation)], E-mail: savvin-vs@yandex.ru

    2008-02-15

    Formation and growth of intermediate phases in contact of the crystalline samples forming a two-component eutectic system is considered. It is shown that during the competition to a growing liquid phase the intermediate solid phases cannot grow by diffusion. The alternative is formation of metastable areas of a liquid phase. Measurements of liquid layers extent in Pb-Bi and In-Bi systems have allowed to define the composition of liquid on interface where formation of metastable liquid is possible. The results show that the concentration interval of a liquid layer corresponds to a stable constitution diagram. In order to explain the experimental results the hypothesis according to which the intermediate solid phases are formed as a result of precipitation from metastable melt is considered. The experimental confirmation of formation and crystallization of a metastable liquid is the fact that intergrowth of the samples forming system with an intermetallic phase at temperatures below the temperature of fusion of the most low-melting eutectic is observed. The possibility of the processes concerned with the occurrence of metastable areas of a liquid is showed by means of computer imitation.

  3. Characteristics of metal waste forms containing technetium and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Fortner, J.A.; Kropf, A.J.; Ebert, W.L. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2013-07-01

    2 prototype alloys: RAW-1(Tc) and RAW-2(UTc) suitable for a wide range of waste stream compositions are being evaluated to support development of a waste form degradation model that can be used to calculate radionuclide source terms for a range of waste form compositions and disposal environments. Tests and analyses to support formulation of waste forms and development of the degradation model include detailed characterizations of the constituent phases using SEM/EDS and TEM, electrochemical tests to quantify the oxidation behavior and kinetics of the individual and coupled phases under a wide range of environmental conditions, and corrosion tests to measure the gross release kinetics of radionuclides under aggressive test conditions.

  4. Solid phase radioimmunoassays

    International Nuclear Information System (INIS)

    Wide, L.

    1977-01-01

    Solid phase coupled antibodies were introduced to facilitate the separation of bound and free labelled ligand in the competitive inhibition radioimmunoassay. Originally, the solid matrix used was in the form of small particles and since then a number of different matrices have been used such as very fine powder particles, gels, paper and plastic discs, magnetic particles and the inside surface of plastic tubes. The coupling of antibodies may be that of a covalent chemical binding, a strong physical adsorbtion, or an immunological binding to a solid phase coupled antigen. New principles of radioimmunoassay such as the solid phase sandwich techniques and the immunoradiometric assay were developped from the use of solid phase coupled antigens and antibodies. The solid phase sandwich techniques are reagent excess methods with a very wide applicability. Several of the different variants of solid phase techniques are suitable for automation. Advantages and disadvantages of solid phase radioimmunoassays when compared with those using soluble reagents are discussed. (orig.) [de

  5. Phase characteristics of rheograms. Original classification of phase-related changes of rheos

    Directory of Open Access Journals (Sweden)

    Mikhail Y. Rudenko

    2014-05-01

    Full Text Available The phase characteristics of a rheogram are described in literature in general only. The existing theory of impedance rheography is based on an analysis of the form of rheogram envelopes, but not on the phase-related processes and their interpretation according to the applicable laws of physics. The aim of the present paper is to describe the phase-related characteristics of a rheogram of the ascending aorta. The method of the heart cycle phase analysis has been used for this purpose. By synchronizing an ECG of the aorta and a rheogram, an analysis of specific changes in the aorta blood filling in each phase is provided. As a result, the phase changes of a rheogram associated with the ECG phase structure are described and tabulated for first time. The author hereof offers his own original classification of the phase-related changes of rheograms.

  6. Moment Distributions of Phase Type

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2011-01-01

    Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...

  7. Analysis of Voltage Forming Methods for Multiphase Inverters

    Directory of Open Access Journals (Sweden)

    Tadas Lipinskis

    2013-05-01

    Full Text Available The article discusses advantages of the multiphase AC induction motor over three or less phase motors. It presents possible stator winding configurations for a multiphase induction motor. Various fault control strategies were reviewed for phases feeding the motor. The authors propose a method for quality evaluation of voltage forming algorithm in the inverter. Simulation of a six-phase voltage source inverter, voltage in which is formed using a simple SPWM control algorithm, was performed in Matlab Simulink. Simulation results were evaluated using the proposed method. Inverter’s power stage was powered by 400 V DC source. The spectrum of output currents was analysed and the magnitude of the main frequency component was at least 12 times greater than the next biggest-magnitude component. The value of rectified inverter voltage was 373 V.Article in Lithuanian

  8. The crystal structure and electronic properties of a new metastable non-stoichiometric BaAl{sub 4}-type compound crystallized from amorphous La{sub 6}Ni{sub 34}Ge{sub 60} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masashi [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Suzuki, Shoichiro [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Ohsuna, Tetsu [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Matsubara, Eiichiro [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan); Endo, Satoshi [Center for Low Temperature Science, Tohoku University, Sendai, Katahira 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai, Katahira 980-8577 (Japan)

    2004-11-17

    A new metastable La-Ge-Ni ternary BaAl{sub 4}-type (ThCr{sub 2}Si{sub 2}-type) compound, of which the space group is I4/mmm is synthesized. It is obtained by a polymorphic transformation from an La{sub 6}Ni{sub 34}Ge{sub 60} amorphous alloy on crystallizing. The formula of the compound is (La{sub 0.3}Ge{sub 0.7})(Ni{sub 0.85}Ge{sub 0.15}){sub 2}Ge{sub 2}. This indicates that it is highly non-stoichiometric compared to the stoichiometric LaNi{sub 2}Ge{sub 2}. It is found that the c-axis lattice parameter of this compound is much longer than that of LaNi{sub 2}Ge{sub 2}. It should be noted that the longer c-axis unit cell parameter is attributable only to the longer interlayer distance between Ge site and Ni site layers. The temperature dependences of electrical resistivity and thermoelectric power of the (La{sub 0.3}Ge{sub 0.7})(Ni{sub 0.85}Ge{sub 0.15}){sub 2}Ge{sub 2} compound and La{sub 6}Ni{sub 34}Ge{sub 60} amorphous alloy are also clarified. The comparison of these electronic properties between the two materials indicates that sp-electrons mainly contribute to the density of states around the Fermi level of this compound.

  9. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    International Nuclear Information System (INIS)

    Hon, M.-H.; Chang, T.-C.; Wang, M.-C.

    2008-01-01

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic η'-Cu 6 Sn 5 transforms to the hexagonal η-Cu 6 Sn 5 and the orthorhombic Cu 5 Zn 8 transforms to the body-centered cubic (bcc) γ-Cu 5 Zn 8 as aged at 180 deg. C. The scallop-shaped Cu 6 Sn 5 layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from η'-Cu 6 Sn 5 and reacts with Sn to form Ag 3 Sn, and the Cu 5 Zn 8 layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h

  10. On the constitutive laws of 1-D, two-fluid, two-phase flow models: possible mathematical forms, restrictions resulting from basic principles

    International Nuclear Information System (INIS)

    Boure, J.A.

    1981-01-01

    From both the theoretical and the practical points of view, the problem of constitutive laws is part and parcel of the modeling problem. In particular, the necessity to restore in the model, through topological laws, some of the information lost during the usual averaging process is emphasized. A new void fraction topological law is proposed. The limitations of the current assumption of uniform pressure within each phase in any cross section are also illustrated. The importance of proximity effects (neighborhood and history effects, related to characteristic lengths and times) is brought out. It results in the importance of the mathematical form of the constitutive laws. Possible mathematical forms for the transfer laws are reviewed. The last part of the paper is devoted to some restrictions, which are imposed on the transfer terms because of some basic principles: Indifference to Galilean changes of frame and to some changes of origins, second law of thermodynamics and hypothesis of local thermodynamic equilibrium, closure constraints. Practical recommendations are formulated

  11. Planktic foraminifera form their shells via metastable carbonate phases

    OpenAIRE

    Jacob, D. E.; Wirth, R.; Agbaje, O. B. A.; Branson, O.; Eggins, S. M.

    2017-01-01

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polym...

  12. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  13. In temperature forming of friction stir lap welds in aluminium alloys

    Science.gov (United States)

    Bruni, Carlo; Cabibbo, Marcello; Greco, Luciano; Pieralisi, Massimiliano

    2018-05-01

    The objective of such investigation is the study in depth of the forming phase of welds realized on three sheet metal blanks in aluminium alloys by friction stir lap welding. Such forming phase was performed by upsetting at different constant forming temperatures varying from 200°C to 350°C with constant ram velocities of 0.01 and 0.1 mm/s. The temperature values were obtained by the use of heating strips applied on the upper tool and on the lower tool. It was observed an increase in the friction factor, acting at the upsetting tool-workpiece interface, with increasing temperature that is very useful in producing the required localized deformation with which to improve the weld. It was also confirmed that the forming phase allows to realize a required thickness in the weld area allowing to neglect the surficial perturbation produced by the friction stir welding tool shoulder. The obtained thickness could be subjected to springback when too low temperatures are considered.

  14. Microstructural study by XPS and GISAXS of surface layers formed via phase separation and percolation in polystyren/tetrabutyl titanate/alumina composite films

    International Nuclear Information System (INIS)

    Zeng Yanwei; Tian Changan; Liu Junliang

    2006-01-01

    The XPS and GISAXS have been employed as useful tools to probe the chemical compositional and microstructural evolutions in the surface layers formed via phase separation and percolation in polystyren/Ti(OBut) 4 /alumina composite thick films. The surface enrichment of Ti species due to the migration of Ti(OBut) 4 molecules in the films was found to show an incubation period of ∼15 h while the samples were treated at 100 deg. C before a remarkable progress can be identified. According to the XPS and GISAXS data, Key mechanism to govern this surface process is phenomenologically considered to be the specific phase separation behavior in Ti(OBut) 4 /PS blend and the subsequent percolating process. The extended thermal treatment was found to make the surface layer microstructure evolve from local phase separation featured with an increasing population of individual microbeads of Ti(OBut) 4 (∼1.5 nm in radius) to the formation of large size clusters of microbeads due to their interconnections, accompanied by the growth of every microbead itself to ∼10 nm on the average, which provokes and then enhances the surface enrichment of Ti(OBut) 4 since these clusters act as a fast diffusion network due to percolation effect

  15. Initiating the Validation of CCIM Processability for Multi-phase all Ceramic (SYNROC) HLW Form: Plan for Test BFY14CCIM-C

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Vince [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This plan covers test BFY14CCIM-C which will be a first–of–its-kind demonstration for the complete non-radioactive surrogate production of multi-phase ceramic (SYNROC) High Level Waste Forms (HLW) using Cold Crucible Induction Melting (CCIM) Technology. The test will occur in the Idaho National Laboratory’s (INL) CCIM Pilot Plant and is tentatively scheduled for the week of September 15, 2014. The purpose of the test is to begin collecting qualitative data for validating the ceramic HLW form processability advantages using CCIM technology- as opposed to existing ceramic–lined Joule Heated Melters (JHM) currently producing BSG HLW forms. The major objectives of BFY14CCIM-C are to complete crystalline melt initiation with a new joule-heated resistive starter ring, sustain inductive melting at temperatures between 1600 to 1700°C for two different relatively high conductive materials representative of the SYNROC ceramic formation inclusive of a HLW surrogate, complete melter tapping and pouring of molten ceramic material in to a preheated 4 inch graphite canister and a similar canister at room temperature. Other goals include assessing the performance of a new crucible specially designed to accommodate the tapping and pouring of pure crystalline forms in contrast to less recalcitrant amorphous glass, assessing the overall operational effectiveness of melt initiation using a resistive starter ring with a dedicated power source, and observing the tapped molten flow and subsequent relatively quick crystallization behavior in pans with areas identical to standard HLW disposal canisters. Surrogate waste compositions with ceramic SYNROC forming additives and their measured properties for inductive melting, testing parameters, pre-test conditions and modifications, data collection requirements, and sampling/post-demonstration analysis requirements for the produced forms are provided and defined.

  16. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  17. Determination of glibenclamide, metformin hydrochloride and rosiglitazone maleate by reversed phase liquid chromatographic technique in tablet dosage form

    Directory of Open Access Journals (Sweden)

    Havele Shweta S.

    2014-01-01

    Full Text Available A simple, precise and accurate high performance liquid chromatography (HPLC method was developed for the simultaneous estimation of metformin hydrochloride, rosiglitazone maleate, glibenclamide present in multicomponent dosage forms. Chromatography was performed on a 25 cm × 4.6 mm i.d., 5-μm particle, C18 column with 78:22 (v/v methanol: 20 mM potassium dihydrogen phosphate buffer as mobile phase at a flow rate of 1.0 ml/min and UV detection at 238 nm for metformin hydrochloride, rosiglitazone maleate, and glibenclamide. The total elution time was shorter than 9 min. This method was found to be precise and reproducible. This proposed method was successfully applied for the analysis of metformin hydrochloride, rosiglitazone maleate, glibenclamide as a bulk drug and in pharmaceutical formulation without any interference from the excipients.

  18. Membrane fusion and inverted phases

    International Nuclear Information System (INIS)

    Ellens, H.; Siegel, D.P.; Alford, D.; Yeagle, P.L.; Boni, L.; Lis, L.J.; Quinn, P.J.; Bentz, J.

    1989-01-01

    We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31 P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31 P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates

  19. Obtainment the reverse phase spinel [Zn2+0,5Fe3+0,5](Ni2+0,5Fe3+ 1,5)O4 by the method combustion reaction: the form of assessment heating

    International Nuclear Information System (INIS)

    Silva, M.C.; Costa, A.C.F.; Coutinho, J.P.; Silva, A.T.C.; Freitas, N.L.

    2011-01-01

    This paper aims to synthesize the inverse spinel phase of by combustion reaction method and to evaluate how [Zn 2+ 0,5Fe 3+ 0,5](Ni 2+ 0,5Fe 3+ 1,5)O 4 the heat source influences the structural and morphological this phase. The forms of heating were muffle oven and ceramic plate with built-in resistance and aniline as reducing agent. Comparisons were made between temperature, reaction time and physical changes undergone by the material during the combustion carried out in two warm-up. The material was characterized by XRD, SEM, and textural analysis. Based on the results showed that the spinel phase was successfully obtained, were found traces of the phases ZnO and Fe2O3. The Most crystallite size and higher reaction temperature were presented by the material produced in the plate. As for surface area and pore volume, the highest values were achieved by the material synthesized in the oven. The agglomerates were presented in the form of skeins made of pre-sintered particles. (author)

  20. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers

    International Nuclear Information System (INIS)

    Yano, Taka-aki; Yoshida, Keisuke; Hayashi, Tomohiro; Hara, Masahiko; Hayamizu, Yuhei; Ohuchi, Fumio

    2015-01-01

    We report spatially resolved vibrational analysis of mechanically exfoliated single-crystalline α-MoO 3 nanolayers. Raman scattering from α-MoO 3 was enhanced predominantly at the outside edges of the nanolayers. The enhanced Raman scattering at the edges was attributed primarily to the enhanced resonant Raman effect caused by a high density of oxygen vacancies localized at the edges. The localized vacancy sites corresponded to a non-stoichiometric phase of MoO 3 , which would provide reactive sites with high catalytic activity. (paper)

  1. Characterization of the martensite phase formed during hydrogen ion irradiation in austenitic stainless steel

    Science.gov (United States)

    Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun

    2017-10-01

    Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.

  2. Influence of system considerations on waste form design

    International Nuclear Information System (INIS)

    Bauer, A.A.; Matthews, S.C.; Peterson, R.W.

    1979-01-01

    The design of waste forms is constrained by waste management system considerations imposed during generation, treatment, packaging, transportation, storage, and isolation. In the isolation phase, the waste form provides one of the barriers to release in a multibarrier system that includes the natural geologic and hydrologic barriers as well as other engineered barriers

  3. 76 FR 28301 - Reports, Forms, and Record Keeping Requirements

    Science.gov (United States)

    2011-05-16

    ... Regulations (section 106) Qualitative Research--Retailer Interviews. OMB Control Number: Not Assigned. Form... Respondents: 30. NHTSA will conduct two research phases. For the first phase, NHTSA will conduct two types of qualitative research. One research project will consist of two (2) focus groups in three (3) cities. Each...

  4. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  5. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    Science.gov (United States)

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  6. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  7. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  8. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Liquid phase and supercooled liquid phase welding of bulk metallic glasses

    International Nuclear Information System (INIS)

    Kawamura, Y.

    2004-01-01

    Recent progress on welding in bulk metallic glasses (BMGs) has been reviewed. BMGs have been successfully welded to BMGs or crystalline metals by liquid phase welding using explosion, pulse-current and electron-beam methods, and by supercooled liquid phase welding using friction method. Successful welding of the liquid phase methods was due to the high glass-forming ability of the BMGs and the high concentration of welding energy in these methods. In contrast, the supercooled liquid phase welding was successful due to the thermally stable supercooled liquid state of the BMGs and the superplasticity and viscous flow of the supercooled liquid. The successful welding of BMGs to BMGs and crystalline materials is promising for the future development of BMGs as engineering materials

  10. Inflation and dark energy from three-forms

    International Nuclear Information System (INIS)

    Koivisto, Tomi S.; Nunes, Nelson J.

    2009-01-01

    Three-forms can give rise to viable cosmological scenarios of inflation and dark energy with potentially observable signatures distinct from standard single scalar field models. In this study, the background dynamics and linear perturbations of self-interacting three-form cosmology are investigated. The phase space of cosmological solutions possesses (super)-inflating attractors and saddle points, which can describe three-form driven inflation or dark energy. The quantum generation and the classical evolution of perturbations is considered. The scalar and tensor spectra from a three-form inflation and the impact from the presence of a three-form on matter perturbations are computed. Stability properties and equivalence of the model with alternative formulations are discussed.

  11. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  12. forme des budgets publics en Chine - phase II | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    orientation à donner aux réformes, facilitera les expériences de budgétisation participative dans toute la Chine, favorisera les échanges d'idées entre les organismes oeuvrant dans le domaine des finances et des budgets publics et informera les élus, ...

  13. A preliminary study of thermo-mechanical stability of carbon S-phase formed in austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Chiu, Yu Long; Dong, Hanshan, E-mail: wsgddf@hotmail.com [School of Metallurgy and Materials, College of Physical and Engineering Sciences, The University of Birmingham, Birmingham (United Kingdom)

    2010-07-01

    Carbon S-phase was generated in the surface of AISI316 austenitic stainless steel by plasma carburising at 500°C for 10h in a gas mixture of 1.5%CH4 and 98.5%H{sub 2}. The thermo-mechanical stability of the carbon S-phase was studied by stressing the 'dog-bone' tensile specimens in the range of 0-200MPa at temperatures ranging from 400 to 500°C for 100-150h. Post-test characterisation was conducted using XRD, SEM, TEM and micro-indentation. The experimental results demonstrate that when tested at a fix temperature the thickness of the carbon S-phase layer increased with the stress applied to the tensile specimens during the thermo-mechanical stability tests. This indicates that tensile stress promotes the diffusion of carbon in the carbon-S-phase. When stressed at 400°C the microstructure of the carbon S-phase was not affected by the stress level; however, when stressed at 450 and 500°C for 100MPa or above, the corrosion resistance of the carbon S-phase slightly deteriorated. The application of a tensile stress during annealing of S-phase layer can retard the deduction of its hardness. This is believed to be related to the early stage precipitation of carbides in the S-phase, which could be facilitated by the applied tensile stress during thermal annealing. (author)

  14. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    Science.gov (United States)

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH 2 Cl 2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH 3 /SiH 2 Cl 2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  15. GAS PHASE STRUCTURE AND STABILITY OF COMPLEX FORMED BY H2O, NH3, H2S AND THEIR METHYL DERIVATIVES WITH THE CATION CO2+

    Directory of Open Access Journals (Sweden)

    Cahyorini Kusumawardani

    2010-06-01

    Full Text Available Ab initio molecular orbital calculations at the Hartree-Fock-Self Consistent Field (HF-SCF have been performed in order to determine the structure and gas phase energies of complex formed by the Lewis bases of H2O, NH3, H2S and their methyl derivatives with the cation Co2+. The relative basicities of the base studied depend on both the substituent. The gas-phase interaction energies computed by the SCF method including electron correlation Møller-Plesset 2 (MP2 dan Configuration Iteration (CI were comparable in accuracy. The binding energies computed by these two methods reach the targeted chemical accuracy.   Keywords: ab initio calculation, cobalt complex, structure stability

  16. A charge-optimized many-body potential for the U-UO2-O2 system

    Science.gov (United States)

    Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.

    2013-12-01

    Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2 → UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.

  17. Pirm wastes: permanent isolation in rock-forming minerals

    International Nuclear Information System (INIS)

    Smyth, J.R.; Vidale, R.J.; Charles, R.W.

    1977-01-01

    The most practical system for permanent isolation of radioactive wastes in granitic and pelitic environments may be one which specifically tailors the waste form to the environment. This is true because if recrystallization of the waste form takes place within the half-lives of the hazardous radionuclides, it is likely to be the rate-controlling step for release of these nuclides to the ground-water system. The object of the proposed waste-form research at Los Alamos Scintific Laboratory (LASL) is to define a phase assemblage which will minimize chemical reaction with natural fluids in a granitic or pelitic environment. All natural granites contain trace amounts of all fission product elements (except Tc) and many contain minor amounts of these elements as major components of certain accessory phases. Observation of the geochemistry of fission-product elements has led to the identification of the natural minerals as target phases for research. A proposal is made to experimentally determine the amounts of fission product elements which can stably be incorporated into the phases listed below and to determine the leachability of the assemblage this produced using fluids typical of the proposed environments at the Nevada Test Site. This approach to waste isolation satisfies the following requirements: (1) It minimizes chemical reaction with the environment (i.e., recrystallization) which is likely to be the rate-controlling step for release of radionuclides to groundwater; (2) Waste loading (hence temperature) can be easily varied by dilution with material mined from the disposal site; (3) No physical container is required; (4) No maintenance is required (permanent); (5) The environment acts as a containment buffer. It is proposed that such wastes be termed PIRM wastes, for Permanent Isolation in Rock-forming Minerals

  18. Phosphorene oxide: stability and electronic properties of a novel two-dimensional material.

    Science.gov (United States)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P

    2015-01-14

    Phosphorene, the monolayer form of (black) phosphorus, was recently exfoliated from its bulk counterpart. Phosphorene oxide, by analogy to graphene oxide, is expected to have novel chemical and electronic properties, and may provide an alternative route to the synthesis of phosphorene. In this research, the physical and chemical properties of phosphorene oxide including its formation by oxygen adsorption on the bare phosphorene was investigated. Analysis of the phonon dispersion curves finds stoichiometric and non-stoichiometric oxide configurations to be stable at ambient conditions, thus suggesting that the oxygen adsorption may not degrade the phosphorene. The nature of the band gap of the oxides depends on the degree of functionalization of phosphorene; an indirect gap is predicted for the non-stoichiometric configurations, whereas a direct gap is predicted for the stoichiometric oxide. Application of mechanical strain or an external electric field leads to tunability of the band gap of the phosphorene oxide. In contrast to the case of the bare phosphorene, dependence of the diode-like asymmetric current-voltage response on the degree of stoichiometry is predicted for the phosphorene oxide.

  19. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  20. The influence of annealing on yttrium oxide thin film deposited by reactive magnetron sputtering: Process and microstructure

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2017-01-01

    Full Text Available Yttrium oxide thin films were prepared by reactive magnetron sputtering in different deposition condition with various oxygen flow rates. The annealing influence on the yttrium oxide film microstructure is investigated. The oxygen flow shows a hysteresis behavior on the deposition rate. With a low oxygen flow rate, the so called metallic mode process with a high deposition rate (up to 1.4µm/h was achieved, while with a high oxygen flow rate, the process was considered to be in the poisoned mode with an extremely low deposition rate (around 20nm/h. X-ray diffraction (XRD results show that the yttrium oxide films that were produced in the metallic mode represent a mixture of different crystal structures including the metastable monoclinic phase and the stable cubic phase, while the poisoned mode products show a dominating monoclinic phase. The thin films prepared in metallic mode have relatively dense structures with less porosity. Annealing at 600 °C for 15h, as a structure stabilizing process, caused a phase transformation that changes the metastable monoclinic phase to stable cubic phase for both poisoned mode and metallic mode. The composition of yttrium oxide thin films changed from nonstoichiometric to stoichiometric together with a lattice parameter variation during annealing process. For the metallic mode deposition however, cracks were formed due to the thermal expansion coefficient difference between thin film and the substrate material which was not seen in poisoned mode deposition. The yttrium oxide thin films that deposited in different modes give various application options as a nuclear material.

  1. Geometric phase from dielectric matrix

    International Nuclear Information System (INIS)

    Banerjee, D.

    2005-10-01

    The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)

  2. Saturated fatty acids and fatty acid esters promote the polymorphic transition of clarithromycin metastable form I crystal.

    Science.gov (United States)

    Watanabe, Miteki; Mizoguchi, Midori; Aoki, Hajime; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-10-15

    The phase transition of active pharmaceutical ingredients should be taken into account during manufacturing, processing- and storage, because different crystal forms lead to different physical properties of formulations. The phase transition of clarithromycin (CAM) metastable form I to stable form II was investigated on heating with additives such as fatty acids or fatty acid esters. Differential scanning calorimetry analyses revealed that when form I was heated with additives, the phase transition temperature of form I decreased close to the melting points of the additives. Powder X-ray diffraction analyses indicated the tentative presence of a non-crystalline component during the transition of form I to form II on heating with additives. These observations implied that CAM form I dissolved in the melted additives on heating and the dissolved CAM crystallized to form II. Reduction of transition temperatures in the presence of additives were also observed for the crystals of nifedipine form B and carbamazepine form III. These results suggested that the phenomena can be widely applicable for simultaneous crystalline phase transition and granulation using binder additives. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Calculation of Multiphase Chemical Equilibrium by the Modified RAND Method

    DEFF Research Database (Denmark)

    Tsanas, Christos; Stenby, Erling Halfdan; Yan, Wei

    2017-01-01

    method. The modified RAND extends the classical RAND method from single-phase chemical reaction equilibrium of ideal systems to multiphase chemical equilibrium of nonideal systems. All components in all phases are treated in the same manner and the system Gibbs energy can be used to monitor convergence....... This is the first time that modified RAND was applied to multiphase chemical equilibrium systems. The combined algorithm was tested using nine examples covering vapor–liquid (VLE) and vapor–liquid–liquid equilibria (VLLE) of ideal and nonideal reaction systems. Successive substitution provided good initial......A robust and efficient algorithm for simultaneous chemical and phase equilibrium calculations is proposed. It combines two individual nonstoichiometric solving procedures: a nested-loop method with successive substitution for the first steps and final convergence with the second-order modified RAND...

  4. A U-bearing composite waste form for electrochemical processing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.

  5. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  6. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  7. Phase equilibria of microemulsion forming system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol

    DEFF Research Database (Denmark)

    Kahl, Heike; Quitzsch, Konrad; Stenby, Erling Halfdan

    1997-01-01

    of multicomponent system is the coexistence of a highly structural liquid phase enriched with amphiphilic compounds and an excess water or an excess oil phase or both of them. The phase behaviour was studied experimentally by use of turbidity titration and HPLC measurements and theoretically by application...... of the UNIQUAC-equation and the UNIFAC-method. The UNIFAC-method is able to describe the phase behaviour in the quaternary system qualitatively, without fitting parameters. However, by applying the UNIQUAC-method, with adjustable parameters, it was only possible to model the ternary subsystems. The modelling......A systematic investigation of the phase behaviour involving microemulsions is presented with respect to experimental and calculated data for the four-component system n-decyl-(beta)-D-glucopyranoside/water/n-octane/1-butanol and its corresponding ternaries at 25°C. The main feature of this kind...

  8. Phase transformation and morphology of the intermetallic compounds formed at the Sn-9Zn-3.5Ag/Cu interface in aging

    Energy Technology Data Exchange (ETDEWEB)

    Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chang, T.-C. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Bldg. 11, 195, Sec. 4, Chung-Hsing Road, Chutung, Hsinchu, 310, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2008-06-30

    The morphology and phase transformation of the intermetallic compounds (IMCs) formed at the Sn-9Zn-3.5Ag/Cu interface in a solid-state reaction have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The monoclinic {eta}'-Cu{sub 6}Sn{sub 5} transforms to the hexagonal {eta}-Cu{sub 6}Sn{sub 5} and the orthorhombic Cu{sub 5}Zn{sub 8} transforms to the body-centered cubic (bcc) {gamma}-Cu{sub 5}Zn{sub 8} as aged at 180 deg. C. The scallop-shaped Cu{sub 6}Sn{sub 5} layer is retained after aging at 180 deg. C for 1000 h. In the solid-state reaction, Ag is repelled from {eta}'-Cu{sub 6}Sn{sub 5} and reacts with Sn to form Ag{sub 3}Sn, and the Cu{sub 5}Zn{sub 8} layer decomposes. Kirkendall voids are not observed at the Sn-9Zn-3.5Ag/Cu interface even after aging at 180 deg. C for 1000 h.

  9. Stability hierarchy between Piracetam forms I, II, and III from experimental pressure-temperature diagrams and topological inferences.

    Science.gov (United States)

    Toscani, Siro; Céolin, René; Minassian, Léon Ter; Barrio, Maria; Veglio, Nestor; Tamarit, Josep-Lluis; Louër, Daniel; Rietveld, Ivo B

    2016-01-30

    The trimorphism of the active pharmaceutical ingredient piracetam is a famous case of polymorphism that has been frequently revisited by many researchers. The phase relationships between forms I, II, and III were ambiguous because they seemed to depend on the heating rate of the DSC and on the history of the samples or they have not been observed at all (equilibrium II-III). In the present paper, piezo-thermal analysis and high-pressure differential thermal analysis have been used to elucidate the positions of the different solid-solid and solid-liquid equilibria. The phase diagram, involving the three solid phases, the liquid phase and the vapor phase, has been constructed. It has been shown that form III is the high-pressure, low-temperature form and the stable form at room temperature. Form II is stable under intermediary conditions and form I is the low pressure, high temperature form, which possesses a stable melting point. The present paper demonstrates the strength of the topological approach based on the Clapeyron equation and the alternation rule when combined with high-pressure measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  11. Phase Multistability in Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Postnov, D.E.; Sosnovtseva, Olga

    2003-01-01

    along the orbit of the individual oscillator. Focusing on the mechanisms underlying the appearance of phase multistability, the paper examines a variety of phase-locked patterns. In particular we demonstrate the nested structure of synchronization regions for oscillations with multicrest wave forms...

  12. Preparation and microstructural characterization of TiC and Ti0.6W0.4/TiC0.6 composite thin films obtained by activated reactive evaporation

    International Nuclear Information System (INIS)

    Montes de Oca, J. A.; LePetitcorps, Y.; Manaud, J.-P.; Vargas Garcia, J. R.

    2008-01-01

    Titanium carbide-based coatings were deposited on W substrates at a high coating growth rate by activated reactive evaporation at 500 and 600 deg. C in a L560 Leybold system using propene as reactive atmosphere. The crystal structure, lattice parameter, preferred orientation, and grain size of the coatings were determined by x-ray diffraction technique using Cu Kα. The analysis of the coating morphology was performed by scanning electron microscopy (SEM), and the composition of the films was analyzed by Auger electron spectroscopy and electron-probe microanalysis. Experimental results suggested that temperature was one of the most important parameters in the fabrication of stoichiometric TiC coatings. Thus, TiC coatings were obtained at 600 deg. C, whereas TiC 0.6 nonstoichiometric coatings codeposited with a free Ti phase were obtained at 500 deg. C, giving rise to the formation of a composite thin film. After annealing at 1000 deg. C, the stoichiometric films remained stable, but a crack pattern was formed over the entire coating surface. In addition, Ti 0.6 W 0.4 /TiC 0.6 composite thin coatings were obtained for the films synthesized at 500 deg. C. The formation of a Ti 0.6 W 0.4 ductile phase in the presence of a TiC 0.6 phase was responsible to avoid the coating cracking

  13. Electromagnetic form factors of hadrons

    International Nuclear Information System (INIS)

    Zidell, V.S.

    1976-01-01

    A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated

  14. Different infective forms trigger distinct immune response in experimental Chagas disease.

    Directory of Open Access Journals (Sweden)

    Paula Melo de Abreu Vieira

    Full Text Available Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and, consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT forms presented earlier production of proinflammatory cytokine TNF-α and later of IFN-γ by both T cells subpopulations. This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute phase. On the other hand, infection with MT forms result in an early production of IFN-γ, with subsequent control in the production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary, our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may influence relevant biological aspects of chronic Chagas disease.

  15. On the laws of disordering of the Ln3+ -ion crystal field in insulating crystals

    International Nuclear Information System (INIS)

    Kaminskij, A.A.

    1988-01-01

    Results of the study of fundamental regularities, which cause crystal field (CF) disordering on Ln 3+ ions in dielectric crystals are summed up. Analysis and systematization of the investigation results of atomic structure of disordered laser crystals and conducted investigations on spectroscopic properties and induced radiation (IR) permitted to come to the conclusion that the nature of disordering on CF is related to two fundamental regularities. The first regularity- the structural-dynamic one- is pronounced in numerous nonstoichiometric phases; the second one - determines spectroscopic properties and IR character

  16. Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample

    International Nuclear Information System (INIS)

    Cador, O.; Grasset, F.; Haneda, H.; Etourneau, J.

    2004-01-01

    A system consisting of aggregated nonstoichiometric zinc ferrite nanoparticles has been studied using AC and DC magnetization measurements. A superparamagnetic-super-spin-glass phase transition at T g has been identified. The relaxation time diverges at T g and the nonlinear susceptibility shows an abrupt increase. The critical behavior vanishes when the nanoparticles are not in close contact. The observation of the memory effect identical to that which has been already discovered in canonical spin-glass supports the existence of a true thermodynamic transition in agglomerated magnetic nanoparticles

  17. Nonionic diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains: thermotropic and lyotropic liquid crystalline phase behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE)

    2014-09-24

    The thermotropic and lyotropic liquid crystalline phase behaviour of a series of diethanolamide amphiphiles with isoprenoid-type hydrocarbon chains (geranoyl, H-farnesoyl, and phytanoyl) has been investigated. When neat, both H-farnesoyl and phytanoyl diethanolamide form a smectic liquid crystalline structure at sub-zero temperatures. In addition, all three diethanolamides exhibit a glass transition temperature at around -73 C. Geranoyl diethanolamide forms a lamellar crystalline phase with a lattice parameter of 17.4 {angstrom} following long term storage accompanied by the loss of the glass transition. In the presence of water, H-farnesoyl and phytanoyl diethanolamide form lyotropic liquid crystalline phases, whilst geranoyl diethanolamide forms an L{sub 2} phase. H-farnesoyl diethanolamide forms a fluid lamellar phase (L{sub {alpha}}) at room temperature and up to {approx} 40 C. Phytanoyl diethanolamide displays a rich mesomorphism forming the inverse diamond (Q{sub II}{sup D}) and gyroid (Q{sub II}{sup G}) bicontinuous cubic phases in addition to an L{sub {alpha}} phase.

  18. Electric and Magnetic Properties of Sputter Deposited BiFeO3 Films

    Directory of Open Access Journals (Sweden)

    N. Siadou

    2013-01-01

    Full Text Available Polycrystalline BiFeO3 films have been magnetron sputter deposited at room temperature and subsequently heat-treated ex situ at temperatures between 400 and 700°C. The deposition was done in pure Ar atmosphere, as the use of oxygen-argon mixture was found to lead to nonstoichiometric films due to resputtering effects. At a target-to-substrate distance d=2′′ the BiFeO3 structure can be obtained in larger range process gas pressures (2–7 mTorr but the films do not show a specific texture. At d=6′′ codeposition from BiFeO3 and Bi2O3 has been used. Films sputtered at low rate tend to grow with the (001 texture of the pseudo-cubic BiFeO3 structure. As the film structure does not depend on epitaxy similar results are obtained on different substrates. A result of the volatility of Bi, Bi rich oxide phases occur after heat treatment at high temperatures. A Bi2SiO5 impurity phase forms on the substrate side, and does not affect the properties of the main phase. Despite the deposition on amorphous silicon oxide substrate weak ferromagnetism phenomena and displaced loops have been observed at low temperatures showing that their origin is not strain. Ba, La, Ca, and Sr doping suppress the formation of impurity phases and leakage currents.

  19. Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.

    2006-01-01

    A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been

  20. General phase-frequency shifting in the three-phase inductor-converter bridge

    International Nuclear Information System (INIS)

    Ehsani, M.; Kustom, R.L.; Fuja, R.E.; Barnard, T.J.

    1979-01-01

    A fundamental method of shifting phase frequency in the inductor-converter bridge (ICB) for the purpose of controlling the power in real time is presented. Transient switching sequences needed to implement phase-frequency shifting can be developed by the use of this method and the other five system constraints. Two of the constraints that have been expressed in equation form so far are presented. Finally, an alternative algorithm for computing the frequency shifting transient sequences in real time is suggested

  1. X-ray diffraction of slag-based sodium salt waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-30

    The attached report documents sample preparation and x-ray diffraction results for a series of cement and blended cement matrices prepared with either water or a 4.4 M Na salt solution. The objective of the study was to provide initial phase characterization for the Cementitious Barriers Partnership reference case cementitious salt waste form. This information can be used to: 1) generate a base line for the evolution of the waste form as a function of time and conditions, 2) potentially to design new binders based on mineralogy of the binder, 3) understand and predict anion and cation leaching behavior of contaminants of concern, and 4) predict performance of the waste forms for which phase solubility and thermodynamic data are available.

  2. Phase transformations in an ascending adiabatic mixed-phase cloud volume

    Science.gov (United States)

    Pinsky, M.; Khain, A.; Korolev, A.

    2015-04-01

    Regimes of liquid-ice coexistence that may form in an adiabatic parcel ascending at constant velocity at freezing temperatures are investigated. Four zones with different microphysical structures succeeding one another along the vertical direction have been established. On the basis of a novel balance equation, analytical expressions are derived to determine the conditions specific for each of these zones. In particular, the necessary and sufficient conditions for formation of liquid water phase within an ascending parcel containing only ice particles are determined. The results are compared to findings reported in earlier studies. The role of the Wegener-Bergeron-Findeisen mechanism in the phase transformation is analyzed. The dependence of the phase relaxation time on height in the four zones is investigated on the basis of a novel analytical expression. The results obtained in the study can be instrumental for analysis and interpretation of observed mixed-phase clouds.

  3. Solid-phase equilibria on Pluto's surface

    Science.gov (United States)

    Tan, Sugata P.; Kargel, Jeffrey S.

    2018-03-01

    Pluto's surface is covered by volatile ices that are in equilibrium with the atmosphere. Multicomponent phase equilibria may be calculated using a thermodynamic equation of state and, without additional assumptions, result in methane-rich and nitrogen-rich solid phases. The former is formed at temperature range between the atmospheric pressure-dependent sublimation and condensation points, while the latter is formed at temperatures lower than the sublimation point. The results, calculated for the observed 11 μbar atmospheric pressure and composition, are consistent with recent work derived from observations by New Horizons.

  4. Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Devaraj, A.; Nag, S. [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States); Bettles, C.J. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Gibson, M. [CSIRO Process Science and Engineering, Locked Bag 10, Clayton South, Victoria 3169 (Australia); Fraser, H.L. [Center for the Accelerated Maturation of Materials, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH (United States); Muddle, B.C. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Banerjee, R., E-mail: rajarshi.banerjee@unt.edu [Center for Advanced Research and Technology, Department of Materials Science and Engineering, University of North Texas, Denton, TX (United States)

    2011-05-15

    The formation of the {omega} phase in the presence of simultaneous development of compositional modulations (or phase separation) within the body-centered cubic {beta} matrix phase of a Ti-10V-6Cu (wt.%) alloy during continuous cooling has been investigated using a combination of transmission electron microscopy and atom probe tomography. While a water quench from the high-temperature {beta} phase field allows apparently athermal formation of {omega} domains without any significant partitioning of solute or modulation in matrix composition, subsequent annealing at 500 {sup o}C for just 60 s leads to unusually rapid growth of the {omega} domains concurrent with, but apparently independent of, a slower development of finer-scale modulations in solute composition occurring apparently uniformly across both {omega} and {beta} phases. In contrast, on slower air cooling from the solution treatment temperature, there are pronounced compositional fluctuations within the {beta} phase, presumably as a product of spinodal decomposition, that are detectable prior to the formation of {omega} phase. The {omega} phase subsequently forms preferentially in solute-depleted regions of the matrix {beta}, with a composition reflecting the local matrix composition and a solute content significantly lower than the average matrix composition. As a result, it has a cuboidal morphology, distinguishably different from the elliposoidal form that is observed in samples water-quenched and annealed at 500 deg. C.

  5. Thermoelectric enhancement at low temperature in nonstoichiometric lead-telluride compounds

    International Nuclear Information System (INIS)

    Wang Heng; Li Jingfeng; Kita, Takuji

    2007-01-01

    Pb 1.17 Te thermoelectric polycrystalline materials were fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The property measurement and microstructural characterization showed that the present material has special features different from traditional Pb 1+x Te ingots with secondary Pb phase. An attractive enhancement of the thermoelectric figure of merit ZT = 0.64 was obtained at 450 K, with a low thermal conductivity of 1.11 W m -1 K -1 at this temperature. Transmission electron microscopy observation showed the existence of randomly dispersed nano features that are responsible for such enhancement, some of which are similar to the nanostructures reported in the AgPb m SbTe m+2 system. The origin of these regions is discussed and their influence on thermal conductivity is revealed. The results confirm the effectiveness of such a kind of nano feature in improving thermoelectric properties, especially in reducing thermal conductivity. They also indicate a new way of obtaining thermoelectric materials with such a kind of nano feature via MA and SPS

  6. Perovskite phase thin films and method of making

    Science.gov (United States)

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  7. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  8. Metamorphosis: Phases of UF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.H. [Department of Energy, Oak Ridge, TN (United States)

    1991-12-31

    A 15-minute videotape is presented. The subject matter is 150 grams of UF{sub 6} sealed in a glass tube. Close-up views show the UF{sub 6} as phase changes are effected by the addition or removal of heat from the closed system. The solid-to-liquid transition is shown as heat is added, both slowly and rapidly. The solid phases which result from freezing and from desublimation are contrasted. In the solid state, uranium hexafluoride is a nearly-white, dense crystalline solid. The appearance of this solid depends on whether it is formed by freezing from the liquid or by desublimation from the vapor phase. If frozen from the liquid, the solid particles take the form of irregularly shaped coarse grains, while the solid product of desublimation tends to be a rather formless mass without individually distinguishable particles. The changes in state are presented in terms of the UF{sub 6} phase diagram.

  9. Experimental Observations of Ion Phase-Space Vortices

    DEFF Research Database (Denmark)

    Pécseli, Hans; Armstrong, R. J.; Trulsen, J.

    1981-01-01

    Experimental observations of ion phase-space vortices are reported. The ion phase-space vortices form in the region of heated ions behind electrostatic ion acoustic shocks. The results are in qualitative agreement with numerical and analytic studies....

  10. Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges

    Science.gov (United States)

    Ismail-Beigi, Sohrab

    2010-05-01

    In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.

  11. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  12. Phase-sensitive flow cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, J.A.

    1992-12-31

    This report describes phase-sensitive flow cytometer (FCM) which provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.

  13. Neutrino mixing and lepton CP-phase in neutrino oscillations

    International Nuclear Information System (INIS)

    Ryzhikh, D.A.; Ter-Martirosyan, K.A.

    2001-01-01

    One studied oscillations of the Dirac neutrinos belonging to three generations in vacuum with regard to the effect of the lepton CP-breaking phase on them in the matrix of lepton mixing (analogue of the quark CP-phase). In the general form one obtained formulae for probabilities of transition of neutrino of one kind to another at oscillations depending on three angles of mixing and on CP-phase. It was pointed that when measuring oscillation average probabilities of transition of neutrino of one kind to another one might in principle, restore the value of lepton CP-phase. Manifestation of CP-phase in the form of deviation of the values of probabilities of direct neutrino transition from reverse one is the effect practically escaping observation [ru

  14. First principles study of structural, electronic and optical properties of polymorphic forms of Rb 2Te

    Science.gov (United States)

    Alay-e-Abbas, S. M.; Shaukat, A.

    2011-05-01

    First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.

  15. Effect of mesoscopic fluctuations on equation of state in cluster-forming systems

    Directory of Open Access Journals (Sweden)

    A. Ciach

    2012-06-01

    Full Text Available Equation of state for systems with particles self-assembling into aggregates is derived within a mesoscopic theory combining density functional and field-theoretic approaches. We focus on the effect of mesoscopic fluctuations in the disordered phase. The pressure - volume fraction isotherms are calculated explicitly for two forms of the short-range attraction long-range repulsion potential. Mesoscopic fluctuations lead to an increased pressure in each case, except for very small volume fractions. When large clusters are formed, the mechanical instability of the system is present at much higher temperature than found in mean-field approximation. In this case phase separation competes with the formation of periodic phases (colloidal crystals. In the case of small clusters, no mechanical instability associated with separation into dilute and dense phases appears.

  16. Phase behavior and phase inversion for dispersant systems

    International Nuclear Information System (INIS)

    Solheim, A.; Brandvik, P.J.

    1991-06-01

    This report describes some preliminary phase behavior studies and phase inversion temperature measurements in seawater, bunker oil and dispersant. The objectives have been to find new ways of characterizing dispersants for dispersing oil spill at sea and, perhaps, to throw new lights on the mechanism of dispersion formation (oil-in-water emulsification). The work has been focussed on the relation to phase behavior and the existence of microemulsion in equilibrium with excess oil and water phases. The dispersing process is also compared to the recommended conditions for emulsion formation. When forming an oil-in-water emulsion in an industrial process, it is recommended to choose an emulsifier which gives a phase inversion temperature (PIT) which is 20 - 60 o C higher than the actual temperature for use. The emulsification process must take place close to the PIT which is the temperature at which the emulsion change from oil-in-water emulsion to water-in-oil emulsion when the system is stirred. This condition corresponds to the temperature where the phase behavior change character. The purpose has been to find out if the composition of the dispersants corresponds to the recommendations for oil-in-water emulsification. The amount of experimental work has been limited. Two kinds of experiments have been carried out. Phase behavior studies have been done for seawater, bunker oil and four different dispersants where one had an optimal composition. The phase behavior was hard to interpret and is not recommended for standard dispersants test. The other experimental technique was PIT-measurements by conductivity measurements versus temperature. 4 figs., 1 tab., 4 refs

  17. Phase-Modulation Laser Interference Microscopy

    DEFF Research Database (Denmark)

    Brazhe, Alexey; Brazhe, Nadezda; Maximov, G. V.

    2008-01-01

    We describe how phase-modulation laser interference microscopy and wavelet analysis can be applied to noninvasive nonstained visualization and study of the structural and dynamical properties of living cells. We show how phase images of erythrocytes can reveal the difference between various...... erythrocyte forms and stages of hemolysis and how phase images of neurons reveal their complex intracellular structure. Temporal variations of the refractive index are analyzed to detect cellular rhythmic activity on different time scales as well as to uncover interactions between the cellular processes....

  18. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital...

  19. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 1,8-dinitronaphthalene and 1,5-dinitronaphthalene and N-methyl-2-pyrrolidone

    International Nuclear Information System (INIS)

    Xie, Yong; Du, Cunbin; Cong, Yang; Wang, Jian; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • SLE formed by 1,5 and/or 1,8-dinitronaphthalene and NMP was determined. • The binary and ternary phase diagrams were constructed. • The phase diagrams were correlated and calculated using thermodynamic models. - Abstract: The solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone at (293.15–343.15) K and the mutual solubility of the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone mixture at (313.15, 328.15 and 343.15) K were determined experimentally using the isothermal saturation method under atmospheric pressure (101.2 kPa). The solubility of 1,8-dinitronaphthalene in N-methyl-2-pyrrolidone is larger than that of 1,5-dinitronaphthalene. Three isothermal ternary phase diagrams were built according to the measured mutual solubility data. In each ternary phase diagram, there were one co-saturated point, two boundary curves, and three crystalline regions. Two pure solids (pure 1,8-dinitronaphthalene and pure 1,5-dinitronaphthalene) were formed in the ternary system at a given temperature, which were identified by Schreinemaker’s method of wet residue and powder X-ray diffraction (PXRD) pattern. The crystallization region of 1,8-dinitronaphthalene was smaller than that of 1,5-dinitronaphthalene at each temperature. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 1,8-dinitronaphthalene and 1,5-dinitronaphthalene in N-methyl-2-pyrrolidone; and the NRTL and Wilson models were employed to correlate and calculate the mutual solubility for the ternary 1,5-dinitronaphthalene + 1,8-dinitronaphthalene + N-methyl-2-pyrrolidone system. The largest value of root-mean-square deviation (RMSD) was 20.34 × 10 −4 for the binary systems; and 7.38 × 10 −3 for ternary system. The calculated results via these models are all acceptable for the binary and ternary solid-liquid phase equilibrium.

  20. Investigation on thixojoining to produce hybrid components with intermetallic phase

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2018-05-01

    Current research activities at the Institute for Metal Forming Technology of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. One process investigated is the joining of different materials in the semi-solid state and is so called "thixojoining". In this process, metallic inlays are inserted into the semi-solid forming die before the actual forming process and are then joined with a material which was heated up to its semi-solid state. Earlier investigations have shown that using this process a very well-shaped form closure can be produced. Furthermore, it was found that sometimes intermetallic phases are built between the different materials, which decisively influence the part properties of such hybrid components for its future application. Within the framework presented in this paper, inlays made of aluminum, brass and steel were joined with aluminum in the semi-solid state. The aim of the investigations was to create an intermetallic bond between the different materials. For this investigations the liquid phase fraction of the aluminum and the temperature of the inlay were varied in order to determine the influence on the formation of the intermetallic phase. Forming trials were performed using a semi-solid forming die with a disk shaped design. Furthermore, the intermetallic phase built was investigated using microsections.

  1. Non-stoichiometry and properties of SnTe left angle Cd right angle semiconducting phase of variable composition

    International Nuclear Information System (INIS)

    Rogacheva, E.I.; Nashchekina, O.N.

    2006-01-01

    It was established that the dependences of microhardness, hole concentration, electrical conductivity, and the Seebeck coefficient on composition in the Sn 0.984 Te-Cd and Sn 0.984 Te-CdTe solid solutions based on non-stoichiometric tin telluride exhibit non-monotonic behavior. The effects connected with the interaction between intrinsic and impurity defects and with critical phenomena accompanying a transition to the impurity continuum were isolated. The results obtained in this work represent another evidence for our proposition about the universal character of critical phenomena accompanying the transition from an impurity discontinuum to an impurity continuum in solid solutions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  3. Glass binder development for a glass-bonded sodalite ceramic waste form

    International Nuclear Information System (INIS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.

    2017-01-01

    This paper discusses work to develop Na_2O-B_2O_3-SiO_2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na_2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  4. 76 FR 38654 - Agency Forms Undergoing Paperwork Reduction Act Review

    Science.gov (United States)

    2011-07-01

    ... consent for an interview. After the data collection phase, a multidisciplinary case review team (CRT) will... Post-Partum HIV- FIMR/HIV Maternal 300 1 1.5 infected Women. Interview Form. Daniel L. Holcomb, Reports...] Agency Forms Undergoing Paperwork Reduction Act Review The Centers for Disease Control and Prevention...

  5. Multimolecular studies of Galactic star-forming regions

    NARCIS (Netherlands)

    Baan, W. A.; Loenen, A. F.; Spaans, M.

    2014-01-01

    Molecular emission-line observations of isolated Galactic star-forming regions are used to model the physical properties of the molecular interstellar medium in these systems. Observed line ratios are compared with the results predicted by models that incorporate gas-phase chemistry and the heating

  6. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    Science.gov (United States)

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  8. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.; Pan, Yinjin; Li, Minghua; Hoek, Eric M. V.

    2011-01-01

    . The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many

  9. Modulational instability of nematic phase

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... all phases show MI, but at the same time it has also been found that for antiferro- magnetic phase, MI depends on the relative .... with wave functions, time and spatial coordinates are measured in the units of. (¯h/2mωz)−3/2, ω−1 ... The manipulation of the resulting matrix gives eigenvalues. From the form of ...

  10. UPVG phase 2 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG`s efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG`s Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative.

  11. UPVG phase 2 report

    International Nuclear Information System (INIS)

    1995-08-01

    The Utility PhotoVoltaic Group (UPVG), supported by member dues and a grant from the US Department of Energy, has as its mission the acceleration of the use of cost-effective small-scale and emerging large-scale applications of photovoltaics for the benefit of electric utilities and their customers. Formed in October, 1992, with the support of the American Public Power Association, Edison Electric Institute, and the National Rural Electric Cooperative Association, the UPVG currently has 90 members from all sectors of the electric utility industry. The UPVG's efforts as conceived were divided into four phases: Phase 0--program plan; Phase 1--organization and strategy development; Phase 2--creating market assurance; and Phase 3--higher volume purchases. The Phase 0 effort developed the program plan and was completed early in 1993. The Phase 1 goal was to develop the necessary background information and analysis to lead to a decision as to which strategies could be undertaken by utilities to promote greater understanding of PV markets and achieve increased volumes of PV purchases. This report provides the details of the UPVG's Phase 2 efforts to initiate TEAM-UP, its multiyear, 50-MW hardware initiative

  12. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo; Lee, Daeho; Yeo, Junyeob; Yoo, Jae-Hyuck; Allen, Frances I.; Kim, Eunpa; So, Hongyun; Park, Hee K.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2015-01-01

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  13. Laser-Induced Reductive Sintering of Nickel Oxide Nanoparticles under Ambient Conditions

    KAUST Repository

    Paeng, Dongwoo

    2015-03-19

    © 2015 American Chemical Society. This work is concerned with the kinetics of laser-induced reductive sintering of nonstoichiometric crystalline nickel oxide (NiO) nanoparticles (NPs) under ambient conditions. The mechanism of photophysical reductive sintering upon irradiation using a 514.5 nm continuous-wave (CW) laser on NiO NP thin films has been studied through modulating the laser power density and illumination time. Protons produced due to high-temperature decomposition of the solvent present in the NiO NP ink, oxygen vacancies in the NiO NPs, and electronic excitation in the NiO NPs by laser irradiation all affect the early stage of the reductive sintering process. Once NiO NPs are reduced by laser irradiation to Ni, they begin to coalesce, forming a conducting material. In situ optical and electrical measurements during the reductive sintering process take advantage of the distinct differences between the oxide and the metallic phases to monitor the transient evolution of the process. We observe four regimes: oxidation, reduction, sintering, and reoxidation. A characteristic time scale is assigned to each regime.

  14. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ultrathin highly uniform Ni(Al) germanosilicide layer with modulated B8 type Ni5(SiGe)3 phase formed on strained Si1−xGex layers

    International Nuclear Information System (INIS)

    Liu, Linjie; Xu, Dawei; Jin, Lei; Knoll, Lars; Wirths, Stephan; Nichau, Alexander; Buca, Dan; Mussler, Gregor; Holländer, Bernhard; Zhao, Qing-Tai; Mantl, Siegfried; Feng Di, Zeng; Zhang, Miao

    2013-01-01

    We present a method to form ultrathin highly uniform Ni(Al) germanosilicide layers on compressively strained Si 1−x Ge x substrates and their structural characteristics. The uniform Ni(Al) germanosilicide film is formed with Ni/Al alloy at an optimized temperature of 400 °C with an optimized Al atomic content of 20 at. %. We find only two kinds of grains in the layer. Both grains show orthogonal relationship with modified B8 type phase. The growth plane is identified to be (10-10)-type plane. After germanosilicidation the strain in the rest Si 1−x Ge x layer is conserved, which provides a great advantage for device application

  16. Dual focal-spot imaging for phase extraction in phase-contrast radiography

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2003-01-01

    The purpose of this study was to evaluate dual focal spot imaging as a method for extracting the phase component from a phase-contrast radiography image. All measurements were performed using a microfocus tungsten-target x-ray tube with an adjustable focal-spot size (0.01 mm to 0.045 mm). For each object, high-resolution digital radiographs were obtained with two different focal spot sizes to produce matched image pairs in which all other geometric variables as well as total exposure and tube kVp were held constant. For each image pair, a phase extraction was performed using pixel-wise division. The phase-extracted image resulted in an image similar to the standard image processing tool commonly referred to as 'unsharp masking' but with the additional edge-enhancement produced by phase-contrast effects. The phase-extracted image illustrates the differences between the two images whose imaging parameters differ only in focal spot size. The resulting image shows effects from both phase contrast as well as geometric unsharpness. In weakly attenuating materials the phase-contrast effect predominates, while in strongly attenuating materials the phase effects are so small that they are not detectable. The phase-extracted image in the strongly attenuating object reflects differences in geometric unsharpness. The degree of phase extraction depends strongly on the size of the smallest focal spot used. This technique of dual-focal spot phase-contrast radiography provides a simple technique for phase-component (edge) extraction in phase-contrast radiography. In strongly attenuating materials the phase-component is overwhelmed by differences in geometric unsharpness. In these cases the technique provides a form of unsharp masking which also accentuates the edges. Thus, the two effects are complimentary and may be useful in the detection of small objects

  17. Mechanical characterization of magnesium aluminate MgO·nAl2O3 spinel single crystals irradiated with Cu- ions

    International Nuclear Information System (INIS)

    Ohmura, Takahito; Lee, Chi-Gyu; Kishimoto, Naoki

    2003-01-01

    Ion-irradiation response of spinel single crystals was investigated using a nanoindentation technique. Specimens of stoichiometric (n=1) and non-stoichiometric (n=2.4) single crystals of MgO n(Al 2 O 3 ) spinel were irradiated with 60 keV Cu - ion at room temperature. Dose rate ranged from 1 to 100 μA/cm 2 , and a total dose was kept constant at 3x10 16 ions/cm 2 . Both plastic hardness and elastic modulus of all the irradiated specimens were softened. Radiation-induced swelling simultaneously occurred. Rutherford back scattering spectroscopy detected disordering of spinel crystalline structure. Accordingly, the radiation-induced softening and swelling are ascribed to accumulation of point defects associated with the disordering. In comparison between the stoichiometric and the non-stoichiometric specimens, the radiation-induced softening is suppressed in the non-stoichiometric composition. (author)

  18. Annual report on the development and characterization of solidified forms for nuclear wastes, 1979

    International Nuclear Information System (INIS)

    Chick, L.A.; McVay, G.L.; Mellinger, G.B.; Roberts, F.P.

    1980-12-01

    Development and characterization of solidified nuclear waste forms is a major continuing effort at Pacific Northwest Laboratory. Contributions from seven programs directed at understanding chemical composition, process conditions, and long-term behaviors of various nuclear waste forms are included in this report. The major findings of the report are included in extended figure captions that can be read as brief technical summaries of the research, with additional information included in a traditional narrative format. Waste form development proceeded on crystalline and glass materials for high-level and transuranic (TRU) wastes. Leaching studies emphasized new areas of research aimed at more basic understanding of waste form/aqueous solution interactions. Phase behavior and thermal effects research included studies on crystal phases in defense and TRU waste glasses and on liquid-liquid phase separation in borosilicate waste glasses. Radiation damage effects in crystals and glasses from alpha decay and from transmutation are reported

  19. Analysis of a new phase and height algorithm in phase measurement profilometry

    Science.gov (United States)

    Bian, Xintian; Zuo, Fen; Cheng, Ju

    2018-04-01

    Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.

  20. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  1. Diagrammatic methods in phase-space regularization

    International Nuclear Information System (INIS)

    Bern, Z.; Halpern, M.B.; California Univ., Berkeley

    1987-11-01

    Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)

  2. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  3. Rad52 forms DMA repair and recombination centers during S phase

    DEFF Research Database (Denmark)

    Lisby, M.; Rothstein, R.; Mortensen, Uffe Hasbro

    2001-01-01

    fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by gamma -irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively...

  4. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  5. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  6. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  7. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD

    International Nuclear Information System (INIS)

    Brendt, Jochen

    2011-01-01

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  8. Variation of crystallinity and stoichiometry in films of gallium oxide, gallium nitride and barium zirconate prepared by means of PLD; Variation von Kristallinitaet und Stoechiometrie in mittels PLD hergestellten Schichten aus Galliumoxid, Galliumnitrid und Bariumzirkonat

    Energy Technology Data Exchange (ETDEWEB)

    Brendt, Jochen

    2011-08-05

    Pulsed Laser Deposition (PLD) is an ablation technique for thin film preparation of many materials. The film properties can be well controlled by the process parameters. Therefore, in many cases a given material can be deposited with different properties by changing one or more process parameters. In this thesis thin films of gallium oxide, gallium nitride and barium zirconate were deposited with a large variation in structure and stoichiometry by means of Pulsed Laser Deposition. The characterization of the film crystallinity, phase purity and short range structural order was completed by means of X-ray diffraction and X-ray absorption spectroscopy. The stoichiometry was investigated using electron probe microanalysis. For analyzing the correlation between the structure and stoichiometry with the optical and electrical properties, optical absorption and electrical conductivity measurements were carried out. The investigation of all three material systems showed that very unique properties can be realized when combining an amorphous structure and a non-stoichiometric composition. For example, in amorphous and oxygen deficient gallium oxide an insulator-metal-transition can be induced by partial crystallization of the as prepared phase accomplished by annealing at about 400 C in argon atmosphere (as shown in literature). Furthermore, amorphous and highly non-stoichiometric barium zirconate has the ability to split water molecules to hydrogen and oxygen at room temperature. A detailed analysis of both phenomena has been performed by means of photoemission and transmission electron microscopy in the case of gallium oxide and via X-ray absorption spectroscopy and gas chromatography in the case of barium zirconate.

  9. Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Glückstad, Jesper

    2012-01-01

    , optical lattices and other beam-shaping applications usually implemented with high-end spatial light modulators. Portable pico-projectors based on liquid crystal on silicon (LCoS) devices are used as binary phase-only spatial light modulators by carefully setting the appropriate polarization of the laser...

  10. Simultaneous determination of linagliptin and metformin by reverse phase-high performance liquid chromatography method: An application in quantitative analysis of pharmaceutical dosage forms

    Directory of Open Access Journals (Sweden)

    Prathyusha Vemula

    2015-01-01

    Full Text Available To enhance patient compliance toward treatment in diseases like diabetes, usually a combination of drugs is prescribed. Therefore, an anti-diabetic fixed-dose combination of 2.5 mg of linagliptin 500 mg of metformin was taken for simultaneous estimation of both the drugs by reverse phase-high performance liquid chromatography (RP-HPLC method. The present study aimed to develop a simple and sensitive RP-HPLC method for the simultaneous determination of linagliptin and metformin in pharmaceutical dosage forms. The chromatographic separation was designed and evaluated by using linagliptin and metformin working standard and sample solutions in the linearity range. Chromatographic separation was performed on a C 18 column using a mobile phase of 70:30 (v/v mixture of methanol and 0.05 M potassium dihydrogen orthophosphate (pH adjusted to 4.6 with orthophosphoric acid delivered at a flow rate of 0.6 mL/min and UV detection at 267 nm. Linagliptin and metformin shown linearity in the range of 2-12 μg/mL and 400-2400 μg/mL respectively with correlation co-efficient of 0.9996 and 0.9989. The resultant findings analyzed for standard deviation (SD and relative standard deviation to validate the developed method. The retention time of linagliptin and metformin was found to be 6.3 and 4.6 min and separation was complete in <10 min. The method was validated for linearity, accuracy and precision were found to be acceptable over the linearity range of the linagliptin and metformin. The method was found suitable for the routine quantitative analysis of linagliptin and metformin in pharmaceutical dosage forms.

  11. Phase multistability of self-modulated oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Postnov, D.E.; Nekrasov, A.M.

    2002-01-01

    The paper examines the type of multistability that one can observe in the synchronization of two oscillators when the systems individually display self-modulation or other types of multicrest wave forms. The investigation is based on a phase reduction method and on the calculation of phase maps...... nonlinearity and a biologically motivated model of nephron autoregulation are presented....

  12. Complex phase dynamics in coupled bursters

    DEFF Research Database (Denmark)

    Postnov, D E; Sosnovtseva, Olga; Malova, S Y

    2003-01-01

    The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...... the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes....

  13. Liquid Crystals - The 'Fourth' Phase of Matter

    Indian Academy of Sciences (India)

    possibilities of novel technological applications. Liquid crystalline materials ... advanced instrumentation, including laptops and futuristic flat panel displays. .... The twist grain-boundary phase is formed when the layers of a smectic A phase are .... the optic axis) is uniformly oriented parallel to the glass plate. (see Figure IIa).

  14. Data on the electromagnetic pion form factor and p-wave

    International Nuclear Information System (INIS)

    Dubnicka, S.; Meshcheryakov, V.A.; Milko, J.

    1980-01-01

    The pion form factor absolute value data (free of the omega meson contribution) are unified with the P-wave isovector ππ phase shift. The resultant real and imaginary parts of the pion form factor are described by means of the Pade approximation. All the data, which involve the pion form factor experimental points from the range of momenta - 0.8432 GeV 2 2 , the pion charge radius, and the P-wave isovector ππ phase shift in the elastic region (including also the generally accepted value of the scattering length) are mutually consistent. The data themselves through the Pade approximation reveal that the aforementioned consistency can be achieved only if the pion form factor left-hand cut from the second Riemann sheet is taken into account. Almost in all of the considered Pade approximations one stable pion form factor zero is found in the space-like region, which might indicate the existence of a diffraction minimum in the differential cross section for elastic e - π scattering as a consequence of the constituent structure of the pion like in the case of the electron elastic scattering on nuclei

  15. Phase formation of physically associating polymer blends

    International Nuclear Information System (INIS)

    Tanaka, Fumihiko

    1993-01-01

    Polymers exhibit a variety of condensed phases when some of their segments are capable of forming weak bonds which can be created and destroyed by thermal motion. Transition from one phase to another caused by such 'segment association' is reversible by the change of the temperature and the concentration, so that it is called 'reversible phase transition'. What types of reversible phase formation are possible for a given associative interaction? What is the most fundamental laws which govern the competition between molecular association and phase separation? This paper surveys, as typical examples of reversible phases, macroscopic phase separation, microphase formation, solvation, gelation, etc. from the unified point of view, and explores the possibility of new condensed phases caused by their mutual interference. (author)

  16. 78 FR 61350 - Tribal Mobility Fund Phase I Auction (Auction 902); Short-Form Application Filing Window...

    Science.gov (United States)

    2013-10-03

    ... FEDERAL COMMUNICATIONS COMMISSION [AU Docket No. 13-53; DA 13-1986, DA 13-1978] Tribal Mobility... Access Division: For Tribal Mobility Fund Phase I questions: Patricia Robbins at (202) 418-0660. To... to $50 million in one-time Tribal Mobility Fund Phase I support, will now open at 12 noon Eastern...

  17. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  18. Comparative waste forms study

    International Nuclear Information System (INIS)

    Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.

    1980-12-01

    A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings

  19. Fischer Indole Synthesis in the Gas Phase, the Solution Phase, and at the Electrospray Droplet Interface.

    Science.gov (United States)

    Bain, Ryan M; Ayrton, Stephen T; Cooks, R Graham

    2017-07-01

    Previous reports have shown that reactions occurring in the microdroplets formed during electrospray ionization can, under the right conditions, exhibit significantly greater rates than the corresponding bulk solution-phase reactions. The observed acceleration under electrospray ionization could result from a solution-phase, a gas-phase, or an interfacial reaction. This study shows that a gas-phase ion/molecule (or ion/ion) reaction is not responsible for the observed rate enhancement in the particular case of the Fischer indole synthesis. The results show that the accelerated reaction proceeds in the microdroplets, and evidence is provided that an interfacial process is involved. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  20. The constitutive laws of one-dimensional, two-fluid models for two-phase flows - Possible mathematical forms - Restrictions resulting from basic principles

    International Nuclear Information System (INIS)

    Boure, Jean.

    1978-05-01

    From both the theoretical and the practical points of view, the problem of constitutive laws is a part and parcel of the modeling problem. In particular, the necessity to restore in the model, through topological laws, some of the information lost during the usual averaging process is emphasized. It is shown that the customary 'void fraction' topological law Psub(V)=Psub(L) should be proscribed whenever propagation phenomena are involved. A new void fraction topological law is proposed. The limitations of the current assumption of constant pressure within any phase in any cross section are also illustrated. The importance of proximity effects (neighborhood and history effects, related to characteristic lengths and times) is brought out. It results in the importance of the mathematical form of the constitutive laws. Various approaches to the constitutive law problem and possible mathematical forms for the transfer laws are reviewed. The simplest form (transfert terms as functions of the dependent variables only) may have some usefulness if interpretation of the results in terms of propagation phenomena is banned. A good compromise between the necessity to take proximity effects into account and to obtain a tractable set of equations is carried out when so called 'differential terms' are introduced in the transfer laws. The last part of the paper is devoted to some restrictions, which are imposed to the transfer terms because of some basic principles: indifference to Galilean changes of frame and to some changes of origins, second law of thermodynamics and assumption of local thermodynamic equilibrium, closure constraints. Practical recommendations are formulated [fr

  1. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  2. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  3. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    International Nuclear Information System (INIS)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-01-01

    Uranium-(VI) phases are the primary alteration products of the UO 2 in spent nuclear fuel and the UO 2+x , in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO 2 2+ polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO 2+x , to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements

  4. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  5. p-Forms and diffeomorphisms: Hamiltonian formulation

    Science.gov (United States)

    Baulieu, Laurent; Henneaux, Marc

    1987-07-01

    The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.

  6. Readability and Content Assessment of Informed Consent Forms for Phase II-IV Clinical Trials in China.

    Science.gov (United States)

    Wen, Gaiyan; Liu, Xinchun; Huang, Lihua; Shu, Jingxian; Xu, Nana; Chen, Ruifang; Huang, Zhijun; Yang, Guoping; Wang, Xiaomin; Xiang, Yuxia; Lu, Yao; Yuan, Hong

    2016-01-01

    To explore the readability and content integrity of informed consent forms (ICFs) used in China and to compare the quality of Chinese local ICFs with that of international ICFs. The length, readability and content of 155 consent documents from phase II-IV drug clinical trials from the Third Xiangya Hospital Ethics Committee from November 2009 to January 2015 were evaluated. Reading difficulty was tested using a readability formula adapted for the Chinese language. An ICF checklist containing 27 required elements was successfully constructed to evaluate content integrity. The description of alternatives to participation was assessed. The quality of ICFs from different sponsorships were also compared. Among the 155 evaluable trials, the ICFs had a median length of 5286 words, corresponding to 7 pages. The median readability score was 4.31 (4.02-4.41), with 63.9% at the 2nd level and 36.1% at the 3rd level. Five of the 27 elements were frequently neglected. The average score for the description of alternatives to participation was 1.06, and 27.7% of the ICFs did not mention any alternatives. Compared with Chinese local ICFs, international ICFs were longer, more readable and contained more of the required elements (P readability and content integrity than Chinese local ICFs. More efforts should thus be made to improve the quality of consent documents in China.

  7. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Clemson Univ., SC (United States); Bordia, Rajendra [Clemson Univ., SC (United States); Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chiu, Wilson [Univ. of Connecticut, Storrs, CT (United States); Amoroso, Jake [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-28

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  8. Thermal stability and phase transformation of metastable phases in Zr-Nb

    International Nuclear Information System (INIS)

    Aurelio, G.; Fernandez Guillermet, Armando

    2003-01-01

    The lattice parameters of the bcc (β) and (Ω) phases occurring metastability in a series of Zr-rich Zr-Nb alloys have been determined at and above room temperature (TR) using neutron diffraction techniques. In the first place, the effect of temperature changes upon the lattice parameters of the β and Ω phases in alloys with 10 and 18 at. % Nb was monitored using neutron thermo-diffraction. A method of analysis is applied to the data, which involve a confrontation between the observed structural properties and an idealized -or 'reference'- behavior (RB) which admits a simple mathematical description. A generalized form of the law of Vegard is adopted as RB for the β phase, whereas a specific RB is proposed for the Ω structure. The experimental data are well accounted for by this interpretation scheme, leading to a picture of the isothermal reactions occurring at high temperature, which involves the transfer of Nb from the Ω to the β phase. Finally, the neutron diffraction data on the Ω phase is combined with an electron microscopy study for the alloy with 10 at. % Nb aged at 773 K, which provides information on the composition of this phase and its evolution towards thermodynamic equilibrium. (author)

  9. Plastic crystal phases of simple water models

    International Nuclear Information System (INIS)

    Aragones, J. L.; Vega, C.

    2009-01-01

    We report the appearance of two plastic crystal phases of water at high pressure and temperature using computer simulations. In one of them the oxygen atoms form a body centered cubic structure (bcc) and in the other they form a face centered cubic structure (fcc). In both cases the water molecules were able to rotate almost freely. We have found that the bcc plastic crystal transformed into a fcc plastic crystal via a Martensitic phase transition when heated at constant pressure. We have performed the characterization and localization in the phase diagram of these plastic crystal phases for the SPC/E, TIP4P, and TIP4P/2005 water potential models. For TIP4P/2005 model free energy calculations were carried out for the bcc plastic crystal and fcc plastic crystal using a new method (which is a slight variation of the Einstein crystal method) proposed for these types of solid. The initial coexistence points for the SPC/E and TIP4P models were obtained using Hamiltonian Gibbs–Duhem integration. For all of these models these two plastic crystal phases appear in the high pressure and temperature region of the phase diagram. It would be of interest to study if such plastic crystal phases do indeed exist for real water. This would shed some light on the question of whether these models can describe satisfactorily the high pressure part of the phase diagram of water, and if not, where and why they fail.

  10. Simulation of nanotubular forms of matter

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    1999-01-01

    Data on the electronic and chemical structure of a new quasi-one-dimensional form of matter, viz., nanotubulenes, are generalised and systematised. Methods and approaches used in modern quantum chemistry for the simulation of the composition, structure, and properties of isolated tubulenes based on layered phases (graphite, boron nitride, boron carbide and boron carbonitride), nanotubular composites and nanotube crystals are described. The role of quantum theory in the development of the concepts of fundamental properties of substances in the nanotubular form and methods of their targeted modification is discussed. Prognostic potentials of theoretical models in solving material science problems are considered. The bibliography includes 197 references.

  11. Development and characterization of cermet forms for radioactive waste

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1979-01-01

    Cermets designed to isolate high-level wastes in a solid form are a composite consisting of various ceramic phase particles uniformly dispersed in and microencapsulated by an iron-nickel base alloy matrix. The metal matrix provides this waste form with many advantageous features including excellent thermal conductivity and mechanical strength. These cermets are formed by first dissolving the waste in molten urea, precipitating and calcining all the constituents, compacting the calcine, and sintering and reduction to form the final product. The exact formulation of cermets through additions to the waste is designed to fix most of the fission products in stable, leach resistant ceramic phases which are subsequently microencapsulated by an alloy matrix. The alloy matrix, which is derived primarily from the waste itself and includes the reducible fission and activation products from the waste, can be compositionally adjusted through additions to optimize its corrosion resistance under conditions existing in various disposal environments. The processes by which cermets are formed include several new and unique materials preparation options that are being developed to permit engineering scale-up and to be compatible with remote operations. Cermets formed by alternate processing methods are being characterized. Initially, cermet samples were prepared using a laboratory scale, batch process developed for the preparation of special ceramics having high compositional uniformity and excellent sinterability. The modification of this batch process to one suitable for scale-up and remote operation is the subject of this paper. Cermet characterization is also discussed

  12. Vertical blind phase search for low-complexity carrier phase recovery of offset-QAM Nyquist WDM transmission

    Science.gov (United States)

    Lu, Jianing; Fu, Songnian; Tang, Haoyuan; Xiang, Meng; Tang, Ming; Liu, Deming

    2017-01-01

    Low complexity carrier phase recovery (CPR) scheme based on vertical blind phase search (V-BPS) for M-ary offset quadrature amplitude modulation (OQAM) is proposed and numerically verified. After investigating the constellations of both even and odd samples with respect to the phase noise, we identify that the CPR can be realized by measuring the verticality of constellation with respect to different test phase angles. Then measurement without multiplication in the complex plane is found with low complexity. Furthermore, a two-stage configuration is put forward to further reduce the computational complexity (CC). Compared with our recently proposed modified blind phase search (M-BPS) algorithm, the proposed algorithm shows comparable tolerance of phase noise, but reduces the CC by a factor of 3.81 (or 3.05) in the form of multipliers (or adders), taking the CPR of 16-OQAM into account.

  13. Interaction on boundary of current-conducting and glass-forming phases in cermet films under annealing

    International Nuclear Information System (INIS)

    Shulishova, O.I.; Zyrin, A.V.; Ismalgaliev, R.K.; Izmajlov, Sh.Z.; Kovylyaev, V.V.; Shevchuk, N.V.; Shcherbak, I.A.

    1990-01-01

    The electron-probe microanalysis permits investigating the interaction on the boundary of current-conducting and glass-binding phases in cermet films without noble metals on the base of ruthenium oxide. The performed studies along with experiments on model microsections subject to annealing in different media have shown the differences in the process of formation of structure and properties of cermet resistive elements as well as a significance of the oxidation process of current-conducting phase in formation of high working characteristics of cermet resistors on the base of hexaborides of the rare-earth elements

  14. Polymorphic Behavior and Phase Transition of Poly(1-Butene and Its Copolymers

    Directory of Open Access Journals (Sweden)

    Rui Xin

    2018-05-01

    Full Text Available The properties of semicrystalline polymeric materials depend remarkably on their structures, especially for those exhibiting a polymorphic behavior. This offers an efficient way to tailor their properties through crystal engineering. For control of the crystal structure, and therefore the physical and mechanical properties, a full understanding of the polymorph selection of polymers under varied conditions is essential. This has stimulated a mass of research work on the polymorphic crystallization and related phase transformation. Considering that the isotactic poly(1-butene (iPBu exhibits pronounced polymorphs and complicated transition between different phases, the study on its crystallization and phase transformation has attracted considerable attention during the past decades. This review provides the context of the recent progresses made on the crystallization and phase transition behavior of iPBu. We first review the crystal structures of known crystal forms and then their formation conditions and influencing factors. In addition, the inevitable form II to form I spontaneous transition mechanism and the transformation kinetics is reviewed based on the existing research works, aiming for it to be useful for its processing in different phases and the further technical development of new methods for accelerating or even bypass its form II to form I transformation.

  15. Polyphase ceramic and glass-ceramic forms for immobilizing ICPP high-level nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Flintoff, J.F.

    1984-01-01

    Polyphase ceramic and glass-ceramic forms have been consolidated from simulated Idaho Chemical Processing Plant wastes by hot isostatic pressing calcined waste and chemical additives by 1000 0 C or less. The ceramic forms can contain over 70 wt% waste with densities ranging from 3.5 to 3.85 g/cm 3 , depending upon the formulation. Major phases are CaF 2 , CaZrTi 207 , CaTiO 3 , monoclinic ZrO 2 , and amorphous intergranular material. The relative fraction of the phases is a function of the chemical additives (TiO 2 , CaO, and SiO 2 ) and consolidation temperature. Zirconolite, the major actinide host, makes the ceramic forms extremely leach resistant for the actinide simulant U 238 . The amorphous phase controls the leach performance for Sr and Cs which is improved by the addition of SiO 2 . Glass-ceramic forms were also consolidated by HIP at waste loadings of 30 to 70 wt% with densities of 2.73 to 3.1 g/cm 3 using Exxon 127 borosilicate glass frit. The glass-ceramic forms contain crystalline CaF 2 , Al 203 , and ZrSi 04 (zircon) in a glass matrix. Natural mineral zircon is a stable host for 4+ valent actinides. 17 references, 3 figures, 5 tables

  16. Metallographic Study of the Isothermal Transformation of Beta Phase in Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Oestberg, G

    1960-06-15

    Observations of the structure of commercial zircaloy-2 have been made in the microscope showing that the high temperature beta phase is transformed isothermally at lower temperatures into alpha plus secondary precipitate. The alpha occurs mainly as Widmanstaetten plates developed by a shear mechanism. The secondary precipitate is formed from the beta - alpha structure at the phase boundary between these phases. This precipitation of particles of secondary phase occurs on account of a eutectoid reaction, alpha also being formed. A time-temperature transformation diagram has been constructed from the observations.

  17. Combining Coherent Hard X-Ray Tomographies with Phase Retrieval to Generate Three-Dimensional Models of Forming Bone

    Directory of Open Access Journals (Sweden)

    Emely L. Bortel

    2017-11-01

    Full Text Available Holotomography, a phase-sensitive synchrotron-based (µCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here, we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10, and 14 days old (postpartum. Our results make use of partially coherent synchrotron radiation employing inline Fresnel propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the European Synchrotron Radiation Facility. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high-resolution 3D data can be used to create detailed computational models to study the dynamic processes involved in bone tissue formation and adaptation. Such data can enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  18. Combining coherent hard X-ray tomographies with phase retrieval to generate three-dimensional models of forming bone

    Science.gov (United States)

    Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul

    2017-11-01

    Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.

  19. Formation of tungsten blue oxide and its phase constitution

    International Nuclear Information System (INIS)

    Zou, Z.; Wu, E.; Tan, A.; Qian, C.

    1984-01-01

    By means of X-ray diffraction structure analysis, SEM observation, chemical analysis and particle specific surface analysis etc., an investigation was made in order to determine the regularity of tungsten blue oxide formation during reductional calcine process of APT. It was found that the oxygen index (OI) decreased continuously with increasing calcine temperature. The decrease rate of OI variated as the calcine atmosphere being changed, the stronger the reductivity of the atmosphere is, the more OI decreases. The deammonia-dewater process and the phase constitution variation during calcine was studied, some idea for description of phase transformation path was suggested. It was found that the most important parameter affecting phase constitution and transformation is calcine temperature. At the temperature lower than 450 0 C, the main formed phase was ATB, while at higher temperature, the different phase like W/sub 20/O/sub 58/, WO/sub 3/ etc., could be formed by different ways depending on the atmosphere reductivity. The composition and the OI of ATB are changeable. An experiment for some blue oxides reduction at low temperature was carried out. It was found that OI and the constitution of blue oxide strongly affected the particle size of the formed W-powder

  20. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  1. Defect-Induced Hedgehog Polarization States in Multiferroics

    Science.gov (United States)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  2. Phases of N=2 necklace quivers

    Directory of Open Access Journals (Sweden)

    Antonio Amariti

    2018-01-01

    Full Text Available We classify the phases of N=2 elliptic models in terms of their global properties i.e. the spectrum of line operators. We show the agreement between the field theory and the M-theory analysis and how the phases form orbits under the action of the S-duality group which corresponds to the mapping class group of the Riemann surface in M-theory.

  3. New stable phase in binary Fe-Nd

    International Nuclear Information System (INIS)

    Schneider, G.; Landgraf, F.J.G.; Villas-Boas, V.; Bezerra, G.H.; Missell, F.P.; Ray, A.E.

    1992-01-01

    An investigation of binary Fe-Nd alloys revealed the existence of an oxygen-free, stable Fe-rich phase A 2 , formed peritecticly in the range 750-800 deg C. EPMA shows this phase to contain 22.8 atomic percent Nd. This ferromagnetic phase has T c = 230 de C, but is magnetically soft. The X-ray diffraction pattern can be indexed using a hexagonal cell with a = 2.021 nm. and c = 1.235 nm. (author)

  4. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin D., E-mail: Benjamin.Williams@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Neeway, James J., E-mail: James.Neeway@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Snyder, Michelle M.V., E-mail: Michelle.ValentaSnyder@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Bowden, Mark E., E-mail: Mark.Bowden@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Amonette, James E., E-mail: Jim.Amonette@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Arey, Bruce W., E-mail: Bruce.Arey@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Pierce, Eric M., E-mail: pierceem@ornl.gov [Oak Ridge National Laboratory, PO Box 2008, MS-6035, Room 372, Oak Ridge, TN 37831 (United States); Brown, Christopher F., E-mail: Christopher.Brown@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States); Qafoku, Nikolla P., E-mail: Nik.Qafoku@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-54, Richland, WA 99352 (United States)

    2016-05-15

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product. - Highlights: • Simulated Hanford waste was treated by the Fluidized Bed Steam Reformer (FBSR) process. • The FBSR granular product was encapsulated in a geopolymer monolith. • Leach tests were performed to examine waste form performance. • XRD revealed the structure of a previously unreported sodium aluminosilicate phase. • Monolithing of granular waste forms may lead to a reduction in crystallinity.

  5. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  6. Phase-Modulated Optical Communication Systems

    CERN Document Server

    Ho, Keang-Po

    2005-01-01

    Fiber-optic communication systems have revolutionized our telecommunication infrastructures – currently, almost all telephone land-line, cellular, and internet communications must travel via some form of optical fibers. In these transmission systems, neither the phase nor frequency of the optical signal carries information – only the intensity of the signal is used. To transmit more information in a single optical carrier, the phase of the optical carrier must be explored. As a result, there is renewed interest in phase-modulated optical communications, mainly in direct-detection DPSK signals for long-haul optical communication systems. When optical amplifiers are used to maintain certain signal level among the fiber link, the system is limited by amplifier noises and fiber nonlinearities. Phase-Modulated Optical Communication Systems surveys this newly popular area, covering the following topics: The transmitter and receiver for phase-modulated coherent lightwave systems Method for performance analysis o...

  7. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  8. Compressive deformation of in situ formed bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lee, S.Y. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ustuendag, E. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Kim, C.P. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States); Brown, D.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-02-15

    A bulk metallic glass matrix composite with dendc second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite.

  9. Compressive deformation of in situ formed bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.Y.; Ustuendag, E.; Kim, C.P.; Brown, D.W.; Bourke, M.A.M.

    2006-01-01

    A bulk metallic glass matrix composite with dendritic second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite

  10. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  11. Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage

    International Nuclear Information System (INIS)

    Cai Yibing; Ke Huizhen; Lin Liang; Fei Xiuzhu; Wei Qufu; Song Lei; Hu Yuan; Fong Hao

    2012-01-01

    Highlights: ► Electrospun binary fatty acid eutectics/PET ultrafine composite fibers were prepared. ► Fatty acid eutectics had appropriate phase transition temperature and heat enthalpy. ► Their morphological structures and thermal properties were different from each other. ► Composite fibers could be innovative form-stable PCMs for thermal energy storage. - Abstract: The ultrafine composite fibers based on the composites of binary fatty acid eutectics and polyethylene terephthalate (PET) with varied fatty acid eutectics/PET mass ratios (50/100, 70/100, 100/100 and 120/100) were fabricated using the technique of electrospinning as form-stable phase change materials (PCMs). The five binary fatty acid eutectics including LA–MA, LA–PA, MA–PA, MA–SA and PA–SA were prepared according to Schrader equation, and then were selected as an innovative type of solid–liquid PCMs. The results characterized by differential scanning calorimeter (DSC) indicated that the prepared binary fatty acid eutectics with low phase transition temperatures and high heat enthalpies for climatic requirements were more suitable for applications in building energy storage. The structural morphologies, thermal energy storage and thermal stability properties of the ultrafine composite fibers were investigated by scanning electron microscope (SEM), DSC and thermogravimetric analysis (TGA), respectively. SEM images revealed that the electrospun binary fatty acid eutectics/PET ultrafine composite fibers possessed the wrinkled surfaces morphologies compared with the neat PET fibers with cylindrical shape and smooth surfaces; the grooves or ridges on the corrugated surface of the ultrafine composite fibers became more and more prominent with increasing fatty acid eutectics amount in the composite fibers. The fibers with the low mass ratio maintained good structural morphologies while the quality became worse when the mass ratio is too high (more than 100/100). DSC measurements

  12. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  13. Structure and activity of tellurium-cerium oxide acrylonitrile catalysts

    International Nuclear Information System (INIS)

    Bart, J.C.J.; Giordano, N.

    1982-01-01

    Ammoxidation of propylene to acrylonitrile (ACN) was investigated over various silica-supported (Te,Ce)O catalysts at 360 and 440 0 C. The binary oxide system used consists of a single nonstoichiometric fluorite-type phase α-(Ce,Te)O 2 up to about 80 mole% TeO 2 and a tellurium-saturated solid solution β-(Ce,Te)O 2 at higher tellurium concentrations. The ACN yield varies almost linearly with the tellurium content of (Ce,Te)O 2 . The β-(Ce,Te)O 2 phase is the most active component of the system (propylene conversion and ACN selectivity at 440 C of 76.7 and 74%, respectively) and is slightly more selective to ACN than α-Te0 2 . Tellurium reduces the overoxidation properties of cerium and selective oxidation occurs through Te(IV)-bonded oxygen

  14. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  15. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    International Nuclear Information System (INIS)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.; Rahman, T.

    2017-01-01

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  16. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Indacochea, J. E. [Univ. of Illinois, Chicago, IL (United States); Gattu, V. K. [Univ. of Illinois, Chicago, IL (United States); Chen, X. [Univ. of Illinois, Chicago, IL (United States); Rahman, T. [Univ. of Illinois, Chicago, IL (United States)

    2017-06-15

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  17. Form factors in (HI,HI') direct reactions

    International Nuclear Information System (INIS)

    Chu, Y.H.

    1981-01-01

    Using the semiclassical theory, the inelastic transition form factors are analyzed. For the first order form factors, we find that: (i) In the strong absorption limit, the Austern-Blair theory is a good approximation to the inelastic form factor--even in highly mismatched reactions. (ii) In weak to moderate absorption, the amplitude of the inelastic form factor oscillates due to overlapping potential resonances. The internal part of the form factor can be expressed in a simple form, which may easily be used to analyze heavy-ion inelastic scattering. (iii) In the presence of an isolated resonance, the inelastic form factor is enhanced greatly at the resonance due to multiple reflections inside the potential well. The second order form factors contain two terms, i.e. the one-step direct process (OSD) term and the two-step process (TS) term. It is found that: (i) In the strong absorption limit, OSD and TS form factors are equally important and interfere destructively near the grazing angular momentum. The Austern-Blair theory gives satisfactory results for well-matched reactions. The angular distributions of the mutual and double excitations are out of phase compared with that of the single excitation. (ii) For the weak absorption case, the internal part of the TS form factor is so enhanced that the OSD form factor can simply be neglected. The internal TS form factor can be parameterized in a form proportional to the internal-wave elastic Smatrix, where the angular distribution shows characteristically refractive phenomenon

  18. A measurement of the space-like pion electromagnetic form factor

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Badelek, B.; Batignani, G.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Scribano, A.; Tonelli, G.; Triggiani, G.; Codino, A.; Enorini, M.; Fabbri, F.L.; Laurelli, P.; Satta, L.; Spillantini, P.; Zallo, A.

    1986-01-01

    The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/c) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar result to the naive pole form, and conclude π 2 >=0.439±0.008 fm 2 . (orig.)

  19. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  20. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties

    International Nuclear Information System (INIS)

    Gourlaouen, V.; Schnedecker, G.; Boncoeur, M.; Lejus, A.M.; Collongues, R.

    1993-01-01

    Yttrium oxide coatings were obtained by plasma spray. Structural investigations on these deposits show that, due to the drastic conditions of this technique, a minor monoclinic B phase is formed in the neighborhood of the major cubic C form. The authors discuss here the influence of different plasma spray parameters on the amount of the B phase formed. They describe also the main properties of Y 2 O 3 B and C phases in these deposits such as structural characteristics, thermal stability and mechanical behavior

  1. Identification of secondary phases formed during unsaturated reaction of UO2 with EJ-13 water

    International Nuclear Information System (INIS)

    Bates, J.K.; Tani, B.S.; Veleckis, E.

    1989-01-01

    A set of experiments, wherein UO 2 has been contacted by dripping water, has been conducted over a period of 182.5 weeks. The experiments are being conducted to develop procedures to study spent fuel reaction under unsaturated conditions that are expected to exist over the lifetime of the proposed Yucca Mountain repository site. One half of the experiments have been terminated, while one half are ongoing. Analyses of solutions that have dripped from the reacted UO 2 have been performed for all experiments, while the reacted UO 2 surfaces have been examined for the terminated experiments. A pulse of uranium release from the UO 2 solid, combined with the formation of schoepite on the surface of the UO 2 , was observed between 39 and 96 weeks of reaction. Thereafter, the uranium release decreased and a second set of secondary phases was observed. The latter phases incorporated cations from the EJ-13 water and included boltwoodite, uranophane, sklodowskite, compreignacite, and schoepite. The experiments are continuing to monitor whether additional changes in solution chemistry or secondary phase formation occurs. 6 refs., 2 figs., 2 tabs

  2. New milarite/osumilite-type phase formed during ancient glazing of an Egyptian scarab

    Science.gov (United States)

    Artioli, G.; Angelini, I.; Nestola, F.

    2013-02-01

    A scarab found in grave 25 of the Monte Prama necropolis, near Cabras, Oristano, Sardinia, is of special importance for the archaeological interpretation and dating of this important archaeological site. The object has been misinterpreted in the past as composed by bone: recent archaeometric analyses showed that it is a glazed steatite of Egyptian origin and that the altered surface contains interesting phases crystallized during the high-temperature interaction of the Mg-rich talc core with the alkali-rich glass used for glazing. A novel single crystal X-ray diffraction analysis of one of the phases indicates that it is a new compound having the milarite-osumilite structure type, with a peculiar composition close to (Na1.52K0.12□0.36)(Mg3)(Mg1.72Cu0.16Fe0.12)(Si11.4Al0.6)O30, not reported for naturally occurring minerals. The structural and crystal chemical features of the compound, together with the known high-temperature stability of the series, allow a complete interpretation of the glazing process and conditions, based on direct application of the glaze on the steatite core with subsequent treatment at temperatures above 1000 °C.

  3. Nonasymptotic form of the recursion relations of the three-dimensional Ising model

    International Nuclear Information System (INIS)

    Kozlovskii, M.P.

    1989-01-01

    Approximate recursion relations for the three-dimensional Ising model are obtained in the form of rapidly converging series. The representation of the recursion relations in the form of nonasymptotic series entails the abandonment of traditional perturbation theory based on a Gaussian measure density. The recursion relations proposed in the paper are used to calculate the critical exponent ν of the correlation length. It is shown that the difference form of the recursion relations leads, when higher non-Gaussian basis measures are used, to disappearance of a dependence of the critical exponent ν on s when s > 2 (s is the parameter of the division of the phase space into layers). The obtained results make it possible to calculate explicit expressions for the thermodynamic functions near the phase transition point

  4. Moving walls and geometric phases

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)

    2016-09-15

    We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.

  5. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  6. Solid-state interfacial reaction in molybdenum-carbide systems at high temperature-pressure, and its application to bonding technique

    International Nuclear Information System (INIS)

    Horiguchi, Akihiro; Suganuma, Katsuaki; Miyamoto, Yoshinari; Koizumi, Mitsue; Shimada, Masahiko.

    1986-01-01

    Diffusion couples of molybdenum with several carbides, i.e. SiC, B 4 C, TiC, ZrC, HfC and TaC, were heated at various temperatures ranging from 1500 to 1840 deg C under high pressures of 3 GPa and 100 MPa for up to 4 hr. The couples were then examined for the composition of reaction products, the growth rate of reaction layers, interfacial structures, and tensile strength. In case of Mo-transition metal carbides, Mo 2 C layer was mainly formed, so that the carbides, which had supplied carbon, resulted in having the nonstoichiometric composition near the interface. The activation energy for the growth of Mo 2 C layer in Mo-TiC system was 332 kJ/mol, and that in Mo-TaC system was 366 kJ/mol. In Mo-SiC system, Mo 2 C layer, the mixed phase of Mo 2 C and Mo 5 Si 3 , and Mo 5 Si 3 C layer were formed in order from the Mo side. In Mo-B 4 C system, the mixed phase of Mo 2 B and MoB, and Mo 2 BC layer appeared. The decomposed graphite from B 4 C was also observed between B 4 C and Mo 2 BC phase. The activation energy for the growth of total reaction layer in Mo-SiC system was 531 kJ/mol, and that in Mo-B 4 C system was 183 kJ/mol. It can be said that the growth of reaction layers is controlled by diffusion. The orientation of crystals was observed in all reaction products except for Mo 2 BC phase in Mo-B 4 C system and (Mo, Ta) 2 C phase in Mo-TaC system. In HIPed couples, the magnitude of tensile strength was dependent on the difference in thermal expansion coefficient between Mo and carbides. HIPed Mo-TaC couple had the best weldability among the systems examined in the present investigation. (author)

  7. Phase transformations and thermodynamics of aluminum-based metallic glasses

    Science.gov (United States)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  8. Importance of granulometry on phase evolution and phase-to-phase relationships of experimentally burned impure limestones intended for production of hydraulic lime and/or natural cement

    Science.gov (United States)

    Kozlovcev, Petr; Přikryl, Richard; Přikrylová, Jiřina

    2015-04-01

    and/or 6 hours. Burned samples were examined by XRD for phase composition and by SEM-EDS for phase-to-phase relationships due to the burning. Based on our data it is evident that larnite-belite (dicalcium-silicate) is dominant phase in burned silica-rich limestones (represented by e.g. Dvorce-Prokop, Přídolí and/or Kopanina Lms.). In clay-rich limestones containing kaolinite and illite, gehlenite and other calcium aluminates and aluminosilicates were detected (represented by Kosoř, Řeporyje, and/or a portion of Dvorce-Prokop Lms.). Due to higher proportion of Fe-oxihydroxides in the Řeporyje Lms., brownmillerite (calcium aluminoferrite) forms as a typical minor phases during burning. Free-lime (plus its hydrated form - portlandite) makes dominant phase in limestones exhibiting low non-carbonate admixture (Kotýs and/or a portion of Kopanina Lms.). These results clearly demonstrate that presence of certain non-carbonate minerals governs formation of certain hydraulic phases in burned product, whilst mutual proportions of individual minerals in raw materials influence amount of newly formed phases.

  9. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  10. Nucleon quark structure and strong meson-nucleon form factors

    International Nuclear Information System (INIS)

    Efimov, G.V.; Ivanov, M.A.

    1987-01-01

    The nucleon is considered as a three-quark system in virton-quark model. The main statistic properties of proton and neutron are calculated: magnetic moments, electromagnetic radii, G A /G V ratio in weak neutron decay. Strong meson-nucleon form factors which determine nucleon-nucleon potential are obtained as a function of squared transfer momentum of mesons. The results are compared with phenomenological form factors used for description of phases of NN-scattering in the one-boson-, exchange model

  11. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    International Nuclear Information System (INIS)

    Rutledge, V.J.; Maio, V.

    2013-01-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases

  12. Fast neutron irradiation and thermal properties of doped nonstoichiometric lithium potassium sulphate crystals

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gomaa, N.G.; El-Khatib, A.M.

    1990-01-01

    The influence of point defects introduced by fast neutron irradiations with neutron fluences up to 1.08 x 10 10 n/cm 2 on the thermal properties of pure and doped Li 1.4 K 0.6 SO 4 single crystals are studied in the vicinity of high temperature phase transition at 705 K. The temperature dependence of specific heat is found to be shifted towards lower temperature with the increase of neutron fluence, and can be affected by the presence of Cu 2+ dopant. The change in the value of the specific heat can be attributed to the presence of internal strain generated inside the crystal. (author)

  13. Waste forms based on Cs-loaded silicotitanates

    International Nuclear Information System (INIS)

    Balmer, M.L.; Bunker, B.C.

    1995-04-01

    Silicotitanate ion exchange materials are being considered for removal of radioactive Cs and Sr from tank wastes at the Hanford site. The phase evolution as a function of heat treatment temperature for several sol gel derived compositions within the Cs 2 O-SiO 2 -TiO 2 system was investigated, in order to determine if an adequate waste form can be achieved by direct thermal conversion. The Cs leach rates and Cs loss during heat treatment of select materials were measured. Some compositions which contain large amounts of Ti melt to form a glass with reasonably low aqueous leach rates. A new Cs-silicotitanate material with a structure isomorphous to pollucite was discovered. This material forms at low temperatures (700--800 C) where Cs volatility is negligible. The silicotitanate-pollucite exhibits extremely low leach rates (1.42 g/m 2 day ) at 90 C, and has been identified as a promising waste form for Cs containment

  14. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  15. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  16. Observation of the geometric phase using photon echoes

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Reibel, Randy R.; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2003-01-01

    The geometric phase of an atomic system has been observed in V-type three-level barium atoms using photon echoes. The geometric phase results from a cyclic evolution of a two-level subsystem driven by a laser pulse. The phase change is observed on the echo field produced on a different subsystem that is coupled via the ground state to the driven subsystem. The measured geometric phase was half of the solid angle subtended by the Bloch vector along the driven evolution circuit. This evolution has the potential to form universal operations of quantum bits

  17. Laser beam-forming by deformable mirror for laser isotope separation

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi; Goto, Naohiko

    1995-01-01

    A rectangular laser beam of uniform intensity is very suitable for laser isotope separation. In this paper, we propose a beam-forming system which consists two deformable mirrors. One of the mirrors changes the beam intensity and the other compensates for phase distortion. We developed a deformable mirror for beam-forming. Its deformed surface is similar to the ideal mirror surface for beam-forming. We reshaped a Gaussian-like He-Ne laser beam into a beam with a more uniform intensity profile by a simple deformable mirror. (author)

  18. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    Science.gov (United States)

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  19. forme des budgets publics en Chine - phase II | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    orientation à donner aux réformes, facilitera les expériences de budgétisation participative dans toute la Chine, favorisera les échanges d'idées entre les organismes oeuvrant dans le domaine des finances et des budgets publics et informera les élus, ...

  20. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    Science.gov (United States)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  1. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    Science.gov (United States)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth

  2. Summary: special waste form lysimeters - arid program

    International Nuclear Information System (INIS)

    Skaggs, R.L.; Walter, M.B.

    1987-01-01

    The purpose of the Special Waste Form Lysimeters - Arid Program is to determine the performance of solidified commercial low-level waste forms using a field-scale lysimeter facility constructed for measuring the release and migration of radionuclides from the waste forms. The performance of these waste forms, as measured by radionuclide concentrations in lysimeter effluent, will be compared to that predicted by laboratory characterization of the waste forms. Waste forms being tested include nuclear power reactor waste streams that have been solidified in cement, Dow polymer, and bitumen. To conduct the field leaching experiments a lysimeter facility was built to measure leachate under actual environmental conditions. Field-scale samples of waste were buried in lysimeters equipped to measure water balance components, effluent radionuclide concentrations, and to a limited extent, radionuclide concentrations in lysimeter soil samples. The waste forms are being characterized by standard laboratory leach tests to obtain estimates of radionuclide release. These estimates will be compared to leach rates observed in the field. Adsorption studies are being conducted to determine the amount of contaminant available for transport after the release. Theoretical solubility calculations will also be performed to investigate whether common solid phases could be controlling radionuclide release. 4 references, 8 figures, 1 table

  3. Status of plutonium ceramic immobilization processes and immobilization forms

    International Nuclear Information System (INIS)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.; Jostsons, A.

    1996-01-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R ampersand D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologic time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi 2 O 7 ), the desired actinide host phase, with lesser amounts of hollandite (BaAl 2 Ti 6 O 16 ) and rutile (TiO 2 ). Alternative actinide host phases are also being considered. These include pyrochlore (Gd 2 Ti 2 O 7 ), zircon (ZrSiO 4 ), and monazite (CePO 4 ), to name a few of the most promising. R ampersand D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO 2 powder, cold press and sinter fabrication methods, and immobilization form formulation issues

  4. Geometric phases for mixed states during cyclic evolutions

    International Nuclear Information System (INIS)

    Fu Libin; Chen Jingling

    2004-01-01

    The geometric phases of cyclic evolutions for mixed states are discussed in the framework of unitary evolution. A canonical 1-form is defined whose line integral gives the geometric phase, which is gauge invariant. It reduces to the Aharonov and Anandan phase in the pure state case. Our definition is consistent with the phase shift in the proposed experiment (Sjoeqvist et al 2000 Phys. Rev. Lett. 85 2845) for a cyclic evolution if the unitary transformation satisfies the parallel transport condition. A comprehensive geometric interpretation is also given. It shows that the geometric phases for mixed states share the same geometric sense with the pure states

  5. Critical point analysis of phase envelope diagram

    International Nuclear Information System (INIS)

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Soewono, Edy; Gunawan, Agus Y.

    2014-01-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab

  6. Critical point analysis of phase envelope diagram

    Energy Technology Data Exchange (ETDEWEB)

    Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  7. Phase transitions and pairing signature in strongly attractive Fermi atomic gases

    International Nuclear Information System (INIS)

    Guan, X. W.; Bortz, M.; Batchelor, M. T.; Lee, C.

    2007-01-01

    We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of fermions with opposite spin states form a singlet ground state when the external field H c1 . A completely ferromagnetic phase without pairing occurs when the external field H>H c2 . In the region H c1 c2 , we observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics

  8. Pion form factor

    Energy Technology Data Exchange (ETDEWEB)

    Ryong Ji, C.; Pang, A.; Szczepaniak, A. [North Carolina State Univ., Raleigh, NC (United States)

    1994-04-01

    It is pointed out that the correct criterion to define the legal PQCD contribution to the exclusive processes in the lightcone perturbative expansion should be based on the large off-shellness of the lightcone energy in the intermediate states. In the lightcone perturbative QCD calculation of the pion form factor, the authors find that the legal PQCD contribution defined by the lightcone energy cut saturates in the smaller Q{sup 2} region compared to that defined by the gluon four-momentum square cut. This is due to the contribution by the highly off-energy-shell gluons in the end point regions of the phase space, indicating that the gluon four-momentum-square cut may have cut too much to define the legal PQCD.

  9. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response

    Energy Technology Data Exchange (ETDEWEB)

    Riback, Joshua A.; Katanski, Christopher D.; Kear-Scott, Jamie L.; Pilipenko, Evgeny V.; Rojek, Alexandra E.; Sosnick, Tobin R.; Drummond, D. Allan

    2017-03-01

    In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1’s LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.

  10. Knitmesh And Duplex-Nylon Type Coalescence Aids Use In Phase Disengagement

    Directory of Open Access Journals (Sweden)

    Hamit Topuz

    2017-10-01

    Full Text Available This study shows how dispersions consisted of droplet sizes ranging from 100 microns and above of immiscible liquids in agitated vessels coalesced and settled back to their phases by employing commercially known as knit-mesh made from stainless steel and nylon. These components known as higher surface energy and lower surface energy contained coalesce aids respectively. In addition to compare coalesce aid made purely from commercially known as duplex-nylon also used. The experimental set up was 13 scale of a single stage mixer-settler unit of the already existing unit which was in use at BNFL Springfield Works. The liquid liquid system made from 20 tri-butyl-phosphate TBP technical grade of odorless kerosene forming the light organic phase or solvent phase and 5 M nitric acid forming the heavy aqueous phase. The solvent phase contained 70 gram of uranium per liter. Uranium contained phase was supplied by above mentioned company.

  11. Nuclear prehistory influence on irradiated metallic iron phase composition

    International Nuclear Information System (INIS)

    Alekseev, I.E.

    2007-01-01

    With application of different Moessbauer spectroscopy applications the phase composition of metallic iron after irradiation by both neutrons and charged particles were studied. Irradiation conditions, method of targets examination and phase composition of samples after irradiation were presented in tabular form. It is shown, that phase composition of irradiated metal is defined by nuclear prehistory. So, in a number of cases abnormals (stabilization of high- and low-temperature structural phases of iron at room temperature after irradiation end) were revealed

  12. Spatial and kinematic structure of Monoceros star-forming region

    Science.gov (United States)

    Costado, M. T.; Alfaro, E. J.

    2018-05-01

    The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively.

  13. New high statistics measurement of Ke4 decay form factors and ππ scattering phase shifts TH1"-->

    Science.gov (United States)

    Batley, J. R.; Culling, A. J.; Kalmus, G.; Lazzeroni, C.; Munday, D. J.; Slater, M. W.; Wotton, S. A.; Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Balev, S.; Frabetti, P. L.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Marinova, E.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Y.; Stoynev, S.; Zinchenko, A.; Monnier, E.; Swallow, E.; Winston, R.; Rubin, P.; Walker, A.; Baldini, W.; Cotta Ramusino, A.; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrié, M.; Scarpa, M.; Wahl, H.; Bizzeti, A.; Calvetti, M.; Celeghini, E.; Iacopini, E.; Lenti, M.; Martelli, F.; Ruggiero, G.; Veltri, M.; Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales Morales, C.; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.; Coward, D.; Dabrowski, A.; Fonseca Martin, T.; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M. D.; Anzivino, G.; Cenci, P.; Imbergamo, E.; Nappi, A.; Pepe, M.; Petrucci, M. C.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.; Cerri, C.; Collazuol, G.; Costantini, F.; Dilella, L.; Doble, N.; Fantechi, R.; Fiorini, L.; Giudici, S.; Lamanna, G.; Mannelli, I.; Michetti, A.; Pierazzini, G.; Sozzi, M.; Bloch-Devaux, B.; Cheshkov, C.; Chèze, J. B.; de Beer, M.; Derré, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.; Holder, M.; Ziolkowski, M.; Bifani, S.; Biino, C.; Cartiglia, N.; Clemencic, M.; Goy Lopez, S.; Marchetto, F.; Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.

    2008-04-01

    We report results from a new measurement of the Ke4 decay K±→π+π-e±ν by the NA48/2 collaboration at the CERN SPS, based on a partial sample of more than 670 000 Ke4 decays in both charged modes collected in 2003. The form factors of the hadronic current (F,G,H) and ππ phase difference (δ=δs-δp) have been measured in ten independent bins of the ππ mass spectrum to investigate their variation. A sizeable acceptance at large ππ mass, a low background and a very good resolution contribute to an improved experimental accuracy, a factor two better than in the previous measurement, when extracting the ππ scattering lengths a0 0 and a0 2. Under the assumption of isospin symmetry and using numerical solutions of the Roy equations, the following values are obtained in the plane (a0 0,a0 2): a0 0=0.233±0.016stat±0.007syst,a0 2=-0.0471±0.011stat±0.004syst. The presence of potentially large isospin effects is also considered and will allow comparison with precise predictions from Chiral Perturbation Theory.

  14. Novel Topology of Three-Phase Electric Spring and Its Control

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2017-01-01

    A novel topology is proposed for three-phase electric spring (TPES) to achieve specific functionalities. With respect to the existing one, the novel topology contains an additional three-phase transformer with the primaries located at the position of the non-critical three-phase load (NCL......) of the existing topology and its secondaries connected to the new three-phase NCL, thus forming a new three-phase smart load (SL). To control the novel topology, the so-called modified δ control utilized for the single-phase electric springs is extended to the three-phase case. Thanks to these solutions, TPES...

  15. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, Kengo; Lin, Chia Hui [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Hosokawa, Takashi [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Sakurai, Yuya, E-mail: tomida@vega.ess.sci.osaka-u.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-01-20

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  16. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    International Nuclear Information System (INIS)

    Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.; Hosokawa, Takashi; Sakurai, Yuya

    2017-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  17. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    Science.gov (United States)

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  18. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts

    International Nuclear Information System (INIS)

    Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de

    2013-01-01

    Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.

  19. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation.

    Science.gov (United States)

    Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti

    2016-02-21

    A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.

  20. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)