Differential equation methods for simulation of GFP kinetics in non-steady state experiments.
Phair, Robert D
2018-03-15
Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Exact solution of nonsteady thermal boundary layer equation
International Nuclear Information System (INIS)
Dorfman, A.S.
1995-01-01
There are only a few exact solutions of the thermal boundary layer equation. Most of them are derived for a specific surface temperature distribution. The first exact solution of the steady-state boundary layer equation was given for a plate with constant surface temperature and free-stream velocity. The same problem for a plate with polynomial surface temperature distribution was solved by Chapmen and Rubesin. Levy gave the exact solution for the case of a power law distribution of both surface temperature and free-stream velocity. The exact solution of the steady-state boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution was given by the author in two forms: of series and of the integral with an influence function of unheated zone. A similar solution of the nonsteady thermal boundary layer equation for an arbitrary surface temperature and a power law free-stream velocity distribution is presented here. In this case, the coefficients of series depend on time, and in the limit t → ∞ they become the constant coefficients of a similar solution published before. This solution, unlike the one presented here, does not satisfy the initial conditions at t = 0, and, hence, can be used only in time after the beginning of the process. The solution in the form of a series becomes a closed-form exact solution for polynomial surface temperature and a power law free-stream velocity distribution. 7 refs., 2 figs
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
Zhang, H.; Camarero, R.; Kahawita, R.
1985-11-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
International Nuclear Information System (INIS)
Zhang, H.; Camarero, R.; Kahawita, R.
1985-01-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations. 6 references
International Nuclear Information System (INIS)
Beylot, M.; Martin, C.; Beaufrere, B.; Riou, J.P.; Mornex, R.
1987-01-01
Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1
Kinetic equation solution by inverse kinetic method
International Nuclear Information System (INIS)
Salas, G.
1983-01-01
We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance
Maggi, Federico; Riley, William J.
2009-12-01
The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.
Kinetic equations in dirty superconductors
International Nuclear Information System (INIS)
Kraehenbuehl, Y.
1981-01-01
Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)
Quantum-statistical kinetic equations
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived
Kinetic equations with pairing correlations
International Nuclear Information System (INIS)
Fauser, R.
1995-12-01
The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)
Some Aspects of Extended Kinetic Equation
Directory of Open Access Journals (Sweden)
Dilip Kumar
2015-09-01
Full Text Available Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended kinetic equation with fractional calculus operator is established. The solution of the general form of the fractional kinetic equation is obtained through Laplace transform. The results for the standard kinetic equation are obtained as the limiting case.
Energy Technology Data Exchange (ETDEWEB)
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.
Reduced kinetic equations: An influence functional approach
International Nuclear Information System (INIS)
Wio, H.S.
1985-01-01
The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed
Kinetic equation of heterogeneous catalytic isotope exchange
Energy Technology Data Exchange (ETDEWEB)
Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii
1979-12-01
A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.
International Nuclear Information System (INIS)
Winkler, E.
1991-01-01
If nonlinear biological processes are investigated by means of tracer experiments they can be modelled with linear kinetic equations (compartment equations) as long as the total system is in a stationary state. But if nonstationary behaviour is included considerations on the kinetics of the individual processes are necessary. Within the range of biological and agricultural investigations especially first order reactions (constant fraction processes), zero order reactions (constant amount process) and saturation reactions (Michaelis-Menten-kinetics) are to be taken into account. A rigorous treatment of data based on system theory can be preceeded by graphic-algebraic procedure which may be more or less uncertain in its results but which can easily be handled. An example is given of methodological considerations concerning the combination of evaluation procedures and the discrimination between different reaction mechanisms. It treats protein turnover in 2 different parts of growing wheat plants investigated by means of an 15 N-tracer experiment. Whereas in a stationary system (upper stalk section) linear tracer equations were sufficient irrespective of the true reaction mechanism, for protein synthesis in the upper leaf as a nonstationary system it was necessary to decide between the hypotheses of a zero order and a first order reaction. In accordance with statements in the literature the unambiguous result was a combination of protein synthesis as a zero order process and of protein degradation as a first order process. (orig.) [de
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Linearized gyro-kinetic equation
International Nuclear Information System (INIS)
Catto, P.J.; Tsang, K.T.
1976-01-01
An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated
Hypocoercivity for linear kinetic equations conserving mass
Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian
2015-01-01
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf
Hypocoercivity for linear kinetic equations conserving mass
Dolbeault, Jean
2015-02-03
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf
The Balescu kinetic equation with exchange interaction
International Nuclear Information System (INIS)
Belyi, V V; Kukharenko, Yu A
2009-01-01
Starting with the quantum BBGKY hierarchy for the distribution functions, we have obtained the quantum kinetic equation including the dynamical screening of the interaction potential, which exactly takes into account the exchange scattering in the plasma. The collision integral is expressed in terms of the Green function of the linearized Hartree–Fock equation. The potential energy takes into account the polarization and exchange interaction too
Maggi, F.; Riley, W. J.
2009-12-01
The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.
A kinetic equation for irreversible aggregation
International Nuclear Information System (INIS)
Zanette, D.H.
1990-09-01
We introduce a kinetic equation for describing irreversible aggregation in the ballistic regime, including velocity distributions. The associated evolution for the macroscopic quantities is studied, and the general solution for Maxwell interaction models is obtained in the Fourier representation. (author). 23 refs
Fractional Bhatnagar-Gross-Krook kinetic equation
Goychuk, Igor
2017-11-01
The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.
Metamaterial characterization using Boltzmann's kinetic equation for electrons
DEFF Research Database (Denmark)
Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.
2013-01-01
Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...
Kinetic equation for spin-polarized plasmas
International Nuclear Information System (INIS)
Cowley, S.C.; Kulsrud, R.M.; Valeo, E.
1984-07-01
The usual kinetic description of a plasma is extended to include variables to describe the spin. The distribution function, over phase-space and the new spin variables, provides a sufficient description of a spin-polarized plasma. The evolution equation for the distribution function is given. The equations derived are used to calculate depolarization due to four processes, inhomogeneous fields, collisions, collisions in inhomogeneous fields, and waves. It is found that depolarization by field inhomogeneity on scales large compared with the gyroradius is totally negligible. The same is true for collisional depolarization. Collisions in inhomogeneous fields yield a depolarization rate of order 10 -4 S -1 for deuterons and a negligible rate for tritons in a typical fusion reactor design. This is still sufficiently small on reactor time scales. However, small amplitude magnetic fluctuations (of order one gauss) resonant with the spin precession frequency can lead to significant depolarization (depolarises triton in ten seconds and deuteron in a hundred seconds.)
Non-Abelian plasmons and their kinetics equation
International Nuclear Information System (INIS)
Zheng Xiaoping; Li Jiarong
1998-01-01
After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles
Receptor binding kinetics equations: Derivation using the Laplace transform method.
Hoare, Sam R J
Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time
Nonsteady Combustion Mechanisms of Advanced Solid Propellants
National Research Council Canada - National Science Library
Branch, Melvyn
1997-01-01
.... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...
Drift-free kinetic equations for turbulent dispersion
Bragg, A.; Swailes, D. C.; Skartlien, R.
2012-11-01
The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.
Kinetic equations for the collisional plasma model
International Nuclear Information System (INIS)
Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.
1977-01-01
Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)
A novel fractional technique for the modified point kinetics equations
Directory of Open Access Journals (Sweden)
Ahmed E. Aboanber
2016-10-01
Full Text Available A fractional model for the modified point kinetics equations is derived and analyzed. An analytical method is used to solve the fractional model for the modified point kinetics equations. This methodical technique is based on the representation of the neutron density as a power series of the relaxation time as a small parameter. The validity of the fractional model is tested for different cases of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified point kinetics equations is the best representation of neutron density for subcritical and supercritical reactors.
International Nuclear Information System (INIS)
Plonne, D.; Schlag, B.; Winkler, L.; Dargel, R.
1990-01-01
To get insight into the low density lipoprotein (LDL)-apoB flux in the rat fetus near term and in the early postnatal period, homologous apoE-free 125I-labeled LDL was injected into the umbilical vein of the rat fetus immediately after Caesarean section. Since the serum LDL-apoB spontaneously declined after birth, a time-dependent two-pool model was used to calculate the flux rates in the neonate from the specific activities of LDL-apoB up to 15 h post partum. An approximate value of LDL-apoB flux in the fetus at birth was obtained by extrapolation of the kinetic data to the time of injection of the tracer. The data revealed that the turnover of LDL-apoB in the fetus (18.6 micrograms LDL-apoB/h per g body weight) exceeded that in the adult rat (0.4 microgram/h per g body weight) by at least one order of magnitude. Even 15 h after delivery, the LDL-apoB influx amounted to 2.5 micrograms/h per g body weight. The fractional catabolic rate of LDL-apoB in the fetus at term (0.39, h-1) slightly exceeded that in the adult animal (0.15, h-1) and reached the adult level within the first 3 h after birth and remained constant thereafter. In the rat fetus, LDL-apoB flux greatly exceeds that of VLDL-apoB. The data support the view of a direct synthesis and secretion of LDL, most probably by the fetal membranes
Solution of the reactor point kinetics equations by MATLAB computing
Directory of Open Access Journals (Sweden)
Singh Sudhansu S.
2015-01-01
Full Text Available The numerical solution of the point kinetics equations in the presence of Newtonian temperature feedback has been a challenging issue for analyzing the reactor transients. Reactor point kinetics equations are a system of stiff ordinary differential equations which need special numerical treatments. Although a plethora of numerical intricacies have been introduced to solve the point kinetics equations over the years, some of the simple and straightforward methods still work very efficiently with extraordinary accuracy. As an example, it has been shown recently that the fundamental backward Euler finite difference algorithm with its simplicity has proven to be one of the most effective legacy methods. Complementing the back-ward Euler finite difference scheme, the present work demonstrates the application of ordinary differential equation suite available in the MATLAB software package to solve the stiff reactor point kinetics equations with Newtonian temperature feedback effects very effectively by analyzing various classic benchmark cases. Fair accuracy of the results implies the efficient application of MATLAB ordinary differential equation suite for solving the reactor point kinetics equations as an alternate method for future applications.
Energy Technology Data Exchange (ETDEWEB)
Plas, R.
1962-07-01
The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine
2010-08-20
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation. © 2010 Springer-Verlag.
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine; Mischler, Sté phane; Mouhot, Clé ment
2010-01-01
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Instabilities and chaos in a kinetic equation for active nematics
International Nuclear Information System (INIS)
Shi, Xia-qing; Ma, Yu-qiang; Chaté, Hugues
2014-01-01
We study dry active nematics at the kinetic equation level, stressing the differences with the well-known Doi theory for non-active rods near thermal equilibrium. By deriving hydrodynamic equations from the kinetic equation, we show analytically that these two description levels share the same qualitative phase diagram, as defined by the linear instability limits of spatially-homogeneous solutions. In particular, we show that the ordered, homogeneous state is unstable in a region bordering the linear onset of nematic order, and is only linearly stable deeper in the ordered phase. Direct simulations of the kinetic equation reveal that its solutions are chaotic in the region of linear instability of the ordered homogeneous state. The local mechanisms for this large-scale chaos are discussed. (paper)
Uncertainty quantification for hyperbolic and kinetic equations
Pareschi, Lorenzo
2017-01-01
This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.
A nondissipative simulation method for the drift kinetic equation
International Nuclear Information System (INIS)
Watanabe, Tomo-Hiko; Sugama, Hideo; Sato, Tetsuya
2001-07-01
With the aim to study the ion temperature gradient (ITG) driven turbulence, a nondissipative kinetic simulation scheme is developed and comprehensively benchmarked. The new simulation method preserving the time-reversibility of basic kinetic equations can successfully reproduce the analytical solutions of asymmetric three-mode ITG equations which are extended to provide a more general reference for benchmarking than the previous work [T.-H. Watanabe, H. Sugama, and T. Sato: Phys. Plasmas 7 (2000) 984]. It is also applied to a dissipative three-mode system, and shows a good agreement with the analytical solution. The nondissipative simulation result of the ITG turbulence accurately satisfies the entropy balance equation. Usefulness of the nondissipative method for the drift kinetic simulations is confirmed in comparisons with other dissipative schemes. (author)
Modelling opinion formation by means of kinetic equations
Boudin , Laurent; Salvarani , Francesco
2010-01-01
In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.
Turbulent kinetic energy equation and free mixing
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Fractional neutron point kinetics equations for nuclear reactor dynamics
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del
2011-01-01
The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.
Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable
Energy Technology Data Exchange (ETDEWEB)
Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires
1968-07-01
In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)
A nonlinear bounce kinetic equation for trapped electrons
International Nuclear Information System (INIS)
Gang, F.Y.
1990-03-01
A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs
GENERAL EQUATIONS OF CARBONIZATION OF EUCALYPTUS SPP KINETIC MECHANISMS
Directory of Open Access Journals (Sweden)
Túlio Jardim Raad
2006-06-01
Full Text Available In the present work, a set of general equations related to kinetic mechanism of wood compound carbonization: hemicelluloses, cellulose and lignin was obtained by Avrami-Eroffev and Arrhenius equations and Thermogravimetry of Eucalyptus cloeziana, Eucalyptus camaldulensis, Corymbia citriodora, Eucalyptus urophylla and Eucalyptus grandis samples, TG-Isothermal and TG-Dynamic. The different thermal stabilities and decomposition temperature bands of those species compounds were applied as strategy to obtain the kinetic parameters: activation energy, exponential factor and reaction order. The kinetic model developed was validated by thermogravimetric curves from carbonization of others biomass such as coconut. The kinetic parameters found were - Hemicelluloses: E=98,6 kJmol, A=3,5x106s-1 n=1,0; - Cellulose: E=182,2 kJmol, A=1,2x1013s-1 n=1,5; - Lignin: E=46,6 kJmol, A=2,01s-1 n=0,41. The set of equations can be implemented in a mathematical model of wood carbonization simulation (with heat and mass transfer equations with the aim of optimizing the control and charcoal process used to produce pig iron.
Review of Kaganove's solution for the reactor point kinetics equations
International Nuclear Information System (INIS)
Couto, R.T.; Santo, A.C.F. de.
1993-09-01
A review of Kaganove's method for the reactor point kinetics equations solution is performed. This was method chosen to calculate the power in ATR, a computer program for the analysis of reactivity transients. The reasons for this choice and the adaptation of the method to the purposes of ATR are presented. (author)
Study of the stochastic point reactor kinetic equation
International Nuclear Information System (INIS)
Gotoh, Yorio
1980-01-01
Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)
Taylor's series method for solving the nonlinear point kinetics equations
International Nuclear Information System (INIS)
Nahla, Abdallah A.
2011-01-01
Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.
Comparative analysis of solution methods of the punctual kinetic equations
International Nuclear Information System (INIS)
Hernandez S, A.
2003-01-01
The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)
Initial value problem for the equations of reactor kinetics
International Nuclear Information System (INIS)
Kyncl, J.
1987-08-01
The initial value problem for the equations of reactor kinetics is solved while taking temperature feedback into account. The space where the problem is solved is chosen such as to correspond to the mathematical properties of cross-section models. The local solution is found by the iterative method, its uniqueness is proved and it is also shown that the existence of global solution is ensured in most cases. Finally, the problem of a weak solution is discussed. (author). 5 refs
Computer models for kinetic equations of magnetically confined plasmas
International Nuclear Information System (INIS)
Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.
1987-01-01
This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method
Kinetic theory of flocking: derivation of hydrodynamic equations.
Ihle, Thomas
2011-03-01
It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and analytically.
Statistical approach to LHCD modeling using the wave kinetic equation
International Nuclear Information System (INIS)
Kupfer, K.; Moreau, D.; Litaudon, X.
1993-04-01
Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion
Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations
Kuzemsky, A. L.
2018-01-01
We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
Non-equilibrium reaction rates in chemical kinetic equations
Gorbachev, Yuriy
2018-05-01
Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.
Herschlag, Gregory J; Mitran, Sorin; Lin, Guang
2015-06-21
We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.
Modified mean generation time parameter in the neutron point kinetics equations
Energy Technology Data Exchange (ETDEWEB)
Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S., E-mail: alessandro@nuclear.ufrj.br, E-mail: frosa@if.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)
Modified mean generation time parameter in the neutron point kinetics equations
International Nuclear Information System (INIS)
Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S.
2017-01-01
This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)
Hydrodynamic limits of kinetic equations for polyatomic and reactive gases
Directory of Open Access Journals (Sweden)
Bisi M.
2017-03-01
Full Text Available Starting from a kinetic BGK-model for a rarefied polyatomic gas, based on a molecular structure of discrete internal energy levels, an asymptotic Chapman-Enskog procedure is developed in the asymptotic continuum limit in order to derive consistent fluid-dynamic equations for macroscopic fields at Navier-Stokes level. In this way, the model allows to treat the gas as a mixture of mono-atomic species. Explicit expressions are given not only for dynamical pressure, but also for shear stress, diffusion velocities, and heat flux. The analysis is shown to deal properly also with a mixture of reactive gases, endowed for simplicity with translational degrees of freedom only, in which frame analogous results can be achieved.
Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1977-08-01
A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.
Verification of continuum drift kinetic equation solvers in NIMROD
Energy Technology Data Exchange (ETDEWEB)
Held, E. D.; Ji, J.-Y. [Utah State University, Logan, Utah 84322-4415 (United States); Kruger, S. E. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Belli, E. A. [General Atomics, San Diego, California 92186-5608 (United States); Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States)
2015-03-15
Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.
Study on the numerical analysis of nuclear reactor kinetics equations
International Nuclear Information System (INIS)
Yang, J.C.
1980-01-01
A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)
Charge exchange of muons in gases: I. Kinetic equations
International Nuclear Information System (INIS)
Turner, R.E.
1983-06-01
Kinetic equations for the spin density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high energy muons thermalize in a single component gas. The motion of this two species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in μSR experiments are then obtained in terms of the spin density operators emerging from the stopping regime
Charge exchange of muons in gases. Kinetic equations
International Nuclear Information System (INIS)
Turner, R.E.
1983-01-01
Kinetic equations for the spin-density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high-energy muons thermalize in a single-component gas. The motion of this two-species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single-particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in muon-spin-rotation (μSR) experiments are then obtained in terms of the spin-density operators emerging from the stopping regime
The soliton solution of BBGKY quantum kinetic equations chain for different type particles system
International Nuclear Information System (INIS)
Rasulova, M.Yu.; Avazov, U.; Hassan, T.
2006-12-01
In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations
On a closed form solution of the point kinetics equations with reactivity feedback of temperature
International Nuclear Information System (INIS)
Silva, Jeronimo J.A.; Vilhena, Marco T.M.B.; Petersen, Claudio Z.; Bodmann, Bardo E.J.; Alvim, Antonio C.M.
2011-01-01
An analytical solution of the point kinetics equations to calculate reactivity as a function of time by the Decomposition method has recently appeared in the literature. In this paper, we go one step forward, by considering the neutron point kinetics equations together with temperature feedback effects. To accomplish that, we extended the point kinetics by a temperature perturbation, obtaining a second order nonlinear ordinary differential equation. This equation is then solved by the Decomposition Method, that is, by expanding the neutron density in a series and the nonlinear terms into Adomian Polynomials. Substituting these expansions into the nonlinear ordinary equation, we construct a recursive set of linear problems that can be solved by the methodology previously mentioned for the point kinetics equation. We also report on numerical simulations and comparisons against literature results. (author)
On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity
Directory of Open Access Journals (Sweden)
Nikolai N. Bogoliubov (Jr.
2007-01-01
Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.
Energy Technology Data Exchange (ETDEWEB)
Wang, Lijin, E-mail: ljwang@ucas.ac.cn [School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)
2016-06-08
The stochastic protein kinetic equations can be stiff for certain parameters, which makes their numerical simulation rely on very small time step sizes, resulting in large computational cost and accumulated round-off errors. For such situation, we provide a method of reducing stiffness of the stochastic protein kinetic equation by means of a kind of variable transformation. Theoretical and numerical analysis show effectiveness of this method. Its generalization to a more general class of stochastic differential equation models is also discussed.
International Nuclear Information System (INIS)
Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.
2009-01-01
In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)
Empiric model for mean generation time adjustment factor for classic point kinetics equations
Energy Technology Data Exchange (ETDEWEB)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2017-11-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Empiric model for mean generation time adjustment factor for classic point kinetics equations
International Nuclear Information System (INIS)
Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.
2017-01-01
Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)
Nonisentropic Nonsteady Liquid Flow with Centrifugal, Gravitational, and Dissipative Forces
National Research Council Canada - National Science Library
Sidransky, Fred
1966-01-01
The method of characteristics is used to present general compatibility relations for nonsteady liquid flow or water-hammer theory which permit the investigation of the dynamics of the flow under diverse conditions...
Kinetic equations within the formalism of non-equilibrium thermo field dynamics
International Nuclear Information System (INIS)
Arimitsu, Toshihico
1988-01-01
After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)
On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind
Directory of Open Access Journals (Sweden)
Dinesh Kumar
2015-01-01
Full Text Available We develop a new and further generalized form of the fractional kinetic equation involving generalized Bessel function of the first kind. The manifold generality of the generalized Bessel function of the first kind is discussed in terms of the solution of the fractional kinetic equation in the paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably new results.
International Nuclear Information System (INIS)
Einzel, D.; Woelfle, P.
1978-01-01
The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures
Parameter Estimates in Differential Equation Models for Chemical Kinetics
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
Kinetic equations for clean superconductors: Application to the flux flow hall effect
International Nuclear Information System (INIS)
Kopnin, N.B.
1994-01-01
The kinetic equations for clean superconductors (l>>ζ) are derived. expanding the equations for the time dependent Green functions in the quasiclassical parameter, the new contributions are found which contain the derivatives of the distribution functions with respect to the quasiparticle momentum. The transition from the ultra-clean case (no relaxation) to a relaxation-dominated behavior, for which the kinetic equations coincide with the usual quasiclassical approximation, occurs for the relaxation time of the order of ℎE F /Δ 2 . The kinetic equations can be used for various dynamic processes in superconductors including the flux-flow Hall effect. The derived equations, after necessary modifications for the p-wave pairing, are especially suitable for nonstationary problems in the theory of superfluidity of 3 He
Temperature waves and the Boltzmann kinetic equation for phonons
International Nuclear Information System (INIS)
Urushev, D.; Borisov, M.; Vavrek, A.
1988-01-01
The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs
Homotopy analysis solutions of point kinetics equations with one delayed precursor group
International Nuclear Information System (INIS)
Zhu Qian; Luo Lei; Chen Zhiyun; Li Haofeng
2010-01-01
Homotopy analysis method is proposed to obtain series solutions of nonlinear differential equations. Homotopy analysis method was applied for the point kinetics equations with one delayed precursor group. Analytic solutions were obtained using homotopy analysis method, and the algorithm was analysed. The results show that the algorithm computation time and precision agree with the engineering requirements. (authors)
International Nuclear Information System (INIS)
Nahla, Abdallah A.
2011-01-01
Highlights: → An efficient technique for the nonlinear reactor kinetics equations is presented. → This method is based on Backward Euler or Crank Nicholson and fundamental matrix. → Stability of efficient technique is defined and discussed. → This method is applied to point kinetics equations of six-groups of delayed neutrons. → Step, ramp, sinusoidal and temperature feedback reactivities are discussed. - Abstract: The point reactor kinetics equations of multi-group of delayed neutrons in the presence Newtonian temperature feedback effects are a system of stiff nonlinear ordinary differential equations which have not any exact analytical solution. The efficient technique for this nonlinear system is based on changing this nonlinear system to a linear system by the predicted value of reactivity and solving this linear system using the fundamental matrix of the homogenous linear differential equations. The nonlinear point reactor kinetics equations are rewritten in the matrix form. The solution of this matrix form is introduced. This solution contains the exponential function of a variable coefficient matrix. This coefficient matrix contains the unknown variable, reactivity. The predicted values of reactivity in the explicit form are determined replacing the exponential function of the coefficient matrix by two kinds, Backward Euler and Crank Nicholson, of the rational approximations. The nonlinear point kinetics equations changed to a linear system of the homogenous differential equations. The fundamental matrix of this linear system is calculated using the eigenvalues and the corresponding eigenvectors of the coefficient matrix. Stability of the efficient technique is defined and discussed. The efficient technique is applied to the point kinetics equations of six-groups of delayed neutrons with step, ramp, sinusoidal and the temperature feedback reactivities. The results of these efficient techniques are compared with the traditional methods.
International Nuclear Information System (INIS)
Saha Ray, S.; Patra, A.
2012-01-01
Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .
Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows
Kumaran, V.
A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.
International Nuclear Information System (INIS)
Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.
2010-01-01
Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.
Derivation of a new kinetic equation. Application to the determination of viscosity coefficients
International Nuclear Information System (INIS)
Frey, Jean-Jacques
1970-01-01
By introducing a new hypothesis concerning the closure in the B.B.G.K.Y. equation system, an approximate expression for f 12 is obtained. By inserting this expression in the first B.B.G.K.Y. equation, a new kinetic equation results. It is verified that this equation does in fact give the fluid mechanics equations, and new expressions for the shear and expansion viscosity coefficients are obtained. The numerical calculations which have been carried out show that very satisfactory agreement exists with experimental results. (author) [fr
Numerical solution of the kinetic equation in reactor shielding
International Nuclear Information System (INIS)
Germogenova, T.A.
1975-01-01
A review is made of methods of solving marginal problems of multi-group systems of equations of neutron and γ radiation transfer. The first stage of the solution - the quantification of the basic task, is determined by the qualitative behaviour of the solution - is the nature of its performance and asymptotics. In the second stage - solution of the approximating system, various modifications of the iterative method are as a rule used. A description is given of the features of the major Soviet complexes of programmes (ROZ and RADUGA) for the solution of multi-group systems of transfer equations and some methodological research findings are presented. (author)
Directory of Open Access Journals (Sweden)
Pedro L. Valencia
2017-04-01
Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].
Analytic solutions of the multigroup space-time reactor kinetics equations
International Nuclear Information System (INIS)
Lee, C.E.; Rottler, S.
1986-01-01
The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)
Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations
International Nuclear Information System (INIS)
Aboanber, A E
2006-01-01
A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback
Numerical procedure for the calculation of nonsteady spherical shock fronts with radiation
International Nuclear Information System (INIS)
Winkler, K.H.
The basis of the numerical method is an implicit difference scheme with time backward differences to a freely moving coordinate system. The coordinate system itself is determined simultaneously with the iterative solution of the physical equations as a function of the physical variables. Shock fronts, even nonsteady ones, are calculated as discontinuities according to the Rankine--Hugoniot equations. The radiation field is obtained from the two-dimensional, static, spherically symmetric transport equation in conjunction with the time-dependent one-dimensional moment equations. No artificial viscosity of any type is ever used. The applicability of the method developed is demonstrated by an example involving the calculation of protostar collapse. 11 figures
An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons
International Nuclear Information System (INIS)
Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.
2013-01-01
Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons
From quantum to semiclassical kinetic equations: Nuclear matter estimates
International Nuclear Information System (INIS)
Galetti, D.; Mizrahi, S.S.; Nemes, M.C.; Toledo Piza, A.F.R. de
1985-01-01
Starting from the exact microscopic time evolution of the quantum one body density associated with a many fermion system semiclassical approximations are derived to it. In the limit where small momentum transfer two body collisions are dominant we get a Fokker-Planck equation and work out friction and diffusion tensors explicitly for nuclear matter. If arbitrary momentum transfers are considered a Boltzmann equation is derived and used to calculate the viscosity coefficient of nuclear matter. A derivation is given of the collision term used by Landau to describe the damping of zero sound waves at low temperature in Plasmas. Memory effects are essential for this. The damping of zero sound waves in nuclear matter is also calculated and the value so obtained associated with the bulk value of the damping of giant resonances in finite nuclei. The bulk value is estimated to be quite small indicating the importance of the nuclear surface for the damping. (Author) [pt
Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor
International Nuclear Information System (INIS)
Saha Ray, S.
2012-01-01
Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.
Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method
International Nuclear Information System (INIS)
Suescun D, D.; Oviedo T, M.
2017-09-01
In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and
International Nuclear Information System (INIS)
Park, Yujin; Kazantzis, Nikolaos; Parlos, Alexander G.; Chong, Kil To
2013-01-01
Highlights: • Numerical solution for stiff differential equations using matrix exponential method. • The approximation is based on First Order Hold assumption. • Various input examples applied to the point kinetics equations. • The method shows superior useful and effective activity. - Abstract: A system of nonlinear differential equations is derived to model the dynamics of neutron density and the delayed neutron precursors within a point kinetics equation modeling framework for a nuclear reactor. The point kinetic equations are mathematically characterized as stiff, occasionally nonlinear, ordinary differential equations, posing significant challenges when numerical solutions are sought and traditionally resulting in the need for smaller time step intervals within various computational schemes. In light of the above realization, the present paper proposes a new discretization method inspired by system-theoretic notions and technically based on a combination of the matrix exponential method (MEM) and the First-Order Hold (FOH) assumption. Under the proposed time discretization structure, the sampled-data representation of the nonlinear point kinetic system of equations is derived. The performance of the proposed time discretization procedure is evaluated using several case studies with sinusoidal reactivity profiles and multiple input examples (reactivity and neutron source function). It is shown, that by applying the proposed method under a First-Order Hold for the neutron density and the precursor concentrations at each time step interval, the stiffness problem associated with the point kinetic equations can be adequately addressed and resolved. Finally, as evidenced by the aforementioned detailed simulation studies, the proposed method retains its validity and accuracy for a wide range of reactor operating conditions, including large sampling periods dictated by physical and/or technical limitations associated with the current state of sensor and
Bai, Shirong; Skodje, Rex T
2017-08-17
A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.
Initial state dependence of nonlinear kinetic equations: The classical electron gas
International Nuclear Information System (INIS)
Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.
1985-01-01
The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated
Star-grain rocket motor - nonsteady internal ballistics
Energy Technology Data Exchange (ETDEWEB)
Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)
2004-01-01
The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)
Energy Technology Data Exchange (ETDEWEB)
Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard, E-mail: milena.wollmann@ufrgs.br, E-mail: vilhena@mat.ufrgs.br, E-mail: bardobodmann@ufrgs.br, E-mail: richard.vasques@fulbrightmail.org [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)
International Nuclear Information System (INIS)
Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard
2015-01-01
The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)
Comparative analysis among several methods used to solve the point kinetic equations
International Nuclear Information System (INIS)
Nunes, Anderson L.; Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando Carvalho da
2007-01-01
The main objective of this work consists on the methodology development for comparison of several methods for the kinetics equations points solution. The evaluated methods are: the finite differences method, the stiffness confinement method, improved stiffness confinement method and the piecewise constant approximations method. These methods were implemented and compared through a systematic analysis that consists basically of confronting which one of the methods consume smaller computational time with higher precision. It was calculated the relative which function is to combine both criteria in order to reach the goal. Through the analyses of the performance factor it is possible to choose the best method for the solution of point kinetics equations. (author)
Comparative analysis among several methods used to solve the point kinetic equations
Energy Technology Data Exchange (ETDEWEB)
Nunes, Anderson L.; Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; E-mails: alupo@if.ufrj.br; agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br
2007-07-01
The main objective of this work consists on the methodology development for comparison of several methods for the kinetics equations points solution. The evaluated methods are: the finite differences method, the stiffness confinement method, improved stiffness confinement method and the piecewise constant approximations method. These methods were implemented and compared through a systematic analysis that consists basically of confronting which one of the methods consume smaller computational time with higher precision. It was calculated the relative which function is to combine both criteria in order to reach the goal. Through the analyses of the performance factor it is possible to choose the best method for the solution of point kinetics equations. (author)
An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry
International Nuclear Information System (INIS)
Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst
2011-01-01
Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)
Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory
International Nuclear Information System (INIS)
Nastar, M.
2011-01-01
A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)
International Nuclear Information System (INIS)
Misguich, J.H.
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Misguich, J.H
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.
Is the kinetic equation for turbulent gas-particle flows ill posed?
Reeks, M; Swailes, D C; Bragg, A D
2018-02-01
This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.
A new integral method for solving the point reactor neutron kinetics equations
International Nuclear Information System (INIS)
Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian
2009-01-01
A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.
Numerical solution of multi groups point kinetic equations by simulink toolbox of Matlab software
International Nuclear Information System (INIS)
Hadad, K.; Mohamadi, A.; Sabet, H.; Ayobian, N.; Khani, M.
2004-01-01
The simulink toolbox of Matlab Software was employed to solve the point kinetics equation with six group delayed neutrons. The method of Adams-Bash ford showed a good convergence in solving the system of simultaneous equations and the obtained results showed good agreements with other numerical schemes. The flexibility of the package in changing the system parameters and the user friendly interface makes this approach a reliable educational package in revealing the affects of reactivity changes on power incursions
BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows
Shaing, K. C.
2010-07-01
A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.
Analytical solution of point kinetic equations for sub-critical systems
International Nuclear Information System (INIS)
Henrice Junior, Edson; Goncalves, Alessandro C.
2013-01-01
This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)
Solution of the kinetic equation in the P3-approximation in a plane geometry
International Nuclear Information System (INIS)
Vlasov, Yu.A.
1975-01-01
A method and a program are described for solving single-velocity kinetic equations of neutron transfer for the plane geometry in the finite-difference approximation. A difference high-accuracy scheme and a matrix factorization method are used for the differential-difference equation systems. The program is written in the ALGOL-60 language and is adapted for M-20, M-220, M-222 and BESM-4 computers
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Zhang, Chuang; Guo, Zhaoli; Chen, Songze
2017-12-01
An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.
Cohen, J.S.; Suttorp, L.G.
1982-01-01
The generating functions for the collision brackets associated with two alternative convergent kinetic equations are derived for small values of the plasma parameter. It is shown that the first few terms in the asymptotic expansions of these generating functions are identical. Consequently, both
Analytic solution of boundary-value problems for nonstationary model kinetic equations
International Nuclear Information System (INIS)
Latyshev, A.V.; Yushkanov, A.A.
1993-01-01
A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected
Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics
International Nuclear Information System (INIS)
Mashnik, S.G.; Maino, G.
1996-01-01
A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs
On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle
International Nuclear Information System (INIS)
Petersen, C.Z.; Vilhena, M.T.M.B. de; Bodmann, B.E.J.
2011-01-01
In this work we consider the two-group bi-dimensional kinetic neutron diffusion equation. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursor yields are expanded in a truncated double series in terms of eigenfunctions that, upon insertion into the kinetic equation and upon taking moments, results in a first order linear differential matrix equation with source terms. We split the matrix appearing in the transformed problem into a sum of a diagonal matrix plus the matrix containing the remaining terms and recast the transformed problem into a form that can be solved in the spirit of Adomian's recursive decomposition formalism. Convergence of the solution is guaranteed by the Cardinal Interpolation Theorem. We give numerical simulations and comparisons with available results in the literature. (author)
Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach
International Nuclear Information System (INIS)
Shushin, A I
2005-01-01
Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc
Directory of Open Access Journals (Sweden)
V.V.Ignatyuk
2004-01-01
Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.
Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow
International Nuclear Information System (INIS)
Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel
2004-01-01
In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)
International Nuclear Information System (INIS)
Cabrales, Luis E Bergues; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio
2010-01-01
Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice
Equations for the kinetic modeling of supersonically flowing electrically excited lasers
International Nuclear Information System (INIS)
Lind, R.C.
1973-01-01
The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed
Derivation of a reduced kinetic equation using Lie-transform techniques
International Nuclear Information System (INIS)
Brizard, A.
1991-01-01
The asymptotic elimination of fast time scales from a general kinetic equation, of the form: ∂ t f+z·∂ x f = C[f], facilitates the study of the long time behavior of its solution f(z,t). Here z describe the single-particle Hamiltonian dynamics and the operator C, which may possess nonlinear functional dependence on f, describes processes (such as discrete-particle effects, resonant wave-particle effects, or effects due to external sources) which cause changes in f as it is convectively transported along a Hamiltonian phase-space trajectory. When a fast time scale is associated with z through the dependence on a fast angle θ (whose frequency θ = Ω satisfies ε ≡ 1/Ωτ much-lt 1, where τ is a slow time scale of interest), a near-identity phase-space transformation T ε :z→Z (carried out with Lie-transform techniques) yields reduced Hamiltonian dynamical equations Z ε which are θ-independent. The corresponding transformed kinetic equation is derived. Averaging this equation over the fast angle θ yields a kinetic equation for left-angle F right-angle, the θ-averaged part of F. In general, the θ-dependence of C ε couples the kinetic equations for left-angle F right-angle and F, the θ-dependent part of F. One solves for the Fourier coefficient F l (associated with e ilθ ) as a functional of left-angle F right-angle. One obtains a reduced kinetic equation for left-angle F right-angle: d R left-angle F right-angle/dt = C R [left-angle F right-angle]. General expressions for C R are given, as well as expressions for the guiding-center and oscillation-center phase-space transformations of a linear Fokker-Planck operator. A discussion of the relationship with Mynick's work is presented
An equation of state for purely kinetic k-essence inspired by cosmic topological defects
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben; Gonzalez, Eduardo L.; Queijeiro, Alfonso [Instituto Politecnico Nacional, Departamento de Fisica, Escuela Superior de Fisica y Matematicas, Ciudad de Mexico (Mexico)
2017-06-15
We investigate the physical properties of a purely kinetic k-essence model with an equation of state motivated in superconducting membranes. We compute the equation of state parameter w and discuss its physical evolution via a nonlinear equation of state. Using the adiabatic speed of sound and energy density, we restrict the range of parameters of the model in order to have an acceptable physical behavior. We study the evolution of the scale factor and address the question of the possible existence of finite-time future singularities. Furthermore, we analyze the evolution of the luminosity distance d{sub L} with redshift z by comparing (normalizing) it with the ΛCDM model. Since the equation of state parameter is z-dependent the evolution of the luminosity distance is also analyzed using the Alcock-Paczynski test. (orig.)
International Nuclear Information System (INIS)
Kantorovich, L.N.; Fogel, G.M.; Gotlib, V.I.
1990-01-01
Thermoluminescence kinetics is discussed within the framework of a band model containing an arbitrary number of types of recombination and trapping centres at an arbitrary correlation of all centre parameters. It is shown that the initial system of kinetic equations is reduced to an equivalent system consisting of two integro-differential equations which permit one to perform an accurate generalisation, in the case of a continuous centre distribution, to their parameters for the description of irradiation and thermoluminescence, taking into account charge carrier redistribution to both types of centre. In addition, if only one electron (hole) channel is taken into account, only one integro-differential equation is obtained. On the basis of this equation a precise algebraic equation is obtained for calculation of the area of an arbitrary part of the thermoluminescence curve (TLC), consisting of one or several peaks, which slightly overlap with other peaks. It is shown that at doses which are less than the saturation dose, when the centres are not completely filled by the charge carriers, the dose dependences of such a part of the TLC may have a non-linear character at a simultaneous linear dependence of the area of the whole TLC. At doses which are greater than the saturation dose, the dose dependences of the area of the whole TLC, as well as of its separate parts, undergo breaks at the saturation doses. (author)
Analytic solution of vector model kinetic equations with constant kernel and their applications
International Nuclear Information System (INIS)
Latyshev, A.V.
1993-01-01
For the first time exact solutions the heif-space boundary value problems for model kinetic equations is obtained. Here x > 0, μ is an element of (-∞, 0) union (0, +∞), Σ = diag {σ 1 , σ 2 }, C = [c ij ] - 2 x 2-matrix, Ψ (x, μ) is vector-column with elements ψ 1 and ψ 2 . Exact solution of the diffusion slip flow of the binary gas mixture as a application for the model Boltzmann equation with collision operator in the McCormack's form is found. 18 refs
Numerical instability of time-discretized one-point kinetic equations
International Nuclear Information System (INIS)
Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu
2000-01-01
The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula
Nonsteady heat conduction code with radiation boundary conditions
International Nuclear Information System (INIS)
Fillo, J.A.; Benenati, R.; Powell, J.
1975-01-01
A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)
International Nuclear Information System (INIS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-01-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Energy Technology Data Exchange (ETDEWEB)
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Zhou, Yajun
This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of
Application of the reactor kinetics equations to the reactor safety analysis
International Nuclear Information System (INIS)
Sdouz, G.
1976-01-01
The reactor kinetics equations which can be solved by the computer program AIREK-III are used to describe the behavior of fast reactivity transients. By supplementing this computer program it was possible to solve additional safety problems, e.g. the course of reactor excursions induced by any form of reactivity input, the control of reactivity input as a function of a threshold-energy and the computation of produced energy. (author)
Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations
International Nuclear Information System (INIS)
EL Safadi, M.
2007-03-01
We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C ∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)
Application of the fractional neutron point kinetic equation: Start-up of a nuclear reactor
International Nuclear Information System (INIS)
Polo-Labarrios, M.-A.; Espinosa-Paredes, G.
2012-01-01
Highlights: ► Neutron density behavior at reactor start up with fractional neutron point kinetics. ► There is a relaxation time associated with a rapid variation in the neutron flux. ► Physical interpretation of the fractional order is related with non-Fickian effects. ► Effect of the anomalous diffusion coefficient and the relaxation time is analyzed. ► Neutron density is related with speed and duration of the control rods lifting. - Abstract: In this paper we present the behavior of the variation of neutron density when the nuclear reactor power is increased using the fractional neutron point kinetic (FNPK) equation with a single-group of delayed neutron precursor. It is considered that there is a relaxation time associated with a rapid variation in the neutron flux and its physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. We analyzed the case of increase the nuclear reactor power when reactor is cold start-up which is a process of inserting reactivity by lifting control rods discontinuously. The results show that for short time scales of the start-up the neutronic density behavior with FNPK shows sub-diffusive effects whose absorption are government by control rods velocity. For large times scale, the results shows that the classical equation of the neutron point kinetics over predicted the neutron density regarding to FNPK.
Relations between the kinetic equation and the Langevin models in two-phase flow modelling
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)
Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm
Energy Technology Data Exchange (ETDEWEB)
Tavares, Matheus G.; Petersen, Claudio Z., E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), Capao do Leao, RS (Brazil). Departamento de Matematica e Estatistica; Schramm, Marcelo, E-mail: schrammmarcelo@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Centro de Engenharias; Zanette, Rodrigo, E-mail: rodrigozanette@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Matematica e Estatistica
2017-07-01
In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)
Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm
International Nuclear Information System (INIS)
Tavares, Matheus G.; Petersen, Claudio Z.; Schramm, Marcelo; Zanette, Rodrigo
2017-01-01
In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)
Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.
2018-03-01
We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.
Non-relativistic and relativistic quantum kinetic equations in nuclear physics
International Nuclear Information System (INIS)
Botermans, W.M.M.
1989-01-01
In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes
International Nuclear Information System (INIS)
Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna
2014-01-01
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers
Energy Technology Data Exchange (ETDEWEB)
Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)
2014-12-09
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.
International Nuclear Information System (INIS)
Schramm, Marcelo; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B.; Petersen, Claudio Z.; Alvim, Antonio C.M.
2013-01-01
Following the quest to find analytical solutions, we extend the methodology applied successfully to timely fractional neutron point kinetics (FNPK) equations by adding the effects of temperature. The FNPK equations with temperature feedback correspond to a nonlinear system and “stiff” type for the neutron density and the concentration of delayed neutron precursors. These variables determine the behavior of a nuclear reactor power with time and are influenced by the position of control rods, for example. The solutions of kinetics equations provide time information about the dynamics in a nuclear reactor in operation and are useful, for example, to understand the power fluctuations with time that occur during startup or shutdown of the reactor, due to adjustments of the control rods. The inclusion of temperature feedback in the model introduces an estimate of the transient behavior of the power and other variables, which are strongly coupled. Normally, a single value of reactivity is used across the energy spectrum. Especially in case of power change, the neutron energy spectrum changes as well as physical parameters such as the average cross sections. However, even knowing the importance of temperature effects on the control of the reactor power, the character of the set of nonlinear equations governing this system makes it difficult to obtain a purely analytical solution. Studies have been published in this sense, using numerical approaches. Here the idea is to consider temperature effects to make the model more realistic and thus solve it in a semi-analytical way. Therefore, the main objective of this paper is to obtain an analytical representation of fractional neutron point kinetics equations with temperature feedback, without having to resort to approximations inherent in numerical methods. To this end, we will use the decomposition method, which has been successfully used by the authors to solve neutron point kinetics problems. The results obtained will
Energy Technology Data Exchange (ETDEWEB)
Schramm, Marcelo; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: marceloschramm@hotmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica; Petersen, Claudio Z., E-mail: claudiopetersen@yahoo.com.br [Universidade Federal de Pelotas (UFPel), RS (Brazil). Departamento de Matematica; Alvim, Antonio C.M., E-mail: alvim@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa em Engenharia
2013-07-01
Following the quest to find analytical solutions, we extend the methodology applied successfully to timely fractional neutron point kinetics (FNPK) equations by adding the effects of temperature. The FNPK equations with temperature feedback correspond to a nonlinear system and “stiff” type for the neutron density and the concentration of delayed neutron precursors. These variables determine the behavior of a nuclear reactor power with time and are influenced by the position of control rods, for example. The solutions of kinetics equations provide time information about the dynamics in a nuclear reactor in operation and are useful, for example, to understand the power fluctuations with time that occur during startup or shutdown of the reactor, due to adjustments of the control rods. The inclusion of temperature feedback in the model introduces an estimate of the transient behavior of the power and other variables, which are strongly coupled. Normally, a single value of reactivity is used across the energy spectrum. Especially in case of power change, the neutron energy spectrum changes as well as physical parameters such as the average cross sections. However, even knowing the importance of temperature effects on the control of the reactor power, the character of the set of nonlinear equations governing this system makes it difficult to obtain a purely analytical solution. Studies have been published in this sense, using numerical approaches. Here the idea is to consider temperature effects to make the model more realistic and thus solve it in a semi-analytical way. Therefore, the main objective of this paper is to obtain an analytical representation of fractional neutron point kinetics equations with temperature feedback, without having to resort to approximations inherent in numerical methods. To this end, we will use the decomposition method, which has been successfully used by the authors to solve neutron point kinetics problems. The results obtained will
Directory of Open Access Journals (Sweden)
Fuqiang Zhao
2017-01-01
Full Text Available In the current study, a numerical technique for solving one-dimensional fractional nonsteady heat transfer model is presented. We construct the second kind Chebyshev wavelet and then derive the operational matrix of fractional-order integration. The operational matrix of fractional-order integration is utilized to reduce the original problem to a system of linear algebraic equations, and then the numerical solutions obtained by our method are compared with those obtained by CAS wavelet method. Lastly, illustrated examples are included to demonstrate the validity and applicability of the technique.
Validation of a tracer technique to determine nonsteady-state ketone body turnover rates in man
International Nuclear Information System (INIS)
Keller, U.; Sonnenberg, G.E.; Stauffacher, W.
1981-01-01
The features of a single-compartment model of total ketone bodies were evaluated using primed constant infusions of [3-14C]acetoacetate (AcAc) and of D-[3-14C]beta-hydroxybutyrate (beta OHB) in 12 postabsorptive subjects. The volume of distribution (VD) of AcAc was 0.18 +- 0.01 liter/kg (n = 9), and that of beta OHB was similar, 0.18 +- 0.02 liter/kg (n = 3). The production rate of total ketone bodies was calculated using the combined specific activity of AcAc and of beta OHB. The mean basal total ketone body production rates were similar using either [14C]AcAc (6.5 mumol . kg-1 . min-1) or [14C]beta OHB (6.8 mumol . kg-1 . min-1). To determine the pool fraction that was rapidly mixed during nonsteady state of ketone body inflow, unlabeled AcAc was infused with stepwise increasing and decreasing rates between 5 and 25 mumol . kg-1 . m-1 to mimic nonsteady-state ketone body production rates. The functional pool fraction P was determined as the pool fraction that provided the best match between tracer-determined rates of ketone production and rates of AcAc infusion. P of total ketone bodies was almost equal to 1 using either [14C]AcAc (1.05 +- 0.16) or [14C]beta OHB (1.00 +- 0.06), suggesting rapid mixing of ketone bodies throughout the entire pool. The described pool model may be used to determine total ketone body kinetics during acute perturbations of the steady state
AIREK-MOD, Time Dependent Reactor Kinetics with Feedback Differential Equation
International Nuclear Information System (INIS)
Tamagnini, C.
1984-01-01
1 - Nature of physical problem solved: Solves the reactor kinetic equations with respect to time. A standard form for the reactivity behaviour has been introduced in which the reactivity is given by the sum of a polynomial, sine, cosine and exponential expansion. Tabular form is also included. The presence of feedback differential equations in which the dependence on variables different from the considered one is considered enables many heat-exchange problems to be dealt with. 2 - Method of solution: The method employed for the solution of the differential equations is the one developed by E.R. Cohen (Geneva Conference, 1958). 3 - Restrictions on the complexity of the problem: The maximum number of differential equations that can be solved simultaneously is 50. Within this limitation there may be n delayed neutron groups (n less than or equal to 25), on m other linear feedback equations (n+m less than or equal to 49). CDC 1604 version was offered by EIR (Institut Federal de Recherches en matiere de reacteurs, Switzerland)
International Nuclear Information System (INIS)
Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.
2014-01-01
Application of Elovich equation on uptake kinetics of 137 Cs by two living macrophytes during controlled experiments on short duration exposure is studied. Compliance to 2 nd order kinetics indicates the mechanism could be chemi-sorption, involving polar functional groups present on the extracelluar surface of the macrophytes. Data analysis suggests that Myriophyllum s. exhibits faster adsorption rate than Hydrilla v. As Myriophyllum s. exhibits better kinetics than Hydrilla v., former could be a better natural adsorbing media for 137 Cs. (author)
An accurate technique for the solution of the nonlinear point kinetics equations
International Nuclear Information System (INIS)
Picca, Paolo; Ganapol, Barry D.; Furfaro, Roberto
2011-01-01
A novel methodology for the solution of non-linear point kinetic (PK) equations is proposed. The technique is based on a piecewise constant approximation of PK system of ODEs and explicitly accounts for reactivity feedback effects, through an iterative cycle. High accuracy is reached by introducing a sub-mesh for the numerical evaluation of integrals involved and by correcting the source term to include the non-linear effect on a finer time scale. The use of extrapolation techniques for convergence acceleration is also explored. Results for adiabatic feedback model are reported and compared with other benchmarks in literature. The convergence trend makes the algorithm particularly attractive for applications, including in multi-point kinetics and quasi-static frameworks. (author)
Garnier, Alain; Gaillet, Bruno
2015-12-01
Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.
Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma
Tokar, Mikhail Z.
2017-12-01
The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.
An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations
International Nuclear Information System (INIS)
Sun, Wenjun; Jiang, Song; Xu, Kun
2015-01-01
The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach
Kinetic equations and fluctuations in μspace of one-component dilute plasmas
International Nuclear Information System (INIS)
Tokuyama, Michio; Mori, Hazime
1977-01-01
Kinetic equations for a spatially coarse-grained electron density in μ phase space A(p, r; t) with a length cutoff b and for its fluctuations are studied by a scaling method and a time-convolutionless approach developed by the present authors. An electron gas with a small plasma parameter epsilon=1/c (lambda sub(D)) 3 has three characteristic lengths; the Landau cutoff r sub(L)=epsilon lambda sub(D), the Debye length lambda sub(D)=√k sub(B)T/4πe 2 c and the mean free path l sub(f)=lambda sub(D)/epsilon, e and c being electronic charge and mean electron density, respectively. It is shown that there are two characteristic regions of the length cutoff b. One is a coherent region where r sub(L)<< b<< lambda sub(D). Its characteristic scaling is c→0, b→infinity, t→infinity with b√c and t√c being kept constant. The Vlasov equation is derived in this limit. The other is a kinetic region where lambda sub(D)<< b<< l sub(f). Its characteristic scaling is c→0, b→infinity, t→infinity with bc and tc being kept constant. The Vlasov term disappears and the Balescu-Lenard-Boltzmann-Landau equation, which is free of divergence for both close and distant collisions, is derived in this limit. It is shown that the fluctuations of A(p, r; t) obey a Markov process with scaling exponents α=0, β=1/2 in the coherent region near thermal equilibrium, while they obey a Gaussian Markov process with α=0, β=1 in the kinetic region. The present theory does not need the factorization ansatz and Bogoliubov's functional ansatz. (auth.)
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
Microscopic theory of warm ionized gases: equation of state and kinetic Schottky anomaly
International Nuclear Information System (INIS)
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-01-01
Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed.
Energy Technology Data Exchange (ETDEWEB)
Shtykov, N. M., E-mail: nshtykov@mail.ru; Palto, S. P.; Umanskii, B. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)
2013-08-15
We report on the results of calculating the conditions for light generation in cholesteric liquid crystals doped with fluorescent dyes using kinetic equations. Specific features of spectral properties of the chiral cholesteric medium as a photonic structure and spatially distributed type of the feedback in the active medium are taken into account. The expression is derived for the threshold pump radiation intensity as a function of the dye concentration and sample thickness. The importance of taking into account the distributed loss level in the active medium for calculating the optimal parameters of the medium and for matching the calculated values with the results of experiments is demonstrated.
Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S
2018-06-21
The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.
A highly accurate algorithm for the solution of the point kinetics equations
International Nuclear Information System (INIS)
Ganapol, B.D.
2013-01-01
Highlights: • Point kinetics equations for nuclear reactor transient analysis are numerically solved to extreme accuracy. • Results for classic benchmarks found in the literature are given to 9-digit accuracy. • Recent results of claimed accuracy are shown to be less accurate than claimed. • Arguably brings a chapter of numerical evaluation of the PKEs to a close. - Abstract: Attempts to resolve the point kinetics equations (PKEs) describing nuclear reactor transients have been the subject of numerous articles and texts over the past 50 years. Some very innovative methods, such as the RTS (Reactor Transient Simulation) and CAC (Continuous Analytical Continuation) methods of G.R. Keepin and J. Vigil respectively, have been shown to be exceptionally useful. Recently however, several authors have developed methods they consider accurate without a clear basis for their assertion. In response, this presentation will establish a definitive set of benchmarks to enable those developing PKE methods to truthfully assess the degree of accuracy of their methods. Then, with these benchmarks, two recently published methods, found in this journal will be shown to be less accurate than claimed and a legacy method from 1984 will be confirmed
The solution of the point kinetics equations via converged accelerated Taylor series (CATS)
Energy Technology Data Exchange (ETDEWEB)
Ganapol, B.; Picca, P. [Dept. of Aerospace and Mechanical Engineering, Univ. of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino, Alma Mater Studiorum - Universita di Bologna (Italy)
2012-07-01
This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making use of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
Inverse kinetics equations for on line measurement of reactivity using personal computer
International Nuclear Information System (INIS)
Ratemi, Wajdi; El Gadamsi, Walied; Beleid, Abdul Kariem
1993-01-01
Computer with their astonishing speed of calculations along with their easy connection to real systems, are very appropriate for digital measurements of real system variables. In the nuclear industry, such computer application will produce compact control rooms of real power plants, where information and results display can be obtained through push button concept. In our study, we use two personal computers for the purpose of simulation and measurement. One of them is used as a digital simulator to a real reactor, where we effectively simulate the reactor power through a cross talk network. The computed power is passed at certain chosen sampling time to the other computer. The purpose of the other computer is to use the inverse kinetics equations to calculate the reactivity parameter based on the received power and then it performs on line display of the power curve and the reactivity curve using color graphics. In this study, we use the one group version of the inverse kinetics algorithm which can easily be extended to larger group version. The language of programming used in Turbo BASIC, which is very comparable, in terms of efficiency, to FORTRAN language, besides its effective graphics routines. With the use of the extended version of the Inverse Kinetics algorithm, we can effectively apply this techniques of measurement for the purpose of on line display of the reactivity of the Tajoura Research Reactor. (author)
First-order irreversible thermodynamic approach to a nonsteady RLC circuit as an energy converter
International Nuclear Information System (INIS)
Valencia, G; Arias, L A
2015-01-01
In this work we show a RLC-circuit as energy converter within the context of first-order irreversible thermodynamics (FOIT). For our analysis, we propose an isothermic model with transient elements and passive elements. With the help of the dynamic equations, the Kirchhoff equations, we found the generalized fluxes and forces of the circuit, the equation system shows symmetry of the cross terms, this property is characteristic of the steady state linear systems, but in this case phenomenological coefficients are function of time. Then, we can use these relations, similar to the linear Onsager relations, to construct the characteristic functions of the RLC energy converter: the power output, efficiency, dissipation and ecological function, and study its energetic performance. The study of performance of the converter is based on two parameters, the coupling parameter and the ''forces ratio'' parameter, in this case as functions of time. We find that the behavior of the non-steady state converter is similar to the behavior of steady state energy converter. We will explain the linear and symmetric behavior of the converter in the frequencies space rather than in the time space. Finally, we establish optimal operation regimes of economic degree of coupling for this energy converter
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
International Nuclear Information System (INIS)
Leaf, G.K.; Minkoff, M.
1982-01-01
1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code
Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme
International Nuclear Information System (INIS)
Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.
2003-01-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
Solution of fractional kinetic equation by a class of integral transform of pathway type
Kumar, Dilip
2013-04-01
Solutions of fractional kinetic equations are obtained through an integral transform named Pα-transform introduced in this paper. The Pα-transform is a binomial type transform containing many class of transforms including the well known Laplace transform. The paper is motivated by the idea of pathway model introduced by Mathai [Linear Algebra Appl. 396, 317-328 (2005), 10.1016/j.laa.2004.09.022]. The composition of the transform with differential and integral operators are proved along with convolution theorem. As an illustration of applications to the general theory of differential equations, a simple differential equation is solved by the new transform. Being a new transform, the Pα-transform of some elementary functions as well as some generalized special functions such as H-function, G-function, Wright generalized hypergeometric function, generalized hypergeometric function, and Mittag-Leffler function are also obtained. The results for the classical Laplace transform is retrieved by letting α → 1.
International Nuclear Information System (INIS)
Parisot, M.
2011-01-01
This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be
Temperature dependence of nonsteady radiation conductivity of polymers
International Nuclear Information System (INIS)
Tyutnev, A.P.; Saenko, V.S.; Dunaev, A.F.; Sichkar', V.P.; Vannikov, A.V.
1984-01-01
Influence of temperature on non-steady radiation conductivity (NRC) of polymeric dielectrics is investigated. It is revealed that the temperature effects first of all delayed NRC constituent. Temperature increase up to 100 deg C is followed by certain slowing down the rate of current drop of induced conductivity, in this case the nature of the volt-ampere characteristic of delayed NRC constituent does not essentially change, as a rule. The obtained experimental results interpreted in the frames of the band model permitted to make conclusions on the effect of chemical structure of the polymer on its NRC. Presence of carbazole or phenylic groups in the elementary chain is shown to increase the delayed constituent of induced conductivity and to ensure prevailing yield of free charges. Appearance of methyl groups in the composition of the chain essentially suppresses the delayed constituent and results in high values of activation energy and rather slowed down current drop
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar [Universidade Federal de Pelotas, Capao do Leao, RS (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcelo [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2016-12-15
In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.
A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations
International Nuclear Information System (INIS)
Liu, Hongwei; Xu, Kun
2007-01-01
This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method
Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow
Schäfer, Stefan
2017-04-01
The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the
International Nuclear Information System (INIS)
Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George
2016-01-01
The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.
PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY
Energy Technology Data Exchange (ETDEWEB)
Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)
2015-07-20
A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.
Multi-scale method for the resolution of the neutronic kinetics equations
International Nuclear Information System (INIS)
Chauvet, St.
2008-10-01
In this PhD thesis and in order to improve the time/precision ratio of the numerical simulation calculations, we investigate multi-scale techniques for the resolution of the reactor kinetics equations. We choose to focus on the mixed dual diffusion approximation and the quasi-static methods. We introduce a space dependency for the amplitude function which only depends on the time variable in the standard quasi-static context. With this new factorization, we develop two mixed dual problems which can be solved with Cea's solver MINOS. An algorithm is implemented, performing the resolution of these problems defined on different scales (for time and space). We name this approach: the Local Quasi-Static method. We present here this new multi-scale approach and its implementation. The inherent details of amplitude and shape treatments are discussed and justified. Results and performances, compared to MINOS, are studied. They illustrate the improvement on the time/precision ratio for kinetics calculations. Furthermore, we open some new possibilities to parallelize computations with MINOS. For the future, we also introduce some improvement tracks with adaptive scales. (author)
Karlin, Ilya
2018-04-01
Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.
International Nuclear Information System (INIS)
Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando
2015-01-01
Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica
2015-07-01
In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)
International Nuclear Information System (INIS)
Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana
2015-01-01
In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)
Pogan, Alin; Zumbrun, Kevin
2018-06-01
We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.
International Nuclear Information System (INIS)
Winkler, E.
1991-01-01
The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de
International Nuclear Information System (INIS)
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-01-01
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body
Directory of Open Access Journals (Sweden)
Magdalena Filkiewicz
2016-12-01
Work to identify the kinetics of the process are aimed at, among others, creating a model describing the speed of the process, including obtaining an answer whether the above equations can be the basis for further work on identifying the factors influencing the stabilization process.
DEFF Research Database (Denmark)
Costa, Rafael S.; Machado, Daniel; Rocha, Isabel
2010-01-01
, represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...
International Nuclear Information System (INIS)
Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho; Pyeon, Cheol Ho
2015-01-01
In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r g , E g , t g ) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the neutron sources
Energy Technology Data Exchange (ETDEWEB)
Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Pyeon, Cheol Ho [Kyoto University, Osaka (Japan)
2015-10-15
In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r{sub g}, E{sub g}, t{sub g}) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the
International Nuclear Information System (INIS)
Winkler, E.
1991-01-01
Mathematical models in tracer kinetics are usually based on ordinary differential equations which correspond to a system of kinetically homogeneous compartments (standard compartments). A generalization is possible by the admission of inhomogeneities in the behaviour of the elements belonging to a compartment. The important special case of the age-dependence of elimination rates is treated in its deterministic version. It leads to partial different equations (i.e., systems with distributed coefficients) with the 'age' or the 'residence time' of an element of the compartment as a variable additional to 'time'. The basic equations for one generalized compartment and for systems of such compartments are given together with their general solutions. (orig.) [de
Directory of Open Access Journals (Sweden)
Bambang Rusdiarso
2016-12-01
Full Text Available Extraction and purification of humic acid from dry horse dung powder (HD-HA was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994 under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka and desorption rate constant (kd, Langmuir (monolayer and Freundlich (multilayer sorption capacities, and energy (E of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b and energy (E were determined according to Langmuir isotherm model, and multilayer sorption capacity (B was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a, Langmuir sorption capacity (b, and sorbed Zn2+ at equilibrium (xe.
Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor
Abedi-Varaki, Mehdi
2017-08-01
Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.
Analytic method study of point-reactor kinetic equation when cold start-up
International Nuclear Information System (INIS)
Zhang Fan; Chen Wenzhen; Gui Xuewen
2008-01-01
The reactor cold start-up is a process of inserting reactivity by lifting control rod discontinuously. Inserting too much reactivity will cause short-period and may cause an overpressure accident in the primary loop. It is therefore very important to understand the rule of neutron density variation and to find out the relationships among the speed of lifting control rod, and the duration and speed of neutron density response. It is also helpful for the operators to grasp the rule in order to avoid a start-up accident. This paper starts with one-group delayed neutron point-reactor kinetics equations and provides their analytic solution when reactivity is introduced by lifting control rods discontinuously. The analytic expression is validated by comparison with practical data. It is shown that the analytic solution agrees well with numerical solution. Using this analytical solution, the relationships among neutron density response with the speed of lifting control rod and its duration are also studied. By comparing the results with those under the condition of step inserted reactivity, useful conclusions are drawn
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
Response of ferritic steels to nonsteady loading at elevated temperatures
International Nuclear Information System (INIS)
Swindeman, R.W.
1984-01-01
High-temperature operating experience is lacking in pressure vessel materials that have strength levels above 586 MPa. Because of their tendency toward strain softening, we have been concerned about their behavior under nonsteady loading. Testing was undertaken to explore the extent of softening produced by monotonic and cyclic strains. The specific materials included bainitic 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel, a micro-alloyed version of 2 1/4Cr-1Mo steel containing vanadium, titanium, and boron, and a martensitic 9Cr-1Mo-V-Nb steel. Tests included tensile, creep, variable stress creep, relaxation, strain cycling, stress cycling, and non-isothermal creep ratchetting experiments. We found that these steels had very low uniform elongation and exhibited small strains to the onset of tertiary creep compared to annealed 2 1/4Cr-1Mo steel. Repeated relaxation test data also indicated a limited capacity for strain hardening. Reversal strains produced softening. The degree of softening increased with increased initial strength level. We concluded that the high strength bainitic and martensitic steels should perform well when used under conditions where severe cyclic operation does not occur
International Nuclear Information System (INIS)
Vargas, L.
1988-01-01
The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval
Energy Technology Data Exchange (ETDEWEB)
Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)
2015-12-01
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs
Energy Technology Data Exchange (ETDEWEB)
Palma, Daniel A.P. [CEFET QUIMICA de Nilopolis/RJ, 21941-914 Rio de Janeiro (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Goncalves, Alessandro C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)
2009-09-15
The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.
International Nuclear Information System (INIS)
Palma, Daniel A.P.; Martinez, Aquilino S.; Goncalves, Alessandro C.
2009-01-01
The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.
Frost, W.; Harper, W. L.
1975-01-01
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.
International Nuclear Information System (INIS)
Chen, G.S.; Christenson, J.M.
1985-01-01
In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program
Energy Technology Data Exchange (ETDEWEB)
Park, Kyung Seok; Kim, Hyun Dae; Yeom, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-07-01
A computer code for solving the three-dimensional reactor neutronic transient problems utilizing multi-point reactor kinetics equations recently developed has been developed. For evaluating its applicability, the code has been tested with typical 3-D LWR and CANDU reactor transient problems. The performance of the method and code has been compared with the results by fine and coarse meshes computer codes employing the direct methods.
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
Energy Technology Data Exchange (ETDEWEB)
Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2016-06-01
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region
International Nuclear Information System (INIS)
Kipriyanov, A.A.; Doktorov, A.B.
2005-01-01
We have considered two many-particle models of the irreversible reaction A + B → Product for which closed kinetic equations for the mean concentration N A (t) of A species can be exactly obtained. These equations are identically recast into a unified form of integro-differential equation of general kinetic theory. It is shown that the memory functions for both models under consideration can be represented as a sum of the Markovian and non-Markovian parts. It is essential that the Markovian part of the Laplace transform of any kernel can be obtained using the Laplace transform of the kernel itself, and is the root of the non-Markovian part of the Laplace transform of the kernel. The properties established allowed us to perform correct approximation of the memory functions at small concentrations [B] of B species and derive the binary non-Markovian integro-differential equation. Within the binary theory accuracy this equation has been rewritten in a regular frame of a familiar rate equation satisfying general principles of binary kinetic equations. Thus using particular exactly solvable many-particle models, we have reproduced the most essential steps of the known general way for the derivation of the binary kinetic equation avoiding the sophisticated many-particle technique and the corresponding approximations. Besides, the results obtained can serve as an additional evidence of the approximations made in a general many-particle approach to the derivation of the binary kinetic equation
International Nuclear Information System (INIS)
Ol'khovskij, I.I.; Sadykov, N.M.
1980-01-01
The paper deals with the development of classical-statistical approach to the orientational effect theory with account of the influence of the two-particle correlation function of a crystal on diffusion processes. Peculiarities of fast particle movement in the crystal moving at small angles to crystallographic axes and planes are caused by a great number of correlated collisions of the beam particle with the crystal atoms during which the particle slightly deviates in each collision from the direction of its movement before the collision. Obtained is the kinetic equation for the distribution function over coordinates and velocities describing the movement of these particles in the crystal. Lacking the particle deceleration the equation describing movement of the beam particles in the averaged potential and their diffusion by velocities is also obtained. The main peculiarity of these equations is the fact that they take into account strong spatial non-uniformity in the crystal atom distribution [ru
International Nuclear Information System (INIS)
Carver, M.B.; Hanley, D.V.; Chaplin, K.R.
1979-02-01
MAKSIMA-CHEMIST was written to compute the kinetics of simultaneous chemical reactions. The ordinary differential equations, which are automatically derived from the stated chemical equations, are difficult to integrate, as they are coupled in a highly nonlinear manner and frequently involve a large range in the magnitude of the reaction rates. They form a classic 'stiff' differential equaton set which can be integrated efficiently only by recently developed advanced techniques. The new program also contains provision for higher order chemical reactions, and has a dynamic storage and decision feature. This permits it to accept any number of chemical reactions and species, and choose an integraton scheme which will perform most efficiently within the available memory. Sparse matrix techniques are used when the size and structure of the equation set is suitable. Finally, a number of post-analysis options are available, including printer and Calcomp plots of transient response of selected species, and graphical representation of the reaction matrix. (auth)
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive
International Nuclear Information System (INIS)
Oliveira, F.R.; Bodmann, B.E.J.; Vilhena, M.T.; Carvalho, F.
2017-01-01
Highlights: • The present work presents an exact solution to neutron spatial kinetic equation. • It is an exact solution in a heterogeneous cylinder with temporal dependence. • The solution was constructed through the separation of variables method. - Abstract: In the present work we discuss a system of partial differential equations that model neutron space-kinetics in cylindrical geometry and are defined by two sectionally homogeneous cylinder cells, mono-energetic neutrons and one group of delayed neutron precursors. The solution is determined using the technique of variable separation. The associated complete spectra with respect to each variable separation are analysed and truncated such as to allow a parameterized global solution. For the obtained solution we present some numerical results for the scalar neutron flux and its time dependence and projection on the cylinder axis z and the radial and cylinder axis projection. As a case study we consider an insertion of an absorbing medium in the upper cylinder cell. Continuity of the scalar flux at the interface between the two cylinder elements and conserved current density is explained and related to scale invariance of the partial differential equation system together with the initial and boundary conditions. Some numerical results for the scalar angular neutron flux and associated current densities are shown.
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs
A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes
Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.
2018-06-01
A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.
Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis
International Nuclear Information System (INIS)
Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.
2016-01-01
A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.
Advantages of forced non-steady operated trickle-bed reactors
Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.
2002-01-01
Trickle-bed reactors are usually operated in the steady state trickle flow regime. Uneven liquid distribution and the formation of hot spots are the most serious problems experienced during trickle flow operation. In this paper, we advocate the use of non-steady state operation of trickle-bed
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
International Nuclear Information System (INIS)
Kitis, G.; Furetta, C.; Azorin, J.
2003-01-01
Synthetic thermoluminescent (Tl) glow peaks, following a second and general kinetics order have been generated by computer. The general properties of the so generated peaks have been investigated over several order of magnitude of simulated doses. Some non usual results which, at the best knowledge of the authors, are not reported in the literature, are obtained and discussed. (Author)
Euler and Navier endash Stokes limits of the Uehling endash Uhlenbeck quantum kinetic equations
International Nuclear Information System (INIS)
Arlotti, L.; Lachowicz, M.
1997-01-01
The Uehling endash Uhlenbeck evolution equations for gases of identical quantum particles either fermions or bosons, in the case in which the collision kernel does not depend on the distribution function, are considered. The existence of solutions and their asymptotic relations with solutions of the hydrodynamic equations both at the level of the Euler system and at the level of the Navier endash Stokes system are proved. copyright 1997 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Tumelero, Fernanda; Bodmann, Bardo E. J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Lapa, Celso M.F., E-mail: fernanda.tumelero@yahoo.com.br, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems of ordinary differential equations, where a modified decomposition method is applied. The coefficient matrix is split into two, one constant diagonal matrix and the second one with the remaining time dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms containing the latter matrix are treated as source terms. Note, that the homogeneous equation system has a well known solution, since the matrix is diagonal and constant. This solution plays the role of the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A second feature of the method is the choice of the initial and boundary conditions, which are satisfied by the recursion initialization, while from the rst recursion step onward the initial and boundary conditions are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution. (author)
International Nuclear Information System (INIS)
Ceolin, Celina
2010-01-01
The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)
International Nuclear Information System (INIS)
March, N.H.
2002-08-01
In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)
Solubility of the transport equation in the kinetics of coagulation and fragmentation
International Nuclear Information System (INIS)
Dubovskii, P B
2001-01-01
We prove a local existence theorem for a continuous solution of the spatially inhomogeneous kinetic coagulation-fragmentation model of Smoluchowski. Then we prove the solubility of the problem in the large in the class of continuous functions. It is important to emphasize that we admit unbounded integral kernels in both cases. The uniqueness of the solution and its continuous dependence on the input data are also demonstrated
Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics
El-Nabulsi, Rami Ahmad
2018-06-01
The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.
Kinetic equation of Lagrange particles and turbulence of an incompressible fluid
International Nuclear Information System (INIS)
Gordienko, S.N.
1999-01-01
Closed equation for the two-point function of the velocity and pressure gradient distribution is obtained. The spectral properties of the turbulent flow are studied on the basis of the analysis of scaling properties of the above equation and the problem on the role of the vorticity distribution in a turbulent flow alternation was considered. It is shown, that alternation is connected with boundary conditions. The geometric picture of the alternation is found. It is established, that distribution of the vorticity and correspondingly the role of alternation in the currents with spirality and without spirality are completely different
Formation of solar filaments by steady and nonsteady chromospheric heating
Xia, C.; Chen, P. F.; Keppens, R.; van Marle, A. J.
2011-01-01
It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of its footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to investigate the filament formation process in a pre-shaped loop with
Formation of Solar Filaments by Steady and Nonsteady Chromospheric Heating
Xia, C.; Chen, P.F.; Keppens, R.; van Marle, A. -J
2011-01-01
It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of its footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to investigate the filament formation process in a pre-shaped loop with
Non-Steady Oscillatory Flow in Coarse Granular Materials
DEFF Research Database (Denmark)
Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der
1992-01-01
Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....
Electron kinetics with attachment and ionization from higher order solutions of Boltzmann's equation
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.; Braglia, G.L.
1989-01-01
An appropriate approach is presented for solving the Boltzmann equation for electron swarms and nonstationary weakly ionized plasmas in the hydrodynamic stage, including ionization and attachment processes. Using a Legendre-polynomial expansion of the electron velocity distribution function the resulting eigenvalue problem has been solved at any even truncation-order. The technique has been used to study velocity distribution, mean collision frequencies, energy transfer rates, nonstationary behaviour and power balance in hydrodynamic stage, of electrons in a model plasma and a plasma of pure SF 6 . The calculations have been performed for increasing approximation-orders, up to the converged solution of the problem. In particular, the transition from dominant attachment to prevailing ionization when increasing the field strength has been studied. Finally the establishment of the hydrodynamic stage for a selected case in the model plasma has been investigated by solving the nonstationary, spatially homogeneous Boltzmann equation in twoterm approximation. (author)
Numerical solution of kinetics equation for point defects accumulation in metals under irradiation
International Nuclear Information System (INIS)
Aldzhambekova, G.T.; Iskakov, B.M.
1999-01-01
In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out
Master equation for a kinetic model of a trading market and its analytic solution.
Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B
2005-08-01
We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.
Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation.
Zhang, Raoyang; Shan, Xiaowen; Chen, Hudong
2006-10-01
We present a further theoretical extension to the kinetic-theory-based formulation of the lattice Boltzmann method of Shan [J. Fluid Mech. 550, 413 (2006)]. In addition to the higher-order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the nonequilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to third-order hydrodynamic moments. Numerical evidence demonstrates that the extended model overcomes some major defects existing in conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number Kn can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn.
On the maximum-entropy method for kinetic equation of radiation, particle and gas
International Nuclear Information System (INIS)
El-Wakil, S.A.; Madkour, M.A.; Degheidy, A.R.; Machali, H.M.
1995-01-01
The maximum-entropy approach is used to calculate some problems in radiative transfer and reactor physics such as the escape probability, the emergent and transmitted intensities for a finite slab as well as the emergent intensity for a semi-infinite medium. Also, it is employed to solve problems involving spherical geometry, such as luminosity (the total energy emitted by a sphere), neutron capture probability and the albedo problem. The technique is also employed in the kinetic theory of gases to calculate the Poiseuille flow and thermal creep of a rarefied gas between two plates. Numerical calculations are achieved and compared with the published data. The comparisons demonstrate that the maximum-entropy results are good in agreement with the exact ones. (orig.)
Effects of non-steady irradiation conditions on fusion materials performance
International Nuclear Information System (INIS)
Matsui, H.; Fukumoto, K.; Nagumo, T.; Nita, N.
2001-01-01
During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)
Manning, Robert M.
2009-01-01
Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.
Fukushima, Kenji; Hidaka, Yoshimasa
2018-04-01
We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .
Saylor, Rick D.; Ford, Gregory D.
The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.
International Nuclear Information System (INIS)
Silva, Milena Wollmann da
2013-01-01
In this work, we report a genuine analytical representation for the solution of the neutron point kinetics equation free of the stiffness character, assuming that the reactivity is a continuous and sectionally continuous function of time. To this end, we initially cast the point kinetics equation in a first order linear differential equation. Next, we split the corresponding matrix as a sum of a diagonal matrix with a matrix, whose components contain the off-diagonal elements. Next, expanding the neutron density and the delayed neutron precursors concentrations in a truncated series, and replacing these expansions in the matrix equation, we come out with an equation, which allows to construct a recursive system, a first order matrix differential equation with source. The fundamental characteristic of this system relies on the fact that the corresponding matrix is diagonal, meanwhile the source term is written in terms of the matrix with the off-diagonal components. Further, the first equation of the recursive system has no source and satisfies the initial conditions. On the other hand, the remaining equations satisfy the null initial condition. Due to the diagonal feature of the matrix, we attain analytical solutions for these recursive equations. We also mention that we evaluate the results for any time value, without the analytical continuity because the purposed solution is free on the stiffness character. Finally, we present numerical simulations and comparisons against literature results, considering specific the applications for the following reactivity functions: constant, step, ramp, and sine. (author)
Abstract of programs for nuclear reactor calculation and kinetic equations solution
International Nuclear Information System (INIS)
Marakazov, A.A.
1977-01-01
The collection includes about 50 annotations of programmes,developed in the Kurchatov Atomic Energy Institute in 1971-1976. The programmes are intended for calculating the neutron flux, for solving systems of multigroup equations in P 3 approximation, for calculating the reactor cell, for analysing the system stability, breeding ratio etc. The programme annotations are compiled according to the following diagram: 1.Programme title. 2.Computer type. 3.Physical problem. 4.Solution method. 5.Calculation limitations. 6.Characteristic computer time. 7.Programme characteristic features. 8.Bound programmes. 9.Programme state. 10.Literature allusions in the programme. 11.Required memory resourses. 12.Programming language. 13.Operation system. 14.Names of authors and place of programme adjusting
Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary
International Nuclear Information System (INIS)
Palmeri, J.
1990-01-01
The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the
The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach
International Nuclear Information System (INIS)
Guo, X.-H.; Wu, H.-K.
2007-01-01
In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory
International Nuclear Information System (INIS)
Kaganovich, Igor D.; Polomarov, Oleg
2003-01-01
In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated
Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I
2018-04-16
Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.
Directory of Open Access Journals (Sweden)
José Gilson Louzada Regadas Filho
2011-09-01
Full Text Available This study aimed at estimating the kinetic parameters of ruminal degradation of neutral detergent fiber from agroindustrial byproducts of cashew (pulp and cashew nut, passion fruit, melon, pineapple, West Indian cherry, grape, annatto and coconut through the gravimetric technique of nylon bag, and to evaluate the prediction equation of indigestible fraction of neutral detergent fiber suggested by the Cornell Net Carbohydrate and Protein System. Samples of feed crushed to 2 mm were placed in 7 × 14 cm nylon bags with porosity of 50 µm in a ratio of 20 g DM/cm² and incubated in duplicate in the rumen of a heifer at 0, 3, 6, 9, 12, 16, 24, 36, 48, 72, 96 and 144 hours. The incubation residues were analyzed for NDF content and evaluated by a non-linear logistic model. The evaluation process of predicting the indigestible fraction of NDF was carried out through adjustment of linear regression models between predicted and observed values. There was a wide variation in the degradation parameters of NDF among byproducts. The degradation rate of NDF ranged from 0.0267 h-1 to 0.0971 h-1 for grape and West Indian cherry, respectively. The potentially digestible fraction of NDF ranged from 4.17 to 90.67%, respectively, for melon and coconut byproducts. The CNCPS equation was sensitive to predict the indigestible fraction of neutral detergent fiber of the byproducts. However, due to the high value of the mean squared error of prediction, such estimates are very variable; hence the most suitable would be estimation by biological methods.
International Nuclear Information System (INIS)
Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.
2001-01-01
The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced
Energy Technology Data Exchange (ETDEWEB)
Decker, J.; Peysson, Y
2004-12-01
A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)
Pratt, D. T.
1984-01-01
Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.
International Nuclear Information System (INIS)
Decker, J.; Peysson, Y.
2004-12-01
A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high β p plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)
Identification of Steady and Non-Steady Gait of Humanexoskeleton Walking System
Żur, K. K.
2013-08-01
In this paper a method of analysis of exoskeleton multistep locomotion was presented by using a computer with the preinstalled DChC program. The paper also presents a way to analytically calculate the ",motion indicator", as well as the algorithm calculating its two derivatives. The algorithm developed by the author processes data collected from the investigation and then a program presents the obtained final results. Research into steady and non-steady multistep locomotion can be used to design two-legged robots of DAR type and exoskeleton control system
Non-steady state modeling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza González, Luis Miguel; Giménez, J.G.
2013-01-01
Among all the algorithms to solve the wheel–rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it pre...
International Nuclear Information System (INIS)
Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki
1975-12-01
A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)
Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip
2016-04-01
The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.
Energy Technology Data Exchange (ETDEWEB)
Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh
2016-01-04
This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.
Energy Technology Data Exchange (ETDEWEB)
Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)
2006-01-15
As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.
International Nuclear Information System (INIS)
Vlahostergios, Z.; Yakinthos, K.; Goulas, A.
2009-01-01
We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.
Directory of Open Access Journals (Sweden)
D. Baumgardner
2013-01-01
Full Text Available Warm rain in real clouds is produced by the collision and coalescence of an initial population of small droplets. The production of rain in warm cumulus clouds is still one of the open problems in cloud physics, and although several mechanisms have been proposed in the past, at present there is no complete explanation for the rapid growth of cloud droplets within the size range of diameters from 10 to 50 μm. By using a collection kernel enhanced by turbulence and a fully stochastic simulation method, the formation of a runaway droplet is modeled through the turbulent collection process. When the runaway droplet forms, the traditional calculation using the kinetic collection equation is no longer valid, since the assumption of a continuous distribution breaks down. There is in essence a phase transition in the system from a continuous distribution to a continuous distribution plus a runaway droplet. This transition can be associated to gelation (also called sol–gel transition and is proposed here as a mechanism for the formation of large droplets required to trigger warm rain development in cumulus clouds. The fully stochastic turbulent model reveals gelation and the formation of a droplet with mass comparable to the mass of the initial system. The time when the sol–gel transition occurs is estimated with a Monte Carlo method when the parameter ρ (the ratio of the standard deviation for the largest droplet mass over all the realizations to the averaged value reaches its maximum value. Moreover, we show that the non-turbulent case does not exhibit the sol–gel transition that can account for the impossibility of producing raindrop embryos in such a system. In the context of cloud physics theory, gelation can be interpreted as the formation of the "lucky droplet" that grows at a much faster rate than the rest of the population and becomes the embryo for runaway raindrops.
Energy Technology Data Exchange (ETDEWEB)
EL Safadi, M
2007-03-15
We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)
International Nuclear Information System (INIS)
Aboanber, A E; Nahla, A A
2002-01-01
A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases
Bezerra, Rui M F; Fraga, Irene; Dias, Albino A
2013-01-01
Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.
International Nuclear Information System (INIS)
Elliott, J.A.
1993-01-01
Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)
Non-steady state modelling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.
2013-01-01
Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.
Energy Technology Data Exchange (ETDEWEB)
Hernandez S, A. [UNAM-LAIRN, Jiutepec, Morelos (Mexico)] e-mail: augusto_vib@yahoo.com.mx
2003-07-01
The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)
Dual kinetic curves in reversible electrochemical systems.
Directory of Open Access Journals (Sweden)
Michael J Hankins
Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.
International Nuclear Information System (INIS)
Sherrill, M.E.; Abdallah, J. Jr.; Csanak, G.; Kilcrease, D.P.; Dodd, E.S.; Fukuda, Y.; Akahane, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Yamakawa, K.; Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Yu.
2006-01-01
In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He α spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model
Energy Technology Data Exchange (ETDEWEB)
Sherrill, M.E. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States)]. E-mail: manolo@t4.lanl.gov; Abdallah, J. Jr. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Csanak, G. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Kilcrease, D.P. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Dodd, E.S. [Los Alamos National Laboratory, X-1, Los Alamos, NM 87545 (United States); Fukuda, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Akahane, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Aoyama, M. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Inoue, N. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Ueda, H. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Yamakawa, K. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Faenov, A.Ya. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation)
2006-05-15
In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He{sub {alpha}} spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.
Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D
2008-12-25
The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
International Nuclear Information System (INIS)
Reynolds, J. M.; Lopez-Bruna, D.
2009-01-01
This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs
Avissar, Roni; Chen, Fei
1993-01-01
Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes
International Nuclear Information System (INIS)
Davidson, R.C.; Chen, C.
1997-08-01
A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria
Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan
2016-12-01
For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function
Directory of Open Access Journals (Sweden)
E. Marsch
1998-01-01
Full Text Available Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component velocity distribution functions (VDFs, as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.
International Nuclear Information System (INIS)
Croft, S.; McElroy, RD.; Favalli, A.; Hauck, D.; Henzlova, D.; Henzl, V.; Santi, PA.
2015-01-01
Passive neutron correlation counting is widely used, for example by international inspection agencies, for the non‑destructive assay of spontaneously fissile nuclear materials for nuclear safeguards. The mass of special nuclear material present in an item is usually estimated from the observed neutron counting rates by using equations based on mathematically describing the object as an isolated multiplying point‑like source. Calibration using representative physical standards can often adequately compensate for this theoretical oversimplification through the introduction and use of effective‑interpretational‑model‑parameters meaning that useful assay results are obtained. In this work we extend the point‑model treatment by including a simple reflector around the fissioning material. Specifically we show how the leakage self‑multiplication equation mathematically connects the traditional bare source and the reflected source cases. In doing so we explicitly demonstrate that although the presence of a simple reflector changes the leakage self‑multiplication the traditional bare‑item point model multiplicity equations retain the same mathematical form. Making and explaining this connection is important because it helps to explain and justify the practical success and use of the traditional point‑model equations even when the assumptions used to generate the key functional dependences are violated. We are not aware that this point has been recognized previously.
The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it
Directory of Open Access Journals (Sweden)
B. I. McNeil
2013-04-01
Full Text Available The role of the ocean has been pivotal in modulating rising atmospheric CO2 levels since the industrial revolution, sequestering nearly half of all fossil-fuel derived CO2 emissions. Net oceanic uptake of CO2 has roughly doubled between the 1960s (~1 Pg C yr−1 and 2000s (~2 Pg C yr−1, with expectations that it will continue to absorb even more CO2 with rising future atmospheric CO2 levels. However, recent CO2 observational analyses along with numerous model predictions suggest the rate of oceanic CO2 uptake is already slowing, largely as a result of a natural decadal-scale outgassing signal. This recent CO2 outgassing signal represents a significant shift in our understanding of the oceans role in modulating atmospheric CO2. Current tracer-based estimates for the ocean storage of anthropogenic CO2 assume the ocean circulation and biology is in steady state, thereby missing the new and potentially important "non-steady state" CO2 outgassing signal. By combining data-based techniques that assume the ocean is in a steady state, with techniques that constrain the net oceanic CO2 uptake signal, we show how to extract the non-steady state CO2 signal from observations. Over the entire industrial era, the non-steady state CO2 outgassing signal (~13 ± 10 Pg C is estimated to represent about 9% of the total net CO2 inventory change (~142 Pg C. However, between 1989 and 2007, the non-steady state CO2 outgassing signal (~6.3 Pg C has likely increased to be ~18% of net oceanic CO2 storage over that period (~36 Pg C. The present uncertainty of our data-based techniques for oceanic CO2 uptake limit our capacity to quantify the non-steady state CO2 signal, however with more data and better certainty estimates across a range of diverse methods, this important and growing CO2 signal could be better constrained in the future.
Energy Technology Data Exchange (ETDEWEB)
Suescun D, D.; Oviedo T, M., E-mail: daniel.suescun@usco.edu.co [Universidad Surcolombiana, Av. Pastrana Borrero - Carrera 1, Neiva, Huila (Colombia)
2017-09-15
In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and
International Nuclear Information System (INIS)
Watanabe, T.-H.; Sugama, H.; Sato, T.
1999-12-01
A non-dissipative drift kinetic simulation scheme, which rigorously satisfies the time-reversibility, is applied to the three-mode coupling problem of the ion temperature gradient (ITG) instability. It is found from the simulation that the three-mode ITG system repeats growth and decay with a period which shows a logarithmic divergence for infinitesimal initial perturbations. Accordingly, time average of the mode amplitude vanishes, as the initial amplitude approaches to zero. An exact solution is analytically given for a class of initial conditions. An excellent agreement is confirmed between the analytical solution and numerical results. The results obtained here provide a useful reference for basic benchmarking of theories and simulation of the ITG modes. (author)
Energy Technology Data Exchange (ETDEWEB)
Koshelev, A. S., E-mail: alexsander.coshelev@yandex.ru; Arapov, A. V.; Ovchinnikov, M. A. [Russian Federal Nuclear Center–All-Russian Research Institute of Experimental Physics (Russian Federation)
2016-12-15
The file-evaluation results of a reactimeter based on the inverse solution to the kinetics equation (ISKE) are presented, which were obtained using an operating hardware-measuring complex with a KNK-4 neutron detector working in the current mode. The processing of power-recording files of the BR-1M, BR-K1, and VIR-2M reactors of the Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics, which was performed with the use of Excel simulation of the ISKE formalism, demonstrated the feasibility of implementation of the reactivity monitoring (during the operation of these reactors at stationary power) beginning from the level of ~5 × 10{sup –4}β{sub eff}.
Cheng, Hsien C
2009-01-01
Half life and its derived pharmacokinetic parameters are calculated on an assumption that the terminal phase of drug disposition follows a constant rate of disposition. In reality, this assumption may not necessarily be the case. A new method is needed for analyzing PK parameters if the disposition does not follow a first order PK kinetic. Cumulative area under the concentration-time curve (AUC) is plotted against time to yield a hyperbolic (or sigmoidal) AUC-time relationship curve which is then analyzed by Hill's equation to yield AUC(inf), time to achieving AUC50% (T(AUC50%)) or AUC90% (T(AUC90%)), and the Hill's slope. From these parameters, an AUC-time relationship curve can be reconstructed. Projected plasma concentration can be calculated for any time point. Time at which cumulative AUC reaches 90% (T(AUC90%)) can be used as an indicator for expressing how fast a drug is cleared. Clearance is calculated in a traditional manner (i.v. dose/AUC(inf)), and the volume of distribution is proposed to be calculated at T(AUC50%) (0.5 i.v. dose/plasma concentration at T(AUC50%)). This method of estimating AUC is applicable for both i.v. and oral data. It is concluded that the Hill's equation can be used as an alternative method for estimating AUC and analysis of PK parameters if the disposition does not follow a first order kinetic. T(AUC90%) is proposed to be used as an indicator for expressing how fast a drug is cleared from the system.
Energy Technology Data Exchange (ETDEWEB)
Caillet, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
The author reviews precisely the analogical techniques used for the resolution of the kinetic equations of nuclear reactors. Prior to this, he recalls the reasons which oblige physicians and engineers, even today, to use electronic machines in this domain. The author then considers the technological problems posed by the range of values which the various nuclear parameters adopt. In each case, he shows that a compromise is possible allowing an optimum precision. He compares the results to those obtained by arithmetic calculation and uses the examples chosen in a critical analysis of the present possibilities of the two methods of calculation. (author) [French] L'auteur cherche a faire un point aussi exact que possible des techniques analogiques utilisees pour resoudre les equations cinetiques des reacteurs nucleaires. Il rappelle auparavant les raisons pour lesquelles physiciens et ingenieurs sont obliges, encore aujourd'hui, de faire appel aux machines electroniques dans ce domaine. Puis il etudie les problemes technologiques que souleve le champ des valeurs prises par les differents parametres nucleaires. Dans chacun des cas, il montre l'existence d'un compromis qui permet d'atteindre une precision optimum. Il compare les resultats obtenus a ceux provenant de calculateurs arithmetiques et profite des exemples choisis pour faire une analyse critique des possibilites actuelles offertes par les deux modes de calcul. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Silva, Milena Wollmann da
2013-08-01
In this work, we report a genuine analytical representation for the solution of the neutron point kinetics equation free of the stiffness character, assuming that the reactivity is a continuous and sectionally continuous function of time. To this end, we initially cast the point kinetics equation in a first order linear differential equation. Next, we split the corresponding matrix as a sum of a diagonal matrix with a matrix, whose components contain the off-diagonal elements. Next, expanding the neutron density and the delayed neutron precursors concentrations in a truncated series, and replacing these expansions in the matrix equation, we come out with an equation, which allows to construct a recursive system, a first order matrix differential equation with source. The fundamental characteristic of this system relies on the fact that the corresponding matrix is diagonal, meanwhile the source term is written in terms of the matrix with the off-diagonal components. Further, the first equation of the recursive system has no source and satisfies the initial conditions. On the other hand, the remaining equations satisfy the null initial condition. Due to the diagonal feature of the matrix, we attain analytical solutions for these recursive equations. We also mention that we evaluate the results for any time value, without the analytical continuity because the purposed solution is free on the stiffness character. Finally, we present numerical simulations and comparisons against literature results, considering specific the applications for the following reactivity functions: constant, step, ramp, and sine. (author)
International Nuclear Information System (INIS)
Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.
1979-01-01
Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2
International Nuclear Information System (INIS)
Tanomaru, N.
1979-12-01
The problem of parameter identification in a pontual model for a thermal reactor is dealt with using the quasilinearization technique. The model considers one group of delayed neutrons and a heavily non-linear temperature feedback in the reactivity. The parameter prompt neutron generation time and a parameter of the fuel temperatura reactivity coefficient equation are identified simultaneously, considering discrete measurements of the reactor power, during the transient produced by a change in the external reactivity. The influences of the choice of the external reactivity disturbance, of the two parameters values initial guesses, of the interval between measurements and the measurement noise level in the method accuracy and rate of convergence are analysed. For noiseless or low level noise measurements, the method proved to be very effective. (Author) [pt
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
Directory of Open Access Journals (Sweden)
Sheidaei Behnaz
2015-06-01
Full Text Available In this work, a design equation was presented for a batch-recirculated photoreactor composed of a packed bed reactor (PBR with immobilised TiO2-P25 nanoparticle thin films on glass beads, and a continuous-flow stirred tank (CFST. The photoreactor was studied in order to remove C.I. Acid Orange 7 (AO7, a monoazo anionic dye from textile industry, by means of UV/TiO2 process. The effect of different operational parameters such as the initial concentration of contaminant, the volume of solution in CFST, the volumetric flow rate of liquid, and the power of light source in the removal efficiency were examined. A rate equation for the removal of AO7 is obtained by mathematical kinetic modelling. The results of reaction kinetic analysis indicate the conformity of removal kinetics with Langmuir-Hinshelwood model (kL-H = 0.74 mg L-1 min-1, Kads = 0.081 mg-1 L. The represented design equation obtained from mathematical kinetic modelling can properly predict the removal rate constant of the contaminant under different operational conditions (R2 = 0.963. Thus the calculated and experimental results are in good agreement with each other.
Introduction to Kinetic Model Equations
2011-01-01
application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ∗Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
Pöschl, U.; Rudich, Y.; Ammann, M.
2007-12-01
Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution
Energy Technology Data Exchange (ETDEWEB)
Reynolds, J. M.; Lopez-Bruna, D.
2009-10-12
In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs.
International Nuclear Information System (INIS)
Colombino, A.; Mosiello, R.; Norelli, F.; Jorio, V.M.; Pacilio, N.
1975-01-01
A nuclear system kinetics is formulated according to a stochastic approach. The detailed probability balance equations are written for the probability of finding the mixed population of neutrons and detected neutrons, i.e. detectrons, at a given level for a given instant of time. Equations are integrated in search of a probability profile: a series of cases is analyzed through a progressive criterium. It tends to take into account an increasing number of physical processes within the chosen model. The most important contribution is that solutions interpret analytically experimental conditions of equilibrium (moise analysis) and non equilibrium (pulsed neutron measurements, source drop technique, start up procedures)
Elements of plasma kinetic theory
International Nuclear Information System (INIS)
Guasp, J.
1976-01-01
The physical foundations of plasma kinetic equations are exposed inside a series of seminars on plasma and fusion physics. The Vlasov and collisional equations with its application range have been discussed. The momenta equations for the macroscopic magnitudes and the more usual approximations have been obtained: two fluid equations for cold and warm plasmas, magnetohydrodynamic equations and the double-adiabatic theory. (author)
Fast simulation of non-steady state emission problems in energy conversion
Mees, P.A.J.; Wolff, E.H.P.; Verheijen, P.J.T.; Van den Bleek, C.M.
1990-01-01
Application of the Fast Fourier Transform (FFT) to the inversion of Laplace transforms is a recent development in the solution of the equations describing the behavior of chemical reactors. Chen and Hsu (1987) used the Fast Fourier Transform for the prediction of breakthrough curves of an isothermal
Energy Technology Data Exchange (ETDEWEB)
Reynolds, J. M.; Lopez-Bruna, D.
2009-12-11
This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs.
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
1999-05-01
Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and
Energy Technology Data Exchange (ETDEWEB)
Reynolds, J. M.; Lopez-Bruna, D.
2009-12-11
This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs.
Kreuzer, Hans Jürgen
1986-01-01
This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A.M.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)] e-mail: armagotorres@aol.com
2003-07-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as {theta} scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
International Nuclear Information System (INIS)
Moreno M, A.; Moreno B, A.
2000-01-01
In this work the incorporation of activation energy and frequency factor parameters proposed by R. Chen are presented in the original formulation of Randall and wilkins second order kinetics. The results concordance are compared between the calculus following the R. Chen methodology with those ones obtained by direct incorporation of the previously indicated in the Randall-Wilkins-Levy expression for a simulated thermoluminescent emission curve of two peaks with maximum peak temperature (tm): t m1=120 and t m2=190. (Author)
Space-time reactor kinetics for heterogeneous reactor structure
Energy Technology Data Exchange (ETDEWEB)
Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)
1969-11-15
An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.
International Nuclear Information System (INIS)
Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan
2017-01-01
Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the
Solving Simple Kinetics without Integrals
de la Pen~a, Lisandro Herna´ndez
2016-01-01
The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…
Energy Technology Data Exchange (ETDEWEB)
Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)
2016-04-15
The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.
Energy Technology Data Exchange (ETDEWEB)
Petersen, Claudio Z. [Universidade Federal de Pelotas, Capao do Leao (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Bodmann, Bardo E.J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro, Nova Friburgo, RJ (Brazil). Inst. Politecnico
2014-12-15
In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i.e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.
Energy Technology Data Exchange (ETDEWEB)
Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da, E-mail: deciobr@eletronuclear.gov.br, E-mail: mongeor@eletronuclear.gov.br, E-mail: cdsilva@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Angra dos Reis, RJ (Brazil). Departamento DDD.O - Física de Reatores
2017-07-01
The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)
Zhernov, A P
2001-01-01
The problem on solving the kinetic equation through the moments method for the dielectric and semiconductor thermal conductivity is discussed. The evaluations of the isotopic disorder effect on the germanium crystals heat resistance in the multimoment approximation are obtained on the basis of the microscopic models. The contributions of the acoustic and optical phonons to the thermal conductivity are accounted for. The DELTA W surplus heat resistance in comparison with highly-enriched samples was determined for the natural composition samples. Good agreement between the theory and experiment for DELTA W is observed in the case of germanium. The theoretical value in the case of silicon is essentially lower as compared to the DELTA W experimental value
International Nuclear Information System (INIS)
Júnior, Décio Brandes M.F.; Oliveira, Mônica Georgia N.; Silva, Cristiano da
2017-01-01
The goal of this work is present the new System of Acquisition and Signal Processing for the execution of the initial criticality after refueling and physical tests at low power with the incorporation of the real time resolution of Inverse Point Kinetic Equations (IPK). The system was developed using cRIO 9082 hardware (compactRIO), which is a programmable logic controller (PLC) and, the National Lab's LabVIEW programming language. The developed system enabled a better visualization and monitoring interface of the neutron flux evolution during the first criticality of cycle and following the low power physical tests, which allows the Reactor Physics Group and Reactor Operators of Angra 2 guide faster and accurately the reactivity variations at physical tests. The digital reactivity meter developed reinforces in Angra-2 the set of operational practices of reactivity management. (author)
Violon, D
2012-12-01
To develop a multicompartment model of only essential human body components that predicts the contrast medium concentration vs time curve in a chosen compartment after an intravenous injection. Also to show that the model can be used to time adequately contrast-enhanced CT series. A system of linked time delay instead of ordinary differential equations described the model and was solved with a Matlab program (Matlab v. 6.5; The Mathworks, Inc., Natick, MA). All the injection and physiological parameters were modified to cope with normal or pathological situations. In vivo time-concentration curves from the literature were recalculated to validate the model. The recalculated contrast medium time-concentration curves and parameters are given. The results of the statistical analysis of the study findings are expressed as the median prediction error and the median absolute prediction error values for both the time delay and ordinary differential equation systems; these are situated well below the generally accepted maximum 20% limit. The presented program correctly predicts the time-concentration curve of an intravenous contrast medium injection and, consequently, allows an individually tailored approach of CT examinations with optimised use of the injected contrast medium volume, as long as time delay instead of ordinary differential equations are used. The presented program offers good preliminary knowledge of the time-contrast medium concentration curve after any intravenous injection, allowing adequate timing of a CT examination, required by the short scan time of present-day scanners. The injected volume of contrast medium can be tailored to the individual patient with no more contrast medium than is strictly needed.
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
Irreversible processes kinetic theory
Brush, Stephen G
2013-01-01
Kinetic Theory, Volume 2: Irreversible Processes deals with the kinetic theory of gases and the irreversible processes they undergo. It includes the two papers by James Clerk Maxwell and Ludwig Boltzmann in which the basic equations for transport processes in gases are formulated, together with the first derivation of Boltzmann's ""H-theorem"" and a discussion of this theorem, along with the problem of irreversibility.Comprised of 10 chapters, this volume begins with an introduction to the fundamental nature of heat and of gases, along with Boltzmann's work on the kinetic theory of gases and s
Exercise: Kinetic considerations for gas exchange.
Rossiter, Harry B
2011-01-01
The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease. © 2011 American Physiological Society.
Directory of Open Access Journals (Sweden)
Juwairia Obaid
2017-02-01
Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.
Kinetic theory of Jeans instability
Trigger, S.A.; Ershkovic, A.I.; Heijst, van G.J.F.; Schram, P.P.J.M.
2004-01-01
Kinetic treatment of the Jeans gravitational instability, with collisions taken into account, is presented. The initial-value problem for the distribution function which obeys the kinetic equation, with the collision integral conserving the number of particles, is solved. Dispersion relation is
International Nuclear Information System (INIS)
Kimpland, R.H.
1996-01-01
A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented
Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle
Directory of Open Access Journals (Sweden)
Giorgio Kaniadakis
2018-06-01
Full Text Available Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker–Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker–Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker–Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker–Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker–Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A 296, 405 (2001, univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker–Planck equation in its most general form.
Adsorption analysis equilibria and kinetics
Do, Duong D
1998-01-01
This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such
DEFF Research Database (Denmark)
van Leeuwen, Theo; Djonov, Emilia
2014-01-01
After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....
Reactivity and kinetic parameters determination in a multiplicative non-stationary system
International Nuclear Information System (INIS)
Minguez, E.
1982-01-01
A revision of several methods used for solving kinetic equations of a neutronic system is considered. Firstly, kinetic equations in general form are analized, before to revise more important aproximations: point-kinetic method; adiabatic; cuasistatic; eigenvalue equations; nodal, modal and systhesis methods; and variational principles for obtaining kinetic equations. Perturbation theory is used to obtain these parameters, with differents eigenvalue equations representatives of the parameter to be calculated. Also, experimental methods have been included in this work, because of importance the parameters can be measured, and related with those obtained by calculations. Finally, adjoint kinetic equations are resolved to obtain the importance function used in weighted reactivity and kinetic parameters determinations. (author)
Solving Kinetic Equations on GPU’s
2011-01-01
7 Acknowledgments 23 8 Appendix: CUDA pseudo-codes 27 ∗Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32, 20133 Milano, Italy 8
Bonitz, Michael
2016-01-01
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
International Nuclear Information System (INIS)
Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.
2009-01-01
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.
Kinetics of molybdenite oxidizing leaching in alkali medium by ozone
International Nuclear Information System (INIS)
Medvedev, A.S.; Sokratova, N.B.; Litman, I.V.; Zelikman, A.N.
1985-01-01
On the basis of investigation of the process kinetics proposed is a model of oxidizing leaching of molybdenite in alkali medium while ozonization of the solution by ozoneair mixture. A kinetic equation is derived, that describes experimental data satisfactorily
International Nuclear Information System (INIS)
Lifschitz, E.M.; Pitajewski, L.P.
1983-01-01
The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations
International Nuclear Information System (INIS)
Swart, C.A.M. de.
1983-01-01
The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Energy Technology Data Exchange (ETDEWEB)
Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.
2009-06-01
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.
Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.
2009-10-01
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.
A kinetics database and scripts for PHREEQC
Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.
2017-12-01
Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.
On the One-Dimensional Steady and Unsteady Porous Flow Equation
DEFF Research Database (Denmark)
Andersen, O. H.; Burcharth, H. F.
1995-01-01
Porous flow in coarse granular media is discussed theoretically with special concern given to the variation of the flow resistance with the porosity. For steady state flow, the Navier-Stokes equation is applied as a basis for the derivations. A turbulent flow equation is suggested. Alternative...... derivations based on dimensional analysis and a pipe analogy, respectively, are discussed. For non-steady state flow, the derivations are based on a cylinder/sphere analogy leading to a virtual mass coefficient. For the fully turbulent flow regime, existing experimental data values of the quadratic flow...... resistance coefficients are presented. Moreover, a simple formula for estimation of the turbulent flow coefficient is given. Virtual mass coefficients based on existing data are presented, however, no definite conclusions can be given due to the scarce data available....
Kinetic theory of gases and plasmas
International Nuclear Information System (INIS)
Schram, P.P.J.M.
1991-01-01
Kinetic theory provides the link between the non-equilibrium statistical mechanics of many-particle systems and macroscopic or phenomenological physics. This volume deals with the derivation of kinetic equations, their limitations and generalizations,and with the applications of kinetic theory to physical phenomena and the calculation of transport coefficients. This book is divided in 12 chapters which discuss a wide range of topics such as balanced equations, the Klimontovich, Vlasov-Maxwell, and Boltzmann equations, Chapman-Enskog theory, the kinetic theory of plasmas, B.G.K. models, linear response theory, Brownian motion and renormalized kinetic theory. Each chapter is concluded with exercises, which not only enable the readers to test their understanding of the theory, but also present additional examples which complement the text. 151 refs.; 35 figs.; 5 tabs
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
DEFF Research Database (Denmark)
2009-01-01
A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....
Tricomi, FG
2013-01-01
Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff
Barbu, Viorel
2016-01-01
This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.
Directory of Open Access Journals (Sweden)
Mojtaba Ahmadi
2016-11-01
Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.
International Nuclear Information System (INIS)
Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F
2010-01-01
In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.
International Nuclear Information System (INIS)
Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.
1985-01-01
By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction
Kinetics of Pressurized Water Reactors with Hot or Cold Moderators
Energy Technology Data Exchange (ETDEWEB)
Norinder, O
1960-11-15
The set of neutron kinetic equations developed in this report permits the use of long integration steps during stepwise integration. Thermal relations which describe the transfer of heat from fuel to coolant are derived. The influence upon the kinetic behavior of the reactor of a number of parameters is studied. A comparison of the kinetic properties of the hot and cold moderators is given.
Kinetic Model of Growth of Arthropoda Populations
Ershov, Yu. A.; Kuznetsov, M. A.
2018-05-01
Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.
Kinetic Theory of the Inner Magnetospheric Plasma
Khazanov, George V
2011-01-01
This book provides a broad introduction to the kinetic theory of space plasma physics with the major focus on the inner magnetospheric plasma. It is designed to provide a comprehensive description of the different kinds of transport equations for both plasma particles and waves with an emphasis on the applicability and limitations of each set of equations. The major topics are: Kinetic Theory of Superthermal Electrons, Kinetic Foundation of the Hydrodynamic Description of Space Plasmas (including wave-particle interaction processes), and Kinetic Theory of the Terrestrial Ring Current. Distinguishable features of this book are the analytical solutions of simplified transport equations. Approximate analytic solutions of transport phenomena are very useful because they help us gain physical insight into how the system responds to varying sources of mass, momentum and energy and also to various external boundary conditions. They also provide us a convenient method to test the validity of complicated numerical mod...
Fundamental aspects of plasma chemical physics kinetics
Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino
2016-01-01
Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...
Treatment of polymer surfaces in plasma Part I. Kinetic model
International Nuclear Information System (INIS)
Tabaliov, N A; Svirachev, D M
2006-01-01
The surface tension of the polymer materials depends on functional groups over its surface. As a result from the plasma treatment the kind and concentration of the functional groups can be changed. In the present work, the possible kinetic reactions are defined. They describe the interaction between the plasma and the polymer surface of polyethylene terephthalate (PET). Basing on these reactions, the systems of differential kinetic equations are suggested. The solutions are obtained analytically for the system kinetic equations at defined circumstances
Tantalum high-temperature oxidation kinetics
International Nuclear Information System (INIS)
Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.
1981-01-01
Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru
Indian Academy of Sciences (India)
regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.
Production of a sterile species: Quantum kinetics
Boyanovsky, D.; Ho, C. M.
2007-10-01
Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos2θm; Γ2=Γaasin2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.
Group-kinetic theory of turbulence
Tchen, C. M.
1986-01-01
The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.
Non-markovian boltzmann equation
International Nuclear Information System (INIS)
Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.
1997-01-01
A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov endash Born endash Green endash Kirkwood endash Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. copyright 1997 Academic Press, Inc
A tool model for predicting atmospheric kinetics with sensitivity analysis
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.
Kinetic theory of tearing instability
International Nuclear Information System (INIS)
Hazeltine, R.D.; Dobrott, D.; Wang, T.S.
1975-01-01
The guiding-center kinetic equation with Fokker-Planck collision term is used to study, in cylindrical geometry, a class of dissipative instabilities of which the classical tearing mode is an archetype. Variational solution of the kinetic equation obviates the use of an approximate Ohm's law or adiabatic assumption, as used in previous studies, and it provides a dispersive relation which is uniformly valid for any ratio of wave frequency to collision frequency. One result of using the rigorous collision operator is the prediction of a new instability. This instability, driven by the electron temperature gradient, is predicted to occur under the long mean-free path conditions of present tokamak experiments, and has significant features in common with the kink-like oscillations observed in such experiments
Energy Technology Data Exchange (ETDEWEB)
Lorenzini, R.; Passoni, L. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Ambiente
1999-07-01
The integration of ordinary differential equations systems (ODEs) is of significant concern to tropospheric and stratospheric chemistry modelers. The solution of the ODEs requires a large computational effort because of their stiff nature; in a three-dimensional photochemical model the solution of the ODEs required at least 70% of the total CPU time. Several numerical integration techniques exist which attempt to provide accurate and computationally efficient solutions. In this work it is presented a comparison of some of the techniques in terms of solution accuracy and required computational time. It has been compared the Hybrid Solver (Young and Boris, 1977), the Quasi Steady-State Approximation method (Hesstvedt et al., 1978) and the Chemical Solver for Ordinary Differential Equations (Aro, 1996), by using the CALGRID photochemical model. The accuracy is evaluated by comparing the results of every method with the solutions obtained by the Livermore Solver for Ordinary Differential Equations (Hindmarsh, 1980). The comparison has been made varing the parameters of the error tolerances, and taking into account the trade-off between solution accuracy and computational efficiency. [Italian] L'integrazione di sistemi di equazioni differenziali ordinarie (ODEs), e' un problema significativo per i modellisti della chimica troposferica e stratosferica. A causa della loro natura stiff la soluzione degli ODEs richiese un notevole sforzo computazionale; in un modello fotochimico tridimensionale la soluzione degli ODEs richiede almeno il 70% del tempo totale di CPU. Esistono diverse tecniche di integrazione numerica che possono fornire soluzioni accurate e computazionalmente efficienti: in questo lavoro presentiamo un confronto fra alcune tecniche in termini di accuratezza della soluzione e tempo computazionale richiesto. Si sono confrontati il Solver Ibrido (Young and Boris, 1977), il metodo Quasi Steady-State Approximation (Hesstvedt et al., 1978) ed il Chemical
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
Kinetic theory and transport phenomena
Soto, Rodrigo
2016-01-01
This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...
Energy Technology Data Exchange (ETDEWEB)
Dosch, J
1991-12-31
The aim of this work is the development of a numerical process independent of the geometry of the flow space. The temperature, concentration and speed fields set up with double diffusive convection should be determined by this and their effect on heat transfer should be determined. The numerical process should be used for non-steady state double diffusive convection in various geometries. The results should be verified experimentally with the aid of holographic interferometry. (orig./IHL) [Deutsch] Ziel der vorliegenden Arbeit ist die Entwicklung eines von der Geometrie des Stroemungsraumes unabhaengigen numerischen Verfahrens. Mit ihm sollen die sich bei doppelt diffusiver Konvektion einstellenden Temperatur-, Konzentrations- und Geschwindigkeitsfelder bestimmt und deren Einfluss auf die Waermeuebertragung ermittelt werden. Das numerische Verfahren soll auf die instationaere doppelt diffusive Konvektion in verschiedenen Geometrien angewendet werden. Die Ergebnisse sollen experimentell mit Hilfe der holographischen Interferometrie verifiziert werden. (orig./IHL)
International Nuclear Information System (INIS)
Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.
1984-01-01
The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total 14 C were measured after dosing normal subjects and subjects with diabetes with 14 C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of 14 C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate
An introduction to the Boltzmann equation and transport processes in gases
Kremer, Gilberto M; Colton, David
2010-01-01
This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.
Exact results for the Boltzmann equation and Smoluchowski's coagulation equation
International Nuclear Information System (INIS)
Hendriks, E.M.
1983-01-01
Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)
Differential Equations Compatible with KZ Equations
International Nuclear Information System (INIS)
Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.
2000-01-01
We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions
Plasma heating by kinetic Alfven wave
International Nuclear Information System (INIS)
Assis, A.S. de.
1982-01-01
The heating of a nonuniform plasma (electron-ion) due to the resonant excitation of the shear Alfven wave in the low β regime is studied using initially the ideal MHD model and posteriorly using the kinetic model. The Vlasov equation for ions and the drift kinetic equation for electrons have been used. Through the ideal MHD model, it is concluded that the energy absorption is due to the continuous spectrum (phase mixing) which the shear Alfven wave has in a nonuniform plasma. An explicit expression for the energy absorption is derived. Through the kinetic model it is concluded that the energy absorption is due to a resonant mode convertion of the incident wave into the kinetic Alfven wave which propagates away from the resonant region. Its electron Landau damping has been observed. There has been a concordance with the MHD calculations. (Author) [pt
MBS Analysis Of Kinetic Structures Using ADAMS
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R.K.
2009-01-01
The present paper considers multibody system (MBS) analysis of kinetic structures using the software package ADAMS. Deployable, foldable, expandable and reconfigurable kinetic structures can provide a change in the geometric morphology of the envelope by contributing to making it adaptable to e.......g. changing external climate factors, in order to improve the indoor climate performance of the building. The derivation of equations of motion for such spatial mechanical systems is a challenging issue in scientific community. However, with new symbolic tools one can automatically derive equations in so......-called multibody system (MBS) formalism. The present paper considers MBS modeling of kinetic architectural structures using the software packages ADAMS. As a result, it is found that symbolic MBS simulation tools facilitate a useful evaluation environment for MBS users during a design phase of responsive kinetic...
Swelling analysis of austenitic stainless steels by means of ion irradiation and kinetic modeling
International Nuclear Information System (INIS)
Kohyama, Akira; Donomae, Takako
1999-03-01
The influences of irradiation environment on the swelling behavior of austenitic stainless steel has been studied, to aid understanding the origin of the difference in swelling response of PNC316 stainless steel in fuel-pin environment and in materials irradiation capsules, in terms of irradiation conditions, damage mechanism and material conditions. This work focused on the theoretical investigation of the influence of temperature variation on microstructural development of austenitic stainless steels during irradiation, using a kinetic rate theory model. A modeling and calculation on non-steady irradiation effects were first carried out. A fully dynamic model of point defect evolution and extended defect development, which accounts for cascade damage, was developed and successfully applied to simulate the interstitial loop evolution in low temperature regimes. The influence of cascade interstitial clustering on dislocation loop formation has also been assessed. The establishment of a basis for general assessment of non-steady irradiation effects in austenitic stainless steels was advanced. The developed model was applied to evaluate the influences of temperature variation in formerly carried out CMIR and FFTF/MFA-1 FBR irradiation experiments. The results suggested the gradual approach of microstructural features to equilibrium states in all the temperature variation conditions and no sign of anomalous behavior was noted. On the other hand, there is the influence of temperature variation on microstructural development under the neutron irradiation, like CMIR. So there are some possibilities of the work of mechanism which is not taken care on this model, for example the effect of the precipitate behavior which is sensitive to irradiation temperature. (author)
A balance principle approach for modeling phase transformation kinetics
International Nuclear Information System (INIS)
Lusk, M.; Krauss, G.; Jou, H.J.
1995-01-01
A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)
Hamiltonian kinetic theory of plasma ponderomotive processes
International Nuclear Information System (INIS)
McDonald, S.W.; Kaufman, A.N.
1982-01-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
Hamiltonian kinetic theory of plasma ponderomotive processes
International Nuclear Information System (INIS)
McDonald, S.W.; Kaufman, A.N.
1981-12-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
Spatial neutron kinetic module of ROSA code
International Nuclear Information System (INIS)
Cherezov, A.L.; Shchukin, N.V.
2009-01-01
A spatial neutron kinetic module was developed for computer code ROSA. The paper describes a numerical scheme used in the module for resolving neutron kinetic equations. Analytical integration for delayed neutrons emitters method and direct numerical integration method (Gear's method) were analyzed. The two methods were compared on their efficiency and accuracy. Both methods were verified with test problems. The results obtained in the verification studies were presented [ru
Modern quantum kinetic theory and spectral line shapes
International Nuclear Information System (INIS)
Monchick, L.
1991-01-01
The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs
Particle Systems and Partial Differential Equations I
Gonçalves, Patricia
2014-01-01
This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012. The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds. The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...
Gyrocenter-gauge kinetic theory
International Nuclear Information System (INIS)
Qin, H.; Tang, W.M.; Lee, W.W.
2000-01-01
Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is
Michaelis - Menten equation for degradation of insoluble substrate
DEFF Research Database (Denmark)
Andersen, Morten; Kari, Jeppe; Borch, Kim
2017-01-01
substrate it is difficult to assess whether the requirement of the MM equation is met. In this paper we study a simple kinetic model, where removal of attack sites expose new ones which preserve the total accessible substrate, and denote this approach the substrate conserving model. The kinetic equations...... are solved in closed form, both steady states and progress curves, for any admissible values of initial conditions and rate constants. The model is shown to merge with the MM equation and the reverse MM equation when these are valid. The relation between available molar concentration of attack sites and mass...
International Nuclear Information System (INIS)
Nishimura, M.
1998-04-01
To predict thermal-hydraulic phenomena in actual plant under various conditions accurately, adequate simulation of laminar-turbulent flow transition is of importance. A low Reynolds number turbulence model is commonly used for a numerical simulation of the laminar-turbulent transition. The existing low Reynolds number turbulence models generally demands very thin mesh width between a wall and a first computational node from the wall, to keep accuracy and stability of numerical analyses. There is a criterion for the distance between the wall and the first computational node in which non-dimensional distance y + must be less than 0.5. Due to this criterion the suitable distance depends on Reynolds number. A liquid metal sodium is used for a coolant in first reactors therefore, Reynolds number is usually one or two order higher than that of the usual plants in which air and water are used for the work fluid. This makes the load of thermal-hydraulic numerical simulation of the liquid sodium relatively heavier. From above context, a new method is proposed for providing wall boundary condition of turbulent kinetic energy dissipation rate ε. The present method enables the wall-first node distance 10 times larger compared to the existing models. A function of the ε wall boundary condition has been constructed aided by a direct numerical simulation (DNS) data base. The method was validated through calculations of a turbulent Couette flow and a fully developed pipe flow and its laminar-turbulent transition. Thus the present method and modeling are capable of predicting the laminar-turbulent transition with less mesh numbers i.e. lighter computational loads. (J.P.N.)
A stochastic model of enzyme kinetics
Stefanini, Marianne; Newman, Timothy; McKane, Alan
2003-10-01
Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.
International Nuclear Information System (INIS)
Shore, B.W.
1981-01-01
The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence
Kinetic mesh-free method for flutter prediction in turbomachines
Indian Academy of Sciences (India)
Mesh-free kinetic upwind scheme; unsteady flows; modified CIR splitting ... scheme for solving the inviscid compressible Euler equations of gas ..... typically carried out for about five cycles in which the periodic behaviour of the flow is captured.
kinetic studies of colour and phenol removal from wastewater using
African Journals Online (AJOL)
user
Kinetic studies by batch technique were carried out using activated carbon prepared from mango seed ... and the rate controlling steps of sorption which ... as follows (Lagergren, 1898): … ... plot of t /qt against t of Equation (6) should give a.
Biosorption of zinc (II) by Rhizopus arrhizus: equilibrium and kinetic ...
African Journals Online (AJOL)
... in light of the Lagergren equation and the process followed a second order rate kinetics. The equilibrium data were analyzed using the Langmuir, Freundlich, ... All the isotherms provided the best correlation for zinc (II) onto the R. arrhizus.
Numerical approximation of the Boltzmann equation : moment closure
Abdel Malik, M.R.A.; Brummelen, van E.H.
2012-01-01
This work applies the moment method onto a generic form of kinetic equations to simplify kinetic models of particle systems. This leads to the moment closure problem which is addressed using entropy-based moment closure techniques utilizing entropy minimization. The resulting moment closure system
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
Entropy equilibrium equation and dynamic entropy production in environment liquid
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.
Extended symmetries of the kinetic plasma theory models
International Nuclear Information System (INIS)
Taranov, V.B.
2005-01-01
Symmetry extension of the kinetic theory of collisionless plasma containing particles with equal charge to mass ratio is considered. It is shown that this symmetry allows us to reduce the number of equations. Symmetries obtained for the integro-differential equations of the kinetic theory by the indirect algorithm are compared to those obtained by direct methods. The importance of additional conditions - positiveness and integrability of distribution functions, existence of their moments - is underlined
Kinetic models of cell growth, substrate utilization and bio ...
African Journals Online (AJOL)
Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...
Resonance transport and kinetic entropy
International Nuclear Information System (INIS)
Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.
2000-01-01
We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3
Liu, C.; Jiang, S. Y.; Su, X.
2017-12-01
Two accretionary sediment sequences from Sites 1245 and 1252 recovered during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge, Cascadia Margin were investigated to explore the non-steady state depositional and diagenetic history. Five iron species and three sulfur species were chemically extracted, and their concentrations and the sulfur isotopic compositions of pyrite were determined. After the mineral recognitions of these species and detailed comparative analyses, the aerobic history of bottom seawater has been determined. The formation of pyrite is thought to be controlled by the limited production of hydrogen sulfide relative to the supply of reactive iron. Also, the intrusion of oxygen by bioturbation would oxidize the reduced sulfur species and further suppress pyritization. To explain the geochemical relationship between pyrite and siderite and the sulfur isotope characteristics of pyrite, we propose seven conceptual models based on the variations in depositional rate and methane flux, and the models succeed in explaining the geochemical results and are validated by the observed non-steady state events. These models may contribute to the reconstruction of the non-steady state processes in other research areas in the future.
Ordinary differential equation for local accumulation time.
Berezhkovskii, Alexander M
2011-08-21
Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics
Relaxation and kinetics in scalar field theories
International Nuclear Information System (INIS)
Boyanovsky, D.; Lawrie, I.D.; Lee, D.
1996-01-01
A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society
Partial Differential Equations
1988-01-01
The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.
Equating error in observed-score equating
van der Linden, Willem J.
2006-01-01
Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of
Evaluation of time correlation functions from a generalized Enskog equation
Energy Technology Data Exchange (ETDEWEB)
Yip, S.; Alley, W.E.; Alder, B.J.
1982-01-01
Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution.
Evaluation of time correlation functions from a generalized Enskog equation
International Nuclear Information System (INIS)
Yip, S.; Alley, W.E.; Alder, B.J.
1982-01-01
Numerical results for the density and current correlation functions in dense hard-shape fluids are obtained from a kinetic equation which is the extension of the linearized Enskog equation to finite wavelengths in order to demonstrate the convergence of the method of solution. Comparison is made to a previously proposed approximate solution
Representing Rate Equations for Enzyme-Catalyzed Reactions
Ault, Addison
2011-01-01
Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…
Kinetics from Replica Exchange Molecular Dynamics Simulations.
Stelzl, Lukas S; Hummer, Gerhard
2017-08-08
Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.
Practical steady-state enzyme kinetics.
Lorsch, Jon R
2014-01-01
Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.
Determination of kinetic coefficients for proton-nucleus collisions at high energy
International Nuclear Information System (INIS)
Rizzato, C.M.
1987-01-01
From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt
The unified description of kinetic and hydrodynamic processes in gases and plasmas
International Nuclear Information System (INIS)
Klimontovich, Yu.L.
1992-01-01
The unified description of kinetic and hydrodynamic processes in gases and plasmas for all values of the Knudsen number is proposed. The generalized kinetic equation consists of the additional dissipative term and is defined by the diffusion of the distribution function in the coordinate space. This equation is used for the description of nonequilibrium processes in passive and active media. (orig.)
Kinetic approach to the initial value problem in quantum field theory
International Nuclear Information System (INIS)
Lin Chi Yong; Toledo Piza, A.F.R. de.
1989-06-01
Time-dependente projection techniques developed to derive kinetic equations in the context of the quantum many-body problem are applied to φ 4 field theory. The approach is illustrated by working out the 0+1 dimensional case explicitly, including numerical solutions of the kinetic equations. Extension to higher dimensions is briefly discussed. (author) [pt
Evidence for strange kinetics in Hasegawa-Mima turbulent transport
International Nuclear Information System (INIS)
Annibaldi, S.V.; Drury, L.O'C.; Manfredi, G.; Dendy, R.O.
2000-01-01
We have studied the transport of test particle ensembles moving in turbulent electrostatic fields governed by the Hasegawa-Mima (HM) equation. As a result of the interplay of the linear dispersive term and the nonlinear term in the HM equation, 'strange kinetics' emerge: the poloidal particle transport undergoes a qualitative transition from diffusive, through supradiffusive, to ballistic. (author). Letter-to-the-editor
Cesium removal and kinetics equilibrium: Precipitation kinetics
International Nuclear Information System (INIS)
Barnes, M.J.
1999-01-01
This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics
Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.
Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G
2015-01-01
Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.
On the kinetic theory of the one-component plasma
International Nuclear Information System (INIS)
Cohen, J.S.
1984-01-01
In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)
Relativistic kinetic theory with applications in astrophysics and cosmology
Vereshchagin, Gregory V
2017-01-01
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...
Electron kinetics modeling in a weakly ionized gas
International Nuclear Information System (INIS)
Boeuf, Jean-Pierre
1985-01-01
This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr
Quantum kinetics of a superconducting tunnel junction: Theory and comparison with experiment
International Nuclear Information System (INIS)
Chow, K.S.; Browne, D.A.; Ambegaokar, V.
1988-01-01
We develop a kinetic theory for the real-time response of a quantum particle interacting with a macroscopic reservoir. We discuss the equilibrium and long-time behavior of the solution of the kinetic equation for such a system. In the limit of low damping, the kinetic equation reduces to a master equation. Using the theory to model a Josephson junction loaded with an external impedance, we make contact with the experiments of Clark, Devoret, Esteve, and Martinis. We argue that a stationary solution of the master equation sufficiently describes the experiments, and make detailed comparison with data
Conformational kinetics of aliphatic tails
Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi
The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.
International Nuclear Information System (INIS)
Skrable, K.W.; Chabot, G.E.; French, C.S.; Wrenn, M.E.; Lipsztein, J.; Sasso, T.L.; Durbin, P.W.
1980-01-01
Exact and approximate kinetics equations relating to the transfer and elimination of radionuclides from the blood and various organs in the body are presented. These expressions may be used to estimate the instantaneous activity or the total number of disintegrations of a radionuclide in the blood or various organs of reference in the body, hence, also the respective dose rates and doses. The exact kinetics equations may be used to relate measurements of radionuclides in excreta to burdens in the body. They do give better results for exposure intervals long compared to the effective mean lives of the radionuclide in the various organs of reference, and they yield the exact steady state expressions. Fortunately, this condition is often satisfied for the relatively long standard exposure interval of 50 years that is applied to occupational exposure. In addition, the steady state expressions may be used along with metabolic data of the distribution of elements in the body, diet and excreta to estimate values of the rate constants used in both the exact and approximate expressions. A comparison of the exact and approximate expressions is given for the uranium metabolic model of Wrenn et al. and a comparison is made with current ICRP models. (author)
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Unified kinetic theory in toroidal systems
International Nuclear Information System (INIS)
Hitchcock, D.A.; Hazeltine, R.D.
1980-12-01
The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Interacting multiagent systems kinetic equations and Monte Carlo methods
Pareschi, Lorenzo
2014-01-01
The description of emerging collective phenomena and self-organization in systems composed of large numbers of individuals has gained increasing interest from various research communities in biology, ecology, robotics and control theory, as well as sociology and economics. Applied mathematics is concerned with the construction, analysis and interpretation of mathematical models that can shed light on significant problems of the natural sciences as well as our daily lives. To this set of problems belongs the description of the collective behaviours of complex systems composed by a large enough number of individuals. Examples of such systems are interacting agents in a financial market, potential voters during political elections, or groups of animals with a tendency to flock or herd. Among other possible approaches, this book provides a step-by-step introduction to the mathematical modelling based on a mesoscopic description and the construction of efficient simulation algorithms by Monte Carlo methods. The ar...
Solutions of the chemical kinetic equations for initially inhomogeneous mixtures.
Hilst, G. R.
1973-01-01
Following the recent discussions by O'Brien (1971) and Donaldson and Hilst (1972) of the effects of inhomogeneous mixing and turbulent diffusion on simple chemical reaction rates, the present report provides a more extensive analysis of when inhomogeneous mixing has a significant effect on chemical reaction rates. The analysis is then extended to the development of an approximate chemical sub-model which provides much improved predictions of chemical reaction rates over a wide range of inhomogeneities and pathological distributions of the concentrations of the reacting chemical species. In particular, the development of an approximate representation of the third-order correlations of the joint concentration fluctuations permits closure of the chemical sub-model at the level of the second-order moments of these fluctuations and the mean concentrations.
Study of crystallization kinetics of peek thermoplastics using Nakamura equation
Chalid, Mochamad; Muhammad Joshua Y., B.; Fikri, Arbi Irsyad; Gregory, Noel; Priadi, Dedi; Fatriansyah, Jaka Fajar
2018-04-01
We have simulated the time evolution of relative crystallization of PEEK at various cooling rates (10, 15, 20 °C/min) and made comparison with the experiments. The simulation was conducted using Nakamura model which is a modified Avrami model. The model is a 1 cm radius of circle with the cooling plate which was placed in the upper part of the circle. The cooling plate temperature was varied in order to obtain particular cooling rates. The measurement point is located near upper boundary in order to minimize the heat transfer effect. The general trend of time evolution of crystallization was well captured although some discrepancies occured. These discrepancies may be attributed to the heat transfer effect and secondary crystallization.
Methods for solving the stochastic point reactor kinetic equations
International Nuclear Information System (INIS)
Quabili, E.R.; Karasulu, M.
1979-01-01
Two new methods are presented for analysis of the statistical properties of nonlinear outputs of a point reactor to stochastic non-white reactivity inputs. They are Bourret's approximation and logarithmic linearization. The results have been compared with the exact results, previously obtained in the case of Gaussian white reactivity input. It was found that when the reactivity noise has short correlation time, Bourret's approximation should be recommended because it yields results superior to those yielded by logarithmic linearization. When the correlation time is long, Bourret's approximation is not valid, but in that case, if one can assume the reactivity noise to be Gaussian, one may use the logarithmic linearization. (author)
Kinetic stability analyses in a bumpy cylinder
International Nuclear Information System (INIS)
Dominguez, R.R.; Berk, H.L.
1981-01-01
Recent interest in the ELMO Bumpy Torus (EBT) has prompted a number of stability analyses of both the hot electron rings and the toroidal plasma. Typically these works employ the local approximation, neglecting radial eigenmode structure and ballooning effects to perform the stability analysis. In the present work we develop a fully kinetic formalism for performing nonlocal stability analyses in a bumpy cylinder. We show that the Vlasov-Maxwell integral equations (with one ignorable coordinate) are self-adjoint and hence amenable to analysis using numerical techniques developed for self-adjoint systems of equations. The representation we obtain for the kernel of the Vlasov-Maxwell equations is a differential operator of arbitrarily high order. This form leads to a manifestly self-adjoint system of differential equations for long wavelength modes
The Enskog Equation for Confined Elastic Hard Spheres
Maynar, P.; García de Soria, M. I.; Brey, J. Javier
2018-03-01
A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.
Variational estimates of point-kinetics parameters
International Nuclear Information System (INIS)
Favorite, J.A.; Stacey, W.M. Jr.
1995-01-01
Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores
Kinetic coefficients for quark-antiquark plasma
International Nuclear Information System (INIS)
Czyz, W.; Florkowski, W.
1986-03-01
The quark-antiquark plasma near equilibrium is studied. The results are based on the Heinz kinetic equations with the Boltzmann collision operator approximated by a relaxation term with the relaxation time, τ, treated as a small parameter. Linear in τ solutions of these equations are used to calculate the transport coefficients: the non-abelian version of Ohm's law, and the shear and volume viscosities. We introduce new chemical potentials which determine the color density matrix of quarks (antiquarks). Gradients of these potentials generate color currents. 12 refs. (author)
Introduction to differential equations
Taylor, Michael E
2011-01-01
The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Kryven, I.; Röblitz, S; Schütte, C.
2015-01-01
Background: The chemical master equation is the fundamental equation of stochastic chemical kinetics. This differential-difference equation describes temporal evolution of the probability density function for states of a chemical system. A state of the system, usually encoded as a vector, represents
Reactor kinetics - pulse and steady state
Energy Technology Data Exchange (ETDEWEB)
Estes, B F; Morris, F M [Sandia Laboratories (United States)
1974-07-01
An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)
Chemical kinetic functional sensitivity analysis: Elementary sensitivities
International Nuclear Information System (INIS)
Demiralp, M.; Rabitz, H.
1981-01-01
Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research
Kinetics and spectroscopy of low temperature plasmas
Loureiro, Jorge
2016-01-01
This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas...
Transient processes in cell proliferation kinetics
Yakovlev, Andrej Yu
1989-01-01
A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...
Relativistic charged fluids: hydrodynamic and kinetic approaches
International Nuclear Information System (INIS)
Debbasch, F.; Bonnaud, G.
1991-10-01
This report gives a rigorous and consistent hydrodynamic and kinetic description of a charged fluid and the basis equations, in a relativistic context. This study should lead to a reliable model, as much analytical as numerical, of relativistic plasmas which will appear in the interaction of a strong laser field with a plasma. For simplicity, we limited our study to a perfect fluid or, in other words, we disregarded the energy dissipation processes inside the fluid [fr
Kinetic stability of internal kink mode
International Nuclear Information System (INIS)
Romanelli, F.; Fogaccia, G.
1993-01-01
With reference to studies of the attainment of ignited operations on devices like ITER (International Thermonuclear Experimental Reactor), the stability of the internal kink mode is re-investigated by taking into account the contribution of perpendicular compressibility, obtained by solving the drift kinetic equation. The resulting stability condition yields threshold values typically larger than the conventional Bussac criterion. For the case of ultra-flat safety factor profiles, the mode can be stable also in the absence of line-bending
Kinetics of catalytic reactions solutions manual
Vannice, M Albert
2005-01-01
Including countless exercises and worked examples, this advanced reference work and textbook will be extremely useful for the work of many industrial scientists. It teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations.
Kinetic simulation on collisional bounded plasma
International Nuclear Information System (INIS)
Zhu, S.P.; Sato, Tetsuya; Tomita, Yukihiro; Hatori, Tadatsugu
1998-01-01
A self-consistent kinetic simulation model on collisional bounded plasma is presented. The electric field is given by solving Poisson equation and collisions among particles (including charged particles and neutral particles) are included. The excitation and ionization of neutral particle, and recombination are also contained in the present model. The formation of potential structure near a boundary for a discharge system was used as an application of this model. (author)
International Nuclear Information System (INIS)
Lebedev, D.R.
1979-01-01
Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown
Fractional Schroedinger equation
International Nuclear Information System (INIS)
Laskin, Nick
2002-01-01
Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations
Ordinary differential equations
Greenberg, Michael D
2014-01-01
Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps
Beginning partial differential equations
O'Neil, Peter V
2014-01-01
A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or
Principles of chemical kinetics
House, James E
2007-01-01
James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela
Introduction to chemical kinetics
Soustelle, Michel
2013-01-01
This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re
International Nuclear Information System (INIS)
Ichiguchi, Katsuji
1998-01-01
A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
On the kinetic theory of a fully ionized gas
International Nuclear Information System (INIS)
Bezerra Junior, A.G.; Rodbard, M.G.; Kremer, G.M.
1993-01-01
An alternative method for kinetic theory recently proposed, that combines the features of the Chapman-Enskog and Grad methods, neither using a solution of the integral equation nor the field equations of the moments, is applied to ionized gases. Like in the Grad method, the deviation from equilibrium of the moments are used. Like in the method of Grad, the deviation from equilibrium of the distribution function is written in terms of the moments of the distribution function, but the constitutive equations follow direct from the Boltzmann equation through the Chapman-Enskog method. (author)
Singular stochastic differential equations
Cherny, Alexander S
2005-01-01
The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.
Nuclear reactor kinetics and control
International Nuclear Information System (INIS)
Lewins, J.
1978-01-01
A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)
A new mathematical model for coal flotation kinetics
Guerrero-Pérez, Juan Sebastián; Barraza-Burgos, Juan Manuel
2017-01-01
Abstract This study describes the development and formulation of a novel mathematical model for coal flotation kinetic. The flotation rate was considered as a function of chemical, operating and petrographic parameters for a global flotation order n. The equation for flotation rate was obtained by dimensional analysis using the Rayleigh method. It shows the dependency of flotation kinetic on operating parameters, such as air velocity and particle size; chemical parameters, such as reagents do...
Accelerated Simulation of Kinetic Transport Using Variational Principles and Sparsity
Energy Technology Data Exchange (ETDEWEB)
Caflisch, Russel [Univ. of California, Los Angeles, CA (United States)
2017-06-30
This project is centered on the development and application of techniques of sparsity and compressed sensing for variational principles, PDEs and physics problems, in particular for kinetic transport. This included derivation of sparse modes for elliptic and parabolic problems coming from variational principles. The research results of this project are on methods for sparsity in differential equations and their applications and on application of sparsity ideas to kinetic transport of plasmas.
The physical kinetics of magnetoplasticity of diamagnetic crystals
International Nuclear Information System (INIS)
Buchachenko, A. L.
2007-01-01
The kinetic equations describing the rate of magnetically induced release of dislocations entrapped by stoppers were solved. The magnetic field effect on the mobility of dislocations was calculated. Its comparison with experiment gave the ratio between the rate constants for two key processes governing magnetoplasticity, namely, singlet-triplet conversion in a spin nanoreactor and the release of a dislocation from it. The kinetic criterion of the existence of magnetoplasticity as a physical phenomenon was obtained
Modified Einstein and Navier–Stokes Equations
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
Modified Einstein and Navier-Stokes Equations
Bulyzhenkov, I. É.
2018-05-01
The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.
Energy Technology Data Exchange (ETDEWEB)
Deng, De-Ming; Chang, Cheng-Hung [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China)
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Deng, De-Ming; Chang, Cheng-Hung
2015-05-14
Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.
Point Genetics: A New Concept to Assess Neutron Kinetics
International Nuclear Information System (INIS)
Klein Meulekamp, R.; Kuijper, J.C.; Schikorr, M.
2005-01-01
Point genetic equations are introduced. These equations are similar to the well-known point kinetic equations but characterize and couple individual fission generations in subcritical systems. Point genetic equations are able to describe dynamic behavior of source-driven subcritical systems on shorter timescales than is possible with point kinetic equations. Point genetic parameters can be used as a first-order characterization of the system and can be calculated using standard Monte Carlo techniques; the implementation in other calculational schemes seems straightforward. A Godiva sphere is considered to show the applicability of the point genetic equations in describing a detector response on short timescales. For this system the point genetic parameters are calculated and compared with reference calculations. Typical dynamic source behavior is considered by studying a transient in which the neutron source energy decreases from 20 to 1 MeV. For all cases studied, the point genetic equations are compared to full space-time kinetic solutions, and it is shown that point genetics performs well
Modeling the degradation kinetics of ascorbic acid.
Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R
2018-06-13
Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.
Quantization of Equations of Motion
Directory of Open Access Journals (Sweden)
D. Kochan
2007-01-01
Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail.
Uniqueness of thermodynamic projector and kinetic basis of molecular individualism
Gorban, Alexander N.; Karlin, Iliya V.
2004-05-01
Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.
Kinetics in radiation chemistry
International Nuclear Information System (INIS)
Hummel, A.
1987-01-01
In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants
Non-kinetic capabilities: complementing the kinetic prevalence to targeting
Ducheine, P.
2014-01-01
Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...
International Nuclear Information System (INIS)
Zhalij, Alexander
2002-01-01
We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field
Functional equations with causal operators
Corduneanu, C
2003-01-01
Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.
Adsorption kinetics of propane on energetically heterogeneous activated carbon
Ismail, Azhar Bin
2014-11-01
The modeling of the adsorption isotherms and kinetics of the adsorbent+adsorbate pair is essential in simulating the performance of a pressurized adsorption chiller. In this work, the adsorption kinetics is analyzed from data measured using a magnetic suspension balance. The Statistical Rate Theory describes the Dubinin-Astakhov (DA) equation and extended to obtain an expression for transient analysis. Hence both the experimental excess equilibria data and the adsorption kinetics data may then be fitted to obtain the necessary parameters to fit the curves. The results fit the data very well within 6% of the error of regression. © 2014 Elsevier Ltd.
Uniqueness of solution to a stationary boundary kinetic problem
International Nuclear Information System (INIS)
Zhykharsky, A.V.
1992-01-01
The paper treats the question of uniqueness of solution to the boundary kinetic problem. This analysis is based on the accurate solutions to the stationary one-dimensional boundary kinetic problem for the limited plasma system. In the paper a simplified problem statement is used (no account is taken of the external magnetic field, a simplest form of boundary conditions is accepted) which, however, covers all features of the problem considered. Omitting the details of the conclusion we will write a set of Vlasov stationary kinetic equations for the cases of plane, cylindrical and spherical geometry of the problem. (author) 1 ref
Comment on ''Boltzmann equation and the conservation of particle number''
International Nuclear Information System (INIS)
Zanette, D.
1990-09-01
In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Kinetic modeling of cell metabolism for microbial production.
Costa, Rafael S; Hartmann, Andras; Vinga, Susana
2016-02-10
Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.
A century of enzyme kinetic analysis, 1913 to 2013.
Johnson, Kenneth A
2013-09-02
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
An advanced kinetic theory for morphing continuum with inner structures
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
Partial differential equations
Evans, Lawrence C
2010-01-01
This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Differential equations for dummies
Holzner, Steven
2008-01-01
The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Generalization of the Dirac’s Equation and Sea
DEFF Research Database (Denmark)
Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed
2016-01-01
Newton's second law is motion equation in classic mechanics that does not say anything about the nature of force. The equivalent formulations and their extensions such as Lagrangian and Hamiltonian do not explain about mechanism of converting Potential energy to Kinetic energy and Vice versa....... In quantum mechanics, Schrodinger equation is similar to Newton's second law in classic mechanics. Quantum mechanics is also extension of Newtonian mechanics to atomic and subatomic scales and relativistic mechanics is extension of Newtonian mechanics to high velocities near to velocity of light too....... Schrodinger equation is not a relativistic equation, because it is not invariant under Lorentz transformations. Dirac expanded The Schrodinger equation by presenting Dirac Sea and founded relativistic quantum mechanics. In this paper by reconsidering the Dirac Sea and his equation, the structure of photon...
Kinetics of phase transformations
International Nuclear Information System (INIS)
Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.
1992-01-01
This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Solving Ordinary Differential Equations
Krogh, F. T.
1987-01-01
Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.
Reactimeter dispersion equation
A.G. Yuferov
2016-01-01
The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...
Differential equations I essentials
REA, Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.
International Nuclear Information System (INIS)
Laenen, E.
1995-01-01
We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)
Kinetic modeling of Nernst effect in magnetized hohlraums
Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.
2016-01-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...
Grima, Ramon
2011-11-01
The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.
SHORT COMMUNICATION CATALYTIC KINETIC ...
African Journals Online (AJOL)
IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...
Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics
International Nuclear Information System (INIS)
Henry, A.F.
1980-01-01
Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].
Murase, Kenya
2015-01-01
In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.
Manca, V.; Salibra, A.; Scollo, Giuseppe
1990-01-01
Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either
Alternative equations of gravitation
International Nuclear Information System (INIS)
Pinto Neto, N.
1983-01-01
It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt
Energy Technology Data Exchange (ETDEWEB)
Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1993-11-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0
International Nuclear Information System (INIS)
Yagi, M.; Horton, W.
1994-01-01
A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation
African Journals Online (AJOL)
The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...
M. Hazewinkel (Michiel)
1995-01-01
textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an
The generalized Fermat equation
Beukers, F.
2006-01-01
This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would
Numerical Solutions of the Complete Navier-Stokes Equations
Robinson, David F.; Hassan, H. A.
1997-01-01
This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.
International Nuclear Information System (INIS)
Hur, Min Sup; Suk, Hyyong
2007-01-01
A new test particle method is presented for self-consistent incorporation of the kinetic effects into the fluid three-wave model. One of the most important kinetic effects is the electron trapping and it has been found that the trapping affects significantly the behavior of Raman backscatter and Raman backward laser amplification. The conventional fluid three-wave model cannot reproduce the kinetic simulations in the trapping regime. The test particle scheme utilizes the same equations for the laser evolution as in the three-wave model. However, the plasma wave is treated by the envelope-kinetic equation, which consists of envelope evolution and the kinetic term. The core of the new scheme is employing test particles to compute the kinetic term self-consistently. The benchmarking results against the averaged particle-in-cell (aPIC) code show excellent agreements, and the computation speed gain over the aPIC is from 2 to 20 depending on parameters
Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide
International Nuclear Information System (INIS)
Ribeiro, E.M.G.
1993-01-01
Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs
Applied partial differential equations
Logan, J David
2004-01-01
This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...
Electron-acoustic Instability Simulated By Modified Zakharov Equations
Jásenský, V.; Fiala, V.; Vána, O.; Trávnícek, P.; Hellinger, P.
We present non-linear equations describing processes in plasma when electron - acoustic waves are excited. These waves are present for instance in the vicinity of Earth's bow shock and in the polar ionosphere. Frequently they are excited by an elec- tron beam in a plasma with two electron populations, a cold and hot one. We derive modified Zakharov equations from kinetic theory for such a case together with numer- ical method for solving of this type of equations. Bispectral analysis is used to show which non-linear wave processes are of importance in course of the instability. Finally, we compare these results with similar simulations using Vlasov approach.
Kinetic theory for dilute cohesive granular gases with a square well potential
Takada, Satoshi; Saitoh, K.; Hayakawa, Hisao
2016-01-01
We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the
Kinetic theory for dilute cohesive granular gases with a square well potential.
Takada, Satoshi; Saitoh, Kuniyasu; Hayakawa, Hisao
2016-07-01
We develop the kinetic theory of dilute cohesive granular gases in which the attractive part is described by a square well potential. We derive the hydrodynamic equations from the kinetic theory with the microscopic expressions for the dissipation rate and the transport coefficients. We check the validity of our theory by performing the direct simulation Monte Carlo.
The kinetically dominated quasar 3C 418
Punsly, Brian; Kharb, Preeti
2017-06-01
The existence of quasars that are kinetically dominated, where the jet kinetic luminosity, Q, is larger than the total (infrared to X-ray) thermal luminosity of the accretion flow, Lbol, provides a strong constraint on the fundamental physics of relativistic jet formation. Since quasars have high values of Lbol by definition, only ˜10 kinetically dominated quasars (with \\overline{Q}/L_{bol}>1) have been found, where \\overline{Q} is the long-term time-averaged jet power. We use low-frequency (151 MHz-1.66 GHz) observations of the quasar 3C 418 to determine \\overline{Q}≈ 5.5 ± 1.3 × 10^{46} {erg s^{-1}}. Analysis of the rest-frame ultraviolet spectrum indicates that this equates to 0.57 ± 0.28 times the Eddington luminosity of the central supermassive black hole and \\overline{Q}/L_{bol} ≈ 4.8 ± 3.1, making 3C 418 one of the most kinetically dominated quasars found to date. It is shown that this maximal \\overline{Q}/L_{bol} is consistent with models of magnetically arrested accretion of jet production in which the jet production reproduces the observed trend of a decrement in the extreme ultraviolet continuum as the jet power increases. This maximal condition corresponds to an almost complete saturation of the inner accretion flow with vertical large-scale magnetic flux (maximum saturation).
A group-kinetic theory of turbulent collective collisions
International Nuclear Information System (INIS)
Tchen, C.M.; Misguich, J.H.
1983-05-01
The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion
Kinetic theory in maximal-acceleration invariant phase space
International Nuclear Information System (INIS)
Brandt, H.E.
1989-01-01
A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)
Development of simple kinetic models and parameter estimation for ...
African Journals Online (AJOL)
In order to describe and predict the growth and expression of recombinant proteins by using a genetically modified Pichia pastoris, we developed a number of unstructured models based on growth kinetic equation, fed-batch mass balance and the assumptions of constant cell and protein yields. The growth of P. pastoris on ...
Modeling the kinetics of volatilization from glass melts
Beerkens, R.G.C.
2001-01-01
A model description for the evaporation kinetics from glass melts in direct contact with static atmospheres or flowing gas phases is presented. The derived models and equations are based on the solution of the second Ficks' diffusion law and quasi-steady-state mass transfer relations, taking into
Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase
Bassingthwaighte, James B.; Chinn, Tamara M.
2013-01-01
Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…
Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics
Coutinho, F. A. B.; Amaku, M.
2009-01-01
In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…
Thermoluminescence kinetics of pyrite (FeS2)
International Nuclear Information System (INIS)
Silverman, A.N; Levy, P.W.; Kierstead, J.A.
1990-01-01
Thermoluminescence of pyrite (FeS 2 ) has been investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at ∼90 degree and ∼250 degree C, and two chemiluminescence (CL) peaks at ∼350 degree and ∼430 degree C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T max ) with dose, and the retrapping to recombination cross section ratio σ of the large 250 degree C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases (see text), than by the 1st and 2nd order equations. 12 refs., 7 figs
Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices
Directory of Open Access Journals (Sweden)
Luis L. Bonilla
2016-07-01
Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.
AIREK-PUL, Periodic Kinetics Problems of Pulsed Reactors
International Nuclear Information System (INIS)
Inzaghi, A.; Misenta, R.
1984-01-01
1 - Nature of physical problem solved: Solves periodic problems about the kinetics of pulsed reactors or problems where the reactivity has rapid variations. The program uses two constant steps for the integration of the system of differential equations, the first step during the first half-period and the second step during the second half-period. Available for either single or double precision. 2 - Method of solution: The differential equations are integrated using the fourth-order Runge-Kutta method as modified by E.R. Cohen (Geneva Conference, 1958). 3 - Restrictions on the complexity of the problem: The maximum number of differential equations that can be solved simultaneously is 50
International Nuclear Information System (INIS)
Ise, Takeharu
1976-12-01
Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)
Processes of aggression described by kinetic method
Aristov, V. V.; Ilyin, O.
2014-12-01
In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.
Processes of aggression described by kinetic method
International Nuclear Information System (INIS)
Aristov, V. V.; Ilyin, O.
2014-01-01
In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data
Physics and kinetics of TRIGA reactor
International Nuclear Information System (INIS)
Boeck, H.; Villa, M.
2007-01-01
This training module is written as an introduction to reactor physics for reactor operators. It assumes the reader has a basic, fundamental knowledge of physics, materials and mathematics. The objective is to provide enough reactor theory knowledge to safely operate a typical research reactor. At this level, it does not necessarily provide enough information to evaluate the safety aspects of experiment or non-standard operation reviews. The material provides a survey of basic reactor physics and kinetics of TRIGA type reactors. Subjects such as the multiplication factor, reactivity, temperature coefficients, poisoning, delayed neutrons and criticality are discussed in such a manner that even someone not familiar with reactor physics and kinetics can easily follow. A minimum of equations are used and several tables and graphs illustrate the text. (author)
Athermal kinetics in low alloy steels
International Nuclear Information System (INIS)
Leiva, Jorge A Vega; Valencia Morales, Eduardo; Villar Cociña, Ernesto; Hernández Ruiz, Jesús; Donis, Carlos
2008-01-01
Athermic analyses for the kinetic study of the reactions in the solid state are preferred because they consume much less experimental work time than the isothermal tests, and lead to more accurate calculations of the energies of activation of reactions that have occurred. In the present work are required conditions where you can apply the equation of speed of an athermal reaction in a low alloy in solid steel. From records of steel (AISI 1050) dilatometric triples were calculated kinetics (E, Ko, n) that characterize the reactions that occurred during the tempering of samples using different methods of iso conversion, one of which is a new modification of the method of Friedman. Also, has shown that during the formation of carbide Epsilon in the first stage of the tempering has occurred a saturation of sites, which validates the use of some methods. Finally, the orders of the reactions occurred during tempering of steel studied treatment are calculated.
Positron kinetics in an idealized PET environment
Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.
2015-08-01
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.