WorldWideScience

Sample records for nonstandard jump functions

  1. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  2. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  3. Children prefer a nonstandardized to a standardized jumping stone configuration : Playing time and judgments

    NARCIS (Netherlands)

    Sporrel, Karlijn; Caljouw, Simone R.; Withagen, Rob

    2017-01-01

    Over the last decades, the omnipresent standardization of contemporary playgrounds has been criticized for several reasons. The present study examined whether children prefer a nonstandardized or a standardized jumping stone configuration. Children were free to play in both configurations, alone or

  4. A functional interpretation for nonstandard arithmetic

    NARCIS (Netherlands)

    van den Berg, B.; Briseid, E.; Safarik, P.

    2012-01-01

    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Gödel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our

  5. NONSTANDARD PROBLEMS IN STUDYING THE PROPERTIES FUNCTIONS.

    Directory of Open Access Journals (Sweden)

    V. I. Kuzmich

    2010-06-01

    Full Text Available In this paper we consider two non-standard problems that may be offered to students for independent solution in the study of fundamental properties of functions in the course of mathematical analysis. These tasks are wearing creativity and contribute to a better understanding of students to concepts such as monotonicity and continuity of the function.

  6. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  7. Local properties of analytic functions and non-standard analysis

    International Nuclear Information System (INIS)

    O'Brian, N.R.

    1976-01-01

    This is an expository account which shows how the methods of non-standard analysis can be applied to prove the Nullstellensatz for germs of analytic functions. This method of proof was discovered originally by Abraham Robinson. The necessary concepts from model theory are described in some detail and the Nullstellensatz is proved by investigating the relation between the set of infinitesimal elements in the complex n-plane and the spectrum of the ring of germs of analytic functions. (author)

  8. Gap-crossing behavior in a standardized and a nonstandardized jumping stone configuration

    NARCIS (Netherlands)

    Sporrel, Karlijn; Caljouw, Simone R.; Withagen, Rob

    2017-01-01

    Over the last years, the omnipresent standardization of playgrounds - the distances between, for example, jumping stones tend to be equal - has been criticized by both scientists and architects. First, it has been argued that standardization fails to do justice to the variability in the children's

  9. Colombeau's generalized functions and non-standard analysis

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1987-10-01

    Using some methods of the Non-Standard Analysis we modify one of Colombeau's classes of generalized functions. As a result we define a class ε-circumflex of the so-called meta-functions which possesses all good properties of Colombeau's generalized functions, i.e. (i) ε-circumflex is an associative and commutative algebra over the system of the so-called complex meta-numbers C-circumflex; (ii) Every meta-function has partial derivatives of any order (which are meta-functions again); (iii) Every meta-function is integrable on any compact set of R n and the integral is a number from C-circumflex; (iv) ε-circumflex contains all tempered distributions S', i.e. S' is contained in ε' isomorphically with respect to all linear operations (including the differentiation). Thus, within the class ε-circumflex the problem of multiplication of the tempered distributions is satisfactorily solved (every two distributions in S' have a well-defined product in ε-circumflex). The crucial point is that C-circumflex is a field in contrast to the system of Colombeau's generalized numbers C-bar which is a ring only (C-bar is the counterpart of C-circumflex in Colombeau's theory). In this way we simplify and improve slightly the properties of the integral and notion of ''values of the meta-functions'' as well as the properties of the whole class ε-circumflex itself if compared with the original Colombeau theory. And, what is maybe more important, we clarify the connection between the Non-Standard Analysis and Colombeau's theory of new generalized functions in the framework of which the problem of multiplication of distributions was recently solved. (author). 14 refs

  10. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Igor Stanojević

    2014-06-01

    Full Text Available The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functional abilities six functional tests were used: resting heart rate, Cooper test, heart rate in the first minute after Cooper test, heart rate in the second minute after Cooper test, systolic arterial blood pressure, diastolic arterial blood pressure. For assessment of jumping and throwing athletic disciplines four tests were used: long jump, high jump, shot put and javelin. Data analysis was performed with canonical correlation and regression analysis. The results showed a statistically significant correlation between functional abilities with all of tests in jumping and throwing athletic disciplines.

  11. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    OpenAIRE

    Igor Stanojević; Dejan Milenković

    2014-01-01

    The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functi...

  12. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Swarm algorithms with chaotic jumps for optimization of multimodal functions

    Science.gov (United States)

    Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro

    2011-11-01

    In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).

  14. Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media

    International Nuclear Information System (INIS)

    Hall, P.L.; Ross, D.K.

    1981-01-01

    The incoherent neutron scattering function for unbounded jump diffusion is calculated from random walk theory assuming a gaussian distribution of jump lengths. The method is then applied to calculate the scattering function for spatially bounded random jumps in one dimension. The dependence on momentum transfer of the quasi-elastic energy broadenings predicted by this model and a previous model for bounded one-dimensional continuous diffusion are calculated and compared with the predictions of models for diffusion in unbounded media. The one-dimensional solutions can readily be generalized to three dimensions to provide a description of quasi-elastic scattering of neutrons by molecules undergoing localized random motions. (author)

  15. FUNCTIONAL AND NEUROMUSCULAR CHANGES IN THE HAMSTRINGS AFTER DROP JUMPS AND LEG CURLS

    Directory of Open Access Journals (Sweden)

    Nejc Sarabon

    2013-09-01

    Full Text Available The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase, perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production, kinaesthesia (active torque tracking and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles

  16. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    Science.gov (United States)

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  17. Functional and Neuromuscular Changes in the Hamstrings After Drop Jumps and Leg Curls

    Science.gov (United States)

    Sarabon, Nejc; Panjan, Andrej; Rosker, Jernej; Fonda, Borut

    2013-01-01

    The purpose of this study was to use a holistic approach to investigate changes in jumping performance, kinaesthesia, static balance, isometric strength and fast stepping on spot during a 5-day recovery period, following an acute bout of damaging exercise consisted of drop jumps and leg curls, where specific emphasis was given on the hamstring muscles. Eleven young healthy subjects completed a series of highly intensive damaging exercises for their hamstring muscles. Prior to the exercise, and during the 5-day recovery period, the subjects were tested for biochemical markers (creatine kinase, aspartate aminotransferase, and lactate dehydrogenase), perceived pain sensation, physical performance (squat jump, counter movement jump, maximal frequency leg stamping, maximal isometric torque production and maximally explosive isometric torque production), kinaesthesia (active torque tracking) and static balance. We observed significant decreases in maximal isometric knee flexion torque production, the rate of torque production, and majority of the parameters for vertical jump performance. No alterations were found in kinaesthesia, static balance and fast stepping on spot. The highest drop in performance and increase in perceived pain sensation generally occurred 24 or 48 hours after the exercise. Damaging exercise substantially alters the neuromuscular functions of the hamstring muscles, which is specifically relevant for sports and rehabilitation experts, as the hamstrings are often stretched to significant lengths, in particular when the knee is extended and hip flexed. These findings are practically important for recovery after high-intensity trainings for hamstring muscles. Key Points Hamstring function is significantly reduced following specifically damaging exercise. It fully recovers 120 hours after the exercise. Prevention of exercise-induced muscle damage is cruicial for maintaining normal training regime. PMID:24149148

  18. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  19. A power function profile of a ski jumping in-run hill.

    Science.gov (United States)

    Zanevskyy, Ihor

    2011-01-01

    The aim of the research was to find a function of the curvilinear segment profile which could make possible to avoid an instantaneous increasing of a curvature and to replace a circle arc segment on the in-run of a ski jump without any correction of the angles of inclination and the length of the straight-line segments. The methods of analytical geometry and trigonometry were used to calculate an optimal in-run hill profile. There were two fundamental conditions of the model: smooth borders between a curvilinear segment and straight-line segments of an in-run hill and concave of the curvilinear segment. Within the framework of this model, the problem has been solved with a reasonable precision. Four functions of a curvilinear segment profile of the in-run hill were investigated: circle arc, inclined quadratic parabola, inclined cubic parabola, and power function. The application of a power function to the in-run profile satisfies equal conditions for replacing a circle arc segment. Geometrical parameters of 38 modern ski jumps were investigated using the methods proposed.

  20. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  1. Nonstandard analysis for the working mathematician

    CERN Document Server

    Wolff, Manfred

    2015-01-01

    Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins...

  2. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    Science.gov (United States)

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  3. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  4. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina

    2015-01-01

    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  5. Functional knee brace use effect on peak vertical ground reaction forces during drop jump landing.

    Science.gov (United States)

    Rishiraj, Neetu; Taunton, Jack E; Lloyd-Smith, Robert; Regan, William; Niven, Brian; Woollard, Robert

    2012-12-01

    The aim of the study was to investigate the landing strategies used by non-injured athletes while wearing functional knee braces (FKB, BR condition) during a drop jump task compared with non-injured, non-braced (NBR condition) subjects and also to ascertain whether accommodation to a FKB was possible by non-injured BR subjects. Twenty-three healthy male provincial and national basketball and field hockey athletes (age, 19.4 ± 3.0 years) were tested. Each subject was provided with a custom-fitted FKB. Five NBR testing sessions were performed over 3 days followed by five BR testing sessions also over 3 days, for a total of 17.5 h of testing per condition. Each subject performed eight trials of the drop jump task during each testing session per condition. Single-leg peak vertical ground reaction forces (PVGRF) and the time to PVGRF were recorded for each NBR and BR trail. The BR group mean PVGRF at landing was significantly lower (1,628 ± 405 N, 2.1 ± 0.5 BW versus 1,715 ± 403 N, 2.2 ± 0.5 BW, F (1,22) = 6.83, P = 0.01) compared with NBR subjects, respectively. The group mean time to PVGRF was not statistically longer during the BR condition (F (1,22) = 0.967, P = 0.3). Further, an accommodation trend was noted as percent performance difference decreased with continued FKB use. The significantly lower group mean PVGRF while using a FKB could keep traumatic forces from reaching the ACL until the active neuromuscular restraints are activated to provide protection to the knee joint ligaments. Also, accommodation to FKB is possible after approximately 14.0 h of brace use. The results of this paper will assist clinicians in providing information to their patients regarding a FKB ability to offer protection to an ACL-deficient knee or to address concerns about early muscle fatigue, energy expenditure, heart rate, and decrease in performance level. Prospective study, Level I.

  6. Investigation of the role of the jumping-to-conclusions bias for short-term functional outcome in schizophrenia.

    Science.gov (United States)

    Andreou, Christina; Treszl, András; Roesch-Ely, Daniela; Köther, Ulf; Veckenstedt, Ruth; Moritz, Steffen

    2014-08-30

    Symptom severity and neuropsychological deficits negatively influence functional outcomes in patients with schizophrenia. Recent research implicates specific types of biased thinking styles (e.g. jumping-to-conclusions) in the pathogenesis of schizophrenia. This is the first study to test the impact of jumping-to-conclusions on functional outcome in schizophrenia. The aim of the study was to investigate the association of psychopathology, neuropsychology and JTC with subjective quality of life, vocational outcome and housing status in schizophrenia. Analyses were carried out both cross-sectionally at baseline, and longitudinally over the course of symptomatic improvement in the immediate aftermath of a psychotic exacerbation. Seventy-nine patients with schizophrenia were included in the study. Data concerning the variables of interest were collected at baseline, after one month, and after six months. Positive symptomatology was the most significant predictor of subjective and vocational outcome and changes across time. Verbal memory deficits were associated with functional status cross-sectionally, whereas general cognitive capacity significantly predicted functional changes over time. Improvement of the jumping-to-conclusions bias positively affected vocational outcome. Though limited, the observed effect of this bias on real-world functioning highlights the possible usefulness of interventions aimed at improving (meta)cognitive deficits in schizophrenia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Relationship between knee kinetic outcome measures in vertical counter movement jumps and self-reported function in ACL reconstructed subjects

    DEFF Research Database (Denmark)

    Brekke, Anders Falk

    2014-01-01

    Relationship between knee kinetic outcome measures in counter movement jumps and self-reported function in ACL reconstructed subjects Brekke AF1,2, Nielsen DB2, Holsgaard-Larsen A2 1School of physiotherapy, University College Zealand, Denmark 2Orthopaedic Research Unit, Department of Orthopaedics...... and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark Introduction: Altered loading pattern of the medial aspect of the knee has been associated with the development of knee osteoarthritis (OA). Anterior cruciate ligament (ACL) injuries are associated...... with early-onset OA with associated pain, functional limitations, and decreased quality of life. However, specific knee loading pattern of the medial aspect has not been investigated during different jump-tasks in ACL-reconstructed patients. The purpose was to investigate potential kinetic differences...

  8. Effect of functional isometric squats on vertical jump in trained and untrained men.

    Science.gov (United States)

    Berning, Joseph M; Adams, Kent J; DeBeliso, Mark; Sevene-Adams, Patricia G; Harris, Chad; Stamford, Bryant A

    2010-09-01

    Functional isometrics (FIs) combine dynamic and isometric muscle actions and may hyperstimulate the nervous system leading to an enhanced postactivation potentiation (PAP) and improved subsequent performance. The purpose of this study was to investigate the impact of an FI squat on the countermovement vertical jump (CMVJ) in resistance trained and untrained men. Thirteen trained men (age: 22.8 +/- 3.2 years, mass: 90.0 +/- 16.3 kg, and height: 178.9 +/- 7.1 cm) and 8 untrained men (age: 28.5 +/- 5.9 years, mass: 101.5 +/- 23.0 kg, and height: 177.0 +/- 4.8 cm) participated. On separate days, subjects performed CMVJs after 2 different warm-up conditions. The warm-up conditions consisted of either 5 minutes of low-intensity cycling or 5 minutes of low-intensity cycling plus a 3-second FI squat with 150% of their 1 repetition maximum (1RM). A 2 x 3 repeated-measures analysis of variance with Bonferroni post hoc revealed that when comparing the 2 warm-up conditions in the trained subjects, a significant increase (p squat. This increase was maintained when subjects were retested at 5 minutes post (2.6 cm, + 5.5%). No significant difference in CMVJ was detected in the untrained group (p = 0.49). Results support the addition of an FI squat performed at 150% of 1RM to a low-intensity cycling warm-up to enhance PAP in resistance trained but not in untrained men as measured by CMVJ. Practically, adding functional isometrics to a warm-up scheme may significantly enhance acute, short-term power output in resistance trained men.

  9. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  10. Non-standard patch test

    Directory of Open Access Journals (Sweden)

    Astri Adelia

    2018-06-01

    Full Text Available In managing contact dermatitis, identification of the causative agent is essential to prevent recurrent complaints. Patch test is the gold standard to identify the causative agent. Nowadays, there are many patch test standard materials available in the market, but do not include all the materials that potentially cause contact dermatitis. Patch test using patient’s own products or later we refer to as non-standard materials, is very helpful in identifying the causative agents of contact dermatitis. Guidance is needed in producing non-standard patch test materials in order to avoid test results discrepancy.

  11. The Functional Abilities and Maximal Vertical Jumping Height in Coper and Non-coper Anterior Cruciate Ligament-Deficient Knee

    Directory of Open Access Journals (Sweden)

    Amin Norouzi Fashkhami

    2014-06-01

    Full Text Available Objectives: The aim of the present study was to compare the performance of the vertical jump task and the level of disability between the coper and non-coper athletes with an anterior cruciate ligament-minus knee. Methods: Thirty-four professional male athletes with isolated complete anterior cruciate ligament-tear (age 20-29 years and 6-12 months time past injury were recruited in this study. The subjects were allocated into the coper (n=17 and non-coper (n=17 groups according to their history of having giving way and feeling an instability in their injured knee. The maximum vertical jump height was recorded by a 6-camera Vicon motion analysis system. The functional outcomes of the subjects were assessed with use of the Persian versions of the International Knee Documentation Committee, Knee Injury and Osteoarthritis Outcome Score and Tegner Questionnaires. Results: The results revealed that the coper ACK-deficient knee subjects had a significantly higher International Knee Documentation Committee score as well as two subscales of the KOOS questionnaire including the sports (P=0.001 and the quality of life (P=0.016 than non-copers. However, the subscales of pain (P=0.0137, symptoms (P=0.353 and the activities of daily living (P=0.133 of the KOOS questionnaire did not show any significant differences between the coper and non-coper ACL-deficient knee subjects. In addition, the maximum jumping height was significantly higher in the copers too (P=0.008. Discussion: While the pain, symptoms and daily activities were not different between the two groups, a higher level of the functional abilities, sports activities, quality of life and the maximum jumping height were shown in the coper ACL-deficient knee subjects when compared to the non-copers. A deliberate evaluation of the functional abilities in ACL-deficient knee subjects might play a key role in distinguishing the coper and non-coper ACL-deficient knee subjects.

  12. Dynamical Tangles in Third-Order Oscillator with Single Jump Function

    Directory of Open Access Journals (Sweden)

    Jiří Petržela

    2014-01-01

    Full Text Available This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

  13. Jumping together

    DEFF Research Database (Denmark)

    Lund, Ole; Ravn, Susanne; Christensen, Mette Krogh

    2014-01-01

    , in order to reach a deeper understanding of how practice facilitates learning. Results: We encircle the athletes’ interrelated learning processes by introducing the training environment of the national team and situations in which the athletes guide each other verbally or by jumping together. Discussion...

  14. A Non-standard Empirical Likelihood for Time Series

    DEFF Research Database (Denmark)

    Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.

    Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...

  15. Supersonic Jump

    Science.gov (United States)

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  16. Nonstandard big bang models

    International Nuclear Information System (INIS)

    Calvao, M.O.; Lima, J.A.S.

    1989-01-01

    The usual FRW hot big-bang cosmologies have been generalized by considering the equation of state ρ = Anm +(γ-1) -1 p, where m is the rest mass of the fluid particles and A is a dimensionless constant. Explicit analytic solutions are given for the flat case (ε=O). For large cosmological times these extended models behave as the standard Einstein-de Sitter universes regardless of the values of A and γ. Unlike the usual FRW flat case the deceleration parameter q is a time-dependent function and its present value, q≅ 1, obtained from the luminosity distance versus redshift relation, may be fitted by taking, for instance, A=1 and γ = 5/3 (monatomic relativistic gas with >> k B T). In all cases the universe cools obeying the same temperature law of the FRW models and it is shown that the age of the universe is only slightly modified. (author) [pt

  17. Nonstandard neutrino interactions in supernovae

    Science.gov (United States)

    Stapleford, Charles J.; Väänänen, Daavid J.; Kneller, James P.; McLaughlin, Gail C.; Shapiro, Brandon T.

    2016-11-01

    Nonstandard interactions (NSI) of neutrinos with matter can significantly alter neutrino flavor evolution in supernovae with the potential to impact explosion dynamics, nucleosynthesis, and the neutrinos signal. In this paper, we explore, both numerically and analytically, the landscape of neutrino flavor transformation effects in supernovae due to NSI and find a new, heretofore unseen transformation processes can occur. These new transformations can take place with NSI strengths well below current experimental limits. Within a broad swath of NSI parameter space, we observe symmetric and standard matter-neutrino resonances for supernovae neutrinos, a transformation effect previously only seen in compact object merger scenarios; in another region of the parameter space we find the NSI can induce neutrino collective effects in scenarios where none would appear with only the standard case of neutrino oscillation physics; and in a third region the NSI can lead to the disappearance of the high density Mikheyev-Smirnov-Wolfenstein resonance. Using a variety of analytical tools, we are able to describe quantitatively the numerical results allowing us to partition the NSI parameter according to the transformation processes observed. Our results indicate nonstandard interactions of supernova neutrinos provide a sensitive probe of beyond the Standard Model physics complementary to present and future terrestrial experiments.

  18. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  19. The Multi-Functional Implement: A tool to jump-start development

    OpenAIRE

    Moore, Keith M.

    2013-01-01

    Metadata only record This article describes the advantages of the Multi-Functional Implement, a tool that can be used for a variety of farm tasks in the context of conservation agriculture. CCRA-8 (Technology Networks for Sustainable Innovation)

  20. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    Science.gov (United States)

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  1. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  2. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  3. Risk, Jumps, and Diversification

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Law, Tzuo Hann; Tauchen, George

    We test for price discontinuities, or jumps, in a panel of high-frequency intraday returns for forty large-cap stocks and an equiweighted index from these same stocks. Jumps are naturally classified into two types: common and idiosyncratic. Common jumps affect all stocks, albeit to varying degrees......, while idiosyncratic jumps are stock-specific. Despite the fact that each of the stocks has a of about unity with respect to the index, common jumps are virtually never detected in the individual stocks. This is truly puzzling, as an index can jump only if one or more of its components jump. To resolve...... this puzzle, we propose a new test for cojumps. Using this new test we find strong evidence for many modest-sized common jumps that simply pass through the standard jump detection statistic, while they appear highly significant in the cross section based on the new cojump identification scheme. Our results...

  4. Neutrino nonstandard interactions in the supernova

    International Nuclear Information System (INIS)

    Das, C. R.; Pulido, Joao

    2011-01-01

    Neutrino nonstandard interactions (NSI) were investigated earlier in the solar case and were shown to reduce the tensions between the data and the large mixing angle solution predictions. We extend the previous framework to the supernova and evaluate the appearance probabilities for neutrinos and antineutrinos as a function of their energy after leaving the collapsing star with and without NSI. For normal hierarchy the probability for electron neutrinos and antineutrinos at low energy (E < or approx. 0.8-0.9 MeV) is substantially increased with respect to the non-NSI case and joins its value for inverse hierarchy which is constant with energy. Also for inverse hierarchy the NSI and non-NSI probabilities are the same for each neutrino and antineutrino species. Although detection in such a low energy range remains at present an experimental challenge, it will become a visible trace of NSI with normal hierarchy if they exist. On the other hand, the neutrino decay probability into an antineutrino and a majoron, an effect previously shown to be induced by dense matter, is, as in the case of the sun, too small to be observed as a direct consequence of NSI.

  5. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  6. Jumping in Arithmetic

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    In this paper we study a new relation between sentences: the jump relation. The idea of the jump relation is based on an analysis of Feferman's Theorem that the inconsistency of a theory U is interpretable over U. The jump relation is based on a converse of Feferman's Theorem: if a sentence is

  7. Jump Detection in the Danish Stock Market

    DEFF Research Database (Denmark)

    Høg, Esben

    2002-01-01

    It is well known in financial economics that stock market return data are often modelled by a diffusion process with some regular drift function. Occasionally, however, sudden changes or jumps occur in the return data. Wavelet scaling methods are used to detect jumps and cusps in stock market...

  8. Non-standard quantum groups and superization

    Energy Technology Data Exchange (ETDEWEB)

    Majid, S. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP); Rodriguez-Plaza, M.J. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H

    1995-12-31

    We obtain the universal R-matrix of the non-standard quantum group associated to the Alexander-Conway knot polynomial. We show further that this nonstandard quantum group is related to the super-quantum group U{sub q}gl(1 vertical stroke 1) by a general process of superization, which we describe. We also study a twisted variant of this non-standard quantum group and obtain, as a result, a twisted version uf U{sub q}gl(1 vertical stroke 1) as a q-supersymmetry of the exterior differential calculus of any quantum plane of Hecke type, acting by mixing the bosonic x{sub i} co-ordinates and the forms dx{sub i}. (orig.).

  9. Exploring Lightning Jump Characteristics

    Science.gov (United States)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  10. Place branding and nonstandard regionalization in Europe

    NARCIS (Netherlands)

    Boisen, Martin

    2015-01-01

    Place branding might, could, and maybe even should play a central role in urban and regional governance. The vantage point of this chapter is that every place is a brand and that the processes of nonstandard regionalization that can be witnessed all over Europe create new places and, thus, new place

  11. Nonstandard Employment Relations and Implications for Decent ...

    African Journals Online (AJOL)

    Conceptualizing nonstandard work within the context of casual, contract and outsourced work, the paper contends that this form of employment relations has been exacerbated by the growing incidence of youth unemployment in Nigeria. Using neoliberalism as a theoretical framework, the paper further contended that most ...

  12. Estimation of Jump Tails

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Victor

    We propose a new and flexible non-parametric framework for estimating the jump tails of Itô semimartingale processes. The approach is based on a relatively simple-to-implement set of estimating equations associated with the compensator for the jump measure, or its "intensity", that only utilizes...... the weak assumption of regular variation in the jump tails, along with in-fill asymptotic arguments for uniquely identifying the "large" jumps from the data. The estimation allows for very general dynamic dependencies in the jump tails, and does not restrict the continuous part of the process...... and the temporal variation in the stochastic volatility. On implementing the new estimation procedure with actual high-frequency data for the S&P 500 aggregate market portfolio, we find strong evidence for richer and more complex dynamic dependencies in the jump tails than hitherto entertained in the literature....

  13. What are quantum jumps?

    International Nuclear Information System (INIS)

    Cook, R.J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system. (orig.)

  14. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  15. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, drop jumping is advocated as an effective exercise for athletes who prepare themselves for explosive activities. When executing drop jumps, different jumping techniques can be used. In this study, the influence of jumping technique on the biomechanics of jumping is investigated.

  16. Axion cold dark matter in nonstandard cosmologies

    International Nuclear Information System (INIS)

    Visinelli, Luca; Gondolo, Paolo

    2010-01-01

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  17. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  18. Maternal Nonstandard Work Schedules and Breastfeeding Behaviors.

    Science.gov (United States)

    Zilanawala, Afshin

    2017-06-01

    Objectives Although maternal employment rates have increased in the last decade in the UK, there is very little research investigating the linkages between maternal nonstandard work schedules (i.e., work schedules outside of the Monday through Friday, 9-5 schedule) and breastfeeding initiation and duration, especially given the wide literature citing the health advantages of breastfeeding for mothers and children. Methods This paper uses a population-based, UK cohort study, the Millennium Cohort Study (n = 17,397), to investigate the association between types of maternal nonstandard work (evening, night, away from home overnight, and weekends) and breastfeeding behaviors. Results In unadjusted models, exposure to evening shifts was associated with greater odds of breastfeeding initiation (OR 1.71, CI 1.50-1.94) and greater odds of short (OR 1.55, CI 1.32-1.81), intermediate (OR 2.01, CI 1.64-2.47), prolonged partial duration (OR 2.20, CI 1.78-2.72), and prolonged exclusive duration (OR 1.53, CI 1.29-1.82), compared with mothers who were unemployed and those who work other types of nonstandard shifts. Socioeconomic advantage of mothers working evening schedules largely explained the higher odds of breastfeeding initiation and duration. Conclusions Socioeconomic characteristics explain more breastfeeding behaviors among mothers working evening shifts. Policy interventions to increase breastfeeding initiation and duration should consider the timing of maternal work schedules.

  19. Large gauge invariant nonstandard neutrino interactions

    International Nuclear Information System (INIS)

    Gavela, M. B.; Hernandez, D.; Ota, T.; Winter, W.

    2009-01-01

    Theories beyond the standard model must necessarily respect its gauge symmetry. This implies strict constraints on the possible models of nonstandard neutrino interactions, which we analyze. The focus is set on the effective low-energy dimension six and eight operators involving four leptons, decomposing them according to all possible tree-level mediators, as a guide for model building. The new couplings are required to have sizable strength, while processes involving four charged leptons are required to be suppressed. For nonstandard interactions in matter, only diagonal tau-neutrino interactions can escape these requirements and can be allowed to result from dimension six operators. Large nonstandard neutrino interactions from dimension eight operators alone are phenomenologically allowed in all flavor channels and are shown to require at least two new mediator particles. The new couplings must obey general cancellation conditions both at the dimension six and dimension eight levels, which result from expressing the operators obtained from the mediator analysis in terms of a complete basis of operators. We illustrate with one example how to apply this information to model building.

  20. Yoga versus non-standard care for schizophrenia.

    Science.gov (United States)

    Broderick, Julie; Crumlish, Niall; Waugh, Alice; Vancampfort, Davy

    2017-09-28

    . These included mental state (improvement in Positive and Negative Syndrome Scale, 1 RCT, n=84, RR 0.81 CI 0.62 to 1.07, low quality evidence), social functioning (improvement in Social Occupational Functioning Scale, 1 RCT, n=84, RR 0.90 CI 0.78 to 1.04, low quality evidence), quality of life (mental health) (average change 36-Item Short Form Survey (SF-36) quality-of-life sub-scale, 1 RCT, n=69, MD -5.30 CI -17.78 to 7.18, low quality evidence), physical health, (average change WHOQOL-BREF physical-health sub-scale, 1 RCT, n=69, MD 9.22 CI -0.42 to 18.86, low quality evidence). Only one study reported adverse effects, finding no incidence of adverse events in either treatment group. There were a considerable number of missing outcomes, which included relapse, change in cognition, costs of care, effect on standard care, service intervention, disability, and activities of daily living. We found minimal differences between yoga and non-standard care, the latter consisting of another exercise comparator, which could be broadly considered aerobic exercise. Outcomes were largely based on single studies with limited sample sizes and short-term follow-up. Overall, many outcomes were not reported and evidence presented in this review is of low to moderate quality - too weak to indicate that yoga is superior or inferior to non-standard care control for management of people with schizophrenia.

  1. Combining semantics with non-standard interpreter hierarchies

    DEFF Research Database (Denmark)

    Abramov, Sergei M.; Glück, Robert

    2000-01-01

    This paper reports on results concerning the combination of non-standard semantics via interpreters. We define what a semantics combination means and identify under which conditions a combination can be realized by computer programs (robustness, safely combinable). We develop the underlying mathe...... mathematical theory and examine the meaning of several non-standard interpreter towers. Our results suggest a technique for the implementation of a certain class of programming language dialects by composing a hierarchy of non-standard interpreters....

  2. Option Panels in Pure-Jump Settings

    DEFF Research Database (Denmark)

    Andersen, Torben Gustav; Fusari, Nicola; Todorov, Viktor

    We develop parametric inference procedures for large panels of noisy option data in the setting where the underlying process is of pure-jump type, i.e., evolve only through a sequence of jumps. The panel consists of options written on the underlying asset with a (different) set of strikes...... specification for the risk-neutral asset return dynamics, the option prices are nonlinear functions of a time-invariant parameter vector and a time-varying latent state vector (or factors). Furthermore, no-arbitrage restrictions impose a direct link between some of the quantities that may be identified from...... the return and option data. These include the so-called jump activity index as well as the time-varying jump intensity. We propose penalized least squares estimation in which we minimize L_2 distance between observed and model-implied options and further penalize for the deviation of model-implied quantities...

  3. Microscopic models of quantum-jump superoperators

    International Nuclear Information System (INIS)

    Dodonov, A.V.; Mizrahi, S.S.; Dodonov, V.V.

    2005-01-01

    We discuss the quantum-jump operation in an open system and show that jump superoperators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with two-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that the derived quantum-jump superoperators have a 'nonlinear' form Jρ=γ diag[F(n)aρa † F(n)], where the concrete form of the function F(n) depends on assumptions made about the interaction between the system and detector. Under certain conditions the asymptotical power-law dependence F(n)=(n+1) -β is obtained. A continuous transition to the standard Srinivas-Davies form of the quantum-jump superoperator (corresponding to β=0) is shown

  4. Afrika Statistika ISSN 2316-090X Jump Resonance in Wind-Felled ...

    African Journals Online (AJOL)

    jump function. Duffing's model, describing function and Chebyshev polynomials were used .... this study to develop polynomial growth equation for plantains and plantain jump resonance ..... New technologies to increase root health and crop.

  5. Non-standard and improperly posed problems

    CERN Document Server

    Straughan, Brian; Ames, William F

    1997-01-01

    Written by two international experts in the field, this book is the first unified survey of the advances made in the last 15 years on key non-standard and improperly posed problems for partial differential equations.This reference for mathematicians, scientists, and engineers provides an overview of the methodology typically used to study improperly posed problems. It focuses on structural stability--the continuous dependence of solutions on the initial conditions and the modeling equations--and on problems for which data are only prescribed on part of the boundary.The book addresses continuou

  6. Status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. (review article)

  7. Jumping on water

    Science.gov (United States)

    Kim, Ho-Young

    2016-11-01

    Water striders can jump on water as high as they can jump on land. Quick jumps allow them to avoid sudden dangers such as predators' attacks, and therefore understanding how they make such a dramatic motion for survival can shed light on the ultimate level of semi-aquatic motility achievable through evolution. However, the mechanism of their vertical jumping from a water surface has eluded hydrodynamic explanations so far. By observing movements of water strider legs and theoretically analyzing their dynamic interactions with deforming liquid-air interface, we have recently found that different species of jumping striders always tune their leg rotation speed with a force just below that required to break the water surface to reach the maximum take-off velocity. Here, we start with discussing the fundamental theories of dynamics of floating and sinking of small objects. The theories then enable us to analyze forces acting on a water strider while it presses down the water surface to fully exploit the capillary force. We further introduce a 68-milligram at-scale robotic insect capable of jumping on water without splash, strikingly similar to the real strider, by utilizing the water surface just as a trampoline.

  8. Sub-Poissonian statistics of quantum jumps in single molecule or atomic ion

    International Nuclear Information System (INIS)

    Osad'ko, I.S.; Gus'kov, D.N.

    2007-01-01

    A theory for statistics of quantum jumps in single molecule or ion driven by continues wave laser field is developed. These quantum jumps can relate to nonradiative singlet-triplet transitions in a molecule or to on → off jumps in a single ion with shelving processes. Distribution function w N (T) of quantum jumps in time interval T is found. Computer simulation of quantum jumps is realized. Statistical treatment of simulated jumps reveals sub-Poissonian statistics of quantum jumps. The theoretical distribution function w N (T) fits well the distribution of jumps found from simulated data. Experimental data on quantum jumps found in experiments with single Hg + ion are described by the function w N (T) well

  9. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  10. Entry into and Consequences of Nonstandard Work Arrangements.

    Science.gov (United States)

    Rothstein, Donna S.

    1996-01-01

    Explores the impact on workers of being in a nonstandard employment arrangement. Examines the distribution of workers among various arrangements and looks at aspects of work behavior and life events that may have influenced their working in a nonstandard arrangement. (Author/JOW)

  11. NON-STANDARD FORMS OF EMPLOYMENT IN BUSINESS ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. E. Chekanov

    2013-01-01

    Full Text Available The article discusses the emergence and development of non-standard forms of employment and flexible working. The causes of their use reflects the results of research conducted in the workplace. Non-standard forms of employment and attractive today as they allow to expand the circle of the workforce.

  12. Job and life satisfaction of nonstandard workers in South Korea.

    Science.gov (United States)

    Lee, Bokim

    2013-08-01

    Since the South Korean financial crisis of the late 1990s, the number of nonstandard workers in South Korea has increased rapidly. With such a drastic change, it has been difficult to establish national welfare systems (e.g., accident insurance or support for families with dependent children) for nonstandard workers and identify critical aspects of their health. To evaluate job and life satisfaction among nonstandard workers, this study used a representative sample of South Koreans. Using data from the 2008 Korean Labor and Income Panel Study, the sample size totaled 4,340 observations, of which 1,344 (31.0%) involved nonstandard workers. Significant differences in job and life satisfaction between nonstandard workers and standard workers were found. The results also indicate discrimination in the welfare and fringe benefit systems in South Korea. Occupational health nurses must address the physical and psychological health issues, personal problems, and everyday life concerns of nonstandard workers. Given that the employment status of nonstandard workers in companies is generally unstable, it is difficult for these workers to report poor working conditions to employers or other authorities. Accordingly, occupational health nurses should advocate for nonstandard workers by notifying employers of the many problems they face. Copyright 2013, SLACK Incorporated.

  13. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  14. Digital economy and non-standard work

    Directory of Open Access Journals (Sweden)

    Patrizia Tullini

    2016-12-01

    Full Text Available Public and scientific debate on the digital economy is now widespread in many european countries. Also labour law scholars started to pay more attention to the new economical models and to the impact of digital technologies on productive processes. Economics and labour sciences should now move from a descriptive analysis to a deeper theoretical elaboration.The directions of the theoretical analysis are essentially two: the first one deals with the overbearing diffusion of non-standard forms of work on the web, especially on the digital platforms. This trend undermines the traditional foundation of subordination and affects the dynamics of global labour law market. The second directions deals with the increasing use of artificial intelligence in the industrial environment that presents new legal and social issues, concerning both the replacement of standard work with robotics and the complementarity between human work and «non-human agents» work.

  15. Non-standard work schedules, gender, and parental stress

    Directory of Open Access Journals (Sweden)

    Mariona Lozano

    2016-02-01

    Full Text Available Background: Working non-standard hours changes the temporal structure of family life, constraining the time that family members spend with one another and threatening individuals' well-being. However, the empirical research on the link between stress and non-standard schedules has provided mixed results. Some studies have indicated that working non-standard hours is harmful whereas others have suggested that working atypical hours might facilitate the balance between family and work. Moreover, there is some evidence that the association between stress and non-standard employment has different implications for men and women. Objective: This paper examines the association between non-standard work schedules and stress among dual-earner couples with children. Two research questions are addressed. First, do predictability of the schedule and time flexibility moderate the link between non-standard work hours and stress? Second, do non-standard schedules affect men's and women's perceptions of stress differently? Methods: We use a sample of 1,932 working parents from the Canadian 2010 General Social Survey, which includes a time-use diary. A sequential logit regression analysis stratified by gender is employed to model two types of result. First, we estimate the odds of being stressed versus not being stressed. Second, for all respondents feeling stressed, we estimate the odds of experiencing high levels versus moderate levels of stress. Results: Our analysis shows that the link between non-standard working hours and perceived stress differs between mothers and fathers. First, fathers with non-standard schedules appear more likely to experience stress than those working standard hours, although the results are not significant. Among mothers, having a non-standard schedule is associated with a significantly lower risk of experiencing stress. Second, the analysis focusing on the mediating role of flexibility and predictability indicates that

  16. Why is countermovement jump height greater than squat jump height?

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Gerritsen, Karin G M; Litjens, Maria C A; Van Soest, Arthur J.

    1996-01-01

    In the literature, it is well established that subjects are able to jump higher in a countermovement jump (CMJ) than in a squat jump (SJ). The purpose of this study was to estimate the relative contribution of the time available for force development and the storage and reutilization of elastic

  17. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  18. Jump into Action

    Science.gov (United States)

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  19. Egg Bungee Jump!

    Science.gov (United States)

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  20. SARS – virus jumps species

    Indian Academy of Sciences (India)

    SARS – virus jumps species. Coronavirus reshuffles genes; Rotteir et al, Rotterdam showed the virus to jump from cats to mouse cells after single gene mutation ? Human disease due to virus jumping from wild or domestic animals; Present favourite animal - the cat; - edible or domestic.

  1. Asymptotic inference for jump diffusions with state-dependent intensity

    NARCIS (Netherlands)

    Becheri, Gaia; Drost, Feico; Werker, Bas

    2016-01-01

    We establish the local asymptotic normality property for a class of ergodic parametric jump-diffusion processes with state-dependent intensity and known volatility function sampled at high frequency. We prove that the inference problem about the drift and jump parameters is adaptive with respect to

  2. Long multiplication by instruction sequences with backward jump instructions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2013-01-01

    For each function on bit strings, its restriction to bit strings of any given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Backward jump instructions

  3. Biomechanics research in ski jumping, 1991-2006.

    Science.gov (United States)

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  4. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  5. On structural properties of the value function for an unbounded jump Markov process with an application to a processor-sharing retrial queue

    NARCIS (Netherlands)

    Bhulai, S.; Brooms, A.C.; Spieksma, F.M.

    2014-01-01

    The derivation of structural properties for unbounded jump Markov processes cannot be done using standard mathematical tools, since the analysis is hindered due to the fact that the system is not uniformizable. We present a promising technique, a smoothed rate truncation method, to overcome the

  6. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    Science.gov (United States)

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  7. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    Science.gov (United States)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    2017-12-05

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  8. Health and Occupational Outcomes Among Injured, Nonstandard Shift Workers.

    Science.gov (United States)

    Wong, Imelda S; Smith, Peter M; Mustard, Cameron A; Gignac, Monique A M

    2015-11-01

    This study compares health and occupational outcomes following a work-related injury for nonstandard and day-shift workers. National Population Health Survey data were used to explore outcomes 2 years post-work injury. Retrospective-matched cohort analyses examined main effects and interactions of shift schedule and work injury with changes in health, shift schedule, and labor force status. Models were adjusted for respondent characteristics, baseline health status, and occupational strength requirements. Injured nonstandard shift workers reported lower health utility index scores, compared with uninjured and injured daytime workers and uninjured nonstandard-shift workers. No significant interactions between shift and injury were found with schedule change and leaving the labor force. Injured nonstandard-shift workers are as likely to remain employed as other groups, but may be vulnerable in terms of diminished health.

  9. Effects of non-standard interactions in the MINOS experiment

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Skrotzki, Julian

    2008-01-01

    We investigate the effects of non-standard interactions on the determination of the neutrino oscillation parameters Δm 31 2 , θ 23 , and θ 13 in the MINOS experiment. We show that adding non-standard interactions to the analysis lead to an extension of the allowed parameter space to larger values of Δm 31 2 and smaller θ 23 , and basically removes all predictability for θ 13 . In addition, we discuss the sensitivities to the non-standard interaction parameters of the MINOS experiment alone. In particular, we examine the degeneracy between θ 13 and the non-standard interaction parameter ε eτ . We find that this degeneracy is responsible for the removal of the θ 13 predictability and that the possible bound on |ε eτ | is competitive with direct bounds only if a more stringent external bound on θ 13 is applied

  10. Study of brittle crack jump rate using acoustic emission method

    International Nuclear Information System (INIS)

    Yasnij, P.V.; Pokrovskij, V.V.; Strizhalo, V.A.; Dobrovol'skij, Yu.V.

    1987-01-01

    A new peocedure is elaborated to detect brittle jumps of small length (0.1...5mm) occuring both inside the specimen and along the crack front under static and cyclic loading using the phenomena of acoustic emission (AE). Recording of the crack start and stop moments with an AE sensor as well as evaluation of the brittle crack jump length by the after-failure specimen fracture make it possible to find the mean crack propagation rate. Experimental dependences are obtained for the crack propagation rate with a brittle crack jump in steel 15Kh2MFA (σ B =1157 MPa, σ 0.2 =100 MPa) at 293 K and under cyclic loading as a function of the jump length and also as a function of the critical stress intensity factor K jc i corresponding to the crack jump

  11. Optimal Ski Jump

    Science.gov (United States)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  12. Knee Muscular Control During Jump Landing in Multidirections.

    Science.gov (United States)

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-06-01

    Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A Vicon(TM) 612 workstation collected the kinematic data. An electromyography was synchronized with the Vicon(TM) Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Jump-landing direction significantly influenced (P jump landing. A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  13. Jumping hoops on water

    Science.gov (United States)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  14. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  15. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    OpenAIRE

    Dan Li; Jing’an Cui; Guohua Song

    2014-01-01

    This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a) to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b) we show that the delay stochastic differential equation with jumps associate...

  16. Evolution PDEs with nonstandard growth conditions existence, uniqueness, localization, blow-up

    CERN Document Server

    Antontsev, Stanislav

    2015-01-01

    This monograph offers the reader a treatment of the theory of evolution PDEs with nonstandard growth conditions. This class includes parabolic and hyperbolic equations with variable or anisotropic nonlinear structure. We develop methods for the study of such equations and present a detailed account of recent results. An overview of other approaches to the study of PDEs of this kind is provided. The presentation is focused on the issues of existence and uniqueness of solutions in appropriate function spaces, and on the study of the specific qualitative properties of solutions, such as localization in space and time, extinction in a finite time and blow-up, or nonexistence of global in time solutions. Special attention is paid to the study of the properties intrinsic to solutions of equations with nonstandard growth.

  17. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  18. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunou, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...... for straightforward filtering and estimation of the model. Our model belongs to the affine class enabling us to derive the conditional characteristic function so that option values can be computed rapidly without simulation. When estimated on S&P500 index options and returns the new model performs well compared...

  19. Parental nonstandard work schedules during infancy and children's BMI trajectories

    Directory of Open Access Journals (Sweden)

    Afshin Zilanawala

    2017-09-01

    Full Text Available Background: Empirical evidence has demonstrated adverse associations between parental nonstandard work schedules (i.e., evenings, nights, or weekends and child developmental outcomes. However, there are mixed findings concerning the relationship between parental nonstandard employment and children's body mass index (BMI, and few studies have incorporated information on paternal work schedules. Objective: This paper investigated BMI trajectories from early to middle childhood (ages 3-11 by parental work schedules at 9 months of age, using nationally representative cohort data from the United Kingdom. This study is the first to examine the link between nonstandard work schedules and children's BMI in the United Kingdom. Methods: We used data from the Millennium Cohort Study (2001‒2013, n = 13,021 to estimate trajectories in BMI, using data from ages 3, 5, 7, and 11 years. Joint parental work schedules and a range of biological, socioeconomic, and psychosocial covariates were assessed in the initial interviews at 9 months. Results: Compared to children in two-parent families where parents worked standard shifts, we found steeper BMI growth trajectories for children in two-parent families where both parents worked nonstandard shifts and children in single-parent families whose mothers worked a standard shift. Fathers' shift work, compared to standard shifts, was independently associated with significant increases in BMI. Conclusions: Future public health initiatives focused on reducing the risk of rapid BMI gain in childhood can potentially consider the disruptions to family processes resulting from working nonstandard hours. Contribution: Children in families in which both parents work nonstandard schedules had steeper BMI growth trajectories across the first decade of life. Fathers' nonstandard shifts were independently associated with increases in BMI.

  20. BPS Jumping Loci are Automorphic

    Science.gov (United States)

    Kachru, Shamit; Tripathy, Arnav

    2018-06-01

    We show that BPS jumping loci-loci in the moduli space of string compactifications where the number of BPS states jumps in an upper semi-continuous manner—naturally appear as Fourier coefficients of (vector space-valued) automorphic forms. For the case of T 2 compactification, the jumping loci are governed by a modular form studied by Hirzebruch and Zagier, while the jumping loci in K3 compactification appear in a story developed by Oda and Kudla-Millson in arithmetic geometry. We also comment on some curious related automorphy in the physics of black hole attractors and flux vacua.

  1. Ancestry Estimation in Forensic Anthropology: Geometric Morphometric versus Standard and Nonstandard Interlandmark Distances.

    Science.gov (United States)

    Katherine Spradley, M; Jantz, Richard L

    2016-07-01

    Standard cranial measurements are commonly used for ancestry estimation; however, 3D digitizers have made cranial landmark data collection and geometric morphometric (GM) analyses more popular within forensic anthropology. Yet there has been little focus on which data type works best. The goal of the present research is to test the discrimination ability of standard and nonstandard craniometric measurements and data derived from GM analysis. A total of 31 cranial landmarks were used to generate 465 interlandmark distances, including a subset of 20 commonly used measurements, and to generate principal component scores from procrustes coordinates. All were subjected to discriminant function analysis to ascertain which type of data performed best for ancestry estimation of American Black and White and Hispanic males and females. The nonstandard interlandmark distances generated the highest classification rates for females (90.5%) and males (88.2%). Using nonstandard interlandmark distances over more commonly used measurements leads to better ancestry estimates for our current population structure. © 2016 American Academy of Forensic Sciences.

  2. Jump diffusion models and the evolution of financial prices

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Castro, Marcio T. de; Silva, Sergio da; Gleria, Iram

    2011-01-01

    We analyze a stochastic model to describe the evolution of financial prices. We consider the stochastic term as a sum of the Wiener noise and a jump process. We point to the effects of the jumps on the return time evolution, a central concern of the econophysics literature. The presence of jumps suggests that the process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. We then extend the De Finetti functions to a generalized nonlinear model and show the model to be capable of explaining return behavior. -- Highlights: → We analyze a stochastic model to describe the evolution of financial prices. → The stochastic term is considered as a sum of the Wiener noise and a jump process. → The process can be described by an infinitely divisible characteristic function belonging to the De Finetti class. → We extend the De Finetti functions to a generalized nonlinear model.

  3. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  4. Phenomenology of a nonstandard Higgs boson in WLWL scattering

    International Nuclear Information System (INIS)

    Koulovassilopoulos, V.; Chivukula, R.S.

    1994-01-01

    In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal gauge boson scattering. First, we present a composite Higgs model [based on an SU(4)/Sp(4) chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore, in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance coupled to the Goldstone bosons of the SU(2) L xSu(2) R /SU(2) V chiral symmetry breaking. We show that the most important deviation from the one-Higgs-doublet standard model is parametrized by one unknown coefficient which is related to the Higgs-boson width. The implications for future hadron colliders are discussed

  5. Cardiovascular health status between standard and nonstandard workers in Korea.

    Directory of Open Access Journals (Sweden)

    Jong Ju Seon

    Full Text Available The effect of employment insecurity on employee health is an important public health issue due to the recent effects of neoliberalism and the global financial crisis (2007-2008 on labor markets. This study aims to evaluate the differences in cardiovascular health status and the use of preventive screening services between standard and nonstandard workers.Waged employees (N = 5,338 between the ages of 20 and 64 were grouped into standard (full-time, permanent and nonstandard (part-time, temporary, or daily employees. Data from the Fourth Korea National Health and Nutrition Examination Survey, 2007-2009, a nationwide representative survey, were examined, including cardiovascular health risk behaviors (tobacco, alcohol, physical inactivity, measured morbidities (blood pressure, blood glucose level, lipid profiles, body mass index, and the use of screening services for hypertension and diabetes mellitus.Female nonstandard employees tended to have higher blood pressure than did female standard employees (adjusted odds ratio, aOR 1.42, 95% confidence interval, CI 1.02 to 1.98. However, nonstandard employees (both men and women were less likely to use preventive screening services for hypertension (aOR 0.72, 95% CI 0.54 to 0.94 in men; aOR 0.56, 95% CI 0.43 to 0.73 in women and diabetes (aOR 0.58, 95% CI 0.43 to 0.79 in men; aOR 0.55, 95% CI 0.43 to 0.71 in women.Nonstandard work is associated with the underuse of screening services and poorer cardiovascular health in a specific population. Policies to reduce employment insecurity and encourage nonstandard employees to receive health screening services should be prioritized.

  6. Cardiovascular health status between standard and nonstandard workers in Korea.

    Science.gov (United States)

    Seon, Jong Ju; Lim, Yu Jin; Lee, Hae Won; Yoon, Jae Moon; Kim, Sang June; Choi, Seulggie; Kawachi, Ichiro; Park, Sang Min

    2017-01-01

    The effect of employment insecurity on employee health is an important public health issue due to the recent effects of neoliberalism and the global financial crisis (2007-2008) on labor markets. This study aims to evaluate the differences in cardiovascular health status and the use of preventive screening services between standard and nonstandard workers. Waged employees (N = 5,338) between the ages of 20 and 64 were grouped into standard (full-time, permanent) and nonstandard (part-time, temporary, or daily) employees. Data from the Fourth Korea National Health and Nutrition Examination Survey, 2007-2009, a nationwide representative survey, were examined, including cardiovascular health risk behaviors (tobacco, alcohol, physical inactivity), measured morbidities (blood pressure, blood glucose level, lipid profiles, body mass index), and the use of screening services for hypertension and diabetes mellitus. Female nonstandard employees tended to have higher blood pressure than did female standard employees (adjusted odds ratio, aOR 1.42, 95% confidence interval, CI 1.02 to 1.98). However, nonstandard employees (both men and women) were less likely to use preventive screening services for hypertension (aOR 0.72, 95% CI 0.54 to 0.94 in men; aOR 0.56, 95% CI 0.43 to 0.73 in women) and diabetes (aOR 0.58, 95% CI 0.43 to 0.79 in men; aOR 0.55, 95% CI 0.43 to 0.71 in women). Nonstandard work is associated with the underuse of screening services and poorer cardiovascular health in a specific population. Policies to reduce employment insecurity and encourage nonstandard employees to receive health screening services should be prioritized.

  7. Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge

    International Nuclear Information System (INIS)

    Andreev, A. G.; Bazelyan, E. M.; Bulatov, M. U.; Kuzhekin, I. P.; Makalsky, L. M.; Sukharevskij, D. I.; Syssoev, V. S.

    2008-01-01

    A positive leader in air at gap lengths of up to 8 m was studied experimentally on an open experimental stand. The voltage source was a 6-MV pulsed voltage generator or an artificial charged aerosol cloud. The dependence of the leader velocity on the current in the range 0.2-8 A was determined by simultaneously recording the optical picture and electric parameters of the discharge. Particular attention was paid to the final-jump phase of the discharge, when the gap was completely bridged by the streamer zone of the leader. It is shown that the character of the dependence of the leader velocity on the current in this phase remains unchanged; hence, the final-jump phase can be used in experiments in which the current has to be varied within a wide range. For this purpose, one can use a damping resistance, which is inefficient in the initial phase. The parameters of the power-law dependence of the leader velocity on the current at currents of a few amperes are established reliably. It is found that the power-law dependence with constant parameters is inapplicable to calculate the leader velocity at currents of about 0.1 A, which correspond to the lower limit of the leader viability.

  8. Jump conditions in transonic equilibria

    International Nuclear Information System (INIS)

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-01-01

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that “standard” (low-β, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-β, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large β, while they agree with the results obtained with the old implementation of FLOW in lower-β equilibria.

  9. Mechanics of jumping on water

    Science.gov (United States)

    Kim, Ho-Young; Amauger, Juliette; Jeong, Han-Bi; Lee, Duck-Gyu; Yang, Eunjin; Jablonski, Piotr G.

    2017-10-01

    Some species of semiaquatic arthropods including water striders and springtails can jump from the water surface to avoid sudden dangers like predator attacks. It was reported recently that the jump of medium-sized water striders is a result of surface-tension-dominated interaction of thin cylindrical legs and water, with the leg movement speed nearly optimized to achieve the maximum takeoff velocity. Here we describe the mathematical theories to analyze this exquisite feat of nature by combining the review of existing models for floating and jumping and the introduction of the hitherto neglected capillary forces at the cylinder tips. The theoretically predicted dependence of body height on time is shown to match the observations of the jumps of the water striders and springtails regardless of the length of locomotory appendages. The theoretical framework can be used to understand the design principle of small jumping animals living on water and to develop biomimetic locomotion technology in semiaquatic environments.

  10. CP Studies and Non-Standard Higgs Physics

    DEFF Research Database (Denmark)

    Kraml, S.; Accomando, E.; G. Akeroyd, A.

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state......, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories...

  11. Profile of a nonstandard Higgs boson at the CERN LHC

    International Nuclear Information System (INIS)

    Kominis, D.; Koulovassilopoulos, V.

    1995-01-01

    In a wide class of extensions of the standard model there is a scalar resonance with the quantum numbers of the usual Higgs boson but with different couplings to fermions and gauge bosons. Using an effective Lagrangian description, we examine the phenomenology of such a generic nonstandard Higgs boson at the CERN LHC. In particular, we determine the circumstances under which such a particle can be observed in its ZZ decay mode and distinguished from the Higgs boson of the standard model. We briefly comment on the energy scale effectively probed at the LHC, if the nonstandard nature of an observed Higgs particle can be asserted

  12. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  13. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  14. Thersites: a `jumping' Trojan?

    Science.gov (United States)

    Tsiganis, K.; Dvorak, R.; Pilat-Lohinger, E.

    2000-02-01

    In this paper, we examine the dynamical evolution of the asteroid (1868) Thersites, a member of the Trojan belt. Thersites is librating around the Lagrangian point L_4, following, however, a chaotic orbit. The equations of motion for Thersites as well as for a distribution of neighboring initial conditions are integrated numerically for 50 million years in the Outer Solar System model (OSS), which consists of the Sun and the four giant planets. Our results indicate that the probability that this asteroid will eventually escape from the Trojan swarm is rather high. In fact, 20% from our initial distribution escaped within the integration time. Many of the remaining ones also show characteristic `jumps' in the orbital elements, especially the inclination. Secular resonances involving the nodes of the outer planets are found to be responsible for this chaotic behavior. The width of libration and eccentricity values that lead to grossly unstable orbits are calculated and compared with previously known results on the stability of the Trojans. Finally, a very interesting behavior has been observed for one of the escaping asteroids as he `jumped' from L_4 to L_5 where he remained performing a highly inclined libration for ~ 2 Myrs before escaping from the Trojan swarm. According to Homer, Thersites was not only the ugliest of all Greeks that took part in the Trojan war, but also had the most intolerable personality. His nasty habit of making fun of everybody cost him his life, as the last person for whom he spoke ironically about was Achilles, the mightiest warrior of all Greeks, who killed Thersites with just one punch!

  15. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  16. Comparison of stretch reflex responses evoked during drop jumping in highly skilled atheles versus untrained subjects.

    Science.gov (United States)

    Judge, L W; Burke, J R

    2015-06-01

    The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.

  17. Hydraulic jump and Bernoulli equation in nonlinear shallow water model

    Science.gov (United States)

    Sun, Wen-Yih

    2018-06-01

    A shallow water model was applied to study the hydraulic jump and Bernoulli equation across the jump. On a flat terrain, when a supercritical flow plunges into a subcritical flow, discontinuity develops on velocity and Bernoulli function across the jump. The shock generated by the obstacle may propagate downstream and upstream. The latter reflected from the inflow boundary, moves downstream and leaves the domain. Before the reflected wave reaching the obstacle, the short-term integration (i.e., quasi-steady) simulations agree with Houghton and Kasahara's results, which may have unphysical complex solutions. The quasi-steady flow is quickly disturbed by the reflected wave, finally, flow reaches steady and becomes critical without complex solutions. The results also indicate that Bernoulli function is discontinuous but the potential of mass flux remains constant across the jump. The latter can be used to predict velocity/height in a steady flow.

  18. Entropy jump across an inviscid shock wave

    Science.gov (United States)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  19. Hypohydration Reduces Vertical Ground Reaction Impulse But Not Jump Height

    Science.gov (United States)

    2010-01-01

    height, provided that muscle contractile function remains normal, because gravitational and inertial resistance to jumping are pro- portional to body...testing, anthropometric and fitness measurements were made to characterize the study population. Peak aerobic power (VO2peak) was determined using an...determinations. All volunteers performed between 3 and 5 practice days of vertical jump testing to reduce training and learning effects. Practice

  20. Knee Muscular Control During Jump Landing in Multidirections

    OpenAIRE

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direct...

  1. Maternal Nonstandard Work Schedules and Child Cognitive Outcomes

    Science.gov (United States)

    Han, Wen-Jui

    2005-01-01

    This paper examined associations between mothers' work schedules and children's cognitive outcomes in the first 3 years of life for approximately 900 children from the National Institute of Child Health and Human Development Study of Early Child Care. Both the timing and duration of maternal nonstandard work schedules were examined. Although…

  2. Following the Template: Transferring Modeling Skills to Nonstandard Problems

    Science.gov (United States)

    Tyumeneva, Yu. A.; Goncharova, M. V.

    2017-01-01

    This study seeks to analyze how students apply a mathematical modeling skill that was previously learned by solving standard word problems to the solution of word problems with nonstandard contexts. During the course of an experiment involving 106 freshmen, we assessed how well they were able to transfer the mathematical modeling skill that is…

  3. Nonstandard Work Schedules and Partnership Quality : Quantitative and Qualitative Findings

    NARCIS (Netherlands)

    Mills, Melinda; Täht, K

    This article questions existing findings and provides new evidence about the consequences of nonstandard work schedules on partnership quality. Using quantitative couple data from The Netherlands Kinship Panel Study (NKPS) (N = 3,016) and semistructured qualitative interviews (N = 34), we found

  4. Nonstandard Work Schedules and Partnership Quality: Quantitative and Qualitative Findings

    Science.gov (United States)

    Mills, Melinda; Taht, Kadri

    2010-01-01

    This article questions existing findings and provides new evidence about the consequences of nonstandard work schedules on partnership quality. Using quantitative couple data from The Netherlands Kinship Panel Study (NKPS) (N = 3,016) and semistructured qualitative interviews (N = 34), we found that, for women, schedules with varying hours…

  5. Higher Education in Non-Standard Wage Contracts

    Science.gov (United States)

    Rosti, Luisa; Chelli, Francesco

    2012-01-01

    Purpose: The purpose of this paper is to verify whether higher education increases the likelihood of young Italian workers moving from non-standard to standard wage contracts. Design/methodology/approach: The authors exploit a data set on labour market flows, produced by the Italian National Statistical Office, by interviewing about 85,000…

  6. 27 CFR 5.53 - Certificate of nonstandard fill.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Certificate of nonstandard fill. 5.53 Section 5.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Requirements for Withdrawal...

  7. 27 CFR 4.46 - Certificate of nonstandard fill.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Certificate of nonstandard fill. 4.46 Section 4.46 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Requirements for Withdrawal of Wine From...

  8. Non-standard employment relations and wages among school-leavers in the Netherlands

    NARCIS (Netherlands)

    de Vries, M.R.; Wolbers, M.H.J.

    2005-01-01

    Non-standard (alternatively, flexible) employment has become common in the Netherlands, and viewed as an important weapon for combating youth unemployment. However, if such jobs are 'bad', non-standard employment becomes a matter of concern. In addition, non-standard employment may hit the least

  9. Time for Children, One's Spouse and Oneself among Parents Who Work Nonstandard Hours

    Science.gov (United States)

    Wight, Vanessa R.; Raley, Sara B.; Bianchi, Suzanne M.

    2008-01-01

    Using data from the 2003 and 2004 American Time Use Surveys, this article examines nonstandard work hours and their relationship to parents' family, leisure and personal care time--informing the discussion of the costs and benefits of working nonstandard hours. The results suggest that parents who work nonstandard evening hours spend less time in…

  10. Choice of jumping strategy in two standard jumps, squat and countermovement jump--effect of training background or inherited preference?

    DEFF Research Database (Denmark)

    Ravn, Susanne; Voigt, M; Simonsen, Erik Bruun

    1999-01-01

    . The jumps were recorded on highspeed film (500 Hz) combined with registration of ground reaction forces, and net joint moments were calculated by inverse dynamics. The purpose was to investigate the choice of strategy in two standard jumps, squat jump and countermovement jump. The volleyball jump...... was performed with a sequential strategy and the ballet jump was performed with a simultaneous strategy. In the two standard jumps, the choice of strategy was individual and not related to training background. This was additionally confirmed in a test of seven ballet dancers and seven volleyball players....

  11. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected......'s mixing-length theory with a mixing length that is proportional to the height of the fluid layer. Using averaged boundary-layer equations, taking into account the friction with the channel walls and the eddy viscosity, the flow both upstream and downstream of the jump can be understood. For the downstream...... subcritical flow, we assume that the critical height is attained close to the channel outlet. We use mass and momentum conservation to determine the position of the jump and obtain an estimate which is in rough agreement with our experiment. We show that the averaging method with a varying velocity profile...

  12. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  13. Sex Differences in Countermovement Jump Phase Characteristics

    Directory of Open Access Journals (Sweden)

    John J. McMahon

    2017-01-01

    Full Text Available The countermovement jump (CMJ is commonly used to explore sex differences in neuromuscular function, but previous studies have only reported gross CMJ measures or have partly examined CMJ phase characteristics. The purpose of this study was to explore differences in CMJ phase characteristics between male and female athletes by comparing the force-, power-, velocity-, and displacement-time curves throughout the entire CMJ, in addition to gross measures. Fourteen men and fourteen women performed three CMJs on a force platform from which a range of kinetic and kinematic variables were calculated via forward dynamics. Jump height (JH, reactive strength index modified, relative peak concentric power, and eccentric and concentric displacement, velocity, and relative impulse were all greater for men (g = 0.58–1.79. Relative force-time curves were similar between sexes, but relative power-, velocity-, and displacement-time curves were greater for men at 90%–95% (immediately before and after peak power, 47%–54% (start of eccentric phase and 85%–100% (latter half of concentric phase, and 65%–87% (bottom of countermovement and initial concentric phase of normalized jump time, respectively. The CMJ distinguished between sexes, with men demonstrating greater JH through applying a larger concentric impulse and, thus, achieving greater velocity throughout most of the concentric phase, including take-off.

  14. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    Science.gov (United States)

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  15. Variation in free jumping technique within and among horses with little experience in show jumping

    NARCIS (Netherlands)

    Santamaria, S.; Bobbert, M.F.; Back, W.; Barneveld, A.; van Weeren, P.R.

    2004-01-01

    Objective - To quantify variation in the jumping technique within and among young horses with little jumping experience, establish relationships between kinetic and kinematic variables, and identify a limited set of variables characteristic for detecting differences in jumping performance among

  16. Can OPERA help in constraining neutrino non-standard interactions?

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Pretel, A.; Valle, J.W.F. [AHEP Group, Institut de Fisica Corpuscular, C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain); Huber, P. [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Institute for Particle, Nuclear and Astronomical Sciences, Physics Department, Virgina Tech, Blacksburg, VA 24062 (United States)], E-mail: pahuber@vt.edu

    2008-10-09

    We study how much the unique ability of the OPERA experiment to directly detect {nu}{sub {tau}} can help in probing new, non-standard contact interactions of the third family of neutrinos. We perform a combined analysis of future, high-statistics MINOS and OPERA data. For the case of non-standard interactions in {nu}{sub {mu}} to {nu}{sub e} transitions we also include the impact of possible Double Chooz data. In all cases we find that the {nu}{sub {tau}} sample of OPERA is too small to be statistically significant, even if one doubles the nominal exposure of OPERA to 9x10{sup 19} pot. OPERA's real benefit for this measurement lies in its very high neutrino energy and hence very different L/E compared to MINOS.

  17. Testing non-standard CP violation in neutrino propagation

    International Nuclear Information System (INIS)

    Winter, Walter

    2009-01-01

    Non-standard physics which can be described by effective four fermion interactions may be an additional source of CP violation in the neutrino propagation. We discuss the detectability of such a CP violation at a neutrino factory. We assume the current baseline setup of the international design study of a neutrino factory (IDS-NF) for the simulation. We find that the CP violation from certain non-standard interactions is, in principle, detectable significantly below their current bounds - even if there is no CP violation in the standard oscillation framework. Therefore, a new physics effect might be mis-interpreted as the canonical Dirac CP violation, and a possibly even more exciting effect might be missed

  18. Workshop on CP Studies and Non-Standard Higgs Physics

    CERN Document Server

    Accomando, E.; Akhmetzyanova, E.; Albert, J.; Alves, A.; Amapane, N.; Aoki, M.; Azuelos, G.; Baffioni, S.; Ballestrero, A.; Barger, V.; Bartl, A.; Bechtle, P.; Blanger, G.; Belhouari, A.; Bellan, R.; Belyaev, A.; Benes, Petr; Benslama, K.; Bernreuther, W.; Besanon, M.; Bevilacqua, G.; Beyer, M.; Bluj, M.; Bolognesi, S.; Boonekamp, M.; Borzumati, Francesca; Boudjema, F.; Brandenburg, A.; Brauner, Tomas; Buszello, C.P.; Butterworth, J.M.; Carena, Marcela; Cavalli, D.; Cerminara, G.; Choi, S.Y.; Clerbaux, B.; Collard, C.; Conley, John A.; Deandrea, A.; De Curtis, S.; Dermisek, R.; De Roeck, A.; Dewhirst, G.; Diaz, M.A.; Diaz-Cruz, J.L.; Dietrich, D.D.; Dolgopolov, M.; Dominici, D.; Dubinin, M.; Eboli, O.; Ellis, John R.; Evans, N.; Fano, L.; Ferland, J.; Ferrag, S.; Fitzgerald, S.P.; Fraas, H.; Franke, F.; Gennai, S.; Ginzburg, I.F.; Godbole, R.M.; Gregoire, T.; Grenier, Gerald Jean; Grojean, C.; Gudnason, S.B.; Gunion, J.F.; Haber, H.E.; Hahn, T.; Han, T.; Hankele, V.; Hays, Christopher Paul; Heinemeyer, S.; Hesselbach, S.; Hewett, J.L.; Hidaka, K.; Hirsch, M.; Hollik, W.; Hooper, D.; Hosek, J.; Hubisz, J.; Hugonie, C.; Kalinowski, J.; Kanemura, S.; Kashkan, V.; Kernreiter, T.; Khater, W.; Khoze, V.A.; Kilian, W.; King, S.F.; Kittel, O.; Klamke, G.; Kneur, J.L.; Kouvaris, C.; Kraml, S.; Krawczyk, M.; Krstonoic, P.; Kyriakis, A.; Langacker, P.; Le, M.P.; Lee, H.-S.; Lee, J.S.; Lemaire, M.C.; Liao, Y.; Lillie, B.; Litvine, Vladimir A.; Logan, H.E.; McElrath, Bob; Mahmoud, T.; Maina, E.; Mariotti, C.; Marquard, P.; Martin, A.D.; Mazumdar, K.; Miller, D.J.; Min, P.; Monig, Klaus; Moortgat-Pick, G.; Moretti, S.; Muhlleitner, M.M.; Munir, S.; Nevzorov, R.; Newman, H.; Niezurawski, P.; Nikitenko, A.; Noriega-Papaqui, R.; Okada, Y.; Osland, P.; Pilaftsis, A.; Porod, W.; Przysiezniak, H.; Pukhov, A.; Rainwater, D.; Raspereza, A.; Reuter, J.; Riemann, S.; Rindani, S.; Rizzo, T.G.; Ros, E.; Rosado, A.; Rousseau, D.; Roy, D.P.; Ryskin, M.G.; Rzehak, H.; Sannino, F.; Schmidt, E.; Schrder, H.; Schumacher, M.; Semenov, A.; Senaha, E.; Shaughnessy, G.; Singh, R.K.; Terning, J.; Vacavant, L.; Velasco, M.; Villanova del Moral, Albert; von der Pahlen, F.; Weiglein, G.; Williams, J.; Williams, K.E.; Zarnecki, A.F.; Zeppenfeld, D.; Zerwas, D.; Zerwas, P.M.; Zerwekh, A.R.; Ziethe, J.; 2nd Workshop on CP Studies and Non-standard Higgs Physics; 3rd Workshop on CP Studies and Non-standard Higgs Physics; 4th Workshop on CP Studies and Non-standard Higgs Physics; CPNSH; Workshop on CP Studies and Non-standard Higgs Physics; CP Studies and Non-Standard Higgs Physics

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents ...

  19. Non-standard employment relationship and the gender dimension

    OpenAIRE

    Mihaela-Emilia Marica

    2015-01-01

    Besides influences economic, political and social on the standard form of individual employment contract, which led to a more flexible regulatory framework in the field of labor relations, an important factor that marked trend evolving contract atypical employment is the number of women who entered the labor market in recent decades. Because most strongly feminized form of employment non-standard employment relationship part-time, this article captures the issues most important about the r...

  20. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/default.htm

  1. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/ default .htm

  2. Timeless Approach to Quantum Jumps

    Directory of Open Access Journals (Sweden)

    Ignazio Licata

    2015-10-01

    Full Text Available According to the usual quantum description, the time evolution of the quantum state is continuous and deterministic except when a discontinuous and indeterministic collapse of state vector occurs. The collapse has been a central topic since the origin of the theory, although there are remarkable theoretical proposals to understand its nature, such as the Ghirardi–Rimini–Weber. Another possibility could be the assimilation of collapse with the now experimentally well established phenomenon of quantum jump, postulated by Bohr already in 1913. The challenge of nonlocality offers an opportunity to reconsider the quantum jump as a fundamental element of the logic of the physical world, rather than a subsidiary accident. We propose here a simple preliminary model that considers quantum jumps as processes of entry to and exit from the usual temporal domain to a timeless vacuum, without contradicting the quantum relativistic formalism, and we present some potential connections with particle physics. Quanta 2015; 4: 10–26.

  3. Quantum jumps on Anderson attractors

    Science.gov (United States)

    Yusipov, I. I.; Laptyeva, T. V.; Ivanchenko, M. V.

    2018-01-01

    In a closed single-particle quantum system, spatial disorder induces Anderson localization of eigenstates and halts wave propagation. The phenomenon is vulnerable to interaction with environment and decoherence that is believed to restore normal diffusion. We demonstrate that for a class of experimentally feasible non-Hermitian dissipators, which admit signatures of localization in asymptotic states, quantum particle opts between diffusive and ballistic regimes, depending on the phase parameter of dissipators, with sticking about localization centers. In a diffusive regime, statistics of quantum jumps is non-Poissonian and has a power-law interval, a footprint of intermittent locking in Anderson modes. Ballistic propagation reflects dispersion of an ordered lattice and introduces the second timescale for jumps, resulting in non-nonmonotonous probability distribution. Hermitian dephasing dissipation makes localization features vanish, and Poissonian jump statistics along with normal diffusion are recovered.

  4. Ionization chamber gradient effects in nonstandard beam configurations

    International Nuclear Information System (INIS)

    Bouchard, Hugo; Seuntjens, Jan; Carrier, Jean-Francois; Kawrakow, Iwan

    2009-01-01

    Purpose: For the purpose of nonstandard beam reference dosimetry, the current concept of reporting absorbed dose at a point in water located at a representative position in the chamber volume is investigated in detail. As new nonstandard beam reference dosimetry protocols are under development, an evaluation of the role played by the definition of point of measurement could lead to conceptual improvements prior to establishing measurement procedures. Methods: The present study uses the current definition of reporting absorbed dose to calculate ionization chamber perturbation factors for two cylindrical chamber models (Exradin A12 and A14) using the Monte Carlo method. The EGSnrc based user-code EGS lowbar chamber is used to calculate chamber dose responses of 14 IMRT beams chosen to cause considerable dose gradients over the chamber volume as previously used by Bouchard and Seuntjens [''Ionization chamber-based reference dosimetry of intensity modulated radiation beams,'' Med. Phys. 31(9), 2454-5465 (2004)]. Results: The study shows conclusively the relative importance of each physical effect involved in the nonstandard beam correction factors of 14 IMRT beams. Of all correction factors involved in the dosimetry of the beams studied, the gradient perturbation correction factor has the highest magnitude, on average, 11% higher compared to reference conditions for the Exradin A12 chamber and about 5% higher for the Extradin A14 chamber. Other perturbation correction factors (i.e., P wall , P stem , and P cel ) are, on average, less than 0.8% different from reference conditions for the chambers and beams studied. The current approach of reporting measured absorbed dose at a point in water coinciding with the location of the centroid of the chamber is the main factor responsible for large correction factors in nonstandard beam deliveries (e.g., intensity modulated radiation therapy) reported in literature. Conclusions: To reduce or eliminate the magnitude of

  5. Asymptotic Behaviour and Extinction of Delay Lotka-Volterra Model with Jump-Diffusion

    Directory of Open Access Journals (Sweden)

    Dan Li

    2014-01-01

    Full Text Available This paper studies the effect of jump-diffusion random environmental perturbations on the asymptotic behaviour and extinction of Lotka-Volterra population dynamics with delays. The contributions of this paper lie in the following: (a to consider delay stochastic differential equation with jumps, we introduce a proper initial data space, in which the initial data may be discontinuous function with downward jumps; (b we show that the delay stochastic differential equation with jumps associated with our model has a unique global positive solution and give sufficient conditions that ensure stochastically ultimate boundedness, moment average boundedness in time, and asymptotic polynomial growth of our model; (c the sufficient conditions for the extinction of the system are obtained, which generalized the former results and showed that the sufficiently large random jump magnitudes and intensity (average rate of jump events arrival may lead to extinction of the population.

  6. Scaling of interfacial jump conditions

    International Nuclear Information System (INIS)

    Quezada G, S.; Vazquez R, A.; Espinosa P, G.

    2015-09-01

    To model the behavior of a nuclear reactor accurately is needed to have balance models that take into account the different phenomena occurring in the reactor. These balances have to be coupled together through boundary conditions. The boundary conditions have been studied and different treatments have been given to the interface. In this paper is a brief description of some of the interfacial jump conditions that have been proposed in recent years. Also, the scaling of an interfacial jump condition is proposed, for coupling the different materials that are in contact within a nuclear reactor. (Author)

  7. Equivalence of the Traditional and Non-Standard Definitions of Concepts from Real Analysis

    Directory of Open Access Journals (Sweden)

    John Cowles

    2014-06-01

    Full Text Available ACL2(r is a variant of ACL2 that supports the irrational real and complex numbers. Its logical foundation is based on internal set theory (IST, an axiomatic formalization of non-standard analysis (NSA. Familiar ideas from analysis, such as continuity, differentiability, and integrability, are defined quite differently in NSA–some would argue the NSA definitions are more intuitive. In previous work, we have adopted the NSA definitions in ACL2(r, and simply taken as granted that these are equivalent to the traditional analysis notions, e.g., to the familiar epsilon-delta definitions. However, we argue in this paper that there are circumstances when the more traditional definitions are advantageous in the setting of ACL2(r, precisely because the traditional notions are classical, so they are unencumbered by IST limitations on inference rules such as induction or the use of pseudo-lambda terms in functional instantiation. To address this concern, we describe a formal proof in ACL2(r of the equivalence of the traditional and non-standards definitions of these notions.

  8. Multiobjective Optimization Methodology A Jumping Gene Approach

    CERN Document Server

    Tang, KS

    2012-01-01

    Complex design problems are often governed by a number of performance merits. These markers gauge how good the design is going to be, but can conflict with the performance requirements that must be met. The challenge is reconciling these two requirements. This book introduces a newly developed jumping gene algorithm, designed to address the multi-functional objectives problem and supplies a viably adequate solution in speed. The text presents various multi-objective optimization techniques and provides the technical know-how for obtaining trade-off solutions between solution spread and converg

  9. Jumping to conclusions in schizophrenia

    Directory of Open Access Journals (Sweden)

    Evans SL

    2015-07-01

    Full Text Available Simon L Evans,1 Bruno B Averbeck,2 Nicholas Furl31School of Psychology, University of Sussex, Brighton, East Sussex, UK; 2Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; 3Department of Psychology, Royal Holloway, University of London, Egham, Surrey, UKAbstract: Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn. Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy.Keywords: ketamine, decision making, delusions, fMRI, urn task

  10. Orthogonal Expansions for VIX Options Under Affine Jump Diffusions

    DEFF Research Database (Denmark)

    Barletta, Andrea; Nicolato, Elisa

    2017-01-01

    In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel. Orthogo......In this work we derive new closed–form pricing formulas for VIX options in the jump-diffusion SVJJ model proposed by Duffie et al. (2000). Our approach is based on the classic methodology of approximating a density function with an orthogonal expansion of polynomials weighted by a kernel...

  11. Moderation of flux jumps dynamics by eddy-currents in a disk shape NbTi superconductor

    International Nuclear Information System (INIS)

    Vasiliev, S.; Nabialek, A.; Piechota, S.; Szymczak, H.; Chabanenko, V.V.; Rusakov, V.

    2004-01-01

    We studied the moderation of the flux jumps dynamics in a disc shape NbTi-50% superconductor caused by eddy-currents induced in two copper cylinders attached to both surfaces of the investigated sample. We investigated experimentally the time of the flux jump duration, amount of the magnetic flux entering the sample during the jump as well as the sine structure of the jumps as a function of temperature and the external magnetic field. A simple theoretical model, which describes the magnetic field dependence of the amount of the magnetic flux entering the superconducting sample during the flux jump, was developed. (author)

  12. Pressure Jumps during Drainage in Macroporous Soils

    DEFF Research Database (Denmark)

    Soto, Diego; Paradelo Pérez, Marcos; Corral, A

    2018-01-01

    Tensiometer readings obtained at high resolution during drainage of structured soil columns revealed pressure jumps with long range correlations and burst sequences with a hierarchical structure. The statistical properties of jumps are similar to Haines jumps described in invasion percolation...... processes at pore scale, but they are much larger in amplitude and duration. Pressure jumps can result from transient redistribution of water potential in internal regions of soil and can be triggered during drainage by capillary displacements at the scale of structural pores....

  13. The identification of price jumps

    Czech Academy of Sciences Publication Activity Database

    Hanousek, Jan; Kočenda, Evžen; Novotný, Jan

    2012-01-01

    Roč. 18, č. 1 (2012), s. 53-77 ISSN 0929-9629 R&D Projects: GA ČR(CZ) GAP403/11/0020; GA ČR(CZ) GBP402/12/G097 Institutional support: PRVOUK-P23 Keywords : price jumps * non-parametric testing * financial econometrics Subject RIV: AH - Economics

  14. Regime Jumps in Electricity Prices

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald)

    2001-01-01

    textabstractElectricity prices are known to be very volatile and subject to frequent jumps due to system breakdown, demand shocks, and inelastic supply. As many international electricity markets are in some state of deregulation, more and more participants in these markets are exposed to these

  15. Coupled jump rotational dynamics in aqueous nitrate solutions.

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2016-12-21

    A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the

  16. Self-adjoint Hamiltonians with a mass jump: General matching conditions

    International Nuclear Information System (INIS)

    Gadella, M.; Kuru, S.; Negro, J.

    2007-01-01

    The simplest position-dependent mass Hamiltonian in one dimension, where the mass has the form of a step function with a jump discontinuity at one point, is considered. The most general matching conditions at the jumping point for the solutions of the Schroedinger equation that provide a self-adjoint Hamiltonian are characterized

  17. Mesopause Jumps: Observations and Explanation

    Science.gov (United States)

    Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.

    2017-12-01

    Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.

  18. Effects of timing of signal indicating jump directions on knee biomechanics in jump-landing-jump tasks.

    Science.gov (United States)

    Stephenson, Mitchell L; Hinshaw, Taylour J; Wadley, Haley A; Zhu, Qin; Wilson, Margaret A; Byra, Mark; Dai, Boyi

    2018-03-01

    A variety of the available time to react (ATR) has been utilised to study knee biomechanics during reactive jump-landing tasks. The purpose was to quantify knee kinematics and kinetics during a jump-land-jump task of three possible directions as the ATR was reduced. Thirty-four recreational athletes performed 45 trials of a jump-land-jump task, during which the direction of the second jump (lateral, medial or vertical) was indicated before they initiated the first jump, the instant they initiated the first jump, 300 ms before landing, 150 ms before landing or at the instant of landing. Knee joint angles and moments close to the instant of landing were significantly different when the ATR was equal to or more than 300 ms before landing, but became similar when the ATR was 150 ms or 0 ms before landing. As the ATR was decreased, knee moments decreased for the medial jump direction, but increased for the lateral jump direction. When the ATR is shorter than an individual's reaction time, the movement pattern cannot be pre-planned before landing. Knee biomechanics are dependent on the timing of the signal and the subsequent jump direction. Precise control of timing and screening athletes with low ATR are suggested.

  19. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  20. Searches for non-Standard Model Higgs bosons

    CERN Document Server

    Dumitriu, Ana Elena; The ATLAS collaboration

    2018-01-01

    This presentation focuses on the Searches for non-Standard Model Higgs bosons using 36.1 fb of data collected by the ATLAS experiment. There are several theoretical models with an extended Higgs sector considered: 2 Higgs Doublet Models (2HDM), Supersymmetry (SUSY), which brings along super-partners of the SM particles (+ The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM)), General searches and Invisible decaying Higgs boson.

  1. Nonstandard Supersymmetry Breaking and Dirac Gaugino Masses without Supersoftness

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Northern Illinois U.

    2015-08-05

    I consider models in which nonstandard supersymmetry-breaking terms, including Dirac gaugino masses, arise from F-term breaking mediated by operators with a 1/M3 suppression. In these models, the supersoft properties found in the case of D-term breaking are absent in general, but can be obtained as a special case that is a fixed point of the renormalization group equations. The μ term is replaced by three distinct supersymmetry-breaking parameters, decoupling the Higgs scalar potential from the Higgsino masses. Both holomorphic and nonholomorphic scalar cubic interactions with minimal flavor violation are induced in the supersymmetric Standard Model Lagrangian.

  2. Non-standard interaction effects at reactor neutrino experiments

    International Nuclear Information System (INIS)

    Ohlsson, Tommy; Zhang, He

    2009-01-01

    We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on θ 13 . We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles θ 13 and θ 12 are discussed in detailed. Finally, we show that, even for a vanishing θ 13 , an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs

  3. Hydraulic jumps in a partially filled rotating cylinder

    International Nuclear Information System (INIS)

    Lundgren, T.S.; Berman, A.S.

    1979-06-01

    A nonlinear analysis is made of the fluid dynamics of a thin film of liquid completely spun up along the cylindrical wall of a rotating cylinder. The analysis allows for the possibility of hydraulic jumps in the liquid film. Conditions are simulated under which jumps can occur. Under the assumption that synchronous runouts are small relative to the film thickness, a sample calculation of jump position and extent for various operating frequencies is presented. Comparison with experimental observations indicate good qualitative agreement between the analysis and the experiment. Under the additional restriction of constant film thickness and a simple lumped-parameter dynamic model for the rotor and its supports, an analysis is also provided which predicts the amplitude and frequency of the asynchronous runout as a function of operating frequency. A numerical example of the results of such a calculation is provided. 6 figures

  4. Adaptive jump barrier height in Monte Carlo configuration kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Martin; Pfeiler, Wolfgang; Pueschl, Wolfgang [Dynamics of Condensed Systems, Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Vogtenhuber, Doris [Computational Materials Science, Faculty of Physics, University of Vienna, Sensengasse 8, A-1090 Wien (Austria)

    2008-07-01

    In usual MC simulations of configuration kinetics atom jump probabilities are calculated from energies of the initial and/or final bound states of the moving atom, leaving aside the exact energy of the intermediate saddle point state. This energy may however be critically influenced by the local atomic environment. We propose a strategy to explicitly take account of this influence. The basis is ab initio calculation of representative jump paths in the framework of the nudged elastic band method. From these results, an influence function is derived which modifies the energy of the saddle point and therefore the effective jump barrier height as calculated from the initial and final states according to a cluster expansion scheme. The overall effect is demonstrated on the NiAl system.

  5. Anomalous moments of quarks and leptons from nonstandard WWγ couplings

    International Nuclear Information System (INIS)

    Boudjema, F.; Hagiwara, K.; Hamzaoui, C.; Numata, K.

    1991-01-01

    Contributions of nonstandard WWγ couplings to the four electromagnetic form factors of light quarks and leptons, magnetic and electric dipole moments, anapole moments, and charge radii, have been reevaluated, with a special emphasis on the effects of the locally SU(2) weak -invariant nonrenormalizable couplings λ and λ. Previous results for the contribution of the dimension-four anomalous couplings Δκ and κ are reproduced. The λ contribution to the charge radius and the anapole moments are found to be logarithmically sensitive to the cutoff scale (Λ), but the contribution of the λ coupling to the anomalous magnetic moments as well as that of the λ coupling to the electric dipole moments are found to be finite. These finite values are, however, found to be regularization-scheme dependent. The origin of the ambiguities is discussed and we argue that the numerical coefficients depend on the details of the underlying physics that gives rise to these nonstandard couplings. Banning an accidental cancellation, we can place an order-of-magnitude upper bound |λ|approx-lt 10 -4 from the experimental limit on the electric dipole moment of the neutron. Some definite predictions for the off-shell form factors are also presented

  6. Curtailing the dark side in non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Denton, Peter B. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute,Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe (Germany)

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

  7. Locomotion of Mexican jumping beans

    International Nuclear Information System (INIS)

    West, Daniel M; K Lal, Ishan; Leamy, Michael J; Hu, David L

    2012-01-01

    The Mexican jumping bean, Laspeyresia saltitans, consists of a hollow seed housing a moth larva. Heating by the sun induces movements by the larva which appear as rolls, jumps and flips by the bean. In this combined experimental, numerical and robotic study, we investigate this unique means of rolling locomotion. Time-lapse videography is used to record bean trajectories across a series of terrain types, including one-dimensional channels and planar surfaces of varying inclination. We find that the shell encumbers the larva's locomotion, decreasing its speed on flat surfaces by threefold. We also observe that the two-dimensional search algorithm of the bean resembles the run-and-tumble search of bacteria. We test this search algorithm using both an agent-based simulation and a wheeled Scribbler robot. The algorithm succeeds in propelling the robot away from regions of high temperature and may have application in biomimetic micro-scale navigation systems. (paper)

  8. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...... nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal...... states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners...

  9. Data-Driven Jump Detection Thresholds for Application in Jump Regressions

    Directory of Open Access Journals (Sweden)

    Robert Davies

    2018-03-01

    Full Text Available This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the ‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.

  10. ASTM lights the way for tissue engineered medical products standards: jump start for combination medical products that restore biological function of human tissues.

    Science.gov (United States)

    Picciolo, G L; Stocum, D L

    2001-01-01

    Everybody hopes for better health and restoration of impaired bodily function, and now that hope is illuminated by the promise of powerful biological tools that make human cells grow and replace human tissue. ASTM Committee F04 on Medical and Surgical Materials and Devices is taking the lead by defining some of those tools as standards that can be used for the development, production, testing, and regulatory approval of medical products.

  11. Non-Native English Speakers and Nonstandard English: An In-Depth Investigation

    Science.gov (United States)

    Polat, Brittany

    2012-01-01

    Given the rising prominence of nonstandard varieties of English around the world (Jenkins 2007), learners of English as a second language are increasingly called on to communicate with speakers of both native and non-native nonstandard English varieties. In many classrooms around the world, however, learners continue to be exposed only to…

  12. Nonstandard Work, Substandard Jobs. Flexible Work Arrangements in the U.S.

    Science.gov (United States)

    Kalleberg, Arne L.; Rasell, Edith; Cassirer, Naomi; Reskin, Barbara F.; Hudson, Ken; Webster, David; Appelbaum, Eileen; Spalter-Roth, Roberta M.

    Nonstandard work arrangements (independent contracting, working for a temporary help agency, contract or on-call work, day labor, self-employment, and regular part-time employment) are growing more common in the United States. In 1995, more than 29 percent of all jobs were in nonstandard work arrangements. A study of these jobs and the…

  13. Pathways to Economic Security: Gender and Nonstandard Employment in Contemporary Japan

    Science.gov (United States)

    Gottfried, Heidi

    2008-01-01

    Compiling data from several government surveys, this article identifies key social indicators of economic security associated with nonstandard employment in Japan. Empirical trends of nonstandard employment are contextualized in the development of Japanese coordinated capitalism from the economic boom during the 1960s through the recession of the…

  14. S and T Parameters from a Light Nonstandard Higgs versus Near Conformal Dynamics

    DEFF Research Database (Denmark)

    Foadi, Roshan; Sannino, Francesco

    2013-01-01

    We determine the contribution to the $S$ and $T$ parameters coming from extensions of the standard model featuring a light nonstandard-like Higgs particle. We neatly separate, using the Landau gauge, the contribution from the purely nonstandard Higgs sector, from the one due to the interplay...

  15. Nonstandard Work Schedules, Couple Desynchronization, and Parent-Child Interaction : A Mixed-Methods Analysis

    NARCIS (Netherlands)

    Taeht, Kadri; Mills, Melinda

    Many children live in households where either one or both parents work nonstandard schedules in the evening, night, or weekend. This study tests two competing hypotheses of whether nonstandard schedules result in lower levels of parent-child interaction or in more time with children. Using the first

  16. Vertical and Horizontal Jump Capacity in International Cerebral Palsy Football Players.

    Science.gov (United States)

    Reina, Raúl; Iturricastillo, Aitor; Sabido, Rafael; Campayo-Piernas, Maria; Yanci, Javier

    2018-05-01

    To evaluate the reliability and validity of vertical and horizontal jump tests in football players with cerebral palsy (FPCP) and to analyze the jump performance differences between current International Federation for Cerebral Palsy Football functional classes (ie, FT5-FT8). A total of 132 international parafootballers (25.8 [6.7] y; 70.0 [9.1] kg; 175.7 [7.3] cm; 22.8 [2.8] kg·m -2 ; and 10.7 [7.5] y training experience) participated in the study. The participants were classified according to the International Federation for Cerebral Palsy Football classification rules, and a group of 39 players without cerebral palsy was included in the study as a control group. Football players' vertical and horizontal jump performance was assessed. All the tests showed good to excellent relative intrasession reliability scores, both in FPCP and in the control group (intraclass correlation = .78-.97, SEM jump, standing broad jump, 4 bounds for distance, and triple hop for distance dominant leg and nondominant leg. The control group performed higher/farther jumps with regard to all the FPCP classes, obtaining significant differences and moderate to large effect sizes (ESs) (.85 jump tests than players in the lower classes (ES = moderate to large, P jump tests performed in this study could be applied to the classification procedures and protocols for FPCP.

  17. Search for non-standard SUSY signatures in CMS

    International Nuclear Information System (INIS)

    Teyssier, Daniel

    2008-01-01

    New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.

  18. A brief status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    In this plenary talk, we review the status of non-standard neutrino interactions (NSIs). First, we give a brief introduction to neutrino flavor transitions with NSIs based on the standard paradigm of neutrino oscillations. Then, we discuss alternative scenarios for neutrino flavor transitions such as neutrino decoherence, neutrino decay, and NSIs. Second, we investigate NSIs with three neutrino flavors. In general, we introduce production and detection NSIs, including the so-called zero-distance effect, and matter NSIs. In addition, we study mappings and approximate formulas for NSIs. Third, we present a brief account of theoretical models for NSIs. Fourth and most important, we investigate in detail the phenomenology of NSIs based on different types of data from neutrino experiments. Fifth, we give some phenomenological bounds on both matter and production/detection NSIs as well as we present sensitivity and discovery reach of NSIs at future experiments. Finally, we present a summary and state our conclusions

  19. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  20. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  1. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    International Nuclear Information System (INIS)

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J.

    2009-01-01

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new catheters following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V 100 Prostate >90%) and organ-at-risk dose sparing (V 75 Bladder 75 Rectum 125 Urethra <<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of catheter insertion. In addition, alternative catheter

  2. Psychophysiological response in parachute jumps, the effect of experience and type of jump.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Fernández-Lucas, Jesús

    2017-10-01

    We aimed to analyse the effect of experience and type of parachute jump on the psychophysiological responses of jumpers. We analysed blood oxygen saturation, heart rate, blood glucose, lactate and creatinkinase, leg strength, isometric hand strength, cortical arousal, specific fine motor skills, self-confidence and cognition, and somatic and state anxiety, before and after four different parachute jumps: a sport parachute jump, a manual tactical parachute jump, tandem pilots, and tandem passengers. Independently of the parachute jump, the psychophysiological responses of experienced paratroopers were not affected by the jumps, except for an increase in anaerobic metabolism. Novice parachute jumpers presented a higher psychophysiological stress response than the experienced jumpers, together with a large anticipatory anxiety response before the jump; however, this decreased after the jump, although the high physiological activation was maintained. This information could be used by civil and military paratroopers' instructors to improve their training programmes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dynamic jump intensities and risk premiums

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Ornthanalai, Chayawat; Jacobs, Kris

    2012-01-01

    We build a new class of discrete-time models that are relatively easy to estimate using returns and/or options. The distribution of returns is driven by two factors: dynamic volatility and dynamic jump intensity. Each factor has its own risk premium. The models significantly outperform standard...... models without jumps when estimated on S&P500 returns. We find very strong support for time-varying jump intensities. Compared to the risk premium on dynamic volatility, the risk premium on the dynamic jump intensity has a much larger impact on option prices. We confirm these findings using joint...

  4. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  5. Afrika Statistika ISSN 2316-090X Jump Resonance in Wind-Felled ...

    African Journals Online (AJOL)

    Duffing's model, describing function and Chebyshev polynomials were used to obtain the .... (1988) showed that every real measure is uniquely decomposed into an atomic measure and a diffuse ... Experimental evidence has shown that jump ...

  6. Improved safety in ski jumping.

    Science.gov (United States)

    Wester, K

    1988-01-01

    Among approximately 2,600 licensed Norwegian ski jumpers, only three injuries that caused a permanent medical disability of at least 10% were incurred during the 5 year period from 1982 through 1986. When compared to the previous 5 year period (1977 to 1981), a dramatic improvement in safety is seen, as both number and severity of such injuries were markedly reduced. There are several probable reasons for this improved safety record: better preparation of the jumps, the return to using only one standard heel block, and the fact that coaches are being more responsible, especially with younger jumpers.

  7. A tale of quantum jumps

    International Nuclear Information System (INIS)

    Carmichael, H.J.

    2015-01-01

    This paper cannot provide anything like a complete overview of quantum optics in New Zealand. The scope over 40 years is far too broad and the number of players far too large. Nevertheless, the story of quantum jumps, from the days of the Old Quantum Theory up to the present, serves to highlight some small part of the New Zealand experience. It also offers an encounter with the oddities of light as a quantum mechanical 'something', oddities that the gallant proposers of technologies for the future aim to exploit. (author).

  8. Predicting the need for nonstandard tracheostomy tubes in critically ill patients.

    Science.gov (United States)

    Pandian, Vinciya; Hutchinson, Christoph T; Schiavi, Adam J; Feller-Kopman, David J; Haut, Elliott R; Parsons, Nicole A; Lin, Jessica S; Gorbatkin, Chad; Angamuthu, Priya G; Miller, Christina R; Mirski, Marek A; Bhatti, Nasir I; Yarmus, Lonny B

    2017-02-01

    Few guidelines exist regarding the selection of a particular type or size of tracheostomy tube. Although nonstandard tubes can be placed over the percutaneous kit dilator, clinicians often place standard tracheostomy tubes and change to nonstandard tubes only after problems arise. This practice risks early tracheostomy tube change, possible bleeding, or loss of the airway. We sought to identify predictors of nonstandard tracheostomy tubes. In this matched case-control study at an urban, academic, tertiary care medical center, we reviewed 1220 records of patients who received a tracheostomy. Seventy-seven patients received nonstandard tracheostomy tubes (cases), and 154 received standard tracheostomy tubes (controls). Sex, endotracheal tube size, severity of illness, and computed tomography scan measurement of the distance from the trachea to the skin at the level of the superior aspect of the anterior clavicle were significant predictors of nonstandard tracheostomy tubes. Specifically, trachea-to-skin distance >4.4 cm and endotracheal tube sizes ≥8.0 were associated with nonstandard tracheostomy. The findings suggest that clinicians should consider using nonstandard tracheostomy tubes as the first choice if the patient is male with an endotracheal tube size ≥8.0 and has a trachea-to-skin distance >4.4 cm on the computed tomography scan. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Non-standard Employment in the Nordics – towards precarious work?

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Nätti, Jouko; Larsen, Trine Pernille

    2018-01-01

    This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries and w...... to be largely integrated in the Nordic labour markets, it still entails precarious elements in certain countries. Norway and Denmark stand out as less insecure labour markets, while Finland and Sweden have more precariousness associated with non-standard employment.......This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries...... and whether fixed-term contracts, temporary agency work, marginal part-time work and solo self-employment have precarious elements (income or job insecurity). We conclude that non-standard employment has remained rather stable in all four countries over time. However, although non-standard employment seems...

  10. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    Science.gov (United States)

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  11. Does non-standard work mean non-standard health? Exploring links between non-standard work schedules, health behavior, and well-being

    Directory of Open Access Journals (Sweden)

    Megan R. Winkler

    2018-04-01

    Full Text Available The last century has seen dramatic shifts in population work circumstances, leading to an increasing normalization of non-standard work schedules (NSWSs, defined as non-daytime, irregular hours. An ever-growing body of evidence links NSWSs to a host of non-communicable chronic conditions; yet, these associations primarily concentrate on the physiologic mechanisms created by circadian disruption and insufficient sleep. While important, not all NSWSs create such chronobiologic disruption, and other aspects of working time and synchronization could be important to the relationships between work schedules and chronic disease. Leveraging survey data from Project EAT, a population-based study with health-related behavioral and psychological data from U.S. adults aged 25–36 years, this study explored the risks for a broad range of less healthful behavioral and well-being outcomes among NSWS workers compared to standard schedule workers (n = 1402. Variations across different NSWSs (evening, night/rotating, and irregular schedules were also explored. Results indicated that, relative to standard schedule workers, workers with NSWSs are at increased risk for non-optimal sleep, substance use, greater recreational screen time, worse dietary practices, obesity, and depression. There was minimal evidence to support differences in relative risks across workers with different types of NSWSs. The findings provide insight into the potential links between NSWSs and chronic disease and indicate the relevancy social disruption and daily health practices may play in the production of health and well-being outcomes among working populations. Keywords: United States, Work schedule tolerance, Health behavior, Mental health, Substance abuse, Obesity

  12. Neuromuscular taping application in counter movement jump: biomechanical insight in a group of healthy basketball players

    Directory of Open Access Journals (Sweden)

    Giuseppe Marcolin

    2017-06-01

    Full Text Available Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.

  13. Neuromuscular Taping Application in Counter Movement Jump: Biomechanical Insight in a Group of Healthy Basketball Players.

    Science.gov (United States)

    Marcolin, Giuseppe; Buriani, Alessandro; Giacomelli, Andrea; Blow, David; Grigoletto, Davide; Gesi, Marco

    2017-06-24

    Kinesiologic elastic tape is widely used for both clinical and sport applications although its efficacy in enhancing agonistic performance is still controversial. Aim of the study was to verify in a group of healthy basketball players whether a neuromuscular taping application (NMT) on ankle and knee joints could affect the kinematic and the kinetic parameters of the jump, either by enhancing or inhibiting the functional performance. Fourteen healthy male basketball players without any ongoing pathologies at upper limbs, lower limbs and trunk volunteered in the study. They randomly performed 2 sets of 5 counter movement jumps (CMJ) with and without application of Kinesiologic tape. The best 3 jumps of each set were considered for the analysis. The Kinematics parameters analyzed were: knees maximal flexion and ankles maximal dorsiflexion during the push off phase, jump height and take off velocity. Vertical ground reaction force and maximal power expressed in the push off phase of the jump were also investigated. The NMT application in both knees and ankles showed no statistically significant differences in the kinematic and kinetic parameters and did not interfere with the CMJ performance. Bilateral NMT application in the group of healthy male basketball players did not change kinematics and kinetics jump parameters, thus suggesting that its routine use should have no negative effect on functional performance. Similarly, the combined application of the tape on both knees and ankles did not affect in either way jump performance.

  14. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  15. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  16. You Say Jump, I Say How High?

    DEFF Research Database (Denmark)

    Fasterhold, Martin; Pichlmair, Martin; Holmgård, Christoffer

    This paper explores the design of jumping in 2D platform games. Through creating a method for measuring existing games, applying this method to a selection of different platformer games, and analysing the results, the paper arrives at a comprehensive data model for jumping. The model supports the...

  17. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    Science.gov (United States)

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  18. A review on the basketball jump shot.

    Science.gov (United States)

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and (c) additional variables that influence shooting.

  19. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  20. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    Science.gov (United States)

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  1. Mobile Jump Assessment (mJump): A Descriptive and Inferential Study.

    Science.gov (United States)

    Mateos-Angulo, Alvaro; Galán-Mercant, Alejandro; Cuesta-Vargas, Antonio

    2015-08-26

    Vertical jump tests are used in athletics and rehabilitation to measure physical performance in people of different age ranges and fitness. Jumping ability can be analyzed through different variables, and the most commonly used are fly time and jump height. They can be obtained by a variety of measuring devices, but most are limited to laboratory use only. The current generation of smartphones contains inertial sensors that are able to record kinematic variables for human motion analysis, since they are tools for easy access and portability for clinical use. The aim of this study was to describe and analyze the kinematics characteristics using the inertial sensor incorporated in the iPhone 4S, the lower limbs strength through a manual dynamometer, and the jump variables obtained with a contact mat in the squat jump and countermovement jump tests (fly time and jump height) from a cohort of healthy people. A cross sectional study was conducted on a population of healthy young adults. Twenty-seven participants performed three trials (n=81 jumps) of squat jump and countermovement jump tests. Acceleration variables were measured through a smartphone's inertial sensor. Additionally, jump variables from a contact mat and lower limbs dynamometry were collected. In the present study, the kinematic variables derived from acceleration through the inertial sensor of a smartphone iPhone 4S, dynamometry of lower limbs with a handheld dynamometer, and the height and flight time with a contact mat have been described in vertical jump tests from a cohort of young healthy subjects. The development of the execution has been described, examined and identified in a squat jump test and countermovement jump test under acceleration variables that were obtained with the smartphone. The built-in iPhone 4S inertial sensor is able to measure acceleration variables while performing vertical jump tests for the squat jump and countermovement jump in healthy young adults. The acceleration

  2. The MARS for squat, countermovement, and standing long jump performance analyses: are measures reproducible?

    Science.gov (United States)

    Hébert-Losier, Kim; Beaven, C Martyn

    2014-07-01

    Jump tests are often used to assess the effect of interventions because their outcomes are reported valid indicators of functional performance. In this study, we examined the reproducibility of performance parameters from 3 common jump tests obtained using the commercially available Kistler Measurement, Analysis and Reporting Software (MARS). On 2 separate days, 32 men performed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 standing long jumps (LJs) on a Kistler force-plate. On both days, the performance measures from the best jump of each series were extracted using the MARS. Changes in the mean scores, intraclass correlation coefficients (ICCs), and coefficients of variations (CVs) were computed to quantify the between-day reproducibility of each parameter. Moreover, the reproducibility quantifiers specific to the 3 separate jumps were compared using nonparametric tests. Overall, an acceptable between-day reproducibility (mean ± SD, ICC, and CV) of SJ (0.88 ± 0.06 and 7.1 ± 3.8%), CMJ (0.84 ± 0.17 and 5.9 ± 4.1%), and LJ (0.80 ± 0.13 and 8.1 ± 4.1%) measures was found using the MARS, except for parameters directly relating to the rate of force development (i.e., time to maximal force) and change in momentum during countermovement (i.e., negative force impulse) where reproducibility was lower. A greater proportion of the performance measures from the standing LJs had low ICCs and/or high CVs values most likely owing to the complex nature of the LJ test. Practitioners and researchers can use most of the jump test parameters from the MARS with confidence to quantify changes in the functional ability of individuals over time, except for those relating to the rate of force development or change in momentum during countermovement phases of jumps.

  3. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  4. Nonstandard Work Schedules, Family Dynamics, and Mother-Child Interactions During Early Childhood.

    Science.gov (United States)

    Prickett, Kate C

    2018-03-01

    The rising number of parents who work nonstandard schedules has led to a growing body of research concerned with what this trend means for children. The negative outcomes for children of parents who work nonstandard schedules are thought to arise from the disruptions these schedules place on family life, and thus, the types of parenting that support their children's development, particularly when children are young. Using a nationally representative sample of two-parent families (Early Childhood Longitudinal Study-Birth cohort, n = 3,650), this study examined whether mothers' and their partners' nonstandard work schedules were associated with mothers' parenting when children were 2 and 4 years old. Structural equation models revealed that mothers' and their partners' nonstandard work schedules were associated with mothers' lower scores on measures of positive and involved parenting. These associations were mediated by fathers' lower levels of participation in cognitively supportive parenting and greater imbalance in cognitively supportive tasks conducted by mothers versus fathers.

  5. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.; Moaddy, K.; Momani, Shaher M.

    2011-01-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua's circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well

  6. Jump resonant frequency islands in nonlinear feedback control systems

    Science.gov (United States)

    Koenigsberg, W. D.; Dunn, J. C.

    1975-01-01

    A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.

  7. CHANGES AND MODIFICATIONS OF THE TROUSERS PATENS FOR NON-STANDARD FIGURES

    Directory of Open Access Journals (Sweden)

    SUDACEVSCHI SVETLANA

    2015-12-01

    Full Text Available Among the problems faced by the constructors of clothing goods are the non-standard figures of the human body. The present article examines the possibilities of modifying the curve of women’s trousers. The author proposes methods of chang­ing the basic drawing of the women’s trousers for figures with non-standard figures and to use these methods in the process of training in specialized educational institutions.

  8. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems

    International Nuclear Information System (INIS)

    Musielak, Z.E.

    2009-01-01

    Equations of motion describing dissipative dynamical systems with coefficients varying either in time or in space are considered. To identify the equations that admit a Lagrangian description, two classes of non-standard Lagrangians are introduced and general conditions required for the existence of these Lagrangians are determined. The conditions are used to obtain some non-standard Lagrangians and derive equations of motion resulting from these Lagrangians.

  9. Jumping and Hopping in Elite and Amateur Orienteering Athletes and Correlations to Sprinting and Running

    DEFF Research Database (Denmark)

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-01-01

    PURPOSE: Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlatio...... and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.......PURPOSE: Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations...... with sprinting and/or running have been examined in orienteering athletes. METHODS: We investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations...

  10. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  11. Nonstandard approximation schemes for lower dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fitzpatrick, D.A.

    1981-01-01

    The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results

  12. Lepton flavor violating non-standard interactions via light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, Yasaman [School of physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Shoemaker, Ian M. [Department of Physics, Department of Astronomy & Astrophysics,Center for Particle and Gravitational Astrophysics,The Pennsylvania State University, PA 16802 (United States)

    2016-07-07

    Non-Standard neutral current Interactions (NSIs) of neutrinos with matter can alter the pattern of neutrino oscillation due to the coherent forward scattering of neutrinos on the medium. This effect makes long-baseline neutrino experiments such as NOνA and DUNE a sensitive probe of beyond standard model (BSM) physics. We construct light mediator models that can give rise to both lepton flavor conserving as well as Lepton Flavor Violating (LFV) neutral current NSI. We outline the present phenomenological viability of these models and future prospects to test them. We predict a lower bound on Br(H→μτ) in terms of the parameters that can be measured by DUNE and NOνA, and show that the hint for H→μτ in current LHC data can be accommodated in our model. A large part of the parameter space of the model is already constrained by the bound on Br(τ→Z{sup ′}μ) and by the bounds on rare meson decays and can be in principle fully tested by improving these bounds.

  13. Non-standard constraints within In-Core Fuel Management

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Torres, C.; Marrote, G.N.; Ruiz U, V.

    2004-01-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  14. Can nonstandard interactions jeopardize the hierarchy sensitivity of DUNE?

    Science.gov (United States)

    Deepthi, K. N.; Goswami, Srubabati; Nath, Newton

    2017-10-01

    We study the effect of nonstandard interactions (NSIs) on the propagation of neutrinos through the Earth's matter and how it affects the hierarchy sensitivity of the DUNE experiment. We emphasize the special case when the diagonal NSI parameter ɛe e=-1 , nullifying the standard matter effect. We show that if, in addition, C P violation is maximal then this gives rise to an exact intrinsic hierarchy degeneracy in the appearance channel, irrespective of the baseline and energy. Introduction of the off diagonal NSI parameter, ɛe τ, shifts the position of this degeneracy to a different ɛe e. Moreover the unknown magnitude and phases of the off diagonal NSI parameters can give rise to additional degeneracies. Overall, given the current model independent limits on NSI parameters, the hierarchy sensitivity of DUNE can get seriously impacted. However, a more precise knowledge of the NSI parameters, especially ɛe e, can give rise to an improved sensitivity. Alternatively, if a NSI exists in nature, and still DUNE shows hierarchy sensitivity, certain ranges of the NSI parameters can be excluded. Additionally, we briefly discuss the implications of ɛe e=-1 (in the Earth) on the Mikheyev-Smirnov-Wolfenstein effect in the Sun.

  15. Non-standard employment relationship and the gender dimension

    Directory of Open Access Journals (Sweden)

    Mihaela-Emilia Marica

    2015-12-01

    Full Text Available Besides influences economic, political and social on the standard form of individual employment contract, which led to a more flexible regulatory framework in the field of labor relations, an important factor that marked trend evolving contract atypical employment is the number of women who entered the labor market in recent decades. Because most strongly feminized form of employment non-standard employment relationship part-time, this article captures the issues most important about the relationship work part-time and the gender factor, the impact of this form of employment on the size women's social and level of protection provided by labor law and social protection rules in light of states that have agreed to support and legitimize this form of employment. Also, the circumstances of the most important, determining the choice of women in terms of hiring part-time, rationales justifying the strong influence of gender in hiring part-time, along with the identification of negative consequences of the feminization of this atypical forms of work are important factors that are discussed in this article.

  16. Analysis of approaches to classification of forms of non-standard employment

    Directory of Open Access Journals (Sweden)

    N. V. Dorokhova

    2017-01-01

    Full Text Available Currently becoming more widespread non-standard forms of employment. If this is not clear approach to the definition and maintenance of non-standard employment. In the article the analysis of diverse interpretations of the concept, on what basis, the author makes a conclusion about the complexity and contradictory nature of precarious employment as an economic category. It examines different approaches to classification of forms of precarious employment. The main forms of precarious employment such as flexible working year, flexible working week, flexible working hours, remote work, employees on call, shift forwarding; Agency employment, self-employment, negotiator, underemployment, over employment, employment on the basis of fixed-term contracts employment based on contract of civil-legal nature, one-time employment, casual employment, temporary employment, secondary employment and part-time. The author’s approach to classification of non-standard forms of employment, based on identifying the impact of atypical employment on the development of human potential. For the purpose of classification of non-standard employment forms from the standpoint of their impact on human development as the criteria of classification proposed in the following: working conditions, wages and social guarantees, possibility of workers ' participation in management, personal development and self-employment stability. Depending on what value each of these criteria, some form of non-standard employment can be attributed to the progressive or regressive. Classification of non-standard forms of employment should be the basis of the state policy of employment management.

  17. Countermovement depth - a variable which clarifies the relationship between the maximum power output and height of a vertical jump.

    Science.gov (United States)

    Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew

    2018-01-01

    The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.

  18. Realized Jump Risk and Equity Return in China

    Directory of Open Access Journals (Sweden)

    Guojin Chen

    2014-01-01

    Full Text Available We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump risk factor model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

  19. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    Science.gov (United States)

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (pSports Medicine Australia. All rights reserved.

  20. Kinematic Differences between Set- and Jump-Shot Motions in Basketball

    OpenAIRE

    Hiroki Okubo; Mont Hubbard

    2018-01-01

    Shooting arm motions at release in one-hand set and jump basketball shots have been analyzed using a kinematic model. Set and jump shots are classified by the vertical velocity and acceleration of the shooter’s shooting-side shoulder at release. The two-dimensional three-segment model includes the vertical shooting-side shoulder velocity and acceleration. Numerical simulation investigates the effect of shoulder motion. Release backspin angular velocity can be described as a function of the ve...

  1. Psychological factors of performance in ski jumping : a quantitative study of World Cup ski jumpers

    OpenAIRE

    Sklett, Vegard Haukø

    2017-01-01

    Purpose – The present study investigated the relationship between psychological factors (self-efficacy, flow, positive- and negative affect, worry) and ski jumping performance, as well as the influential functions these psychological factors have on ski jumping performance. Method – World Cup ski jumpers (N = 40) responded to four questionnaires in the middle of the World Cup season, reporting their subjective experience during a competitive setting. Social Cognitive Theory (SCT) (Bandura...

  2. Strength Determinants of Jump Height in the Jump Throw Movement in Women Handball Players.

    Science.gov (United States)

    McGhie, David; Østerås, Sindre; Ettema, Gertjan; Paulsen, Gøran; Sandbakk, Øyvind

    2018-06-08

    McGhie, D, Østerås, S, Ettema, G, Paulsen, G, and Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of the study was to improve the understanding of the strength demands of a handball-specific jump through examining the associations between jump height in a jump throw jump (JTJ) and measures of lower-body maximum strength and impulse in handball players. For comparison, whether the associations between jump height and strength differed between the JTJ and the customarily used countermovement jump (CMJ) was also examined. Twenty women handball players from a Norwegian top division club participated in the study. Jump height was measured in the JTJ and in unilateral and bilateral CMJ. Lower-body strength (maximum isometric force, one-repetition maximum [1RM], impulse at ∼60% and ∼35% 1RM) was measured in seated leg press. The associations between jump height and strength were assessed with correlation analyses and t-tests of dependent r's were performed to determine if correlations differed between jump tests. Only impulse at ∼35% 1RM correlated significantly with JTJ height (p jump height and strength were significantly weaker in the JTJ than in both CMJ tests for all strength measures (p = 0.001-0.044) except one. Maximum strength and impulse at ∼60% 1RM did not seem to sufficiently capture the capabilities associated with JTJ height, highlighting the importance of employing tests targeting performance-relevant neuromuscular characteristics when assessing jump-related strength in handball players. Further, CMJ height seemed to represent a wider range of strength capabilities and care should be taken when using it as a proxy for handball-specific movements.

  3. The AGS γt-jump system

    International Nuclear Information System (INIS)

    Syphers, M.J.; Ahrens, L.; van Asselt, W.; Brennan, J.M.

    1994-01-01

    In an attempt to generate a lossless crossing of an accelerator's transition energy, one procedure is to alter the transition energy of the accelerator quickly as the beam passes through this energy region by changing the optics of the lattice -- a so-called ''transition jump,'' or '' γt -jump'' scheme. Such a system was first implemented at CERN and later adopted at other accelerator laboratories. A scheme for the AGS was developed in 1986. A description of the AGS γt -jump system, and recent results from its commissioning are presented in this report

  4. Predicting vertical jump height from bar velocity.

    Science.gov (United States)

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  5. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    Science.gov (United States)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  6. Measurements of K shell absorption jump factors and jump ratios using EDXRF technique

    Science.gov (United States)

    Kacal, Mustafa Recep; Han, İbrahim; Akman, Ferdi

    2015-04-01

    In the present work, the K-shell absorption jump factors and jump ratios for 30 elements between Ti ( Z = 22) and Er ( Z = 68) were measured by energy dispersive X-ray fluorescence (EDXRF) technique. The jump factors and jump ratios for these elements were determined by measuring the K shell fluorescence parameters such as the Kα X-ray production cross-sections, K shell fluorescence yields, Kβ-to- Kα X-rays intensity ratios, total atomic absorption cross sections and mass attenuation coefficients. The measurements were performed using an Am-241 radioactive point source and a Si (Li) detector in direct excitation and transmission experimental geometry. The results for jump factors and jump ratios were compared with theoretically calculated and the ones available in the literature.

  7. The Effects of Aquatic Plyometric Training on Repeated Jumps, Drop Jumps and Muscle Damage.

    Science.gov (United States)

    Jurado-Lavanant, A; Alvero-Cruz, J R; Pareja-Blanco, F; Melero-Romero, C; Rodríguez-Rosell, D; Fernandez-Garcia, J C

    2015-09-22

    The purpose of this study was to compare the effects of land- vs. aquatic based plyometric training programs on the drop jump, repeated jump performance and muscle damage. Sixty-five male students were randomly assigned to one of 3 groups: aquatic plyometric training group (APT), plyometric training group (PT) and control group (CG). Both experimental groups trained twice a week for 10 weeks performing the same number of sets and total jumps. The following variables were measured prior to, halfway through and after the training programs: creatine kinase (CK) concentration, maximal height during a drop jump from the height of 30 (DJ30) and 50 cm (DJ50), and mean height during a repeated vertical jump test (RJ). The training program resulted in a significant increase (Pplyometric training, PT produced greater gains on reactive jumps performance than APT. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Mechanical characteristics of historic mortars from tests on small-sample non-standard on small-sample non-standard specimens

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2008-01-01

    Roč. 17, č. 1 (2008), s. 20-29 ISSN 1407-7353 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : small-sample non-standard testing * lime * historic mortar Subject RIV: AL - Art, Architecture, Cultural Heritage

  9. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  10. Age distribution dynamics with stochastic jumps in mortality.

    Science.gov (United States)

    Calabrese, Salvatore; Porporato, Amilcare; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2017-11-01

    While deterministic age distribution models have been extensively studied and applied in various disciplines, little work has been devoted to understanding the role of stochasticity in birth and mortality terms. In this paper, we analyse a stochastic M'Kendrick-von Foerster equation in which jumps in mortality represent intense losses of population due to external events. We present explicit solutions for the probability density functions of the age distribution and the total population and for the temporal dynamics of their moments. We also derive the dynamics of the mean age of the population and its harmonic mean. The framework is then used to calculate the age distribution of salt in the soil root zone, where the accumulation of salt by atmospheric deposition is counteracted by plant uptake and by jump losses due to percolation events.

  11. Probing non-standard interactions at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Bagchi, Partha [Institute of Physics, Sachivalaya Marg,Sainik School Post, Bhubaneswar 751005 (India); Forero, David V. [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Center for Neutrino Physics, Virginia Tech,Blacksburg, VA 24061 (United States); Tórtola, Mariam [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-07-13

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ{sub 13}, making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ{sub 13} that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  12. Probing non-standard interactions at Daya Bay

    International Nuclear Information System (INIS)

    Agarwalla, Sanjib Kumar; Bagchi, Partha; Forero, David V.; Tórtola, Mariam

    2015-01-01

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ 13 , making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ 13 that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  13. Jump test performance and sarcopenia status in men and women, 55 to 75 years of age.

    Science.gov (United States)

    Singh, Harshvardhan; Kim, Daeyeol; Kim, Eonho; Bemben, Michael G; Anderson, Mark; Seo, Dong-Il; Bemben, Debra A

    2014-01-01

    Jumping mechanography uses maximal countermovement jumps to test obtain such as jump power (JPow). Recently, it has been shown to be a safe method for assessing muscle function in older adults; however, little is known about the relationships between JPow, muscle strength, and sarcopenia status. The purpose of this study was to examine jump performance, muscle strength, and sarcopenia status in older adults. This was a cross-sectional study that included men (n = 27) and women (n = 33) (55-75 years) recruited from the general community. Participants completed health status and physical activity questionnaires. Body composition, including appendicular skeletal muscle mass (ASM), bone free lean body mass, and relative skeletal muscle mass index, were assessed by total body dual-energy x-ray absorptiometry scans. The criteria for sarcopenia were relative skeletal muscle mass index values less than 7.26 kg/m2 for men and less than 5.45 kg/m2 for women. Three vertical jumps on a jump mat were performed to assess JPow, jump velocity (JVel), and jump height (JHt). Muscle strength was measured by 1RM testing for leg press (LP) and right and left hip abduction isotonic resistance exercises. Sarcopenia was found in 20% (12/60) of the participants. Jump power was significantly lower (P = .001) in the sarcopenia group than in the normal group, 651.1 (41.7) W versus 851.0 (27.4) W, respectively. Jump power and JHt were significantly (P mass. Significant (P muscle strength (LP, right and left hip abduction). The jump test protocol was conducted safely with no injuries or balance issues. Our finding of lower JPow in sarcopenic individuals adds new information to the existing literature on age-related declines in muscle power. Community-dwelling individuals classified as sarcopenic had significantly lower JPow but not muscle strength compared with their counterparts with normal amounts of muscle mass. Jump test variables were positively correlated with lean tissue and lower body

  14. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  15. Human Long Jump — A Deductive Approach

    Directory of Open Access Journals (Sweden)

    Miloš Jovanović

    2012-10-01

    Full Text Available This paper presents a useful application of a generalized approach to the modelling of human and humanoid motion using the deductive approach. It starts with formulating a completely general problem and deriving different real situations as special cases. The concept and the software realization are verified by comparing the results with the ones obtained using “classical” software for one well-known particular problem – biped walking. New applicability and potentials of the proposed method are demonstrated by simulation of a selected example – the long jump. The simulated motion included jumping and landing on the feet (after a jump. Additional analysis is done in the paper regarding the joint torque and joint angle during the jumping. Separate stages of the simulation are defined and explained.

  16. Volatility jumps and their economic determinants

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Rossi, Eduardo; Santucci de Magistris, Paolo

    that there is a positive probability of jumps in volatility. A common factor in the volatility jumps is shown to be related to a set of financial covariates (such as variance risk premium, S&P500 volume, credit-default swap, and federal fund rates). The credit-default swap on US banks and variance risk premium have...... predictive power on expected jump moves, thus confirming the common interpretation that sudden and large increases in equity volatility can be anticipated by credit deterioration of the US bank sector as well as changes in the market expectations of future risks. Finally, the model is extended to incorporate...... the credit-default swap and the variance risk premium in the dynamics of the jump size and intensity....

  17. A simple strategy for jumping straight up.

    Science.gov (United States)

    Hemami, Hooshang; Wyman, Bostwick F

    2012-05-01

    Jumping from a stationary standing position into the air is a transition from a constrained motion in contact with the ground to an unconstrained system not in contact with the ground. A simple case of the jump, as it applies to humans, robots and humanoids, is studied in this paper. The dynamics of the constrained rigid body are expanded to define a larger system that accommodates the jump. The formulation is applied to a four-link, three-dimensional system in order to articulate the ballistic motion involved. The activity of the muscular system and the role of the major sagittal muscle groups are demonstrated. The control strategy, involving state feedback and central feed forward signals, is formulated and computer simulations are presented to assess the feasibility of the formulations, the strategy and the jump. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. How quick is a quantum jump?

    International Nuclear Information System (INIS)

    Schulman, L.S.

    1997-01-01

    Although the only time scale one ordinarily associates with a quantum transition is its lifetime, observations of ''quantum jumps'' in recent years show that the actual transition time is much shorter. I define a ''jump time'' as the time scale such that perturbations occurring at intervals of this duration affect the decay. In terms of the ''Zeno time'' (related to the second moment of the Hamiltonian) the jump time is τ J is identical to τ 2 Z /τ L . Corroboration is given. I also show that observing the ''jumping'' will not seriously affect the system lifetime, but will affect the linewidth. This is consistent with Bohr's ideas on measurement as well as with a heuristic time-energy uncertainty principle. (author)

  19. A Correction Equation for Jump Height Measured Using the Just Jump System.

    Science.gov (United States)

    McMahon, John J; Jones, Paul A; Comfort, Paul

    2016-05-01

    To determine the concurrent validity and reliability of the popular Just Jump system (JJS) for determining jump height and, if necessary, provide a correction equation for future reference. Eighteen male college athletes performed 3 bilateral countermovement jumps (CMJs) on 2 JJSs (alternative method) that were placed on top of a force platform (criterion method). Two JJSs were used to establish consistency between systems. Jump height was calculated from flight time obtained from the JJS and force platform. Intraclass correlation coefficients (ICCs) demonstrated excellent within-session reliability of the CMJ height measurement derived from both the JJS (ICC = .96, P jump height (0.46 ± 0.09 m vs 0.33 ± 0.08 m) than the force platform (P jump height = (0.8747 × alternative jump height) - 0.0666. The JJS provides a reliable but overestimated measure of jump height. It is suggested, therefore, that practitioners who use the JJS as part of future work apply the correction equation presented in this study to resultant jump-height values.

  20. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Directory of Open Access Journals (Sweden)

    Karen Ruse

    2015-10-01

    Full Text Available Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%. There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075% and steeplechases, 14 fatalities per 1000 starts (1.4%. Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  1. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012-2014.

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-10-22

    Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these Animals 2015, 5 1073 data in light of public controversy, political debate, and industry regulation related to jump horse safety.

  2. Jump spillover between oil prices and exchange rates

    Science.gov (United States)

    Li, Xiao-Ping; Zhou, Chun-Yang; Wu, Chong-Feng

    2017-11-01

    In this paper, we investigate the jump spillover effects between oil prices and exchange rates. To identify the latent historical jumps for exchange rates and oil prices, we use a Bayesian MCMC approach to estimate the stochastic volatility model with correlated jumps in both returns and volatilities for each. We examine the simultaneous jump intensities and the conditional jump spillover probabilities between oil prices and exchange rates, finding strong evidence of jump spillover effects. Further analysis shows that the jump spillovers are mainly due to exogenous events such as financial crises and geopolitical events. Thus, the findings have important implications for financial risk management.

  3. A multiplicity jump trigger using silicon planes

    International Nuclear Information System (INIS)

    Alexopoulos, T.; Erwin, A.R.

    1993-01-01

    Since silicon tracking planes are already present in a B decay experiment, it is an attractive idea to use these as part of a multiplicity jump detector. Two average B decays would produce a multiplicity jump of around 10 in the final state. Such a trigger has been tried for a fixed target Charm experiment with disappointing success. The failure was attributed to the difficulty in adequately controlling the gains of a large number of microstrip amplifies

  4. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  5. Jumps in binomial AR(1) processes

    OpenAIRE

    Weiß , Christian H.

    2009-01-01

    Abstract We consider the binomial AR(1) model for serially dependent processes of binomial counts. After a review of its definition and known properties, we investigate marginal and serial properties of jumps in such processes. Based on these results, we propose the jumps control chart for monitoring a binomial AR(1) process. We show how to evaluate the performance of this control chart and give design recommendations. correspondance: Tel.: +49 931 31 84968; ...

  6. Tests for nonrandomness in quantum jumps

    International Nuclear Information System (INIS)

    Berkeland, D.J.; Raymondson, D.A.; Tassin, V.M.

    2004-01-01

    In a fundamental test of quantum mechanics, we have observed 228 000 quantum jumps of a single trapped and laser cooled 88 Sr + ion. This represents a statistical increase of two orders of magnitude over previous similar analyses of quantum jumps. Compared to other searches for nonrandomness in quantum-mechanical processes, using quantum jumps simplifies the interpretation of data by eliminated multiparticle effects and providing near-unit detection efficiency of transitions. We measure the fractional reduction in the entropy of information to be -4 when the value of any interval between quantum jumps is known. We also find that the number of runs of successively increasing or decreasing interval times agrees with the theoretically expected values. Furthermore, we analyze 238 000 quantum jumps from two simultaneously confined ions and find that the number of apparently coincidental transitions is as expected. Finally, we observe 8400 spontaneous decays of two simultaneously trapped ions and find that the number of apparently coincidental decays from the metastable state agrees with the expected value. We find no evidence for short- or long-term correlations in the intervals of the quantum jumps or in the decay of the quantum states, in agreement with quantum theory

  7. Hydrodynamics of vertical jumping in Archer fish

    Science.gov (United States)

    Techet, Alexandra H.; Mendelson, Leah

    2017-11-01

    Vertical jumping for aerial prey from an aquatic environment requires both propulsive power and precise aim to succeed. Rapid acceleration to a ballistic velocity sufficient for reaching the prey height occurs before the fish leaves the water completely and experiences a thousandfold drop in force-producing ability. In addition to speed, accuracy and stability are crucial for successful feeding by jumping. This talk examines the physics of jumping using the archer fish as a model. Better known for their spitting abilities, archer fish will jump multiple body lengths out of the water for prey capture, from a stationary position just below the free surface. Modulation of oscillatory body kinematics and use of multiple fins for force production are identified as methods through which the fish can meet requirements for both acceleration and stabilization in limited space. Quantitative 3D PIV wake measurements reveal how variations in tail kinematics relate to thrust production throughout the course of a jumping maneuver and over a range of jump heights. By performing measurements in 3D, the timing, interactions, and relative contributions to thrust and lateral forces from each fin can be evaluated, elucidating the complex hydrodynamics that enable archer fish water exit.

  8. Performance analysis of jump-gliding locomotion for miniature robotics.

    Science.gov (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  9. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    Science.gov (United States)

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  10. Why do oil prices jump (or fall)?

    International Nuclear Information System (INIS)

    Wirl, Franz

    2008-01-01

    This paper discusses theories that can explain the zig-zags of oil prices in general and in particular the recent jump. More precisely, the following explanations are discussed: Homo oeconomicus (pure profit maximization if demand is dynamic and convex), price reaction function (price increases and respectively declines depend on capacity utilization), cartelization contingent on output or revenues of which the latter can lead to backward bending supply segments and multiple equilibria, statistical descriptions (mean reversion), homo politicus, i.e., arguments for price hikes that are rational (Public Choice) despite the (long-run) economic loss. Finally two approaches are presented that emphasize demand uncertainty: one extending the above-mentioned dynamic demand framework and the other considers a dynamic game of non-competitive suppliers with lumpy investments. Summing up, a demand shock seems to be the most suitable explanation of today's high prices (indeed a shock given that International Energy Agency (IEA) and Department of Energy (DoE) were promising just a couple of years ago that we are going to have lots of oil at low prices), while others and in particular politics have surprisingly little or no explanatory power. (author)

  11. Vortex jump behavior in coupled nanomagnetic heterostructures

    International Nuclear Information System (INIS)

    Zhang, S.; Phatak, C.; Petford-Long, A. K.; Heinonen, O.

    2014-01-01

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications

  12. Vortex jump behavior in coupled nanomagnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.; Phatak, C., E-mail: cd@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Petford-Long, A. K. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Heinonen, O. [Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208-3112 (United States)

    2014-11-24

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  13. It's Who You Work With: Effects of Workplace Shares of Nonstandard Employees and Women in Japan

    Science.gov (United States)

    Yu, Wei-hsin

    2015-01-01

    Previous research on workplace composition has not addressed how the share of nonstandard employees affects individual workers' opportunities and well-being. Moreover, existing studies generally assume that the effect of a group's numerical representation is mediated through the group's relative power and status within establishments. This study asks whether workplace composition matters when the size of each social group has little impact on its relative status. Specifically, I examine the economic and psychological consequences of the proportions of nonstandard employees and women in Japanese workplaces, where both groups are typically secondary workers who lack power regardless of their relative size. The results indicate that working in establishments with modest proportions of nonstandard employees enhances individuals' wages and likelihood of promotion, but working in those with higher proportions is detrimental. Conversely, the greater the share of nonstandard employees in a workplace, the more likely all workers are to suffer psychologically. Workplace gender composition is also linked to Japanese workers' reported chances of promotion and life satisfaction, but it is relevant to fewer worker outcomes than employment-status composition. This analysis underscores the need to consider workplace demography, even if the power and status gaps between different social groups vary little with each group's share within establishments. In addition, the findings suggest that the global trend of increasing nonstandard work arrangements has a more extensive impact on disparities among workers than prior research implies. PMID:25983346

  14. The reliability of vertical jump tests between the Vertec and My Jump phone application.

    Science.gov (United States)

    Yingling, Vanessa R; Castro, Dimitri A; Duong, Justin T; Malpartida, Fiorella J; Usher, Justin R; O, Jenny

    2018-01-01

    The vertical jump is used to estimate sports performance capabilities and physical fitness in children, elderly, non-athletic and injured individuals. Different jump techniques and measurement tools are available to assess vertical jump height and peak power; however, their use is limited by access to laboratory settings, excessive cost and/or time constraints thus making these tools oftentimes unsuitable for field assessment. A popular field test uses the Vertec and the Sargent vertical jump with countermovement; however, new low cost, easy to use tools are becoming available, including the My Jump iOS mobile application (app). The purpose of this study was to assess the reliability of the My Jump relative to values obtained by the Vertec for the Sargent stand and reach vertical jump (VJ) test. One hundred and thirty-five healthy participants aged 18-39 years (94 males, 41 females) completed three maximal Sargent VJ with countermovement that were simultaneously measured using the Vertec and the My Jump . Jump heights were quantified for each jump and peak power was calculated using the Sayers equation. Four separate ICC estimates and their 95% confidence intervals were used to assess reliability. Two analyses (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, consistency, two-way mixed-effects model, while two others (with jump height and calculated peak power as the dependent variables, respectively) were based on a single rater, absolute agreement, two-way mixed-effects model. Moderate to excellent reliability relative to the degree of consistency between the Vertec and My Jump values was found for jump height (ICC = 0.813; 95% CI [0.747-0.863]) and calculated peak power (ICC = 0.926; 95% CI [0.897-0.947]). However, poor to good reliability relative to absolute agreement for VJ height (ICC = 0.665; 95% CI [0.050-0.859]) and poor to excellent reliability relative to absolute agreement for peak power

  15. Jump locations of jump-diffusion processes with state-dependent rates

    International Nuclear Information System (INIS)

    Miles, Christopher E; Keener, James P

    2017-01-01

    We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)

  16. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  17. Increase in Jumping Height Associated with Maximal Effort Vertical Depth Jumps.

    Science.gov (United States)

    Bedi, John F.; And Others

    1987-01-01

    In order to assess if there existed a statistically significant increase in jumping performance when dropping from different heights, 32 males, aged 19 to 26, performed a series of maximal effort vertical jumps after dropping from eight heights onto a force plate. Results are analyzed. (Author/MT)

  18. Kinetic Compensations due to Chronic Ankle Instability during Landing and Jumping.

    Science.gov (United States)

    Kim, Hyunsoo; Son, S Jun; Seeley, Matthew K; Hopkins, J Ty

    2018-02-01

    Skeletal muscles absorb and transfer kinetic energy during landing and jumping, which are common requirements of various forms of physical activity. Chronic ankle instability (CAI) is associated with impaired neuromuscular control and dynamic stability of the lower extremity. Little is known regarding an intralimb, lower-extremity joint coordination of kinetics during landing and jumping for CAI patients. We investigated the effect of CAI on lower-extremity joint stiffness and kinetic and energetic patterns across the ground contact phase of landing and jumping. One hundred CAI patients and 100 matched able-bodied controls performed five trials of a landing and jumping task (a maximal vertical forward jump, landing on a force plate with the test leg only, and immediate lateral jump toward the contralateral side). Functional analyses of variance and independent t-tests were used to evaluate between-group differences for lower-extremity net internal joint moment, power, and stiffness throughout the entire ground contact phase of landing and jumping. Relative to the control group, the CAI group revealed (i) reduced plantarflexion and knee extension and increased hip extension moments; (ii) reduced ankle and knee eccentric and concentric power, and increased hip eccentric and concentric power, and (iii) reduced ankle and knee joint stiffness and increased hip joint stiffness during the task. CAI patients seemed to use a hip-dominant strategy by increasing the hip extension moment, stiffness, and eccentric and concentric power during landing and jumping. This apparent compensation may be due to decreased capabilities to produce sufficient joint moment, stiffness, and power at the ankle and knee. These differences might have injury risk and performance implications.

  19. The effect of wind on jumping distance in ski jumping--fairness assessed.

    Science.gov (United States)

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  20. Nonstandard scaling law of fluctuations in finite-size systems of globally coupled oscillators.

    Science.gov (United States)

    Nishikawa, Isao; Tanaka, Gouhei; Aihara, Kazuyuki

    2013-08-01

    Universal scaling laws form one of the central issues in physics. A nonstandard scaling law or a breakdown of a standard scaling law, on the other hand, can often lead to the finding of a new universality class in physical systems. Recently, we found that a statistical quantity related to fluctuations follows a nonstandard scaling law with respect to the system size in a synchronized state of globally coupled nonidentical phase oscillators [I. Nishikawa et al., Chaos 22, 013133 (2012)]. However, it is still unclear how widely this nonstandard scaling law is observed. In the present paper, we discuss the conditions required for the unusual scaling law in globally coupled oscillator systems and validate the conditions by numerical simulations of several different models.

  1. The Effect of Tutoring With Nonstandard Equations for Students With Mathematics Difficulty.

    Science.gov (United States)

    Powell, Sarah R; Driver, Melissa K; Julian, Tyler E

    2015-01-01

    Students often misinterpret the equal sign (=) as operational instead of relational. Research indicates misinterpretation of the equal sign occurs because students receive relatively little exposure to equations that promote relational understanding of the equal sign. No study, however, has examined effects of nonstandard equations on the equation solving and equal-sign understanding of students with mathematics difficulty (MD). In the present study, second-grade students with MD (n = 51) were randomly assigned to standard equations tutoring, combined tutoring (standard and nonstandard equations), and no-tutoring control. Combined tutoring students demonstrated greater gains on equation-solving assessments and equal-sign tasks compared to the other two conditions. Standard tutoring students demonstrated improved skill on equation solving over control students, but combined tutoring students' performance gains were significantly larger. Results indicate that exposure to and practice with nonstandard equations positively influence student understanding of the equal sign. © Hammill Institute on Disabilities 2013.

  2. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  3. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  4. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    Science.gov (United States)

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p jump index (p jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  5. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  6. Scaling the viscous circular hydraulic jump

    Science.gov (United States)

    Argentina, Mederic; Cerda, Enrique; Duchesne, Alexis; Limat, Laurent

    2017-11-01

    The formation mechanism of hydraulic jumps has been proposed by Belanger in 1828 and rationalised by Lord Rayleigh in 1914. As the Froude number becomes higher than one, the flow super criticality induces an instability which yields the emergence of a steep structure at the fluid surface. Strongly deformed liquid-air interface can be observed as a jet of viscous fluid impinges a flat boundary at high enough velocity. In this experimental setup, the location of the jump depends on the viscosity of the liquid, as shown by T. Bohr et al. in 1997. In 2014, A. Duchesne et al. have established the constancy of the Froude number at jump. Hence, it remains a contradiction, in which the radial hydraulic jump location might be explained through inviscid theory, but is also viscosity dependent. We present a model based on the 2011 Rojas et al. PRL, which solves this paradox. The agreement with experimental measurements is excellent not only for the prediction of the position of the hydraulic jump, but also for the determination of the fluid thickness profile. We predict theoretically the critical value of the Froude number, which matches perfectly to that measured by Duchesne et al. We acknowledge the support of the CNRS and the Universit Cte d'Azur, through the IDEX funding.

  7. A locust-inspired miniature jumping robot.

    Science.gov (United States)

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  8. Biomechanics of stair walking and jumping.

    Science.gov (United States)

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  9. Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Kawasaki, Masahiro

    2004-01-01

    We calculate the primordial abundances of light elements produced during big bang nucleosynthesis when the fine structure constant and/or the cosmic expansion rate take nonstandard values. We compare them with the recent values of observed D, 4 He, and 7 Li abundances, which show a slight inconsistency among themselves in the standard big bang nucleosynthesis scenario. This inconsistency is not solved by considering either a varying fine structure constant or a nonstandard expansion rate separately but solutions are found by their simultaneous existence

  10. Path space measures for Dirac and Schroedinger equations: Nonstandard analytical approach

    International Nuclear Information System (INIS)

    Nakamura, T.

    1997-01-01

    A nonstandard path space *-measure is constructed to justify the path integral formula for the Dirac equation in two-dimensional space endash time. A standard measure as well as a standard path integral is obtained from it. We also show that, even for the Schroedinger equation, for which there is no standard measure appropriate for a path integral, there exists a nonstandard measure to define a *-path integral whose standard part agrees with the ordinary path integral as defined by a limit from time-slice approximant. copyright 1997 American Institute of Physics

  11. The relationship between nonstandard working and mental health in a representative sample of the South Korean population.

    Science.gov (United States)

    Kim, Il-Ho; Muntaner, Carles; Khang, Young-Ho; Paek, Domyung; Cho, Sung-Il

    2006-08-01

    In light of escalating job insecurity due to increasing numbers of nonstandard workers, this study examined the association between nonstandard employment and mental health among South Korean workers. We analyzed a representative weighted sample of 2086 men and 1194 women aged 20-64 years, using data from the 1998 Korean National Health and Nutrition Examination Survey. Nonstandard employment included part-time work, temporary work, and daily work. Mental health was measured with indicators of self-reported depression and suicidal ideation. Based on age-adjusted prevalence of mental health, nonstandard employees were more likely to be mentally ill compared to standard employees. Furthermore, nonstandard work status was associated with poor mental health after adjusting for socioeconomic position (education, occupational class, and income) and health behaviors (smoking, alcohol consumption, and exercise). However, the pattern of the relationship between nonstandard work and mental health differed by gender. Female gender was significantly associated with poor mental health. Although males tended to report more suicidal ideation, this difference was not statistically significant. Considering the increasing prevalence of nonstandard working conditions in South Korea, the results call for more longitudinal research on the mental health effects of nonstandard work.

  12. Low peak jump power is associated with elevated odds of dysmobility syndrome in community-dwelling elderly individuals: the Korean Urban Rural Elderly (KURE) study.

    Science.gov (United States)

    Hong, Namki; Kim, Chang Oh; Youm, Yoosik; Kim, Hyeon Chang; Rhee, Yumie

    2018-06-01

    In a community-dwelling elderly cohort (Korean Urban Rural Elderly), low peak jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities. Jump power measurement improved discrimination of individuals with dysmobility syndrome when added to conventional risk factors. Dysmobility syndrome was proposed to encompass the risks affecting musculoskeletal outcomes. Jump power measurement is a safe, reproducible high-intensity test for physical function in elderly. However, the relationship between jump power and dysmobility syndrome remains unknown. A total of 1369 subjects (mean 71.6 years; women, 66%) were analyzed from a community-based cohort. Dysmobility syndrome was defined as the presence of ≥ 3 factors among falls in the preceding year, low lean mass, high fat mass, osteoporosis, low grip strength, and low timed get-up-and-go (TUG) performance. Subjects were grouped into tertiles of jump power relative to weight based on sex-stratified cutoffs (32.4 and 27.6 W/kg in men; 23.9 and 19.9 W/kg in women) or into the failed-to-jump group. The prevalence of dysmobility syndrome was 20% overall, increasing from the highest (T1) to lowest (T3) jump power tertile (1, 11, 15% in men; 11, 16, 39% in women) and the failed-to-jump group (39% in men; 48% in women). Low jump power or failed-to-jump was associated with elevated odds of dysmobility syndrome (T3 vs. T1, adjusted odds ratio [aOR] 4.35, p jump vs. T1, aOR 7.60, p Jump power modestly discriminated dysmobility syndrome (area under the curve [AUC], 0.71, p jump power was associated with elevated odds of dysmobility syndrome and its components, independent of age and comorbidities.

  13. Serious ski jumping injuries in Norway.

    Science.gov (United States)

    Wester, K

    1985-01-01

    Injuries caused by ski jumping have been poorly investigated. Among approximately 2,200 licensed jumpers in Norway, there occurred at least 12 injuries with a permanent medical disability of greater than or equal to 10%. The risk of being seriously injured is approximately 5% in a 5 year period (1977 to 1981); it is higher in the age group 15 to 17 years. Seven injuries were very serious [four central nervous system (CNS) lesions, two leg amputations, and one blindness of one eye], and five were less serious (sequelae to fractures of the lower extremities). The first jump of the day is particularly dangerous, and so is the beginning and end of the season. It seems dangerous to use more than one standard heel block. Poor preparation of the jump may have contributed to the accidents. Based on the findings, several prophylactic measures are suggested.

  14. The effects of 4 weeks of jump training on landing knee valgus and crossover hop performance in female basketball players.

    Science.gov (United States)

    Herrington, Lee

    2010-12-01

    Female basketball players would appear particularly prone to knee injuries. These injuries have been associated with the nature of the sport, but more specifically with the particular movement strategies adopted. A valgus or abducted position of the knee on landing has been reported to be associated with a number of different knee injuries. Jump-training programs have been reported to improve both landing knee valgus and functional performance. The majority of the jump-training programs have been of 6 weeks' duration, 3 sessions per week often lasting up to 1 hour. For most sports coaches, team conditioners, and athletes, this duration and program length is not acceptable. The aim of this study was to assess if an abridged jump-training program could have similar effects to those previously reported. Fifteen female basketball players had their knee valgus angles assessed during 2 landing tasks, drop jump landing, and when undertaking a jump shot and along with crossover hop distance before and after a progressive jump-training program. The jump-training program lasted 4 weeks, 3 times per week, each session lasting 15 minutes. After training, crossover hop distance showed an average percentage improvement on distance jumped of 73.6% (p = 0.001); the drop jump knee valgus angle in the left leg on average was reduced by 9.8° (p = 0.002), right leg reduced by 12.3° (p = 0.0001); during the jump shot, the knee valgus angle in the left leg showed a mean reduction of 4.5° (p = 0.035), and the right leg was reduced by 4.3° (p = 0.01). The study undertaken achieved comparable results to those previously reported with an abridged program over considerably shortened session duration and training period.

  15. Recent Advancements in Lightning Jump Algorithm Work

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  16. Validity of a Jump Mat for assessing Countermovement Jump Performance in Elite Rugby Players.

    Science.gov (United States)

    Dobbin, Nick; Hunwicks, Richard; Highton, Jamie; Twist, Craig

    2017-02-01

    This study determined the validity of the Just Jump System ® (JJS) for measuring flight time, jump height and peak power output (PPO) in elite rugby league players. 37 elite rugby league players performed 6 countermovement jumps (CMJ; 3 with and 3 without arms) on a jump mat and force platform. A sub-sample (n=28) was used to cross-validate the equations for flight time, jump height and PPO. The JJS systematically overestimated flight time and jump height compared to the force platform (Pjump height ( with R 2 =0.945; without R 2 =0.987). Our equations revealed no systematic difference between corrected and force platform scores and an improved the agreement for flight time (Ratio limits of agreement: with 1.00 vs. 1.36; without 1.00 vs. 1.16) and jump height ( with 1.01 vs. 1.34; without 1.01 vs. 1.15), meaning that our equations can be used to correct JJS scores for elite rugby players. While our equation improved the estimation of PPO ( with 1.02; without 1.01) compared to existing equations (Harman: 1.20; Sayers: 1.04), this only accounted for 64 and 69% of PPO. © Georg Thieme Verlag KG Stuttgart · New York.

  17. CLIMATIC JUMP IN THE POLAR REGION (I)

    OpenAIRE

    ヤマモト, リョウザブロウ; イワシマ, タツヤ; ホシアイ, マコト; Ryozaburo, YAMAMOTO; Tatsuya, IWASHIMA; Makoto, HOSHIAI

    1987-01-01

    From the analysis of the climatic elements over Japan, we can detect the "climatic jumps" around the years 1920 and 1950,which is a new concept in the climatic diagnosis proposed by the present authors (R. YAMAMOTO et al. : J. Meteorol. Soc. Jpn., 63,1157,1985,64,273,1986). Taking account of several results which show the simultaneous occurrence of the climatic jumps of the surface air temperature, precipitation, etc., in the other regions by the other investigators, we may infer the "climati...

  18. Does trampoline or hard surface jumping influence lower extremity alignment?

    Science.gov (United States)

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  19. Test-retest reliability of jump execution variables using mechanography: a comparison of jump protocols.

    Science.gov (United States)

    Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N

    2018-05-01

    Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.

  20. Biomechanics of optimal flight in ski-jumping.

    Science.gov (United States)

    Remizov, L P

    1984-01-01

    The flight in a vertical plane of a ski-jumper after take-off was studied with the purpose of maximising flight distance. To solve the problem of optimal flight (how a jumper must change his angle of attack to obtain the longest jump) the basic theorem of the optimal control theory--Pontriagin's maximum principle--was applied. The calculations were based on data from wind tunnel experiments. It was shown that the maximum flight distance is achieved when the angle of attack is gradually increased according to a convex function the form of which depends on the individual aerodynamic parameters.

  1. Intertime jump statistics of state-dependent Poisson processes.

    Science.gov (United States)

    Daly, Edoardo; Porporato, Amilcare

    2007-01-01

    A method to obtain the probability distribution of the interarrival times of jump occurrences in systems driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a modified version of the master equation associated to the stochastic process under analysis. A model for the timing of human activities shows the capability of state-dependent Poisson noise to generate power-law distributions. The application of the method to a model for neuron dynamics and to a hydrological model accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and possible persistence in state-dependent Poisson models.

  2. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    Science.gov (United States)

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  3. The Effect of Tutoring with Nonstandard Equations for Students with Mathematics Difficulty

    Science.gov (United States)

    Powell, Sarah R.; Driver, Melissa K.; Julian, Tyler E.

    2015-01-01

    Students often misinterpret the equal sign (=) as operational instead of relational. Research indicates misinterpretation of the equal sign occurs because students receive relatively little exposure to equations that promote relational understanding of the equal sign. No study, however, has examined effects of nonstandard equations on the equation…

  4. Attitudes of Japanese Learners and Teachers of English towards Non-Standard English in Coursebooks

    Science.gov (United States)

    Takahashi, Reiko

    2017-01-01

    Over the decades, efforts have been made to incorporate diverse perspectives on World Englishes into English Language Teaching (ELT) practice and teaching materials. To date, the majority of ELT learners and teachers have not yet been exposed to materials which use and explore non-standard forms of English. This paper examines the attitudes of…

  5. Nonstandard usage of ASS-500 station filters for determination of ground-level air contamination

    International Nuclear Information System (INIS)

    Kozak, K.; Jasinska, M.; Kwiatek, W.; Mietelski, J.W.; Dutkiewicz, E.

    1998-01-01

    The work describes nonstandard application of filters from ASS-500 station for the determination of the element content in the samples collected by PIXE method. Determination of gamma radioactive isotopes and alpha radioactive plutonium is also reviewed. Authors conclude that ASS-500 workstation allows collection of representative samples from the ground level air. These samples are suitable for the complex analysis of industrial pollution

  6. Transition Systems and Non-Standard Employment in Early Career: Comparing Japan and Switzerland

    Science.gov (United States)

    Imdorf, Christian; Helbling, Laura Alexandra; Inui, Akio

    2017-01-01

    Even though Japan and Switzerland are characterised by comparatively low youth unemployment rates, non-standard forms of employment are on the rise, posing a risk to the stable integration of young labour market entrants. Drawing on the French approach of societal analysis, this paper investigates how country-specific school-to-work transition…

  7. Non-standard perturbative methods for the effective potential in λφ4 QFT

    International Nuclear Information System (INIS)

    Okopinska, A.

    1986-07-01

    The effective potential in scalar QFT is calculated in the non-standard perturbative methods and compared with the conventional loop expansion. In the space time dimensions 0 and 1 the results are compared with the ''exact'' effective potential obtained numerically. In 4 dimensions we show that λφ 4 theory is non-interacting. (author)

  8. A nonstandard numerical method for the modified KdV equation

    Indian Academy of Sciences (India)

    Ayhan Aydin

    2017-10-25

    Oct 25, 2017 ... Nonstandard finite difference; modified Korteweg–de Vries equation; local truncation error. PACS Nos 02.70.Bf; 02.30.Jr; 02.60.Lj. 1. Introduction. Many physical phenomena in various fields of science such as fluid mechanics and quantum field theory can be described by the modified Koreteweg–de Vries ...

  9. Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies

    CERN Document Server

    Gelmini, Graciela B

    2008-01-01

    We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.

  10. 46 CFR 160.055-9 - Procedure for approval-standard and nonstandard life preservers.

    Science.gov (United States)

    2010-10-01

    ... design shall follow the procedures of subpart 159.005 of this chapter, as explained in § 160.001-3 of... manufacturer by the Coast Guard for a nonstandard life preserver approved after tests. (d) Private brand labels. Private brand labels are those bearing the name and address of a distributor in lieu of the manufacturer...

  11. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  12. Jumping on the Social Media Bandwagon

    Science.gov (United States)

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  13. Jump as Far as You Can [Problem Solvers: Problem

    Science.gov (United States)

    Bofferding, Laura; Yigit, Melike

    2013-01-01

    The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…

  14. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  15. Vorticity determination in a hydraulic jump by application of method ...

    African Journals Online (AJOL)

    The method of characteristics for solving systems of partial differential equations coupled with jump conditions is used in analysing flow downstream of a hydraulic jump instead of the normal analytical approach adopted in Hornung [1]. It is shown that the method of characteristics together with the jump conditions can ...

  16. Scaling and jumping: Gravity loses grip on small jumpers

    NARCIS (Netherlands)

    Scholz, M.N.; Bobbert, M.F.; van Soest, A.J.

    2006-01-01

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off

  17. Effect of early training on the jumping technique of horses

    NARCIS (Netherlands)

    Santamaría, Susana; Bobbert, Maarten F.; Back, Willem; Barneveld, Ab; van Weeren, P. Rene

    Objective - To investigate the effects of early training for jumping by comparing the jumping technique of horses that had received early training with that of horses raised conventionally. Animals - 40 Dutch Warmblood horses. Procedure - The horses were analyzed kinematically during free jumping at

  18. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  19. Acceleration and Orientation Jumping Performance Differences Among Elite Professional Male Handball Players With or Without Previous ACL Reconstruction: An Inertial Sensor Unit-Based Study.

    Science.gov (United States)

    Setuain, Igor; González-Izal, Miriam; Alfaro, Jesús; Gorostiaga, Esteban; Izquierdo, Mikel

    2015-12-01

    Handball is one of the most challenging sports for the knee joint. Persistent biomechanical and jumping capacity alterations can be observed in athletes with an anterior cruciate ligament (ACL) injury. Commonly identified jumping biomechanical alterations have been described by the use of laboratory technologies. However, portable and easy-to-handle technologies that enable an evaluation of jumping biomechanics at the training field are lacking. To analyze unilateral/bilateral acceleration and orientation jumping performance differences among elite male handball athletes with or without previous ACL reconstruction via a single inertial sensor unit device. Case control descriptive study. At the athletes' usual training court. Twenty-two elite male (6 ACL-reconstructed and 16 uninjured control players) handball players were evaluated. The participants performed a vertical jump test battery that included a 50-cm vertical bilateral drop jump, a 20-cm vertical unilateral drop jump, and vertical unilateral countermovement jump maneuvers. Peak 3-dimensional (X, Y, Z) acceleration (m·s(-2)), jump phase duration and 3-dimensional orientation values (°) were obtained from the inertial sensor unit device. Two-tailed t-tests and a one-way analysis of variance were performed to compare means. The P value cut-off for significance was set at P handball athletes with previous ACL reconstruction demonstrated a jumping biomechanical profile similar to control players, including similar jumping performance values in both bilateral and unilateral jumping maneuvers, several years after ACL reconstruction. These findings are in agreement with previous research showing full functional restoration of abilities in top-level male athletes after ACL reconstruction, rehabilitation and subsequent return to sports at the previous level. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  20. Lower Jump Power Rather Than Muscle Mass Itself is Associated with Vertebral Fracture in Community-Dwelling Elderly Korean Women.

    Science.gov (United States)

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie

    2017-06-01

    Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.

  1. The Relationship between the Stochastic Maximum Principle and the Dynamic Programming in Singular Control of Jump Diffusions

    Directory of Open Access Journals (Sweden)

    Farid Chighoub

    2014-01-01

    the stochastic calculus of jump diffusions and some properties of singular controls. Then, we give, under smoothness conditions, a useful verification theorem and we show that the solution of the adjoint equation coincides with the spatial gradient of the value function, evaluated along the optimal trajectory of the state equation. Finally, using these theoretical results, we solve explicitly an example, on optimal harvesting strategy, for a geometric Brownian motion with jumps.

  2. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    International Nuclear Information System (INIS)

    Limić, Nedžad

    2011-01-01

    Consider a non-symmetric generalized diffusion X(⋅) in ℝ d determined by the differential operator A(x) = -Σ ij ∂ i a ij (x)∂ j + Σ i b i (x)∂ i . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D([0,∞),ℝ d ) to the diffusion X(⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d≥3 can be applied to processes for which the diffusion tensor {a ij (x)} 11 dd fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.

  3. Jump in current at the gap voltage in a superconducting junction

    International Nuclear Information System (INIS)

    Coombes, J.M.; Carbotte, J.P.

    1986-01-01

    For many materials not previously considered, we have calculated the jump, at the gap voltage, in the quasiparticle current of a tunnel junction. An empirical relationship between the jump and the effective electron-phonon coupling λ-μ/sup */ previously established is confirmed. Further, a new and equally as accurate correlation is found with the strong coupling index T/sub c//ω/sub ln/, where T/sub c/ is the critical temperature and ω/sub ln/ a specific characteristic phonon energy. A simple formula for the jump which includes a strong-coupling correction is derived and found to fit the observed correlation well. Finally, we study the effect on the jump of unusual values of Coulomb pseudopotential μ/sup */. Also a δ-function electron-phonon spectral density α 2 F(ω) is used to help in the understanding of the range of values that is possible for the jump when α 2 F(ω) is not restricted to realistic shapes

  4. Study of density jump in helicon-wave induced H2 plasma

    International Nuclear Information System (INIS)

    Jiang Fan; Cheng Xinlu; Xiong Zhenwei; Wu Weidong; Wang Yuying; Gao Yingxue; Dai Yang

    2012-01-01

    Hydrogen plasmas electron density and electron energy distribution function EEDF were studied with Langmuir probe. Two jumps were observed in the variation of the electron density with the radio frequency power. The relative intensity ratio of hydrogen plasmas spectrum line H α , H β and H γ validated this phenomenon. Two density jumps illuminated the transition of discharge mode,which labeled as capacitive, inductive and helicon-wave mode. In this work, the density jumps are explained from two sides, one is the interaction between electrons and hydrogen molecules, the other is Nagoya type III (N-type) antenna-plasma coupling. With the increase of radiofrequency power, the interaction between electron and hydrogen molecule has been enhanced which causes the electron density jumps. The antenna couples well to plasmas when transverse field E y is maximum, and the wave vector of k z locates at π/l a or 3π/l a , corresponding to the first and second density jump. (authors)

  5. Individual flight styles in ski jumping: results obtained during Olympic Games competitions.

    Science.gov (United States)

    Schmölzer, B; Müller, W

    2005-05-01

    From the physics point of view, the jump length in ski jumping depends on: the in-run velocity v(0), the velocity perpendicular to the ramp v(p0) due to the athlete's jumping force, the lift and drag forces acting during take-off and during the flight, and the weight of the athlete and his equipment. The aerodynamic forces are a function of the flight position and of the equipment features. They are a predominant performance factor and can largely be influenced by the athlete. The field study conducted during the Olympic Games competitions 2002 at Park City (elevation: 2000 m) showed an impressive ability of the Olympic medallists to reproduce their flight style and remarkable differences between different athletes have been found. The aerodynamic forces are proportional to the air density. Elite athletes are able to adapt their flight style to thin air conditions in order to maximise jump length and to keep the flight stable. The effects of flight position variations on the performance have been analysed by means of a computer model which is based on the equations of motion and on wind tunnel data corresponding to the flight positions found in the field. Athletes have to solve extremely difficult optimisation problems within fractions of a second. The computer simulation can be used as a reliable starting point for the improvement of training methods and gives an insight into the "implicit" knowledge of physics that the ski jumping athlete must have available for a good performance.

  6. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.

    Science.gov (United States)

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2018-03-01

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  7. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  8. Option Valuation with Observable Volatility and Jump Dynamics

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Feunoua, Bruno; Jeon, Yoontae

    2015-01-01

    Under very general conditions, the total quadratic variation of a jump-diffusion process can be decomposed into diffusive volatility and squared jump variation. We use this result to develop a new option valuation model in which the underlying asset price exhibits volatility and jump intensity...... dynamics. The volatility and jump intensity dynamics in the model are directly driven by model-free empirical measures of diffusive volatility and jump variation. Because the empirical measures are observed in discrete intervals, our option valuation model is cast in discrete time, allowing...

  9. DESIGN OF A FAST CHROMATICITY JUMP IN RHIC

    International Nuclear Information System (INIS)

    MONTAG, C.; KEWISCH, J.; BRUNO, D.; GANETIS, G.; LOUIE, W.

    2003-01-01

    During transition crossing in the .Relativistic Heavy Ion Collider (RHIC), chromaticities have to change sign. This sign change is partially accomplished by the γ t quadrupole jump; however, the resulting chromaticity jump is only Δξ x = 2.1 in the horizontal and Δξ y = 2.4 in the vertical plane. To increase the jump height, a dedicated chromaticity jump scheme has been designed, consisting of fast power supplies connected to six sextupoles per ring, which is capable of providing a chromaticity jump of Δξ = 6

  10. Collectivism versus individualism: performance-related pay and union coverage for non-standard workers in Britain

    OpenAIRE

    Booth, Alison L.; Francesconi, Marco

    2000-01-01

    This paper documents the extent of union coverage and performance-related pay (PRP) - the latter representing one aspect of pay flexibility - across standard and non-standard workers in Britain, using the first seven waves of the British Household Panel Survey, 1991-1997. We find there is no evidence of expansion of either union coverage or PRP towards any type of non-standard employment in the 1990s. Thus union rhetoric about a 'strategy of enlargement' towards non-standard workers remains j...

  11. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  12. Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems with Jumps

    Directory of Open Access Journals (Sweden)

    Minsong Zhang

    2014-01-01

    Full Text Available This paper investigates the problems of finite-time stability and finite-time stabilization for nonlinear quadratic systems with jumps. The jump time sequences here are assumed to satisfy some given constraints. Based on Lyapunov function and a particular presentation of the quadratic terms, sufficient conditions for finite-time stability and finite-time stabilization are developed to a set containing bilinear matrix inequalities (BLIMs and linear matrix inequalities (LMIs. Numerical examples are given to illustrate the effectiveness of the proposed methodology.

  13. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  14. Dissipativity-Based Reliable Control for Fuzzy Markov Jump Systems With Actuator Faults.

    Science.gov (United States)

    Tao, Jie; Lu, Renquan; Shi, Peng; Su, Hongye; Wu, Zheng-Guang

    2017-09-01

    This paper is concerned with the problem of reliable dissipative control for Takagi-Sugeno fuzzy systems with Markov jumping parameters. Considering the influence of actuator faults, a sufficient condition is developed to ensure that the resultant closed-loop system is stochastically stable and strictly ( Q, S,R )-dissipative based on a relaxed approach in which mode-dependent and fuzzy-basis-dependent Lyapunov functions are employed. Then a reliable dissipative control for fuzzy Markov jump systems is designed, with sufficient condition proposed for the existence of guaranteed stability and dissipativity controller. The effectiveness and potential of the obtained design method is verified by two simulation examples.

  15. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  16. A Cointegrated Regime-Switching Model Approach with Jumps Applied to Natural Gas Futures Prices

    Directory of Open Access Journals (Sweden)

    Daniel Leonhardt

    2017-09-01

    Full Text Available Energy commodities and their futures naturally show cointegrated price movements. However, there is empirical evidence that the prices of futures with different maturities might have, e.g., different jump behaviours in different market situations. Observing commodity futures over time, there is also evidence for different states of the underlying volatility of the futures. In this paper, we therefore allow for cointegration of the term structure within a multi-factor model, which includes seasonality, as well as joint and individual jumps in the price processes of futures with different maturities. The seasonality in this model is realized via a deterministic function, and the jumps are represented with thinned-out compound Poisson processes. The model also includes a regime-switching approach that is modelled through a Markov chain and extends the class of geometric models. We show how the model can be calibrated to empirical data and give some practical applications.

  17. Biomechanical Analysis of the Jump Shot in Basketball

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2014-10-01

    Full Text Available Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player’s jumping ability

  18. Validity of Hip-worn Inertial Measurement Unit Compared to Jump Mat for Jump Height Measurement in Adolescents.

    Science.gov (United States)

    Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L

    2018-06-16

    Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. A Jump Diffusion Model for Volatility and Duration

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    by the market microstructure theory. Traditional measures of volatility do not utilize durations. I adopt a jump diffusion process to model the persistence of intraday volatility and conditional duration, and their interdependence. The jump component is disentangled from the continuous part of the price......, volatility and conditional duration process. I develop a MCMC algorithm for the inference of irregularly spaced multivariate process with jumps. The algorithm provides smoothed estimates of the latent variables such as spot volatility, jump times and jump sizes. I apply this model to IBM data and I find...... meaningful relationship between volatility and conditional duration. Also, jumps play an important role in the total variation, but the jump variation is smaller than traditional measures that use returns sampled at lower frequency....

  20. Propulsion efficiency and imposed flow fields of a copepod jump

    DEFF Research Database (Denmark)

    Jiang, H.; Kiørboe, Thomas

    2011-01-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed...... the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump...... the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow...

  1. Gamma Transition Jump for PS2

    CERN Document Server

    Bartmann, W; Métral, E; Möhl, D; Peggs, S

    2008-01-01

    The PS2, which is proposed as a replacement for the existing ~50-year old PS accelerator, is presently considered to be a normal conducting synchrotron with an injection kinetic energy of 4 GeV and a maximum energy of 50 GeV. One of the possible lattices (FODO option) foresees crossing of transition energy near 10 GeV. Since the phase-slip-factor $\\eta$ becomes very small near transition energy, many intensity dependent effects can take place in both longitudinal and transverse planes. The aim of the present paper is on the one hand to scale the gamma transition jump, used since 1973 in the PS, to the projected PS2 and on the other hand based on these results the analysis of the implementation and feasibility of a gamma transition jump scheme in a conventional FODO lattice.

  2. Testing jumps via false discovery rate control.

    Science.gov (United States)

    Yen, Yu-Min

    2013-01-01

    Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  3. Testing jumps via false discovery rate control.

    Directory of Open Access Journals (Sweden)

    Yu-Min Yen

    Full Text Available Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR, an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS test statistic, and control the FDR with the Benjamini and Hochberg (BH procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  4. Price jumps on European stock markets

    Czech Academy of Sciences Publication Activity Database

    Hanousek, Jan; Kočenda, Evžen; Novotný, Jan

    2014-01-01

    Roč. 14, č. 1 (2014), s. 10-22 ISSN 2214-8450 R&D Projects: GA ČR(CZ) GAP403/11/0020; GA ČR(CZ) GBP402/12/G097 Grant - others:UK(CZ) UNCE 204005/2012 Institutional support: PRVOUK-P23 Keywords : stock markets * price jump indicators * non-parametric testing Subject RIV: AH - Economics

  5. Take-off aerodynamics in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V

    2001-04-01

    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  6. Hydraulic jumps in ''viscous'' accretion disks

    International Nuclear Information System (INIS)

    Michel, F.C.

    1984-01-01

    We propose that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central ''paddle wheel'' may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the ''slow'' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 10 gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure

  7. Radiotherapy. Non-standard fractionated regimens improving cancer treatment. Part II. Response of normal tissues to fractionated irradiation

    International Nuclear Information System (INIS)

    Villar, A.; Hernandez, M.; Pera, J.; Cambray, M.; Villa, S.; Arnaiz, M.D.

    1988-01-01

    The phenomena participating in the response of tissues to fractionated irradiation are analyzed with special emphasis on the most relevant points influencing the design of non-standard fractionated regimens. (Author)

  8. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  9. Parents' nonstandard work schedules and child well-being: a critical review of the literature.

    Science.gov (United States)

    Li, Jianghong; Johnson, Sarah E; Han, Wen-Jui; Andrews, Sonia; Kendall, Garth; Strazdins, Lyndall; Dockery, Alfred

    2014-02-01

    This paper provides a comprehensive review of empirical evidence linking parental nonstandard work schedules to four main child developmental outcomes: internalizing and externalizing problems, cognitive development, and body mass index. We evaluated the studies based on theory and methodological rigor (longitudinal data, representative samples, consideration of selection and information bias, confounders, moderators, and mediators). Of 23 studies published between 1980 and 2012 that met the selection criteria, 21 reported significant associations between nonstandard work schedules and an adverse child developmental outcome. The associations were partially mediated through parental depressive symptoms, low quality parenting, reduced parent-child interaction and closeness, and a less supportive home environment. These associations were more pronounced in disadvantaged families and when parents worked such schedules full time. We discuss the nuance, strengths, and limitations of the existing studies, and propose recommendations for future research.

  10. Non-standard neutrino interactions in the mu–tau sector

    Directory of Open Access Journals (Sweden)

    Irina Mocioiu

    2015-04-01

    Full Text Available We discuss neutrino mass hierarchy implications arising from the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu–tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the ϵμτ parameter describing this non-standard interaction. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracy could be lifted.

  11. Solving non-standard packing problems by global optimization and heuristics

    CERN Document Server

    Fasano, Giorgio

    2014-01-01

    This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploit...

  12. Quantum jump from singularity to outside of black hole

    Energy Technology Data Exchange (ETDEWEB)

    Dündar, Furkan Semih [Physics and Mathematics Departments, Sakarya University, 54050, Sakarya (Turkey); Hajian, Kamal [School of Physics, Institute for Research in Fundamental Sciences, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-8639, Tehran (Iran, Islamic Republic of)

    2016-02-26

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  13. Quantum jump from singularity to outside of black hole

    International Nuclear Information System (INIS)

    Dündar, Furkan Semih; Hajian, Kamal

    2016-01-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as late Hawking radiations. The non-unitarity in the jump resembles the one in collapse of wave function, but preserves entanglements. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitary evolution, while it does not have physically measurable effects for them. Besides, no information would be lost in the singularity. Taking the modified picture into account, the firewall paradox can be resolved, respecting No Drama. A by-product of our modification is that roughly half of the entropy of the black hole is released close to the end of evaporation in the shape of very hot Hawking radiation.

  14. Jump Squat is More Related to Sprinting and Jumping Abilities than Olympic Push Press.

    Science.gov (United States)

    Loturco, I; Kobal, R; Maldonado, T; Piazzi, A F; Bottino, A; Kitamura, K; Abad, C C C; Pereira, L A; Nakamura, F Y

    2017-07-01

    The aim of this study was to test the relationships between jump squat (JS) and Olympic push press (OPP) power outputs and performance in sprint, squat jump (SJ), countermovement jump (CMJ) and change of direction (COD) speed tests in elite soccer players. 27 athletes performed a maximum power load test to determine their bar mean propulsive power (MPP) and bar mean propulsive velocity (MPV) in the JS and OPP exercises. Magnitude-based inference was used to compare the exercises. The MPV was almost certainly higher in the OPP than in the JS. The MPP relative to body mass (MPP REL) was possibly higher in the OPP. Only the JS MPP REL presented very large correlations with linear speed ( r> 0.7, for speed in 5, 10, 20 and 30 m) and vertical jumping abilities ( r> 0.8, for SJ and CMJ), and moderate correlation with COD speed ( r= 0.45). Although significant (except for COD), the associations between OPP outcomes and field-based measurements (speed, SJ and CMJ) were all moderate, ranging from 0.40 to 0.48. In a group composed of elite soccer players, the JS exercise is more associated with jumping and sprinting abilities than the OPP. Longitudinal studies are needed to confirm if these strong relationships imply superior training effects in favor of the JS exercise. © Georg Thieme Verlag KG Stuttgart · New York.

  15. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    Science.gov (United States)

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  16. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  17. Do Bilateral Vertical Jumps With Reactive Jump Landings Achieve Osteogenic Thresholds With and Without Instruction in Premenopausal Women?

    Science.gov (United States)

    Clissold, Tracey L; Winwood, Paul W; Cronin, John B; De Souza, Mary Jane

    2018-04-01

    Jumps have been investigated as a stimulus for bone development; however, effects of instruction, jump type, and jump-landing techniques need investigation. This study sought to identify whether ground reaction forces (GRFs) for bilateral vertical jumps (countermovement jumps and drop jumps) with reactive jump-landings (ie, jumping immediately after initial jump-landing), with instruction and with instruction withdrawn, achieve magnitudes and rates of strain previously shown to improve bone mass among premenopausal women. Twenty-one women (Mean ± SD: 43.3 ± 5.9 y; 69.4 ± 9.6 kg; 167 ± 5.5 cm; 27.5 ± 8.7% body fat) performed a testing session 'with instruction' followed by a testing session performed 1 week later with 'instruction withdrawn.' The magnitudes (4.59 to 5.49 body weight [BW]) and rates of strain (263 to 359 BW·s -1 ) for the jump-landings, performed on an AMTI force plate, exceeded previously determined thresholds (>3 BWs and >43 BW·s -1 ). Interestingly, significantly larger peak resultant forces, (↑10%; P = .002) and peak rates of force development (↑20%; P jump-landing (postreactive jump). Small increases (ES = 0.22-0.42) in all landing forces were observed in the second jump-landing with 'instruction withdrawn.' These jumps represent a unique training stimulus for premenopausal women and achieve osteogenic thresholds thought prerequisite for bone growth.

  18. PATELLOFEMORAL MODEL OF THE KNEE JOINT UNDER NON-STANDARD SQUATTING

    OpenAIRE

    FEKETE, GUSZTÁV; CSIZMADIA, BÉLA MÁLNÁSI; WAHAB, MAGD ABDEL; DE BAETS, PATRICK; VANEGAS-USECHE, LIBARDO V.; BÍRÓ, ISTVÁN

    2014-01-01

    The available analytical models for calculating knee patellofemoral forces are limited to the standard squat motion when the center of gravity is fixed horizontally. In this paper, an analytical model is presented to calculate accurately patellofemoral forces by taking into account the change in position of the trunk's center of gravity under deep squat (non-standard squatting). The accuracy of the derived model is validated through comparisons with results of the inverse dynamics technique. ...

  19. Nonstandard Maternal Work Schedules: Implications for African American Children’s Early Language Outcomes

    OpenAIRE

    Odom, Erika C.; Vernon-Feagans, Lynne; Crouter, Ann C.

    2013-01-01

    In this study, observed maternal positive engagement and perception of work-family spillover were examined as mediators of the association between maternal nonstandard work schedules and children’s expressive language outcomes in 231 African American families living in rural households. Mothers reported their work schedules when their child was 24 months of age and children’s expressive language development was assessed during a picture book task at 24 months and with a standardized assessmen...

  20. Backpropagation Neural Ensemble for Localizing and Recognizing Non-Standardized Malaysia’s Car Plates

    OpenAIRE

    Chin Kim On; Teo Kein Yau; Rayner Alfred; Jason Teo; Patricia Anthony; Wang Cheng

    2016-01-01

    In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP) in combination with Ensemble Neural Network (ENN). We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN). This research aims to solve four main issues; (1) localization of car plates that has the same colour with the vehicle colour, (2) detection and recognition of car pla...

  1. Non-standard base pairing and stacked structures in methyl xanthine clusters

    Czech Academy of Sciences Publication Activity Database

    Callahan, M. P.; Gengeliczki, Z.; Svadlenak, N.; Valdes, Haydee; Hobza, Pavel; de Vries, M. S.

    2008-01-01

    Roč. 10, č. 19 (2008), s. 2819-2826 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:NSF(US) CHE-0615401 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-standard base pairing * stacked structures * in methyl xanthine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  2. A vanishing diffusion limit in a nonstandard system of phase field equations

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Gilardi, G.; Krejčí, Pavel; Sprekels, J.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 257-275 ISSN 2163-2480 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : nonstandard phase field system * nonlinear partial differential equations * asympotic limit Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=9918

  3. Phantom development for radiographic image optimization of chest, skull and pelvis examination for nonstandard patient

    International Nuclear Information System (INIS)

    Pina, D.R.; Duarte, S.B.; Ghilardi Netto, T.; Morceli, J.

    2009-01-01

    The construction of the adapted patient equivalent phantom (APEP) to simulate the X-ray scattering and absorption by chest, skull and pelvis of nonstandard patient in conventional radiographic equipment is presented. This APEP system is associated to the pre-existing realistic-analytic phantom (RAP) [Pina, D.R., Duarte, S.B., Ghilardi Netto, T., Trad, C. S., Brochi, M.A.C., Oliveira, S.C. de, 2004. Optimization of standard patient radiographic images for chest, skull and pelvis exams in conventional X-ray equipment. Phys. Med. Biol. 49, N215-N226] forming the coupled phantom (RAP-APEP), which is used to establish an optimization process of radiographic images of chest, skull and pelvis for nonstandard patients. A chart of the optimized radiographic technique is established covering a wide range of nonstandard patient thickness, and offering a dose reduction in comparison with those techniques currently used. Different validation processes were applied to confirm the improving of the radiographic image quality when techniques of the established chart are used

  4. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

    Directory of Open Access Journals (Sweden)

    Rami Ahmad El-Nabulsi

    2015-08-01

    Full Text Available Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.

  5. Search for nonstandard neutrino interactions with IceCube DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-04-01

    As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.

  6. Quantum chaos for nonstandard symmetry classes in the Feingold-Peres model of coupled tops.

    Science.gov (United States)

    Fan, Yiyun; Gnutzmann, Sven; Liang, Yuqi

    2017-12-01

    We consider two coupled quantum tops with angular momentum vectors L and M. The coupling Hamiltonian defines the Feingold-Peres model, which is a known paradigm of quantum chaos. We show that this model has a nonstandard symmetry with respect to the Altland-Zirnbauer tenfold symmetry classification of quantum systems, which extends the well-known threefold way of Wigner and Dyson (referred to as "standard" symmetry classes here). We identify the nonstandard symmetry classes BDI_{0} (chiral orthogonal class with no zero modes), BDI_{1} (chiral orthogonal class with one zero mode), and CI (antichiral orthogonal class) as well as the standard symmetry class AI (orthogonal class). We numerically analyze the specific spectral quantum signatures of chaos related to the nonstandard symmetries. In the microscopic density of states and in the distribution of the lowest positive energy eigenvalue, we show that the Feingold-Peres model follows the predictions of the Gaussian ensembles of random-matrix theory in the appropriate symmetry class if the corresponding classical dynamics is chaotic. In a crossover to mixed and near-integrable classical dynamics, we show that these signatures disappear or strongly change.

  7. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  8. Jump Shrug Height and Landing Forces Across Various Loads.

    Science.gov (United States)

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  9. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    Science.gov (United States)

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  10. Ski jumping boots limit effective take-off in ski jumping.

    Science.gov (United States)

    Virmavirta, M; Komi, P V

    2001-12-01

    In this study, we measured the vertical and horizontal take-off forces, plantar pressures and activation patterns of four muscles (vastus lateralis, gluteus maximus, tibialis anterior, gastrocnemius) in 10 ski jumpers in simulated laboratory conditions when wearing either training shoes or ski jumping boots. We found significant differences in vertical (P boots condition resulted in a smaller displacement in the final position of the following joint angles: ankle angle (P knee angle (P boots condition, significantly more pressure was recorded under the heel (P knee and hip extensors when wearing jumping boots. We conclude that the stiffness of the structure of the jumping boots may result in a forward shift of pressure, thus limiting the effective vertical force. To avoid this pressure shift, the pattern of movement of simulated take-offs should be carefully controlled, particularly when wearing training shoes.

  11. Jump Tails, Extreme Dependencies, and the Distribution of Stock Returns

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Todorov, Viktor

    We provide a new framework for estimating the systematic and idiosyncratic jump tail risks in financial asset prices. The theory underlying our estimates are based on in-fill asymptotic arguments for directly identifying the systematic and idiosyncratic jumps, together with conventional long...... market portfolio, we find that the distributions of the systematic and idiosyncratic jumps are both generally heavy-tailed and not necessarily symmetric. Our estimates also point to the existence of strong dependencies between the market-wide jumps and the corresponding systematic jump tails for all...... of the stocks in the sample. We also show how the jump tail dependencies deduced from the high-frequency data together with the day-to-day temporal variation in the volatility are able to explain the “extreme” dependencies vis-a-vis the market portfolio....

  12. Study of atomic jumps in quasi-crystals; Etude des sauts atomiques dans les quasi-cristaux

    Energy Technology Data Exchange (ETDEWEB)

    Lyonnard, S

    1997-05-07

    The terminology phason used in quasicrystals to refer to atomic jumps. The study of the hopping process is important for the understanding of many basic issues in quasi-crystallography: structure, stability, diffusion, phase transitions between quasicrystals and approximants, mechanical properties. Quasi-elastic neutron scattering allows to find the characteristics of each elementary jump: chemical species involves, relaxation times, activation energies, jump distances and orientations. We performed a series of experiments in the perfect icosahedral phases AlFeCu and AlMnPd, on both powders and single domain samples, using time-of-flight, backscattering and triple axis spectrometers. We evidenced the existence of very fast phason hopping, and studied about ten different atomic jumps. An unusual temperature dependence has been found systematically: each process is assisted by a thermally activated mechanism. The assistance process has to be determined case by case, but the more plausible explanation invokes assistance by phonons or phason clouds. Moreover, the dependence of the quasi elastic signal as a function of the momentum transfer shows that the jumps are local and do not give rise to any long-range diffusion. Phason hopping mainly corresponds to the atom moving forwards and backwards between two energetically equivalent sites. Finally, we have been able to show that the jumps occur along the various quasi-crystalline symmetry axes. (author) 91 refs.

  13. The effect of non-standard heat treatment of sheep's milk on physico-chemical properties, sensory characteristics, and the bacterial viability of classical and probiotic yogurt.

    Science.gov (United States)

    Zamberlin, Šimun; Samaržija, Dubravka

    2017-06-15

    Classical and probiotic set yogurt were made using non-standard heat treatment of sheep's milk at 60°C/5min. Physico-chemical properties, sensory characteristics, and the viability of bacteria that originated from cultures in classical and probiotic yogurt were analysed during 21days of storage at 4°C. For the production of yogurt, a standard yogurt culture and a probiotic strain Lactobacillus rhamnosus GG were used. At the end of storage time of the classical and probiotic yogurt the totals of non-denatured whey proteins were 92.31 and 91.03%. The viability of yogurt culture bacteria and Lactobacillus rhamnosus GG were higher than 10 6 cfu/g. The total sensory score (maximum - 20) was 18.49 for the classical and 18.53 for the probiotic. In nutritional and functional terms it is possible to produce classical and probiotic sheep's milk yogurt by using a non-standard temperature of heat treatment with a shelf life of 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Strategy for conformity of non-standard cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN as an intergovernmental organization establishes its own Safety Rules as necessary for its proper functioning. In particular, the CERN General Safety Instruction for cryogenic equipment requires that cryogenic pressure equipment at CERN shall comply with the European Pressure Equipment Directive (PED). However, due to the particular features of some of the cryogenic equipment required for the accelerators, as well as the existence of international collaborations with in-kind contributions from non-EU countries, full compliance with the PED may not always be achieved. This situation is foreseen in the Safety Rules, where CERN HSE will define the Safety requirements applicable to such equipment as well as any eventual additional compensatory measure as to ensure a commensurate level of Safety for our pressure equipment. Where compliance with PED may not be achieved, CERN HSE will become the de facto Notified Body and therefore be in charge of the assessment of the conformity of the equipment to the applica...

  15. Influence of magnetic history on flux jump fields

    International Nuclear Information System (INIS)

    Sosnowski, J.

    1986-01-01

    A formalism describing the fields at which flux jumps occur in hard superconductors has been confirmed by the description of an experimentally observed shift of flux jump fields in the second hysteresis loop of a Nb 3 Al superconducting sample. By fitting the theoretical model to experimental data, values of the proportionality parameter between the stability limit and the flux jump field, the first stability limit, and the first penetration field have been estimated

  16. Dynamics and stability of directional jumps in the desert locust.

    Science.gov (United States)

    Gvirsman, Omer; Kosa, Gabor; Ayali, Amir

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps' azimuth and elevation angles. We also report a strong linear correlation between the jumps' pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  17. Effect of drop jump technique on the reactive strength index.

    Science.gov (United States)

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p jump technique that is commonly performed by basketball players.

  18. Impact of wave phase jumps on stochastic heating

    International Nuclear Information System (INIS)

    Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.

    2016-01-01

    Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities

  19. Jump Testing and the Speed of Market Adjustment

    DEFF Research Database (Denmark)

    Rasmussen, Torben B.

    Asymptotic properties of jump tests rely on the property that any jump occurs within a single time interval no matter what the observation frequency is. Market microstructure effects in relation to news-induced revaluation of the underlying variable is likely to make this an unrealistic assumption...... for high-frequency transaction data. To capture these microstructure effects, this paper suggests a model in which market prices adjust gradually to jumps in the underlying effcient price. A case study illustrates the empirical relevance of the model, and the performance of different jump tests...

  20. Development of a Minimally Actuated Jumping-Rolling Robot

    Directory of Open Access Journals (Sweden)

    Thanhtam Ho

    2015-04-01

    Full Text Available This paper presents development of a hybrid mobile robot in order to take advantage of both rolling and jumping locomotion on the ground. According to the unique design of the mechanism, the robot is able to execute both jumping and rolling skilfully by using only one DC motor. Changing the centre of gravity enables rolling of the robot and storage of energy is utilized for jumping. Mechanism design and control logic are validated by computer simulation. Simulation results show that the robot can jump nearly 1.3 times its diameter and roll at the speed of 3.3 times its diameter per second.

  1. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  2. Measurement of K-shell absorption jump factors and jump ratios in some lanthanide elements using EDXRF technique

    International Nuclear Information System (INIS)

    Polat, Recep; İçelli, Orhan; Yalçın, Zeynel; Pesen, Erhan; Orak, Salim

    2013-01-01

    Highlights: ► Mass attenuation coefficients, jump factor and jump ratio for lanthanide elements are obtained. ► The method used in this experiment is combined both transmission and scattering geometry. ► Secondary gamma rays energy is 59.5 keV. ► Experimental values of jump factor and jump ratio for K shell are new. ► The experimental values are in good agreement with those calculated theoretically. - Abstract: 59.5 keV gamma rays scattered by an aluminum foil have been used as a radiation source to measure the absorption jump factor and jump ratios for absorbers Ce, Pr, Nd, Sm, Eu and Tb. The theoretical and experimental values are compared with the corresponding ones in the literature

  3. Locally Perturbed Random Walks with Unbounded Jumps

    OpenAIRE

    Paulin, Daniel; Szász, Domokos

    2010-01-01

    In \\cite{SzT}, D. Sz\\'asz and A. Telcs have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if $d \\ge 2$. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of \\cite{SzT} to unbounded random walks whose jump distribution belongs to th...

  4. A renewal jump-diffusion process with threshold dividend strategy

    Science.gov (United States)

    Li, Bo; Wu, Rong; Song, Min

    2009-06-01

    In this paper, we consider a jump-diffusion risk process with the threshold dividend strategy. Both the distributions of the inter-arrival times and the claims are assumed to be in the class of phase-type distributions. The expected discounted dividend function and the Laplace transform of the ruin time are discussed. Motivated by Asmussen [S. Asmussen, Stationary distributions for fluid flow models with or without Brownian noise, Stochastic Models 11 (1) (1995) 21-49], instead of studying the original process, we study the constructed fluid flow process and their closed-form formulas are obtained in terms of matrix expression. Finally, numerical results are provided to illustrate the computation.

  5. Limit Formulae and Jump Relations of Potential Theory in Sobolev Spaces

    OpenAIRE

    Raskop, Thomas; Grothaus, Martin

    2009-01-01

    In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the pot...

  6. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    Directory of Open Access Journals (Sweden)

    González-Badillo Juan José

    2017-08-01

    Full Text Available The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax in the squat jump (SJ in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1 (r = 0.82, p ≤ 0.001, peak force 2 (PF2 (r = 0.68, p ≤ 0.001, PF2 by controlling for PF1 (r = 0.30, non-significant, the maximum rate of force development at peak force 1 (RFDmax1 (r = 0.62, p ≤ 0.001, mean RFD 1 (RFDmean1 (r = 0.48, p ≤ 0.01, mean RFD 2 (RFDmean2 (r = 0.70, p ≤ 0.001, force at RFDmax1 (r = 0.36, p ≤ 0.05, force at RFDmax2 (r = 0.83, p ≤ 0.001 and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05. However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01, time at peak force 2 (Tp2 (r = -0.64, p ≤ 0.001 and maximum rate of force development at peak force 2 (RFDmax2 (r = -0.71, p ≤ 0.001. These findings indicate that the peak force achieved at the beginning of the movement (PF1 is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping.

  7. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  8. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  9. CAPTURE OF TROJANS BY JUMPING JUPITER

    International Nuclear Information System (INIS)

    Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ∼5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) × 10 –7 for each particle in the original transplanetary disk, implying that the disk contained (3-4) × 10 7 planetesimals with absolute magnitude H disk ∼ 14-28 M Earth , is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  10. Kinematic Differences between Set- and Jump-Shot Motions in Basketball

    Directory of Open Access Journals (Sweden)

    Hiroki Okubo

    2018-02-01

    Full Text Available Shooting arm motions at release in one-hand set and jump basketball shots have been analyzed using a kinematic model. Set and jump shots are classified by the vertical velocity and acceleration of the shooter’s shooting-side shoulder at release. The two-dimensional three-segment model includes the vertical shooting-side shoulder velocity and acceleration. Numerical simulation investigates the effect of shoulder motion. Release backspin angular velocity can be described as a function of the vertical shoulder acceleration and the vertical fingertip acceleration relative to the shoulder. For proper backspin, jump shots require large vertical fingertip acceleration relative to the shoulder. The upward shoulder speed at release contributes to the vertical fingertip velocity relative to the shoulder for a given desired ball release speed, angle and backspin. On the other hand, upward shoulder motion does not contribute to the horizontal direction. As horizontal shot distance increases, upper arm angular speed also increases to produce the ball release conditions. Ball release with upward shoulder speed reduces the magnitudes of the upper arm, forearm and hand angular velocities. All these facts imply that the shooting arm motion in the jump shot is different from that of the set shot.

  11. Preliminary analysis of beam trip and beam jump events in an ADS prototype

    International Nuclear Information System (INIS)

    D'Angelo, A.; Bianchini, G.; Carta, M.

    2001-01-01

    A core dynamics analysis relevant to some typical current transient events has been carried out on an 80 MW energy amplifier prototype (EAP) fuelled by mixed oxides and cooled by lead-bismuth. Fuel and coolant temperature trends relevant to recovered beam trip and beam jump events have been preliminary investigated. Beam trip results show that the drop in temperature of the core outlet coolant would be reduced a fair amount if the beam intensity could be recovered within few seconds. Due to the low power density in the EAP fuel, the beam jump from 50% of the nominal power transient evolves benignly. The worst thinkable current transient, beam jump with cold reactor, mainly depends on the coolant flow conditions. In the EAP design, the primary loop coolant flow is assured by natural convection and is enhanced by a particular system of cover gas injection into the bottom part of the riser. If this system of coolant flow enhancement is assumed in function, even the beam jump with cold reactor event evolves without severe consequences. (authors)

  12. Clinical Efficacy of Jump Training Augmented With Body Weight Support After ACL Reconstruction: A Randomized Controlled Trial.

    Science.gov (United States)

    Elias, Audrey R C; Harris, Kari J; LaStayo, Paul C; Mizner, Ryan L

    2018-06-01

    Limited knee flexion and increased muscle co-contraction during jump landing are believed to diminish outcomes after anterior cruciate ligament (ACL) reconstruction. The efficacy of jump training to improve patients' mechanical and neuromuscular deficits is understudied. Jump training will improve functional, mechanical, and neuromuscular outcomes and higher repetition training augmented by body weight support will result in better retention of gains. Randomized controlled trial; Level of evidence, 1. Thirty athletes (18 months after surgery) were screened, and 19 with mechanical deficits and limited clinical outcomes were enrolled in the trial. Testing included the International Knee Documentation Committee (IKDC) questionnaire, leg landing mechanics via motion analysis, knee joint effusion using a stroke test, and a surface electromyography-generated co-contraction index during a single-legged landing. Participants were randomly assigned to 1 of 2 groups: jump training with normal body weight (JTBW) and high-repetition jump training with body weight support (JTBWS). Knee effusion grading throughout training was used to assess joint tolerance. Changes in outcomes over time were analyzed with mixed-effects modeling. Immediate outcomes were compared with retention testing at 8 weeks after training by use of 2-way analyses of variance with effects of time and group. Significant effects of time were found during the training phase for all outcome measures, but no effects of group or sex were found. IKDC score (pooled; mean ± SD) increased from 76 ± 12 to 87 ± 8 ( P Jump training mitigated some risk factors for second injury and osteoarthritis in patients after ACL reconstruction. Training made lasting improvements in physical function measures as well as mechanical and neuromuscular coordination deficits. Higher repetitions used with body weight support did not improve retention but substantially reduced risk for effusion. Jump training is an efficacious

  13. Determinants of teenage smoking, with special reference to non-standard family background.

    Science.gov (United States)

    Isohanni, M; Moilanen, I; Rantakallio, P

    1991-04-01

    The prevalence of teenage smoking in a cohort of 12,058 subjects born in northern Finland in 1966 is discussed in terms of its social and family determinants, especially in "non-standard" families (with one or more of the parents absent for at least part of the child's upbringing). The prevalence of experimental or daily smoking was 67.4%, the rate being 65.5% in the standard, two-parent families and 75.5% in the non-standard families, the difference being statistically significant (p less than 0.001). The corresponding prevalence of daily smoking was 6.4%, but the rate was 5.1% in standard families and 12.1% in non-standard families (p less than 0.001). An elevated risk of smoking existed among adolescents who had experienced death of their father or divorce of their parents and among girls who had experienced death of their mother. Maternal smoking during pregnancy and maternal age under 20 years at the time of delivery increased the risk, while being the first-born child reduced it. Among family factors existing in 1980, paternal smoking increased the risk for both sexes, while more than three siblings, mother's unemployment or gainful employment (i.e. not a housewife) were associated with smoking by the boys as was urban living, and for the girls migration by the family to a town. The results suggest that juvenile smoking may be a kind of indicator of possible problems experienced by the parents and/or the adolescents themselves with respect to parenthood and family development.

  14. Probing nonstandard decoherence effects with solar and KamLAND neutrinos

    International Nuclear Information System (INIS)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2007-01-01

    It has been speculated that quantum-gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal nonstandard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such nonstandard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E∼few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E n with n=0, ±1, ±2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of nonstandard decoherence effects, whose characteristic parameter γ 0 can thus be significantly constrained. In the ''Lorentz-invariant'' case n=-1, we obtain the upper limit γ 0 -26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ∼2 with respect to previous analyses

  15. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    Science.gov (United States)

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  16. Non-Standard Workers: The South African Context, International Law and Regulation by The European Union

    Directory of Open Access Journals (Sweden)

    ES Fourie

    2008-12-01

    Full Text Available The current labour market has many forms of employment relations that differ from full-time employment. "Atypical," "non-standard," or even "marginal" are terms used to describe these new workers and include, amongst others, part-time work, contract work, self-employment, temporary, fixed-term, seasonal, casual, piece-rate work, employees supplied by employment agencies, home workers and those employed in the informal economy. These workers are often paid for results rather than time. Their vulnerability is linked in many instances to the absence of an employment relationship or the existence of a flimsy one. Most of these workers are unskilled or work in sectors with limited trade union organisation and limited coverage by collective bargaining, leaving them vulnerable to exploitation. They should, in theory, have the protection of current South African labour legislation, but in practice the unusual circumstances of their employment render the enforcement of their rights problematic. The majority of non-standard workers in South Africa are those previously disadvantaged by the apartheid regime, compromising women and unskilled black workers. The exclusion of these workers from labour legislation can be seen as discrimination, which is prohibited by almost all labour legislation in South Africa. This contribution illustrates how the concept of indirect discrimination can be an important tool used to provide labour protection to these workers. The purpose of this article is to explore the scope of the extension of labour rights to non-standard workers in the context of South African labour laws and the international framework.

  17. Complex (Nonstandard) Six-Layer Polytypes of Lizardite Revealed from Oblique-Texture Electron Diffraction Patterns

    International Nuclear Information System (INIS)

    Zhukhlistov, A.P.; Zinchuk, N.N.; Kotel'nikov, D.D.

    2004-01-01

    Association of simple (1T and 3R) and two complex (nonstandard) orthogonal polytypes of the serpentine mineral lizardite from the Catoca kimberlite pipe (West Africa) association is revealed from oblique-texture electron diffraction patterns. A six-layer polytype with an ordered superposition of equally oriented layers (notation 3 2 3 2 3 4 3 4 3 6 3 6 or ++ - -00) belonging to the structural group A and a three-layer (336 or I,I,II) or a six-layer (336366 or I,I,II,I,II,II) polytype with alternating oppositely oriented layers and semi-disordered structure are identified using polytype analysis

  18. Non-Standard Monetary Policies Implemented By The European Central Bank After The Financial Crisis

    Directory of Open Access Journals (Sweden)

    Meryem Filiz Baştürk

    2017-07-01

    Full Text Available The financial crisis which began in the U.S. in 2007 influenced all economies on a global scale followingthe collapse of Lehman Brothers in September 2008. As a response to the crisis, central banksstarted to implement non-standard monetary policy tools as well as short-term interest rates alsoknown as standard policy tools in order to help monetary policy transmission channels work effectively.The European Central Bank (ECB implemented non-standard monetary policies as in additionto the standard policy tools during this period. The non-standard monetary policies introducedby the ECB were different from those implemented by other central banks (Fed, Bank of England interms of implementation and results. Firstly, the policies of the ECB were not specific to one singlecountry. Secondly, the banking system was the major source of finance in Europe, which had an impacton the policies. In this regard, the ECB introduced a policy of enhanced credit support consistingof five main elements in order to maintain price stability over the medium term following the crisis.By 2010, public debt in some member countries of the European Union reached high levels, requiringthem to take additional measures. The Securities Markets Programme was introduced to that end.Initially focusing on the debt securities of Greece, Ireland, and Portugal, the Securities Markets Programmewas expanded in August 2011 to cover the debt securities of Italy and Spain. In addition, twoLong-term Refinancing Operations (LTROs were introduced. This article presents a descriptive analysisof the non-standard monetary policy tools introduced by the ECB following the financial crisis.However, the monetary policy implemented in the Euro zone is not specific to one single country, andevery country has a different financial structure, both of which limit the effectiveness of the policiesimplemented. The changing structure of the monetary policy implemented in the aftermath of the crisisaims to

  19. The Application and Its Consequences for Non-Standard Knowledge Work

    DEFF Research Database (Denmark)

    Nouwens, Midas; Klokmose, Clemens Nylandsted

    2018-01-01

    Application-centric computing dominates human-computer interactions, yet the concept of an application is ambiguous and the impact of its ubiquity underexplored. We unpack “the application” through the lens of non-standard knowledge work: freelance, self-employed, and fixed-term contract workers...... of applications, such as update processes, interface symmetries, application-document relationships, and operating system and hardware dependencies. By empirically and analytically focusing on “the application”, we reveal the implications of the current application-centric computing paradigm and discuss how...

  20. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    Science.gov (United States)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  1. Constraints on Non-Standard Contributions to the Charged-Current Interactions

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Matsumoto, Seiji

    1998-01-01

    The success of the quantum level predictions of the Standard Model on the $Z$ boson properties, on $\\mw$ and on $\\mt$, which makes use of the muon lifetime as an input, implies a stringent constraint on new physics contributions to the $V-A$ charged-current interactions among leptons. Observed unitarity of the CKM matrix elements then implies constraints on non-standard contributions to the lepton-quark charged-current interactions. By using the recent electroweak data as inputs, we find the 95% CL limits for the corresponding contact interactions: $\\Lambda_{CC,+}^{\\ell\\ell}>7.5$ TeV and the lepton-quark contact interactions.

  2. Ethical and legal issues related to the donation and use of nonstandard organs for transplants.

    Science.gov (United States)

    Cronin, Antonia J

    2013-12-01

    Transplantation of nonstandard or expanded criteria donor organs creates several potential ethical and legal problems in terms of consent and liability, and new challenges for research and service development; it highlights the need for a system of organ donation that responds to an evolving ethical landscape and incorporates scientific innovation to meet the needs of recipients, but which also safeguards the interests and autonomy of the donor. In this article, the use of deceased donor organs for transplants that fail to meet standard donor criteria and the legitimacy of interventions and research aimed at optimizing their successful donation are discussed. Copyright © 2013. Published by Elsevier Inc.

  3. The world price of jump and volatility risk

    NARCIS (Netherlands)

    Driessen, J.; Maenhout, P.

    2006-01-01

    Jump and volatility risk are important for understanding equity returns, option pricing and asset allocation. This paper is the first to study international integration of markets for jump and volatility risk, using data on index options for each of the three main global markets: US S&P 500 index

  4. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    Science.gov (United States)

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. © Georg Thieme Verlag KG Stuttgart · New York.

  5. A Jump-Diffusion Model with Stochastic Volatility and Durations

    DEFF Research Database (Denmark)

    Wei, Wei; Pelletier, Denis

    jumps in two ways: as exogenous sampling intervals, and through the interaction with volatility. We adopt a bivariate Ornstein-Ulenbeck process to model intraday volatility and conditional duration. We develop a MCMC algorithm for the inference on irregularly spaced multivariate processes with jumps...

  6. Dynamics of force and muscle stimulation in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, M.F.; van Zandwijk, J.P.

    1999-01-01

    PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken

  7. Role of the hamstrings in human vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1996-01-01

    In some human subjects performing maximum-height squat jumps, the EMG-pattern of semitendinosus is bi-phasic and that of biceps femoris is mono-phasic. The purpose of this study was to investigate the roles of biceps femoris and semitendinosus in squat jumping, and to explain why they are different.

  8. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  9. On Pathos Adjacency Cut Vertex Jump Graph of a Tree

    OpenAIRE

    Nagesh.H.M; R.Chandrasekhar

    2014-01-01

    In this paper the concept of pathos adjacency cut vertex jump graph PJC(T) of a tree T is introduced. We also present a characterization of graphs whose pathos adjacency cut vertex jump graphs are planar, outerplanar, minimally non-outerplanar, Eulerian and Hamiltonian.

  10. Teaching Jump Rope to Children with Visual Impairments

    Science.gov (United States)

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  11. The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance.

    Science.gov (United States)

    Haynes, Tom; Bishop, Chris; Antrobus, Mark; Brazier, Jon

    2018-03-27

    This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app's ability to measure the reactive strength index (RSI). Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation (CV) and BlandAltman plots. Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance.

  12. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height

    Directory of Open Access Journals (Sweden)

    Mandic Radivoj

    2016-09-01

    Full Text Available The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  13. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height.

    Science.gov (United States)

    Mandic, Radivoj; Knezevic, Olivera M; Mirkov, Dragan M; Jaric, Slobodan

    2016-09-01

    The aim of the present study was to explore the control strategy of maximum countermovement jumps regarding the preferred countermovement depth preceding the concentric jump phase. Elite basketball players and physically active non-athletes were tested on the jumps performed with and without an arm swing, while the countermovement depth was varied within the interval of almost 30 cm around its preferred value. The results consistently revealed 5.1-11.2 cm smaller countermovement depth than the optimum one, but the same difference was more prominent in non-athletes. In addition, although the same differences revealed a marked effect on the recorded force and power output, they reduced jump height for only 0.1-1.2 cm. Therefore, the studied control strategy may not be based solely on the countermovement depth that maximizes jump height. In addition, the comparison of the two groups does not support the concept of a dual-task strategy based on the trade-off between maximizing jump height and minimizing the jumping quickness that should be more prominent in the athletes that routinely need to jump quickly. Further research could explore whether the observed phenomenon is based on other optimization principles, such as the minimization of effort and energy expenditure. Nevertheless, future routine testing procedures should take into account that the control strategy of maximum countermovement jumps is not fully based on maximizing the jump height, while the countermovement depth markedly confound the relationship between the jump height and the assessed force and power output of leg muscles.

  14. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2013-06-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  15. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2015-07-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  16. Approaching stationarity: competition between long jumps and long waiting times

    International Nuclear Information System (INIS)

    Dybiec, Bartłomiej

    2010-01-01

    Within the continuous-time random walk (CTRW) scenarios, properties of the overall motion are determined by the waiting time and the jump length distributions. In the decoupled case, with power-law distributed waiting times and jump lengths, the CTRW scenario is asymptotically described by the double (space and time) fractional Fokker–Planck equation. Properties of a system described by such an equation are determined by the subdiffusion parameter and the jump length exponent. Nevertheless, the stationary state is determined solely by the jump length distribution and the potential. The waiting time distribution determines only the rate of convergence to the stationary state. Here, we inspect the competition between long waiting times and long jumps and how this competition is reflected in the way in which a stationary state is reached. In particular, we show that the distance between a time-dependent and a stationary solution changes in time as a double power law

  17. The hydraulic jump and ripples in liquid helium

    International Nuclear Information System (INIS)

    Rolley, E.; Guthmann, C.; Pettersen, M.S.

    2007-01-01

    We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the critical one. The jump radius R j is compared with various models. In our parameter range, we find that the jump can be treated as a shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation of the wave amplitude depends much more strongly on temperature than we calculate

  18. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamics and stability of directional jumps in the desert locust

    Directory of Open Access Journals (Sweden)

    Omer Gvirsman

    2016-09-01

    Full Text Available Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications.

  20. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  1. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  2. Measurement of L3 subshell absorption jump ratios and jump factors for high Z elements using EDXRF technique

    International Nuclear Information System (INIS)

    Kaçal, M.R.

    2014-01-01

    Energy dispersive X-ray fluorescence technique (EDXRF) has been employed for measuring L 3 -subshell absorption jump ratios, r L 3 and jump factors, J L 3 for high Z elements. Jump factors and jump ratios for these elements have been determined by measuring L 3 subshell fluorescence parameters such as L 3 subshell X-ray production cross section σ L 3 , L 3 subshell fluorescence yield, ω L 3 , total L 3 subshell and higher subshells photoionization cross section σ L T . Measurements were performed using a Cd-109 radioactive point source and an Si(Li) detector in direct excitation experimental geometry. Measured values for jump factors and jump ratios have been compared with theoretically calculated and other experimental values. - Highlights: • This paper regards L 3 subshell absorption jump ratios and jump factors using the EDXRF method. • These parameters were measured using a new method. • This method is more useful than other methods which require much effort. • Results are in good agreement with theoretical and experimental values

  3. STABILITY OF LINEAR SYSTEMS WITH MARKOVIAN JUMPS

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Mayta Guillermo

    2016-12-01

    Full Text Available In this work we will analyze the stability of linear systems governed by a Markov chain, this family is known in the specialized literature as linear systems with Markov jumps or by its acronyms in English MJLS as it is denoted in [1]. Linear systems governed by a Markov chain are dynamic systems with abrupt changes. We give some denitions of stability for the MJLS system, where these types of stability are equivalent as long as the state space of the Markov chain is nite. Finally we present a theorem that characterizes the stochastic stability by means of an equation of the Lyapunov type. The result is a generalization of a theorem in classical theory.

  4. Seismic tomography with the reversible jump algorithm

    Science.gov (United States)

    Bodin, Thomas; Sambridge, Malcolm

    2009-09-01

    The reversible jump algorithm is a statistical method for Bayesian inference with a variable number of unknowns. Here, we apply this method to the seismic tomography problem. The approach lets us consider the issue of model parametrization (i.e. the way of discretizing the velocity field) as part of the inversion process. The model is parametrized using Voronoi cells with mobile geometry and number. The size, position and shape of the cells defining the velocity model are directly determined by the data. The inverse problem is tackled within a Bayesian framework and explicit regularization of model parameters is not required. The mobile position and number of cells means that global damping procedures, controlled by an optimal regularization parameter, are avoided. Many velocity models with variable numbers of cells are generated via a transdimensional Markov chain and information is extracted from the ensemble as a whole. As an aid to interpretation we visualize the expected earth model that is obtained via Monte Carlo integration in a straightforward manner. The procedure is particularly adept at imaging rapid changes or discontinuities in wave speed. While each velocity model in the final ensemble consists of many discontinuities at cell boundaries, these are smoothed out in the averaged ensemble solution while those required by the data are reinforced. The ensemble of models can also be used to produce uncertainty estimates and experiments with synthetic data suggest that they represent actual uncertainty surprisingly well. We use the fast marching method in order to iteratively update the ray geometry and account for the non-linearity of the problem. The method is tested here with synthetic data in a 2-D application and compared with a subspace method that is a more standard matrix-based inversion scheme. Preliminary results illustrate the advantages of the reversible jump algorithm. A real data example is also shown where a tomographic image of Rayleigh wave

  5. Vacuum oscillation solution to the solar neutrino problem in standard and nonstandard pictures

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Rossi, A.

    1995-01-01

    The neutrino long wavelength (just-so) oscillation is reexamined as a solution to the solar neutrino problem. We consider the just-so scenario in various cases: in the framework of the solar models with a relaxed prediction of the boron neutrino flux, as well as in the presence of the nonstandard weak range interactions between neutrino and matter constituents. We show that the fit of the experimental data in the just-so scenario is not very good for any reasonable value of the 8 B neutrino flux, but it substantially improves if the nonstandard τ-neutrino--electron interaction is included. These new interactions could also remove the conflict of the just-so picture with the shape of the SN 1987A neutrino spectrum. Special attention is devoted to the potential of the future real-time solar neutrino detectors such as Super-Kamiokande, SNO, and BOREXINO, which could provide the model-independent tests for the just-so scenario. In particular, these imply a specific deformation of the original solar neutrino energy spectra and time variation of the intermediate energy monochromatic neutrino ( 7 Be and pep) signals

  6. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    Science.gov (United States)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  7. Unemployment, Nonstandard Employment, and Fertility: Insights From Japan's "Lost 20 Years".

    Science.gov (United States)

    Raymo, James M; Shibata, Akihisa

    2017-12-01

    In this study, we examine relationships of unemployment and nonstandard employment with fertility. We focus on Japan, a country characterized by a prolonged economic downturn, significant increases in both unemployment and nonstandard employment, a strong link between marriage and childbearing, and pronounced gender differences in economic roles and opportunities. Analyses of retrospective employment, marriage, and fertility data for the period 1990-2006 indicate that changing employment circumstances for men are associated with lower levels of marriage, while changes in women's employment are associated with higher levels of marital fertility. The latter association outweighs the former, and results of counterfactual standardization analyses indicate that Japan's total fertility rate would have been 10 % to 20 % lower than the observed rate after 1995 if aggregate- and individual-level employment conditions had remained unchanged from the 1980s. We discuss the implications of these results in light of ongoing policy efforts to promote family formation and research on temporal and regional variation in men's and women's roles within the family.

  8. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  9. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  10. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  11. Stability, performance and sensitivity analysis of I.I.D. jump linear systems

    Science.gov (United States)

    Chávez Fuentes, Jorge R.; González, Oscar R.; Gray, W. Steven

    2018-06-01

    This paper presents a symmetric Kronecker product analysis of independent and identically distributed jump linear systems to develop new, lower dimensional equations for the stability and performance analysis of this type of systems than what is currently available. In addition, new closed form expressions characterising multi-parameter relative sensitivity functions for performance metrics are introduced. The analysis technique is illustrated with a distributed fault-tolerant flight control example where the communication links are allowed to fail randomly.

  12. Hypoglossal-facial-jump-anastomosis without an interposition nerve graft.

    Science.gov (United States)

    Beutner, Dirk; Luers, Jan C; Grosheva, Maria

    2013-10-01

    The hypoglossal-facial-anastomosis is the most often applied procedure for the reanimation of a long lasting peripheral facial nerve paralysis. The use of an interposition graft and its end-to-side anastomosis to the hypoglossal nerve allows the preservation of the tongue function and also requires two anastomosis sites and a free second donor nerve. We describe the modified technique of the hypoglossal-facial-jump-anastomosis without an interposition and present the first results. Retrospective case study. We performed the facial nerve reconstruction in five patients. The indication for the surgery was a long-standing facial paralysis with preserved portion distal to geniculate ganglion, absent voluntary activity in the needle facial electromyography, and an intact bilateral hypoglossal nerve. Following mastoidectomy, the facial nerve was mobilized in the fallopian canal down to its bifurcation in the parotid gland and cut in its tympanic portion distal to the lesion. Then, a tensionless end-to-side suture to the hypoglossal nerve was performed. The facial function was monitored up to 16 months postoperatively. The reconstruction technique succeeded in all patients: The facial function improved within the average time period of 10 months to the House-Brackmann score 3. This modified technique of the hypoglossal-facial reanimation is a valid method with good clinical results, especially in cases of a preserved intramastoidal facial nerve. Level 4. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Boolean-Like and Frequentistic Nonstandard Semantics for First-Order Predicate Calculus without Functions

    Czech Academy of Sciences Publication Activity Database

    Kramosil, Ivan

    2001-01-01

    Roč. 5, č. 1 (2001), s. 45-57 ISSN 1432-7643 R&D Projects: GA AV ČR IAA1030803 Institutional research plan: AV0Z1030915 Keywords : first-order predicate calculus * standard semantics * Boolean-like semantics * frequentistic semantics * completness theorems Subject RIV: BA - General Mathematics

  14. "It's Not My Problem": The Growth of Non-Standard Work and Its Impact on Vocational Education and Training in Australia.

    Science.gov (United States)

    Hall, Richard; Bretherton, Tanya; Buchanan, John

    A study investigated implications of the increase in non-standard forms of employment (casual work, working through labor-hire companies, and work that is outsourced) for vocational education and training (VET) in Australia. Data sources were published statistics on growth of non-standard work; research on reasons for the growth and the business…

  15. De invloed van afwijkende werktijden op de werkthuis situatie [The influence of working at non-standard working hours on the workhome situation

    NARCIS (Netherlands)

    Hooff, L.M. van; Bakhuys Roozeboom, M.M.C.; Vroome, E.M.M. de; Smulders, P.G.W.

    2010-01-01

    The present study was designed to map the causal relationships between nonstandard working hours and work-home interference (WHI) and home-work interference (HWI). To this purpose, a longitudinal full-panel design was employed. Using such a design, we examined both the causal effects of non-standard

  16. A COMPARISON OF PAIRS FIGURE SKATERS IN REPEATED JUMPS

    Directory of Open Access Journals (Sweden)

    William A. Sands

    2012-03-01

    Full Text Available Trends in pairs figure skating have shown that increasingly difficult jumps have become an essential aspect of high-level performance, especially in the latter part of a competitive program. We compared a repeated jump power index in a 60 s repeated jump test to determine the relationship of repeated jump test to competitive rank and to measure 2D hip, knee, and ankle angles and angular velocities at 0, 20, 40, and 60 s. Eighteen National Team Pairs Figure Skaters performed a 60 s repeated jump test on a large switch-mat with timing of flight and ground durations and digital video recording. Each 60-s period was divided into 6, 10-s intervals, with power indexes (W/kg calculated for each 10-s interval. Power index by 10-s interval repeated measures ANOVAs (RMANOVA showed that males exceeded females at all intervals, and the highest power index interval was during 10 to 20 s for both sexes. RMANOVAs of angles and angular velocities showed main effects for time only. Power index and jumping techniques among figure skaters showed rapid and steady declines over the test duration. Power index can predict approximately 50% of competitive rank variance, and sex differences in jumping technique were rare

  17. Validity of a jump training apparatus using Wii Balance Board.

    Science.gov (United States)

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Propulsion efficiency and imposed flow fields of a copepod jump.

    Science.gov (United States)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  19. Numerical simulations of katabatic jumps in coats land, Antartica

    Science.gov (United States)

    Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.

    A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.

  20. Temperature Jump Pyrolysis Studies of RP 2 Fuel

    Science.gov (United States)

    2017-01-09

    Briefing Charts 3. DATES COVERED (From - To) 15 December 2016 – 11 January 2017 4. TITLE AND SUBTITLE Temperature Jump Pyrolysis Studies of RP-2 Fuel...Rev. 8- 98) Prescribed by ANSI Std. 239.18 1 TEMPERATURE JUMP PYROLYSIS STUDIES OF RP-2 FUEL Owen Pryor1, Steven D. Chambreau2, Ghanshyam L...17026 7 Temperature Jump Pyrolysis at AFRL Edwards Rapid heating of a metal filament at a rate of 600 – 800 K/s, and the set temperature is held for

  1. Effects of kettlebell training on postural coordination and jump performance

    DEFF Research Database (Denmark)

    Jay, Kenneth; Jakobsen, Markus Due; Sundstrup, Emil

    2013-01-01

    ABSTRACT: The aim of this study was to investigate the effectiveness of a worksite intervention using kettlebell training to improve postural reactions to perturbation and jump performance.This single-blind randomized controlled trial involved 40 adults (n=40) from occupations with a high....... The outcome measures were postural reactions to sudden perturbation and maximal countermovement jump height.Compared to the control group, the training group significant decreased stopping time following perturbation (-109ms, 95% CI [-196:-21]). Jump height increased significantly in the training group (1.5cm...

  2. Diarylethene microcrystals make directional jumps upon ultraviolet irradiation

    International Nuclear Information System (INIS)

    Colombier, I.; Spagnoli, S.; Corval, A.; Baldeck, P. L.; Giraud, M.; Leaustic, A.; Yu, P.; Irie, M.

    2007-01-01

    Microcrystals of a diarylethene {1,2-bis[5 ' -methyl-2 ' -(2 '' -pyridyl)thiazolyl]perfluorocyclo-pentene } undergo jumps upon photoirradiation. These photochromic crystals present molecular structural changes upon irradiation with ultraviolet light because of reversible photocyclization reactions. When the energy absorbed by crystals reaches about 10 μJ, the uniaxial stress induced in the crystal lattice relaxes through directional jumps. If one prevents crystals from jumping, then parallel, equidistant cracks appear on crystal surfaces. These photomechanical effects could result from a Grinfeld surface instability

  3. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    Science.gov (United States)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  4. The Perpetual American Put Option for Jump-Diffusions

    OpenAIRE

    Aase, Knut K.

    2010-01-01

    -This is the author's version of the article"The Perpetual American Put Option for Jump-Diffusions" Energy Systems pp 493-507. We solve a specific optimal stopping problem with an infinite time horizon, when the state variable follows a jump-diffusion. The novelty of the paper is related to the inclusion of a jump component in this stochastic process. Under certain conditions, our solution can be interpreted as the price of an American perpetual put option. We characterize the continuation...

  5. Mechanism design and optimization of a bionic kangaroo jumping robot

    Science.gov (United States)

    Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.

    2018-03-01

    Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.

  6. Jumps in the curve of creep of the stainless steel

    International Nuclear Information System (INIS)

    Silveira, T.L.; Monteiro, S.N.

    The discontinuous flow observed in creep for several stainless steels at certain streels conditions in the interval of temperatures from 550 to 800 0 C has been investigated. This phenomenon appears as repetitive jumps with strain and stress increments that could be evaluated and related to the tests variables. The stress increment increases, consistently, with the stress level at the jump. This Δo versus sigma relation is due to strain aging effects and is a consequence of the variation of the stain rate during the deformation band propagation which causes the jump [pt

  7. Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion

    DEFF Research Database (Denmark)

    Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.

    1997-01-01

    We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....

  8. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    International Nuclear Information System (INIS)

    Kim, Seyoung

    2017-01-01

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  9. Change in Counter movement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seyoung [Korea Institute of Machinery and Materials(KIMM), Daejeon (Korea, Republic of)

    2017-04-15

    In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the counter movement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the counter movement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the counter movement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

  10. Relationship between non-standard work arrangements and work-related accident absence in Belgium.

    Science.gov (United States)

    Alali, Hanan; Braeckman, Lutgart; Van Hecke, Tanja; De Clercq, Bart; Janssens, Heidi; Wahab, Magd Abdel

    2017-03-28

    The main objective of this study is to examine the relationship between indicators of non-standard work arrangements, including precarious contract, long working hours, multiple jobs, shift work, and work-related accident absence, using a representative Belgian sample and considering several socio-demographic and work characteristics. This study was based on the data of the fifth European Working Conditions Survey (EWCS). For the analysis, the sample was restricted to 3343 respondents from Belgium who were all employed workers. The associations between non-standard work arrangements and work-related accident absence were studied with multivariate logistic regression modeling techniques while adjusting for several confounders. During the last 12 months, about 11.7% of workers were absent from work because of work-related accident. A multivariate regression model showed an increased injury risk for those performing shift work (OR 1.546, 95% CI 1.074-2.224). The relationship between contract type and occupational injuries was not significant (OR 1.163, 95% CI 0.739-1.831). Furthermore, no statistically significant differences were observed for those performing long working hours (OR 1.217, 95% CI 0.638-2.321) and those performing multiple jobs (OR 1.361, 95% CI 0.827-2.240) in relation to work-related accident absence. Those who rated their health as bad, low educated workers, workers from the construction sector, and those exposed to biomechanical exposure (BM) were more frequent victims of work-related accident absence. No significant gender difference was observed. Indicators of non-standard work arrangements under this study, except shift work, were not significantly associated with work-related accident absence. To reduce the burden of occupational injuries, not only risk reduction strategies and interventions are needed but also policy efforts are to be undertaken to limit shift work. In general, preventive measures and more training on the job are needed to

  11. Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women.

    Science.gov (United States)

    Wright, Glenn A; Pustina, Andrew A; Mikat, Richard P; Kernozek, Thomas W

    2012-03-01

    The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.

  12. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    International Nuclear Information System (INIS)

    Zhang Hong; Li Guo-Hua

    2016-01-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier–Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. (paper)

  13. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    Science.gov (United States)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  14. Jumping spark evaluation of α-radiograms taken on strippable LR-115 film

    International Nuclear Information System (INIS)

    Somogyi, G.; Hunyadi, I.; Varga, Zs.

    1978-01-01

    Jumping spark counting was used for the automatic measurement of α-ray tracks on Kodak Pathe LR-115 type special cellulose nitrate films. The effect of temperature and interruptions on the etching rate was observed during the etching of the α track detectors. The recommended parameters for the etching are the following: 10% NaOH solution, 60 +- 0.1 deg C, 1.5 h etching time, 20 rotations/min. The final thickness is 6-7 μm. The counting efficiency of the jumping spark evaluation in the function of the track density and the α energy was carefully studied. The angular distribution of the α particles from the Al(p, α) 24 Mg reaction was determined. This method can be effectively used for the measurement of environmental α activity as for 222 Rn release from 226 Ra. (V.N.)

  15. [Effects of Reactive Jump Training in Handball Players Regarding Jump Height and Power Development in the Triceps Surae Muscle].

    Science.gov (United States)

    Rensing, N; Westermann, A; Möller, D; von Piekartz, H

    2015-12-01

    Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in

  16. Students as Non-Standard Employees. Exploring Work Related Issues in Students’ Perceptions on their Term-time Job

    DEFF Research Database (Denmark)

    Winkler, Ingo

    2008-01-01

    and training opportunities, students’ relations to other employees, and social integration. By adopting a qualitative design, I was able to emphasize the subjective perspective of students describing their very own experiences as flexible workers. The study revealed various perceptions of students working...... as flexible employees and related this picture to current empirical and theoretical research in the field of non-standard employment....

  17. Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method)

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf......Detection of Dew-Point by substantial Raman Band Frequency Jumps (A new Method). See poster at http://www.kemi.dtu.dk/~ajo/rolf/jumps.pdf...

  18. Dividend Maximization when Cash Reserves Follow a Jump-diffusion Process

    Institute of Scientific and Technical Information of China (English)

    LI LI-LI; FENG JIN-GHAI; SONG LI-XIN

    2009-01-01

    This paper deals with the dividend optimization problem for an insur-ance company, whose surplus follows a jump-diffusion process. The objective of the company is to maximize the expected total discounted dividends paid out until the time of ruin. Under concavity assumption on the optimal value function, the paper states some general properties and, in particular, smoothness results on the optimal value function, whose analysis mainly relies on viscosity solutions of the associated Hamilton-Jacobi-Bellman (HJB) equations. Based on these properties, the explicit expression of the optimal value function is obtained. And some numerical calculations are presented as the application of the results.

  19. Optimal Control for Insurers with a Jump-diffusion Risk Pro cess

    Institute of Scientific and Technical Information of China (English)

    WU Kun; XIAO Jian-wu; LUO Rong-hua

    2015-01-01

    In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion pro-cess perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value func-tion is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.

  20. Quantum jumps are more quantum than quantum diffusion

    International Nuclear Information System (INIS)

    Daryanoosh, Shakib; M Wiseman, Howard

    2014-01-01

    It was recently argued (Wiseman and Gambetta 2012 Phys. Rev. Lett. 108 220402) that the stochastic dynamics (jumps or diffusion) of an open quantum system are not inherent to the system, but rather depend on the existence and nature of a distant detector. The proposed experimental tests involved homodyne detection, giving rise to quantum diffusion, and required efficiencies η of well over 50%. Here we prove that this requirement (η>0.5) is universal for diffusive-type detection, even if the system is coupled to multiple baths. However, this no-go theorem does not apply to quantum jumps, and we propose a test involving a qubit with jump-type detectors, with a threshold efficiency of only 37%. That is, quantum jumps are ‘more quantum’, and open the way to practical experimental tests. Our scheme involves a novel sort of adaptive monitoring scheme on a system coupled to two baths. (paper)

  1. A quasi-static treatment of multiple phase jumps

    International Nuclear Information System (INIS)

    Englman, R; Vertesi, T

    2005-01-01

    A quasi-static, WKB-type treatment accounts well for the surprising phase jumps that are odd multiples of π (1 + 2n)π, found as a molecular system journeys adiabatically in a configuration coordinate plane that contains several points of degeneracies. We show that the number n in the phase jump is an integer close to |n'| that appears in the expression for the complex wavefunction amplitude valid (approximately) for times close to when the phase jump occurs: -δT + 2πθ+πn'sinδT -i[1-πn'cosδT](δT is a shifted and rescaled trajectory-time parameter and θ is a numerical fraction (<1) which depends on the adiabaticity of the motion.) The central quantity n' is local, i.e., depends on the values of the parameters in the Hamiltonian only at the beginning of the trajectory and at the instant of the phase jump

  2. Trading price jump clusters in foreign exchange markets

    Czech Academy of Sciences Publication Activity Database

    Novotný, Jan; Petrov, D.; Urga, G.

    2015-01-01

    Roč. 24, June (2015), s. 66-92 ISSN 1386-4181 Institutional support: PRVOUK-P23 Keywords : price jumps * foreign exchange markets * trading Subject RIV: AH - Economics Impact factor: 1.726, year: 2015

  3. The fluid dynamics of swimming by jumping in copepods

    DEFF Research Database (Denmark)

    Jiang, Houshuo; Kiørboe, Thomas

    2011-01-01

    Copepods swim either continuously by vibrating their feeding appendages or erratically by repeatedly beating their swimming legs resulting in a series of small jumps. The two swimming modes generate different hydrodynamic disturbances and therefore expose the swimmers differently to rheotactic...... limited and temporally ephemeral owing to jump-impulsiveness and viscous decay. In contrast, continuous steady swimming generates two well-extended long-lasting momentum jets both in front of and behind the swimmer, as suggested by the well-known steady stresslet model. Based on the observed jump-swimming...... kinematics of a small copepod Oithona davisae, we further showed that jump-swimming produces a hydrodynamic disturbance with much smaller spatial extension and shorter temporal duration than that produced by a same-size copepod cruising steadily at the same average translating velocity. Hence, small copepods...

  4. Hiding information in open auctions with jump bids

    Czech Academy of Sciences Publication Activity Database

    Ettinger, D.; Michelucci, Fabio

    2016-01-01

    Roč. 126, č. 594 (2016), s. 1484-1502 ISSN 0013-0133 Institutional support: RVO:67985998 Keywords : hiding information * open auctions * jump bids Subject RIV: AH - Economics Impact factor: 2.608, year: 2016

  5. METRIC TESTS CHARACTERISTIC FOR ESTIMATING JUMPING FOR VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Toplica Stojanović

    2008-08-01

    Full Text Available With goal to establish metric tests characteristics for estimating jumping for volleyball players, it was organized a pilot research on pattern of 23 volleyball players from cadet team and 23 students from high-school. For needs of this research four tests are valid for estimation, jump in block with left and right leg and jump in spike with left and right leg. Each test has been taken three times, so that we could with test-re test method determine their reliability, and with factor analysis their validity. Data were processed by multivariate analysis (item analysis, factor analysis from statistical package „Statistica 6.0 for windows“. On the results of research and discussion we can say that the tests had high coefficient of reliability, as well as factor validity, and these tests can be used to estimate jumping for volleyball players.

  6. Hiding information in open auctions with jump bids

    Czech Academy of Sciences Publication Activity Database

    Ettinger, D.; Michelucci, Fabio

    2016-01-01

    Roč. 126, č. 594 (2016), s. 1484-1502 ISSN 0013-0133 Institutional support: PRVOUK-P23 Keywords : hiding information * open auctions * jump bids Subject RIV: AH - Economics Impact factor: 2.608, year: 2016

  7. Impulsive evolution inclusions with infinite delay and multivalued jumps

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2012-08-01

    Full Text Available In this paper we prove the existence of a mild solution for a class of impulsive semilinear evolution differential inclusions with infinite delay and multivalued jumps in a Banach space.

  8. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    Directory of Open Access Journals (Sweden)

    Yu-Feng Li

    2014-11-01

    Full Text Available We discuss reactor antineutrino oscillations with non-standard interactions (NSIs at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters.

  9. The possibility to observe the non-standard interaction by the Hyperkamiokande atmospheric neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fukasawa, Shinya; Yasuda, Osamu, E-mail: yasuda@phys.se.tmu.ac.jp

    2017-01-15

    It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8σ, while the one from the global analysis can be examined at 5.0σ (1.4σ) for the normal (inverted) mass hierarchy.

  10. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  11. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    International Nuclear Information System (INIS)

    Artymowski, Michał; Lewicki, Marek; Wells, James D.

    2017-01-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  12. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  13. Non-Standard Hierarchies of the Runnings of the Spectral Index in Inflation

    Directory of Open Access Journals (Sweden)

    Chris Longden

    2017-03-01

    Full Text Available Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed-of-light models and canonical quantum gravity effects and their implications for runnings of the spectral index.

  14. Canonical integration and analysis of periodic maps using non-standard analysis and life methods

    Energy Technology Data Exchange (ETDEWEB)

    Forest, E.; Berz, M.

    1988-06-01

    We describe a method and a way of thinking which is ideally suited for the study of systems represented by canonical integrators. Starting with the continuous description provided by the Hamiltonians, we replace it by a succession of preferably canonical maps. The power series representation of these maps can be extracted with a computer implementation of the tools of Non-Standard Analysis and analyzed by the same tools. For a nearly integrable system, we can define a Floquet ring in a way consistent with our needs. Using the finite time maps, the Floquet ring is defined only at the locations s/sub i/ where one perturbs or observes the phase space. At most the total number of locations is equal to the total number of steps of our integrator. We can also produce pseudo-Hamiltonians which describe the motion induced by these maps. 15 refs., 1 fig.

  15. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewicki, Marek [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Wells, James D. [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor MI 48109 (United States); Deutsches Elektronen-Synchrotron DESY, Theory Group,D-22603 Hamburg (Germany)

    2017-03-13

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  16. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator

    International Nuclear Information System (INIS)

    Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2009-01-01

    In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.

  17. Spinal column damage from water ski jumping

    International Nuclear Information System (INIS)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  18. Spinal column damage from water ski jumping.

    Science.gov (United States)

    Horne, J; Cockshott, W P; Shannon, H S

    1987-01-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children.

  19. Ethics in radiology: wait lists queue jumping.

    Science.gov (United States)

    Cunningham, Natalie; Reid, Lynette; MacSwain, Sarah; Clarke, James R

    2013-08-01

    Education in ethics is a requirement for all Royal College residency training programs as laid out in the General Standards of Accreditation for residency programs in Canada. The ethical challenges that face radiologists in clinical practice are often different from those that face other physicians, because the nature of the physician-patient interaction is unlike that of many other specialties. Ethics education for radiologists and radiology residents will benefit from the development of teaching materials and resources that focus on the issues that are specific to the specialty. This article is intended to serve as an educational resource for radiology training programs to facilitate teaching ethics to residents and also as a continuing medical education resource for practicing radiologists. In an environment of limited health care resources, radiologists are frequently asked to expedite imaging studies for patients and, in some respects, act as gatekeepers for specialty care. The issues of wait lists, queue jumping, and balancing the needs of individuals and society are explored from the perspective of a radiologist. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Spinal column damage from water ski jumping

    Energy Technology Data Exchange (ETDEWEB)

    Horne, J.; Cockshott, W.P.; Shannon, H.S.

    1987-11-01

    We conducted a radiographic survey of 117 competitive water ski jumpers to determine whether this sport can cause spinal column damage and, if so, whether damage is more likely to occur in those who participate during the period of spinal growth and development (age 15 years or younger). We found a high prevalence of two types of abnormality: Scheuermann (adolescent) spondylodystrophy (present in 26% of the skiers) and vertebral body wedging (present in 34%). The prevalence of adolescent spondylodystrophy increased with the number of years of participation in the sport before age 15 years or less. Of those in this age group who had skied for 5 years or more, 57 showed adolescent spondylodystrophy; of those in the same age group who had skied for 9 years or more, 100% were affected. Wedged vertebrae increased as time of participation increased, regardless of the age at which exposure began. We conclude that competitive water ski jumping may damage the spinal column and that consideration should be given to regulating this sport, particularly for children. (orig.)

  1. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    OpenAIRE

    I Gusti Ngurah Agung Cahya Prananta; N. Adiputra; I P G Adiatmika

    2015-01-01

    The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on...

  2. Transition-energy crossing with a γt-jump

    International Nuclear Information System (INIS)

    Wei, Jie; Peggs, S.

    1994-01-01

    Expressions for the minimum size and speed of a transition-energy (γ t -) jump needed to diminish the chromatic non-linear effect, the self-field mismatch, and the microwave instabilities in the Relativistic Heavy Ion Collider (RHIC) are obtained. A γ t -jump of 0.8 units is needed to be performed within 60 ms in order to achieve a ''clean'' transition crossing

  3. Local uncontrollability for affine control systems with jumps

    Science.gov (United States)

    Treanţă, Savin

    2017-09-01

    This paper investigates affine control systems with jumps for which the ideal If(g1, …, gm) generated by the drift vector field f in the Lie algebra L(f, g1, …, gm) can be imbedded as a kernel of a linear first-order partial differential equation. It will lead us to uncontrollable affine control systems with jumps for which the corresponding reachable sets are included in explicitly described differentiable manifolds.

  4. Seismic interpretation of the triangle zone at Jumping Pound, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Slotboom, R. T. [Amerada Hess Canada Ltd., Calgary, AB (Canada); Lawton, D. C.; Spratt, D. A. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1996-06-01

    The triangle zone at Jumping Point, Alberta was characterized using seismic survey data as a NW-SE-trending antiformal stack of thrust sheets involving Cretaceous rocks that have been wedged into the foreland between two detachments. Three major thrust sheets of Lower and Upper Cretaceous strata have been stacked to form the main extremity of the wedge. The structure is tightly folded at Jumping Point, and broadens northwest along the strike. 13 refs., 8 figs.

  5. Who is working while sick? Nonstandard employment and its association with absenteeism and presenteeism in South Korea.

    Science.gov (United States)

    Kim, Ja Young; Lee, Joohee; Muntaner, Carles; Kim, Seung-Sup

    2016-10-01

    This study sought to examine whether nonstandard employment is associated with presenteeism as well as absenteeism among full-time employees in South Korea. We analyzed a cross-sectional survey of 26,611 full-time employees from the third wave of the Korean Working Conditions Survey in 2011. Experience of absenteeism and presenteeism during the past 12 months was assessed through self-reports. Employment condition was classified into six categories based on two contract types (parent firm and subcontract) and three contract durations [permanent (≥1 year, no fixed term), long term (≥1 year, fixed term), and short term (absenteeism and presenteeism after adjusting for covariates. Compared to parent firm-permanent employment, which has been often regarded as a standard employment, absenteeism was not associated or negatively associated with all nonstandard employment conditions except parent firm-long term employment (OR 1.88; 95 % CI 1.57, 2.26). However, presenteeism was positively associated with parent firm-long term (OR 1.64; 95 % CI 1.42, 1.91), subcontract-long term (OR 1.61; 95 % CI 1.12, 2.32), and subcontract-short term (OR 1.26; 95 % CI 1.02, 1.56) employment. Our results found that most nonstandard employment may increase risk of presenteeism, but not absenteeism. These results suggest that previous findings about the protective effects of nonstandard employment on absenteeism may be explained by nonstandard workers being forced to work when sick.

  6. Kinematic structure at the early flight position in ski jumping.

    Science.gov (United States)

    Vodičar, Janez; Coh, Milan; Jošt, Bojan

    2012-12-01

    The purpose of our research was to establish the variability of correlation between the length of the jumps and selected multi-item kinematic variables (n=9) in the early flight phase technique of ski jumping. This study was conducted on a sample of elite Slovenian ski jumpers (N=29) who participated in the experiment on a jumping hill in Hinterzarten, Germany (HS95m) on the 20(th) of August, 2008. The highest and most significant correlations (p=0.01) with the length of the ski jump were found in the multi-item variable height of flying, which was also expressed with the highest level of stability of the explained total variance (TV) on the first factor (TV=69.13%). The most important characteristic of the aerodynamic aspect of early flight was the variable angle between the body chord and the horizontal axis with significantly high correlations (pjump. Only two more variables, the angle between the upper body and the horizontal plane (TV=53.69%), and the angle between left ski and left leg (TV=50.13%), had an explained common variance on the first factor greater than 50% of total variance. The results indicated that some kinematic parameters of ski jumping early flight technique were more important for success considering the length of the jump.

  7. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  8. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  9. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  10. Knee movement patterns of injured and uninjured adolescent basketball players when landing from a jump: a case-control study.

    Science.gov (United States)

    Louw, Quinette; Grimmer, Karen; Vaughan, Christopher

    2006-03-07

    A common knee injury mechanism sustained during basketball is landing badly from a jump. Landing is a complex task and requires good coordination, dynamic muscle control and flexibility. For adolescents whose coordination and motor control has not fully matured, landing badly from a jump can present a significant risk for injury. There is currently limited biomechanical information regarding the lower limb kinetics of adolescents when jumping, specifically regarding jump kinematics comparing injured with uninjured adolescents. This study reports on an investigation of biomechanical differences in landing patterns of uninjured and injured adolescent basketball players. A matched case-control study design was employed. Twenty-two basketball players aged 14-16 years participated in the study: eleven previously knee-injured and eleven uninjured players matched with cases for age, gender, weight, height and years of play, and playing for the same club. Six high-speed, three-dimensional Vicon 370 cameras (120 Hz), Vicon biomechanical software and SAS Version 8 software were employed to analyse landing patterns when subjects performed a "jump shot". Linear correlations determined functional relationships between the biomechanical performance of lower limb joints, and paired t-tests determined differences between the normalised peak biomechanical parameters. The average peak vertical ground reaction forces between the cases and controls were similar. The average peak ground reaction forces between the cases and controls were moderately correlated (r = -0.47). The control (uninjured) players had significantly greater hip and knee flexion angles and significantly greater eccentric activity on landing than the uninjured cases (p jump, at different ages and physical developmental stages, would assist clinicians and coaches to identify players with inappropriate knee performance comparable to their age or developmental stage.

  11. Diving, Jumping and Drinking: instabilities during water entry and exit

    Science.gov (United States)

    Jung, Sunghwan

    2017-11-01

    All organisms interact with fluids in one way or another, and some have presumably adapted their behaviors or features in response to fluid-mechanical forces. Particularly, fluid forces are of great importance when organisms or their body parts move in and out of water. In this talk, I will discuss three problems in which fluid mechanics principles affect form and function of animals. The first problem is how several seabirds (e.g. Gannets and Boobies) dive into water at up to 24 m/s without any injuries. This study examines the effects of their beak shape and dense feathers during water entry to reduce or spread the impact force on the body. The second problem is how animals jump out of water, from plankton to whales. Some aquatic animals generate enough force to exit the water surface as an effective method of capturing prey or escaping from predators. Finally, I will discuss about lapping animals (e.g. dog and cat) as a combined water entry and exit. During the tongue-lapping, associated fluid forces and pinch-off instability will be discussed.

  12. Autonomous stair-climbing with miniature jumping robots.

    Science.gov (United States)

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  13. Backward jump continuous-time random walk: An application to market trading

    Science.gov (United States)

    Gubiec, Tomasz; Kutner, Ryszard

    2010-10-01

    The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.

  14. Inter-limb coordination, strength, jump, and sprint performances following a youth men's basketball game.

    Science.gov (United States)

    Cortis, Cristina; Tessitore, Antonio; Lupo, Corrado; Pesce, Caterina; Fossile, Eugenio; Figura, Francesco; Capranica, Laura

    2011-01-01

    This study aimed to verify whether basketball players are able to maintain strength (handgrip), jump (countermovement jump [CMJ]), sprint (10 m and 10 m bouncing the ball [10 mBB]), and interlimb coordination (i.e., synchronized hand and foot flexions and extensions at 80, 120, and 180 bpm) performances at the end of their game. Ten young (age 15.7 ± 0.2 years) male basketball players volunteered for this study. During the friendly game, heart rate (HR), rate of perceived exertion (RPE), and rate of muscle pain (RMP) were assessed to evaluate the exercise intensity. Overall, players spent 80% of the time playing at intensities higher than 85% HRmax. Main effects (p jump (pre = 35.2 ± 5.2 cm, post = 35.7 ± 5.2 cm), handgrip (pre = 437 ± 73 N, post = 427 ± 55 N), and coordinative performances at lower frequencies of executions (80 bpm: pre = 59.7 ± 1.3 seconds, post = 60.0 ± 0.0 seconds; 120 bpm: pre = 54.7 ± 12.3 seconds, post = 57.3 ± 6.7 seconds). These findings indicate that the heavy load of the game exerts beneficial effects on the efficiency of executive and attentive control functions involved in complex motor behaviors. Coaches should structure training sessions that couple intense physical exercises with complex coordination tasks to improve the attentional capabilities of the players.

  15. Site occupation of indium and jump frequencies of cadmium in FeGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Randal; Collins, Gary S. [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics, Geology, and Engineering Technology (United States)

    2016-12-15

    Perturbed angular correlation (PAC) measurements using the In-111 probe were carried out on FeGa{sub 3} as part of a broader investigation of indium site occupation and cadmium diffusion in intermetallic compounds. One PAC signal was observed with hyperfine parameters ω{sub 1}= 513.8(1) Mrad/s and η= 0.939(2) at room temperature. By comparison with quadrupole frequencies observed in PAC measurements on isostructural RuIn{sub 3}, it was determined that indium occupies only the 8j site in the FeGa{sub 3} structure, denoted Ga(2) below because two out of the three Ga sites have this point symmetry. PAC spectra at elevated temperature exhibited damping characteristic of electric field gradients (EFGs) that fluctuate as Cd probes jump among Ga(2) sites within the lifetime of the excited PAC level. A stochastic model for the EFG fluctuations based on four conceivable, single-step jump-pathways connecting one Ga(2) site to neighboring Ga(2) sites was developed and used to fit PAC spectra. The four pathways lead to two observable EFG reorientation rates, and these reorientation rates were found to be strongly dependent on EFG orientation. Calculations using density functional theory were used to reduce the number of unknowns in the model with respect to EFG orientation. This made it possible to determine with reasonable precision the total jump rate of Cd among Ga(2) sites that correspond to a change in mirror plane orientation of site-symmetry. This total jump rate was found to be thermally activated with an activation enthalpy of 1.8 ±0.1 eV.

  16. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    Science.gov (United States)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  17. One leg lateral jumps - a new test for team players evaluation.

    Science.gov (United States)

    Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E

    2013-10-01

    We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".

  18. Construct Validation of the FMS: Relationship between a Jump-Landing Task and FMS Items.

    Science.gov (United States)

    Kraus, Kornelius; Schütz, Elisabeth; Doyscher, Ralf

    2017-08-29

    Sports injuries and athletic performance are complex areas, which are characterized by manifold interdependencies. The landing error scoring system (LESS) is a valid screening tool to examine bilateral jump-landing mechanics. Whereas, the Functional Movement Screen (FMS) items are thought to operationalize flexibility and motor behaviour during low intense bodyweight patterns. The aim of the study was to explore possible interdependency of the diagnostic information of these screening tools. 53 athletes (age 23.3±2.1 yrs.) were tested in a sport scientific lab. In detail, 31 professional soccer players (3 Division) and 22 collegiate athletes were studied. Linear, partial correlational and cluster analysis were performed to examine possible trends. Generally, the sportsmen achieved a LESS score of 6.6±2 and a jumping height of 37±7.8cm. Partial correlational analysis indicates that trunk control (r=0.4; p<0.01) is moderately related to landing mechanics, which in turn was negatively related on LESS height (r=-0.67, p<0.01). In addition, clustering showed by trend, that a higher active straight leg raise (ASLR) score is related to better landing mechanics (ASLR score 1: LESS 6.9±1.8; n=15 vs. ASLR score 3: LESS 5.6±2.1; n=10). On the task-specific level, jump-landing mechanics were directly related to jumping performance in this cohort with poor mechanics. On unspecific analysis level, kinetic chain length (ASLR) and trunk control has been identified as potential moderator variables for landing mechanics, indicating that these parameter can limit landing mechanics and ought to be optimized within the individual´s context. A potential cognitive strategy shift from internal (FMS) to external focus (LESS) as well as different muscle recruitment patterns are potential explanations for the non-significant linear relationship between the FMS and LESS data.

  19. Prevalence and determinants of non-standard motorcycle safety helmets amongst food delivery workers in Selangor and Kuala Lumpur.

    Science.gov (United States)

    Kulanthayan, S; See, Lai Git; Kaviyarasu, Y; Nor Afiah, M Z

    2012-05-01

    Almost half of the global traffic crashes involve vulnerable groups such as pedestrian, cyclists and two-wheeler users. The main objective of this study was to determine the factors that influence standard of the safety helmets used amongst food delivery workers by presence of Standard and Industrial Research Institute of Malaysia (SIRIM) certification label. A cross sectional study was conducted amongst 150 food delivery workers from fast food outlets in the vicinity of Selangor and Kuala Lumpur. During observation, safety helmets were classified as standard safety helmet in the presence of SIRIM label and non-standard in the absence of the label. They were approached for questionnaire participation once consent was obtained and were requested to exchange their safety helmet voluntarily with a new one after the interview. Data analysis was carried out using SPSS. Chi square and logistic regression analysis was applied to determine the significance and odds ratio of the variables studied, respectively (penetration test, age, education level, knowledge, crash history, types of safety helmet, marital status and years of riding experience) against the presence of SIRIM label. The response rate for this study was 85.2%. The prevalence of non-standard helmets use amongst fast food delivery workers was 55.3%. Safety helmets that failed the penetration test had higher odds of being non-standard helmets compared with safety helmets passing the test. Types of safety helmet indicated half-shell safety helmets had higher odds to be non-standard safety helmets compared to full-shell safety helmets. Riders with more years of riding experience were in high odds of wearing non-standard safety helmets compared to riders with less riding experience. Non-standard (non-SIRIM approved) helmets were more likely to be half-shell helmets, were more likely to fail the standards penetration test, and were more likely to be worn by older, more experienced riders. The implications of these

  20. THE EFFECTS OF SINGLE VERSUS REPEATED PLYOMETRICS ON LANDING BIOMECHANICS AND JUMPING PERFORMANCE IN MEN

    Directory of Open Access Journals (Sweden)

    H. Makaruk

    2014-07-01

    Full Text Available The aim of this study was to examine the chronic effects of single and repeated jumps training on vertical landing force (VGRF and jump height in untrained men. The VGRF and jump height were compared after a six-week plyometric training programme containing single and repeated jumps, together with two additional parameters: landing time (LT and range of the knee flexion during landing (KF. Thirty-six untrained physical education students with a plyometric training background were randomly assigned to a single jump group (SJG, n =12, repeated jumps group (RJG, n =12, and control group (CON, n =12. The SJG performed only single jumps, the RJG executed repeated (consecutive jumps, whereas the CON did not perform any exercises at all. A countermovement jump (CMJ, repeated countermovement jumps (RCMJ, and a drop jump (DJ were tested before and after the training. Only the RJG showed a significantly reduced VGRF (p<0.05 in all tests. Both plyometric groups significantly improved (p<0.05 their jump height in all tests. The LT was significantly greater in the RJG, compared to the SJG, in all tests. The KF was also significantly (p<0.05 greater in the RJG than in the SJG for CMJ and RCMJ. The results suggest that repeated jumps are beneficial for simultaneous landing force reduction and jumping performance enhancement.

  1. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    Science.gov (United States)

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water.

  2. Anthropic prediction for a large multi-jump landscape

    International Nuclear Information System (INIS)

    Schwartz-Perlov, Delia

    2008-01-01

    The assumption of a flat prior distribution plays a critical role in the anthropic prediction of the cosmological constant. In a previous paper we analytically calculated the distribution for the cosmological constant, including the prior and anthropic selection effects, in a large toy 'single-jump' landscape model. We showed that it is possible for the fractal prior distribution that we found to behave as an effectively flat distribution in a wide class of landscapes, but only if the single-jump size is large enough. We extend this work here by investigating a large (N∼10 500 ) toy 'multi-jump' landscape model. The jump sizes range over three orders of magnitude and an overall free parameter c determines the absolute size of the jumps. We will show that for 'large' c the distribution of probabilities of vacua in the anthropic range is effectively flat, and thus the successful anthropic prediction is validated. However, we argue that for small c, the distribution may not be smooth

  3. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.

    Science.gov (United States)

    Liu, Xiaolin; Chen, Huawei; Zhao, Zehui; Wang, Yamei; Liu, Hong; Zhang, Deyuan

    2017-11-07

    Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.

  4. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  5. The kinematics of swimming and relocation jumps in copepod nauplii

    DEFF Research Database (Denmark)

    Borg, Marc Andersen; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and cop......Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella...... of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized...... recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient...

  6. Jump point detection for real estate investment success

    Science.gov (United States)

    Hui, Eddie C. M.; Yu, Carisa K. W.; Ip, Wai-Cheung

    2010-03-01

    In the literature, studies on real estate market were mainly concentrating on the relation between property price and some key factors. The trend of the real estate market is a major concern. It is believed that changes in trend are signified by some jump points in the property price series. Identifying such jump points reveals important findings that enable policy-makers to look forward. However, not all jump points are observable from the plot of the series. This paper looks into the trend and introduces a new approach to the framework for real estate investment success. The main purpose of this paper is to detect jump points in the time series of some housing price indices and stock price index in Hong Kong by applying the wavelet analysis. The detected jump points reflect to some significant political issues and economic collapse. Moreover, the relations among properties of different classes and between stocks and properties are examined. It can be shown from the empirical result that a lead-lag effect happened between the prices of large-size property and those of small/medium-size property. However, there is no apparent relation or consistent lead in terms of change point measure between property price and stock price. This may be due to the fact that globalization effect has more impact on the stock price than the property price.

  7. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    Energy Technology Data Exchange (ETDEWEB)

    Nillesen, M M; Lopata, R G P; Gerrits, I H; Thijssen, J M; De Korte, C L [Clinical Physics Laboratory-833, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); De Boode, W P [Neonatology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Huisman, H J [Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Kapusta, L [Pediatric Cardiology, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)], E-mail: m.m.nillesen@cukz.umcn.nl

    2009-04-07

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  8. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    International Nuclear Information System (INIS)

    Nillesen, M M; Lopata, R G P; Gerrits, I H; Thijssen, J M; De Korte, C L; De Boode, W P; Huisman, H J; Kapusta, L

    2009-01-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  9. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    Science.gov (United States)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  10. X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection

    International Nuclear Information System (INIS)

    Banjak, Hussein

    2016-01-01

    The number of industrial applications of computed tomography (CT) is large and rapidly increasing with typical areas of use in the aerospace, automotive and transport industry. To support this growth of CT in the industrial field, the identified requirements concern firstly software development to improve the reconstruction algorithms and secondly the automation of the inspection process. Indeed, the use of robots gives more flexibility in the acquisition trajectory and allows the control of large and complex objects, which cannot be inspected using classical CT systems. In this context of new CT trend, a robotic platform has been installed at CEA LIST to better understand and solve specific challenges linked to the robotization of the CT process. The considered system integrates two robots that move the X-ray generator and detector. This thesis aims at achieving this new development. In particular, the objective is to develop and implement analytical and iterative reconstruction algorithms adapted to such robotized trajectories. The main focus of this thesis is concerned with helical-like scanning trajectories. We consider two main problems that could occur during acquisition process: truncated and limited-angle data. We present in this work experimental results for reconstruction on such non-standard trajectories. CIVA software is used to simulate these complex inspections and our developed algorithms are integrated as reconstruction tools. This thesis contains three parts. In the first part, we introduce the basic principles of CT and we present an overview of existing analytical and iterative algorithms for non-standard trajectories. In the second part, we modify the approximate helical FDK algorithm to deal with transversely truncated data and we propose a modified FDK algorithm adapted to reverse helical trajectory with the scan range less than 360 degrees. For iterative reconstruction, we propose two algebraic methods named SART-FISTA-TV and DART

  11. Vertical jumping tests in volleyball: reliability, validity, and playing-position specifics.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Hadzic, Vedran; Uljevic, Ognjen; Dervisevic, Edvin

    2012-06-01

    Vertical jumping is known to be important in volleyball, and jumping performance tests are frequently studied for their reliability and validity. However, most studies concerning jumping in volleyball have dealt with standard rather than sport-specific jumping procedures and tests. The aims of this study, therefore, were (a) to determine the reliability and factorial validity of 2 volleyball-specific jumping tests, the block jump (BJ) test and the attack jump (AJ) test, relative to 2 frequently used and systematically validated jumping tests, the countermovement jump test and the squat jump test and (b) to establish volleyball position-specific differences in the jumping tests and simple anthropometric indices (body height [BH], body weight, and body mass index [BMI]). The BJ was performed from a defensive volleyball position, with the hands positioned in front of the chest. During an AJ, the players used a 2- to 3-step approach and performed a drop jump with an arm swing followed by a quick vertical jump. A total of 95 high-level volleyball players (all men) participated in this study. The reliability of the jumping tests ranged from 0.97 to 0.99 for Cronbach's alpha coefficients, from 0.93 to 0.97 for interitem correlation coefficients and from 2.1 to 2.8 for coefficients of variation. The highest reliability was found for the specific jumping tests. The factor analysis extracted one significant component, and all of the tests were highly intercorrelated. The analysis of variance with post hoc analysis showed significant differences between 5 playing positions in some of the jumping tests. In general, receivers had a greater jumping capacity, followed by libero players. The differences in jumping capacities should be emphasized vis-a-vis differences in the anthropometric measures of players, where middle hitters had higher BH and body weight, followed by opposite hitters and receivers, with no differences in the BMI between positions.

  12. Relative Intensity Influences the Degree of Correspondence of Jump Squats and Push Jerks to Countermovement Jumps.

    Science.gov (United States)

    Cushion, Emily J; Goodwin, Jon E; Cleather, Daniel J

    2016-05-01

    The aim of this study was to determine the mechanical similarity between push jerk (PJ) and jump squat (JS) to countermovement jump (CMJ) and further understand the effect increasing external load may have on this relationship. Eight physically trained men (age 22 ± 3; height 176 ± 7 kg; weight 83 ± 8 kg) performed an unloaded CMJ followed by JS under a range of loads (10, 25, 35, and 50% 1RM back squat) and PJ (30, 50, 65, and 75% 1RM push jerk). A portable force platform and high-speed camera both collecting at 250 Hz were used to establish joint moments and impulse during the propulsive phase of the movements. A standard inverse dynamics model was used to determine joint moment and impulse at the hip, knee, and ankle. Significant correlations (p ≤ 0.05) were shown between CMJ knee joint moment and JS knee joint moment at 25% load and PJ knee joint moment at 30 and 50% load. Significant correlations were also observed between CMJ knee joint impulse and JS knee joint impulse at 10% load and PJ knee joint moment at 30 and 65% load. Significant correlation was also observed between CMJ hip joint impulse and PJ hip joint impulse at 30% load. No significant joint × load interaction was shown as load increased for either PJ or JS. Results from the study suggest partial correspondence between PJ and JS to CMJ, where a greater mechanical similarity was observed between the PJ and CMJ. This interaction is load and joint dependent where lower relative loads showed greatest mechanical similarity. Therefore using lower relative loads when programming may provide a greater transfer of training effect.

  13. A backprojection-filtration algorithm for nonstandard spiral cone-beam CT with an n-PI-window

    International Nuclear Information System (INIS)

    Yu Hengyong; Ye Yangbo; Zhao Shiying; Wang Ge

    2005-01-01

    For applications in bolus-chasing computed tomography (CT) angiography and electron-beam micro-CT, the backprojection-filtration (BPF) formula developed by Zou and Pan was recently generalized by Ye et al to reconstruct images from cone-beam data collected along a rather flexible scanning locus, including a nonstandard spiral. A major implication of the generalized BPF formula is that it can be applied for n-PI-window-based reconstruction in the nonstandard spiral scanning case. In this paper, we design an n-PI-window-based BPF algorithm, and report the numerical simulation results with the 3D Shepp-Logan phantom and Defrise disk phantom. The proposed BPF algorithm consists of three steps: cone-beam data differentiation, weighted backprojection and inverse Hilbert filtration. Our simulated results demonstrate the feasibility and merits of the proposed algorithm

  14. Dissipation-Free Jumps for the Magnetosonic Branch of Cold Plasma Motion

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipation-free jumps are studied in a hydrodynamic model of a cold plasma moving at about magnetosonic speed. The jumps described by the generalized Korteweg-de Vries equation, which possesses similar nonlinear and dispersion properties, are considered. In particular, jumps with emission and solitonlike jumps are considered. The assumption that our model possesses jumps of the same type as those for the generalized Korteweg-de Vries equation is justified by numerically investigating the problem of the decay of an initial discontinuity in a cold plasma. An analytic method is described that makes it possible to predict the structure of such jumps in the general case

  15. Dissipative - free jumps for the magnetoacoustic branch of cold plasma motions

    International Nuclear Information System (INIS)

    Bakholdin, I.B.

    2000-01-01

    Dissipative-free jumps were studied in hydrodynamic model of cold plasma moving with the rate close to magnetoacoustic one. The jumps for the generalized Korteweg-de Vries equation with similar nonlinear and dispersion properties were studied. Among them there were jumps with emission and solution type jumps. Furthermore, the numerical investigation into the initial break decomposition in cold plasma confirmed the validity of assumption that in the given type of jumps as in case of the generalized Korteweg-de Vries equation. Paper describes the analytical method enabling to forecast the structure nature of such jumps in the general case [ru

  16. $\\beta$-asymmetry measurements in nuclear $\\beta$-decay as a probe for non-standard model physics

    CERN Multimedia

    Roccia, S

    2002-01-01

    We propose to perform a series of measurements of the $\\beta$-asymmetry parameter in the decay of selected nuclei, in order to investigate the presence of possible time reversal invariant tensor contributions to the weak interaction. The measurements have the potential to improve by a factor of about four on the present limits for such non-standard model contributions in nuclear $\\beta$-decay.

  17. Nordic ski jumping injuries. A survey of active American jumpers.

    Science.gov (United States)

    Wright, J R; McIntyre, L; Rand, J J; Hixson, E G

    1991-01-01

    Little data are available in the medical literature on nordic ski jumping injuries. Injury questionnaires were sent to all active American ski jumpers registered either with the United States Ski Association or with a jumping club registered with the United States Ski Association. One hundred thirty-three of 286 (46.5%) injury questionnaires were returned. Eighty-one of the 133 respondents (60.9%) had been injured sufficiently to require examination by a physician at least once during their jumping careers. This report describes the types and frequencies of injuries sustained by this group of nordic ski jumpers as well as provides demographic data about American ski jumpers. The risk of injury per 100 participant years was 9.4, a rate less than that reported for most high school or college intermural sports.

  18. Dynamical Jumps in a Shape Memory Alloy Oscillator

    Directory of Open Access Journals (Sweden)

    H. S. Oliveira

    2014-01-01

    Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

  19. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  20. Device for investigation of magnetic flux jumps in ribbon superconductors

    International Nuclear Information System (INIS)

    Andrianov, A.V.; Bashkirov, Yu.A.; Kremlev, M.G.

    1986-01-01

    A device for simulation of magnetic flux jumps in superconductors of conducting magnet sandwich-type windings super-applyed of a ribbon conductor is described. A superconducting magnet with a measuring cassetter are the main elements of the device. An external magnetic field is generated by a two-sectional superconducting magnet permitting to simulate the shape of the magnetic field characteristic for sandwich-type windings. Maximum radial component of the magnetic field is 2 T. Jumps of the magnetic flux are recorded by induction transducers and the magnetic field-by Hall trasducer. The effect of coating of standard metal on magnetic flux jumps in Nb 3 Sn base superconducting ribbon is considered