Hypostatic jammed packings of frictionless nonspherical particles
VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.
2017-01-01
We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, and dumbbells to determine which shapes form hypostatic versus isostatic packings and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from na\\"ive constraint counting. To generate highly accurate force- and torque-balanced packings of circul...
Scattering of light by nonspherical particles
International Nuclear Information System (INIS)
Coulson, K.L.
1985-12-01
Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter
Charging of nonspherical macroparticles in a plasma
Holgate, J. T.; Coppins, M.
2016-03-01
The current theories of macroparticle charging in a plasma are limited to spheres, and are unsuitable for the multitude of nonspherical objects existing in astrophysical, atmospheric, laboratory, and fusion plasmas. This paper extends the most widely used spherical charging theory, orbit motion limited theory, to spheroids and, as such, provides a comprehensive study of the charging of nonspherical objects in a plasma. The spherical charging theory is shown to be a reasonable approximation for a considerable range of spheroids. However, the electric potential of highly elongated spheroids can be almost twice the spherical value. Furthermore, the total charge on the spheroids increases by a significantly larger factor than their potential.
Nonspherical oscilllations of ultrasound contrast agent microbubbles
Dollet, B.; van der Meer, S.M.; Garbin, V.; Garbin, Valeria; de Jong, N.; Lohse, Detlef; Versluis, Michel
2008-01-01
The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra–high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far
Hypostatic jammed packings of frictionless nonspherical particles
VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.
2018-01-01
We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, dumbbells, and others to determine which shapes form packings with fewer contacts than degrees of freedom (hypostatic packings) and which have equal numbers of contacts and degrees of freedom (isostatic packings), and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from naive constraint counting. To generate highly accurate force- and torque-balanced packings of circulo-lines and cir-polygons, we developed an interparticle potential that gives continuous forces and torques as a function of the particle coordinates. We show that the packing fraction and coordination number at jamming onset obey a masterlike form for all of the nonspherical particle packings we studied when plotted versus the particle asphericity A , which is proportional to the ratio of the squared perimeter to the area of the particle. Further, the eigenvalue spectra of the dynamical matrix for packings of different particle shapes collapse when plotted at the same A . For hypostatic packings of nonspherical particles, we verify that the number of "quartic" modes along which the potential energy increases as the fourth power of the perturbation amplitude matches the number of missing contacts relative to the isostatic value. We show that the fourth derivatives of the total potential energy in the directions of the quartic modes remain nonzero as the pressure of the packings is decreased to zero. In addition, we calculate the principal curvatures of the inequality constraints for each contact in circulo-line packings and identify specific types of contacts with inequality constraints that possess convex curvature. These contacts can constrain multiple degrees of freedom and allow hypostatic packings of nonspherical particles to be mechanically
Torsional Optomechanics of a Levitated Nonspherical Nanoparticle
Hoang, Thai M.; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F.; Yin, Zhang-Qi; Li, Tongcang
2016-09-01
An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be 1 order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. We propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale torsion balance with a torque detection sensitivity on the order of 10-29 N m /√{Hz } under realistic conditions.
Non-Spherical Gravitational Collapse of Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
Zade S S; Patil K D; Mulkalwar P N
2008-01-01
We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.
Non-spherical granular flows down inclined chutes
Hidalgo, R.C.; Rubio-Largo, S.M.; Alonso-Marroquin, F.; Weinhart, T.
2017-01-01
In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of nonspherical elongated particles. Thus, a systematic study of the system response is performed varying
Heat transfer rate within non-spherical thick grains
Directory of Open Access Journals (Sweden)
Huchet Florian
2017-01-01
Full Text Available The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.
Heat transfer rate within non-spherical thick grains
Huchet, Florian; Richard, Patrick; Joniot, Jules; Le Guen, Laurédan
2017-06-01
The prediction of the internal heat conduction into non-spherical thick grains constitutes a significant issue for physical modeling of a large variety of application involving convective exchanges between fluid and grains. In that context, the present paper deals with heat rate measurements of various sizes of particles, the thermal sensors being located at the interface fluid/grain and into the granular materials. Their shape is designed as cuboid in order to control the surface exchanges. In enclosed coneshaped apparatus, a sharp temperature gradient is ensured from a hot source releasing the air stream temperature equal to about 400°C. Two orientations of grain related to the air stream are considered: diagonally and straight arrangements. The thermal diffusivity of the grains and the Biot numbers are estimated from an analytical solution established for slab. The thermal kinetics evolution is correlated to the sample granular mass and its orientation dependency is demonstrated. Consequently, a generalized scaling law is proposed which is funded from the effective area of the heat transfer at the grain-scale, the dimensionless time being defined from the calculated diffusional coefficients.
Effect of particle nonsphericity on bidirectional reflectance of cirrus clouds
Energy Technology Data Exchange (ETDEWEB)
Mishchenko, M.I.; Rossow, W.B.; Macke, A.; Lacis, A.A. [Goddard Institute for Space Studies, New York, NY (United States)
1996-04-01
This paper describes the use of the fractal ice particle method to study the differences in bidirectional reflectance caused by the differences in the single scattering phase functions of spherical water droplets and nonspherical ice crystals.
Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias
This study deals with the interaction between turbulence and non-spherical particles and represents an extension of the modeling framework for particleladen flows. The effect of turbulence on particles is commonly referred to as turbulent dispersion while the effect of particles on the carrier....... This study encompass an outlook on existing work, an experimental study, development of a numerical model and a case study advancing the modeling techniques for pulverized coal combustion to deal with larger non-spherical biomass particles. Firstly, existing knowledge concerning the motion of non......-spherical particles and turbulence modulation are outlined. A complete description of the motion of non-spherical particles is still lacking. However, evidence suggests that the equation of motion for a sphere only represent an asymptotical value for a more general, but yet unformulated, description of the motion...
Saltation of non-spherical sand particles.
Directory of Open Access Journals (Sweden)
Zhengshi Wang
Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.
Measurement of Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... at the centerline of the jet are carried out for mass loadings of 0.5, 1, 1.6 and particle sizes 880μm, 1350μm, 1820μm for spherical particles. For each non-spherical shape only a single size and loading are considered. The turbulence modulation of the carrier phase is found to highly dependent on the turbulence......, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more than spherical...
Gravitational agglomeration of post-HCDA LMFBR aerosols: nonspherical particles
International Nuclear Information System (INIS)
Tuttle, R.F.; Loyalka, S.K.
1982-12-01
Aerosol behavior analysis computer programs have shown that temporal aerosol size distributions in nuclear reactor containments are sensitive to shape factors. This research investigates shape factors by a detailed theoretical analysis of hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. First, basic definitions and expressions for settling speeds and collisional efficiencies of nonspherical particles are developed. These are then related to corresponding quantities for spherical particles through shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, the density correction factor, and the gravitational collision shape factor, are introduced to describe the collision kernel for collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program (NGCEFF) is constructed, and the dynamical equations are solved by Gear's method
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Hoshyaripour, A.; Vogel, B.; Vogel, H.
2017-12-01
Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.
Non-Spherical Microcapsules for Increased Core Content Volume Delivery
Oliva-Buisson, Yvette J.
2014-01-01
The goal of this project was to advance microencapsulation from the standard spherical microcapsule to a non-spherical, high-aspect ratio (HAR), elongated microcapsule. This was to be accomplished by developing reproducible methods of synthesizing or fabricating robust, non-spherical, HAR microcapsules. An additional goal of this project was to develop the techniques to the point where scale-up of these methods could be examined. Additionally, this project investigated ways to apply the microencapsulation techniques developed as part of this project to self-healing formulations.
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae
2013-01-01
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional...
Non-spherical micelles in an oil-in-water cubic phase
DEFF Research Database (Denmark)
Leaver, M.; Rajagopalan, V.; Ulf, O.
2000-01-01
phase, both with and without SDS, was established by NMR self-diffusion. In addition H-2 NMR relaxation experiments have demonstrated that the micelles in the cubic phase are non-spherical, having grown and changed shape upon formation of the cubic phase from the micellar solution. Small angle...... associated with the micellar cubic phase, Pm3n and Fd3m. The micellar volumes calculated for these space groups are similar and are consistent with a change in micellar geometry from spherical to prolate.......The cubic phase formed between the microemulsion and hexagonal phases of the ternary pentaethylene glycol dodecyl ether (C12E5)-decane-water system and that doped with small amounts of sodium dodecylsulfate (SDS) have been investigated. The presence of discrete oil-swollen micelles in the cubic...
On the phase diagram of non-spherical nanoparticles
Wautelet, M; Hecq, M
2003-01-01
The phase diagram of nanoparticles is known to be a function of their size. In the literature, this is generally demonstrated for cases where their shape is spherical. Here, it is shown theoretically that the phase diagram of non-spherical particles may be calculated from the spherical case, at the same surface area/volume ratio, both with and without surface segregation, provided the surface tension is considered to be isotropic.
Phases of dense matter with non-spherical nuclei
Energy Technology Data Exchange (ETDEWEB)
Pethick, C J [NORDITA, Copenhagen (Denmark); [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
1998-06-01
A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)
Collective states of nonspherical deformable even--even nuclei
International Nuclear Information System (INIS)
Tartakovskii, V.K.
1989-01-01
A more correct method, as compared with some earlier studies, of finding the wave functions and corresponding energies of longitudinal quadrupole vibrations of nonspherical even--even nuclei is proposed. The wave functions and energies of collective motions in nuclei have been obtained in explicit form for a number of dependences of the potential energy of longitudinal vibrations V(β), including the dependence V(β), not previously used, of the most general form. Explicit dependences of the potential energy of transverse vibrations and the corresponding wave functions and eigenvalues for nuclear states with zero spins are proposed
Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed
Buist, K.A.; Jayaprakash, P.; Kuipers, J.A.M.; Deen, N.G.; Padding, J.T.
2017-01-01
In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain
Controlled electrosprayed formation of non-spherical microparticles
Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.
2017-11-01
Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.
Shock waves from non-spherically collapsing cavitation bubbles
Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed
2017-11-01
Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .
MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity
Directory of Open Access Journals (Sweden)
O. V. Kalashnikova
2013-08-01
Full Text Available The aim of this study is to theoretically investigate the sensitivity of the Multi-angle Imaging SpectroRadiometer (MISR operational (version 22 Dark Water retrieval algorithm to aerosol non-sphericity over the global oceans under actual observing conditions, accounting for current algorithm assumptions. Non-spherical (dust aerosol models, which were introduced in version 16 of the MISR aerosol product, improved the quality and coverage of retrievals in dusty regions. Due to the sensitivity of the retrieval to the presence of non-spherical aerosols, the MISR aerosol product has been successfully used to track the location and evolution of mineral dust plumes from the Sahara across the Atlantic, for example. However, the MISR global non-spherical aerosol optical depth (AOD fraction product has been found to have several climatological artifacts superimposed on valid detections of mineral dust, including high non-spherical fraction in the Southern Ocean and seasonally variable bands of high non-sphericity. In this paper we introduce a formal approach to examine the ability of the operational MISR Dark Water algorithm to distinguish among various spherical and non-spherical particles as a function of the variable MISR viewing geometry. We demonstrate the following under the criteria currently implemented: (1 Dark Water retrieval sensitivity to particle non-sphericity decreases for AOD below about 0.1 primarily due to an unnecessarily large lower bound imposed on the uncertainty in MISR observations at low light levels, and improves when this lower bound is removed; (2 Dark Water retrievals are able to distinguish between the spherical and non-spherical particles currently used for all MISR viewing geometries when the AOD exceeds 0.1; (3 the sensitivity of the MISR retrievals to aerosol non-sphericity varies in a complex way that depends on the sampling of the scattering phase function and the contribution from multiple scattering; and (4 non-sphericity
Effect of weak nonsphericity on linear and nonlinear optical properties of small particle composites
International Nuclear Information System (INIS)
Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F.
2002-01-01
A small particle composite in which the inclusions are slightly nonspherical and distributed in shape is considered. Within the framework of the mean-field approximation, the functions of linear and nonlinear optical responses are calculated in terms of a nonsphericity parameter specifying the width of the distribution function in shape. To estimate the effect of weak nonsphericity on the functions, their second derivatives with respect to the nonsphericity parameter are computed. The derivatives are shown to be complexly structured surfaces in the coordinates (Re(ε i /ε m ), Im(ε i /ε m )), where ε i and ε m are the inclusion and matrix permittivity, respectively. Based on the results obtained, applicability area of the classical Maxwell Garnett theory is discussed. The main conclusion is that weak nonsphericity is significant only in the close vicinity of a dipole resonance of a single ball made of inclusion material. At the same time, the role of nonsphericity increases with decreasing the imaginary part of inclusion permittivity. (author)
Importance of aerosol non-sphericity in estimating aerosol radiative forcing in Indo-Gangetic Basin.
Srivastava, Parul; Dey, Sagnik; Srivastava, Atul Kumar; Singh, Sachchidanand; Mishra, S K; Tiwari, Suresh
2017-12-01
Aerosols are usually presumed spherical in shape while estimating the direct radiative forcing (DRF) using observations or in the models. In the Indo-Gangetic Basin (IGB), a regional aerosol hotspot where dust is a major aerosol species and has been observed to be non-spherical in shape, it is important to test the validity of this assumption. We address this issue using measured chemical composition at megacity Delhi, a representative site of the western IGB. Based on the observation, we choose three non-spherical shapes - spheroid, cylinder and chebyshev, and compute their optical properties. Non-spherical dust enhances aerosol extinction coefficient (β ext ) and single scattering albedo (SSA) at visible wavelengths by >0.05km -1 and >0.04 respectively, while it decreases asymmetry parameter (g) by ~0.1. Accounting non-sphericity leads top-of-the-atmosphere (TOA) dust DRF to more cooling due to enhanced backscattering and increases surface dimming due to enhanced β ext . Outgoing shortwave flux at TOA increases by up to 3.3% for composite aerosols with non-spherical dust externally mixed with other spherical species. Our results show that while non-sphericity needs to be accounted for, choice of shape may not be important in estimating aerosol DRF in the IGB. Copyright © 2017 Elsevier B.V. All rights reserved.
Packing Nonspherical Particles: All Shapes Are Not Created Equal
Torquato, Salvatore
2012-02-01
Over the past decade there has been increasing interest in the effects of particle shape on the characteristics of dense particle packings, since deviations from sphericity can lead to more realistic models of granular media, nanostructured materials, and tissue architecture. It is clear the that the broken rotational symmetry of a nonspherical particle is a crucial aspect in determining its resulting packing characteristics, but given the infinite variety of possible shapes (ellipsoids, superballs, regular and irregular polyhedra, etc.) it is desirable to formulate packing organizing principles based the particle shape. Such principles are beginning to be elucidated; see Refs. 1 and 2 and references therein. Depending upon whether the particle has central symmetry, inequivalent principle axes, and smooth or flat surfaces, we can describe the nature of its densest packing (which is typically periodic) as well as its disordered jammed states (which may or may not be isostatic). Changing the shape of a particle can dramatically alter its packing attributes. This tunability capability via particle shape could be used to tailor many-particle systems (e.g., colloids and granular media) to have designed crystal, liquid and glassy states. [4pt] [1] S. Torquato and F. H. Stillinger, ``Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond," Rev. Modern Phys. 82, 2633 (2010). [0pt] [2] Y. Jiao and S. Torquato, Communication: ``A Packing of Truncated Tetrahedra That Nearly Fills All of Space and its Melting Properties," J. Chem. Phys. 135, 151101 (2011).
Equations of state of nonspherical fluids by spherical intermolecular potentials
International Nuclear Information System (INIS)
Bastea, S; Ree, F H
1999-01-01
The equilibrium properties of anisotropic molecular fluids can be in principle calculated in a statistical mechanics framework, but the theory is generally too cumbersome for many practical applications. Fortunately, at high densities and temperatures the anisotropy can be averaged-out by means of a density and temperature independent potential (the median) that produces reliable thermodynamics[1,2]. The proposal of Shaw and Johnson[1], which turns out to be the so-called median potential[2], is very successful in predicting the thermodynamics of simple fluids such as N(sub 2) and CO(sub 2) at reasonable high pressures and temperatures[3]. Lebowitz and Percus[2] pointed out some time ago that the success of this approximation could perhaps be understood in terms of a simple theory that treats the asphericity as a perturbation. The median appears to be the best choice for hard nonspherical potential[4], which may explain its success for fluids at high densities, where the hard core contribution is known to be dominant
Steady three-fluid coronal expansion for nonspherical geometries
International Nuclear Information System (INIS)
Joselyn, J.; Holzer, T.E.
1978-01-01
A steady three-fluid model of the solar coronal expansionk in which 4 He ++ ions (alphas) are treated as a nonminor species, is developed for nonspherically symmetric flow geometries of the general sort thought to be characteristic of coronal holes. It is found that the very high mass fluxes in the low corona, which are associated with rapidly diverging flow geometries, lead to a locally enhanced frictional coupling between protons and alphas and consequently to a significant reduction of the He/H abundance ratio in the lower corona from that normally predicted by multifluid models. In the models considered, the frictional drag on the protons by the alphas (a process neglected in most studies) is found to play an important role near the sun. Heavy ions, other than alphas, are treated as minor species and are seen to exhibit varying responses to the rapidly diverging flow geometries, depending on the ion mass and charge. As for the protons, the frictional effect of the alphas on the heavier ions is found to be significant in the models considered
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Kohei [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, Chiba 277-8583 (Japan); Chiba, Masashi, E-mail: kohei.hayashi@ipmu.jp, E-mail: chiba@astr.tohoku.ac.jp [Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan)
2015-09-01
We investigate the non-spherical density structure of dark halos of the dwarf spheroidal (dSph) galaxies in the Milky Way and Andromeda galaxies based on revised axisymmetric mass models from our previous work. The models we adopt here fully take into account velocity anisotropy of tracer stars confined within a flattened dark halo. Applying our models to the available kinematic data of the 12 bright dSphs, we find that these galaxies associate with, in general, elongated dark halos, even considering the effect of this velocity anisotropy of stars. We also find that the best-fit parameters, especially for the shapes of dark halos and velocity anisotropy, are susceptible to both the availability of velocity data in the outer regions and the effect of the lack of sample stars in each spatial bin. Thus, to obtain more realistic limits on dark halo structures, we require photometric and kinematic data over much larger areas in the dSphs than previously explored. The results obtained from the currently available data suggest that the shapes of dark halos in the dSphs are more elongated than those of ΛCDM subhalos. This mismatch needs to be solved by theory including baryon components and the associated feedback to dark halos as well as by further observational limits in larger areas of dSphs. It is also found that more diffuse dark halos may have undergone consecutive star formation history, thereby implying that dark-halo structure plays an important role in star formation activity.
Non-spherical particle formation induced by repulsive hydration forces during spray drying
Energy Technology Data Exchange (ETDEWEB)
Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)
2013-09-15
Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.
Non-spherical particle formation induced by repulsive hydration forces during spray drying
International Nuclear Information System (INIS)
Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk
2013-01-01
Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying
On the motion of non-spherical particles at high Reynolds number
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
This paper contains a critical review of available methodology for dealing with the motion of non-spherical particles at higher Reynolds numbers in the Eulerian- Lagrangian methodology for dispersed flow. First, an account of the various attempts to classify the various shapes and the efforts...... motion it is necessary to account for the non-coincidence between the center of pressure and center of gravity which is a direct consequence of the inertial pressure forces associated with particles at high Reynolds number flow. Extensions for non-spherical particles at higher Reynolds numbers are far...
Friction factor for water flow through packed beds of spherical and non-spherical particles
Directory of Open Access Journals (Sweden)
Kaluđerović-Radoičić Tatjana
2017-01-01
Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022
Thermo-mechanical screening tests to qualify beryllium pebble beds with non-spherical pebbles
Energy Technology Data Exchange (ETDEWEB)
Reimann, Joerg, E-mail: joerg.reimann@partner.kit.edu [IKET, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fretz, Benjamin [KBHF GmbH, Eggenstein-Leopoldshafen (Germany); Pupeschi, Simone [IAM, Karlsruhe Institute of Technology, Karlsruhe (Germany)
2015-10-15
Highlights: • In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. • Spherical pebbles are considered as the candidate material, however, non-spherical particles are of economic interest. • Thermo-mechanical pebble bed data do merely exist for non-spherical beryllium grades. • Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT) were used to measure the stress–strain relations and the thermal conductivity. • A small experimental set-up had to be used and a detailed 3D modelling was of prime importance. • Compared to spherical pebble beds, non-spherical pebble beds are generally softer and mainly the thermal conductivity is lower. - Abstract: In present ceramic breeder blankets, pebble-shaped beryllium is used as a neutron multiplier. Fairly spherical pebbles are considered as a candidate material, however, non-spherical particles are of economic interest because production costs are much lower. Yet, thermo-mechanical pebble bed data do merely exist for these beryllium grades, and the blanket relevant potential of these grades cannot be judged. Screening experiments were performed with three different grades of non-spherical beryllium pebbles, produced by different companies, accompanied by experiments with the reference beryllium pebble beds. Uniaxial compression tests (UCTs), combined with the Hot Wire Technique (HWT), were performed to measure both the stress–strain relation and the thermal conductivity, k, at different stress levels. Because of the limited amounts of the non-spherical materials, the experimental set-ups were small and a detailed 3D modelling was of prime importance in order to prove that the used design was appropriate. Compared to the pebble beds consisting of spherical pebbles, non-spherical pebble beds are generally softer (smaller stress for a given strain), and, mainly as a consequence of this, for a given strain value, the thermal conductivity is lower. This
DEFF Research Database (Denmark)
Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen
2004-01-01
-area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...
Scattering from Model Nonspherical Particles Theory and Applications to Environmental Physics
Borghese, Ferdinando; Saija, Rosalba
2007-01-01
The scattering of electromagnetic radiation by nonspherical particles has become an increasingly important research topic over the past 20 years. Instead of handling anisotropic particles of arbitrary shape, the authors consider the more amenable problem of aggregates of spherical particles. This is often a very satisfactory approach as the optical response of nonspherical particles depends more on their general symmetry and the quantity of refractive material than on the precise details of their shape. The book addresses a wide spectrum of applications, ranging from scattering properties of water droplets containing pollutants, atmospheric aerosols and ice crystals to the modeling of cosmic dust grains as aggregates. In this extended second edition the authors have encompassed all the new topics arising from their recent studies of cosmic dust grains. Thus many chapters were deeply revised and new chapters were added. The new material spans The description of the state of polarization of electromagnetic wave...
Novel Discrete Element Method for 3D non-spherical granular particles.
Seelen, Luuk; Padding, Johan; Kuipers, Hans
2015-11-01
Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.
The drag and lift of different non-spherical particles from low to high Re
Sanjeevi, Sathish K. P.; Padding, Johan
2017-11-01
The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient CD , ϕ at different incident angles ϕ for a wide range of Reynolds numbers (Re). We show that the sine-squared drag law CD , ϕ =CD , ϕ =0° +(CD , ϕ =90° -CD , ϕ =0°) sin2 ϕ holds up to large Reynolds numbers Re = 2000 . The sine-squared dependence of CD occurs at Stokes flow (very low Re) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high Re , and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher Re , for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient CL can provide a decent approximation, even at high Re , for elongated particles. Such a drag and lift law valid at high Re is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles. European Research Council (ERC) consolidator Grant scheme, Contract No. 615096 (NonSphereFlow).
Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts
International Nuclear Information System (INIS)
Berthon, B.; Marshall, C.; Evans, M.; Spezi, E.
2014-01-01
Purpose: The use of positron emission tomography (PET) within radiotherapy treatment planning requires the availability of reliable and accurate segmentation tools. PET automatic segmentation (PET-AS) methods have been recommended for the delineation of tumors, but there is still a lack of thorough validation and cross-comparison of such methods using clinically relevant data. In particular, studies validating PET segmentation tools mainly use phantoms with thick plastic walls inserts of simple spherical geometry and have not specifically investigated the effect of the target object geometry on the delineation accuracy. Our work therefore aimed at generating clinically realistic data using nonspherical thin-wall plastic inserts, for the evaluation and comparison of a set of eight promising PET-AS approaches. Methods: Sixteen nonspherical inserts were manufactured with a plastic wall of 0.18 mm and scanned within a custom plastic phantom. These included ellipsoids and toroids derived with different volumes, as well as tubes, pear- and drop-shaped inserts with different aspect ratios. A set of six spheres of volumes ranging from 0.5 to 102 ml was used for a baseline study. A selection of eight PET-AS methods, written in house, was applied to the images obtained. The methods represented promising segmentation approaches such as adaptive iterative thresholding, region-growing, clustering and gradient-based schemes. The delineation accuracy was measured in terms of overlap with the computed tomography reference contour, using the dice similarity coefficient (DSC), and error in dimensions. Results: The delineation accuracy was lower for nonspherical inserts than for spheres of the same volume in 88% cases. Slice-by-slice gradient-based methods, showed particularly lower DSC for tori (DSC 0.76 except for tori) but showed the largest errors in the recovery of pears and drops dimensions (higher than 10% and 30% of the true length, respectively). Large errors were visible
Preparation of non-spherical particles by shell-shield etching for near-field nanopatterning
International Nuclear Information System (INIS)
Ye, Jian; Liesbet, Lagae
2014-01-01
The shape of polymer particles plays an important role in determining their function. In this paper, we describe a simple and unconventional method called shell-shield etching (SSE) that allows us to prepare freestanding submicrometer- or micrometer-sized polymer particles with various shapes. By precisely varying the time of ultraviolet ozone treatment under the partial shielding effect of the silica shell, we controllably reshape polymer spheres into symmetry-reduced polymer peaches, mushrooms, bowls, and plates. Finite difference time domain simulations indicate that the non-spherical particles obtained from the SSE method might have potential for near-field nanopatterning applications. (papers)
Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles
Energy Technology Data Exchange (ETDEWEB)
Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering
2013-06-30
One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed
Investigation of flow regime in debris bed formation behavior with nonspherical particles
Directory of Open Access Journals (Sweden)
Songbai Cheng
2018-02-01
Full Text Available It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.
SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST
International Nuclear Information System (INIS)
Richterová, I.; Němeček, Z.; Beránek, M.; Šafránková, J.; Pavlů, J.
2012-01-01
Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.
ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES
Energy Technology Data Exchange (ETDEWEB)
Pon, Andy; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Toala, Jesus A. [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, E-18008, Granada (Spain); Vazquez-Semadeni, Enrique; Gomez, Gilberto C. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico); Heitsch, Fabian, E-mail: arpon@uvic.ca, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: toala@iaa.es, E-mail: e.vazquez@crya.unam.mx, E-mail: g.gomez@crya.unam.mx, E-mail: fheitsch@unc.edu [Department of Physics and Astronomy, University of North Carolina Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599 (United States)
2012-09-10
We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.
International Nuclear Information System (INIS)
Singh, P.P.; Gonis, A.
1993-01-01
Based on screening transformations of muffin-tin orbitals introduced by Andersen and Jepsen [Phys. Rev. Lett. 53, 2571 (1984)], we have developed a formalism for calculating the nonspherically averaged charge densities of substitutionally disordered alloys using the Korringa-Kohn-Rostoker coherent-potential-approximation (KKR CPA) method in the atomic-sphere approximation (ASA). We have validated our method by calculating charge densities for ordered structures, where we find that our approach yields charge densities that are essentially indistinguishable from the results of full-potential methods. Calculations and comparisons are reported for Si, Al, and Li. For substitutionally disordered alloys, where full-potential methods have not been implemented so far, our approach can be used to calculate reliable nonspherically averaged charge densities from spherically symmetric one-electron potentials obtained from the KKR-ASA CPA. We report on our study of differences in charge density between ordered AlLi in the L1 0 phase and substitutionally disordered Al 0.5 Li 0.5 on a face-centered-cubic lattice
Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions
International Nuclear Information System (INIS)
Le Fevre, A.; Ploszajczak, M.; Toneev, V.D.
2003-10-01
We study the anisotropy effects measured with INDRA at GSI in central collisions of 129 Xe+ nat Sn at 50 A MeV and 197 Au+ 197 Au at 60, 80, 100 A MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. In the model, the anisotropy is the result of correlations between the charge of a fragment and its location in the freeze-out configuration, created by the mutual Coulomb interactions inside the non-spherical source. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy. (orig.)
ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES
International Nuclear Information System (INIS)
Pon, Andy; Johnstone, Doug; Toalá, Jesús A.; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.; Heitsch, Fabian
2012-01-01
We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.
Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Kazuya; Yamada, Shoichi, E-mail: ktakahashi@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku 169-8555 (Japan)
2014-10-20
We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.
Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang
2017-10-01
The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.
Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.
2015-01-01
Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,
Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions
Energy Technology Data Exchange (ETDEWEB)
Le Fevre, A. E-mail: a.lefevre@gsi.de; Ploszajczak, M.; Toneev, V.D.; Auger, G.; Begemann-Blaich, M.L.; Bellaize, N.; Bittiger, R.; Bocage, F.; Borderie, B.; Bougault, R.; Bouriquet, B.; Charvet, J.L.; Chbihi, A.; Dayras, R.; Durand, D.; Frankland, J.D.; Galichet, E.; Gourio, D.; Guinet, D.; Hudan, S.; Hurst, B.; Lautesse, P.; Lavaud, F.; Legrain, R.; Lopez, O.; Lukasik, J.; Lynen, U.; Mueller, W.F.J.; Nalpas, L.; Orth, H.; Plagnol, E.; Rosato, E.; Saija, A.; Schwarz, C.; Sfienti, C.; Tamain, B.; Trautmann, W.; Trzcinski, A.; Turzo, K.; Vient, E.; Vigilante, M.; Volant, C.; Zwieglinski, B.; Botvina, A.S
2004-04-19
We study the anisotropy effects measured with INDRA at GSI in central collisions of {sup 129}Xe+{sup nat}Sn at 50 A MeV and {sup 197}Au+{sup 197}Au at 60, 80, 100 A MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.
Energy Technology Data Exchange (ETDEWEB)
Tuttle, R.F.; Loyalka, S.K.
1985-06-01
The collisional dynamics of nonspherical aerosols is modeled by the introduction of a shape factor, US . Mechanistic calculation of US requires knowledge of the flow fields around the aerosols. Since actual aerosols can be complicated in shape and since the computation of flow fields can be quite difficult, insights into the nature of US are gained by using the superposition technique and studying aerosols that have tractable flow fields. The motion of an oblate spheroid in a viscous fluid is considered. The Navier-Stokes equations and associated boundary conditions are represented in oblate spheroidal coordinates. A combination of finite differences and spline-interpolation techniques is used to transform these equations to a form suitable for numerical computations. Converged results for the flow fields are obtained for a 0 to 5 range of Reynolds numbers. In the limit of zero Reynolds number, the results are found to be in agreement with the analytical solutions of Oberbeck.
Subluminal and superluminal pulse propagation in inhomogeneous media of nonspherical particles
International Nuclear Information System (INIS)
Ma Yu; Gao Lei
2006-01-01
We study the pulse propagation through a metal/dielectric composites of nonspherical particles enclosed by two gold mirrors. To account for the shape effect, we first adopt Maxwell-Garnett type approximation to obtain the effective dielectric function of composites. Based on the group index, phase time and pulse shape calculations, we find that the particles' shape (characterized by the depolarization factor) plays an important role in determining the subluminal and superluminal pulse propagations through the system. When the inclusions' shape is not spherical, it is possible to observe significant superluminal behavior of the pulse propagation, although the volume fraction is the same. The shape-dependent critical volume fraction is predicted, above which superluminal propagation appears. Furthermore, the Hartman effect in such a system is also investigated
Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers
International Nuclear Information System (INIS)
Borghese, F.; Denti, P.; Saija, R.; Toscano, G.; Sindoni, O.I.
1984-01-01
A method to calculate the macroscopic optical constants of a low-density medium consisting of a cloud of identical nonspherical scatterers is presented. The scatterers in the medium are clusters of dielectric spheres and the electromagnetic field scattered by each of the clusters is obtained as a superposition of multipole fields, as previously proposed by the authors. The transformation properties of the spherical multipoles under rotation allow the orientation-dependent terms in the expression for the forward-scattering amplitude of each of the clusters to be factored out. In this way the sum of the scattering amplitudes of the clusters with different orientations, needed to calculate the optical response of the medium, is greatly facilitated and admits a simple analytic expression in the case of randomly oriented clusters. Results of calculations of the optical constants for a few model media are presented
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity
Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi
2018-01-01
The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.
Veghte, Daniel P; Freedman, Miriam A
2012-11-06
It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.
Radiation drag in the field of a non-spherical source
Bini, D.; Geralico, A.; Passamonti, A.
2015-01-01
The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.
Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes
International Nuclear Information System (INIS)
Nagar, Alessandro; Rezzolla, Luciano
2005-01-01
The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this review is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides pointing out some inconsistencies in the literature, the expressions collected here could serve as a quick reference for the calculation of the perturbations of a Schwarzschild black-hole spacetime driven by generic sources and for those approaches in which gravitational waves are extracted from numerically generated spacetimes. (topical review)
International Nuclear Information System (INIS)
Peng, Chenhui; Turiv, Taras; Guo, Yubing; Shiyanovskii, Sergij V; Wei, Qi-Huo; Lavrentovich, Oleg D; Zhang, Rui; De Pablo, Juan
2017-01-01
Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices. (paper)
Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D.
2017-01-01
Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.
Transverse components of the radiation force on nonspherical particles in the T-matrix formalism
International Nuclear Information System (INIS)
Saija, Rosalba; Antonia Iati, Maria; Giusto, Arianna; Denti, Paolo; Borghese, Ferdinando
2005-01-01
In the framework of the transition matrix approach, we calculate the force exerted by a plane wave (radiation force) on a dispersion of nonspherical particles modeled as aggregates of spheres. Beyond the customary radiation pressure we also consider the components of the radiation force in a plane orthogonal to the direction of incidence of the incoming wave (transverse components). Our calculations show that, although the latter are generally smaller than the radiation pressure, they are in no way negligible and may be important for some applications, e.g. when studying the dynamics of cosmic dust grains. We also calculate the ensemble average of the components of the radiation force over the orientation of the particles in two physically significant cases: the case of random distribution and the case in which the orientations are randomly distributed around an axis fixed in space (axial average). As expected, we find that, unlike the case of random orientation, the transverse components do not vanish for axial average
Numerical determination of the effective moments of non-spherical particles
International Nuclear Information System (INIS)
Green, Nicolas G; Jones, Thomas B
2007-01-01
Dielectric characterisation of polarisable particles, and prediction of the forces and torques exerted upon them, relies on the knowledge of the effective, induced dipole moment. In turn, through the mechanism of depolarisation, the induced dipole moment of a particle is strongly dependent upon its shape. Since realistic shapes create modelling difficulties, the 'spherical particle' approximation is often invoked. However, in many cases, including biological dielectric spectroscopy and dielectrophoresis, this assumption is a poor one. For example, human erythrocytes are essentially oblate spheroids with indented sides, while viruses and bacteria often have elongated cigar shapes. Since shape-dependent polarisation both strongly influences the accuracy of conventional dielectric characterisation methods using Maxwell's mixture formula and confounds accurate prediction of dielectrophoretic forces and torques, it is important to develop means to treat non-spherical particles. In this paper, we demonstrate a means to extract the dipole moment directly from numerical solutions of the induced electrostatic potential when a particle is placed in a uniform electric field. The accuracy of the method is demonstrated for a range of particle shapes: spherical, ellipsoidal, truncated cylinders and an approximation of an erythrocyte, the red blood cell
Effects of snow grain non-sphericity on climate simulations: Sensitivity tests with the NorESM model
Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf
2017-04-01
Snow grains are non-spherical and generally irregular in shape. Still, in radiative transfer calculations, they are often treated as spheres. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this work, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (≈ 0.78 in the visible region) than in the spherical case (≈ 0.89). Therefore, for a given snow grain size, the use of non-spherical snow grains yields a higher snow broadband albedo, typically by ≈0.03. Consequently, considering the spherical case as the baseline, the use of non-spherical snow grains results in a negative radiative forcing (RF), with a global-mean top-of-the-model value of ≈ -0.22 W m-2. Although this global-mean RF is modest, it has a rather substantial impact on the climate simulated by NoRESM. In particular, the global annual-mean 2-m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further found that the difference between NONSPH and SPH could be largely "tuned away" by adjusting the snow grain size in the NONSPH experiment by ≈ 70%. The impact of snow grain shape on the radiative effect (RE) of absorbing aerosols in snow (black carbon and mineral dust) is also discussed. For an
Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor
Liao, L.; Meneghini, R.
2009-04-01
The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric
International Nuclear Information System (INIS)
Klüser, Lars; Di Biagio, Claudia; Kleiber, Paul D.; Formenti, Paola; Grassian, Vicki H.
2016-01-01
Optical properties (extinction efficiency, single scattering albedo, asymmetry parameter and scattering phase function) of five different desert dust minerals have been calculated with an asymptotic approximation approach (AAA) for non-spherical particles. The AAA method combines Rayleigh-limit approximations with an asymptotic geometric optics solution in a simple and straightforward formulation. The simulated extinction spectra have been compared with classical Lorenz–Mie calculations as well as with laboratory measurements of dust extinction. This comparison has been done for single minerals and with bulk dust samples collected from desert environments. It is shown that the non-spherical asymptotic approximation improves the spectral extinction pattern, including position of the extinction peaks, compared to the Lorenz–Mie calculations for spherical particles. Squared correlation coefficients from the asymptotic approach range from 0.84 to 0.96 for the mineral components whereas the corresponding numbers for Lorenz–Mie simulations range from 0.54 to 0.85. Moreover the blue shift typically found in Lorenz–Mie results is not present in the AAA simulations. The comparison of spectra simulated with the AAA for different shape assumptions suggests that the differences mainly stem from the assumption of the particle shape and not from the formulation of the method itself. It has been shown that the choice of particle shape strongly impacts the quality of the simulations. Additionally, the comparison of simulated extinction spectra with bulk dust measurements indicates that within airborne dust the composition may be inhomogeneous over the range of dust particle sizes, making the calculation of reliable radiative properties of desert dust even more complex. - Highlights: • A fast and simple method for estimating optical properties of dust. • Can be used with non-spherical particles of arbitrary size distributions. • Comparison with Mie simulations and
Chien, A; Xu, M; Yokota, H; Scalzo, F; Morimoto, E; Salamon, N
2018-01-25
Recent studies have strongly associated intracranial aneurysm growth with increased risk of rupture. Identifying aneurysms that are likely to grow would be beneficial to plan more effective monitoring and intervention strategies. Our hypothesis is that for unruptured intracranial aneurysms of similar size, morphologic characteristics differ between aneurysms that continue to grow and those that do not. From aneurysms in our medical center with follow-up imaging dates in 2015, ninety-three intracranial aneurysms (23 growing, 70 stable) were selected. All CTA images for the aneurysm diagnosis and follow-up were collected, a total of 348 3D imaging studies. Aneurysm 3D geometry for each imaging study was reconstructed, and morphologic characteristics, including volume, surface area, nonsphericity index, aspect ratio, and size ratio were calculated. Morphologic characteristics were found to differ between growing and stable groups. For aneurysms of 7 mm, volume ( P differ between those that are growing and those that are stable. The nonsphericity index, in particular, was found to be higher among growing aneurysms. The size ratio was found to be the second most significant parameter associated with growth. © 2018 by American Journal of Neuroradiology.
Hu, Shuai; Gao, Taichang; Li, Hao; Yang, Bo; Jiang, Zidong; Liu, Lei; Chen, Ming
2017-10-01
The performance of absorbing boundary condition (ABC) is an important factor influencing the simulation accuracy of MRTD (Multi-Resolution Time-Domain) scattering model for non-spherical aerosol particles. To this end, the Convolution Perfectly Matched Layer (CPML), an excellent ABC in FDTD scheme, is generalized and applied to the MRTD scattering model developed by our team. In this model, the time domain is discretized by exponential differential scheme, and the discretization of space domain is implemented by Galerkin principle. To evaluate the performance of CPML, its simulation results are compared with those of BPML (Berenger's Perfectly Matched Layer) and ADE-PML (Perfectly Matched Layer with Auxiliary Differential Equation) for spherical and non-spherical particles, and their simulation errors are analyzed as well. The simulation results show that, for scattering phase matrices, the performance of CPML is better than that of BPML; the computational accuracy of CPML is comparable to that of ADE-PML on the whole, but at scattering angles where phase matrix elements fluctuate sharply, the performance of CPML is slightly better than that of ADE-PML. After orientation averaging process, the differences among the results of different ABCs are reduced to some extent. It also can be found that ABCs have a much weaker influence on integral scattering parameters (such as extinction and absorption efficiencies) than scattering phase matrices, this phenomenon can be explained by the error averaging process in the numerical volume integration.
International Nuclear Information System (INIS)
Cintra Filho, J. de S.
1981-01-01
The fluctuating temperature field structure is studied for the case of turbulent circular pipe flow. Experimentally determined integral length scales are used in modeling this structure in terms of axisymmetric forms. It is found that the appropriate angle of axisymmetry is larger than the one for modeling the large scale velocity structure. The axisymmetric model is then used to examine the validity and the prediction capability of the Tyldesley and Silver's non-spherical eddy diffusivity theory. (Author) [pt
Gawryszczak, A.; Guzman, J.; Plewa, T.; Kifonidis, K.
2010-10-01
Aims: We study the hydrodynamic evolution of a non-spherical core-collapse supernova in two spatial dimensions. We begin our study from the moment of shock revival - taking into account neutrino heating and cooling, nucleosynthesis, convection, and the standing accretion shock (SASI) instability of the supernova blast - and continue for the first week after the explosion when the expanding flow becomes homologous and the ejecta enter the early supernova remnant (SNR) phase. We observe the growth and interaction of Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities resulting in an extensive mixing of the heavy elements throughout the ejecta. We obtain a series of models at progressively higher resolution and provide a discussion of numerical convergence. Methods: Different from previous studies, our computations are performed in a single domain. Periodic mesh mapping is avoided. This is made possible by employing cylindrical coordinates, and an adaptive mesh refinement (AMR) strategy in which the computational workload (defined as the product of the total number of computational cells and the length of the time step) is monitored and, if necessary, reduced. Results: Our results are in overall good agreement with the AMR simulations we have reported in the past. We show, however, that numerical convergence is difficult to achieve, due to the strongly non-linear nature of the problem. Even more importantly, we find that our model displays a strong tendency to expand laterally away from the equatorial plane and toward the poles. We demonstrate that this expansion is a physical property of the low-mode, SASI instability. Although the SASI operates only within about the first second of the explosion, it leaves behind a large lateral velocity gradient in the post shock layer which affects the evolution for minutes and hours later. This results in a prolate deformation of the ejecta and a fast advection of the highest-velocity 56Ni-rich material from
Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.
2018-04-01
Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.
Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.
2017-12-01
Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.
Pollack, J. B.; Cuzzi, J. N.
1980-01-01
An approximate method is proposed for evaluating the interaction of randomly oriented, nonspherical particles with the total intensity component of electromagnetic radiation. When the particle size parameter, x, the ratio of particle circumference to wavelength, is less than some upper bound x(o) (about 5), Mie theory is used. For x greater than x(o), the interaction is divided into three components: diffraction, external reflection, and transmission. Physical optics theory is used to obtain the first of these components; geometrical optics theory is applied to the second; and a simple parameterization is employed for the third. The predictions of this theory are found to be in very good agreement with laboratory measurements for a wide variety of particle shapes, sizes, and refractive indexes. Limitations of the theory are also noted.
International Nuclear Information System (INIS)
Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.
2009-01-01
We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.
International Nuclear Information System (INIS)
Evlanov, M.V.
1989-01-01
The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle
Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei
International Nuclear Information System (INIS)
Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.
1989-01-01
We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus
Energy Technology Data Exchange (ETDEWEB)
Duvnjak, Stevo, E-mail: stevo.duvnjak@rsyd.dk [Odense University Hospital, Department of Radiology (Denmark); Ravn, Pernille [Odense University Hospital, Department of Gynecology (Denmark); Green, Anders [Odense University Hospital, Odense Patient Data Explorative Network (Denmark); Andersen, Poul Erik [Odense University Hospital, Department of Radiology (Denmark)
2016-02-15
PurposeThis study was designed to evaluate the long-term clinical outcome and frequency of reinterventions in patients with uterine fibroids treated with embolization at a single center using polyvinyl alcohol microparticles.MethodsThe study included all patients with symptomatic uterine fibroids treated with uterine fibroid embolization (UFE) with spherical (s-PVA) and nonspherical (ns-PVA) polyvinyl alcohol microparticles during the period January 2001 to January 2011. Clinical success and secondary interventions were examined. Hospital records were reviewed during follow-up, and symptom-specific questionnaires were sent to all patients.ResultsIn total, 515 patients were treated with UFE and 350 patients (67 %) were available for long-term clinical follow-up. Median time of follow-up was 93 (range 76–120.2) months. Eighty-five patients (72 %) had no reinterventions during follow-up in the group embolized with ns-PVA compared with 134 patients (58 %) treated with s-PVA. Thirty-three patients (28 %) underwent secondary interventions in the ns-PVA group compared with 98 patients (42 %) in s-PVA group (χ{sup 2} test, p < 0.01).ConclusionsSpherical PVA particles 500–700 µm showed high reintervention rate at long-term follow-up, and almost one quarter of the patients underwent secondary interventions, suggesting that this type of particle is inappropriate for UFE.
International Nuclear Information System (INIS)
Sturm, Robert; Hofmann, Werner
2009-01-01
In the contribution presented here a computer model for the description of non-spherical particle deposition in the upper human respiratory tract is introduced. The theoretical approach is mainly based on the principle of the aerodynamic diameter, whose calculation was carried out according to most current scientific findings. With the help of this parameter deposition patterns for various particle categories (fibers and oblate disks) and breathing conditions (sitting, light-work and hard-work breathing) were simulated. Concerning cylindrical fibers with a diameter ≥ 1 μm, an increase of the aspect ratio β (i.e. particle length/particle diameter) causes a significant enhancement of deposition in the uppermost regions of the respiratory tract (oropharynx, larynx, trachea). This effect is additionally intensified by an increase of the inhalative flow. Regarding the oblate disks with a diameter ≥ 1 μm, any decrease of the aspect ratio leads to an enhancement of deposition in the deeper lung regions, representing an effect contrary to that observed for fibers. An increase of the inhalative flow only induces a limited decrease of the effect. (orig.)
Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2014-04-01
The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica
2018-05-01
In our previous work we confirmed the reliability of the spherically symmetric Schwarzschild orbit-superposition method to recover the mass and velocity anisotropy profiles of spherical dwarf galaxies. Here, we investigate the effect of its application to intrinsically non-spherical objects. For this purpose we use a model of a dwarf spheroidal galaxy formed in a numerical simulation of a major merger of two discy dwarfs. The shape of the stellar component of the merger remnant is axisymmetric and prolate which allows us to identify and measure the bias caused by observing the spheroidal galaxy along different directions, especially the longest and shortest principal axis. The modelling is based on mock data generated from the remnant that are observationally available for dwarfs: projected positions and line-of-sight velocities of the stars. In order to obtain a reliable tool while keeping the number of parameters low we parametrize the total mass distribution as a radius-dependent mass-to-light ratio with just two free parameters we aim to constrain. Our study shows that if the total density profile is known, the true, radially increasing anisotropy profile can be well recovered for the observations along the longest axis whereas the data along the shortest axis lead to the inference of an incorrect, isotropic model. On the other hand, if the density profile is derived from the method as well, the anisotropy is always underestimated but the total mass profile is well recovered for the data along the shortest axis whereas for the longest axis the mass content is overestimated.
International Nuclear Information System (INIS)
Das, Raj; Gonsalves, Michael; Vlahos, Ioannis; Manyonda, Issac; Belli, Anna-Maria
2013-01-01
Purpose: We have observed significant rates of uterine artery patency after uterine artery embolization (UAE) with nonspherical polyvinyl alcohol (nsPVA) on 6 month follow-up MR scanning. The study aim was to quantitatively assess uterine artery patency after UAE with nsPVA and to assess the effect of continued uterine artery patency on outcomes. Methods: A single centre, retrospective study of 50 patients undergoing bilateral UAE for uterine leiomyomata was undertaken. Pelvic MRI was performed before and 6 months after UAE. All embolizations were performed with nsPVA. Outcome measures included uterine artery patency, uterine and dominant fibroid volume, dominant fibroid percentage infarction, presence of ovarian arterial collaterals, and symptom scores assessed by the Uterine Fibroid Symptom and Quality of Life questionnaire (UFS-QOL). Results: Magnetic resonance angiographic evidence of uterine artery recanalization was demonstrated in 90 % of the patients (64 % bilateral, 26 % unilateral) at 6 months. Eighty percent of all dominant fibroids demonstrated >90 % infarction. The mean percentage reduction in dominant fibroid volume was 35 %. No significant difference was identified between nonpatent, unilateral, and bilateral recanalization of the uterine arteries with regard to percentage dominant fibroid infarction or dominant fibroid volume reduction. The presence of bilaterally or unilaterally patent uterine arteries was not associated with inferior clinical outcomes (symptom score or UFS-QOL scores) at 6 months. Conclusion: The high rates of uterine artery patency challenge the current paradigm that nsPVA is a permanent embolic agent and that permanent uterine artery occlusion is necessary to optimally treat uterine fibroids. Despite high rates of uterine artery recanalization in this cohort, satisfactory fibroid infarction rates and UFS-QOL scores were achieved
Energy Technology Data Exchange (ETDEWEB)
Das, Raj, E-mail: rajdas@nhs.net; Gonsalves, Michael; Vlahos, Ioannis [St George' s Healthcare NHS Trust, Blackshaw, Department of Radiology (United Kingdom); Manyonda, Issac [St George' s Healthcare NHS Trust, Department of Gynaecology (United Kingdom); Belli, Anna-Maria [St George' s Healthcare NHS Trust, Blackshaw, Department of Radiology (United Kingdom)
2013-10-15
Purpose: We have observed significant rates of uterine artery patency after uterine artery embolization (UAE) with nonspherical polyvinyl alcohol (nsPVA) on 6 month follow-up MR scanning. The study aim was to quantitatively assess uterine artery patency after UAE with nsPVA and to assess the effect of continued uterine artery patency on outcomes. Methods: A single centre, retrospective study of 50 patients undergoing bilateral UAE for uterine leiomyomata was undertaken. Pelvic MRI was performed before and 6 months after UAE. All embolizations were performed with nsPVA. Outcome measures included uterine artery patency, uterine and dominant fibroid volume, dominant fibroid percentage infarction, presence of ovarian arterial collaterals, and symptom scores assessed by the Uterine Fibroid Symptom and Quality of Life questionnaire (UFS-QOL). Results: Magnetic resonance angiographic evidence of uterine artery recanalization was demonstrated in 90 % of the patients (64 % bilateral, 26 % unilateral) at 6 months. Eighty percent of all dominant fibroids demonstrated >90 % infarction. The mean percentage reduction in dominant fibroid volume was 35 %. No significant difference was identified between nonpatent, unilateral, and bilateral recanalization of the uterine arteries with regard to percentage dominant fibroid infarction or dominant fibroid volume reduction. The presence of bilaterally or unilaterally patent uterine arteries was not associated with inferior clinical outcomes (symptom score or UFS-QOL scores) at 6 months. Conclusion: The high rates of uterine artery patency challenge the current paradigm that nsPVA is a permanent embolic agent and that permanent uterine artery occlusion is necessary to optimally treat uterine fibroids. Despite high rates of uterine artery recanalization in this cohort, satisfactory fibroid infarction rates and UFS-QOL scores were achieved.
International Nuclear Information System (INIS)
Kahnert, Michael; Nousiainen, Timo; Mauno, Paeivi
2011-01-01
We perform a comparative modelling study to investigate how different morphological features influence the optical properties of hematite aerosols. We consider high-order Chebyshev particles as a proxy for aerosol with a small-scale surface roughness, and spheroids as a model for nonspherical aerosols with a smooth boundary surface. The modelling results are compared to those obtained for homogeneous spherical particles. It is found that for hematite particles with an absorption efficiency of order unity the difference in optical properties between spheres and spheroids disappears. For optically softer particles, such as ice particles at far-infrared wavelengths, this effect can be observed for absorption efficiencies lower than unity. The convergence of the optical properties of spheres and spheroids is caused by absorption and quenching of internal resonances inside the particles, which depend both on the imaginary part of the refractive index and on the size parameter, and to some extent on the real part of the refractive index. By contrast, small-scale surface roughness becomes the dominant morphological feature for large particles. This effect is likely to depend on the amplitude of the surface roughness, the relative significance of internal resonances, and possibly on the real part of the refractive index. The extinction cross section is rather insensitive to surface roughness, while the single-scattering albedo, asymmetry parameter, and the Mueller matrix are strongly influenced. Small-scale surface roughness reduces the backscattering cross section by up to a factor of 2-3 as compared to size-equivalent particles with a smooth boundary surface. This can have important implications for the interpretation of lidar backscattering observations.
International Nuclear Information System (INIS)
Carlen, E.A.
1984-01-01
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gorban' , I S; Gumenyuk, A F; Omel' yanenko, V A [Kievskij Gosudarstvennyj Univ., Kiev (Ukrainian SSR)
1989-11-01
Thermoluminescence (TL) of initial and thermally treated purposely undoped crystals of barium niobate - sodium has been studied within 85-400 K. The TL intensity is found to depend on the temperature to which the sample has been heated. A conclusion is drawn that nonstationarity of the TL properties is due to slowly occuring processes of compensation of pyrocharge, which depend on the temperatural prehistory of the sample. A mechanism of the traps transformation in a strong pyrofield of high-impedance crystals is discussed.
Olson, William S.; Tian, Lin; Grecu, Mircea; Kuo, Kwo-Sen; Johnson, Benjamin; Heymsfield, Andrew J.; Bansemer, Aaron; Heymsfield, Gerald M.; Wang, James R.; Meneghini, Robert
2016-01-01
In this study, two different particle models describing the structure and electromagnetic properties of snow are developed and evaluated for potential use in satellite combined radar-radiometer precipitation estimation algorithms. In the first model, snow particles are assumed to be homogeneous ice-air spheres with single-scattering properties derived from Mie theory. In the second model, snow particles are created by simulating the self-collection of pristine ice crystals into aggregate particles of different sizes, using different numbers and habits of the collected component crystals. Single-scattering properties of the resulting nonspherical snow particles are determined using the discrete dipole approximation. The size-distribution-integrated scattering properties of the spherical and nonspherical snow particles are incorporated into a dual-wavelength radar profiling algorithm that is applied to 14- and 34-GHz observations of stratiform precipitation from the ER-2 aircraft-borne High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) radar. The retrieved ice precipitation profiles are then input to a forward radiative transfer calculation in an attempt to simulate coincident radiance observations from the Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR). Much greater consistency between the simulated and observed CoSMIR radiances is obtained using estimated profiles that are based upon the nonspherical crystal/aggregate snow particle model. Despite this greater consistency, there remain some discrepancies between the higher moments of the HIWRAP-retrieved precipitation size distributions and in situ distributions derived from microphysics probe observations obtained from Citation aircraft underflights of the ER-2. These discrepancies can only be eliminated if a subset of lower-density crystal/aggregate snow particles is assumed in the radar algorithm and in the interpretation of the in situ data.
Pollack, J. B.; Cuzzi, J. N.
1978-01-01
Mie theory, which is generally used to describe the scattering behavior of particles at a certain wavelength, is only rigorously correct for spherical particles. Particles found as atmospheric constituents, with the exception of cloud droplets, are, however, decidedly nonspherical. An investigation is, therefore, conducted regarding the significant ways in which the scattering behavior of irregularly shaped particles differs from that of spheres. A systematic method is formulated for treating the real scalar scattering behavior. A description is presented of a new semiempirical theory based on simple physical principles and data obtained in laboratory measurements, which successfully reproduces the single scattering phase function for a wide range of particle shapes, sizes, and refractive indices.
Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin
2016-04-01
the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.
International Nuclear Information System (INIS)
Yu Fengmei; Zou Huamin; Wang Jianbo; Wang Renhui
2004-01-01
The atomic positions are obtained from a modified non-spherical model of icosahedral AlPdMn quasicrystal (Fang et al 2003 J. Phys.: Condens. Matter 15 4947) by the cut method. The four-shell pseudo-Mackay clusters (PMCs) were searched for in a box of 400 A x 400 A x 400 A. The results show that the number of atoms in the fourth shell, an icosidodecahedron, of the pseudo-Mackay cluster can vary from 15 to 30 because of the cluster overlap, and about 99.96% of the total atoms are included in such incomplete pseudo-Mackay clusters. The characteristics of the atom distribution in the planes perpendicular to a fivefold axis indicate that the planes, which are 1.56 A apart from their neighbouring planes, are expected to be the terminal surfaces. If one such a plane and its closest neighbouring plane, between which the spacing is 0.48 A, are considered as a thin layer or a corrugated surface, these layers are also the layers with the maximum density. The pair of corrugated surfaces that are 1.56 A apart have almost identical chemical composition. These planes form terraces that follow the rule of the Fibonacci sequence with two step heights, 6.60 and 4.08 A. On the corrugated surfaces perpendicular to a fivefold axis the pentagonal holes arise from the interspaces of adjacent incomplete PMCs. For the atomic planes normal to a twofold axis, the planes with spacing of 1.48 A from their adjacent planes might be expected to be the terminal surfaces, which form terraces with step heights of 6.28 and 3.88 A following the rule of the Fibonacci sequence. For the atomic planes normal to a threefold axis, the planes with spacing of 0.86 A from their adjacent planes might be expected to be the terminal surfaces. No similar results were found for the atomic layers perpendicular to a pseudo-twofold axis
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Min; Kim, Man-Deuk, E-mail: mdkim@yuhs.ac; Han, Kichang; Muqmiroh, Lailatul [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Severance Hospital (Korea, Republic of); Kim, Seung Up [Yonsei University College of Medicine, Department of Internal Medicine, Severance Hospital (Korea, Republic of); Kim, Gyoung Min; Kwon, Joonho; Park, Sung Il; Won, Jong Yun; Lee, Do Yun [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Severance Hospital (Korea, Republic of)
2017-05-15
PurposeTo evaluate the effect of bariatric arterial embolization (BAE) with non-spherical polyvinyl alcohol (PVA) particles on systemic ghrelin levels, weight change, and gastric ulceration risk in a swine model.Materials and MethodsFrom March 2014 to February 2015, ten healthy swine were used in the study (mean weight 31.5 kg; range 24.0–41.5 kg). The animals were randomly assigned to two groups: the embolized group (n = 5) in which BAE was performed and the control group (n = 5). In the embolized group, BAE was performed by selectively infusing 150–250 or 50–150 μm PVA into the gastric arteries that supplied the fundus of the stomach. In the control group, a sham procedure was performed with saline infusion. Plasma ghrelin levels were prospectively obtained at baseline and every 2 weeks thereafter. Endoscopy was performed 3 weeks after BAE to see whether any gastric ulcer occurred. To determine the durability of the occluded arteries, repeated celiac trunk angiography was performed 8 weeks after BAE. Then, all the swine were killed and necropsies were performed.ResultsThe mean post-procedure ghrelin value decreased by 370.0 pg/mL in the embolized group at week 3 (mean 536.0 ± 334.3 pg/mL) and week 5 (mean 515.0 ± 150.0 pg/mL, p < 0.05) relative to baseline (880.0 ± 559.5 pg/mL), respectively, but ghrelin levels were not significantly decreased between the embolized and control groups. There was a significant body weight change as follows: 35.1 ± 9.5 to 46.6 ± 15.7 kg and 31.8 ± 5.8 to 41.2 ± 6.6 kg at baseline and endpoint in the control and embolized groups, respectively (p < 0.05). However, the difference between groups was not significant at endpoint. In the embolized group, ulcerations were identified in three animals (60%) and the recanalization of the embolized arteries was noted on follow-up angiography in three animals (60%), respectively.ConclusionBAE with PVA particles can transiently suppress ghrelin
International Nuclear Information System (INIS)
Kim, Jae Min; Kim, Man-Deuk; Han, Kichang; Muqmiroh, Lailatul; Kim, Seung Up; Kim, Gyoung Min; Kwon, Joonho; Park, Sung Il; Won, Jong Yun; Lee, Do Yun
2017-01-01
PurposeTo evaluate the effect of bariatric arterial embolization (BAE) with non-spherical polyvinyl alcohol (PVA) particles on systemic ghrelin levels, weight change, and gastric ulceration risk in a swine model.Materials and MethodsFrom March 2014 to February 2015, ten healthy swine were used in the study (mean weight 31.5 kg; range 24.0–41.5 kg). The animals were randomly assigned to two groups: the embolized group (n = 5) in which BAE was performed and the control group (n = 5). In the embolized group, BAE was performed by selectively infusing 150–250 or 50–150 μm PVA into the gastric arteries that supplied the fundus of the stomach. In the control group, a sham procedure was performed with saline infusion. Plasma ghrelin levels were prospectively obtained at baseline and every 2 weeks thereafter. Endoscopy was performed 3 weeks after BAE to see whether any gastric ulcer occurred. To determine the durability of the occluded arteries, repeated celiac trunk angiography was performed 8 weeks after BAE. Then, all the swine were killed and necropsies were performed.ResultsThe mean post-procedure ghrelin value decreased by 370.0 pg/mL in the embolized group at week 3 (mean 536.0 ± 334.3 pg/mL) and week 5 (mean 515.0 ± 150.0 pg/mL, p < 0.05) relative to baseline (880.0 ± 559.5 pg/mL), respectively, but ghrelin levels were not significantly decreased between the embolized and control groups. There was a significant body weight change as follows: 35.1 ± 9.5 to 46.6 ± 15.7 kg and 31.8 ± 5.8 to 41.2 ± 6.6 kg at baseline and endpoint in the control and embolized groups, respectively (p < 0.05). However, the difference between groups was not significant at endpoint. In the embolized group, ulcerations were identified in three animals (60%) and the recanalization of the embolized arteries was noted on follow-up angiography in three animals (60%), respectively.ConclusionBAE with PVA particles can transiently suppress ghrelin
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
International Nuclear Information System (INIS)
Lalis, A.; Rouviere, R.; Simon, G.
1976-01-01
A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture
Pollack, J. B.; Cuzzi, J. N.
1980-01-01
A semiempirical theory is developed which is based on simple physical principles and comparisons with laboratory measurements. The ultimate utility of this approach rests on its ability to successfully reproduce the observed single-scattering phase function for a wide variety of particle shapes, sizes and refractive indices. This approximate theory is developed for evaluating the interaction of randomly oriented, nonspherical particles with the total intensity component of electromagnetic radiation. Mie theory is used when the particle size parameter x (ratio of particle circumference to wavelength) is less than some upper bound x sub zero (about 5). For x greater than x sub zero, the interaction is divided into three components: diffraction, external reflection and transmission. The application of the theory is illustrated by considering the influence of the shape of tropospheric aerosols on their contribution to the earth's global albedo.
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.
2016-01-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
International Nuclear Information System (INIS)
Bi, Lei; Yang, Ping
2016-01-01
The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles. - Highlights: • Concepts of diffraction, reflection and tunneling are refined. • The diffraction together with reflection is rigorously treated. • An improved invariant imbedding method is employed to compute the Debye
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Hereditary Diffuse Gastric Cancer
... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
International Nuclear Information System (INIS)
Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Okamoto, Hajime
2011-01-01
We developed backward and forward types of algorithms for estimating the vertical profiles of extinction coefficients at 532 nm for three component aerosols (water-soluble, dust, and sea salt) using three-channel Mie-scattering lidar data of the backscatter (β) at 532 and 1064 nm and the depolarization ratio (δ) at 532 nm. While the water-soluble and sea-salt particles were reasonably assumed to be spherical, the dust particles were treated as randomly oriented spheroids to account for their nonsphericity. The introduction of spheroid models enabled us to more effectively use the three-channel data (i.e., 2β+1δ data) and to reduce the uncertainties caused by the assumption of spherical dust particles in our previously developed algorithms. We also performed an extensive sensitivity study to estimate retrieval errors, which showed that the errors in the extinction coefficient for each aerosol component were smaller than 30% (60%) for the backward (forward) algorithm when the measurement errors were ±5%. We demonstrated the ability of the algorithms to partition aerosol layers consisting of three aerosol components by applying them to shipborne lidar data. Comparisons with sky radiometer measurements revealed that the retrieved optical thickness and angstrom exponent of aerosols using the algorithms developed in this paper agreed well with the sky radiometer measurements (within 6%).
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Excess Entropy and Diffusivity
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.
Diffusing diffusivity: Rotational diffusion in two and three dimensions
Jain, Rohit; Sebastian, K. L.
2017-06-01
We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.
International Nuclear Information System (INIS)
Tiwari, G.P.; Kale, G.B.; Patil, R.V.
1999-01-01
The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)
Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang
2017-12-01
Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.
Bi, Lei; Yang, Ping
2016-07-01
The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.
Diffusion archeology for diffusion progression history reconstruction
Sefer, Emre; Kingsford, Carl
2015-01-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Diffusion in reactor materials
International Nuclear Information System (INIS)
Fedorov, G.B.; Smirnov, E.A.
1984-01-01
The monograph contains a brief description of the principles underlying the theory of diffusion, as well as modern methods of studying diffusion. Data on self-diffusion and diffusion of impurities in a nuclear fuel and fissionable materials (uranium, plutonium, thorium, zirconium, titanium, hafnium, niobium, molybdenum, tungsten, beryllium, etc.) is presented. Anomalous diffusion, diffusion of components, and interdiffusion in binary and ternary alloys were examined. The monograph presents the most recent reference material on diffusion. It is intended for a wide range of researchers working in the field of diffusion in metals and alloys and attempting to discover new materials for application in nuclear engineering. It will also be useful for teachers, research scholars and students of physical metallurgy
International Nuclear Information System (INIS)
Reus, K.W.
1979-01-01
This thesis is concerned with the back-diffusion method of calculating the mutual diffusion coefficient of two gases. The applicability of this method for measuring diffusion coefficients at temperatures up to 1300 K is considered. A further aim of the work was to make a contribution to the description of the interatomic potential energy of noble gases at higher energies as a function of the internuclear distance. This was achieved with the measured diffusion coefficients, especially with those for high temperatures. (Auth.)
Diffusion Under Geometrical Constraint
Ogawa, Naohisa
2014-01-01
Here we discus the diffusion of particles in a curved tube. This kind of transport phenomenon is observed in biological cells and porous media. To solve such a problem, we discuss the three dimensional diffusion equation with a confining wall forming a thinner tube. We find that the curvature appears in a effective diffusion coefficient for such a quasi-one-dimensional system. As an application to higher dimensional case, we discuss the diffusion in a curved surface with ...
DEFF Research Database (Denmark)
Zhang, Chen
Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...
Thermal diffusion (1963); Diffusion thermique (1963)
Energy Technology Data Exchange (ETDEWEB)
Lemarechal, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [French] Ce rapport rassemble les principes essentiels de la diffusion thermique en phase liquide et en phase gazeuse. Les aspects macroscopique et moleculaire de la constante de diffusion thermique sont passes en revue ainsi que ses differentes methodes de mesure; mais les developpements les plus importants concernent le fonctionnement de ls colonne thermogravitationnelle de CLUSIUS et DICKEL et ses applications. (auteur)
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Diffusion in molybdenum disilicide
International Nuclear Information System (INIS)
Salamon, M.; Mehrer, H.
2005-01-01
The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
International Nuclear Information System (INIS)
Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom
2013-01-01
Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer
International Nuclear Information System (INIS)
Garrett, G.A.; Shacter, J.
1978-01-01
A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof
Inpainting using airy diffusion
Lorduy Hernandez, Sara
2015-09-01
One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.
Diffusion in compacted betonite
International Nuclear Information System (INIS)
Muurinen, A.; Rantanen, J.
1985-01-01
The objective of this report is to collect the literature bearing on the diffusion in compacted betonite, which has been suggested as possible buffer material for the disposal of spent fuel. Diffusion in a porous, water-saturated material is usually described as diffusion in the pore-water where sorption on the solid matter can delay the migration in the instationary state. There are also models which take into consideration that the sorbed molecules can also move while being sorbed. Diffusion experiments in compacted bentonite have been reported by many authors. Gases, anions, cations and actinides have been used as diffusing molecules. The report collects the results and the information on the measurement methods. On the basis of the results can be concluded that different particles possibly follow different diffusion mechanisms. The parameters which affect the diffusion seem to be for example the size, the electric charge and the sorption properties of the diffusing molecule. The report also suggest the parameters to be used in the diffusion calculation of the safety analyses of spent fuel disposal. (author)
Discrimination of thermal diffusivity
Bergmann Tiest, W.M.; Kappers, A.M.L.
2009-01-01
Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon
2007-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon
2006-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Adaptation and Cultural Diffusion.
Ormrod, Richard K.
1992-01-01
Explores the role of adaptation in cultural diffusion. Explains that adaptation theory recognizes the lack of independence between innovations and their environmental settings. Discusses testing and selection, modification, motivation, and cognition. Suggests that adaptation effects are pervasive in cultural diffusion but require a broader, more…
Modelling of Innovation Diffusion
Directory of Open Access Journals (Sweden)
Arkadiusz Kijek
2010-01-01
Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract
International Nuclear Information System (INIS)
Lemarechal, A.
1963-01-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr
Directory of Open Access Journals (Sweden)
Matthew A. Brodsky
2012-08-01
Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Michaud, Georges; Richer, Jacques
2015-01-01
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
International Nuclear Information System (INIS)
Black, J.H.
1987-01-01
The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed
Infrared diffuse interstellar bands
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
International Nuclear Information System (INIS)
Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.
1978-01-01
The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)
International Nuclear Information System (INIS)
Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.
2005-01-01
A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory
Diffusion between evolving interfaces
International Nuclear Information System (INIS)
Juntunen, Janne; Merikoski, Juha
2010-01-01
Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.
Peppin, Stephen S. L.
2009-01-01
concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...... resulting from the design were two-day training workshops conceptually anchored to TBP. The design theory was evaluated through execution of eight diffusion workshops involving three different groups in the same company. The findings indicate that the match between the practice and the context materialized...... that the behavior will be effective). These two factors were especially critical if the source context of the best practice is qualitatively different from the target context into which the organization is seeking to diffuse the best practice....
Detection of diffusible substances
Energy Technology Data Exchange (ETDEWEB)
Warembourg, M [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France)
1976-12-01
The different steps of a radioautographic technique for the detection of diffusible substances are described. Using this radioautographic method, the topographic distribution of estradiol-concentrating neurons was studied in the nervous system and pituitary of the ovariectomized mouse and guinea-pig. A relatively good morphological preservation of structures can be ascertained on sections from unfixed, unembedded tissues prepared at low temperatures and kept-under relatively low humidity. The translocation or extraction of diffusible substances is avoided by directly mounting of frozen sections on dried photographic emulsion. Since no solvent is used, this technique excludes the major sources of diffusion artifacts and permits to be in favourable conditions for the localization of diffusible substances.
Peppin, Stephen S. L.
2009-01-01
Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
Advanced manufacturing: Technology diffusion
Energy Technology Data Exchange (ETDEWEB)
Tesar, A.
1995-12-01
In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.
International Nuclear Information System (INIS)
Dungey, J.W.
1984-01-01
The authors want to talk about future work, but first he will reply to Stan Cowley's comment on his naivety in believing in the whole story to 99% confidence in '65, when he knew about Fairfield's results. Does it matter whether you make the right judgment about theories? Yes, it does, particularly for experimentalists perhaps, but also for theorists. The work you do later depends on the judgment you've made on previous work. People have wasted a lot of time developing on insecure or even wrong foundations. Now for future work. One mild surprise the authors have had is that they haven't heard more about diffusion, in two contexts. Gordon Rostoker is yet to come and he may talk about particles getting into the magnetosphere by diffusion. Lots of noise is observed and so diffusion must happen. If time had not been short, the authors were planning to discuss in a handwaving way what sort of diffusion mechanisms one might consider. The other aspect of diffusion he was going to talk about is at the other end of things and is velocity diffusion, which is involved in anomalous resistivity
International Nuclear Information System (INIS)
Gardes, E.
2006-06-01
Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO 4 monocrystals and in Nd 0.66 Ca 0.17 Th 0.17 PO 4 polycrystals from Nd 0.66 Pb 0.17 Th 0.17 PO 4 thin films to investigate Pb 2+ + Th 4+ ↔ 2 Nd 3+ and Pb 2+ ↔ Ca 2+ exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb 2+ + Th 4+ ↔ 2 Nd 3+ exchange follow an Arrhenius law with parameters E equals 509 ± 24 kJ mol -1 and log(D 0 (m 2 s -1 )) equals -3.41 ± 0.77. Preliminary data for Pb 2+ ↔ Ca 2+ exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 μm grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Bicarbonate diffusion through mucus.
Livingston, E H; Miller, J; Engel, E
1995-09-01
The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.
Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman
2017-04-01
While most of the existing theoretical and simulation studies have focused on simple, spherical, halide and alkali ions, many chemically, biologically, and industrially relevant electrolytes involve complex non-spherical polyatomic ions like nitrate, chlorate, and sulfate to name only a few. Interestingly, some polyatomic ions in spite of being larger in size show anomalously high diffusivity and therefore cause a breakdown of the venerable Stokes-Einstein (S-E) relation between the size and diffusivity. Here we report a detailed analysis of the dynamics of anions in aqueous potassium nitrate (KNO3) and aqueous potassium acetate (CH3COOK) solutions. The two ions, nitrate (-NO3) and acetate (CH3-CO2 ), with their similar size show a large difference in diffusivity values. We present evidence that the translational motion of these polyatomic ions is coupled to the rotational motion of the ion. We show that unlike the acetate ion, nitrate ion with a symmetric charge distribution among all periphery oxygen atoms shows a faster rotational motion with large amplitude rotational jumps which enhances its translational motion due to translational-rotational coupling. By creating a family of modified-charge model systems, we have analysed the rotational motion of asymmetric polyatomic ions and the contribution of it to the translational motion. These model systems help clarifying and establishing the relative contribution of rotational motion in enhancing the diffusivity of the nitrate ion over the value predicted by the S-E relation and also over the other polyatomic ions having asymmetric charge distribution like the acetate ion. In the latter case, reduced rotational motion results in lower diffusivity values than those with symmetric charge distribution. We propose translational-rotational coupling as a general mechanism of the breakdown of the S-E relation in the case of polyatomic ions.
Energy Technology Data Exchange (ETDEWEB)
Koh, Jieun [Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Man Deuk, E-mail: mdkim@yuhs.ac [Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Jung, Dae Chul; Lee, Myungsu; Lee, Mu Sook; Won, Jong Yun; Lee, Do Yun; Park, Sung Il; Lee, Kwang Hun [Department of Radiology, Research Institute of Radiological Science, Yonsei University College of Medicine, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)
2012-10-15
Purpose: The aim of the current study was to evaluate the efficacy of uterine artery embolization (UAE) in the management of diffuse uterine leiomyomatosis with mid-term follow-up. Materials and methods: All patients who underwent UAE between 2008 and 2010 for symptomatic fibroids were analyzed. Among 360 cases, a total of 7 patients with diffuse uterine leiomyomatosis diagnosed based on MRI were included in this retrospective study. Patient ages ranged from 29 to 38 (mean 32.7) years. The median follow-up period was 16 (range; 6–31) months. The embolic agent was non-spherical polyvinyl alcohol particles. All patients underwent follow-up MRI at 3 months after UAE. Uterine volumes were calculated using MRI. Menorrhagia symptom changes were assessed at mid-term follow-up. Results: There were no technical failures to catheterize the uterine artery and no adverse events requiring therapy after UAE. Contrast-enhanced MRI showed complete necrosis of the leiomyomatous nodules in 5 patients (71%) 3 months after embolization. Two patients (28%) showed mostly leiomyomatous nodules that were necrotized, some of which were still viable. All 7 patients with menorrhagia had improvement of symptoms at the mid-term follow-up. The initial mean uterine volume was 601.30 ± 533.92 cm{sup 3} and was decreased to a mean of 278.81 ± 202.70 cm{sup 3} at 3 months follow-up, for a mean uterus volume reduction rate of 50.1% (p < 0.05). One patient became pregnant 5 months after UAE treatment. Conclusion: UAE was a highly effective treatment for diffuse uterine leiomyomatosis with mid-term durability and may be a valuable alternative to hysterectomy.
International Nuclear Information System (INIS)
Koh, Jieun; Kim, Man Deuk; Jung, Dae Chul; Lee, Myungsu; Lee, Mu Sook; Won, Jong Yun; Lee, Do Yun; Park, Sung Il; Lee, Kwang Hun
2012-01-01
Purpose: The aim of the current study was to evaluate the efficacy of uterine artery embolization (UAE) in the management of diffuse uterine leiomyomatosis with mid-term follow-up. Materials and methods: All patients who underwent UAE between 2008 and 2010 for symptomatic fibroids were analyzed. Among 360 cases, a total of 7 patients with diffuse uterine leiomyomatosis diagnosed based on MRI were included in this retrospective study. Patient ages ranged from 29 to 38 (mean 32.7) years. The median follow-up period was 16 (range; 6–31) months. The embolic agent was non-spherical polyvinyl alcohol particles. All patients underwent follow-up MRI at 3 months after UAE. Uterine volumes were calculated using MRI. Menorrhagia symptom changes were assessed at mid-term follow-up. Results: There were no technical failures to catheterize the uterine artery and no adverse events requiring therapy after UAE. Contrast-enhanced MRI showed complete necrosis of the leiomyomatous nodules in 5 patients (71%) 3 months after embolization. Two patients (28%) showed mostly leiomyomatous nodules that were necrotized, some of which were still viable. All 7 patients with menorrhagia had improvement of symptoms at the mid-term follow-up. The initial mean uterine volume was 601.30 ± 533.92 cm 3 and was decreased to a mean of 278.81 ± 202.70 cm 3 at 3 months follow-up, for a mean uterus volume reduction rate of 50.1% (p < 0.05). One patient became pregnant 5 months after UAE treatment. Conclusion: UAE was a highly effective treatment for diffuse uterine leiomyomatosis with mid-term durability and may be a valuable alternative to hysterectomy
International Nuclear Information System (INIS)
Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.
1980-05-01
Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.; Pontius, R.B.
1976-01-01
The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S.
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh
2007-01-01
. Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular....... This approach allows the programmer to dynamically distribute behaviors throughout a robot and moreover provides a partial abstraction over the concrete physical shape of the robot. We have implemented a prototype of a distributed control diffusion system for the ATRON modular, self-reconfigurable robot......, self-reconfigurable robots, we present the concept of distributed control diffusion: distributed queries are used to identify modules that play a specific role in the robot, and behaviors that implement specific control strategies are diffused throughout the robot based on these role assignments...
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...... is not well structured with this system. These become the motivations in developing the design guide. This design guide aims to establish a systematic understanding of diffuse ceiling ventilation and provide assistance in designing of such a system. The guide is targeted at design engineers, architects...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Directory of Open Access Journals (Sweden)
R.T. DeHoff
2002-09-01
Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Phase transformation and diffusion
Kale, G B; Dey, G K
2008-01-01
Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g
International Nuclear Information System (INIS)
Silva, T.L. da.
1987-01-01
Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)
International Nuclear Information System (INIS)
Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.
2003-01-01
Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...
International Nuclear Information System (INIS)
Ramsdell, J.V.
1988-03-01
Straight-line Gaussian models adequately describe atmospheric diffusion for many applications. They have been modified for use in estimating diffusion in building wakes by adding terms that include projected building area and by redefining the diffusion coefficients so that the coefficients have minimum values that are related to building dimensions. In a recent study, Ramsdell reviewed the building-wake dispersion models used by the Nuclear Regulatory Commission (NRC) in its control room habitability assessments. The review included comparison of model estimates of centerline concentrations with concentrations observed in experiments at seven nuclear reactors. In general, the models are conservative in that they tend to predict concentrations that are greater than those actually observed. However, the models show little skill in accounting for variations in the observed concentrations. Subsequently, the experimental data and multiples linear regression techniques have been used to develop a new building wake diffusion model. This paper describes the new building wake model and compares it with other models. 8 refs., 2 figs
Sack, Jeff
2005-01-01
OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole
2008-01-01
. To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...
Bronnen van diffuse bodembelasting
Lijzen JPA; Ekelenkamp A; LBG; DGM/BO
1995-01-01
The aim of this study was to support the policy on preventive soil protection with information on the diffuse (non-local) emissions to soil and the influence on future soil quality. This study is related to inventories on (potential) sources of local soil pollution (e.g. industrial areas,
Energy Technology Data Exchange (ETDEWEB)
Mubarak, A S
1991-12-31
Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.
DEFF Research Database (Denmark)
Schulz, Alexander
2015-01-01
is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...
Multienergy anomalous diffuse scattering
Czech Academy of Sciences Publication Activity Database
Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.
2008-01-01
Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.
2014-01-01
As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Watson, E. B.; Cherniak, D. J.
1997-05-01
Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.
The Pearson diffusions: A class of statistically tractable diffusion processes
DEFF Research Database (Denmark)
Forman, Julie Lyng; Sørensen, Michael
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...
International Nuclear Information System (INIS)
Hanna, S.R.
1976-01-01
It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces
Directory of Open Access Journals (Sweden)
Roberto Cipriani
2011-06-01
Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.
International Nuclear Information System (INIS)
Cable, J.W.
1987-01-01
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
International Nuclear Information System (INIS)
Peters, R.D.
1978-01-01
The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force
International Nuclear Information System (INIS)
Mezin, M.
1976-01-01
The report presents an introduction to general basic principles of the gaseous diffusion process for the separation of uranium isotopes. Dealt with are: a) theoretical background and basic considerations of separation work and production costs, b) construction of a single separation stage and a multistage plant, c) the components of a plant and the optimization factors, d) cost factors. The text is illustrated by instructive diagrammes and flow charts. (RB) [de
Surface diffusion of sorbed radionuclides
International Nuclear Information System (INIS)
Berry, J.A.; Bond, K.A.
1991-01-01
Surface diffusion has in the past been invoked to explain rates of radionuclide migration which were greater than those predicted. Results were generally open to interpretation but the possible existence of surface diffusion, whereby sorbed radionuclides could potentially migrate at much enhanced rates, necessitated investigation. In this work through-diffusion experiments have shown that although surface diffusion does exist for some nuclides, the magnitude of the phenomenon is not sufficient to affect repository safety assessment modelling. (author)
Diffusion in cladding materials
International Nuclear Information System (INIS)
Anand, M.S.; Pande, B.M.; Agarwala, R.P.
1992-01-01
Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs
Solute diffusivity in undisturbed soil
DEFF Research Database (Denmark)
Lægdsmand, Mette; Møldrup, Per; Schjønning, Per
2012-01-01
Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...
Diffusion of Zonal Variables Using Node-Centered Diffusion Solver
Energy Technology Data Exchange (ETDEWEB)
Yang, T B
2007-08-06
Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.
Particle diffusion in a spheromak
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.
1988-01-01
The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs
Advanced diffusion processes and phenomena
Öchsner, Andreas; Belova, Irina
2014-01-01
This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the
Measuring methods of matrix diffusion
International Nuclear Information System (INIS)
Muurinen, A.; Valkiainen, M.
1988-03-01
In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability
International Nuclear Information System (INIS)
Kwiotek, A.; Grzywna, Z.J.
2005-01-01
Diffusion in a bounded region (or diffusive mass transport) can be seen from at least three platforms: - chemistry of he Fick's equation; - chemical engineering. To pose a particular problem we have to provide some additional conditions (initial conditions, boundary conditions and further). As we understood it in all cases diffusion is considered in an open region (in other words in one phase). Chemical engineering however brings an idea of 'diffusion' between phases. We claim that there isn't diffusion between phases. One can only consider mass transport between phases. Mass transport (or transfer in chemical engineering jargon) from one phase to another composes of: diffusion in first phase partition at an interface diffusion in second phase. (author)
Iotov, Mihail S.
The goals of this research are twofold: First, to develop methods and tools for studying problems in chemistry, material science and biology, as well as accurate prediction of the properties of structures and materials of importance to those fields. Second, use those tools to apply the methods to practical problems. In terms of methodology development this thesis focuses on two topics: One: Development of a massively parallel computer program to perform electronic, atomic, molecular levels simulations of problems in chemistry, material science and biology. This computer program uses existing and emerging hardware platforms and parallel tools and is based on decades long research in computer modeling and algorithms. We report on that development in Chapter 3. Two: Development of tools for Molecular Dynamics simulation and methods and tools for course-grained meso-scale modeling of transport properties and especially diffusion of gas penetrants in polymers. We have formulated a new method for extracting coarse-grained information from short (0.2-0.5 nanoseconds [ns]) MD simulations and use this in a meso-scale simulation to calculate diffusion constants in polymer matrices. This is a grid-based method, which calculates the average probability of each grid point of being a void and performs constrained and biased Monte Carlo (MC) dynamics to reach much longer time regimes than possible in MD. The MC method mimics the three regimes of mean square deviation (MSD) behavior seen in MD, thus accounting for the proper mobility of the voids and the compressibility of the polymer matrix. Theoretical discussions and justification for the method is presented in chapter 6. Initial results on He diffusion in a low-density polyethylene (PE) matrix are presented in chapter 7. The behavior at different temperatures follows closely the trend observed from calibrating long term MD for this particular system.
Diffusion in silicon isotope heterostructures
Energy Technology Data Exchange (ETDEWEB)
Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)
2004-01-01
The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and ^{28}Si enriched layers, enables the observation of ^{30}Si self-diffusion from the natural layers into the ^{28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly
International Nuclear Information System (INIS)
Leo, Stefano de; Rotelli, Pietro
2009-01-01
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each ''particle'' (wave packet) contribution. (orig.)
International Nuclear Information System (INIS)
Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.
1986-01-01
The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4
International Nuclear Information System (INIS)
Ott, D.J.; Chen, Y.M.; Hewson, E.G.; Richter, J.E.; Wu, W.C.; Gelfand, D.W.; Castell, D.O.
1988-01-01
Radiologic and manometric findings were correlated in 17 patients with diffuse esophageal spasm (DES). All patients initially had chest pain and/or dysphagia and had a manometric diagnosis of DES. Mean percentage of normal peristalsis manometrically was 46% (range, 20%-80%). Based on radiologic examination, an esophageal motor disorder consistent with DES was diagnosed in 12 of 17 patients, and there was one misinterpretation of achalasia. Radiologic detection was not related significantly to the percentage of peristalsis seen on manometric examination. Mean esophageal wall thickness as measured radiographically in patients with DES was 2.6 mm, compared with 2.5 mm in 17 individuals with normal results of manometry
International Nuclear Information System (INIS)
Michaud, Georges; Montmerle, Thierry
1977-01-01
This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr
Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes
Mehrer, Helmut
2007-01-01
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.
1976-01-01
A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area
The diffusion of microfinance.
Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O
2013-07-26
To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation.
Diffuse infiltrative lung disease
International Nuclear Information System (INIS)
Niden, A.H.; Mishkin, F.S.
1984-01-01
The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients
Confinement and diffusion in tokamaks
International Nuclear Information System (INIS)
McWilliams, R.
1988-01-01
The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
Diffuse lung disease: Pneumoconioses
International Nuclear Information System (INIS)
McLoud, T.C.
1987-01-01
This paper begins with a discussion of the 1980 International Labour Organization classification of the pneumoconioses. Emphasis is on the common pneumoconioses, that is, silicosis, coalworker's pneumoconiosis, and asbestos-related pleural and parenchymal disease. Examples of the five radiographic forms of silicosis-simple and complicated silicosis, Caplan syndrome, silicotuberculosis, and acute silicosis- are presented, and the differential diagnoses are discussed. Discussion of asbestos-related disease included pleural manifestations such as plaques, diffuse pleural thickening, and asbestos pleural effusion as well as asbestosis and malignancies associated with asbestos exposure, such as bronchogenic carcinoma and malignant mesothelioma. Although the standard radiographic findings are stressed, the use of CT in the diagnosis of pneumoconiosis and the staging of dust-related malignancies is also discussed
On Diffusive Climatological Models.
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
Diffuse parenchymal lung disease
Directory of Open Access Journals (Sweden)
Sara Tomassetti
2017-04-01
Full Text Available Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs. For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.
Convergence of Nelson diffusions
International Nuclear Information System (INIS)
Dell'Antonio, G.; Posilicano, A.
1991-01-01
Let ψ t , ψ t n , n≥1, be solutions of Schroedinger equations with potentials form-bounded by -1/2 Δ and initial data in H 1 (R d ). Let P, P n , n≥1, be the probability measures on the path space Ω=C(R + , R d ) given by the corresponding Nelson diffusions. We show that if {ψ t n } n≥1 converges to ψ t in H 2 (R d ), uniformly in t over compact intervals, then {P n } n≥1 converges to P in total variation. Moreover, if the potentials are in the Kato class K d , we show that the above result follows from H 1 -convergence of initial data, and K d -convergence of potentials. (orig.)
Hereditary diffuse gastric cancer
DEFF Research Database (Denmark)
van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima
2015-01-01
Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects......, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3...... the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic...
The diffuse interstellar medium
Cox, Donald P.
1990-01-01
The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
MHD diffuser model test program
Energy Technology Data Exchange (ETDEWEB)
Idzorek, J J
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.
MHD diffuser model test program
International Nuclear Information System (INIS)
Idzorek, J.J.
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment
Diffusion rates for elevated releases
International Nuclear Information System (INIS)
Ramsdell, J.V.
1983-11-01
A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables
International Nuclear Information System (INIS)
Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor
2014-01-01
Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)
Diffusion of condenser water discharge
International Nuclear Information System (INIS)
Iwakiri, Toshio
1977-01-01
Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)
Diffusion effects in undulator radiation
Directory of Open Access Journals (Sweden)
Ilya Agapov
2014-11-01
Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.
Sodium diffusion in boroaluminosilicate glasses
DEFF Research Database (Denmark)
Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.
2011-01-01
of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...
Turing instability in reaction-diffusion systems with nonlinear diffusion
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…
The diffusion of constitutional rights
Goderis, B.V.G.; Versteeg, M.
Constitutions are commonly regarded as uniquely national products, shaped by domestic ideals and politics. This paper develops and empirically investigates a novel hypothesis, which is that constitutions are also shaped by transnational influence, or “diffusion.” Constitutional rights can diffuse
Diffusion measurements by Raman spectroscopy
DEFF Research Database (Denmark)
Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.
Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...
Consequences of Diffusion of Innovations.
Goss, Kevin F.
1979-01-01
The article traces evolution of diffusion theory; illustrates undesirable consequences in a cross-cultural setting, reviews criticisms of several scholars; considers distributional effects and unanticipated consequences for potential ameliorative impact on diffusion theory; and codifies these factors into a framework for research into consequences…
Enhancement of diffusers BRDF accuracy
Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto
2017-11-01
This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.
International Nuclear Information System (INIS)
Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.
1999-01-01
The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer
Application of polycrystalline diffusion barriers
International Nuclear Information System (INIS)
Tsymbal, V.A.; Kolupaev, I.N.
2010-01-01
Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.
Diffusion in membranes: Toward a two-dimensional diffusion map
Directory of Open Access Journals (Sweden)
Toppozini Laura
2015-01-01
Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.
The magnetic diffusion of neutrons; La diffusion magnetique des neutrons
Energy Technology Data Exchange (ETDEWEB)
Koehler, W C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1959-07-01
The purpose of this report is to examine briefly the diffusion of neutrons by substances, particularly by crystals containing permanent atomic or ionic magnetic moments. In other words we shall deal with ferromagnetic, antiferromagnetic, ferrimagnetic or paramagnetic crystals, but first it is necessary to touch on nuclear diffusion of neutrons. We shall start with the interaction of the neutron with a single diffusion centre; the results will then be applied to the magnetic interactions of the neutron with the satellite electrons of the atom; finally we shall discuss the diffusion of neutrons by crystals. (author) [French] Le but de ce rapport est d'examiner, brievement, la diffusion des neutrons par les substances, et surtout, par des cristaux qui contiennent des moments magnetiques atomiques ou ioniques permanents. C'est-a-dire que nous nous interesserons aux cristaux ferromagnetiques, antiferromagnetiques, ferrimagnetiques ou paramagnetiques; il nous faut cependant rappeler d'abord la diffusion nucleaire des neutrons. Nous commencerons par l'interaction du neutron avec un seul centre diffuseur; puis les resultats seront appliques aux interactions magnetiques du neutron avec les electrons satellites de l'atome; enfin nous discuterons la diffusion des neutrons par les cristaux. (auteur)
Multidimensional diffusion processes
Stroock, Daniel W
1997-01-01
From the reviews: "… Both the Markov-process approach and the Itô approach … have been immensely successful in diffusion theory. The Stroock-Varadhan book, developed from the historic 1969 papers by its authors, presents the martingale-problem approach as a more powerful - and, in certain regards, more intrinsic-means of studying the foundations of the subject. […] … the authors make the uncompromising decision not "to proselytise by intimidating the reader with myriad examples demonstrating the full scope of the techniques", but rather to persuade the reader "with a careful treatment of just one problem to which they apply". […] Most of the main tools of stochastic-processes theory are used, ..but it is the formidable combination of probability theory with analysis … which is the core of the work. […] I have emphasized the great importance of the Stroock-Varadhan book. It contains a lot more than I have indicated; in particular, its many exercises conain much interesting material. For immediat...
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Macrolides for diffuse panbronchiolitis.
Lin, Xiufang; Lu, Jing; Yang, Ming; Dong, Bi Rong; Wu, Hong Mei
2015-01-25
Diffuse panbronchiolitis (DPB) is a chronic airways disease predominantly affecting East Asians. Macrolides, a class of antibiotics, have been used as the main treatment for DPB, based on evidence from retrospective and non-randomised studies. To assess the efficacy and safety of macrolides for DPB. We searched CENTRAL (2014, Issue 6), MEDLINE (1966 to July week 1, 2014), EMBASE (1974 to July 2014), Chinese Biomedical Literature Database (CBM) (1978 to July 2014), China National Knowledge Infrastructure (CNKI) (1974 to July 2014), KoreaMed (1997 to July 2014) and Database of Japana Centra Revuo Medicina (1983 to July 2014). Randomised controlled trials (RCTs) or quasi-RCTs assessing the effect of macrolides for DPB. Two review authors independently assessed study quality and subsequent risk of bias according to The Cochrane Collaboration's tool for assessing risk of bias. The primary outcomes were five-year survival rate, lung function and clinical response. We used risk ratios (RR) for individual trial results in the data analysis and measured all outcomes with 95% confidence intervals (CI). Only one RCT (19 participants) with significant methodological limitations was included in this review. It found that the computerised tomography images of all participants treated with a long-term, low-dose macrolide (erythromycin) improved from baseline, while the images of 71.4% of participants in the control group (with no treatment) worsened and 28.6% remained unchanged. Adverse effects were not reported. This review was previously published in 2010 and 2013. For this 2014 update, we identified no new trials for inclusion or exclusion. There is little evidence for macrolides in the treatment of DPB. We are therefore unable to make any new recommendations. It may be reasonable to use low-dose macrolides soon after diagnosis is made and to continue this treatment for at least six months, according to current guidelines.
Moessbauer effect and vacancy diffusion
International Nuclear Information System (INIS)
Gunther, L.
1976-01-01
A dynamical theory of vacancy diffusion which was motivated by the need to explain recent experimental results for the Moessbauer spectra of Fe in Cu, Fe in Au and Fe in Al is presented. Diffusion in these systems is dominated by the vacancy mechanism, which involves strong correlations between successive jumps. The theory developed by Singwi and Sjoelander for the Moessbauer spectrum of a diffusing nucleus is therefore not applicable. The inverse of the normalized Moessbauer spectrum evaluated at zero frequency is introduced as a useful means of comparing experimental with theoretical spectral widths
Simulation of multivariate diffusion bridges
DEFF Research Database (Denmark)
Bladt, Mogens; Finch, Samuel; Sørensen, Michael
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges...
Self diffusion in isotopic fluid
International Nuclear Information System (INIS)
Tankeshwar, K.
1991-01-01
Expressions for the second and fourth frequency sum rules of the velocity auto-correlation function have been obtained for an isotopic fluid. These expressions and Mori memory function formalism have been used to study the influence of the particle mass and mole fraction on the self diffusion coefficient. Our results confirm the weak mass dependence of the self diffusion. The influence of the mole fraction of the light particles on the self diffusion constant has been found to increase for the larger particle mass. (author). 17 refs, 1 fig., 2 tabs
Muon diffusion in noble metals
International Nuclear Information System (INIS)
Schillaci, M.E.; Bokema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.
1983-01-01
Diffusion-induced muon depolarization in dilute AgGd and AgEr were measured in the temperature range 200-700 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models. 15 references, 1 figure, 2 tables
Muon diffusion in noble metals
International Nuclear Information System (INIS)
Schillaci, M.E.; Boekema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.
1982-01-01
Diffusion-induced muon depolarization was measured in dilute AgGd and AgEr in the temperature range 200 to 700 0 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models
Genetics Home Reference: hereditary diffuse gastric cancer
... Health Conditions Hereditary diffuse gastric cancer Hereditary diffuse gastric cancer Printable PDF Open All Close All Enable Javascript ... Diffuse Gastric Cancer MedlinePlus Encyclopedia: Gastric Cancer National Cancer ... Option Overview General Information from MedlinePlus ( ...
Improved diffuser for augmenting a wind turbine
Foreman, K.M.; Gilbert, B.L.
A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.
Shape evolution of a melting nonspherical particle
Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron
2015-09-01
In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.
Numerical study of nonspherical black hole accretion
International Nuclear Information System (INIS)
Hawley, J.F.
1984-01-01
This thesis describes in detail a two-dimensional, axisymmetric computer code for calculating fully relativistic ideal gas hydrodynamics around a Kerr black hole. The aim is to study fully dynamic inviscid fluid accretion onto black holes, as well as to study the evolution and development of nonlinear instabilities in pressure supported accretion disks. In order to fully calibrate and document the code, certain analytic solutions for shock tubes and special accretion flows are derived; these solutions form the basis for code testing. The numerical techniques used are developed and discussed. A variety of alternate differencing schemes are compared on an analytic test bed. Some discussion is devoted to general issues in finite differencing. The working code is calibrated using analytically solvable accretion problems, including the radial accretion of dust and of fluid with pressure (Bondi accretion). Two dimensional test problems include the spiraling infall of low angular momentum fluid, the formation of a pressure supported torus, and the stable evolution of a torus. A series of numerical models are discussed and illustrated with selected plots
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Diffusion mechanisms in intermetallic compounds
Energy Technology Data Exchange (ETDEWEB)
Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)
1992-08-01
Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.
Diffusion of single oxidation pond
Directory of Open Access Journals (Sweden)
Song Ruo-Yuan
2016-01-01
Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.
Computational Diffusion MRI : MICCAI Workshop
Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle
2018-01-01
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...
Diffusion from cylindrical waste forms
International Nuclear Information System (INIS)
Thomas, G.F.
1985-05-01
The diffusion of a single component material from a finite cylindrical waste form, initially containing a uniform concentration of the material, is investigated. Under the condition that the cylinder is maintained in a well-stirred bath, expressions for the fractional inventory leached and the leach rate are derived with allowance for the possible permanent immobilization of the diffusant through its decay to a stable product and/or its irreversible reaction with the waste form matrix. The usefulness of the reported results in nuclear waste disposal applications is emphasized. The results reported herein are related to those previously derived at Oak Ridge National Laboratory by Bell and Nestor. A numerical scheme involving the partial decoupling of nested infinite summations and the use of rapidly converging rational approximants is recommended for the efficient implementation of the expressions derived to obtain reliable estimates of the bulk diffusion constant and the rate constant describing the diffusant-waste form interaction from laboratory data
Diffusion coefficient for anomalous transport
International Nuclear Information System (INIS)
1986-01-01
A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport
Diffusion formation and psychiatric diseases
International Nuclear Information System (INIS)
Reith, W.; Kulikovski, J.
2015-01-01
The basic principle behind diffusion is Brownian motion. The diffusion parameters obtained in a clinical association provide information on the spatial distribution of water molecule mobility and, therefore, evidence of the morphological integrity of the white and grey matters of the brain. In recent years functional magnetic resonance imaging (fMRI) could contribute to obtaining a detailed understanding of the cortical and subcortical cerebral networks. Diffusion tensor imaging (DTI) investigations can demonstrate the extent of anisotropy and the fiber pathways in so-called parametric images. For example, in Alzheimer's disease DTI reveals a reduced structural connectivity between the posterior cingulum and the hippocampus. This article shows examples of the application of diffusion-weighted imaging (DWI) in psychiatric disorders. (orig.) [de
Anomalous diffusion in chaotic scattering
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1994-01-01
The anomalous diffusion is found for peripheral collision of atomic nuclei described in the framework of the molecular dynamics. Similarly as for chaotic billiards, the long free paths are the source of the long-time correlations and the anomalous diffusion. Consequences of this finding for the energy dissipation in deep-inelastic collisions and the dynamics of fission in hot nuclei are discussed (authors). 30 refs., 2 figs
Diffusion processes and memory effects
International Nuclear Information System (INIS)
Mokshin, Anatolii V; Yulmetyev, Renat M; Haenggi, Peter
2005-01-01
We report the results of the numerical estimation of statistical memory effects in diffusion for two various systems: Lennard-Jones fluids and the model of the Brownian particle in a one-dimensional harmonic lattice. We have found the relation between the diffusion coefficient and the non-Markovity parameter, which is linear for the Lennard-Jones systems in liquid state. The relation between the memory measure and the excess entropy is also discussed here
Diffusion through statically compacted clay
International Nuclear Information System (INIS)
Ho, C.L.; Shebl, M.A.A.
1994-01-01
This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs
Diffusion MRI findings in phenylketonuria
Energy Technology Data Exchange (ETDEWEB)
Sener, R.N. [Dept. of Radiology, Ege Univ. Hospital, Izmir (Turkey)
2003-12-01
Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm{sup 2}/s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm{sup 2} images with low ADC values ranging from 0.46 to 0.57 x 10{sup -3} mm{sup 2}/s. Increased diffusion pattern consisted of normal b=1000 s/mm{sup 2} images with high ADC values ranging from 1.37 to 1.63 x 10{sup -3} mm{sup 2}/s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)
Diffusion MRI findings in phenylketonuria
International Nuclear Information System (INIS)
Sener, R.N.
2003-01-01
Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm 2 /s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm 2 images with low ADC values ranging from 0.46 to 0.57 x 10 -3 mm 2 /s. Increased diffusion pattern consisted of normal b=1000 s/mm 2 images with high ADC values ranging from 1.37 to 1.63 x 10 -3 mm 2 /s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)
Atmospheric diffusion of large clouds
Energy Technology Data Exchange (ETDEWEB)
Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)
1967-07-01
Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)
Diffusion, confusion and functional MRI
International Nuclear Information System (INIS)
Le Bihan, Denis
2012-01-01
Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)
Lead diffusion in monazite; Diffusion du plomb dans la monazite
Energy Technology Data Exchange (ETDEWEB)
Gardes, E
2006-06-15
Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO{sub 4} monocrystals and in Nd{sub 0.66}Ca{sub 0.17}Th{sub 0.17}PO{sub 4} polycrystals from Nd{sub 0.66}Pb{sub 0.17}Th{sub 0.17}PO{sub 4} thin films to investigate Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} and Pb{sup 2+} {r_reversible} Ca{sup 2+} exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} exchange follow an Arrhenius law with parameters E equals 509 {+-} 24 kJ mol{sup -1} and log(D{sub 0} (m{sup 2}s{sup -1})) equals -3.41 {+-} 0.77. Preliminary data for Pb{sup 2+} {r_reversible} Ca{sup 2+} exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 {mu}m grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)
Drug diffusion across skin with diffusivity spatially modulated
Montoya Arroyave, Isabel
2014-05-01
A diffusion and delivery model of a drug across the skin with diffusivity spatially modulated is formulated and solved analytically using computer algebra. The model is developed using one-dimensional diffusion equation with a diffusivity which is a function of position in the skin; with an initial condition which is describing that the drug is initially contained inside a therapeutic patch; with a boundary condition according to which the change in concentration in the patch is minimal, such that assumption of zero flux at the patch-skin interface is valid; and with other boundary condition according to which the microcirculation in the capillaries just below the dermis carries the drug molecules away from the site at a very fast rate, maintaining the inner concentration at 0. The model is solved analytically by the method of the Laplace transform, with Bromwich integral and residue theorem. The concentration profile of the drug in the skin is expressed as an infinite series of Bessel functions. The corresponding total amount of delivered drug is expressed as an infinite series of decreasing exponentials. Also, the corresponding effective time for the therapeutic patch is determined. All computations were performed using computer algebra software, specifically Maple. The analytical results obtained are important for understanding and improving currentapplications of therapeutic patches. For future research it is interesting to consider more general models of spatial modulation of the diffusivity and the possible application of other computer algebra software such as Mathematica and Maxima.
Ion diffusion in compacted bentonite
Energy Technology Data Exchange (ETDEWEB)
Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)
1999-03-01
In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K{sub d}, unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.) 45 refs.
Ion diffusion in compacted bentonite
International Nuclear Information System (INIS)
Lehikoinen, J.
1999-03-01
In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)
Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems
Energy Technology Data Exchange (ETDEWEB)
D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)
2016-04-15
The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.
Diffuse and vascular hepatic diseases; Diffuse und vaskulaere Lebererkrankungen
Energy Technology Data Exchange (ETDEWEB)
Kreimeyer, S.; Grenacher, L. [Universitaetsklinikum Heidelberg, Abteilung Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)
2011-08-15
In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.) [German] Neben den fokalen Leberlaesionen stellen diffuse und vaskulaere Lebererkrankungen ein weites Spektrum an Erkrankungen der Leber dar, die radiologisch oft schwer oder gar nicht diagnostizierbar sind. Klassische diagnostische Verfahren sind dabei neben dem Ultraschall die Computertomographie und die Magnetresonanztomographie. Diffuse Parenchymschaeden, bedingt durch Erkrankungen unterschiedlichster Aetiologie, sind deshalb schwierig evaluierbar, weil haeufig charakteristische bildmorphologische Merkmale fehlen. Die Steatosis hepatis, die Haemochromatose/Siderose als Beispiel der Speicherkrankheiten sowie die Sarkoidose und die Candidose als infektioes-entzuendliche Erkrankungen sind einer bildbasierten Diagnosestellung z. T. zugaenglich, bei den meisten diffusen Lebererkrankungen jedoch zeigen sich lediglich unspezifische
Gaseous diffusion -- the enrichment workhorse
International Nuclear Information System (INIS)
Shoemaker, J.E. Jr.
1984-01-01
Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors
Radionuclide diffusion in soils. III
International Nuclear Information System (INIS)
Cipakova, A.; Szabova, T.
1988-01-01
Samples were taken of five soil types for determining diffusion coefficients, namely chernozem, illimerized brown soil, degraded chernozem, gleizated brown soil and heavy loamy brown soil. 5 layers of soil having a thickness of 1 cm each were placed in diffusion columns. 20 ml of water with 0.45 MBq 85 Sr of distilled water was poured over the columns. 10 ml of distilled water was poured over the columns every 5 days for monitoring the effect of the amount of precipitation and its distribution - a similarity with rainfall in the driest month, 41 ml of distilled water was then poured over the column every 5 days or 82 ml of distilled water every 10 days - imitating the month with the highest rainfall level. The effect of salts and various concentrations of salt mixtures on the value of the diffusion coefficient were monitored in solutions of NaNO 3 , KNO 3 and Ca(NO 3 ) 2 with added activity 0.45 MGq of 85 SrCl 2 . Diffusion was monitored for 101 days. All measured values are tabulated. The smallest diffusion coefficient was found in chernozem in the presence of H 2 O and the highest value was found in illimerized brown soil in the presence of 0.15 M of KNO 3 . (E.S.). 2 tabs., 10 refs
Diffuse sound field: challenges and misconceptions
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2016-01-01
Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... tremendously in different chambers because the chambers are non-diffuse in variously different ways. Therefore, good objective measures that can quantify the degree of diffusion and potentially indicate how to fix such problems in reverberation chambers are needed. Acousticians often blend the concept...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....
Nonlinear Diffusion and Transient Osmosis
International Nuclear Information System (INIS)
Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Nitrogen diffusion in zirconium nitride
International Nuclear Information System (INIS)
Desmaison, J.G.; Smeltzer, W.W.
1977-01-01
Nitrogen diffusion in polycrystalline ZrN/sub 0.71-0.79/ spheres, 60 and 90 μm diameter, was studied by the gas-solid exchange technique using 15 N as a tracer at a nitrogen pressure of 220 torr and 1000 to 1200 0 C. These specimens were characterized by chemical analyses, density, lattice parameter, and structural measurements. The tracer diffusion coefficient can be expressed as D* (cm 2 /S) = 3.0 x 10 -10 exp (-23,000/RT). This result, when compared to a previous determination obtained in the same conditions with 254 μm thick plates, confirms that nitrogen transport in this polycrystalline solid at temperatures less than 1200 0 C is associated with a short-circuit diffusion mechanism
Tracer diffusion in ternary alloys
International Nuclear Information System (INIS)
Tahir-Kheli, R.A.
1985-07-01
An intuitive extension of the theory for diffusion in dynamic binary alloys given in the preceding paper is presented. This theory has also received an independent derivation, based on more formal procedures, by Holdsworth and Elliott. We present Monte Carlo estimates for diffusion correlation factors, fsup(A), fsup(B), and fsup(C) and compare them with the theory. The agreement between the theoretical results and the Monte Carlo estimates for the correlation factors of the slow particles, i.e., fsup(C) and fsup(B), is found to be generally good. In contrast, for the correlation factor, fsup(A), referring to the diffusion coefficient of fast particles in the system, the theoretical results are found to be systematically lower by a small but resolvable margin. It is suggested that this is occasioned by the neglect of spatial constraints on the scattering of coupled tracer-background particle field pairs. (author)
Emissivity of discretized diffusion problems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
Diffusion in inhomogeneous polymer membranes
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
Innovation Diffusion: Assessment of Strategies within the Diffusion Simulation Game
Enfield, Jacob; Myers, Rodney D.; Lara, Miguel; Frick, Theodore W.
2012-01-01
Educators increasingly view the high level of engagement and experiential learning offered by games as a means to promote learning. However, as with any designed learning experience, player experiences should provide an accurate representation of content to be learned. In this study, the authors investigated the DIFFUSION SIMULATION GAME (DSG) to…
Huang diffuse scattering of neutrons
International Nuclear Information System (INIS)
Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.
1979-01-01
Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)
In situ measurement of diffusivity
International Nuclear Information System (INIS)
Berne, F.; Pocachard, J.
2004-01-01
The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)
In situ measurement of diffusivity
International Nuclear Information System (INIS)
Berne, Ph.; Pocachard, J.
2005-01-01
The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)
Oxygen diffusion in cuprate superconductors
International Nuclear Information System (INIS)
Routbort, J.L.; Rothman, S.J.
1995-01-01
Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible
Optimization of hydraulic turbine diffuser
Directory of Open Access Journals (Sweden)
Moravec Prokop
2016-01-01
Full Text Available Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.
Langevin diffusions on the torus
DEFF Research Database (Denmark)
García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.
2018-01-01
We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues......) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate...
Slaved diffusion in phospholipid bilayers
Zhang, Liangfang; Granick, Steve
2005-01-01
The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988
Some Aspects of Diffusion Theory
Pignedoli, A
2011-01-01
This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t
Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
2014-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
Innovation and creativity : Beyond diffusion
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2009-01-01
of postwar systems theory and introduce Castoriadis' philosophy as an interesting option in this regard. It proceeds in four parts: (a) First, it debates the limits of the commonplace metaphor of diffusion and adoption in today's debate on innovation. (b) Second, it will present aspects of Castoriadis...
Stability of Randomly Switched Diffusions
DEFF Research Database (Denmark)
Schiøler, Henrik; Leth, John-Josef; Gholami, Mehdi
2012-01-01
This paper provides a sufficient criterion for ε-moment stability (boundedness) and ergodicity for a class of systems comprising a finite set of diffusions among which switching is governed by a continuous time Markov chain. Stability/instability properties for each separate subsystem are assumed...
Evaluating Technology Transfer and Diffusion.
Bozeman, Barry; And Others
1988-01-01
Four articles discuss the evaluation of technology transfer and diffusion: (1) "Technology Transfer at the U.S. National Laboratories: A Framework for Evaluation"; (2) "Application of Social Psychological and Evaluation Research: Lessons from Energy Information Programs"; (3) "Technology and Knowledge Transfer in Energy R and D Laboratories: An…
Less Confusion in Diffusion MRI
Tax, CMW
2016-01-01
With its unique ability to investigate tissue architecture and microstructure in vivo, diffusion MRI (dMRI) has gained tremendous interest and the society has been continuously triggered to develop novel dMRI image analysis approaches. With the overwhelming amount of strategies currently available
Diffuse and vascular hepatic diseases
International Nuclear Information System (INIS)
Kreimeyer, S.; Grenacher, L.
2011-01-01
In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.) [de
Memory effects in turbulent diffusion
International Nuclear Information System (INIS)
Zagorodny, A.G.; Weiland, J.; Wilhelmsson, H.
1993-01-01
A non-Markovian approach is proposed for the derivation of the diffusion coefficient of saturated turbulence. A memory term accounting for nonlocal coherence effects is introduced in a new attempt to describe the transition between weak and strong turbulence. The result compares favourably with recent experiments as well as mode coupling simulations of fusion plasmas. (14 refs.)
Diffusion of hydrogen in yttrium
International Nuclear Information System (INIS)
Vorobyov, V.V.; Ryabchikov, L.N.
1966-01-01
In this work the diffusion coefficients of hydrogen in yttrium were determined from the rate at which the hydrogen was released from yttrium samples under a vacuum at temperatures of 450 to 850 0 C and from the quantity of hydrogen retained by yttrium at hydrogen pressures below 5 x 10 - 4 mm Hg in the same temperature range
Diffusion of student business incubators
DEFF Research Database (Denmark)
Hjortsø, Carsten Nico Portefée; Honig, Benson; Riis, Nina Louise Fynbo
education. Applying neo-institutional theory, we examine the development of student incubation activities in the field of general state-funded Danish universities. We review institutional pressures from the political sphere that led to the diffusion of student incubation, introducing a three-phase process...
Unexpected consequences of bedload diffusion
Devauchelle, O.; Abramian, A.; Lajeunesse, E.
2017-12-01
Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.
Quasilinear diffusion in inhomogeneous plasmas
International Nuclear Information System (INIS)
Hooley, D.L.
1975-05-01
The problem of inhomogeneous diffusion in a plasma is considered with emphasis on its possible application to relativistic electron beams. A one-dimensional model with a background electrostatic field is used to illustrate the basic approach, which is then extended to a two-dimensional plasma with a background magnetic field. Only preliminary results are available. (U.S.)
Tiny Molybdenites Tell Diffusion Tales
Stein, H. J.; Hannah, J. L.
2014-12-01
Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins
Wright-Fisher diffusion bridges.
Griffiths, Robert C; Jenkins, Paul A; Spanò, Dario
2017-10-06
The trajectory of the frequency of an allele which begins at x at time 0 and is known to have frequency z at time T can be modelled by the bridge process of the Wright-Fisher diffusion. Bridges when x=z=0 are particularly interesting because they model the trajectory of the frequency of an allele which appears at a time, then is lost by random drift or mutation after a time T. The coalescent genealogy back in time of a population in a neutral Wright-Fisher diffusion process is well understood. In this paper we obtain a new interpretation of the coalescent genealogy of the population in a bridge from a time t∈(0,T). In a bridge with allele frequencies of 0 at times 0 and T the coalescence structure is that the population coalesces in two directions from t to 0 and t to T such that there is just one lineage of the allele under consideration at times 0 and T. The genealogy in Wright-Fisher diffusion bridges with selection is more complex than in the neutral model, but still with the property of the population branching and coalescing in two directions from time t∈(0,T). The density of the frequency of an allele at time t is expressed in a way that shows coalescence in the two directions. A new algorithm for exact simulation of a neutral Wright-Fisher bridge is derived. This follows from knowing the density of the frequency in a bridge and exact simulation from the Wright-Fisher diffusion. The genealogy of the neutral Wright-Fisher bridge is also modelled by branching Pólya urns, extending a representation in a Wright-Fisher diffusion. This is a new very interesting representation that relates Wright-Fisher bridges to classical urn models in a Bayesian setting. Copyright © 2017 Elsevier Inc. All rights reserved.
Turbulent diffusion of small particles
International Nuclear Information System (INIS)
Margolin, L.G.
1977-11-01
The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
In vivo P-31 MR diffusion spectroscopy
International Nuclear Information System (INIS)
Moonen, C.T.W.; Vanzijl, P.C.M.; LeBihan, D.
1988-01-01
This paper discusses the Stejskal-Tanner diffusion spin-echo sequence modified for the in vivo diffusion spectroscopy. The apparent diffusion constant D α was measured as a function of the diffusion time. Contrary to the results in phantom samples, a strong dependency of the D α for phosphocreatine (PCr) in the rat muscle tissue on diffusion time was observed, clearly indicating restricted diffusion effects and allowing an approximation of the size of the restricted volume (8-13 μm). This size fits well with the known dimensions of a normal muscle cell
Diffraction and diffusion in room acoustics
DEFF Research Database (Denmark)
Rindel, Jens Holger; Rasmussen, Birgit
1996-01-01
Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
Diffusing diffusivity: a new derivation and comparison with simulations
Indian Academy of Sciences (India)
Rohit Jain
active media, where the relation of Eq.(1) is not valid at all times.4–6 ... tional diffusion of dumbbells in 2D porous media of stationary hard ..... reflecting boundary condition at D = 0, i.e., πeq(D) = 1. D0 .... Superdiffusion and viscoelastic vortex flows in a two- .... gator for Free, Linear, and Harmonic Potentials in the. Over- and ...
Oceanic diffusion in the coastal area
International Nuclear Information System (INIS)
Rukuda, Masaaki
1980-03-01
Described in this paper is the eddy diffusion in the area off Tokai Village investigated by means of dye diffusion experiment and of oceanic observation. In order to assess the oceanic diffusion in coastal areas, improved methods effective in complex field were developed. The oceanic diffusion was separated in two groups, horizontal and vertical diffusion respectively. Both these diffusions are combined and their analysis together is difficult. The oceanic diffusion is thus considered separately. Instantaneous point release is the basis of horizontal diffusion analysis. Continuous release is then the overlap of numerous instantaneous releases. It was shown that the diffusion parameters derived from the results of diffusion experiment or oceanic observation vary widely with time and place and with sea conditions. A simple diffusion equation was developed from the equation of continuity. The results were in good agreement with seasonal mean horizontal distribution of river water in the sea area. The vertical observation in diffusion experiment is difficult and the vertical structure of oceanic condition is complex, so that the research on vertical diffusion generally is not advanced yet. With river water as the tracer, a method of estimating vertical diffusion parameters with a Gaussian model or one-dimensional model was developed. The vertical diffusion near sea bottom was numerically analized with suspended particles in seawater as the tracer. Diffusion was computed for each particle size, and by summing up the vertical distribution of beam attenuation coefficient was estimated. By comparing the results of estimation and those of observation the vertical diffusivity and the particle size distribution at sea bottom could be estimated. (author)
Form of multicomponent Fickian diffusion coefficients matrix
International Nuclear Information System (INIS)
Wambui Mutoru, J.; Firoozabadi, Abbas
2011-01-01
Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.
Tracer surface diffusion on UO2
International Nuclear Information System (INIS)
Zhou, S.Y.; Olander, D.R.
1983-06-01
Surface diffusion on UO 2 was measured by the spreading of U-234 tracer on the surface of a duplex diffusion couple consisting of wafers of depleted and enriched UO 2 joined by a bond of uranium metal
DEFF Research Database (Denmark)
Buchvald, Frederik; Nielsen, Kim G
2014-01-01
Diffuse lung disease in children represents a heterogeneous group of respiratory disorders with high morbidity and mortality. Typical features include tachypnoea, failure to thrive, diffuse radiological and histopathological abnormalities. Advances in genetics and pathophysiology, combined...
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.; Cheng, Xiang; Ong, Desmond C.; Liddell-Watson, Chekesha; Cohen, Itai
2013-01-01
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced
Nonlinear Cross-Diffusion with Size Exclusion
Burger, Martin; Di Francesco, Marco; Pietschmann, Jan-Frederik; Schlake, Bä rbel
2010-01-01
The aim of this paper is to investigate the mathematical properties of a continuum model for diffusion of multiple species incorporating size exclusion effects. The system for two species leads to nonlinear cross-diffusion terms with double
Long range diffusion of hydrogen in yttrium
International Nuclear Information System (INIS)
Anderson, I.S.; Scherrer, P.; Ross, D.K.
1989-01-01
The diffusion of H in single crystals of YH 0.2 is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.)
Theory and experiments on surface diffusion
Energy Technology Data Exchange (ETDEWEB)
Silvestri, W.L.
1998-11-01
The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.
Inverse diffusion theory of photoacoustics
International Nuclear Information System (INIS)
Bal, Guillaume; Uhlmann, Gunther
2010-01-01
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions
Massively parallel diffuse optical tomography
Energy Technology Data Exchange (ETDEWEB)
Sandusky, John V.; Pitts, Todd A.
2017-09-05
Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of the respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.
Devil's in the (diffuse) detail
International Nuclear Information System (INIS)
Welberry, R.
2006-07-01
X-ray crystallography is an important workhorse in the world of solid-state chemistry. However, while it's a powerful tool in determining the average structure in a crystal lattice, conventional crystallography is very limited when it comes to understanding nano-scale disorder within that crystal structure. And when it comes to understanding the properties of many important materials, the devil is in the detail. X-ray diffraction is still one of the keys to understanding this finer scale structure but using it requires a capacity to read between the lines - to understand the diffuse diffraction that most crystallography ignores. Scientists at the Research School of Chemistry are leading the world in this field. Their work on modelling nano-scaled disorder using diffuse diffraction is opening up new possibilities in understanding and modifying many of our most important materials
Information filtering via preferential diffusion
Lü, Linyuan; Liu, Weiping
2011-06-01
Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.
Oxygen diffusion in cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Routbort, J.L.; Rothman, S.J.
1995-01-01
Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.
CT of diffuse pulmonary diseases
International Nuclear Information System (INIS)
Itoh, Harumi; Murata, Kiyoshi; Todo, Giro
1987-01-01
While the theory of chest radiographic interpretation in diagnosing diffuse pulmonary diseases has not yet been established, X-ray computed tomography (CT), having intrinsic high contrast resolution and improved spatial resolution, has proved to offer important imformation concerning the location and invasion of diffuse pulmonary lesions. This study related to CT-pathologic correlation, focusing on perivascular interstitial space and secondary pulmonary lobule at macroscopic levels. The perivascular interstitial space was thickened as a result of the infiltration of cancer, granulomas, and inflammatory cells. This finding appeared as irregular contour of the blood vessel on CT. Centrilobular nodules were distributed at the tip of the bronchus or pulmonary artery on CT. The distance from the terminal and respiratory bronchioles to the lobular border was 2 to 3 mm. Lobular lesions were delineated as clear margin on CT. Contribution of these CT features to chest radiographic interpretation must await further studies. (Namekawa, K.)
Erbium diffusion in titanium dioxide
Directory of Open Access Journals (Sweden)
Louise Basse
2017-04-01
Full Text Available The diffusivity of erbium in the anatase phase of titanium dioxide (TiO2 has been studied for various temperatures ranging from 800 °C to 1, 000 °C. Samples of TiO2, with a 10 nm thick buried layer containing 0.5 at% erbium, were fabricated by radio-frequency magnetron sputtering and subsequently heat treated. The erbium concentration profiles were measured by secondary ion mass spectrometry, allowing for determination of the temperature-dependent diffusion coefficients. These were found to follow an Arrhenius law with an activation energy of ( 2.1 ± 0.2 eV. X-ray diffraction revealed that the TiO2 films consisted of polycrystalline grains of size ≈ 100 nm.
Morphological inversion of complex diffusion
Nguyen, V. A. T.; Vural, D. C.
2017-09-01
Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the final state of a complex network. Our method performs better than algorithms based on distance (closeness) and Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model, and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic, pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
The generalized Airy diffusion equation
Directory of Open Access Journals (Sweden)
Frank M. Cholewinski
2003-08-01
Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.
The Diffusion of Military Dictatorships
Raul Caruso; Ilaria Petrarca; Roberto Ricciuti
2012-01-01
We show the existence of a diffusion process of military dictatorships in Sub-Saharan Africa from 1972 through 2007, using panel data probit estimation and a Markov chain transition model. This process is shortly-lived, since we observe an overall trend that reduces the number of military regimes. We also find that Manufacturing share of GDP, Primary share of GDP positively affect the probability of military dictatorship, and Openness to trade, whereas the British colonial origin are negative...
Composite interlayer for diffusion bonding
International Nuclear Information System (INIS)
1976-01-01
A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)
Atmospheric horizontal divergence and diffusion
International Nuclear Information System (INIS)
Castans, M.
1981-01-01
The action of horizontal divergence on diffusion near the ground is established through.a very simple flow model. The shape of the well-known Pasquill-Gifford-Turner curves, that apparently take account in some way of divergence, is justified. The possibility of explaining the discre--pancies between the conventional straight line model and experimental results, mainly under low-wind-speed satable conditions, is considered. Some hints for further research are made. (auth.)
Diffusion processes in dyed detectors
International Nuclear Information System (INIS)
Lferde, M.; Seidel, J.-L.; Monnin, M.
1982-01-01
In order to get a better understanding of the dyed and fluorescent track detectors, the diffusion speed of the swelling agent, the sensitization molecules and the dye have been measured under various conditions. It is shown that the sensitization affects the entire detector while dyeing is restricted to the upper and lower layers of the detector. By combining the optimal values of the reactions parameters a higher contrast and sensitivity may be achieved. (author)
Diffuse Cosmic Infrared Background Radiation
Dwek, Eli
2002-01-01
The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.
Diffusion in ordered binary solid systems
International Nuclear Information System (INIS)
Stolwijk, N.A.
1980-01-01
This thesis contains contributions to the field of diffusion in ordered binary solid systems. An extensive experimental investigation of the self diffusion in CoGa is presented. The results of these diffusion measurements strongly suggest that a substantial part of the atomic migration is caused by a new type of defect. A quantitative description of the atomic displacements via this defect is given. Finally computer simulations are presented of diffusion and ordering in binary solid systems. (Auth.)
Strong Stationary Duality for Diffusion Processes
Fill, James Allen; Lyzinski, Vince
2014-01-01
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...
The Adoption and Diffusion of Service Products
Myung Joong Kwon
2003-01-01
The objective of this paper is to theoretically explore the innovation, adoption and diffusion of service product. A theoretical model of the diffusion of service product is developed that takes account of transportation, waiting and searching casts in the adoption of service product. The main results of the model are; (1) the diffusion of service product is slower than that of the manufacturing equivalent and (2) the delivery or retail distribution service speeds up the diffusion of the manu...
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
Richtung in den Raum geleitet (daher auch der Namensteil „diffus“). Im Vergleich zu herkömmlichen Lüftungsanlagen (Misch- oder Verdrängungslüftung) kann die diffuse Deckenlüftung das Risiko eines Luftzugs im Raum erheblich reduzieren oder sogar vermeiden. Darüber hinaus bietet diese Lüftungsanlage die...... vielversprechende Möglichkeit, Energie einzusparen. Dies liegt am geringen Druckverlust, an dem längeren Zeitraum der freien Kühlung und dem großen Potenzial der Nachtkühlung. Die Investitionskosten für eine Anlage für die diffuse Deckenlüftung sind 5 bis 10 % geringer als die für herkömmliche Anlagen, da die...... Akustikdecke direkt als Luftverteiler verwendet werden kann. Durch den Einsatz eines Hohlraums für die Luftverteilung fallen zudem auch die Kosten für Luftkanäle niedriger aus. Das Interesse daran, die diffuse Deckenlüftung in Büros und anderen Gewerbegebäuden einzusetzen, wächst aufgrund der Vorteile in Bezug...
Mathematical methods for diffusion MRI processing
International Nuclear Information System (INIS)
Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.
2009-01-01
In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)
On the Aharonov-Bohm diffusion
International Nuclear Information System (INIS)
Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75
1993-07-01
The diffusion of a charged particle by a singular flux tube is revisited. A simple and rigourous derivation shows that the action of the propagator on an incident plane wave precisely yields the Aharonov-Bohm diffusion amplitude. The forward diffusion is discussed as well as the singularity of the interaction at the position of the flux tube. (orig.)
Oxygen diffusion in glasses and ceramic materials
International Nuclear Information System (INIS)
Kolitsch, A.; Richter, E.; Wolf, M.
1978-10-01
A survey is given on the published works to study oxygen diffusion in glasses and ceramic materials in the last years. In the first part methods are described for the measurement of oxygen diffusion coefficients and in the second part the published reports on oxygen diffusion in glasses, ceramic and other oxides are discussed. The most important results are summarized in different tables. (author)
Modeling the diffusion of scientific publications
D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)
2005-01-01
textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and
Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory
International Nuclear Information System (INIS)
Birmingham, T.J.; Jones, F.C.
1975-02-01
A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)
New diffusion mechanism for high temperature diffusion in solids
International Nuclear Information System (INIS)
Doan, N.V.; Adda, Y.
1986-09-01
A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation
Anomalous diffusion in niobium. Study of solute diffusion mechanism of iron in niobium
International Nuclear Information System (INIS)
Ablitzer, D.
1977-01-01
In order to explain anomalously high diffusion velocities observed for iron diffusion in niobium, the following parameters were measured: isotope effect, b factor (which expresses the effect of iron on niobium self-diffusion), self-diffusion coefficient of niobium, solute diffusion coefficient of iron in niobium. The results obtained show that neither pure vacancy models, nor diffusion in the lattice defects (dislocations, sub-boundaries, grain boundaries), nor pure interstitialy mechanisms, nor simple or cyclic exchange mechanisms agree with experiments. A mechanism is proposed which considers an equilibrium between substitution iron atoms and interstitial iron atoms. The diffusion of iron then occurs through interstitial vancancy pairs [fr
Research of Innovation Diffusion on Industrial Networks
Directory of Open Access Journals (Sweden)
Yongtai Chen
2014-01-01
Full Text Available The real value of innovation consists in its diffusion on industrial network. The factors which affect the diffusion of innovation on industrial network are the topology of industrial network and rules of diffusion. Industrial network is a complex network which has scale-free and small-world characters; its structure has some affection on threshold, length of path, enterprise’s status, and information share of innovation diffusion. Based on the cost and attitude to risk of technical innovation, we present the “avalanche” diffusing model of technical innovation on industrial network.
Evaluation of empirical atmospheric diffusion data
International Nuclear Information System (INIS)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for groundlevel sources
Evaluation of empirical atmospheric diffusion data
Energy Technology Data Exchange (ETDEWEB)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.
Quantum diffusion of light interstitials in metals
International Nuclear Information System (INIS)
McMullen, T.; Bergersen, B.
1978-01-01
A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)
International Nuclear Information System (INIS)
Gordillo, J.; Perez, R.A.; Di Lalla, N.
2012-01-01
The spectrometry was used to measure the diffusion of u in Ti-α in the range of temperatures from 863 to 1123 k (590-850 o C). The diffusion parameters found Q = 294 kj / mol and D o = 4x10 -3 m2 / s are similar to obtained for the self-diffusion in Ti-? measured using a base material containing impurities like this work. This is consistent with the hypothesis that u diffuses via a vacancy mechanism in the grid of Ti-α and it contrasted with older results, in which the activation energy is significantly lower and incompatible with said diffusion mechanism (author)
SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS
M. R. Monazzam
2006-01-01
Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers) on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier wa...
Simulation of diffusion in concentrated lattice gases
International Nuclear Information System (INIS)
Kehr, K.W.
1986-01-01
Recently the diffusion of particles in lattice gases was studied extensively by theoretical methods and numerical simulations. This paper reviews work on collective and, in particular, on tracer diffusion. The diffusion of tagged particles is characterized by a correlation factor whose behavior as a function of concentration is now well understood. Also the detailed kinetics of the tracer transitions was investigated. A special case is the one-dimensional lattice gas where the tracer diffusion coefficient vanishes. An interesting extension is the case of tagged atoms with a different transition rate. This model allows to study various physical situations, including impurity diffusion, percolation, and diffusion in partially blocked lattices. Finally some recent work on diffusion in lattice gases under the influence of a drift field will be reported. (author)
Model of diffusers / permeators for hydrogen processing
International Nuclear Information System (INIS)
Jacobs, W. D.; Hang, T.
2008-01-01
Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper. (authors)
Diffusion of Implanted Radioisotopes in Solids
2002-01-01
Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...
Diffusive separation of particles by diffusion in swirled turbulent flows
International Nuclear Information System (INIS)
Arbuzov, V.N.; Shiliaev, M.I.
1984-01-01
An analysis of the dynamics of turbulent flow and diffusive separation of solid particles in a centrifugal air separator (consisting of two flat disks rotating at the same angular velocity) is presented. A closed set of balances for all the components of the tensor of turbulent stresses, extended to the entire flow region, is employed in the numerical analysis of transition and turbulent air flows between the rotating disks. The analytical relationships obtained for the case of the mixed flow for the various components of the average velocity, energy of fluctuations, and turbulence level in the circumferential direction agreed well with the theoretical and experimental distributions of Bakke, et al. (1973). It is shown that at high Reynolds numbers the flow is isotropic, the dependence of the circumferential component of the average velocity obeys a power law, and the generation of the radial component is controlled by the local centrifugal field. The sharpness of particle separation was calculated by the eddy diffusion equation and was found to depend on the geometry and the operating conditions. 8 references
Calculating effective diffusivities in the limit of vanishing molecular diffusion
International Nuclear Information System (INIS)
Pavliotis, G.A.; Stuart, A.M.; Zygalakis, K.C.
2009-01-01
In this paper we study the problem of the numerical calculation (by Monte Carlo methods) of the effective diffusivity for a particle moving in a periodic divergent-free velocity field, in the limit of vanishing molecular diffusion. In this limit traditional numerical methods typically fail, since they do not represent accurately the geometry of the underlying deterministic dynamics. We propose a stochastic splitting method that takes into account the volume-preserving property of the equations of motion in the absence of noise, and when inertial effects can be neglected. An extension of the method is then proposed for the cases where the noise has a non-trivial time-correlation structure and when inertial effects cannot be neglected. The method of modified equations is used to explain failings of Euler-based methods. The new stochastic geometric integrators are shown to outperform standard Euler-based integrators. Various asymptotic limits of physical interest are investigated by means of numerical experiments, using the new integrators
Probing the diffuse interstellar medium with diffuse interstellar bands
Theodorus van Loon, Jacco; Bailey, Mandy; Farhang, Amin; Javadi, Atefeh; Khosroshahi, Habib
2015-08-01
For a century already, a large number of absorption bands have been known at optical wavelengths, called the diffuse interstellar bands (DIBs). While their carriers remain unidentified, the relative strengths of these bands in various environments make them interesting new probes of the diffuse interstellar medium (ISM). We present the results from two large, dedicated campaigns to map the ISM using DIBs measured in the high signal-to-noise spectra of hundreds of early-type stars: [1] in and around the Local Bubble using ESO's New Technology Telescope and the Isaac Newton Telescope, and [2] across both Magellanic Clouds using the Very Large Telescope and the Anglo-Australian Telescope. We discuss the implications for the structure and dynamics of the ISM, as well as the constraints these maps place on the nature of the carriers of the DIBs. Partial results have appeared in the recent literature (van Loon et al. 2013; Farhang et al. 2015a,b; Bailey, PhD thesis 2014) with the remainder being prepared for publication now.
International Nuclear Information System (INIS)
Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.
1976-01-01
Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated
Anomalous diffusion spreads its wings
Energy Technology Data Exchange (ETDEWEB)
Klafter, J. [School of Chemistry, Tel Aviv University, Tel-Aviv (Israel)]. E-mail: klafter@post.tau.ac.il; Sokolov, I.M. [Institute of Physics, Humboldt University, Berlin (Germany)]. E-mail: igor.sokolov@physik.hu-berlin.de
2005-08-01
An increasing number of natural phenomena do not fit into the relatively simple description of diffusion developed by Einstein a century ago. As all of us are no doubt aware, this year has been declared 'world year of physics' to celebrate the three remarkable breakthroughs made by Albert Einstein in 1905. However, it is not so well known that Einstein's work on Brownian motion - the random motion of tiny particles first observed and investigated by the botanist Robert Brown in 1827 - has been cited more times in the scientific literature than his more famous papers on special relativity and the quantum nature of light. In a series of publications that included his doctoral thesis, Einstein derived an equation for Brownian motion from microscopic principles - a feat that ultimately enabled Jean Perrin and others to prove the existence of atoms (see 'Einstein's random walk' Physics World January pp19-22). Einstein was not the only person thinking about this type of problem. The 27 July 1905 issue of Nature contained a letter with the title 'The problem of the random walk' by the British statistician Karl Pearson, who was interested in the way that mosquitoes spread malaria, which he showed was described by the well-known diffusion equation. As such, the displacement of a mosquito from its initial position is proportional to the square root of time, and the distribution of the positions of many such 'random walkers' starting from the same origin is Gaussian in form. The random walk has since turned out to be intimately linked to Einstein's work on Brownian motion, and has become a major tool for understanding diffusive processes in nature. (U.K.)
Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.
2010-12-01
In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous
Diffuse hemangioma of the colon
International Nuclear Information System (INIS)
Reis, J.; Caseiro-Alves, F.; Cruz, L.; Moreira, A.; Rebelo, O.
1995-01-01
We report two cases of diffuse hemangioma of the colon in adolescent patients. One patient had multiple phleboliths at the lower pelvis identified with plain radiographs of the abdomen. Several aspects were seen on double-contrast enema: luminal narrowing, colonic-wall thickening and submucosal colonic masses that changed in appearance with the degree of colonic distension. Angiography was inconclusive in one case. Use of CT and MR provided relevant information regarding the true extent of the disease, but MR was superior in demonstrating unequivocally the vascular nature of the lesions. (orig.)
Diffusion Indexes with Sparse Loadings
DEFF Research Database (Denmark)
Kristensen, Johannes Tang
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the LASSO as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model which is better suited for forecasting compared...... it to be an important alternative to PC....
Diffusion inside living human cells
DEFF Research Database (Denmark)
Leijnse, N.; Jeon, J. -H.; Loft, Steffen
2012-01-01
of the cell or within the nucleus. Also, granules in cells which are stressed by intense laser illumination or which have attached to a surface for a long period of time move in a more restricted fashion than those within healthy cells. For granules diffusing in healthy cells, in regions away from the cell...... cells. For these cells the exact diffusional pattern of a particular granule depends on the physiological state of the cell and on the localization of the granule within the cytoplasm. Granules located close to the actin rich periphery of the cell move less than those located towards to the center...
Diffusion of torqued active particles
Sandoval, Mario; Lauga, Eric
2012-11-01
Motivated by swimming microorganisms whose trajectories are affected by the presence of an external torque, we calculate the diffusivity of an active particle subject to an external torque and in a fluctuating environment. The analytical results are compared with Brownian dynamics simulations showing excellent agreement between theory and numerical experiments. This work was funded in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico (Conacyt postdoctoral fellowship to M. S.) and the US National Science Foundation (Grant CBET-0746285 to E.L.).
Transaction Costs For Innovations Diffusion
Directory of Open Access Journals (Sweden)
Ilya A. Romanov
2012-10-01
Full Text Available The article deals with the analysis of transaction costs of the innovations distribution. The factors, affecting the innovations diffusion in accordance with the clusters, relations, dynamics of the distribution are disclosed. Transaction costs as a result of bounded rationality of economic entities are detected. The inevitability of transaction costs as an objective phenomenon is shown. Their dependence on the quality of economic information and information uncertainty is indicated. Correlative approach for the analysis of these costs is applied. The article justifies that the reduction of transaction costs increases the efficiency of innovations.
Analysis of mercury diffusion pumps
International Nuclear Information System (INIS)
Dunn, K.A.
1991-01-01
Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. 4 refs
Magnetic fields in diffuse media
Pino, Elisabete; Melioli, Claudio
2015-01-01
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Energy Technology Data Exchange (ETDEWEB)
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Material Barriers to Diffusive Mixing
Haller, George; Karrasch, Daniel
2017-11-01
Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.
Diffusion Maps for Multimodal Registration
Directory of Open Access Journals (Sweden)
Gemma Piella
2014-06-01
Full Text Available Multimodal image registration is a difficult task, due to the significant intensity variations between the images. A common approach is to use sophisticated similarity measures, such as mutual information, that are robust to those intensity variations. However, these similarity measures are computationally expensive and, moreover, often fail to capture the geometry and the associated dynamics linked with the images. Another approach is the transformation of the images into a common space where modalities can be directly compared. Within this approach, we propose to register multimodal images by using diffusion maps to describe the geometric and spectral properties of the data. Through diffusion maps, the multimodal data is transformed into a new set of canonical coordinates that reflect its geometry uniformly across modalities, so that meaningful correspondences can be established between them. Images in this new representation can then be registered using a simple Euclidean distance as a similarity measure. Registration accuracy was evaluated on both real and simulated brain images with known ground-truth for both rigid and non-rigid registration. Results showed that the proposed approach achieved higher accuracy than the conventional approach using mutual information.
Diffusion tensor MRI: clinical applications
International Nuclear Information System (INIS)
Meli, Francisco; Romero, Carlos; Carpintiero, Silvina; Salvatico, Rosana; Lambre, Hector; Vila, Jose
2005-01-01
Purpose: To evaluate the usefulness of diffusion-tensor imaging (DTI) on different neurological diseases, and to know if this technique shows additional information than conventional Magnetic Resonance Imaging (MRI). Materials and method: Eight patients, with neurological diseases (five patients with brain tumors, one with multiple sclerosis (MS), one with variant Creutzfeldt-Jakob disease (vCJD) and the other with delayed CO intoxication were evaluated. A MR scanner of 1.5 T was used and conventional sequences and DTI with twenty-five directions were done. Quantitative maps were gotten, where the fractional anisotropy (FA) through regions of interest (ROIs) in specific anatomic area were quantified (i.e.: internal and external capsules, frontal and temporal bundles, corpus fibers). Results: In the patients with brain tumors, there was a decrease of FA on intra and peritumoral fibers. Some of them had a disruption in their pattern. In patients with MS and CO intoxication, partial interruption along white matter bundles was demonstrated. However, a 'mismatch' between the findings of FLAIR, Diffusion-weighted images (DWI) and DTI, in the case of CO intoxication, was seen. Conclusions: DTI gave more information compared to conventional sequences about ultrastructural brain tissue in almost all the diseases above mentioned. Therefore, there is a work in progress about DTI acquisition, to evaluate a new technique, called tractography. (author)
Numerical study of turbulent diffusion
International Nuclear Information System (INIS)
McCoy, M.G.
1975-01-01
The problem of the numerical simulation of turbulent diffusion is studied. The two-dimensional velocity fields are assumed to be incompressible, homogeneous and stationary, and they are represented as stochastic processes. A technique is offered which creates velocity fields accurately representing the input statistics once a two point correlation function or an energy spectrum is given. Various complicated energy spectra may be represented utilizing this model. The program is then used to extract information concerning Gaussian diffusion processes. Various theories of other workers are tested including Taylor's classical representation of dispersion for times long compared with the Lagrangian correlation time. Also, a study is made of the relation between the Lagrangian and the Eulerian correlation function and a hypothesis is advanced and successfully tested. Questions concerning the relation between small eddies and the energy spectrum are considered. A criterion is advanced and successfully tested to decide whether small scale flow can be detected within the large eddies for any given spectrum. A method is developed to determine whether this small scale motion is in any sense periodic. Finally, the relation between two particle dispersion and the energy spectrum is studied anew and various theories are tested
OH+ IN DIFFUSE MOLECULAR CLOUDS
International Nuclear Information System (INIS)
Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.
2014-01-01
Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds
Mechanisms of impurity diffusion in rutile
International Nuclear Information System (INIS)
Peterson, N.L.; Sasaki, J.
1984-01-01
Tracer diffusion of 46 Sc, 51 Cr, 54 Mn, 59 Fe, 60 Co, 63 Ni, and 95 Zr, was measured as functions of crystal orientation, temperature, and oxygen partial pressure in rutile single crystals using the radioactive tracer sectioning technique. Compared to cation self-diffusion, divalent impurities (e.g., Co and Ni) diffuse extremely rapidly in TiO 2 and exhibit a large anisotropy in the diffusion behavior; divalent-impurity diffusion parallel to the c-axis is much larger than it is perpendicular to the c-axis. The diffusion of trivalent impurity ions (Sc and Cr) and tetravalent impurity ions (Zr) is similar to cation self-diffusion, as a function of temperature and of oxygen partial pressure. The divalent impurity ions Co and Ni apparently diffuse as interstitial ions along open channels parallel to the c-axis. The results suggest that Sc, Cr, and Zr ions diffuse by an interstitialcy mechanism involving the simultaneous and cooperative migration of tetravalent interstitial titanium ions and the tracer-impurity ions. Iron ions diffused both as divalent and as trivalent ions. 8 figures
Diffusion tensor and diffusion weighted imaging. Pictorial mathematics
Energy Technology Data Exchange (ETDEWEB)
Nakada, Tsutomu [California Univ., Davis, CA (United States)
1995-06-01
A new imaging algorithm for the treatment of a second order apparent diffusion tensor, D{sub app}{sup {xi}} is described. The method calls for only mathematics of images (pictorial mathematics) without necessity of eigenvalues/eigenvectors estimation. Nevertheless, it is capable of extracting properties of D{sub app}{sup {xi}} invariant to observation axes. While trace image is an example of images weighted by invariance of the tensor matrix, three dimensional anisotropy (3DAC) contrast represents the imaging method making use to anisotropic direction of tensor ellipsoid producing color coded contrast of exceptionally high anatomic resolution. Contrary to intuition, the processes require only a simple algorithm directly applicable to clinical magnetic resonance imaging (MRI). As a contrast method which precisely represents physical characteristics of a target tissue, invariant D{sub app}{sup {xi}} images produced by pictorial mathematics possess significant potential for a number of biological and clinical applications. (author).
Diffusion processes in nuclear waste glasses
International Nuclear Information System (INIS)
Serruys, Y.; Limoge, Y.; Brebec, G.
1992-01-01
Problems concerning the containment of nuclear wastes are presented. Different materials which have been considered for this purpose are briefly reviewed and we see why glass is one of the favorite candidates. It is focussed on what is known about diffusion in 'simple enough' glasses. After a recall concerning the structure and possible defects, the main results on diffusion in 'simple' glasses are given and it is shown what these results involve for the mechanisms of diffusion. The diffusion models are presented which can account for transport in random media: percolation and random walk models. Specific phenomena for the nuclear waste glasses are considered: the effect of irradiation on diffusion and leaching (i.e. corrosion by water). Finally diffusion data in nuclear waste glasses are presented. (author). 199 refs., 6 figs., 1 tab
Spin diffusion in disordered organic semiconductors
Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz
2015-12-01
An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.
2015 MICCAI Workshop on Computational Diffusion MRI
Ghosh, Aurobrata; Kaden, Enrico; Rathi, Yogesh; Reisert, Marco
2016-01-01
These Proceedings of the 2015 MICCAI Workshop “Computational Diffusion MRI” offer a snapshot of the current state of the art on a broad range of topics within the highly active and growing field of diffusion MRI. The topics vary from fundamental theoretical work on mathematical modeling, to the development and evaluation of robust algorithms, new computational methods applied to diffusion magnetic resonance imaging data, and applications in neuroscientific studies and clinical practice. Over the last decade interest in diffusion MRI has exploded. The technique provides unique insights into the microstructure of living tissue and enables in-vivo connectivity mapping of the brain. Computational techniques are key to the continued success and development of diffusion MRI and to its widespread transfer into clinical practice. New processing methods are essential for addressing issues at each stage of the diffusion MRI pipeline: acquisition, reconstruction, modeling and model fitting, image processing, fiber t...
Radon progeny distribution in cylindrical diffusion chambers
International Nuclear Information System (INIS)
Pressyanov, Dobromir S.
2008-01-01
An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.
Structured inverse modeling in parabolic diffusion processess
Schulz, Volker; Siebenborn, Martin; Welker, Kathrin
2014-01-01
Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.
Anomalous diffusion of fermions in superlattices
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.
1996-03-01
Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)
New definition of the cell diffusion coefficient
International Nuclear Information System (INIS)
Koehler, P.
1975-01-01
As was shown in a recent work by Gelbard, the usually applied Benoist definition of the cell diffusion coefficient gives two different values if two different definitions of the cell are made. A new definition is proposed that preserves the neutron balance for the homogenized lattice and that is independent of the cell definition. The resulting diffusion coefficient is identical with the main term of Benoist's diffusion coefficient
Diffusion Indexes With Sparse Loadings
DEFF Research Database (Denmark)
Kristensen, Johannes Tang
2017-01-01
The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the least absolute shrinkage and selection operator (LASSO) as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model...... in forecasting accuracy and thus find it to be an important alternative to PC. Supplementary materials for this article are available online....
Radko, Timour
Fully developed two-dimensional salt-finger convection is characterized by the appearance of coherent dipolar eddies which carry relatively fresh and cold fluid upward and salty and warm fluid downward. Such structures are prevalent in the regime in which density stratification is close to neutral and the salt-finger instability is extremely vigorous. The structure and translation velocities of modons are discussed in terms of the asymptotic expansion in which the background density ratio approaches unity. It is argued that the vertical salt flux is driven primarily by double-diffusive modons, which makes it possible to derive explicit expressions for the mixing rates of temperature and salinity as a function of their background gradients. Predictions of the proposed mixing model are successfully tested by direct numerical simulations.
[Tracheobronchoplasty for Severe Diffuse Tracheomalacia].
Hoffmann, H; Gompelmann, D; Heußel, C P; Dienemann, H; Eberhardt, R
2016-09-01
Patients with diffuse airway instability due to tracheobronchomalacia or excessive dynamic airway collapse are typically highly symptomatic, with marked dyspnoea, recurrent bronchopulmonary infections and excruciating intractable cough. Silicone stents achieve immediate symptom control, but are - due to the typical complications associated with stent treatment - usually not an option for long-term treatment. The aim of surgical intervention is definitive stabilisation of the trachea and of both main bronchi by posterior splinting of the Paries membranaceus with a polypropylene mesh. This operation is an appropriate treatment option for patients with documented severe tracheobronchomalacia or excessive dynamic airway collapse and is ultimately the only therapy that can achieve permanent symptom control. The success of the operation, however, depends on many factors and requires close interdisciplinary collaboration. Georg Thieme Verlag KG Stuttgart · New York.
Word diffusion and climate science.
Directory of Open Access Journals (Sweden)
R Alexander Bentley
Full Text Available As public and political debates often demonstrate, a substantial disjoint can exist between the findings of science and the impact it has on the public. Using climate-change science as a case example, we reconsider the role of scientists in the information-dissemination process, our hypothesis being that important keywords used in climate science follow "boom and bust" fashion cycles in public usage. Representing this public usage through extraordinary new data on word frequencies in books published up to the year 2008, we show that a classic two-parameter social-diffusion model closely fits the comings and goings of many keywords over generational or longer time scales. We suggest that the fashions of word usage contributes an empirical, possibly regular, correlate to the impact of climate science on society.
Directed diffusion of reconstituting dimers
International Nuclear Information System (INIS)
Barma, Mustansir; Grynberg, Marcelo D; Stinchcombe, Robin B
2007-01-01
We discuss the dynamical aspects of an asymmetric version of assisted diffusion of hard core particles on a ring studied by Menon et al (1997 J. Stat. Phys. 86 1237). The asymmetry brings in phenomena like kinematic waves and effects of the Kardar-Parisi-Zhang non-linearity, which combine with the feature of strongly broken ergodicity, a characteristic of the model. A central role is played by a single non-local invariant, the irreducible string, whose interplay with the driven motion of reconstituting dimers, arising from the assisted hopping, determines the asymptotic dynamics and scaling regimes. These are investigated both analytically and numerically through sector-dependent mappings to the asymmetric simple exclusion process
Directed diffusion of reconstituting dimers
Energy Technology Data Exchange (ETDEWEB)
Barma, Mustansir [Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Grynberg, Marcelo D [Departamento de Fisica, Universidad Nacional de La Plata (1900) La Plata (Argentina); Stinchcombe, Robin B [Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH (United Kingdom)
2007-02-14
We discuss the dynamical aspects of an asymmetric version of assisted diffusion of hard core particles on a ring studied by Menon et al (1997 J. Stat. Phys. 86 1237). The asymmetry brings in phenomena like kinematic waves and effects of the Kardar-Parisi-Zhang non-linearity, which combine with the feature of strongly broken ergodicity, a characteristic of the model. A central role is played by a single non-local invariant, the irreducible string, whose interplay with the driven motion of reconstituting dimers, arising from the assisted hopping, determines the asymptotic dynamics and scaling regimes. These are investigated both analytically and numerically through sector-dependent mappings to the asymmetric simple exclusion process.
Flow, diffusion, and rate processes
International Nuclear Information System (INIS)
Sieniutycz, S.; Salamon, P.
1992-01-01
This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
Diffusion mechanisms in grain boundaries in solids
International Nuclear Information System (INIS)
Peterson, N.L.
1982-01-01
A critical review is given of our current knowledge of grain-boundary diffusion in solids. A pipe mechanism of diffusion based on the well-established dislocation model seems most appropriate for small-angle boundaries. Open channels, which have atomic configurations somewhat like dislocation cores, probably play a major role in large-angle grain-boundary diffusion. Dissociated dislocations and stacking faults are not efficient paths for grain-boundary diffusion. The diffusion and computer modeling experiments are consistent with a vacancy mechanism of diffusion by a rather well-localized vacancy. The effective width of a boundary for grain-boundary diffusion is about two atomic planes. These general features of grain-boundary diffusion, deduced primarily from experiments on metals, are thought to be equally applicable for pure ceramic solids. The ionic character of many ceramic oxides may cause some differences in grain-boundary structure from that observed in metals, resulting in changes in grain-boundary diffusion behavior. 72 references, 5 figures
Diffusion weighted imaging by MR method
International Nuclear Information System (INIS)
Horikawa, Yoshiharu; Naruse, Shoji; Ebisu, Toshihiko; Tokumitsu, Takuaki; Ueda, Satoshi; Tanaka, Chuzo; Higuchi, Toshihiro; Umeda, Masahiro.
1993-01-01
Diffusion weighted magnetic resonance imaging is a recently developed technique used to examine the micromovement of water molecules in vivo. We have applied this technique to examine various kinds of brain diseases, both experimentally and clinically. The calculated apparent diffusion coefficient (ADC) in vivo showed reliable values. In experimentally induced brain edema in rats, the pathophysiological difference of the type of edema (such as cytotoxic, and vasogenic) could be differentiated on the diffusion weighted MR images. Cytotoxic brain edema showed high intensity (slower diffusion) on the diffusion weighted images. On the other hand, vasogenic brain edema showed a low intensity image (faster diffusion). Diffusion anisotropy was demonstrated according to the direction of myelinated fibers and applied motion proving gradient (MPG). This anisotropy was also demonstrated in human brain tissue along the course of the corpus callosum, pyramidal tract and optic radiation. In brain ischemia cases, lesions were detected as high signal intensity areas, even one hour after the onset of ischemia. Diffusion was faster in brain tumor compared with normal brain. Histological differences were not clearly reflected by the ADC value. In epidermoid tumor cases, the intensity was characteristically high, was demonstrated, and the cerebrospinal fluid border was clearly demonstrated. New clinical information obtainable with this molecular diffusion method will prove to be useful in various clinical studies. (author)
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.
2013-05-29
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.
Parallel, Rapid Diffuse Optical Tomography of Breast
National Research Council Canada - National Science Library
Yodh, Arjun
2001-01-01
During the last year we have experimentally and computationally investigated rapid acquisition and analysis of informationally dense diffuse optical data sets in the parallel plate compressed breast geometry...
Parallel, Rapid Diffuse Optical Tomography of Breast
National Research Council Canada - National Science Library
Yodh, Arjun
2002-01-01
During the last year we have experimentally and computationally investigated rapid acquisition and analysis of informationally dense diffuse optical data sets in the parallel plate compressed breast geometry...
Mechanism for hydrogen diffusion in amorphous silicon
International Nuclear Information System (INIS)
Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.
1998-01-01
Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si endash Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si endash Si bonds, and can play a crucial role in hydrogen diffusion. copyright 1998 The American Physical Society
Collective diffusion and quantum chaos in holography
Wu, Shao-Feng; Wang, Bin; Ge, Xian-Hui; Tian, Yu
2018-05-01
We define a particular combination of charge and heat currents that is decoupled with the heat current. This "heat-decoupled" (HD) current can be transported by diffusion at long distances, when some thermoelectric conductivities and susceptibilities satisfy a simple condition. Using the diffusion condition together with the Kelvin formula, we show that the HD diffusivity can be same as the charge diffusivity and also the heat diffusivity. We illustrate that such mechanism is implemented in a strongly coupled field theory, which is dual to a Lifshitz gravity with the dynamical critical index z =2 . In particular, it is exhibited that both charge and heat diffusivities build the relationship to the quantum chaos. Moreover, we study the HD diffusivity without imposing the diffusion condition. In some homogeneous holographic lattices, it is found that the diffusivity/chaos relation holds independently of any parameters, including the strength of momentum relaxation, chemical potential, or temperature. We also show a counter example of the relation and discuss its limited universality.
Diffusion in Deterministic Interacting Lattice Systems
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
Pressure effect on grain boundary diffusion
International Nuclear Information System (INIS)
Smirnova, E.S.; Chuvil'deev, V.N.
1997-01-01
The influence of hydrostatic pressure on grain boundary diffusion and grain boundary migration in metallic materials is theoretically investigated. The model is suggested that permits describing changes in activation energy of grain boundary self-diffusion and diffusion permeability of grain boundaries under hydrostatic pressure. The model is based on the ideas about island-type structure of grain boundaries as well as linear relationship of variations in grain boundary free volume to hydrostatic pressure value. Comparison of theoretical data with experimental ones for a number of metals and alloys (α-Zr, Sn-Ge, Cu-In with Co, In, Al as diffusing elements) shows a qualitative agreement
Angiohepatogram in diffuse hepatic disease
Energy Technology Data Exchange (ETDEWEB)
Aburano, T; Suzuki, Y; Hisada, K [Kanazawa Univ. (Japan). School of Medicine; Matsudaira, M
1975-10-01
A region of interest angiohepatogram was obtained with intravenous injection of 10mCi of sup(99m)Tc-Sn-colloid and a data processing system. Furthermore, the ratio of hepatic arterial blood flow volume to total hepatic blood flow volume was calculated according to Ueda's method, and the correlation of this calculated ratio and the degree of extrahepatic distribution of sup(99m)Tc-Sn-colloid (spleen to liver, and bone marrow to liver activity ratio) was examined. Most cases of liver cirrhosis and Banti's syndrome showed the increased hepatic arterial blood flow ratio (liver cirrhosis: 43.5+-9.5%, Banti's syndrome 48.8+-4.9%) in contrast with 18.1+-4.6% in normal cases, and its ratio showed much higher values in the presence of portal hypertension manifestations (esophageal varix and ascites). The hepatic arterial blood flow ratio showed increased values in the case of markedly increased extrahepatic activity, e.g. liver cirrhosis, and the correlation of the ratio and extrahepatic activity degree of sup(99m)Tc-Sn-colloid was significant statistically. From these results, a region of interest angiohepatogram was supposed to be useful for the prediction of the hemodynamic change, as well as, the improvement of diagnostic accuracy with radioisotope in diffuse hepatic disease, especially liver cirrhosis. Moreover, the hemodynamic change of liver, especially the reduction of the effectivehepatic blood flow volume via the portal vein was considered to be closely concerned in the mechanism of increased extrahepatic activity of RI colloid in diffuse hepatic disease.
Angiohepatogram in diffuse hepatic disease
International Nuclear Information System (INIS)
Aburano, Tamio; Suzuki, Yutaka; Hisada, Kinichi; Matsudaira, Masamichi.
1975-01-01
A region of interest angiohepatogram was obtained with intravenous injection of 10mCi of sup(99m)Tc-Sn-colloid and a data processing system. Furthermore, the ratio of hepatic arterial blood flow volume to total hepatic blood flow volume was calculated according to Ueda's method, and the correlation of this calculated ratio and the degree of extrahepatic distribution of sup(99m)Tc-Sn-colloid (spleen to liver, and bone marrow to liver activity ratio) was examined. Most cases of liver cirrhosis and Banti's syndrome showed the increased hepatic arterial blood flow ratio (liver cirrhosis: 43.5+-9.5%, Banti's syndrome 48.8+-4.9%) in contrast with 18.1+-4.6% in normal cases, and its ratio showed much higher values in the presence of portal hypertension manifestations (esophageal varix and ascites). The hepatic arterial blood flow ratio showed increased values in the case of markedly increased extrahepatic activity, e.g. liver cirrhosis, and the correlation of the ratio and extrahepatic activity degree of sup(99m)Tc-Sn-colloid was significant statistically. From these results, a region of interest angiohepatogram was supposed to be useful for the prediction of the hemodynamic change, as well as, the improvement of diagnostic accuracy with radioisotope in diffuse hepatic disease, especially liver cirrhosis. Moreover, the hemodynamic change of liver, especially the reduction of the effective hepatic blood flow volume via the portal vein was considered to be closely concerned in the mechanism of increased extrahepatic activity of RI colloid in diffuse hepatic disease. (auth.)
Collective effects in diffuse ambiplasma
International Nuclear Information System (INIS)
Rogers, S.H.
1981-01-01
All laboratory evidence to date indicates that particles materialize from energy only in matter-antimatter pairs and, conversely, disappear only when such pairs annihilate. This observed law suggests that early in the Big Bang, when material and radiation were in equilibrium, the universe contained equal amounts of matter and antimatter. Since the earth, the solar system, and the neighboring stars, as implied by cosmic ray data, appear to be exclusively matter, their antimatter counterparts should by all rights exist elsewhere. Astronomical observations, however, have revealed no signs of antimatter on a large scale; in particular, the energetic gamma rays that would originate in the boundaries between matter and antimatter are not observed. The dilemma is resolved if the laboratory law is violated even minutely, a possibility that is now being tested by experiment. On the other hand, the dilemma disappears if the matter and antimatter exist in separate regions without, in effect, interacting. In this case there must be a repulsive force between the matter and antimatter that prevents them from mixing; in particular, such a force is crucial to the coexistence of large, diffuse regions akin to the galactic interstellar clouds. Predictions of the outcome of matter-antimatter contact are usually based entirely on binary collisions. This disseration explores the possibility that collective effects dominate interactions between diffuse matter and antimatter and give rise to the necessary repulsive force. Some years ago, a mechanism was proposed in which a thin, magnetized layer of ambiplasma kept matter and antimatter plasmas separated with the energy released in occasional annihilation
Amplitude equations for a sub-diffusive reaction-diffusion system
International Nuclear Information System (INIS)
Nec, Y; Nepomnyashchy, A A
2008-01-01
A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points
International Nuclear Information System (INIS)
Premuda, F.
1983-01-01
Two lines in improved neutron diffusion theory extending the efficiency of finite-difference diffusion codes to the field of optically small systems, are here reviewed. The firs involves the nodal solution for tensorial diffusion equation in slab geometry and tensorial formulation in parallelepiped and cylindrical gemometry; the dependence of critical eigenvalue from small slab thicknesses is also analitically investigated and finally a regularized tensorial diffusion equation is derived for slab. The other line refer to diffusion models formally unchanged with respect to the classical one, but where new size-dependent RTGB definitions for diffusion parameters are adopted, requiring that they allow to reproduce, in diffusion approach, the terms of neutron transport global balance; the trascendental equation for the buckling, arising in slab, sphere and parallelepiped geometry from the above requirement, are reported and the sizedependence of the new diffusion coefficient and extrapolated end point is investigated
Electrolyte diffusion in compacted montmorillonite engineered barriers
International Nuclear Information System (INIS)
Jahnke, F.M.; Radke, C.J.
1985-09-01
The bentonite-based engineered barrier or packing is a proposed component of several designs conceived to dispose of high-level nuclear waste in geologic repositories. Once radionuclides escape the waste package, they must first diffuse through the highly impermeable clay-rich barrier before they reach the host repository. To determine the effectiveness of the packing as a sorption barrier in the transient release period and as a mass-transfer barrier in the steady release period over the geologic time scales involved in nuclear waste disposal, a fundamental understanding of the diffusion of electrolytes in compacted clays is required. We present, and compare with laboratory data, a model quantifying the diffusion rates of cationic cesium and uncharged tritium in compacted montmorillonite clay. Neutral tritium characterizes the geometry (i.e., tortuosity) of the particulate gel. After accounting for cation exchange, we find that surface diffusion is the dominant mechanism of cation transport, with an approximate surface diffusion coefficient of 2 x 10 -6 cm 2 /s for cesium. This value increases slightly with increasing background ionic strength. The implications of this work for the packing as a migration barrier are twofold. During the transient release period, K/sub d/ values are of little importance in retarding ion migration. This is because sorption also gives rise to a surface diffusion path, and it is surface diffusion which controls the diffusion rate of highly sorbing cations in compacted montmorillonite. During the steady release period, the presence of surface diffusion leads to a flux through the packing which is greatly enhanced. In either case, if surface diffusion is neglected, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations. 11 refs., 4 figs., 1 tab
Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...
African Journals Online (AJOL)
Consequently, the study recommended the use of diffusion networks which integrate interpersonal networks, and multimedia strategies for the effective diffusion of innovation such as Jacodiesel in Adamawa State and other parts of the country. Keywords: Sustainability, Diffusion, Innovation, Communicative Influence, ...
Directory of Open Access Journals (Sweden)
Nobumichi Fujisawa
2017-01-01
Full Text Available The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV, and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.
Self-diffusion in isotopically enriched silicon carbide and its correlation with dopant diffusion
International Nuclear Information System (INIS)
Rueschenschmidt, K.; Bracht, H.; Stolwijk, N.A.; Laube, M.; Pensl, G.; Brandes, G.R.
2004-01-01
Diffusion of 13 C and 30 Si in silicon carbide was performed with isotopically enriched 4H- 28 Si 12 C/ nat SiC heterostructures which were grown by chemical vapor phase epitaxy. After diffusion annealing at temperatures between 2000 deg. C and 2200 deg. C the 30 Si and 13 C profiles were measured by means of secondary ion mass spectrometry. We found that the Si and C diffusivity is of the same order of magnitude but several orders of magnitude lower than earlier data reported in the literature. Both Si and C tracer diffusion coefficients are in satisfactory agreement with the native point defect contribution to self-diffusion deduced from B diffusion in SiC. This reveals that the native defect which mediates B diffusion also controls self-diffusion. Assuming that B atoms within the extended tail region of B profiles are mainly dissolved on C sites, we propose that B diffuses via the kick-out mechanism involving C interstitials. Accordingly, C diffusion should proceed mainly via C interstitials. The mechanism of Si diffusion remains unsolved but Si may diffuse via both Si vacancies and interstitials, with the preference for either species depending on the doping level
Integrated Temperature Sensors based on Heat Diffusion
Van Vroonhoven, C.P.L.
2015-01-01
This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and
Self-diffusion on copper surfaces
DEFF Research Database (Denmark)
Hansen, L.; Stoltze, Per; Jacobsen, Karsten Wedel
1991-01-01
The diffusion paths and activation energies of a Cu adatom on Cu(100), Cu(111), and Cu(110) are studied using the effective-medium theory to calculate the energetics. For the (100) and (110) faces, diffusion via an exchange mechanism is found to be important. The transition state for these paths ...
Conformational Diffusion and Helix Formation Kinetics
International Nuclear Information System (INIS)
Hummer, Gerhard; Garcia, Angel E.; Garde, Shekhar
2000-01-01
The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society
Finite-difference schemes for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Higher-order tensors in diffusion imaging
Schultz, T.; Fuster, A.; Ghosh, A.; Deriche, R.; Florack, L.M.J.; Lim, L.H.; Westin, C.-F.; Vilanova, A.; Burgeth, B.
2014-01-01
Diffusion imaging is a noninvasive tool for probing the microstructure of fibrous nerve and muscle tissue. Higher-order tensors provide a powerful mathematical language to model and analyze the large and complex data that is generated by its modern variants such as High Angular Resolution Diffusion
Multicomponent diffusivities from the free volume theory
Wesselingh, J.A; Bollen, A.M
In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure
An Organizational Diffusion Study on Distance Education
Smith, Lillian Upton; Richter, Donna L.; Miner, Kathleen R.; Watkins, Ken; Usdan, Stuart
2005-01-01
This research explored the diffusion process of distance education in schools of public health to determine best practices in the planning and implementation of future programs. The researcher traced the diffusion process by utilizing a multiple-case study methodology using a semi-structured interview to collect the perceptions of Distance…
Mid infrared upconversion spectroscopy using diffuse reflectance
DEFF Research Database (Denmark)
Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin
2014-01-01
specifically that upconversion methods can be deployed using a diffuse reflectance setup where the test sample is irradiated by a thermal light source, i.e. a globar. The diffuse reflectance geometry is particularly well suited when a transmission setup cannot be used. This situation may happen for highly...
Water diffusion in phosphate-containing hydrogels
International Nuclear Information System (INIS)
George, K.A.; Wentrup-Byrne, E.; Hill, D.J.T.; Whittaker, A.K.
2003-01-01
An understanding of the kinetics and diffusion of liquids through polymeric hydrogels is critical for the successful design and application of these materials in biomedical field, particularly as controlled drug delivery systems. In this study, the mechanisms of water transport and parameters that describe the diffusion process in crosslinked poly(2-hydroxyethylmethacrylate-co-methyloxyethylene phosphate), poly(HEMA-co-MOEP) polymers were investigated. The copolymerisation of HEMA with MOEP was initiated by γ radiolysis with full conversion of monomer to polymer. The sorption of water into the polymers with 0 - 30 mol% MOEP was monitored gravimetrically over a period of 2 - 3 weeks. This study provided an insight into the diffusion mechanism and showed that the PHEMA hydrogel displayed concentration-independent Fickian diffusion. As the concentration of MOEP in the network increased, the diffusion rate and the rigidity of the network also increased in a linear fashion. NMR imaging was used in conjunction with the gravimetric study to elucidate the transport mechanisms, diffusion coefficients and proportionality constants governing the water diffusion in the phosphate-containing polymers. The hydrogels with 3 - 20 mol% MOEP exhibited exponential concentration-dependent Fickian diffusion and the transport mechanism in the system with 30 mol% MOEP was shown to be anomalous. The systems with greater concentrations of MOEP displayed a high degree of fracturing during water sorption and resulted in the ultimate destruction of the cylindrical geometry
Self-diffusion in remodeling and growth
Epstein, Marcelo
2011-07-16
Self-diffusion, or the flux of mass of a single species within itself, is viewed as an independent phenomenon amenable to treatment by the introduction of an auxiliary field of diffusion velocities. The theory is shown to be heuristically derivable as a limiting case of that of an ordinary binary mixture. © 2011 Springer Basel AG.
Diffusion and scattering in multifractal clouds
Energy Technology Data Exchange (ETDEWEB)
Lovejoy, S. [McGill Univ., Montreal, Quebec (Canada); Schertzer, D. [Universite Pierre et Marie Curie, Paris (France); Waston, B. [St. Lawrence Univ., Canton, NY (United States)] [and others
1996-04-01
This paper describes investigations of radiative properties of multifractal clouds using two different approaches. In the first, diffusion is considered by examining the scaling properties of one dimensional random walks on media with multifractal diffusivities. The second approach considers the scattering statistics associated with radiative transport.
Derivation of the neutron diffusion equation
International Nuclear Information System (INIS)
Mika, J.R.; Banasiak, J.
1994-01-01
We discuss the diffusion equation as an asymptotic limit of the neutron transport equation for large scattering cross sections. We show that the classical asymptotic expansion procedure does not lead to the diffusion equation and present two modified approaches to overcome this difficulty. The effect of the initial layer is also discussed. (authors). 9 refs
High resolution CT in diffuse lung disease
International Nuclear Information System (INIS)
Webb, W.R.
1995-01-01
High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.)
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
Self-diffusion in remodeling and growth
Epstein, Marcelo; Goriely, Alain
2011-01-01
Self-diffusion, or the flux of mass of a single species within itself, is viewed as an independent phenomenon amenable to treatment by the introduction of an auxiliary field of diffusion velocities. The theory is shown to be heuristically derivable
High angular resolution diffusion imaging : processing & visualization
Prckovska, V.
2010-01-01
Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI) technique that can map the orientation architecture of neural tissues in a completely non-invasive way by measuring the directional specificity (anisotropy) of the local water diffusion. However, in areas of complex fiber
Chloride diffusion in partially saturated cementitious material
DEFF Research Database (Denmark)
Nielsen, Erik Pram; Geiker, Mette Rica
2003-01-01
The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg...
High resolution CT in diffuse lung disease
Energy Technology Data Exchange (ETDEWEB)
Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology
1996-12-31
High resolution CT (computerized tomography) was discussed in detail. The conclusions were HRCT is able to define lung anatomy at the secondary lobular level and define a variety of abnormalities in patients with diffuse lung diseases. Evidence from numerous studies indicates that HRCT can play a major role in the assessment of diffuse infiltrative lung disease and is indicate clinically (95 refs.).
Gas phase thermal diffusion of stable isotopes
International Nuclear Information System (INIS)
Eck, C.F.
1979-01-01
The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes
Long range diffusion of hydrogen in yttrium
Energy Technology Data Exchange (ETDEWEB)
Anderson, I S; Scherrer, P [Paul Scherrer Inst., Villigen (Switzerland); Ross, D K [Birmingham Univ. (UK). Dept. of Physics; Bonnet, J E [Laboratoire pour l' Utilisation du Rayonnement Electromagnetique (LURE), Paris-11 Univ., 91 - Orsay (France)
1989-01-01
The diffusion of H in single crystals of YH{sub 0.2} is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.).
Conformational Diffusion and Helix Formation Kinetics
Energy Technology Data Exchange (ETDEWEB)
Hummer, Gerhard [Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States); Garcia, Angel E. [Theoretical Biology and Biophysics Group T-10, MS K710, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Garde, Shekhar [Department of Chemical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States)
2000-09-18
The time, temperature, and sequence dependences of helix formation kinetics of fully atomistic peptide models in explicit solvent are described quantitatively by a diffusive search within the coil state with barrierless transitions into the helical state. Conformational diffusion leads to nonexponential kinetics and jump-width dependences in temperature jump experiments. (c) 2000 The American Physical Society.
Dynamic problem of generalized thermoelastic diffusive medium
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rajneesh; Kansal, Tarun [Kurukshetra University, Kurukshetra (India)
2010-01-15
The equations of generalized thermoelastic diffusion, based on the theory of Lord and Shulman with one relaxation time, are derived for anisotropic media with rotation. The variational principle and reciprocity theorem for the governing equations are derived. The propagation of leaky Rayleigh waves in a viscous fluid layer overlying a homogeneous isotropic, generalized thermoelastic diffusive half space with rotating frame of reference is studied
Depolarization of diffusing spins by paramagnetic impurities
International Nuclear Information System (INIS)
Schillaci, M.E.; Hutson, R.L.; Heffner, R.H.; Leon, M.; Dodds, S.A.; Estle, T.L.
1981-01-01
We study the depolarization of diffusing spins (muons) interacting with dilute paramagnetic impurities in a solid using a simple computational model which properly treats the muon motion and preserves correct muon-impurity distances. Long-range (dipolar) and nearest-neighbor (contact) interactions are treated together. Diffusion parameters are deduced and model comparisons made for AuGd (300 ppm). (orig.)
Imaging features of diffuse pulmonary hemorrhage
International Nuclear Information System (INIS)
Schmit, M.; Vogel, W.; Horger, M.
2006-01-01
There are diverse etiologies of diffuse pulmonary hemorrhage, so specific diagnosis may be difficult. Conventional radiography tends to be misleading as hemoptysis may lacking in patients with hemorrhagic anemia. Diffuse pulmonary hemorrhage should be differentiated from focal pulmonary hemorrhage resulting from chronic bronchitis, bronchiectasis, active infection (tuberculosis) neoplasia, trauma, or embolism. (orig.)
Multicomponent diffusion in two-temperature magnetohydrodynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.; Chang, C.H.
1996-01-01
A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society
Plasma diffusion due to magnetic field fluctuations
International Nuclear Information System (INIS)
Okuda, H.; Lee, W.W.; Lin, A.T.
1979-01-01
Plasma diffusion due to magnetic field fluctuations has been studied in two dimensions for a plasma near thermal equilibrium and when the fluctuations are suprathermal. It is found that near thermal equilibrium electron diffusion varies as B -2 when the collisionless skin depth is greater than the thermal electron gyroradius and is generally smaller than the diffusion due to collisions or electrostatic fluctuations for a low-β plasma. When the suprathermal magnetic fluctuation exists because of macroscopic plasma currents, electron diffusion is enhanced due to the coalescence of current filaments and magnetic islands. Magnetic field energy is found to condense to the longest wavelength available in the system and stays there longer than the electron diffusion time scale
Nuclear diffuseness as a degree of freedom
Myers, W. D.; ŚwiaŢecki, W. J.
1998-12-01
The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Süssmann width b.
White matter biomarkers from diffusion MRI
Nørhøj Jespersen, Sune
2018-06-01
As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.
Symmetries and modelling functions for diffusion processes
International Nuclear Information System (INIS)
Nikitin, A G; Spichak, S V; Vedula, Yu S; Naumovets, A G
2009-01-01
A constructive approach to the theory of diffusion processes is proposed, which is based on application of both symmetry analysis and the method of modelling functions. An algorithm for construction of the modelling functions is suggested. This algorithm is based on the error function expansion (ERFEX) of experimental concentration profiles. The high-accuracy analytical description of the profiles provided by ERFEX approximation allows a convenient extraction of the concentration dependence of diffusivity from experimental data and prediction of the diffusion process. Our analysis is exemplified by its employment in experimental results obtained for surface diffusion of lithium on the molybdenum (1 1 2) surface precovered with dysprosium. The ERFEX approximation can be directly extended to many other diffusion systems.
Extended phase graphs with anisotropic diffusion
Weigel, M.; Schwenk, S.; Kiselev, V. G.; Scheffler, K.; Hennig, J.
2010-08-01
The extended phase graph (EPG) calculus gives an elegant pictorial description of magnetization response in multi-pulse MR sequences. The use of the EPG calculus enables a high computational efficiency for the quantitation of echo intensities even for complex sequences with multiple refocusing pulses with arbitrary flip angles. In this work, the EPG concept dealing with RF pulses with arbitrary flip angles and phases is extended to account for anisotropic diffusion in the presence of arbitrary varying gradients. The diffusion effect can be expressed by specific diffusion weightings of individual magnetization pathways. This can be represented as an action of a linear operator on the magnetization state. The algorithm allows easy integration of diffusion anisotropy effects. The formalism is validated on known examples from literature and used to calculate the effective diffusion weighting in multi-echo sequences with arbitrary refocusing flip angles.
Global Banning of a Diffused Controversial Practice
DEFF Research Database (Denmark)
Gurses, Kerem; Giones, Ferran; Mehta, Kandarpkumar
2017-01-01
We study the deinstitutionalization of a controversial practice that had previously reached a level of international diffusion. We draw on international diffusion and deinstitutionalization theory to study the emergence and diffusion of the third-party ownership practice in the soccer industry. We...... use an inductive case study combining archival and interview data to study the determinants of the international diffusion of a controversial practice at a global scale, the contestation, and finally the deinstitutionalization process that resulted from the ban of the practice. We find...... that the opacity of the practice can be a diffusion driver, locally and at the international level, nevertheless the opacity also may lead to different meaning creation attempts and potential discursive battles between actors, and eventually to deinstitutionalization of the practice. This article advances our...
Diffusion bonding in compact heat exchangers
International Nuclear Information System (INIS)
Southall, David
2009-01-01
Heatric's diffusion bonding process is a solid-state joining technology that produces strong, compact, all-metal heat exchanger cores. Diffusion bonding allows for a large quantity of joints to be made in geometries that would normally be inaccessible for conventional welding techniques. Since Heatric's diffusion bonding process uses no interlayer or braze alloy, the resulting heat exchanger core has consistent chemistry throughout and, under carefully controlled conditions, a return to parent metal strength can be reached. This paper will provide an overview of the diffusion bonding process and its origins, and also its application to compact heat exchanger construction. The paper will then discuss recent work that has been done to compare mechanical properties of Heatric's diffusion bonded material with material that has been conventionally welded, as well as with material tested in the as-received condition. (author)
Diffuse Esophageal leiomyomatosis: a case report
Energy Technology Data Exchange (ETDEWEB)
Sung, Dong Wook; Chang, Suk Ki; Park, Seoung jin; Yoon, Yup; Kim, Youn hwa [Kyung Hee University Hospital, Suwon (Korea, Republic of)
2000-09-01
Leiomyomas are the most common benign tumors found in the esophagus. They are mostly solitary and multiple diffuse lesions are rare, occurring in only 2.4% of cases (1). We describe the case of a 13-year-old boy with a history of Alport syndrome who complained of progressive dysphagia and postprandial vomiting, and in whom diffuse leiomyomatosis of the esophagus was diagnosed. Chest PA showed mediastinal widening, and a barium study revealed diffuse esophageal wall thickening with dilatation, and obstruction at the level of the distal esophagus. Manometry showed increased pressure in the lower esophagus, and CT demonstrated diffuse thickening of the entire esophageal wall and an intraluminal mass in the distal esophagus, Follow-up CT three years later showed further esophageal wall thickening, as well as luminal narrowing. By means of distal esophagectomy, diffuse leiomyomatosis involving the entire esophageal wall and intraluminal mass was diagnosed. (author)
Carrier illumination measurement of dopant lateral diffusion
International Nuclear Information System (INIS)
Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.
2005-01-01
This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition
Physical bases for diffusion welding processes optimization
International Nuclear Information System (INIS)
Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.
1999-01-01
One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint
Diffusion of Charged Species in Liquids
Del Río, J. A.; Whitaker, S.
2016-11-01
In this study the laws of mechanics for multi-component systems are used to develop a theory for the diffusion of ions in the presence of an electrostatic field. The analysis begins with the governing equation for the species velocity and it leads to the governing equation for the species diffusion velocity. Simplification of this latter result provides a momentum equation containing three dominant forces: (a) the gradient of the partial pressure, (b) the electrostatic force, and (c) the diffusive drag force that is a central feature of the Maxwell-Stefan equations. For ideal gas mixtures we derive the classic Nernst-Planck equation. For liquid-phase diffusion we encounter a situation in which the Nernst-Planck contribution to diffusion differs by several orders of magnitude from that obtained for ideal gases.
Nuclear diffuseness as a degree of freedom
International Nuclear Information System (INIS)
Myers, W.D.; Swiatecki, W.J.
1998-01-01
The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Suessmann width b. copyright 1998 The American Physical Society
Diffusion and the self-measurability
Directory of Open Access Journals (Sweden)
Holeček M.
2009-06-01
Full Text Available The familiar diffusion equation, ∂g/∂t = DΔg, is studied by using the spatially averaged quantities. A non-local relation, so-called the self-measurability condition, fulfilled by this equation is obtained. We define a broad class of diffusion equations defined by some "diffusion inequality", ∂g/∂t · Δg ≥ 0, and show that it is equivalent to the self-measurability condition. It allows formulating the diffusion inequality in a non-local form. That represents an essential generalization of the diffusion problem in the case when the field g(x, t is not smooth. We derive a general differential equation for averaged quantities coming from the self-measurability condition.
Diffusion coefficients of paracetamol in aqueous solutions
International Nuclear Information System (INIS)
Ribeiro, Ana C.F.; Barros, Marisa C.F.; Veríssimo, Luís M.P.; Santos, Cecilia I.A.V.; Cabral, Ana M.T.D.P.V.; Gaspar, Gualter D.; Esteso, Miguel A.
2012-01-01
Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, D m 0 , and ionized forms, D ± 0 , of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm −3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.
Diffusion of water into SU-8 microcantilevers
DEFF Research Database (Denmark)
Liu, C.J.; Liu, Y.; Sokuler, M.
2010-01-01
We present a method to monitor the diffusion of liquid molecules in polymers. A microdrop of water is deposited by a piezoelectric drop generator onto the upper surface of a cantilever made of SU-8 based photoresist. In response, the cantilever bends in the opposite direction. We find...... sophisticated finite element model the diffusion coefficient of water in the SU-8 polymer can be determined quantitatively from the dynamics of cantilever bending....... that this bending is mainly caused by the diffusion of water into the cantilever and the consequent swelling of SU-8. Using a one-dimensional diffusion model and assuming a simple swelling law, we qualitatively model the bending of the cantilever during in and out diffusion of water in SU-8. With a more...
Basic principles of diffusion-weighted imaging
International Nuclear Information System (INIS)
Bammer, Roland.
2003-01-01
In diffusion-weighted MRI (DWI), image contrast is determined by the random microscopic motion of water protons. During the last years, DWI has become an important modality in the diagnostic work-up of acute ischemia in the CNS. There are also a few promising reports about the application of DWI to other regions in the human body, such as the vertebral column or the abdomen. This manuscript provides an introduction into the basics of DWI and Diffusion Tensor imaging. The potential of various MR sequences in concert with diffusion preparation are discussed with respect to acquisition speed, spatial resolution, and sensitivity to bulk physiologic motion. More advanced diffusion measurement techniques, such as high angular resolution diffusion imaging, are also addressed
Understanding deterministic diffusion by correlated random walks
International Nuclear Information System (INIS)
Klages, R.; Korabel, N.
2002-01-01
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations. (author)
Basic consideration of diffusion/perfusion imaging
International Nuclear Information System (INIS)
Tamagawa, Yoichi; Kimura, Hirohiko; Matsuda, Tsuyoshi; Kawamura, Yasutaka; Nakatsugawa, Shigekazu; Ishii, Yasushi; Sakuma, Hajime; Tsukamoto, Tetsuji.
1990-01-01
In magnetic resonance imaging (MRI), microscopic motion of biological system such as molecular diffusion of water and microcirculation of blood in the capillary network (perfusion) has been proposed to cause signal attenuation as an intravoxel incoherent motion (IVIM). Quantitative imaging of the IVIM phenomenon was attempted to generate from a set of spin-echo (SE) sequences with or without sensitization by motion probing gradient (MPG). The IVIM imaging is characterized by a parameter, apparent diffusion coefficient (ADC), which is an integration of both the diffusion and the perfusion factor on voxel-by-voxel basis. Hard ware was adjusted to avoid image artifact mainly produced by eddy current. Feasibility of the method was tested using bottle phantom filled with water at different temperature and acetone, and the calculated ADC values of these media corresponded well with accepted values of diffusion. The method was then applied to biological system to investigate mutual participation of diffusion/perfusion on the ADC value. The result of tumor model born on nude mouse suggested considerable participation of perfusion factor which immediately disappeared after sacrificing the animal. Meanwhile, lower value of sacrificed tissue without microcirculation was suggested to have some restriction of diffusion factor by biological tissue. To substantiate the restriction effect on the diffusion, a series of observation have made on a fiber phantom, stalk of celory with botanical fibers and human brain with nerve fibers, in applying unidirectional MPG along the course of these banch of fiber system. The directional restriction effect of diffusion along the course of fiber (diffusion anisotrophy) was clearly visualized as directional change of ADC value. The present method for tissue characterization by diffusion/perfusion on microscopic level will provide a new insight for evaluation of functional derangement in human brain and other organs. (author)
Stable isotope separation by thermal diffusion
International Nuclear Information System (INIS)
Vasaru, Gheorghe
2001-01-01
Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion
Diffusion tensor imaging in spinal cord compression
International Nuclear Information System (INIS)
Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin
2012-01-01
Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression
Ultrafast palladium diffusion in germanium
Tahini, Hassan Ali
2015-01-01
The slow transport of dopants through crystal lattices has hindered the development of novel devices. Typically atoms are contained within deep potential energy wells which necessitates multiple attempts to hop between minimum energy positions. This is because the bonds that constrain atoms are strongest at the minimum positions. As they hop between sites the bonds must be broken, only to re-form as the atoms slide into adjacent minima. Here we demonstrate that the Pd atoms introduced into the Ge lattice behave differently. They retain bonds as the atoms shift across so that at the energy maximum between sites Pd still exhibits strong bonding characteristics. This reduces the energy maximum to almost nothing (a migration energy of only 0.03 eV) and means that the transport of Pd through the Ge lattice is ultrafast. We scrutinize the bonding characteristics at the atomic level using quantum mechanical simulation tools and demonstrate why Pd behaves so differently to other metals we investigated (i.e. Li, Cu, Ag, Pt and Au). Consequently, this fundamental understanding can be extended to systems where extremely rapid diffusion is desired, such as radiation sensors, batteries and solid oxide fuel cells.
Diffusive charge transport in graphene
Chen, Jianhao
The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.
Simulation of anisotropic diffusion by means of a diffusion velocity method
Beaudoin, A; Rivoalen, E
2003-01-01
An alternative method to the Particle Strength Exchange method for solving the advection-diffusion equation in the general case of a non-isotropic and non-uniform diffusion is proposed. This method is an extension of the diffusion velocity method. It is shown that this extension is quite straightforward due to the explicit use of the diffusion flux in the expression of the diffusion velocity. This approach is used to simulate pollutant transport in groundwater and the results are compared to those of the PSE method presented in an earlier study by Zimmermann et al.
Principles and implementation of diffusion-weighted and diffusion tensor imaging
International Nuclear Information System (INIS)
Roberts, Timothy P.L.; Schwartz, E.S.
2007-01-01
We review the physiological basis of diffusion-weighted imaging and discuss the implementation of diffusion-weighted imaging pulse sequences and the subsequent postprocessing to yield quantitative estimations of diffusion parameters. We also introduce the concept of directionality of ''apparent'' diffusion in vivo and the means of assessing such anisotropy quantitatively. This in turn leads to the methodological application of diffusion tensor imaging and the subsequent postprocessing, known as tractography. The following articles deal with the clinical applications enabled by such methodologies. (orig.)
Simple simulation of diffusion bridges with application to likelihood inference for diffusions
DEFF Research Database (Denmark)
Bladt, Mogens; Sørensen, Michael
2014-01-01
the accuracy and efficiency of the approximate method and compare it to exact simulation methods. In the study, our method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to statistical inference. To illustrate the usefulness......With a view to statistical inference for discretely observed diffusion models, we propose simple methods of simulating diffusion bridges, approximately and exactly. Diffusion bridge simulation plays a fundamental role in likelihood and Bayesian inference for diffusion processes. First a simple......-dimensional diffusions and is applicable to all one-dimensional diffusion processes with finite speed-measure. One advantage of the new approach is that simple simulation methods like the Milstein scheme can be applied to bridge simulation. Another advantage over previous bridge simulation methods is that the proposed...
Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium
Energy Technology Data Exchange (ETDEWEB)
Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)
International Nuclear Information System (INIS)
Uskov, V.A.; Kondrachenko, O.E.; Kondrachenko, L.A.
1977-01-01
A phenomenological theory of multicomponent diffusion involving interaction between the components is employed to analyze how the interaction between two admixtures affects their simultaneous or consequent diffusion into a semiconductor. The theory uses the equations of multicomponent dissusion under common conditions (constant diffusion coefficients and equilibrium distribution of vacancies). The experiments are described on In and Sb simultaneous diffusion into Ge. The diffusion is performed according to the routine gas phase technology with the use of radioactive isotopes In 114 and Sb 124 . It is shown that the introduction of an additional diffusion coefficient D 12 makes it possible to simply and precisely describe the distribution of interacting admixtures in complex diffusion alloying of semiconductors
Double diffusivity model under stochastic forcing
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into
Diffusion of insoluble carbon in zirconium oxides
Vykhodets, V B; Koester, U; Kondrat'ev, V V; Kesarev, A G; Hulsen, C; Kurennykh, T E
2011-01-01
The diffusion coefficient of insoluble carbon in zirconium oxides has been obtained for the temperature range of 900-1000A degrees C. There are no published data on the diffusion of insoluble impurities; these data are of current interest for the diffusion theory and nuclear technologies. Tracer atoms 13C have been introduced into oxides by means of ion implantation and the kinetics of their emission from the samples in the process of annealing in air has been analyzed. The measurements have been performed using the methods of nuclear microanalysis and X-ray photoelectron spectroscopy. The diffusion activation energy is 2.7 eV and the carbon diffusion coefficient is about six orders of magnitude smaller than that for oxygen self-diffusion in the same systems. This result indicates the strong anomaly of the diffusion properties of carbon in oxides. As a result, zirconium oxides cannot be used in some nuclear technologies, in particular, as a material of sources for accelerators of short-lived carbon isotopes.
Studies of matrix diffusion in gas phase
International Nuclear Information System (INIS)
Hartikainen, K.; Timonen, J.; Vaeaetaeinen, K.; Pietarila, H.
1994-03-01
The diffusion of solutes from fractures into rock matrix is an important factor in the safety analysis of disposal of radioactive waste. Laboratory measurements are needed to complement field investigations for a reliable determination of the necessary transport parameters. Measurements of diffusion coefficients in tight rock samples are usually time consuming because the diffusion processes are slow. On the other hand it is well known that diffusion coefficients in the gas phase are roughly four orders of magnitude larger than those in the liquid phase. Therefore, for samples whose structures do not change much upon drying, it is possible to estimate the diffusion properties of the liquid phase when the properties of the gas phase are known. Advantages of the gas method are quick and easy measurements. In the measurements nitrogen was used as the carrier gas and helium as the tracer gas, and standard techniques have been used for helium detection. Techniques have been developed for both channel flow and through-diffusion measurements. The breakthrough curves have been measured in every experiment and all measurements have been modelled by using appropriate analytical models. As a result matrix porosities and effective diffusion coefficients in the gas phase have been determined. (12 refs., 21 figs., 6 tabs.)
Mechanism and kinetics of hydrated electron diffusion
International Nuclear Information System (INIS)
Tay, Kafui A.; Coudert, Francois-Xavier; Boutin, Anne
2008-01-01
Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps -1 at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol -1 . Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process
Surface diffusion studies by optical diffraction techniques
International Nuclear Information System (INIS)
Xiao, X.D.
1992-11-01
The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect
Interests diffusion in social networks
D'Agostino, Gregorio; D'Antonio, Fulvio; De Nicola, Antonio; Tucci, Salvatore
2015-10-01
We provide a model for diffusion of interests in Social Networks (SNs). We demonstrate that the topology of the SN plays a crucial role in the dynamics of the individual interests. Understanding cultural phenomena on SNs and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.
Homogenization of neutronic diffusion models
International Nuclear Information System (INIS)
Capdebosq, Y.
1999-09-01
In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A tracer diffusion model derived from microstructure
International Nuclear Information System (INIS)
Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus
2012-01-01
Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame
Airflow Pattern Genereated by Three Air Diffusers
DEFF Research Database (Denmark)
Olmedo, Inés; Nielsen, Peter V.; de Adana, Manuel Ruiz
The correct description of air diffusers plays a crucial role in the CFD predictions of the airflow pattern into a room. The numerical simulation of air distribution in an indoor space is challenging because of the complicated airflow pattern generated. An experimental study has been carried out...... in a full scale test room, 4.10 m (length), 3.20 m (width), and 2.70 m (height), in order to take velocity measurements of the airflow pattern generated by three different air diffusers: displacement, mixing and a low impulse diffuser. Smoke visualization has been developed to determine the direction...
Diffusion of improved biomass stoves in China
International Nuclear Information System (INIS)
Daxiong Qiu; Shuhua Gu; Catania, P.; Kun Huang
1996-01-01
The large-scale utilization of inefficient biofuel stoves for cooking and heating in the rural areas of China can cause ecological and environmental problems; thus, in 1982, the Chinese government encouraged the diffusion of improved biomass stoves. From 1982 to 1994, these improved biomass stoves have been used by 144 million households or the equivalent of 90% of all improved stoves installed globally; 62% of the Chinese market has been penetrated. This paper presents the fundamental features of China's diffusion programme of improved biomass stoves, analyses of the future domestic market, and defines some of the lessons learned from the diffusion programme which may be applicable in other emerging nations. (Author)
Neoclassical diffusion at low L-shel
Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.
2017-12-01
At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L
Entropy as a measure of diffusion
International Nuclear Information System (INIS)
Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad
2013-01-01
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.
Entropy as a measure of diffusion
Energy Technology Data Exchange (ETDEWEB)
Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir; Fatollahi, Amir H., E-mail: fath@alzahra.ac.ir; Khorrami, Mohammad, E-mail: mamwad@mailaps.org; Shariati, Ahmad, E-mail: shariati@mailaps.org
2013-10-15
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.
Atomic defects and diffusion in metals
International Nuclear Information System (INIS)
Siegel, R.W.
1981-11-01
The tracer self-diffusion data for fcc and refractory bcc metals are briefly reviewed with respect to (i) the available monovacancy formation and migration properties and (ii) the high-temperature diffusion enhancement above that expected for mass transport via atomic exchange with monovacancies. While the atomic-defect mechanism for low-temperature self-diffusion can be reliably attributed to monovacancies, the mechanisms responsible for high-temperature mass transport are not so easily defined at this time; both divacancies and interstitials must be seriously considered. Possibilities for improving our understanding in this area are discussed. 68 references, 7 figures
Diffusion and transport coefficients in synthetic opals
International Nuclear Information System (INIS)
Sofo, J. O.; Mahan, G. D.
2000-01-01
Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society
On uniqueness in diffuse optical tomography
International Nuclear Information System (INIS)
Harrach, Bastian
2009-01-01
A prominent result of Arridge and Lionheart (1998 Opt. Lett. 23 882–4) demonstrates that it is in general not possible to simultaneously recover both the diffusion (aka scattering) and the absorption coefficient in steady-state (dc) diffusion-based optical tomography. In this work we show that it suffices to restrict ourselves to piecewise constant diffusion and piecewise analytic absorption coefficients to regain uniqueness. Under this condition both parameters can simultaneously be determined from complete measurement data on an arbitrarily small part of the boundary
Diffusion in the special theory of relativity.
Herrmann, Joachim
2009-11-01
The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.
Current limiting capability of diffused resistors
International Nuclear Information System (INIS)
Shedd, W.; Cappelli, J.
1979-01-01
An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits
Diffusion of tritiated water in coastal areas
International Nuclear Information System (INIS)
Fukuda, M.; Kasai, A.; Imai, T.; Amano, H.; Yanase, N.
1980-01-01
The diffusion of tritiated water discharged by Japan Atomic Energy Research Institute at shore line has been investigated. In continuous discharge, the concentration of tritiated water in samples taken at a point downstream fluctuates largely. To reveal the cause, dye diffusion experiments were made in the coastal area. The shapes of dye cloud were photographed by a remote-control camera suspended from a captive balloon as color pictures. The movement of dye is so complex that a three-dimensional model must be employed to assess the diffusion in coastal areas
A3 Subscale Diffuser Test Article Design
Saunders, G. P.
2009-01-01
This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine
2010-08-20
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation. © 2010 Springer-Verlag.
Directory of Open Access Journals (Sweden)
Tuva Roaldsdatter Hope
2016-08-01
Full Text Available The diffusion weighted imaging (DWI technique enables quantification of water mobility for probing microstructural properties of biological tissue, and has become an effective tool for collecting information about the underlying pathology of cancerous tissue. Measurements using multiple b-values have indicated a bi-exponential signal attenuation, ascribed to fast (high ADC and slow (low ADC diffusion components. In this empirical study, we investigate the properties of the diffusion time (∆ - dependent components of the diffusion-weighted (DW signal in a constant b-value experiment. A Xenograft GBM mouse was imaged using ∆ = 11 ms, 20 ms, 40 ms, 60 ms and b=500-4000 s/mm2 in intervals of 500s/mm2. Data was corrected for EPI distortions and the ∆-dependence on the DW signal was measured within three regions of interest (intermediate- and high-density tumor regions and normal appearing brain tissue regions (NAB. In this empirical study we verify the assumption that the slow decaying component of the DW-signal is non-Gaussian and dependent on ∆, consistent with restricted diffusion of the intracellular space. As the DW-signal as a function of ∆ is specific to restricted diffusion, manipulating ∆ at constant b-value (cb provides a complementary and direct approach for separating the restricted from the hindered diffusion component. Our results show that only tumor tissue signal of our data demonstrate ∆-dependence, based on a bi-exponential model with a restricted diffusion component, we successfully estimated the restricted ADC, signal volume fraction and cell size within each tumor ROI.
Lattice dynamical investigations on Zn diffusion in zinc oxide
Indian Academy of Sciences (India)
diffusion and that too by single vacancy mechanism. The results are compared with the .... Instantaneous relative displacement of the diffusing atom with respect to the neigh- bours in the diffusion ring is given as a reaction coordinate,. X =.
DEFF Research Database (Denmark)
Shiva, Amir Houshang; Teasdale, Peter R.; Bennett, William W.
2015-01-01
A systematic comparison of the diffusion coefficients of cations (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanions (Al, As, Mo, Sb, V, W) in open (ODL) and restricted (RDL) diffusive layers used by the DGT technique was undertaken. Diffusion coefficients were measured using both the diffusion cell...... concentrations required with the Dcell measurements. This is the first time that D values have been reported for several oxyanions using RDL. Except for Al at pH 8.30 with ODL, all DDGT measurements were retarded relative to diffusion coefficients in water (DW) for both diffusive hydrogels. Diffusion in RDL...
Review of enhanced vapor diffusion in porous media
International Nuclear Information System (INIS)
Webb, S.W.; Ho, C.K.
1998-01-01
Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper
Stochastic models for surface diffusion of molecules
Energy Technology Data Exchange (ETDEWEB)
Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)
2014-07-28
We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.
Diffusion studies of anamorphic GRIN lenses
Sekh, Md. Asraful; SoodBiswas, Nisha; Sarkar, Samir; Basuray, Amitabha
2016-12-01
The present paper reports the diffusion study of cylindrical GRIN rod with elliptical cross section, developed by ion exchange process. The diffusion equation takes the form of Mathieu equations when transform into elliptic coordinate system and the solutions are derived in terms of angular and radial Mathieu functions. Computations of eigenvalues and expansion coefficients as well as angular and radial Mathieu functions are made which shows good agreement with the existing results. Simpler expression for ionic concentration is derived using asymptotic formulae of the functions which are used for final computation of ionic concentration of diffusing cations in elliptic GRIN. The plot of change in concentration versus diffusion depth along different directions approximately correlates with the results obtained by an earlier experimental study.
A Dynamical Theory of Markovian Diffusion
Davidson, Mark
2001-01-01
A dynamical treatment of Markovian diffusion is presented and several applications discussed. The stochastic interpretation of quantum mechanics is considered within this framework. A model for Brownian movement which includes second order quantum effects is derived.
Atmospheric diffusion wind tunnel with automatic measurement
Energy Technology Data Exchange (ETDEWEB)
Maki, S; Sakai, J; Murata, E
1974-01-01
A wind tunnel which permits estimates of atmospheric diffusion is described. Smoke from power plant smoke stacks, for example, can be simulated and traced to determine the manner of diffusion in the air as well as the grade of dilution. The wind tunnel is also capable of temperature controlled diffusion tests in which temperature distribution inside the wind tunnel is controlled. A minimum wind velocity of 10 cm can be obtained with accuracy within plus or minus 0.05 percent using a controlled direct current motor; diffusion tests are often made at low wind velocity. Fully automatic measurements can be obtained by using a minicomputer so that the operation and reading of the measuring instruments can be remotely controlled from the measuring chamber. (Air Pollut. Abstr.)
Exponential attractors for a nonclassical diffusion equation
Directory of Open Access Journals (Sweden)
Qiaozhen Ma
2009-01-01
Full Text Available In this article, we prove the existence of exponential attractors for a nonclassical diffusion equation in ${H^{2}(Omega}cap{H}^{1}_{0}(Omega$ when the space dimension is less than 4.
Image denoising using non linear diffusion tensors
International Nuclear Information System (INIS)
Benzarti, F.; Amiri, H.
2011-01-01
Image denoising is an important pre-processing step for many image analysis and computer vision system. It refers to the task of recovering a good estimate of the true image from a degraded observation without altering and changing useful structure in the image such as discontinuities and edges. In this paper, we propose a new approach for image denoising based on the combination of two non linear diffusion tensors. One allows diffusion along the orientation of greatest coherences, while the other allows diffusion along orthogonal directions. The idea is to track perfectly the local geometry of the degraded image and applying anisotropic diffusion mainly along the preferred structure direction. To illustrate the effective performance of our model, we present some experimental results on a test and real photographic color images.
Inertial effects in diffusion-limited reactions
International Nuclear Information System (INIS)
Dorsaz, N; Foffi, G; De Michele, C; Piazza, F
2010-01-01
Diffusion-limited reactions are commonly found in biochemical processes such as enzyme catalysis, colloid and protein aggregation and binding between different macromolecules in cells. Usually, such reactions are modeled within the Smoluchowski framework by considering purely diffusive boundary problems. However, inertial effects are not always negligible in real biological or physical media on typical observation time frames. This is all the more so for non-bulk phenomena involving physical boundaries, that introduce additional time and space constraints. In this paper, we present and test a novel numerical scheme, based on event-driven Brownian dynamics, that allows us to explore a wide range of velocity relaxation times, from the purely diffusive case to the underdamped regime. We show that our algorithm perfectly reproduces the solution of the Fokker-Planck problem with absorbing boundary conditions in all the regimes considered and is thus a good tool for studying diffusion-guided reactions in complex biological environments.
Helium diffusion in nickel at high temperatures
International Nuclear Information System (INIS)
Philipps, V.
1980-09-01
Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)
Diffusion changes predict cognitive and functional outcome
DEFF Research Database (Denmark)
Jokinen, Hanna; Schmidt, Reinhold; Ropele, Stefan
2013-01-01
A study was undertaken to determine whether diffusion-weighted imaging (DWI) abnormalities in normal-appearing brain tissue (NABT) and in white matter hyperintensities (WMH) predict longitudinal cognitive decline and disability in older individuals independently of the concomitant magnetic...
Fractional diffusion equation for heterogeneous medium
International Nuclear Information System (INIS)
Polo L, M. A.; Espinosa M, E. G.; Espinosa P, G.; Del Valle G, E.
2011-11-01
The asymptotic diffusion approximation for the Boltzmann (transport) equation was developed in 1950 decade in order to describe the diffusion of a particle in an isotropic medium, considers that the particles have a diffusion infinite velocity. In this work is developed a new approximation where is considered that the particles have a finite velocity, with this model is possible to describe the behavior in an anomalous medium. According with these ideas the model was obtained from the Fick law, where is considered that the temporal term of the current vector is not negligible. As a result the diffusion equation of fractional order which describes the dispersion of particles in a highly heterogeneous or disturbed medium is obtained, i.e., in a general medium. (Author)
Cloaking through cancellation of diffusive wave scattering
Farhat, Mohamed
2016-08-10
A new cloaking mechanism, which makes enclosed objects invisible to diffusive photon density waves, is proposed. First, diffusive scattering from a basic core-shell geometry, which represents the cloaked structure, is studied. The conditions of scattering cancellation in a quasi-static scattering regime are derived. These allow for tailoring the diffusivity constant of the shell enclosing the object so that the fields scattered from the shell and the object cancel each other. This means that the photon flow outside the cloak behaves as if the cloaked object were not present. Diffusive light invisibility may have potential applications in hiding hot spots in infrared thermography or tissue imaging. © 2016 The Author(s) Published by the Royal Society. All rights reserved.
SNAP - a three dimensional neutron diffusion code
International Nuclear Information System (INIS)
McCallien, C.W.J.
1993-02-01
This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)
Ignition in Convective-Diffusive Systems
National Research Council Canada - National Science Library
Law, Chung
1999-01-01
... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...
ICT Innovation Diffusion in the Construction Sector
DEFF Research Database (Denmark)
Widén, Kristian; Christiansson, Per; Hjelseth, Eilif
is to increase the possibility of successful implementation and adoption of new ICT tools in the construction sector across the supply chain through increasing the knowledge and awareness of how to execute suitable development and diffusion/implementation schemes. This research carried out in this study consists...... an innovation. Recent research on innovation diffusion in the construction sector show that a way to increase opportunities for diffusion in the construction sector is to stop considering diffusion as a discrete activity following on from the development of the innovation. It is therefore of great importance...... directly. The need for stakeholder management right up from the start of the innovation projects and how to deal with it is the major difference between traditional innovation project management and the one necessary for innovation projects in construction, ICT innovations as well as others. To what extent...
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
Diffusion Coefficients of Several Aqueous Alkanolamine Solutions
Snijder, Erwin D.; Riele, Marcel J.M. te; Versteeg, Geert F.; Swaaij, W.P.M. van
1993-01-01
The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine
Theory of quantum diffusion in biased semiconductors
Bryksin, V V
2003-01-01
A general theory is developed to describe diffusion phenomena in biased semiconductors and semiconductor superlattices. It is shown that the Einstein relation is not applicable for all field strengths so that the calculation of the field-mediated diffusion coefficient represents a separate task. Two quite different diffusion contributions are identified. The first one disappears when the dipole operator commutes with the Hamiltonian. It plays an essential role in the theory of small polarons. The second contribution is obtained from a quantity that is the solution of a kinetic equation but that cannot be identified with the carrier distribution function. This is in contrast to the drift velocity, which is closely related to the distribution function. A general expression is derived for the quantum diffusion regime, which allows a clear physical interpretation within the hopping picture.
Diffused zircaloy 2/stainless steel junctions
International Nuclear Information System (INIS)
Jacques, F.
1964-01-01
The diffusion permits to realize joints between two different materials, in fact of the formation of a liquid phase at the contact face. The study of the tensile properties allowed the determination of the ideal conditions for the diffusion treatment which are, within 2 and 3 minutes for a temperature within 1020 C and 1030 C. The characteristics of the so obtained joints were, studied: mechanical properties, tightness, resistance to thermal cycling. Analysis of the thermal stress, owing to the differential dilatation of the two materials mode the object of a particular study. The investigation on the diffusion zone, includes specially, an analysis of the constituents distribution formed during the diffusion treatment. (author) [fr
Molecular diffusion in monolayer and submonolayer nitrogen
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, Ludwig Walter
2001-01-01
The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...
Fractional Diffusion Limit for Collisional Kinetic Equations
Mellet, Antoine; Mischler, Sté phane; Mouhot, Clé ment
2010-01-01
This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a
Thermal diffusion and separation of isotopes
International Nuclear Information System (INIS)
Fournier, Andre
1944-01-01
After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)
Impurity diffusion of cobalt in plutonium
International Nuclear Information System (INIS)
Charissoux, Christian; Calais, Daniel.
1975-01-01
The sectioning method for investigation of the impurity diffusion of 60 Co in the fcc and bcc phases of plutonium gives the following results: 344-426 deg C: D=1.2x10 -2 exp(-12700/RT)cm 2 /s in delta Pu(fcc); 484-621 deg C: D=1.4x10 -3 exp(-9900/RT)cm 2 /s in epsilon Pu(bcc). Cobalt is a fast diffuser in plutonium; the diffusion coefficient being unaffected by phase changes delta'→delta; delta'→epsilon, the diffusion mechanism is probably dissociative in both phases, the solute becoming interstitial by: solute (substitution) reversible solute (interstitial) + vacancy [fr
Diffusive limits for linear transport equations
International Nuclear Information System (INIS)
Pomraning, G.C.
1992-01-01
The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion