WorldWideScience

Sample records for nonroad diesel equipment

  1. An overview of non-road equipment emissions in China

    Science.gov (United States)

    Wang, Fan; Li, Zhen; Zhang, Kaishan; Di, Baofeng; Hu, Baomei

    2016-05-01

    As the vehicle population has dramatically increased in China in the past two decades, vehicle emissions have become one of the major sources to air pollution across the entire country, especially for the metropolitan cities such as Beijing and Shanghai. Most of the non-road equipment are diesel-fueled and have been proved to be a key source for NOx and PM emissions, contributing significantly to the formation of haze/smog. Therefore, an accurate estimation of emission inventory from non-road equipment is essential for air quality improvement policy making, which mainly depends on the data availability of equipment population, activity, and emissions factor. Compared to on-road vehicles, less studies regarding emissions characterization have been conducted and investigated for non-road mobile sources in China. Thus, in order to identify the data gaps and future research needs, the objective of this study is to review the current status of research in non-road mobile emissions. Five types of non-road equipment were addressed in this study, including agricultural equipment, industrial equipment, river/ocean-going vessels, locomotives, and commercial airplanes, with a focus on the former two. The equipment are further classified mainly based on national standards and data availability to account for fuel type, job duties and others. This investigation has found that the research regarding emissions from non-road equipment is still at its early stage and there is a huge data gap for both activity and emissions factors. For most of the study, data used for emission inventory estimation were based on either literature with similar equipment or as-developed emissions models such as NONROAD or CORPERT. The representativeness of these data to the localities was not much discussed in those studies, which might have weakened the accuracy of the estimated emission inventory. For future study, real-world in-use measurements of activities and emissions for the non-road equipment

  2. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel...

  3. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  4. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  5. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    Science.gov (United States)

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure

  6. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    Science.gov (United States)

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. 30 CFR 72.520 - Diesel equipment inventory.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel equipment inventory. 72.520 Section 72... Mines § 72.520 Diesel equipment inventory. (a) The operator of each mine that utilizes diesel equipment underground, shall prepare and submit in writing to the District Manager, an inventory of diesel...

  8. 30 CFR 57.4561 - Stationary diesel equipment underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stationary diesel equipment underground. 57... AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... underground. Stationary diesel equipment underground shall be— (a) Supported on a noncombustible base; and (b...

  9. Speciation Profiles and Toxic Emission Factors for Nonroad Engines: DRAFT REPORT

    Science.gov (United States)

    This document details the research and development behind how MOVES2014a estimates air toxic emissions for nonroad engines and equipment run on conventional gasoline without ethanol (E0) and gasoline blended with 10% ethanol (E10) as well as diesel fuel, compressed natural gas (C...

  10. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of...

  11. Particle- and gas-phase PAHs toxicity equivalency quantity emitted by a non-road diesel engine with non-thermal plasma technology.

    Science.gov (United States)

    Gao, Jianbing; Ma, Chaochen; Xing, Shikai; Zhang, Yajie; Liu, Jiangquan; Feng, Hao

    2016-10-01

    Polycyclic aromatic hydrocarbon (PAH) toxicity equivalency quantity (TEQ, denoted by benzo(a)pyrene equivalent (BaPeq) concentration) is more meaningful when evaluating the influence of non-road diesel engines PAH toxicity on environment. Particle- and gas-phase PAH BaPeq concentrations were calculated based on gas chromatography-mass spectrometer (GC-MS) results and toxic equivalency factors. A non-thermal plasma (NTP) reactor was applied to a non-road diesel engine to decrease PAH TEQ content. Only the gas-phase Nap BaPeq concentration increased slightly with the action of NTP at three different generator power outputs. BaP dominated the BaPeq concentration for 15 samples with, and without NTP except in the gas-phase at 4 kW. Almost all medium molecular weight (MMW) and high molecular weight (HMW) PAH TEQs increased for particle- and gas-phases at 3 kW power output compared to 2 kW without the use of NTP. Particle-phase Nap, Acp, and AcPy (low molecular weight, LMW) TEQ were under detection at 3 and 4 kW, while gas-phase BkF, IND, DBA, and BghiP (HMW) concentrations were below the limits of detection. The most abundant PAH TEQ compounds were MMW and HMW PAHs for gas- and particle-phase while they were BaA, CHR, BbF, BaP, and IND for PM aggregation. The total BaPeq emission factors were 15.1, 141.4, and 46.5 μg m(-3) at three engine loads, respectively. Significant BaPeq concentration percentage reduction was obtained (more than 80 and 60 %) with the use of NTP for particle- and gas-phases. A high TEQ content was observed for PM aggregation (38.8, 98.4, and 50.0 μg kg(-1)) which may have caused secondary PAH toxicity emissions. With the action of NTP, the breakup of MMW and HMW into LMW PAHs led to reduction of some PAH concentrations.

  12. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  13. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  14. Skill Standards for Agriculture: John Deere Agricultural Equipment Technician, Agricultural & Diesel Equipment Mechanic, Irrigation Technologist, Turf Management Technician, Turf Equipment Service Technician.

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, Olympia.

    This document presents agriculture skill standards for programs to prepare Washington students for employment in the following occupations: John Deere agricultural equipment technician; agricultural and diesel equipment mechanic; irrigation technologist; turf management technician; and turf equipment service technician. The introduction explains…

  15. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  16. 30 CFR 75.1916 - Operation of diesel-powered equipment.

    Science.gov (United States)

    2010-07-01

    ... Section 75.1916 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1916... consistent with the type of equipment being operated, roadway conditions, grades, clearances, visibility,...

  17. 30 CFR 75.1914 - Maintenance of diesel-powered equipment.

    Science.gov (United States)

    2010-07-01

    ... the equipment is operated. (d) The intake air filter on diesel-powered equipment shall be replaced or serviced, by a person who is trained to perform this task, when the intake air pressure drop device so indicates or when the engine manufacturer's maximum allowable air pressure drop level is exceeded....

  18. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NOX). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  19. 30 CFR 75.1710-1 - Canopies or cabs; self-propelled diesel-powered and electric face equipment; installation...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Canopies or cabs; self-propelled diesel-powered... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1710-1 Canopies or cabs; self-propelled diesel-powered... this section, all self-propelled diesel-powered and electric face equipment, including shuttle...

  20. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels

    Science.gov (United States)

    Two diesel trucks equipped with a particulate filter (DPF) were tested at two ambient temperatures (70oF and 20oF), fuels (ultra low sulfur diesel (ULSD) and biodiesel (B20)) and operating loads (a heavy and light weight). The test procedure included three driving cycles, a cold ...

  1. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC respectively.

    Science.gov (United States)

    Misra, Chandan; Ruehl, Chris; Collins, John Francis; Chernich, Don; Herner, Jorn

    2017-02-07

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG) and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks: two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC) and one hydraulic hybrid diesel equipped with SCR were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  2. 40 CFR 80.591 - What are the product transfer document requirements for additives to be used in diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... content requirements for use in diesel motor vehicles and nonroad engines.”; or (2) For those additives... requirements for use in model year 2007 and newer diesel motor vehicles or model year 2011 and newer...

  3. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...... are the main concerns of the present study. The volatile fuel tribotester (VFTT) was developed, capable of testing material compatibility with DME. This apparatus has the potential of selecting new materials for future DME pumps. Two properties are important for describing these lubrication qualities...

  4. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel fuel,...

  5. 78 FR 721 - California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units...

    Science.gov (United States)

    2013-01-04

    ... AGENCY California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units... Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate.'' CARB has...''), regarding its ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units...

  6. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Science.gov (United States)

    2010-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... vehicle diesel fuel small refiner or a NRLM diesel fuel small refiner under this subpart? (a) A motor...-operational between January 1, 1999, and January 1, 2000, may apply for motor vehicle diesel fuel...

  7. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Science.gov (United States)

    2010-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Beginning on June......

  8. 40 CFR 80.617 - How may California diesel fuel be distributed or sold outside of the State of California?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation... California diesel fuel redesignates it as motor vehicle diesel meeting the 15 ppm sulfur standard; and (vi) The terminal includes the volumes of California diesel fuel redesignated as motor vehicle diesel...

  9. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  10. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Science.gov (United States)

    2010-07-01

    ... vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel fuel... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.527 Under what conditions may motor vehicle diesel fuel subject to the...

  11. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General... of marker solvent yellow 124. (2) All motor vehicle and NRLM diesel fuel shall be free of solvent... yellow 124 shall be considered motor vehicle diesel fuel or NRLM diesel fuel, as appropriate. (5)...

  12. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  13. 76 FR 77515 - California State Nonroad Engine Pollution Control Standards; Ocean-Going Vessels At-Berth in...

    Science.gov (United States)

    2011-12-13

    ... AGENCY California State Nonroad Engine Pollution Control Standards; Ocean-Going Vessels At-Berth in... engines operated on ocean-going vessels at-berth in California ports (``At-Berth Regulation''). The At... airborne toxic control measures (ATCM) for auxiliary diesel engines operated on ocean-going vessels at...

  14. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel under §§ 80.593, 80.601, and 80.604. (4) If previously designated motor vehicle diesel fuel having... redesignate all the diesel fuel as 500 ppm sulfur motor vehicle diesel fuel for purposes of the...

  15. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel... supply, store or transport motor vehicle diesel fuel, NRLM diesel fuel, ECA marine fuel or heating oil... transport any diesel fuel for use in motor vehicle or nonroad engines that contains greater than...

  16. 40 CFR 80.616 - What are the enforcement exemptions for California diesel distributed within the State of...

    Science.gov (United States)

    2010-07-01

    ... ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.616 What are the enforcement exemptions for California diesel distributed within... for California diesel distributed within the State of California? 80.616 Section 80.616 Protection...

  17. 40 CFR 80.520 - What are the standards and dye requirements for motor vehicle diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel? 80.520 Section 80.520 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.520 What are the standards and dye requirements for motor vehicle...

  18. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel...

  19. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Science.gov (United States)

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  20. 40 CFR 80.570 - What labeling requirements apply to retailers and wholesale purchaser-consumers of diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA..., motor vehicle diesel fuel subject to the 15 ppm sulfur standard of § 80.520(a)(1), must affix the... dispensing, motor vehicle diesel fuel subject to the 500 ppm sulfur standard of § 80.520(c), must...

  1. 40 CFR 80.604 - What are the annual reporting requirements for refiners and importers of NRLM diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel... requirements for refiners and importers of NRLM diesel fuel? 80.604 Section 80.604 Protection of Environment... importers of NRLM diesel fuel? Beginning with the annual compliance period that begins June 1, 2007, or...

  2. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Exemptions... sulfur standards of § 80.520(a)(1) and (c) related to motor vehicle diesel fuel, of § 80.510(a), (b), and... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What requirements apply to diesel...

  3. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Science.gov (United States)

    2010-07-01

    ... the motor vehicle diesel fuel sulfur control program? 80.500 Section 80.500 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.500 What are the implementation dates for the motor vehicle diesel fuel sulfur control...

  4. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    Science.gov (United States)

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should

  5. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Science.gov (United States)

    2012-03-23

    ... Equipment for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request...-Powered Equipment in Underground Coal Mines. OMB last approved this information collection request (ICR... Administration (MSHA) requires mine operators to provide important safety protections to underground coal miners...

  6. 30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.

    Science.gov (United States)

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... rail-mounted equipment, must be provided with a parking brake that holds the fully loaded equipment... work platforms must be provided with a means to ensure that the parking braking system is...

  7. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits...

  8. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the standards of § 80.510(a) or (b). V520 = The total volume of motor vehicle diesel fuel produced or... generated by both a foreign refiner and by an importer for the same motor vehicle diesel fuel. (iii)...

  9. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk.

    Science.gov (United States)

    Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions.

  10. 40 CFR 80.607 - What are the requirements for obtaining an exemption for diesel fuel or ECA marine fuel used for...

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel will be segregated from motor vehicle diesel fuel, NRLM diesel fuel, or ECA marine fuel, as... documents associated with research and development motor vehicle diesel fuel must comply with...

  11. 40 CFR 80.585 - What is the process for approval of a test method for determining the sulfur content of diesel or...

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA... test method for determining the sulfur content of diesel or ECA marine fuel? 80.585 Section 80.585... determining the sulfur content of diesel or ECA marine fuel? (a) Approval of test methods approved...

  12. Metals emitted from heavy-duty diesel vehicles equipped with advanced PM and NO X emission controls

    Science.gov (United States)

    Hu, Shaohua; Herner, Jorn D.; Shafer, Martin; Robertson, William; Schauer, James J.; Dwyer, Harry; Collins, John; Huai, Tao; Ayala, Alberto

    Emission factors for elemental metals were determined from several heavy-duty diesel vehicles (HDDV) of 1998-2007 vintage, operating with advanced PM and/or NO X emissions control retrofits on a heavy-duty chassis dynamometer, under steady state cruise, transient, and idle conditions. The emission control retrofits included diesel particulate filters (DPF): catalyzed and uncatalyzed, passive and active prototype vanadium- or zeolite-based selective catalytic reduction (SCR) systems, and a catalyzed DPF fitted on a hybrid diesel electric drive vehicle. The prototype SCR systems in combination with DPF retrofits are of particular interest because they represent the expected emissions controls for compliance with PM and NO X regulations in 2010. PM samples from a full-exhaust dilution tunnel were collected on bulk filters, and on a Personal Cascade Impactor Sampler (PCIS) for total and water-soluble elemental analysis. All the DPFs significantly reduced emissions of total trace elements (>85% and >95% for cruise and for the Urban Dynamometer Driving Schedule (UDDS), respectively). However, we observed differences in the post-retrofit metals emissions due to driving cycle effects (i.e., exhaust temperature) and type of retrofit. In general, the metals emissions over cruise conditions (which leads to higher exhaust temperatures) were substantially different from the emissions over a transient cycle or while idling. For instance, during cruise, we observed higher levels of platinum (1.1 ± 0.6-4.2 ± 3.6 ng km -1) for most of the retrofit-equipped vehicle tests compared to the baseline configuration (0.3 ± 0.1 ng km -1). The vanadium-based DPF + SCR vehicle during cruise operation exhibited emissions of vanadium (562 ± 265 ng km -1) and titanium (5841 ± 3050 ng km -1), suggesting the possible release of actual SCR wash-coat (V 2O 5/TiO 2) from the catalyst under the higher temperatures characteristic of cruise operation. The vanadium emissions exhibited a bi

  13. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine.

    Science.gov (United States)

    Hallquist, Åsa M; Fridell, Erik; Westerlund, Jonathan; Hallquist, Mattias

    2013-01-15

    In this study nanoparticle emissions have been characterized onboard a ship with focus on number, size, and volatility. Measurements were conducted on one of the ship's four main 12,600 kW medium-speed diesel engines which use low sulfur marine residual fuel and have a Selective Catalytic Reduction (SCR) system for NO(X) abatement. The particles were measured after the SCR with an engine exhaust particle sizer spectrometer (EEPS), giving particle number and mass distributions in the size range of 5.6-560 nm. The thermal characteristics of the particles were analyzed using a volatility tandem DMA system (VTDMA). A dilution ratio of 450-520 was used which is similar to the initial real-world dilution. At a stable engine load of 75% of the maximum rated power, and after dilution and cooling of the exhaust gas, there was a bimodal number size distribution, with a major peak at ∼10 nm and a smaller peak at around 30-40 nm. The mass distribution peaked around 20 nm and at 50-60 nm. The emission factor for particle number, EF(PN), for an engine load of 75% in the open-sea was found to be 10.4 ± 1.6 × 10(16) (kg fuel)(-1) and about 50% of the particles by number were found to have a nonvolatile core at 250 °C. Additionally, 20 nm particles consist of ∼40% of nonvolatile material by volume (evaporative temperature 250 °C), while the particles with a particle diameter SCR and fuel with low sulfur content.

  14. 40 CFR 80.603 - What are the pre-compliance reporting requirements for NRLM diesel fuel?

    Science.gov (United States)

    2010-07-01

    ... requirements for NRLM diesel fuel? 80.603 Section 80.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  15. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Labeling Requirements § 80.573 What labeling requirements apply to... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012?...

  16. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine... June 1, 2007, and beyond, for pumps dispensing non-motor vehicle diesel fuel for use other than in... retailers and wholesale purchaser-consumers of NRLM diesel fuel or heating oil beginning June 1, 2007?...

  17. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Science.gov (United States)

    2010-07-01

    ... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the reporting requirements for refiners and importers of motor vehicle diesel fuel subject...

  18. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: Assessment of pollutant dispersion and health risk

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Yara S.; Borillo, Guilherme C.; Godoi, Ana Flávia L.; Cichon, Amanda; Silva, Thiago O.B.; Valebona, Fábio B.; Errera, Marcelo R. [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Penteado Neto, Renato A.; Rempel, Dennis; Martin, Lucas [Institute of Technology for Development, Lactec–Leme Division, 01 LothárioMeissner Ave., Curitiba, PR, 80210-170 (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil)

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NO{sub x}, NO, NO{sub 2}, NH{sub 3} and N{sub 2}O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NO{sub x} and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH{sub 3} and N{sub 2}O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH{sub 3}, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NO{sub x} and NO emissions were the lowest when SCR was used; however, it yielded the highest NH{sub 3} concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. - Highlights: • Emission, dispersion and risk assessment

  19. Wear analysis of diesel-engine fuel-injection pumps from military ground equipment fueled with Jet A-1. Interim report Jan-May 91

    Energy Technology Data Exchange (ETDEWEB)

    Lacey, P.I.

    1991-05-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. During Operation Desert Shield/Storm, Jet A-1 replaced diesel in many applications. A simultaneous increase in fuel injection pump failures was observed during that operation. Prior to its introduction, a number of studies had indicated that JP-8 is compatible with the current fleet of ground equipment. This report forms part of an ongoing study to define the fuel lubricity requirements of ground equipment. The report also details the wear and failure mechanisms observed from used pumps. The results indicate that, although Jet A-1 does increase wear, many other failure mechanisms are also prevalent.

  20. 40 CFR 89.609 - Final admission of modification nonroad engines and test nonroad engines.

    Science.gov (United States)

    2010-07-01

    ... has not been placed on a currently effective EPA list of ICIs ineligible to import such modification... submittal of the ICI's application under paragraph (b) of this section. (e) EPA list of ICIs ineligible to import nonroad engines for modification/test. EPA maintains a current list of ICIs who have...

  1. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  2. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.511 What are the per-gallon and... requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner...

  3. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Science.gov (United States)

    2010-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose...

  4. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Science.gov (United States)

    2010-07-01

    ... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  5. MODELLING OF NON-ROAD TRANSIENT CYCLE

    Directory of Open Access Journals (Sweden)

    Martin Kotus

    2013-12-01

    Full Text Available The paper describes the modeling of NRTC (Non-Road Transient Cycle test procedure based on previously measured characteristics of fuel consumption, carbon monoxide (CO, carbon dioxide (CO2, hydrocarbons (HC, nitrogen oxides (NOx and particulates (PM production. It makes possible to compare the current technical condition of an internal combustion engine of an agricultural tractor with its previous state or other tractor’s engine. Based on measured characteristics, it is also possible to model any other cycle without further measurements (NRSC test procedure, cycle for specific conditions – mountain tractor, etc.. The result may thus contribute to improving the environment by reducing the production of harmful substances emitted into the air and save money due to reduced fuel consumption.

  6. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc C; Carder, Daniel K; Oshinuga, Adewale; Gautam, Mridul

    2012-02-07

    The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.

  7. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits

    Science.gov (United States)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J.; Sioutas, Constantinos

    Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT ®, V-SCRT ®, Z-SCRT ®, Horizon, DPX and CCRT ®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622-5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI-Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT ®-UDDS, Z-SCRT ®-Cruise, CRT ® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT ®-UDDS) or insignificant (CCRT ®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ˜5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT ®) had decreased OC solubility (WSOC/OC: 8-25%) unlike those with uncatalyzed filters (SCRT ®s, Horizon; WSOC/OC ˜ 60-100%). Ammonium was present predominantly in the

  8. Thermical Load Calculation and Capacity of Cooling and Venting Equipment of a Diesel Engine Emissions Study Bench; Calculo de Cargas Termicas y Capacidad de los Equipos de Refrigeracion y Ventilacion de un Banco de Estudio de Emisiones de Motores Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Garcia, E.; Fonseca Gonzalez, N. A.

    2005-07-01

    The present report tries to develop the calculation of thermical loads and to define the capacity of the equipments of cooling and ventilation that should have the engines test bench that is being ensemble in the installation of the CIEMAT named {sup D}iesel engine emissions study bench (E65-P0). The test bench is formed essentially by a dynamometrical brake and an engine connected at previous one, both of them inside a cabin of isolation acoustic. The thermical loads to be dissipated will be calculated for all the elements that compose the bench and considering his maximum values, to determine the suitable system of cooling air - water of the devices and ventilation in the cabin. (Author) 2 refs.

  9. Underground diesel use - fuel for thought. [USA - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.A.L.; Knight, D.L.; Roberts, W.K.; Knight, T.J. (Kerr-McGee Coal Corp., Oklahoma City, OK (United States))

    1993-08-01

    Describes the use of diesel equipment at the Galatia Mine, Saline County, IL (USA). The Galatia Mine is a dual-seam underground mine. Diesel equipment covered includes: personnel vehicles; diesel forklifts; diesel front-end loaders; service vehicles; maintenance; boom trucks; fuel and lube vehicles; mobile ramcar rock duster; rock grader; diesel bolters; and a portable diesel generator. The use of diesel equipment for longwall set up and recovery and diesel equipment maintenance, ventilation and emission control is also discussed. 2 figs., 2 tabs.

  10. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  11. 30 CFR 75.1911 - Fire suppression systems for diesel-powered equipment and fuel transportation units.

    Science.gov (United States)

    2010-07-01

    ... dry chemical type (ABC) fire suppression system listed or approved by a nationally recognized... in the compartment within reach of the operator. (f) The fire suppression system shall remain... where permissible electric equipment is required shall be permissible or intrinsically safe and...

  12. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  13. Diesel oil

    Science.gov (United States)

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  14. Selection of emission factor standards for estimating emissions from diesel construction equipment in building construction in the Australian context.

    Science.gov (United States)

    Zhang, Guomin; Sandanayake, Malindu; Setunge, Sujeeva; Li, Chunqing; Fang, Jun

    2017-02-01

    Emissions from equipment usage and transportation at the construction stage are classified as the direct emissions which include both greenhouse gas (GHG) and non-GHG emissions due to partial combustion of fuel. Unavailability of a reliable and complete inventory restricts an accurate emission evaluation on construction work. The study attempts to review emission factor standards readily available worldwide for estimating emissions from construction equipment. Emission factors published by United States Environmental Protection Agency (US EPA), Australian National Greenhouse Accounts (AUS NGA), Intergovernmental Panel on Climate Change (IPCC) and European Environmental Agency (EEA) are critically reviewed to identify their strengths and weaknesses. A selection process based on the availability and applicability is then developed to help identify the most suitable emission factor standards for estimating emissions from construction equipment in the Australian context. A case study indicates that a fuel based emission factor is more suitable for GHG emission estimation and a time based emission factor is more appropriate for estimation of non-GHG emissions. However, the selection of emission factor standards also depends on factors like the place of analysis (country of origin), data availability and the scope of analysis. Therefore, suitable modifications and assumptions should be incorporated in order to represent these factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The John Deere E diesel Test & Research Project

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Mitchell, William E.

    2008-09-23

    Three non-road Tier II emissions compliant diesel engines manufactured by John Deere were placed on a durability test plan of 2000 hours each at full load, rated speed (FLRS). The fuel was a blend of 10% fuel ethanol and 90% low sulfur #2 diesel fuel. Seven operational failures involving twenty seven fuel system components occurred prior to completion of the intended test plan. Regulated emissions measured prior to component failure indicated compliance to Tier II certification goals for the observed test experience. The program plan included operating three non-road Tier II diesel engines for 2000 hours each monitoring the regulated emissions at 500 hour intervals for changes/deterioration. The program was stopped prematurely due to number and frequency of injection system failures. The failures and weaknesses observed involved injector seat and valve wear, control solenoid material incompatibility, injector valve deposits and injector high pressure seal cavitation erosion. Future work should target an E diesel fuel standard that emphasizes minimum water content, stability, lubricity, cetane neutrality and oxidation resistance. Standards for fuel ethanol need to require water content no greater than the base diesel fuel standard. Lubricity bench test standards may need new development for E diesel.

  16. 75 FR 8056 - California State Nonroad Engine Pollution Control Standards; California New Nonroad Compression...

    Science.gov (United States)

    2010-02-23

    ... Air Act Section 209 Proceedings In Motor and Equip. Mfrs. Assoc. v. EPA, 627 F.2d 1095 (D.C. Cir. 1979... * * *.\\16\\ \\16\\ Motor and Equip. Mfrs. Assoc. v. EPA (MEMA I), 627 F.2d 1095, 1122 (D.C. Cir. 1979). The...

  17. West Virginia Diesel Study, CRADA MC96-034, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    M. Gautam

    1998-08-05

    The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

  18. Reduction of NOx Emission of a Diesel Engine with a Multiple Injection Pump by SCR Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Vít Marek

    2016-01-01

    Full Text Available This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.

  19. Concepts to meet non-road stage IV / Tier 4 emission legislation; Konzepte fuer die Emissionsgesetzgebung. Non-Road Stage IV / Tier 4

    Energy Technology Data Exchange (ETDEWEB)

    Cartus, T.; Herrmuth, H.; Stein, G. [AVL List GmbH, Graz (Austria); Scherm, P. [Euromot - European Association of Internal Combustion Engine Mfrs., Frankfurt am Main (Germany)

    2007-12-15

    By December 2007, the EC will have to submit a new proposal for Stage IV emissions limits for Non-Road Mobile Machinery. Industry is committed to contributing to this process and has asked AVL to carry out a study as a neutral engineering company. The main topics of this study are described in this article. (orig.)

  20. 30 CFR 75.1904 - Underground diesel fuel tanks and safety cans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel tanks and safety cans... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1904 Underground diesel fuel tanks and safety cans. (a) Diesel fuel tanks used underground shall...

  1. Data structure for estimating emissions from non-road sources

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S. C.; Kalivoda, M.; Vacarro, R.; Trozzi, C.; Samaras, Z.; Lewis, C.A.

    1997-03-01

    The work described in the following is a portion of the MEET project (Methodologies for Estimation Air Pollutant Emissions from Transport). The overall goal of the MEET project is to consolidate and present methodologies which can be used to estimate air pollutant emissions from various types of traffic sources. One of the goals of MEET is to provide methodologies to be used in the COMMUTE project also funded by DG VII. COMMUTE is developing computer software which can be used to provide emissions inventories on the European scale. Although COMMUTE is viewed as a prime user of the information generated in MEET, the MEET results are intended to be used in a broader area, and on both smaller and larger spatial scales. The methodologies and data presented will be useful for planners on a more local scale than a national or continental basis. While most attention in previous years has been concentrated on emissions from road transport, it has become increasingly apparent in later years that the so-called off road transportation contributes significantly to the emission of air pollutants. The three most common off-road traffic modes are Air Traffic, Rail Traffic, and Ship or Marine traffic. In the following, the basic structure of the methods for estimating the emissions from these sectors will be given and of the input and output data associated with these calculations. The structures will of necessity be different for the different types of traffic. The data structures in the following reflect these variations and uncertainties. In some instances alternative approaches to emissions estimation will be suggested. The user must evaluate the amount and reliability of available data for the application at hand, and select the method which would be expected to give the highest accuracy. In any event, a large amount of uncertainty is inherent in the estimation of emissions from the non-road traffic sources, particularly those involving rail and maritime transport. (EG)

  2. Data structure for estimating emissions from non-road sources

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S. C.; Kalivoda, M.; Vacarro, R.; Trozzi, C.; Samaras, Z.; Lewis, C.A.

    1997-03-01

    The work described in the following is a portion of the MEET project (Methodologies for Estimation Air Pollutant Emissions from Transport). The overall goal of the MEET project is to consolidate and present methodologies which can be used to estimate air pollutant emissions from various types of traffic sources. One of the goals of MEET is to provide methodologies to be used in the COMMUTE project also funded by DG VII. COMMUTE is developing computer software which can be used to provide emissions inventories on the European scale. Although COMMUTE is viewed as a prime user of the information generated in MEET, the MEET results are intended to be used in a broader area, and on both smaller and larger spatial scales. The methodologies and data presented will be useful for planners on a more local scale than a national or continental basis. While most attention in previous years has been concentrated on emissions from road transport, it has become increasingly apparent in later years that the so-called off road transportation contributes significantly to the emission of air pollutants. The three most common off-road traffic modes are Air Traffic, Rail Traffic, and Ship or Marine traffic. In the following, the basic structure of the methods for estimating the emissions from these sectors will be given and of the input and output data associated with these calculations. The structures will of necessity be different for the different types of traffic. The data structures in the following reflect these variations and uncertainties. In some instances alternative approaches to emissions estimation will be suggested. The user must evaluate the amount and reliability of available data for the application at hand, and select the method which would be expected to give the highest accuracy. In any event, a large amount of uncertainty is inherent in the estimation of emissions from the non-road traffic sources, particularly those involving rail and maritime transport. (EG)

  3. Ventajas del uso de la inyección electrónica para vehículos diesel pesados en las condiciones de Cuba. // Advantages of electronic injection for diesel engines in heavy duty equipment.

    Directory of Open Access Journals (Sweden)

    J. Luis Reyes González

    2002-09-01

    Full Text Available Tomando en cuenta la importancia que tiene para Cuba el obtener una eficiencia energética elevada en los motores decombustión interna, al igual que el control de las emanaciones de gases tóxicos en los mismos, se realizó este trabajo dondese demuestran las ventajas tanto en el orden económico como ecológico de los motores diesel con mando electrónico paraequipos pesados empleados en la transportación de carga por camiones en la empresa Cubalse.Por medio de métodos experimentales y estadísticos, se obtuvo el consumo de combustible y la humosidad en motores coninyección electrónica (Detroit y en motores que utilizan los métodos tradicionales (Cummins. Los rresultadosdemostraron la superioridad en ambos aspectos de los motores con inyección electrónica.Se realizó una valoración del tiempo de amortización de la inversión inicial necesaria para utilizar en el parque existenteesta novedosa técnica de la inyección electrónica.Palabras claves: Eficiencia energética, inyección electrónica, consumo de combustible, motores de combustióninterna.__________________________________________________________________Abstract.Taking into consideration the importance of achieving a high efficiency in the internal combustion engines and emissioncontrol of the exhaust gases, this paper deals with economical and environmental advantages of the electronic controlleddiesel engines in heavy-duty trucks, which are used by Cubalse in the transportation. The fuel consumption and the sootemission in Detroit motors (with electronic injection system and Cummins (with traditional system, were studied usingstatistic and experimental methods, and the Detroit proved to be superior in both parameters. The pay back time for theinvestment needed to change the systems of all the existent trucks were calculatedKey words: Energetic efficiency, electronic injection, fuel consumption, internal combustion engine.

  4. 77 FR 72851 - California State Nonroad Engine Pollution Control Standards; Portable Equipment Registration...

    Science.gov (United States)

    2012-12-06

    ....regulations.gov or in hard copy at the Air and Radiation Docket in the EPA Headquarters Library, EPA West... will give appropriate consideration to safety factors (including the potential increased risk of burn... proof must take account of the nature of the risk of error involved in any given decision, and...

  5. Nonroad developed land in the United States Pacific Northwest for 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the extent of non-road developed land in the Pacific Northwest region of the...

  6. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION...-IGNITION ENGINES General Pt. 89, Subpt. A, App. A Appendix A to Subpart A of Part 89—State Regulation...

  7. 77 FR 9239 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2012-02-16

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling... relating to the control of emissions from new motor vehicles or new motor vehicle engines subject to this... standards (other than crankcase emission standards) for the control of emissions from new motor vehicles or...

  8. 77 FR 9916 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo...

    Science.gov (United States)

    2012-02-21

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo... to the control of emissions from new motor vehicles or new motor vehicle engines ] EPA is, pursuant... standards relating to the control of emissions for new motor vehicles and new motor vehicle engines...

  9. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2010-07-27

    ... AGENCY California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling... certification, inspection or any other approval relating to the control of emissions from any new motor vehicle... standards) for the control of emissions from new motor vehicles or new motor vehicle engines prior to March...

  10. Nonroad developed land in the United States Pacific Northwest for 2001 summarized for NHDPlus v2 catchments

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the area of non-road developed land within each incremental watershed delineated...

  11. 78 FR 38970 - California State Nonroad Engine Pollution Control Standards; Within-the-Scope Determination for...

    Science.gov (United States)

    2013-06-28

    ... Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and... Amendments to California's ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration...

  12. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    CERN Document Server

    Unger, Johannes; Jakubek, Stefan

    2016-01-01

    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  13. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  14. Diesel vehicles shortage mobilizes the automotive industry; La penurie de diesel mobilise la filiere

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P.Y.; Deheunynck, P.Y.; Demoulin, L.

    2000-12-01

    The infatuation for diesel vehicles in Europe has led to an unexpected growth of this market. The reason is linked with the improvements made in diesel engine technology and with the rise of automotive fuel prices. Car and vehicle equipment manufacturers and sub-contractors have to increase their production and manpower and to adopt new work schedules for a better exploitation of factories capacity. However, the development of the direct injection (common-rail) technology for diesel engines requires complex and precise machining procedures that are hardly compatible with an enhanced mass production. (J.S.)

  15. 77 FR 72846 - California State Nonroad Engine Pollution Control Standards; In-Use Portable Diesel Engines 50...

    Science.gov (United States)

    2012-12-06

    ... cancer, chronic bronchitis, asthma and fewer hospital visits caused by pneumonia and asthma-related... authority ``shall take effect after such period as the Administrator finds necessary to permit the... the technology before the standards go into effect. The latter scenario also requires...

  16. Diesel emissions in Vienna

    Science.gov (United States)

    Horvath, H.; Kreiner, I.; Norek, C.; Preining, O.; Georgi, B.

    The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult. A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m -3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012-0.07 g g -1 of collected dust. A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m -3. This value increases by 5.5 μg m -3 per 500 diesel vehicles h -1 passing near the sampling location. The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily

  17. The program cyberdiesel for mathematical modeling of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion

    OpenAIRE

    Maschenko, V. Yu.

    2007-01-01

    The program CyberDiesel is developed on the basis of complex mathematical model of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion. The program is intended for solving practical problems of coordinating constructive and adjusting parameters of fuel equipment and combustion chamber of a diesel engine by mathematical modeling methods.

  18. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  19. Monitoring of occupational exposure to diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, P.

    1994-12-01

    In Chapter 1 the origin and toxicity of incomplete combustion products of diesel fuel are discussed. Chapter 2 deals with methods that can be used for the identification and quantitation of airborne diesel exhaust-derived contaminants in the working place (environmental monitoring). Chemical substances may be used as indicators for source apportionment or markers for toxicity. A short-term in vitro bioassay may be used for (semi)quantitative determination of the mutagenic potency of diesel exhaust-derived airborne contaminants. Results are presented that support the use of 1-nitropyrene as a marker for the mutagenic activity of diesel exhaust particulate extracts. In Chapter 3 the development of methods for the determination of diesel exhaust-derived metabolites in biological samples is described. The application of new Salmonella typhimurium strains for the detection of urinary metabolites of nitroarenes is investigated. An immunoassay is presented as a method that may be used to track down persons with high occupational exposure to diesel exhaust. The possibilities for measurement of early biological effects are explored in Chapter 4. A method for the determination of hemoglobin adducts was used to investigate the role of the intestinal micro flora in the formation of such adducts derived from diesel exhaust constituents in rats equipped with a human micro flora. The formation of hemoglobin adducts is compared to the formation of DNA adducts in rats treated with two model compounds, in the presence or absence of a micro flora. The applicability of the described methods is discussed in Chapter 5. Prospects and recommendations for future research are given. 23 figs., 41 tabs., 660 refs., 4 appendices

  20. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  1. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  2. Proposals for Solutions to Problems Related to the Use of F-34 (SFP) and High Sulphur Diesel on Ground Equipment Using Advanced Reduction Emission Technologies (Propositions de solutions aux problemes lies a l’utilisation de F-34 (SFP) et de diesel a haute teneur en soufre pour le materiel terrestre disposant de technologies avancees de reduction des emissions)

    Science.gov (United States)

    2008-09-01

    avancées de réduction des émissions (RTO-TM-AVT-ET-073) Synthèse Lors de sa réunion 2005, le Groupe de travail AC/112 de l’OTAN sur les carburants et les...émissions nécessitent l’utilisation de carburants à faible teneur en soufre (LSF). Le F-34 utilisé en vertu de la Politique du carburant unique de l’OTAN...Single Fuel Policy, ou SFP) est un carburant à haute teneur en soufre, en comparaison des carburants diesels européens et américains conformes aux

  3. METHODOLOGY FOR DETERMINING INDICATORS OF DIESEL 4DTNA1 DURING ROAD TESTING

    Directory of Open Access Journals (Sweden)

    Gritsuk, O.

    2013-06-01

    Full Text Available The paper presents a methodology for determining the technical and economic parameters of automobile diesel during the road test. Recent testing techniques during testing of small class bus RUTA-25d, equipped with a domestic car diesel engine 4DTNA1 are shown. Described were charac-teristics of the landfill for the testing.

  4. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines.

    Science.gov (United States)

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Mazac, Martin; Pechout, Martin; Vojtisek-Lom, Michal

    2012-07-07

    The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; pparticulate emissions from the combustion of rapeseed oil is significant and is comparable to that from the combustion of diesel fuel. A more detailed study is ongoing to verify and extent these preliminary findings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  6. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  7. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  8. Combustion of soybean oil and diesel mixtures for heating purposes

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Adriana Correa; Sanz, Jose Francisco [European University Miguel de Cervantes, Valladolid (Spain)], E-mail: acorrea@uemc.es; Hernandez, Salvador; Navas, Luis Manuel; Rodriguez, Elena; Ruiz, Gonzalo [University of Valladolid (Spain). Dept. of Agricultural and Forest Engineering; San Jose, Julio [University of Valladolid (Spain). Dept. of Energetic Engineering; Gomez, Jaime [University of Valladolid (Spain). Dept. of Communications and Signal Theory and Telematics Engineering

    2008-07-01

    Using blends of vegetable oils with petroleum derivates for heating purposes has several advantages over other energy application for vegetable oils. This paper presents the results of an investigation by use of soybean oil and diesel mixture as fuel for producing heat in conventional diesel installation. The paper is set out as follows: properties characterization of soybean oil as fuel and of diesel oil, as well as the mixture of both; selection of the mixture according to their physical chemical properties and how they adapt to conventional combustion installation; experimentation with the selected mixture, allowing the main combustion parameters to be measured; processing the collected data, values of combustion, efficiency and reduction of emissions. Conclusions show that the use of soybean oil and diesel mixture for producing heat energy in conventional equipment is feasible and beneficial for reduction emissions. (author)

  9. The experimental studies of operating modes of a diesel-generator set at variable speed

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.

    2017-02-01

    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  10. Diesel fuel stability; Estabilidade de oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo V.; Pinto, Ricardo R.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Zotin, Fatima M.Z. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)

    2008-07-01

    The demand for the reduction of the pollutants emissions by diesel engines has led to the adoption of more advanced injection systems and concern about fuel stability. The degradation of the diesel fuel can happen during storage and distribution, according to the acid-catalysed condensation of aromatic compounds such phenalenones and indolic nitrogenated heterocyclic compounds. These precursors appear in several streams used in diesel fuel formulation. In this study the sediment formation in model and real, aromatic and paraffinic fuels, containing such precursors naturally or by addition was analysed. The fuels were submitted to accelerated (16 hours at 90 deg C) and long term (13 weeks at 43 deg C) storage stability tests. The model fuels responded positively to the storage stability tests with formation of sediments, concluding that these methods can be considered adequate to verify the occurrence of the studied degradation process. The real fuels response was even more due to their chemical complexity, composition and impurities. The formation of sediments showed to be affected by the hydrocarbon distribution of the fuels. (author)

  11. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwanam [Automobile Research Center, Chonnam National University, Gwangju 500-757 (Korea); Choi, Byungchul [School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757 (Korea)

    2010-01-15

    Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel-diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NO{sub x}) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol-diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel-diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel. (author)

  12. Mastering the diesel process

    Energy Technology Data Exchange (ETDEWEB)

    Antila, E.; Kaario, O.; Lahtinen, T. (and others)

    2004-07-01

    This is the final report of the research project 'Mastering the Diesel Process'. The project has been a joint research effort of the Helsinki University of Technology, the Tampere University of Technology, the Technical Research Centre of Finland, and the Aabo Akademi University. Moreover, the contribution of the Michigan Technological University has been important. The project 'Mastering the Diesel Process' has been a computational research project on the physical phenomena of diesel combustion. The theoretical basis of the project lies on computational fluid dynamics. Various submodels for computational fluid dynamics have been developed or tested within engine simulation. Various model combinations in three diesel engines of different sizes have been studied. The most important submodels comprise fuel spray drop breakup, fuel evaporation, gas-fuel interaction in the spray, mixing model of combustion, heat transfer, emission mechanisms. The boundary conditions and flow field modelling have been studied, as well. The main simulation tool have been Star-CD. KIVA code have been used in the model development, as well. By the help of simulation, we are able to investigate the effect of various design parameters or operational parameters on diesel combustion and emission formation. (orig.)

  13. Heavy Duty Diesel Truck and Bus Hybrid Powertrain Study

    Science.gov (United States)

    2012-03-01

    include utility boom trucks and beverage haulers. Eaton Corp. manufactures a parallel hybrid-electric drivetrain that is used by many of the truck...Original Equipment Manufacturers (OEMs). Most of the hybrid buses use series hybrid-electric drivetrains , and key manufacturers are BAE Systems, ISE...Competing Alternatives to Diesel-Electric Hybrid Powertrains ............................................ 153 6.1 Hydraulic Hybrid Drivetrains

  14. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIX, LEARNING ABOUT CRANKING MOTORS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF CRANKING MOTORS USED ON DIESEL POWERED EQUIPMENT, TOPICS ARE (1) CRANKING MOTORS. (2) MOTOR PINCIPLES, (3) CRANKING MOTOR CIRCUITS, (4) TYPES OF CRANKING MOTOR DRIVES, AND (5) CRANKING MOTOR SOLENOID CIRCUITS. THE MODULE CONSISTS OF A…

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIV, UNDERSTANDING DC GENERATOR PRINCIPLES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES OF DIRECT CURRENT GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) WHAT IS A GENERATOR AND ITS USE, (2) SHUNT GENERATOR PRINCIPLES, (3) POWER AND RATINGS OF A GENERATOR, (4) ARMATURE REACTION, (5) WHAT IS POLARITY, (6) TWO GENERATOR…

  16. Diesel sisustab / Jenni Juurinen

    Index Scriptorium Estoniae

    Juurinen, Jenni

    2007-01-01

    Renzo Rosso poolt 1978. a. Itaalias asutatud rõivafirma Diesel sisustas 2007. a. kevadel Stay Inn-projekti raames katusekorteri Helsingi kesklinnas. Diesili kujundaja Vesa Kemppainen. Sisustuses on kasutatud peamiselt soome mööblit ja seintel eksponeeritud soome noorte kunstnike taieseid. Autoreid: Harri Koskinen (voodi), Thomas Pedersen (Stingrey kiiktool), Jenni Hiltunen (maalid)

  17. Diesel sisustab / Jenni Juurinen

    Index Scriptorium Estoniae

    Juurinen, Jenni

    2007-01-01

    Renzo Rosso poolt 1978. a. Itaalias asutatud rõivafirma Diesel sisustas 2007. a. kevadel Stay Inn-projekti raames katusekorteri Helsingi kesklinnas. Diesili kujundaja Vesa Kemppainen. Sisustuses on kasutatud peamiselt soome mööblit ja seintel eksponeeritud soome noorte kunstnike taieseid. Autoreid: Harri Koskinen (voodi), Thomas Pedersen (Stingrey kiiktool), Jenni Hiltunen (maalid)

  18. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  19. 78 FR 31536 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy Duty Vehicles (as...

    Science.gov (United States)

    2013-05-24

    ... Diesel Particulate Matter, Oxides of Nitrogen and Other Criteria Pollutants from In-Use Heavy-Duty Diesel... motor vehicles which are not the subject of this decision (such regulations are not preempted under the... subsection in the context of section 209(b) motor vehicle waivers).\\8\\ \\6\\ 59 FR 36969 (July 20, 1994)....

  20. 76 FR 5586 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Mobile Cargo...

    Science.gov (United States)

    2011-02-01

    ... Equipment). CARB's Mobile Cargo Handling Equipment requirements are designed to use best available control... Alexander at (202) 343-9540, to learn if a hearing will be held or may check the following webpage for an... restricted by statute. EPA's Office of Transportation and Air Quality also maintains a webpage that...

  1. Microwave-Regenerated Diesel Exhaust Particulate Filter

    Energy Technology Data Exchange (ETDEWEB)

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  2. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  3. Ventilation problems of diesel self-propelled mining machines with special regard to shuttle services

    Energy Technology Data Exchange (ETDEWEB)

    Benke, L.; Buocz, Z.

    1985-01-01

    The basic problems associated with the ventilation of diesel-powered self-propelled equipment used in underground mines are summarized. The composition of exhaust gases and its dependence on various conditions are investigated. After an overview of ventilation regulation rules, the principles of mine air volume determination are discussed. Next, the ventilation problems of diesel vehicles used for shuttle services are considered. The main results are presented in the form of diagrams for the determination of air volume and air flow.

  4. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  5. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  6. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    Science.gov (United States)

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  7. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    Science.gov (United States)

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.

  8. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  9. 78 FR 58089 - California State Nonroad Engine Pollution Control Standards; Off-Road Compression Ignition...

    Science.gov (United States)

    2013-09-20

    ... authorization of the Fleet Requirements as amended in 2010. The legal framework for this decision stems from the... considered under section 209(e)(2)(A). \\8\\ See, e.g., Motor and Equip. Mfrs Assoc. v. EPA, 627 F.2d 1095 (D.C...

  10. ENSURING THE AVAILABILITY AND RELIABILITY OF UREA DOSING FOR ON-ROAD AND NON-ROAD

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G; Lonsdale, B

    2003-08-24

    The purpose of this presentation is to address two important issues. The first issue is nationwide availability of urea. The second is assurance by the engine maker that the engine cannot operate without urea. In regard to the first issue, North American urea production can support SCR needs for the Heavy Duty truck industry. The existing distribution methods, pathways and technology could be utilized for urea supply with no new invention required. Urea usage and storage capacity on vehicles would support long distances between tank refills, as SCR could be initially rolled out with a limited infrastructure. The price of urea should be less than diesel fuel and urea SCR should have a fuel economy advantage over competing technologies. It can be in place by 2007. In regard to the second issue, sensor technology exists to monitor urea tank level and verify that the fluid in the tank is urea. NOx sensors are available to monitor tailpipe NOx, ensuring the entire SCR system is functioning properly, and inferring that urea is in the system. The monitoring system could be used to monitor compliance, record faults, and initiate enforcement actions as necessary. The monitoring system could initiate actions to encourage compliance.

  11. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  12. Measurement of Gas-phase Acids in Diesel Exhaust

    Science.gov (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  13. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.; Aakko, P. [TEC Trans Energy Consulting Ltd (Finland); Niemi, S.; Paanu, T. [Turku Polytechnic (Finland); Berg, R. [Befri Konsult (Sweden)

    2005-03-15

    is also of importance. So far, no engine manufacturers have indicated they will extend warranty coverage to their equipment when operating with E-diesel. They believe there are simply too many unanswered questions as well as the potential for liability exposure due to the increased flammability range of E-diesel. The reports on field tests with oxygenated diesel fuels are rather scarce, especially reports on recent tests. There are, however, some reports available on engine tests and tests with trucks, buses and even off-road equipment. Most of the available test results identified fuel economy and cost as the only appreciable differences between E-diesel and conventional diesel fuel. Most emissions tests with heavy-duty engines confirm the effect of a substantial reduction in PM when running with E-diesel. The typical range for PM reduction is 20 -- 40 %. Most studies also report reduced NOx emissions. Earlier, there were a lot of activities with E-diesel in Sweden. For the time being, California and Brazil are leading the development of E-diesel.

  14. Biodiesel versus diesel: a pilot study comparing exhaust exposures for employees at a rural municipal facility.

    Science.gov (United States)

    Traviss, Nora; Thelen, Brett Amy; Ingalls, Jaime Kathryn; Treadwell, Melinda Dawn

    2010-09-01

    Many organizations interested in renewable, domestic energy have switched from petroleum diesel to biodiesel blends for use in transportation and heavy-duty equipment. Although considerable evidence exists on the negative health effects of petroleum diesel exhaust exposures in occupational settings, there has been little research examining biodiesel exposures. Working collaboratively with a local municipality, concentrations of particulate matter (PM) and other air toxics were measured at a recycling facility in southwestern New Hampshire while heavy equipment operated first on petroleum diesel and then on a B20 blend (20% soy-based biodiesel/80% petroleum diesel). This pilot study used a combination of established industrial hygiene and environmental air monitoring methods to estimate occupational exposure profiles to PM and air toxics from combustion of petroleum diesel and biodiesel. Results indicate that B20 use dramatically reduces work area respirable particle, PM2.5 (PM blend. Overall, this study suggests that biodiesel blends reduce worker exposure to and health risk from petroleum diesel exhaust, but additional exposure research is recommended.

  15. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...... emission requirements as well as attempting to minimise fuel expenses, the engine speed has been lowered together with an increase in the engine mean pressure which in terms lead to larger bearing loads. With worsened operating conditions from two sides, the encountered problems are understandable...

  16. A review of diesel use in pressure wash guns in the upstream petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Oil-based drilling fluids are used in wash guns to clean downhole tools and equipment. Base oils such as diesel are used instead of water to limit potential impacts on mud systems. This study was conducted after a near-miss incident in which an employee using diesel fuel in a high-pressure wash gun experienced sensitization to the diesel fluid and its fumes. The employee's service company banned the use of diesel fuel in wash guns in all its Canadian operations as a result of the incident. This study investigated the potential fire and explosion hazards that may be caused by use of the fuel in wash guns, and evaluated the potential for adverse health effects in workers exposed to diesel fluid and vapours. The study summarized alternative products for use in the wash guns and provided a compilation of industry policies, procedures, and job safety and hazard assessments that have been developed in relation to diesel fuels and wash guns. A review of field tests and studies on the health and safety effects of diesel fuel was also conducted. refs., tabs., figs.

  17. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  18. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  19. 30 CFR 57.5075 - Diesel particulate records.

    Science.gov (United States)

    2010-07-01

    ..., Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5075 Diesel particulate records. (a) The table entitled “Diesel Particulate Matter Recordkeeping...

  20. Fluid Catalytic Cracking Feed Hydrotreatment and its Impact on Distribution of Sulfur and Nitrogen Compounds in FCC Diesel

    Institute of Scientific and Technical Information of China (English)

    Bai Rui; Chai Yongming; Zhang Chengtao; Liu Chenguang

    2015-01-01

    The sulfides and nitrogen compounds in FCC diesel were analyzed by gas chromatography equipped with a pulsed lfame photometric detector (GC-PFPD) and gas chromatography coupled with nitrogen chemiluminescence detection (GC-NCD). And the variation of sulifdes and nitrogen compounds in FCC diesel produced from gas oil feed hydrotreated at different temperatures was investigated. The test results showed that two main types of sulfur compounds, i.e. benzothio-phenes (BTs) and dibenzothiophenes (DBTs) were found in diesel. Nitrogen compounds are mainly composed of non-basic nitrogen compounds, and indoles and carbazoles account for about 98% of the total nitrogen contents. The sulifdes in FCC diesel obtained from hydrotreated feed are mainly BTs with a small amount of 4-MDBT and 4,6-DMDBT. With the increase in FCC feed hydrotreating temperature, indoles content in FCC diesel increases, while carbazoles content decreases.

  1. 76 FR 38155 - California State Nonroad Engine Pollution Control Standards; Ocean-Going Vessels At-Berth in...

    Science.gov (United States)

    2011-06-29

    ... Regulation is designed to reduce emissions of oxides of nitrogen and particulate matter from auxiliary diesel... restricted by statute. EPA's Office of Transportation and Air Quality also maintains a webpage that contains... California ports (``At-Berth Regulation'').\\1\\ The At-Berth Regulation is designed to significantly...

  2. Variability of particle number emissions from diesel and hybrid diesel-electric buses in real driving conditions.

    Science.gov (United States)

    Sonntag, Darrell B; Gao, H Oliver; Holmén, Britt A

    2008-08-01

    A linear mixed model was developed to quantify the variability of particle number emissions from transit buses tested in real-world driving conditions. Two conventional diesel buses and two hybrid diesel-electric buses were tested throughout 2004 under different aftertreatments, fuels, drivers, and bus routes. The mixed model controlled the confounding influence of factors inherent to on-board testing. Statistical tests showed that particle number emissions varied significantly according to the after treatment, bus route, driver, bus type, and daily temperature, with only minor variability attributable to differences between fuel types. The daily setup and operation of the sampling equipment (electrical low pressure impactor) and mini-dilution system contributed to 30-84% of the total random variability of particle measurements among tests with diesel oxidation catalysts. By controlling for the sampling day variability, the model better defined the differences in particle emissions among bus routes. In contrast, the low particle number emissions measured with diesel particle filters (decreased by over 99%) did not vary according to operating conditions or bus type but did vary substantially with ambient temperature.

  3. Industrial fermentation of renewable diesel fuels.

    Science.gov (United States)

    Westfall, Patrick J; Gardner, Timothy S

    2011-06-01

    In commodity chemicals, cost drives everything. A working class family of four drives up to the gas pumps and faces a choice of a renewable diesel or petroleum diesel. Renewable diesel costs $0.50 more per gallon. Which fuel do they pick? Petroleum diesel will be the winner every time, unless the renewable fuel can achieve cost and performance parity with petrol. Nascent producers of advanced biofuels, including Amyris, LS9, Neste and Solazyme, aim to deliver renewable diesel fuels that not only meet the cost challenge, but also exceed the storage, transport, engine performance and emissions properties of petroleum diesel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  5. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  6. Design of push–pull system to control diesel particular matter inside a dead-end entry

    OpenAIRE

    Zheng, Yi; Thiruvengadam, Magesh; Lan, Hai; Jerry C. Tien

    2015-01-01

    Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners’ exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push–pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push–...

  7. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  8. Adiabatic turbocompound diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-02-01

    The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.

  9. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Science.gov (United States)

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  10. The Adlard Coles book of diesel engines

    CERN Document Server

    Bartlett, Tim

    2013-01-01

    In clear, jargon-free English The Adlard Coles Book of Diesel Engines explains how a diesel engine works,and how to look after it, and takes into account developments inengine technology. Includes helpful tables and troubleshooting checklists.

  11. Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine.

    Science.gov (United States)

    Heikkilä, Juha; Happonen, Matti; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-11-01

    The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC -50 and -70 degrees CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

  12. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  13. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XXV, MICHIGAN/CLARK TRANSMISSION--TROUBLESHOOTING.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TROUBLESHOOTING PROCEDURES FOR A SPECIFIC TRANSMISSION USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) PRELIMINARY CHECKS, (2) PRESSURE AND OIL FLOW CHECKS, (3) TROUBLESHOOTING TABLES, (4) TROUBLESHOOTING VEHICLES UNDER FIELD CONDITIONS, AND (5) ANALYZING UNACCEPTABLE…

  14. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XI, INTRODUCTION TO ELECTRICAL MAINTENANCE FOR OFF-HIGHWAY VEHICLES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH THE FUNDAMENTALS OF ELECTRICITY AND MAGNETISM AS THEY RELATE TO DIESEL POWERED EQUIPMENT. TOPICS ARE (1) FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, (2) ELECTROMAGNETIC FIELDS, (3) MAGNETIC FORCE ON A CONDUCTOR, (4) ELECTROMAGNETIC INDUCTION, (5) OHM'S LAW, (6) METER…

  16. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  17. Resettable regime of diesel lubrication

    Directory of Open Access Journals (Sweden)

    Nechaev E. P.

    2016-12-01

    Full Text Available A new method of engine oil saturation by microelements has been presented in the paper; it has been tested on vessels of the fishing fleet and in conditions of prolonged operation in the coastal diesel-engine power plants. The paper considers the results of performance tests of the most common diesel power plants of 6ЧН 25/34 type with the tribochemical reductant oil (TRO apparatus providing tribochemical lubrication. During comparative trials of two diesels the samples of lubricating oil m-10B2 and m-10 have been periodically collected and subjected to spectral analysis. In the samples the number of the following key microelements has been determined: iron (Fe, aluminum (Al, zinc (Zn, sodium (Na, barium (Ba, calcium (Ca, tin (Sn, phosphorus (P, potassium (K, sulfur (S, chlorine (Cl, silicon (Si. During the operation the processes of microelements' extraction and destruction in diesel motor oils evaluated by the relevant coefficients have been clearly manifested. Analyzing the obtained experimental data it should be noted that in both experiments the total balance of the controlled 15 trace elements has been balanced and approached within 1640.5–1650.3 g/t. And the greater measure refers to conventional oil. Stabilization and improvement of physical and chemical properties of motor oil in operation of a diesel engine is possible from the authors' viewpoint only in the tribochemical lubrication mode using the TRO apparatus and created hydrodynamic module – dispersant. The past performance tests suggest the possibility of use as a lubricant the conventional (pure oil under actual operating conditions. When in the tribochemical mode of diesel engine lubrication it has been established that in conventional (pure oil the oily medium has been formed with a spectrum of microelements equivalent to engine oil filler.

  18. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  19. Biodiesel and Other Renewable Diesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  20. Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization

    Science.gov (United States)

    Karra, Prashanth

    2015-12-01

    A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.

  1. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    Science.gov (United States)

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  2. Problems diagnosis in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Leugner, L.

    1986-10-01

    Diagnosis of engine problems in diesel engines used in Western Canadian coal mines is discussed. Areas to which attention must be paid include the air cleaners, turbocharger, engine compression and the fuel system. Exhaust smoke should be analysed to help diagnose combustion related problems.

  3. Coal-fired diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  4. The Numerical Modeling of Transient Regimes of Diesel Generator Sets

    Directory of Open Access Journals (Sweden)

    Cristian Roman

    2010-07-01

    Full Text Available This paper deals with the numerical modeling of a diesel generator set used as amain energy source in isolated areas and as a back-up energy source in the case ofrenewable energy systems. The numerical models are developed using a Matlab/Simulinksoftware package and they prove to be a powerful tool for the computer aided design ofcomplex hybrid power systems. Several operation regimes of the equipment are studied.The numerical study is completed with experimental measurements on a Kipor type dieselelectricgenerator set.

  5. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    OpenAIRE

    Nattapong Namliwan; Tanakorn Wongwuttanasatian

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consum...

  6. Drilling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Voyevodin, Yu.M.; Kholosha, Ye.G.; Leshchenko, A.G.; Timchenko, A.I.

    1979-01-10

    The invention refers to units designed for extracting minerals by mechanical action on the face by a cutting tool. There is a known drills which includes a pulse device which contains a combustion chamber, cylinder, piston-percussion tool and cutting tool. The combustion chamber and the sub-piston cavity of the cylinder are connected by a channel in which there is a distributor. Its shortcoming is the fact that the pulse device does not guarantee the necessary motion of the actuating mechanism for its velocity and frequency of the shocks on the cutting tool. This reduces the efficiency of the operation and limits the area of application. The purpose of the proposed invention is to improve productivity of the device. This is achieved because the head of the drill is equipped with a 2-piston pulse device which contains 2-combustion chambers, 2 working cylinders, 2 piston percussion instruments, a rod with gas-conducting and connecting channels for interconnection of the sub-piston cavities and combustion chambers of both cylinders. The spent gases of one cylinder are used for closing the combustion chamber of the second cylinder.

  7. Validation of LED spectrofluorimeter for determination of both biodiesel and nontransesterified residual cooking oil in diesel samples

    Science.gov (United States)

    Meira, Marilena; Quintella, Cristina M.; Costa Neto, Pedro Ramos; Pepe, Iuri M.; Ribeiro, Erika M. de O.; Silva, Weidson Leal; Cid, Alexandre Lopes Del; Guimarães, Alexandre Kamei

    2015-02-01

    This paper presents the results of the validation of a LED spectrofluorimeter patented for the analysis of biodiesel in diesel and non-transesterified residual cooking oil (RCO) in diesel. Detection limit, quantification limit and sensitivity were determined from the regression lines. The spectrofluorimeter validated in this study was adequate for quantifying the amount of biodiesel in diesel in the range from 2% to 45% (B02-B45) with an R-squared value of 0.9962 and a detection limit of 3%. For the analysis of non-transesterified RCO in diesel, the linear range was from 2% to 20% with an R-squared value of 0.9872 and a detection limit of 2%. The accuracy of the equipment for the analysis of biodiesel in diesel and non-transesterified RCO in diesel was evaluated using Student's t-test for paired data. With 95% confidence level there was no significant difference between the actual values and those determined by the equipment.

  8. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...) Motor vehicle diesel fuel. (2) Nonroad, locomotive, or marine diesel fuel. (3) Diesel fuel additives. (4... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel...

  9. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  10. Aquatic Equipment Information.

    Science.gov (United States)

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  11. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    OpenAIRE

    Ekkachai Sutheerasak

    2014-01-01

    Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree o...

  12. Responses of macrobenthos colonizing estuarine sediments contaminated with drilling mud containing diesel oil

    Energy Technology Data Exchange (ETDEWEB)

    Tagatz, M.E.; Plaia, G.R.; Deans, C.H.

    1985-07-01

    Acute toxicities and sublethal effects were determined in several investigations for 11 types of drilling muds obtained from offshore drilling sites in the Gulf of Mexico, which the Petroleum Equipment Suppliers Association supplied to the Environmental Protection Agency. All were used muds that had been recycled during drilling. Those containing the highest amounts of No. 2 diesel fuel oil were the most acutely toxic to mysids (Mysidopsis bahia), grass shrimp (Palaemonetes pugio), quahog clams (Mercenaria mercenaria), and sand dollars (Echinarachnius parma) and elicited the greatest sublethal responses in corals (Acropora cervicornis). A lignosulfonate mud was the most toxic, followed by a lime mud containing 3.98 mg diesel/g. The present study was initiated to determine the impact of the lime mud with its diesel oil component on field colonization by macrobenthos.

  13. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel

    National Research Council Canada - National Science Library

    Ruina Li; Zhong Wang; Guangju Xu

    2017-01-01

      Biodiesel is a kind of high-quality alternative fuel of diesel engine. In this study, biodiesel and biodiesel/diesel blend were used in a single cylinder diesel engine to study the carbonyl emissions...

  14. 农用柴油机燃用生物质焦油与柴油混溶油性能实验%Performance Experiments of Miscible Oil Fueled with Biomass Tar and Diesel for Agricultural Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    张寰; 刘圣勇; 胡建军; 焦有宙; 张全国; 郭前辉

    2012-01-01

    New materials and equipment according to the combustible fraction of diesel miscible flammable characteristics of biomass tar was analyzed. Diesel engine fueled with different proportions of combustible biomass tar distillates and diesel miscible oil power performance was proposed. Experimental results showed that biomass tar combustible miscible distillate and diesel oil had good power and economy. When the power of agricultural diesel was low, the consumption of miscible oil sample was less than diesel. When the power of agricultural diesel was high, the consumption of miscible oil was less than diesel with the replacement ratio of 10% in diesel, but higher than diesel with replacement ratio of 20%. The maximum power of agricultural diesel engine with miscible oil was higher than the rated power of the agricultural diesel engines which met the power requirements of agricultural diesel engines.%根据生物质焦油中的可燃馏分与柴油互溶的可燃特性,研究了农用柴油机燃用不同比例的生物质焦油可燃馏分与柴油混溶油的动力性能,实验结果表明:生物质焦油可燃馏分与柴油混溶油具有良好的动力性和经济性,在农用柴油机功率较低时,各混溶油试样的消耗量均小于柴油;在农用柴油机功率较高时,生物质焦油可燃馏分掺混替代比例为10%时的混溶油消耗量低于柴油,而生物质焦油可燃馏分掺混替代比例为20%时的混溶油消耗量高于柴油,且燃用混溶油时农用柴油机的最大功率均超过农用柴油机的额定功率,可满足农用柴油机的动力要求.

  15. Biofouling of Several Marine Diesel Fuels

    Science.gov (United States)

    2011-03-01

    ultralow sulfur diesel, synthetic diesel, biodiesel, and hydrotreated renewable diesel fuels. Bulk chemical changes and differences in biofouing...of its large carbon footprint. NSWCCD-61-TR-2011/08 2 Biological material can be hydrotreated to produce a mixture of hydrocarbons which, with...additional treatment, is converted into a low-carbon footprint isoparaffinic fuel. Hydrotreated renewable jet (HRJ) fuel derived from Camelina

  16. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  17. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  18. Occupational exposure to diesel engine exhaust: a literature review.

    Science.gov (United States)

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: ECunderground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.

  19. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  20. Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph; Smith, Peter L

    2012-11-01

    Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States' mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ)L(-1) fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States' mobile source on-road diesel engine inventory value of 946 pg I-TEQL(-1) fuel consumed and 1.28 pg I-TEQL(-1) fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines.

  1. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars.

    Science.gov (United States)

    Cheung, Ka Lam; Polidori, Andrea; Ntziachristos, Leonidas; Tzamkiozis, Theodoros; Samaras, Zissis; Cassee, Flemming R; Gerlofs, Miriam; Sioutas, Constantinos

    2009-08-15

    Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings.

  2. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H. (Toyota Motor Corp., Aichi (Japan)); Nakakita, K.; Osawa, K. (Toyota Centeral Research and Development Lab., Aichi (Japan))

    1990-08-01

    A study was conducted on properties of exhaust gas of diesel engine by using high pressure injection type diesel engine equipped with pressure-reservoir for changing injection pressure, together with improvement of combustion conditions by high pressure injection of fuel. Equipments for the experiments were explained by figures. As for experiment, effects of injection pressure and its timing on emission quantities of NO {sub x} and paticulate were measured. Based upon the obtained results, those were understood that NO {sub x} and particulate were to be reduced by adjusting injection pressure and injection timing, and that, by reducing initial injection pressure, trade-off effect between NO {sub x} and particulate were improved. Observation of combustion conditions by inside-visible engine, those were recognized that low injection pressure caused poor atomization and, by that, delay of vaporization, that propagation of flame rapid to whole combustion room in case of pressure-reservoir type, and that lower injection rate at initial stage suppressed combustion rate and reduced NO {sub x} generation. 4 refs., 16 figs., 3 tabs.

  3. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  4. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Nattapong Namliwan

    2014-01-01

    Full Text Available The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO, carbon dioxide (CO2, sulfur dioxide (SO2, and oxygen (O2 than those of diesel B3. On the other hand, nitric oxide (NO and nitrogen oxides (NOX emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine.

  5. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  6. Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

  7. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XVIII, ALTERNATOR AND REGULATOR SERVICING AND TESTING, AND AN INTRODUCTION TO TRANSISTOR REGULATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED AS A REVIEW OF THE OPERATING PRINCIPLES AND SERVICING PROCEDURES FOR GENERATORS AND AS AN INTRODUCTION TO TRANSISTOR CONTROLLED VOLTAGE REGULATION FOR GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) REVIEW OF GENERATOR PRINCIPLES, AC AND DC, (2) SERVICING AND TESTING ALTERNATORS, AND (3)…

  8. [Diesel emission control technologies: a review].

    Science.gov (United States)

    He, Hong; Weng, Duan; Zi, Xin-Yun

    2007-06-01

    The authors reviewed the researches on diesel emission control for both new engine technologies and aftertreatment technologies. Emphases were focused on the recent advancements of the diesel particulate filter (DPF) and the selective catalytic reduction (SCR) of NO(x). In addition, it was explored for the future development in this field.

  9. Diesel engine emission deterioration - a preliminary study

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J

    2016-04-01

    Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...

  10. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  11. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  12. The Influence of Various Operation Modes on Diesel Passenger Cars CO2 Emissions

    Directory of Open Access Journals (Sweden)

    Arina Negoițescu

    2015-07-01

    Full Text Available The amount of emissions released into the atmosphere by polluting sources was significantly reduced due to the limitations introduced by the EU. Since one of the main sources affecting air quality is the car, researches regarding the influence of various factors on exhaust emissions are carried out. As CO2 is the main pollutant responsible for the greenhouse effect, the article treats the influence of vehicle load and traffic levels, running modes, the electric consumer’s utilization, and driving style on CO2 emissions for cars equipped with diesel engine. The results from the conducted study can contribute to adopt solutions in order to decrease the concentration of CO2 emissions from cars equipped with diesel engines.

  13. Hydrogenation Technology for Producing Clean Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Chen Shuiyin; Xiong Zhenlin; Gao Xiaodong; Nie Hong

    2004-01-01

    With the standard of environmental protection becoming increasingly strict, it is required to remove sulfur and aromatics in diesel deeply. RIPP has developed several new hydrogenation catalysts and flexible processes, by means of which clean diesel fuel with low sulfur and low aromatic contents can be produced. From SRGO (Straight Run Gas Oil), which has an aromatic content of less than 30m%, a low sulfur and low aromatic diesel fuel or ultra-low sulfur diesel can be obtained by adopting a new process operating on highly active RN-series catalysts. From a feed with higher aromatic content (A=30~80m%),such as FCC-LCO, a low sulfur and low aromatic diesel fuel can be obtained by the SSHT, MHUG and DDA processes.

  14. 40 CFR 49.130 - Rule for limiting sulfur in fuels.

    Science.gov (United States)

    2010-07-01

    ... section? This section does not apply to gasoline and diesel fuel, such as automotive and marine diesel..., gaseous fuel, marine vessel, mobile sources, motor vehicle, nonroad engine, nonroad vehicle, owner...

  15. Evaluation of a Portable Photometer for Estimating Diesel Particulate Matter Concentrations in an Underground Limestone Mine

    OpenAIRE

    Watts, Winthrop F.; Gladis, David D.; Schumacher, Matthew F.; Ragatz, Adam C.; David B. Kittelson

    2010-01-01

    A low cost, battery-operated, portable, real-time aerosol analyzer is not available for monitoring diesel particulate matter (DPM) concentrations in underground mines. This study summarizes a field evaluation conducted at an underground limestone mine to evaluate the potential of the TSI AM 510 portable photometer (equipped with a Dorr-Oliver cyclone and 1.0-μm impactor) to qualitatively track time-weighted average mass and elemental, organic, and total carbon (TC) measurements associated wit...

  16. Heat recovery from Diesel exhausts by means of a fluidized bed heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, G.M.; Festa, R.; Massimilla, L.

    1983-01-01

    A fluidized bed heat exchanger, equipped with a specially designed manifold gas distributor, is conveniently used to recover heat from exhausts of a 60 kW Diesel engine. The sensitivity of the bed to tube heat transfer coefficient to soot fouling and the sensitivity of the exchanger efficiency to variations of such coefficients are analyzed. Procedures for in-operation tube defouling are described.

  17. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  18. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  19. 40 CFR 86.090-5 - General standards; increase in emissions; unsafe conditions.

    Science.gov (United States)

    2010-07-01

    ... light or heavy duty motor vehicle equipped with an engine certified to the nonroad provision of 40 CFR... standards; increase in emissions; unsafe conditions. (a)(1) Every new motor vehicle (or new motor vehicle... with respect to any Otto-cycle or diesel heavy-duty vehicle which uses an engine which has not...

  20. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic fuel. These results show that paraffinic fuel can be very competitive and replaced diesel fuels in the future.

  1. Equipment. Out of order.

    Science.gov (United States)

    Connolly, C

    2000-08-17

    The NHS has underinvested in equipment for more than 20 years. Most hospitals have inadequate equipment inventories. More than half the anaesthetic machines in use are more than five years old and should be replaced. Almost a fifth of the equipment used in cancer treatment is obsolete. Current accounting systems act as a disincentive to replacing old equipment.

  2. Diesel and silica monitoring at two sites following hurricane sandy.

    Science.gov (United States)

    Freund, Alice; Zuckerman, Norman; Luo, Honghong; Hsu, Hsiao-Hsien; Lucchini, Roberto

    2014-01-01

    Following Hurricane Sandy, which hit New York City and New Jersey in October 2012, industrial hygienists from the Mount Sinai and Belleview/New York University occupational medicine clinics conducted monitoring for diesel exhaust and silica in lower Manhattan and Rockaway Peninsula. Average daytime elemental carbon levels at three stations in lower Manhattan on December 4, 2012, ranged from 9 to18 μg/m(3). Sub-micron particle counts at various times on the same day were over 200,000 particles per cubic centimeter on many streets in lower Manhattan. In Rockaway Peninsula on December 12, 2012, all average daytime elemental carbon levels were below a detection limit of approximately 7 μg/m(3). The average daytime crystalline silica dust concentration was below detection at two sites on Rockaway Peninsula, and was 0.015 mg/m(3) quartz where sand was being replaced on the beach. The daily average levels of elemental carbon and airborne particulates that we measured are in the range of levels that have been found to cause respiratory effects in sensitive subpopulations like asthmatic patients after 2 hr of exposure. Control of exposure to diesel exhaust must be considered following natural disasters where diesel-powered equipment is used in cleanup and recovery. Although peak silica exposures were not likely captured in this study, but were reported by a government agency to have exceeded recommended guidelines for at least one cleanup worker, we recommend further study of silica exposures when debris removal operations or traffic create visible levels of suspended dust from soil or sand.

  3. Performance and emission characteristics of double biodiesel blends with diesel

    OpenAIRE

    Kuthalingam Arun Balasubramanian; Asokan Guruprasath; Marta Vivar; Skryabin Igor; Karuppian Srithar

    2013-01-01

    Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD) and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD) are taken for the experimental analysis. Ex...

  4. Investigations on Performance and Emission Characteristics of Diesel Engine with Biodiesel (Jatropha Oil and Its Blends

    Directory of Open Access Journals (Sweden)

    Amar Pandhare

    2013-01-01

    Full Text Available This paper presents the performance of biodiesel blends in a single-cylinder water-cooled diesel engine. All experiments were carried out at constant speed 1500 rpm and the biodiesel blends were varied from B10 to B100. The engine was equipped with variable compressions ratio (VCR mechanism. For 100% Jatropha biodiesel, the maximum fuel consumption was 15% higher than that of diesel fuel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel at various load conditions. The increase in specific fuel consumption ranged from 2.75% to 15% for B10 to B100 fuels. The exhaust gas temperature increased with increased biodiesel blend. The highest exhaust gas temperature observed was 430°C with biodiesel for load conditions 1.5 kW, 2.5 kW, and 3.5 kW, where as for diesel the maximum exhaust gas temperature was 440°C. The CO2 emission from the biodiesel fuelled engine was higher by 25% than diesel fuel at full load. The CO emissions were lower with Jatropha by 15%, 13%, and 13% at 1.5 kW, 2.5 kW, and 3.5 kW load conditions, respectively. The NOx emissions were higher by 16%, 19%, and 20% at 1.5 kW, 2.5 kW, and 3.5 kW than that of the diesel, respectively.

  5. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  6. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  7. Effect of Diesel Sulfur on the Regeneration of Catalyst based Diesel Particulate Filters

    Directory of Open Access Journals (Sweden)

    Pruthviraj S Balekai

    2013-08-01

    Full Text Available Diesel particulate filters are used in diesel engines to clean the particulate matter, which is released into the atmosphere. These particulate filters have a mechanism, which is affected by diesel sulfur level. My study refers to the effect with which the sulfur in diesel affects the regeneration rate of the diesel particulate filters. Two filters with different coatings were taken. Diesel Sulfur with different concentrations was tested. It was observed that there was linear relation between sulfur level and balance point temperature. Also, it was observed that this was the cause for not using full-blend biodiesel, as the emission standards could not be met due to high sulfur levels in the biodiesel.

  8. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Institute of Scientific and Technical Information of China (English)

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  9. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  10. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde for_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  11. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  12. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  13. 49 CFR 176.93 - Vehicles having refrigerating or heating equipment.

    Science.gov (United States)

    2010-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... Transported on Board Ferry Vessels § 176.93 Vehicles having refrigerating or heating equipment. (a) A... (flammable gas) material, or diesel oil as fuel, may be transported on a ferry vessel. However, the...

  14. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  15. Multimodel Control of Diesel Engines

    Science.gov (United States)

    Cirstoiu, Silviu; Popescu, Dumitru; Dimon, Catalin; Olteanu, Severus

    2017-01-01

    In this article it is proposed and designed a modern control configuration of the type multicontroler-multimodel (MM) that pilots the nonlinear combustion process of the Diesel engine, needed to adjust the pressure in the intake manifold and the airflow circulating through the compressor. The MM simulator developed by the authors allows the implementation of control systems represented by pairs (Mi, Ci) with the Mi candidate closest to the current operating point of the process and the paired controller Ri, for controlling the key parameters of the combustion process. The proposed configuration is built with robust controllers and thus it is able to ensure superior performance, tolerance to nonlinearities and parametric and structural perturbations in the system.

  16. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    necessitates a rethinking of public governance that involve multilevel governance and integrating technology push and pull strategies. The agenda requires a re-conceptualisation of the innovation concept with special emphasis on value chain dynamics. The paper includes an analysis of the Danish innovation......This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... policy based on Michael Porters cluster theory. The paper however suggest that the narrow focus on productivity and economic growth in Porters theory should be qualified and integrated with a broader scope of societal policy aims including social and environmental issues. This suggestion also...

  17. Commercial Test of Two Diesel Demulsifiers

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaohong

    2003-01-01

    PetroChina Lanzhou Petrochemical Company conducted commercial tests for application of two types of diesel demulsifiers, the HPL-2 and GX-02 demulsifiers, in order to solve the emulsion problem arising from caustic washing of straight-run diesel fraction obtained from atmospheric and vacuum distillation unit at the Lanzhou refinery. After addition of each demulsifier into the diesel fraction the oil content in caustic residue was apparently decreased, and discharge of waste caustic was reduced, resulting in the elimination of emulsification and a significant increase of economic benefits. When 70 ppm of the HPL-2 demulsifier was added to diesel fraction, the oil content in waste caustic exiting the second-stage caustic wash settling tank was reduced to 2.45% from 7.90 %, whereas this value was reduced to 2.81% from 5.96% with addition of the GX-02 demulsifier.

  18. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  19. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  20. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    Energy Technology Data Exchange (ETDEWEB)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    2012-12-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned by Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.

  1. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel

    Institute of Scientific and Technical Information of China (English)

    Hongbo ZOU; Lijun WANG; Shenghua LIU; Yu LI

    2008-01-01

    An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the igni-tion delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20℃ to 40℃ and then to 60℃, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remark-ably by advancing the delivery timing of pilot diesel, espe-cially at light engine loads.

  2. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    Science.gov (United States)

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.

  3. Effects of MTBE blended diesel fuel on diesel combustion and emissions; MTBE kongo keiyu ga diesel nensho haiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shundo, S.; Yokota, H.; Kakegawa, T. [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    The effects of MTBE (Methyl-t-butyl ether) blended diesel fuel on diesel combustion and emissions were studied. In conventional diesel combustion, the testing mode was carried out in conformity with the Japanese 13 mode. Furthermore, this fuel was applied to a new combustion system (Homogeneous Charge Intelligent Multiple Injection). MTBE blended diesel fuel is more effective in the case of new combustion system and very low NOx, PM capability is suggested. 6 refs., 6 figs., 2 tabs.

  4. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  5. Diesel particulate filter with zoned resistive heater

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  6. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  7. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-10-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

  8. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Science.gov (United States)

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  9. Comparative naval architecture analysis of diesel submarines

    OpenAIRE

    Torkelson, Kai Oscar

    2005-01-01

    CIVINS Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written on submarines, no exclusively diesel submarine comparative naval architecture analyses have been published. One possible reason for few submarine studies may be the lack of complete and accurate information regarding the naval architecture of foreign diesel subma...

  10. Research advance on methanol-diesel emulsifying fuel%甲醇-柴油乳化燃料的研究进展

    Institute of Scientific and Technical Information of China (English)

    冯国琳; 焦纬洲; 高璟; 于娜娜; 王笃政

    2012-01-01

    概述了甲醇-柴油乳化燃料的发展情况,介绍了甲醇-柴油乳化燃料的乳化、节能机理,重点介绍了甲醇-柴油乳化燃料的乳化剂和乳化设备及其燃烧特性研究进展,最后对甲醇-柴油乳化燃料的发展趋势进行了展望。%The development of methanol-diesel emulsifying fuel was summarized. The mechanism on emulsi lying and energy saving of methanol diesel emulsifying fuel was introduced. The advance in emulsifier, emulsif ying equipment and combustion characteristic of methanol-diesel emulsifying fuel were stressly described. Finally, the future development tendency of methanol-diesel emulsifying fuel was proposed.

  11. Detection of Red Dye in Diesel Oil

    Directory of Open Access Journals (Sweden)

    B Varughese

    2017-06-01

    Full Text Available Developing a sensitive and effective instrument for detecting the presence of red dye in diesel fuel is very advantageous for governments in preventing tax loss by controlling illegal use of the diesel fuel. The objective of this work has been to investigate and develop an instrument to detect red dye in diesel, based on the principle of absorption. The peaks of absorption in red and pure diesel fuel were measured with the help of UV-spectrometer (Lambda 6/ PECSS. Optical interference filters of wavelengths 405 nm and 616 nm were used to modify the spectral transmittance of an optical system with appropriate spectral absorption characteristics. Two simultaneous light beams of two different colors were sent into the diesel fuel and the transmitted light from the fuel censored by a silicon photo detector. The signal from the detector was then amplified with the help of three operational amplifiers (OP-177 and sent to an analog device (AD 538 which can perform division operation. The voltage produced when the violet light passes through the medium was divided when the red light passes through the medium in the one quadrant division unit (AD 538. The output voltage from the analog device was measured with the help of a digital multi-meter. The results show that the output voltages decreases with the increase in percentage of red dye in diesel fuel.

  12. Common NICU Equipment

    Science.gov (United States)

    ... newborn intensive care unit (NICU) > Common NICU equipment Common NICU equipment E-mail to a friend Please ... Baby Caring for your baby Feeding your baby Common illnesses Family health & safety Complications & Loss Pregnancy complications ...

  13. Determination and distribution of diesel components in igneous rock surrounding underground diesel storage facilities in Sweden.

    Science.gov (United States)

    Loren, A; Hallbeck, L; Pedersen, K; Abrahamsson, K

    2001-01-15

    In Sweden, a preliminary investigation of the contamination situation of igneous rock surrounding underground storage facilities of diesel showed that the situation was severe. The diesel was believed to have penetrated into the rock as far as 50 m from the walls of the vaults. Consequently, the risk for contamination of groundwater and recipients could not be neglected. To be able to assess the fate of diesel components in rock, both a suitable drilling method and a method for the determination of a wide range of diesel components were needed. The analytical method presented made it possible to quantify a number of hydrocarbons in rock samples collected with triple-tube core drilling. The samples were dissolved in hydrofluoric acid (HF) with hexane in Teflon centrifuge tubes. After digestion of the rock, extraction of the analytes with hexane was performed. Determination of the individual hydrocarbons present was done with gas chromatography-mass spectrometry (GC-MS). The method was used to study the environmental impact of the underground storage of diesel. The drilling method enabled sampling without contamination risks. Our data show that the major transport of diesel components in rock occurs through fracture systems and that diffusion of diesel through the rock is of minor importance. The results have drastically changed the view of the contamination situation of diesel in the vicinity of storage facilities in hard rock in Sweden.

  14. Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions

    Directory of Open Access Journals (Sweden)

    Dulari Hansdah

    2013-09-01

    Full Text Available This paper explores the possibility of utilizing bioethanol obtained from Madhuca Indica flower as an alternative fuel in a direct injection (DI diesel engine. Three different percentages of bioethanol (5%, 10%, and 15% on volume basis were emulsified with diesel proportionality with the help of a surfactant. The emulsions were designated as BMDE5, BMDE10, and BMDE15 where the numeric value refers to the percentage of bioethanol. The emulsions were tested as fuels in a single cylinder, four stroke, and air cooled DI diesel engine developing a power of 4.4 kW at 1500 rpm. Results indicated that the bioethanol–diesel emulsions exhibited a longer ignition delay by about 2.2 °CA than that of diesel operation at full load. Overall, the nitric oxide (NO and smoke emissions were found to be lesser by about 4% and 20%, respectively, with the bioethanol–diesel emulsions compared to that of diesel operation at full load. The BMDE5 emulsion gave a better performance and lower emissions compared to that of BMDE10 and BMDE15. It is suggested that the bioethanol produced from Madhuca Indica flower can be used as a potential alternative fuel replacing 5% of petroleum diesel.

  15. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  16. Commonised diesel and gasoline catalyst architecture; Standardisierte Katalysatorarchitektur fuer Diesel- und Ottomotoren

    Energy Technology Data Exchange (ETDEWEB)

    Laurell, Mats; Sjoers, Johan; Wernlund, Bjoern [Volvo Car Corporation, Goeteborg (Sweden); Brueck, Rolf [Emitec Gesellschaft fuer Emissionstechnologie mbH, Lohmar (Germany). Forschung, Entwicklung und Applikation

    2013-11-01

    Volvo Cars has developed a standardised catalytic converter architecture for diesel and gasoline engines - the scalable so-called Compact Cat. The system covers both Euro 6 and SULEV applications for gasoline engines as well as Euro 6 applications for diesel engines. The standardised design using shared parts results in a considerable reduction in unit costs and tooling requirements. (orig.)

  17. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  18. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    Science.gov (United States)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  19. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  20. Renewal of radiological equipment.

    Science.gov (United States)

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a

  1. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  2. Methods of Reducing Emissions from Two-stroke low-speed Diesel Engines

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Mitu

    2010-10-01

    Full Text Available The worldwide focus on fuels is generally increasing because of the focus on exhaust gas emissions. General awareness of environmental issues is increasing rapidly. Diesel engine makers were first involved in questions regarding exhaust gas emissions in the field of stationary applications. A study of the exhaust gas emissions from a diesel engine represents a challenge to both the engine designer and to makers of exhaust gas treatment equipment. It is also a valuable tool for reaching a deeper understanding of the engine combustion process. These emissions control technologies, like Selective Catalytic Reduction (SCR, will help to reduce pollutants that impact our health and the health of our communities as well as reduce smog creation and other factors that contribute to climate change and global warming.

  3. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas

    Science.gov (United States)

    Jathar, Shantanu H.; Heppding, Christopher; Link, Michael F.; Farmer, Delphine K.; Akherati, Ali; Kleeman, Michael J.; de Gouw, Joost A.; Veres, Patrick R.; Roberts, James M.

    2017-07-01

    Isocyanic acid (HNCO), an acidic gas found in tobacco smoke, urban environments, and biomass-burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use selective catalytic reduction (SCR) systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM) to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3-90 mg kg fuel-1) but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter) produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational datasets for HNCO in urban areas but underpredicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of ˜ 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass burning) and wintertime

  4. Seismic analyses of equipment in 2736-Z complex. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Ocoma, E.C.

    1995-04-01

    This report documents the structural qualification for the existing equipment when subjected to seismic loading in the Plutonium Storage Complex. It replaces in entirety Revision 0 and reconciles the U.S. Department of Energy (DOE) comments on Revision 0. The Complex consists of 2736-Z Building (plutonium storage vault), 2736-ZA Building (vault ventilation equipment building), and 2736-ZB Building (shipping/receiving, repackaging activities). The existing equipment structurally qualified in this report are the metal storage racks for 7 inch and lard cans in room 2 of Building 2736-Z; the cubicles, can holders and pedestals in rooms 1, 3, and 4 of Building 2736-Z; the ventilation duct including exhaust fans/motors, emergency diesel generator, and HEPA filter housing in Building 2736-ZA; the repackaging glovebox in Building 2736-ZB; and the interface duct between Buildings 2736-Z and 2736-ZA.

  5. Adams natural gas/diesel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    The results of a ore-year program to demonstrate the viability of fuelling and operating diesel road vehicles on dual fuel natural gas/diesel under commercial operating conditions is presented. During this project a natural gas fuelling station designed to accomodate the specific needs of heavy trucks was constructed, and a Canada Safeway Ltd. tractor was converted to dual fuel natural gas/diesel operation. The truck accumulated more than 64,000 km during the one-year monitoring period, providing useful data in terms of comparative fuel efficiency, natural gas/diesel proportions of fuel use, operating range, and refuelling times, along with assessments of its performance by drivers and fleet management. In the dual fuel mode the truck experienced a 15% loss in thermal efficiency relative to straight diesel fuel during highway operation, and a 20% loss during local operation. Fuel cost savings resulting from the use of natural gas were not large given the increased level of fuel consumption and the purchase of natural gas at higher prices. If the fleet were to have its own natural gas fuelling station fuel cost savings would be substantially increased. Areas in which further development is needed for natural gas to emerge as a significant fuel for heavy trucks are mentioned. 3 figs., 15 tabs.

  6. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  7. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2008-01-01

    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  8. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-03-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  9. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  10. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.

    Science.gov (United States)

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, Ns; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil.

  11. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  12. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  13. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  14. TEST/QA PLAN FOR THE VERIFICATION TESTING OF ALTERNATIVES OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSONS, AND LUBRICANTS FOR HIGHWAY AND NONROAD USE HEAVY DUTY DIESEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    Science.gov (United States)

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  15. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    National Research Council Canada - National Science Library

    R. B. Sharma; Dr. Amit Pal

    2014-01-01

    In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried...

  16. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  17. No Breathing in the Aisles: Diesel Exhaust inside School Buses.

    Science.gov (United States)

    Solomon, Gina M.; Campbell, Todd R.; Feuer, Gail Ruderman; Masters, Julie; Samkian, Artineh; Paul, Kavita Ann

    There is evidence that diesel exhaust causes cancer and premature death, and also exacerbates asthma and other respiratory illness. Noting that the vast majority of the nation's school buses run on diesel fuel, this report details a study examining the level of diesel exhaust to which children are typically exposed as they travel to and from…

  18. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated...

  19. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  20. Potential of Sagittaria trifolia for Phytoremediation of Diesel.

    Science.gov (United States)

    Zhang, Xinying; Wang, Jun; Liu, Xiaoyan; Gu, Lingfeng; Hou, Yunyun; He, Chiquan; Chen, Xueping; Liang, Xia

    2015-01-01

    The phytoremediation potential and responses of Sagittaria trifolia to diesel were investigated. In order to elucidate the biochemical and physiological responses of S. trifolia to diesel, the chlorophyll content, root vitality, soluble protein content and antioxidant enzymes activity (peroxidase (POD), catalase (CAT) and antioxidant enzymes superoxide dismutase (SOD)) were determined in the plant tissues after 50 d of diesel treatment. The results showed the presence of S. trifolia significantly improved the removal ratios of diesel, from 21∼36% in the control soils to 54∼85% in the planted soils. The chlorophyll content, root vitality and soluble protein content all increased at low diesel concentration, then decreased at high diesel concentration. The activities of CAT and POD exhibited peak values at 5 g·kg(-1) diesel treatment and declined at higher diesel concentrations. However, the activity of SOD kept stable at lower diesel concentration (1 and 5 g·kg(-1)), and also declined at higher diesel concentration. Collectively, S. trifolia had the ability to tolerate certain amount of diesel, but when the concentration was up to 10 g·kg(-1), the growth of S. trifolia would be restrained. The results also showed that variation of antioxidant enzyme activity was an important response in plants to diesel pollution.

  1. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  2. RETRIEVAL EQUIPMENT DESCRIPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    J. Steinhoff

    1997-08-25

    The objective and the scope of this document are to list and briefly describe the major mobile equipment necessary for waste package (WP) retrieval from the proposed subsurface nuclear waste repository at Yucca Mountain. Primary performance characteristics and some specialized design features of the equipment are explained and summarized in the individual subsections of this document. There are no quality assurance requirements or QA controls in this document. Retrieval under normal conditions is accomplished with the same fleet of equipment as is used for emplacement. Descriptions of equipment used for retrieval under normal conditions is found in Emplacement Equipment Descriptions, DI: BCAF00000-01717-5705-00002 (a document in progress). Equipment used for retrieval under abnormal conditions is addressed in this document and consists of the following: (1) Inclined Plane Hauler; (2) Bottom Lift Transporter; (3) Load Haul Dump (LHD) Loader; (4) Heavy Duty Forklift for Emplacement Drifts; (5) Covered Shuttle Car; (6) Multipurpose Vehicle; and (7) Scaler.

  3. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    Full Text Available Os atuais elevados preços do barril de petróleo no mercado internacional, a possibilidade de geração de postos de trabalho e renda com a conseqüente fixação do homem no campo, as excelentes e variadas condições climáticas e os tipos de relevo fazem com que o Brasil, com suas extensas áreas agricultáveis, destaque-se no cenário mundial em relação à sua grande potencialidade de geração de combustíveis alternativos. A situação ambiental faz com que o ser humano trabalhe no desenvolvimento de alternativas energéticas, destacando-se aquelas oriundas de fontes renováveis e biodegradáveis de caráter eminentemente sustentável. Assim, objetivou-se com este trabalho avaliar o desempenho de um motor ciclo diesel, funcionando em momentos distintos com diesel mineral e misturas deste com biodiesel nas proporções equivalentes a B2 (98% de diesel mineral e 2% de biodiesel, B5 (95% de diesel mineral e 5% de biodiesel, B20 (80% de diesel mineral e 20% de biodiesel e B100 (100% de biodiesel. Para a realização dos ensaios, foi utilizado um motor ciclo diesel de um trator VALMET 85 id, de 58,2kW (78 cv, de acordo com metodologia estabelecida pela norma NBR 5484 da ABNT (1985 que se refere ao ensaio dinamométrico de motores de ciclo Otto e Diesel. Concluiu-se que a potência do motor ao se utilizar biodiesel foi inferior àquela quando se utilizou diesel mineral. Observou-se que, em algumas rotações, as misturas B5 e B20 apresentaram potência igual ou até superior, em algumas situações, àquela quando se utilizou diesel mineral. A melhor eficiência térmica do motor foi verificada na rotação de 540 rpm da TDP equivalente a 1720 rpm do motor.It is considered that, in a close future, the petroleum reservations economically viable will tend to the shortage. Besides it, the exacerbated current price levels of the petroleum barrel in the international market, the possibility of employment generation and income with the consequent

  4. 2007 special equipment safety

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The General Administration of Quality Supervision, Inspection and Quarantine of P.R.China (AQSIQ) issued a notice on May 28, 2007,requiring various locations to rectify their procedures for checking special equipment and hoisting machines for hidden problems. To further clarify and implement responsibility in the safety management of special equipment in enterprises, inspection responsibilities and test organizations related to technical assurance are to be established. Further, quality inspection departments will be supervised by law in order to improve special equipment safety.

  5. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    Directory of Open Access Journals (Sweden)

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  6. Restoring diesel engine camshafts by laser treatement

    Science.gov (United States)

    Astashkevich, B. M.; Zinov'ev, G. S.; Voronin, I. N.

    1996-12-01

    The reliability of parts of the gas-distributing mechanism and drives of fuel pumps determines to a great degree the operating conditions of cylinder-piston parts and the economic characteristics of diesel engines. Intense wear of the camshaft pair disturbs the distribution phases and the lead angle of fuel supply to the diesel cylinders and increases the rigidity of the operation of the connecting rod-piston group. This causes incomplete combustion of fuel and fuming, a rise in the temperature of exhaust gases, sticking of the rings in the piston grooves and their premature failure, wear cracks, and chips and failure of the parts of the cylinder-piston unit, decreasing the efficiency of the diesel. Laser surface treatment is used to restore cams. It makes it possible to increase substantially the wear resistance of cams and restore their worn surfaces. This paper concerns the characteristics of the cams after such a treatment.

  7. Diesel particulate filter design simulation: A review

    Directory of Open Access Journals (Sweden)

    Shichun Yang

    2016-03-01

    Full Text Available Simulation is a powerful tool in the design and analysis of diesel particulate filters. Various models have been developed in the last three decades and great improvements have been made in terms of model comprehensiveness and accuracy. However, simulation of diesel particulate filter is still not a reliable resort to fine-tuning of diesel particulate filter and much effort is still needed. To promote the development of effective simulation models, first, the various models are viewed. Their characteristics and application occasions are discussed. Second, regarding the limitations of these models, some key submodels are introduced, which are pressure drop model in the wall, filtration model, and soot oxidation model. Finally, some conclusions are made and further researches are recommended.

  8. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  9. Tertiary fatty amides as diesel fuel substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Serdari, Aikaterini; Lois, Euripides; Stournas, Stamoulis [National Technical Univ. of Athens, Dept. of Chemical Engineering, Athens (Greece)

    2000-07-01

    This paper presents experimental results regarding the impact of adding different tertiary amides of fatty acids to mineral diesel fuel; an assessment of the behaviour of these compounds as possible diesel fuel extenders is also included. Measurements of cetane number, cold flow properties (cloud point, pour point and CFPP), density, kinematic viscosity, flash point and distillation temperatures are reported, while initial experiments concerning the effects on particulate emissions are also described. Most of the examined tertiary fatty amides esters have very good performance and they can be easily prepared from fatty acids (biomass). Such compounds or their blends could be used as mineral diesel fuel or even fatty acid methylesters (FAME, biodiesel) substitutes or extenders. (Author)

  10. Medical equipment management

    CERN Document Server

    Willson, Keith; Tabakov, Slavik

    2013-01-01

    Know What to Expect When Managing Medical Equipment and Healthcare Technology in Your Organization As medical technology in clinical care becomes more complex, clinical professionals and support staff must know how to keep patients safe and equipment working in the clinical environment. Accessible to all healthcare professionals and managers, Medical Equipment Management presents an integrated approach to managing medical equipment in healthcare organizations. The book explains the underlying principles and requirements and raises awareness of what needs to be done and what questions to ask. I

  11. Optimal deployment of emissions reduction technologies for construction equipment.

    Science.gov (United States)

    Bari, Muhammad Ehsanul; Zietsman, Josias; Quadrifoglio, Luca; Farzaneh, Mohamadreza

    2011-06-01

    The objective of this research was to develop a multiobjective optimization model to deploy emissions reduction technologies for nonroad construction equipment to reduce emissions in a cost-effective and optimal manner. Given a fleet of construction equipment emitting different pollutants in the nonattainment (NA) and near -nonattainment (NNA) counties of a state and a set of emissions reduction technologies available for installation on equipment to control pollution/emissions, the model assists in determining the mix of technologies to be deployed so that maximum emissions reduction and fuel savings are achieved within a given budget. Three technologies considered for emissions reduction were designated as X, Y, and Z to keep the model formulation general so that it can be applied for any other set of technologies. Two alternative methods of deploying these technologies on a fleet of equipment were investigated with the methods differing in the technology deployment preference in the NA and NNA counties. The model having a weighted objective function containing emissions reduction benefits and fuel-saving benefits was programmed with C++ and ILOG-CPLEX. For demonstration purposes, the model was applied for a selected construction equipment fleet owned by the Texas Department of Transportation, located in NA and NNA counties of Texas, assuming the three emissions reduction technologies X, Y, and Z to represent, respectively, hydrogen enrichment, selective catalytic reduction, and fuel additive technologies. Model solutions were obtained for varying budget amounts to test the sensitivity of emissions reductions and fuel-savings benefits with increasing the budget. Different mixes of technologies producing maximum oxides of nitrogen (NO(x)) reductions and total combined benefits (emissions reductions plus fuel savings) were indicated at different budget ranges. The initial steep portion of the plots for NO(x) reductions and total combined benefits against budgets

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  13. Development trends of machines and equipment for mine haulage in black coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, C.; Gorol, S.; Janik, E.; Kotlarski, S.; Kowal, J.; Zeifert, S.

    1976-01-01

    This paper discusses development of equipment for mine haulage in underground black coal mines in Poland. Equipment type, selected aspects of its design, specifications, productivity and reliability are evaluated. The following equipment types are reviewed: chain conveyors (Rybnik-73, Samson, Supersamson, Supergrot), belt conveyors (Gwarek), mine cars (Granby mine cars with a capacity of 5.1 m/sup 3/), mine locomotives (with electric batteries, electric or pneumatic motors or diesel engines), equipment for railway track repair and maintenance, automatic systems for traffic control in underground mines, coal hoppers, coal handling systems for coal hoppers. Equipment developed in Poland since 1970 is discussed. Recommendations for research programs on haulage equipment and coal hoppers are made. 8 refs.

  14. Adsorptive desulfurization of diesel with mesoporous aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    TANG Huang; LI Wang-Liang; LIU Qing-Fen; GUAN Li-Li; SONG Jia-Qing; XING dian-Min; LIU Hui-Zhou

    2009-01-01

    Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal method. Adsorptive desulfurization ability of model oil and hy-drotreated diesel was studied. The effects of template concentration, crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that the adsorptive capacity is MASMCM-41NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.

  15. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  16. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  17. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  18. Technology Equipment Rooms.

    Science.gov (United States)

    Day, C. William

    2001-01-01

    Examines telecommunications equipment room design features that allow for growth and can accommodate numerous equipment replacements and upgrades with minimal service disruption and with minimal cost. Considerations involving the central hub, power and lighting needs, air conditioning, and fire protection are discussed. (GR)

  19. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  20. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  1. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Directory of Open Access Journals (Sweden)

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  2. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  3. Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks

    Science.gov (United States)

    Millstein, D.; Harley, R. A.

    2009-12-01

    Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more

  4. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  5. Study on Laboratory Method for Refining of SR Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    Li Junling; Zheng Tinglu; Han Zhaping

    2006-01-01

    The method for refining the straight-run diesel fuel was studied in laboratory scale in order to make the acid number of diesel fraction comply with the standard while removing the naphthenic acids contained in diesel without causing environmental pollution. After comparing the effect of refining using three solvents, the isopropyl alcohol-HOA was specified as the best solvent. Meanwhile, the relationship between the acid number of diesel fraction and the amount of solvent used and the relationship between the concentration of solvent and temperature and the stability of diesel in terms of its acid number were also investigated. Experimental results had shown that when the mass fraction of the HOA-IPA solvent was 20% at a dosage of 17 mL of the solvent and a temperature of 30℃, the acid number of the refined diesel fraction was 0.015 mg KOH/g with a good stability of acidity in the diesel traction.

  6. Enhanced microbubbles assisted cleaning of diesel contaminated sand.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2017-07-25

    In this article, we investigated the effect of low intensity pulsed ultrasound (US), temperature and salinity on cleaning efficacy of fine bubbles with diameter <50μm for diesel contaminated sands. About 47% and 76% diesel removal was achieved from 10% (w/w) diesel contaminated fine and medium sands respectively, after 30min treatment with 40kHz low intensity intermittent pulsed US together with MBs in contrast to 41% and 68% diesel removal while treatment with MBs alone. The effect of high temperature was found to be prominent during the initial stages of cleaning. In addition, MBs generated in 599mM saline water efficiently removed 85% diesel from fine sand within 30min in contrast to only 41% diesel removal with MBs in fresh water. This study provides evidence for developing highly efficient MBs based chemical free technology for diesel contaminated sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  8. Evaluation of the Use of Ultra Low Sulfur Diesel Oil for an Emergency Diesel Generator

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young-Chul; Chung, Woo-Geun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The aim of this study is to assess the compatibility and effect on driving an emergency diesel generator using ULSD examining the specific gravity and lubricity of the oil. Because generators at NPPs use ULSD which is not mostly used for medium-large diesel generator engines, this study seeks to provide effective precautions for the driving stability of emergency diesel generators. One of the major fuel oils used in medium-large diesel engines for the normal driving of vessels and the generation of emergency power at power plants is heavy fuel oil. There are no vessels and power generation engines known to use high-quality diesel oil which is widely used in cars. The findings of this study suggest that when driving a diesel generator, there will be increased fuel consumption by 3.6% [m{sup 3}/hr.]. Furthermore, the mechanical fuel limiter on the engine needs an upward adjustment because the system is set for 110% load operations for the former LSD fuel. Both LSD and ULSD retain lubricity with a WSD around 330~350μm. These results clearly show that bad lubricity problems are not expected to occur. We had presumed an increased amount of foreign particulates because of the increased additives for high lubricity and oxidative stability.

  9. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  10. Evaluation of diesel particulate matter sampling techniques

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-09-01

    Full Text Available The study evaluated diesel particulate matter (DPM) sampling methods used in the South African mining industry. The three-piece cassette respirable, open face and stopper sampling methods were compared with the SKC DPM cassette method to find a...

  11. Real Otto and Diesel Engine Cycles.

    Science.gov (United States)

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  12. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  13. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, T.K. [Mechanical Engineering Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India); Baruah, D.C. [Energy Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2010-03-15

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency. (author)

  14. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    Science.gov (United States)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately

  15. Technico-economic assessment of hybrid diesel-photovoltaic power plant in the south of Algeria

    Science.gov (United States)

    Kadri, A. Y.; Hamidat, A.

    2016-07-01

    In Algeria, Electrical energy demand has knew a significant growth in recent years. The important increase in demand is due to the development of industrial and commercial sectors, and the comfort of residents customers by using multiple equipment of household such as the TV, ventilator, especially air-conditioners in the south of Algeria. To address the problem of imbalance between supply and demand, it is compulsory to add other units of productions of electricity. These units can be use conventional sources or renewable energy sources. This study focuses on the feasibility of hybridizing diesel power plants supplying the isolated villages in southern Algeria by the introduction of PV systems. The town of Djanet was taken as a case study. The comparison between the different technical and economic parameters allows determining the contribution of the hybridization of conventional resources of production. However, the cost-effectiveness based on the net present cost (NPC) is estimated at 176, 054.208 for the hybrid system and 194, 965.280 for all Diesel system. In terms of the cost per kWh produced by the two systems, the kWh produced by the hybrid system is less expensive than the kWh produced by any conventional diesel system is 0.551 / kWh against 0.610 / kWh. The results also show that the hybrid system provides coverage of the expected load in the future.

  16. Air quality benefits of universal particle filter and NOx controls on diesel trucks

    Science.gov (United States)

    Tao, L.; Mcdonald, B. C.; Harley, R.

    2015-12-01

    Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.

  17. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  18. Electronic equipment packaging technology

    CERN Document Server

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  19. Reliable Electronic Equipment

    Directory of Open Access Journals (Sweden)

    N. A. Nayak

    1960-05-01

    Full Text Available The reliability aspect of electronic equipment's is discussed. To obtain optimum results, close cooperation between the components engineer, the design engineer and the production engineer is suggested.

  20. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    Science.gov (United States)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The

  1. Modeling and analysis of dynamic behavior of hybrid wind-diesel power plants

    Science.gov (United States)

    Garcia, Sergio Leonardo

    This thesis develops small-signal and large-signal models to investigate the dynamic performance of a hybrid wind-diesel energy system interfaced to a utility grid. The study system comprises a 3.5-MVA diesel-generator unit operating in parallel with a 750-kVA variable-speed, squirrel-cage induction generator, wind unit. The wind unit is interfaced to the power network through a back-to-back voltage-sourced converter system. The controllers of the machine-side converter regulate the mechanical torque and the shaft speed of the induction generator to obtain maximum power production under fluctuating wind-speed conditions. The controllers of the grid-side converter maintain the dc-link voltage and the ac-side converter terminal voltage within the specified limits and ensure delivery of the captured wind power to the network. The diesel-generator unit is equipped with excitation and governor systems to compensate for (i) output power changes of the wind unit due to the intermittent nature of the wind, and (ii) changes in the load demand. Based on small-signal (eigen) analyses in the MATLABRTM software environment, the controller parameters of the wind and the diesel units are selected to guarantee (i) minimization of transients due to switch over between two consecutive modes of operation, (ii) voltage/angle stability during islanded (autonomous) mode of operation, and (iii) local load requirements in terms of voltage and real/reactive power. The results obtained from time-domain simulations, in the PSCAD RTM/EMTDCRTM software environment, demonstrate that proper adjustment of the controllers of the wind and diesel units promote "ride-through" capability in the event of (i) pre-planned transitions between different modes of operation, (ii) pre-planned islanding and re-connection of the units to the power network, and (iii) short circuits, accidental islanding and subsequent re-connection attempts to the network. The developed eigen analysis tool is structured to

  2. Preparation and emission characteristics of ethanol-diesel fuel blends

    Institute of Scientific and Technical Information of China (English)

    ZHANG Run-duo; HE Hong; SHI Xiao-yan; ZHANG Chang-bin; HE Bang-quan; WANG Jian-xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  3. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...... is considered as extruded profiles are inadequate for compact designs. An optimal pin fin shape and configuration is sought also taking manufacturing costs into consideration. Standard methods for geometrical modeling and thermal analysis are applied....

  4. Quarry Equipment Yearbook 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This issue of the journal is devoted to an annual review of developments in the equipment used for minerals extraction and recycling. For each of 12 types of equipment, an editorial review is presented of developments and a tabular presentation of suppliers' ranges and contact information, including e-mail addresses and websites. The sections are: asphalt plants, conveyors, crushers and screens, drill rigs, dump trucks, excavators, hammers, pumps, tyres, weighbridges, wheel loaders and wheel washers.

  5. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included

  6. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  7. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  8. Effect of Bio Ethanol and Diesel Blend on Small Diesel Engine Vibration

    Directory of Open Access Journals (Sweden)

    S.H Hashemi Fard

    2014-09-01

    Full Text Available The use of Bio-ethanol as an alternative diesel engine fuel is rapidly increasing. Bio-ethanol is mixed with diesel fuel at different ratios and used in CI and SI engines. Since vibrations have direct effects on users and engine components, for this reason analysis of vibration resulting from combustion in CI engines is very important. In this study, evaluation of vibration was performed for both diesel and ethanol blends. Commercial diesel fuel (D100, E2 (2% ethanol and 98% diesel fuel, E5, E10, E15 and E20 were used in a two-wheel MITSUBISHI tractor. The engine was tested in 1200, 1600, 2000 and 2400 rpm for all fuel blends, and also the effect of load was investigated for D100 and E10. Results showed that vibration is significantly affected by fuel blend. It was observed that E10 had the lowest vibration while E20 had the highest value. It was also observed that vibration increased as engine speed increased for all fuel blends. It was found that both axial and lateral vibrations affected significantly by load. The lateral vibrations decreased continuously with load rise , but the axial vibrations increased initially but started to follow a reverse trend.

  9. Improvement of thermal effciency in diesel engine. Diesel engine no koritsu kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. (Isuzu Ceramics Research Inst. Co. Ltd., Kanagawa, (Japan))

    1993-04-05

    Diesel engines cause worsening air pollution due to much more discharge of nitrogen oxides than gasoline engines, however for reduction of carbon dioxide, Diesel engines consuming less fuel are better than gasoline engines for protection of the global environment. Theoretical thermal efficiency is larger as compression ratio and isochronic burnup are bigger, hence such an engine is needed that is made on the basis of a Diesel engine, whose compression ratio is twice or more larger than that of gasoline engine and which has good thermal efficiency, and reduces its nitrogen oxides by the development of the combustion technique by means of controlling combustion temperature as well as fuel equivalent ratio. With regard to the improvement of thermal efficiency of Diesel engines, it can be attained, utilizing the respective features of the antechamber-type and the direct injection-type Diesels, by burning the homogeneous mixture, whose fuel equivalent ratio is big, in the initial stage and by controlling the main combustion period in the main chamber short. inaddition, a radiation shield-type turbocompound engine has been test fabricated and rough explanations are given on its structure, its combustion and the recovery of its exhaust gas energy. 5 refs., 6 figs., 1 tab.

  10. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust.

    Science.gov (United States)

    Wenger, Daniela; Gerecke, Andreas C; Heeb, Norbert V; Naegeli, Hanspeter; Zenobi, Renato

    2008-04-01

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17beta-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 +/- 0.31 ng E2 CALUX equivalents (E2-CEQs) per m(3) of unfiltered exhaust. In filtered exhaust, we measured 0.74 +/- 0.07 (iron-catalyzed DPF) and 0.55 +/- 0.09 ng E2-CEQ m(-3) (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust.

  11. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, Daniela; Gerecke, Andreas C.; Heeb, Norbert V. [Laboratory for Analytical Chemistry, Empa, Swiss Federal Laboratories for Materials Testing and Research, Duebendorf (Switzerland); Naegeli, Hanspeter [University of Zurich-Vetsuisse, Institute of Pharmacology and Toxicology, Zurich (Switzerland); Zenobi, Renato [ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2008-04-15

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX {sup registered}) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17{beta}-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 {+-} 0.31 ng E2 CALUX equivalents (E2-CEQs) per m{sup 3} of unfiltered exhaust. In filtered exhaust, we measured 0.74 {+-} 0.07 (iron-catalyzed DPF) and 0.55 {+-} 0.09 ng E2-CEQ m{sup -3} (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust. (orig.)

  12. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  13. Development of microwave-heated diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Janney, M.A.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Yonushonis, T.M.; McDonald, A.C.; Wiczynski, P.D.; Haberkamp, W.C.

    1996-06-01

    Diesel engines are a prime mover of freight in the United States. Because of legislated reductions in diesel engine emissions, considerable research has been focused on the reduction of these emissions while maintaining the durability, reliability, and fuel economy of diesel engines. The Environmental Protection Agency (EPA) has found that particulate exhaust from diesel powered vehicles represents a potential health hazard. As a result, regulations have been promulgated limiting the allowable amounts of particulate from those vehicles. The 0.1 g/bhp/hr (gram per brake horsepower per hour) particulate standard that applies to heavy-duty diesels became effective in 1994. Engine manufacturers have met those requirements with engine modifications and/or oxidation catalysts. EPA has established more stringent standards for diesel-powered urban buses because of health concerns in densely populated urban areas.

  14. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, Andre L.

    2000-08-20

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by

  15. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  16. Advanced automotive diesel engine system study

    Science.gov (United States)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  17. Characterization and analysis of diesel exhaust odor

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, P.A.; Shala, F.J.; Cernansky, N.P.; Suffet, I.H.

    1987-04-01

    An analytical method was developed to determine which compound or compounds in the oxygenated fraction of diesel exhaust were changing in intensity and number with respect to the odor correlation between human sensory panels and diesel exhaust samples as developed at Arthur D. Little, Inc. A sample fractionation with silica Sep-Pak cartridges and gas chromatography analysis procedures were developed to analyze exhaust odor samples. By use of a chromatographic computer profiling method, correlations were developed indicating a linear relation between log (odor intensity) and log (concentration) of specific character impact peaks (which may or may not be odorous themselves). Excellent correlations were obtained with the character impact peaks identified as benzaldehyde and a methylbenzaldehyde isomer in this study. Correlation coefficients of 0.97 and 0.90, respectively, were obtained for the sample set. 17 references, 5 figures, 2 tables.

  18. Panel discussion: Gas emissions with diesel efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J. [Southwest Research Inst., San Antonio, TX (United States)

    1997-12-31

    The second of three papers in the panel discussion outlined the characteristics of spark-ignited natural gas (SING) engines. Currently, the SING engine is considered less efficient than a diesel engine because of the reduced compression ratio, the use of air-throttles, retarded ignition for low NOx, and increased heat transfer. To improve upon these characteristics and to make the SING engine equal to, or even surpass the diesel engine in efficiency, more research work needs to be done on advanced controls. These include (knock, misfire, humidity detection), various ignition enhancements (variable energy/gap plug, long-life plug, laser ignition), and possibly camless operation (cylinder deactivation, throttleless operation). The late-cycle High Pressure Gas Injection (LaCHIP) as an alternate means of improving the efficiency of natural gas engines was also described.

  19. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  20. Investigation of Diesel Engine Performance Based on Simulation

    OpenAIRE

    Semin; Rosli A. Bakar; Abdul R. Ismail

    2008-01-01

    The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performanc...

  1. Energy Policies Cause Unexpected Diesel Shortage in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  2. A Review on Diesel Soot Emission, its Effect and Control

    OpenAIRE

    Prasad, R.; Venkateswara R. Bella

    2011-01-01

    The diesel engines are energy efficient, but their particulate (soot) emissions are responsible of severe environmental and health problems. This review provides a survey on published information regarding diesel soot emission, its adverse effects on the human health, environment, vegetations, climate, etc. The legislations to limit diesel emissions and ways to minimize soot emission are also summarized. Soot particles are suspected to the development of cancer; cardiovascular and respiratory...

  3. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine ... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel...the capability of a recently adopted high fidelity two phase flow solver in the context of diesel engine sprays. Previous works relating to this

  4. Electrical diesel particulate filter (DPF) regeneration

    Science.gov (United States)

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  5. Comparative Naval Architecture Analysis of Diesel Submarines

    Science.gov (United States)

    2005-06-01

    space required to enclose all of the requirements, this volume must be able to support the weight of the submarine. In other words, Archimedes ’ principle ...accurate information regarding the naval architecture of foreign diesel submarines. However, with some fundamental submarine design principles , drawings of...cycling and hiking, I thank you for pushing me to relieve stress through my favorite sports. Last but not least of all, I want to pay tribute to the

  6. Hydrogen, nitrogen and syngas enriched diesel combustion

    OpenAIRE

    Christodoulou, Fanos

    2014-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University On-board hydrogen and syngas production is considered as a transition solution from fossil fuel to hydrogen powered vehicles until problems associated with hydrogen infrastructure, distribution and storage are resolved. A hydrogen- or syngas-rich stream, which substitutes part of the main hydrocarbon fuel, can be produced by supplying diesel fuel in a fuel-reforming reactor, integrated within ...

  7. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  8. Diesel power leads Yemen electrification plan

    Energy Technology Data Exchange (ETDEWEB)

    Patarino, C.

    1980-10-01

    The Yemen Arab Republic ended a period of political isolation and is now pushing for social and economic development. A seven-year program announced in 1978 aims to establish and extend rural and urban electrification. A key element in this plan is the construction pf a series of diesel power stations to provide base load until larger steam plants are available in the mid-1980s.

  9. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  10. Vehicular Air Pollution Modeling For Diesel Driven Vehicles

    Directory of Open Access Journals (Sweden)

    S.Arul selvan

    2014-08-01

    Full Text Available Pollution in air is generated by the developments, which typically occur as the country gradually shifts towards industrialization, due to city growth, increasing traffic, rapid economic development, and higher levels of energy consumption. Indian cities are among the most polluted cities in the world. The main source of air pollution in Indian metropolitan cities is petrol and diesel driven vehicles. They particularly emit CO, CO2, HC, NOX and O2. The growing vehicular population has resulted in increased air pollution, which in turn has affected the people’s health, who live along the transportation corridors. Increase in vehicular population, has resulted in decrease in quality of air and the environment. There are several health impacts that are associated with respiratory infections, asthma etc,. A number of studies have been done by the foreign countries, but this is not suitable for the Indian cities. This may be due to heterogeneity of vehicles, multiplicity of modes and the difference in geometrics of road. Therefore the need arises to study about the emission rates. In this study, equipment by the name five gas analyzer is used to find out the emission rates of different types of vehicles under static and dynamic conditions. The factor considered under static conditions is the age of the vehicles. Whereas under dynamic condition factors considered are the road roughness, age of the vehicle and speed. From the emission rates a linear regression model is developed using SPSS software and sensitivity analysis is being carried out.

  11. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  12. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    Science.gov (United States)

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  13. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  14. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  15. PCR+ In Diesel Fuels and Emissions Research

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  16. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  17. Current and future developments in diesel powered hovercraft

    Science.gov (United States)

    Leonard, J. C.; Stevens, M. J.; Buttigieg, J. A.

    After evaluating the development status of the application of diesel power to air-cushion vehicles (ACVs) and surface-effect ships (SESs), attention is given to the AP1-88 ACV, which is both the first and largest operational diesel-powered amphibious craft of this type. An account is given of the ACV and SES features that are dictated by the need to accommodate diesel power sources; the major advantages and disadvantages of diesel (vs gas turbine) engines are discussed. Although cost reductions are achievable against gas turbine powerplant use, lower payload fractions and slightly lower performance capabilities appear to be inescapable.

  18. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    Directory of Open Access Journals (Sweden)

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  19. Diesel emission control: Catalytic filters for particulate removal

    Directory of Open Access Journals (Sweden)

    Debora Fino

    2007-01-01

    Full Text Available The European diesel engine industry represents a vital sector across the Continent, with more than 2 million direct work positions and a turnover of over 400 billion Euro. Diesel engines provide large paybacks to society since they are extensively used to transport goods, services and people. In recent years increasing attention has been paid to the emissions from diesel engines which, like gasoline engine emissions, include carbon monoxide (CO, hydrocarbons (HC and oxides of nitrogen (NOx. Diesel engines also produce significant levels of particulate matter (PM, which consists mostly of carbonaceous soot and a soluble organic fraction (SOF of hydrocarbons that have condensed on the soot.

  20. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  1. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  2. Development and implementation of thermal signature testing protocol of auxiliary power unit (APU) and diesel tractor

    Science.gov (United States)

    Jenkins, Chelsea L.; Bourne, Stefanie M.; Rowley, Matthew J.; Miles, Jonathan J.

    2004-04-01

    Thermal signature may be one of the defining factors in determining the applicability of fuel cell auxiliary power unit (APU) technology in military applications. Thermal characterization is important for military applications given that identification and detection may be accomplished through observation of its thermal signature. The operating modes and power takeoff operations of a vehicle will likely determine the thermal profile. The objective of our study was to develop and implement a protocol for quantifying the thermal characteristics of a methanol fuel cell and an idling tractor engine under representative characteristic operations. APU thermal characteristics are a special case for which standardized testing procedures do not presently exist. A customized testing protocol was developed and applied that is specific to an APU-equipped vehicle. Initial testing was conducted on the methanol APU-equipped Freightliner tractor using a high-performance radiometric infrared system. The APU profile calls for a series of infrared images to be collected at three different viewing angles and two different elevations under various loads. The diesel engine was studied in a similar fashion using seven different viewing angles and two different elevations. Raw data collected according to the newly developed methodology provided the opportunity for computer analysis and thermal profiling of both the fuel cell and the diesel engine.

  3. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    Science.gov (United States)

    Khalifa, H. E.

    1983-01-01

    An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).

  4. Toxicity of effluents emitted by the diesel engines vehicles; Toxicite des effluents emis par les vehicules a moteur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alcon, St.

    1998-04-29

    The exhaust gases of diesel engine vehicles are atmospheric pollutants. They are characterised by a gaseous phase and a particulate phase. The diesel particulates are composed of a nucleus formed with elementary carbon, forming aggregates that absorb the organic by-products at their surface. A first part treats the effluents of diesel engine vehicles: their characteristics, the factors influencing the diesel emissions, the noxiousness of the gaseous phase, the kinetics and the metabolism of the particulate phase and analysis methods. A second part tackles the experimental toxicity of diesel effluents on insisting on the nature of exposures, the mutagenicity, the carcinogenicity, the effects on the reproduction function and immuno-toxicity. A third part is devoted to the toxicity for man with epidemiology data and some studies under controlled exposures. Then, a fourth part, explains the toxicity mechanisms and the action modes of diesel effluents on the carcinogen effects and on respiratory diseases. (N.C.)

  5. Biodegradability of commercial and weathered diesel oils Biodegradabilidade de óleos diesel comercial e intemperizado

    Directory of Open Access Journals (Sweden)

    Adriano Pinto Mariano

    2008-03-01

    Full Text Available This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 - dichlorophenol indophenol (DCPIP and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated.Este trabalho objetivou avaliar a capacidade de diferentes microrganismos em degradar óleo diesel comercial em comparação com um óleo diesel intemperizado coletado da água subterrânea em um posto de combust

  6. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Directory of Open Access Journals (Sweden)

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  7. Equipment Operational Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  8. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  9. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  10. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  11. Stability and filtering capacity of diesel oil; Estabilidade e filtrabilidade do oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Marcelo Vieira; Rocha, Mauro Iurk [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Combustiveis]. E-mails: marvial@petrobras.com.br; miurk@petrobras.com.br; Zotin, Fatima Maria Zanon [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Quimica]. E-mail: fzotin@uerj.br; Pinto, Ricardo Rodrigues da Cunha [PETROBRAS, Rio de Janeiro, RJ (Brazil). Recursos Humanos. Gerencia de Escola de Ciencias e Tecnologias]. E-mail: rcp@petrobras.com.br

    2006-12-15

    The increasing demand for the reduction in the emission of polluting agents by diesel motors has led to the use of more advanced injection systems. These systems are increasingly reducing clearances and portray more restrictive filtering capacity, protecting them from the release of fuel particles. Those particles may originate in the degradation of oil products, formed by the acid-catalyzed condensation between aromatic compounds and heterocyclic nitrogens. These compounds appear in the various chains used in the composition of the fuel. We address here the aspects influencing the stability to oxidation and fuel filterability as well as the methods used to assess the degradation capacity of several diesel oil formulations. (author)

  12. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  13. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  14. Study on effects of high pressure injection for DI diesel combustion. Koatsu funsha ni yoru chokufun diesel no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Takahashi, T.; Sami, H.; Nakakita, K.; Osawa, K. (Toyota Motor Corp., Aichi, (Japan) Toyota Central Research and Development Labs. Inc., Aichi, (Japan))

    1990-04-25

    Accumulator type high pressure fuel injection equipment (HPIE), able to freely set the fuel injection pressure, was applied to a 94mm bore small type high speed direct injection Diesel engine (with turbo-charger), of which exhaust gas characteristics were investigated. Also by using a 102mm bore visualized single-cylinder engine, was observed combustion improvement effect by the HPIE. As a result, partial load exhaust gas characteristics were investigated at the rotation, 60% of the maximum number of rotations. That accumulator type HPIE changed in initial injection ratio due to the injection pressure. NO {sub x} emission depending upon both the injection pressure and timing, increase in NO {sub x} emission due to increase by 20MPa in injection pressure could be balanced with a CA delay by about 2 degrees in injection timing angle. Particulate is different by load in exhaust characteristics. In combustion observation, soot decreased in produced quantity with diminution in luminous portion of flame. 3 refs., 12 figs., 2 tabs.

  15. Combustion and regulations. Impacts of new regulations on medium-power thermal equipment (boilers, engines, turbines, dryers and furnaces); Combustion et reglementation. Incidences des nouvelles reglementations sur les equipements thermiques de moyenne puissance (chaudieres, moteurs, turbines, secheurs et fours)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference is composed of 20 papers on the influence of French and European new pollution regulations on medium size thermal equipment such as boilers, engines, turbines, dryers and furnaces. It is discussed what is going to change with new regulations, how they will apply to existing plants, what will be the impact on future equipment costs. The evolution of energy suppliers and equipment manufacturers facing these new regulations is also examined: fuel substitution, improvements in turbines and engines with water injection and special chambers, diesel engine control, lean mixtures and electronic control for gas engines... Means for reducing SOx, NOx and ash emission levels in boilers are also examined

  16. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  17. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  18. Dairy Equipment Lubrication

    Science.gov (United States)

    1978-01-01

    Lake To Lake Dairy Cooperative, Manitowoc, Wisconsin, operates four plants in Wisconsin for processing milk, butter and cheese products from its 1,300 member farms. The large co-op was able to realize substantial savings by using NASA information for improved efficiency in plant maintenance. Under contract to Marshall Space Flight Center, Midwest Research Institute compiled a handbook consolidating information about commercially available lubricants. The handbook details chemical and physical properties, applications, specifications, test procedures and test data for liquid and solid lubricants. Lake To Lake's plant engineer used the handbook to effect savings in maintenance labor and materials costs by reducing the number of lubricants used on certain equipment. Strict U.S. Department of Agriculture and Food and Drug Administration regulations preclude lubrication changes n production equipment, but the co-op's maintenance chief was able to eliminate seven types of lubricants for ancillary equipment, such as compressors and high pressure pumps. Handbook data enabled him to select comparable but les expensive lubricants in the materials consolidation process, and simplified lubrication schedules and procedures. The handbook is in continuing use as a reference source when a new item of equipment is purchased.

  19. Education Demonstration Equipment

    Science.gov (United States)

    Nagy, A.; Lee, R. L.

    2003-10-01

    The General Atomics fusion education program ``Scientist in the Classroom" (SIC) now in its sixth year, uses scientists and engineers to present plasma as a state of matter to students in the classroom. Using hands-on equipment, students see how magnets, gas pressure changes, and different gases are turned into plasmas. A piston, sealed volume, and vacuum chamber illuminate ideal gas laws. Liquid nitrogen is used to explore thermodynamic temperature effects and changes in states of matter. Light bulbs are excited with a Tesla coil to ionize gases, thus becoming an inexpensive plasma devices and a plasma tube shows magnetic interactions with plasma. The demonstration equipment used in this program is built with simple designs and common commercial equipment keeping in mind a teacher's tight budget. The SIC program ( ˜25 school presentations per year) has become very popular and has acquired an enthusiastic group of regular teacher clientele requesting repeat visits. In addition, three very popular and successful ``Build-It" days, sponsored by the General Atomics Fusion Education Outreach Program, enables teachers to build and keep in their classroom some of this equipment. The demonstration devices will be presented along with their ``build-it" details.

  20. Shipboard and laboratory equipment

    Digital Repository Service at National Institute of Oceanography (India)

    Shyamprasad, M.; Ramaswamy, V.

    bed, and a digital clock and a transponder helped to locate the camera. Equipment for the analysis of the nodules such as x-ray fluorescence and atomic absorption spectrophotometers were installed aboard MV Skandi Surveyor and MV Fernella and MV G A...

  1. Lifetime of Mechanical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  2. Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

    2008-12-31

    The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

  3. A study on the detection of misfiring cylinder of the diesel engine in excavation machinery using improved ALM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, M.; Kawamura, Y. [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Ujihira, M. [Hokkaido Univ., Sapporo (Japan). School of Engineering; Akhmetov, D.F.; Ito, F.; Aoshima, N. [NTT DoCoMo Inc. (Japan)

    2005-07-01

    Mechanical problems in large-scale mining equipment can result in serious losses in operational efficiency and profits. A misfiring cylinder in a diesel engine can cause engine failure in a short period of time. Regular maintenance and inspection of machinery is therefore critical for mining and construction operations. For that reason, an innovative method was developed to detect whether a cylinder is misfiring, and if so, which one. This study established a simple, reliable and sure method using the improved aggregative learning method (ALM) analysis for the early diagnosis and repair of misfiring cylinders. A minimum number of sensors were applied on the side of 2 cylinders on a diesel engine in order to set up an abnormal diagnostic system that detects anomalies at an early stage by analyzing the acceleration waveform using the ALM method. The detection method is better than traditional methods that require accelerometers. 6 refs., 1 tab., 5 figs.

  4. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  5. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  6. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  7. Factors influencing the number distribution and size of the particles emitted from a modern diesel vehicle in real urban traffic

    Science.gov (United States)

    Barrios, C. C.; Domínguez-Sáez, A.; Rubio, J. R.; Pujadas, M.

    2012-09-01

    Particle emissions from diesel engine cars depend firstly on exhaust aftertreatment systems but the use of the vehicle becomes also crucial. In urban areas, this use depends on: transport demand, route choices, traffic density, street conditions, weather, driver behaviour and topographical characteristics of the roads. Nowadays, most diesel vehicles in urban areas across Europe are equipped with exhaust aftertreatment systems aiming to reduce the total mass of emitted particles. In comparison to earlier aftertreatment systems, the implementation of modern procedures is causing a reduction in the size of the emitted particles up to a nanometric range. The main goal of this work is the characterization of particle size and number distribution in the submicrometric range from a modern diesel vehicle emission in real traffic conditions in the city of Madrid with the purpose of assessing the actual weight of the different city parameters influencing the particle emission. In order to accomplish this objective, up to 12 on board emission measurement experiments have been performed with a Euro IV Diesel passenger car driving along a single urban circuit in Madrid City. To cover the main external factors, stretch, traffic conditions and driving directions have been considered as independent variables for this study. Assuming a proper car operating conditions, the results show that street characteristics, vehicle density and topographic features are the main factors conditioning the particle emission. Extrapolating our results, a diesel standard passenger car circulating across a city like Madrid can emit more nanoparticles per kilometre (up to 114% more in this study) at peak hour than at off peak hour. Moreover, the driving direction can also influence dramatically the emission of nanoparticles per second. This difference in the emission rate depends on the street but in our study it can be higher than 110% depending on the driving direction.

  8. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  9. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    (MD) calculations and practical lubricity tests to clarify the above. Linear alkanes of varying length were used as lubricants in MD calculations and the results revealed that longer alkanes are better lubricants than shorter ones when surfaces are separated by molecular thin films. These results were...... confirmed by MFPRR tests of alkanes. By inspection of the contacts in the MD calculations, it can be concluded that the length of the alkane is the primary property governing the wear amount. The viscosity is a secondary property as it is a function of the length of the molecule. This conclusion...

  10. 30 CFR 75.1910 - Nonpermissible diesel-powered equipment; electrical system design and performance requirements.

    Science.gov (United States)

    2010-07-01

    ... chemical reaction to electrolyte must be provided on battery connections to prevent battery terminals from contacting conducting surfaces; (k) A battery box, including the cover, must be constructed of steel with a... materials. Insulating materials that may be subject to chemical reaction with electrolyte must be treated...

  11. Development of Army High-Energy Fuel for Diesel/Turbine-Powered Surface Equipment. Phase II

    Science.gov (United States)

    1981-12-01

    suspect if they differ by more than 55 Rtu per pound and the results by two or more laboratories should be considered suspect if they differ by more...hu3m a a sm ow Woo Is omitns 9 PMmLV in uIM owe ls WWI NMe- Imm W aIN -M I .00 Oft WNW WI MMXCVM IMASY OI. 3111 ~ was a rmus ON A3 116 6 Isa N IL 316

  12. Development of Army High-Energy Fuel for Diesel/Turbine Powered Surface Equipment

    Science.gov (United States)

    1979-10-01

    acids L N 10. N,N’-ethylenebisstearamide S 11i Fatty alkylolamide condensate L N 12. Alkyl aryl sulfonate L N 11.7 13. Glycerol mwnolaurate L N 6.8 14...filawentous aggregates which reform spontaneously if broken by stirring. These high molecular weight aggregates have been postulated by some workers(18,19

  13. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  14. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas

    Directory of Open Access Journals (Sweden)

    S. H. Jathar

    2017-07-01

    Full Text Available Isocyanic acid (HNCO, an acidic gas found in tobacco smoke, urban environments, and biomass-burning-affected regions, has been linked to adverse health outcomes. Gasoline- and diesel-powered engines and biomass burning are known to emit HNCO and hypothesized to emit precursors such as amides that can photochemically react to produce HNCO in the atmosphere. Increasingly, diesel engines in developed countries like the United States are required to use selective catalytic reduction (SCR systems to reduce tailpipe emissions of oxides of nitrogen. SCR chemistry is known to produce HNCO as an intermediate product, and SCR systems have been implicated as an atmospheric source of HNCO. In this work, we measure HNCO emissions from an SCR system-equipped diesel engine and, in combination with earlier data, use a three-dimensional chemical transport model (CTM to simulate the ambient concentrations and source/pathway contributions to HNCO in an urban environment. Engine tests were conducted at three different engine loads, using two different fuels and at multiple operating points. HNCO was measured using an acetate chemical ionization mass spectrometer. The diesel engine was found to emit primary HNCO (3–90 mg kg fuel−1 but we did not find any evidence that the SCR system or other aftertreatment devices (i.e., oxidation catalyst and particle filter produced or enhanced HNCO emissions. The CTM predictions compared well with the only available observational datasets for HNCO in urban areas but underpredicted the contribution from secondary processes. The comparison implied that diesel-powered engines were the largest source of HNCO in urban areas. The CTM also predicted that daily-averaged concentrations of HNCO reached a maximum of ∼ 110 pptv but were an order of magnitude lower than the 1 ppbv level that could be associated with physiological effects in humans. Precursor contributions from other combustion sources (gasoline and biomass

  15. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  16. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  17. Diesel-hydraulic locomotive becomes a diesel-electric hybrid locomotive; Dieselhydraulische Lokomotive wird dieselelektrische Hybridlokomotive

    Energy Technology Data Exchange (ETDEWEB)

    Behmann, Uwe

    2013-01-15

    The operational partial load times cause a unnecessarily high fuel consumption and additional environmental pollutions in applications of shunting locomotives. High fuel consumption and additional environmental pollutions can be avoided by hybrid locomotives using a small-scale diesel engine with a generator only for the periodic charging of a large traction battery.

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  19. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  20. Filtres à activité catalytique pour moteur Diesel Catalytic Activity Filters for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Goldenberg E.

    2006-11-01

    Full Text Available A partir de l'examen des normes actuelles et envisagées dans le futur pour limiter les émissions de particules Diesel, et en considérant les propriétés physico-chimiques de ces particules, cet article expose les problèmes posés par la filtration des suies Diesel et leur élimination par combustion sur les différents types de filtres actuellement retenus. La régénération des filtres par combustion catalytique du dépôt est plus particulièrement discutée. From an examination of present regulations and ones being considered for the future to limit particle emissions by diesel engines, and considering the physicochemical properties of such particles, this article describes the problems raised by filtering soot from diesel engines and eliminating it by various types of filters now used. Filter regeneration by catalytic combustion of the deposit is considered in particular.

  1. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  2. Differences in rheological profile of regular diesel and bio-diesel fuel

    Directory of Open Access Journals (Sweden)

    Jiří Čupera

    2010-01-01

    Full Text Available Biodiesel represents a promising alternative to regular fossil diesel. Fuel viscosity markedly influences injection, spraying and combustion, viscosity is thus critical factor to be evaluated and monitored. This work is focused on quantifying the differences in temperature dependent kinematic viscosity regular diesel fuel and B30 biodiesel fuel. The samples were assumed to be Newtonian fluids. Vis­co­si­ty was measured on a digital rotary viscometer in a range of 0 to 80 °C. More significant difference between minimum and maximum values was found in case of diesel fuel in comparison with biodiesel fuel. Temperature dependence of both fuels was modeled using several mathematical models – polynomial, power and Gaussian equation. The Gaussian fit offers the best match between experimental and computed data. Description of viscosity behavior of fuels is critically important, e.g. when considering or calculating running efficiency and performance of combustion engines. The models proposed in this work may be used as a tool for precise prediction of rheological behavior of diesel-type fuels.

  3. Urinary mutagenic activity in workers exposed to diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y. (Univ. of California, Davis (United States)); Hammond, S.K.; Woskie, S.R.; Smith, T.J. (Univ. of Massachusetts, Worcester (United States))

    1992-04-01

    The authors measured postshift urinary mutagenicity on a population of railroad workers with a range of diesel exhaust exposures. Postshift urinary mutagenicity was determined by a sensitive microsuspension procedure using Salmonella strain TA 98 {plus minus} S9. Number of cigarettes smoked on the study day and urinary cotinine were highly correlated with postshift urinary mutagenicity. Diesel exhaust exposure was measured over the work shift by constant-flow personal sampling pumps. The relative ranking of jobs by this adjusted respirable particle concentration (ARP) was correlated with relative contact the job groups have with operating diesel locomotives. After adjustment for cigarette smoking in multiple regressions, there was no independent association of diesel exhaust exposure, as estimated by ARP, with postshift urinary mutagenicity among smokers or nonsmokers. An important finding is the detection of baseline mutagenicity in most of the nonsmoking workers. Despite the use of individual measurements of diesel exhaust exposure, the absence of a significant association in this study may be due to the low levels of diesel exposure, the lack of a specific marker for diesel exhaust exposure, and/or urinary mutagenicity levels from diesel exposure below the limit of sensitivity for the mutagenicity assay.

  4. Application of a Biodegradable Lubricant in a Diesel Vehicle

    DEFF Research Database (Denmark)

    Schramm, Jesper

    2003-01-01

    , NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters...

  5. Diesel Pollution Biodegradation: Synergetic Effect of Mycobacterium and Filamentous Fungi

    Institute of Scientific and Technical Information of China (English)

    YOU-QING LI; HONG-FANG LIU; ZHEN-LE TIAN; LI-HUA ZHU; YIN-GHUI WU; HE-QING TANG

    2008-01-01

    Objective To biodegrade the diesel pollution in aqueous solution inoculated with Mycobacterium and filamentous fungi.Methods Bacteria sampled from petroleum hydrocarbons contaminated sites in Karamay Oilfield were isolated and identified as Mycobacterium hyalinum (MH) and cladosporium. Spectrophotometry and gas chromatography (GC) were used to analyze of the residual concentrations of diesel oil and its biodegradation products. Results From the GC data, the values of apparent biodegradation ratio of the bacterial strain MH to diesel oil were close to those obtained in the control experiments. Moreover, the number of MH did not increase with degradation time. However, by using n-octadecane instead of diesel oil, the real biotic degradation ratio increased to 20.9% over 5 days of degradation. Cladosporium strongly biodegraded diesel oil with a real degradation ratio of up to 34% after 5 days treatment. When the two strains were used simultaneously, a significant synergistic effect between them resulted in almost cornplete degradation of diesel off, achieving a total diesel removal of 99% over 5 days of treatment, in which one part of about 80% and another part of about 19% were attributed to biotic and abiotic processes, respectively. Conclusion The observed synergistic effect was closely related to the aromatics-degrading ability of Cladosporium, which favored the growth of MH and promoted the bioavailability of diesel oil.

  6. Exposure to diesel exhaust linked to lung cancer in miners

    Science.gov (United States)

    In a study of non-metal miners in the United States, federal government scientists reported that heavy exposure to diesel exhaust increased risk of death from lung cancer. The research, all part of the Diesel Exhaust in Miners Study, was designed to evalu

  7. Diesel Exhaust in Miners Study: Q&A

    Science.gov (United States)

    The Diesel Exhaust in Miners Study was designed to evaluate the risk of death associated with diesel exhaust exposure, particularly as it may relate to lung cancer. The researchers observed increased risk for lung cancer death with increasing levels of ex

  8. Laser-based diagnostics on NO in a diesel engine

    NARCIS (Netherlands)

    Brugman, Theodorus Maria

    1999-01-01

    Of all internal combustion engines diesel engines tend to be the most efficient. However, this high efficiency is coupled with specific emissions of nitric oxides (NOx = NO and NO2) and soot. Such emissions are best fought against at their very source: the diesel combustion process itself. The objec

  9. Fractal-like dimension of nanometer Diesel soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Skillas, G.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegmann, K. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    Measurements with a low-pressure impactor and a differential mobility analyser were conducted for Diesel soot at various engine loads. By means of these measurements a fractal-like dimension of Diesel soot particles, with diameters ranging from 55 up to 260 nm, was established. (author) 2 figs., 7 refs.

  10. Trimode Power Converter optimizes PV, diesel and battery energy sources

    Science.gov (United States)

    Osullivan, George; Bonn, Russell; Bower, Ward

    1994-12-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT's with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  11. 46 CFR 169.625 - Compartments containing diesel machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel machinery. 169.625... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.625 Compartments containing diesel machinery. (a) Spaces containing machinery must be fitted with adequate dripproof ventilators, trunks,...

  12. 40 CFR 80.514-80.519 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General Information §§ 80.514-80.519 Motor Vehicle Diesel Fuel Standards and Requirements...

  13. 40 CFR 80.528-80.529 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements §§ 80.528-80.529 Temporary...

  14. Uso de etanol carburado en motores Diesel

    Directory of Open Access Journals (Sweden)

    Rodríguez Luis Arnoby

    1990-06-01

    Full Text Available Este trabajo se ejecutó en el Taller de Maquinaria Agrícola de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Colombia, Seccional Palmira. Un motor diesel de 2 cilindros, 1260 cm3 y relación de comprensión 23:1, fue alimentado mediante un sistema dual formado por el sistema de inyección para ACPM y un sistema de carburación para etanol y mezclas etanol-agua. En primer término se varió el avance de la inyección entre 18 y 26° APMS(Antes de Punto Muerto Superior con el fin de determinar el avance óptimo de inyección en el motor original y el motor alimentado con el sistema dual. Con base en el punto de máxima potencia, se seleccionaron 20 y 22" como avances óptimos. En la segunda prueba, al operar el motor con carga y velocidad variables y alimentarlo con cuatro combustibles (ACPM, etanol y mezclas etanol- agua con 20 y 40 % agua, se incrementaron la velocidad en 10% la potencia máxima en 6.5% ; y el torque máximo en 3.73%, desde el motor original al sistema dual alimentado con la mezcla carburada de 40% agua. La mayor sustitución de combustible se presentó a alta velocidad donde se reemplazó hasta el 32 % de ACPM por etanol. Solo a alta velocidad se justifica la sobrealimentación con etanol carburado. En este rango se presentaron aumentos de potencia, velocidad, par torsor y sustitución de combustible.This work was performed in the Agricultural Mechanics Shop of the Universidad Nacional of Colombia in Palmira. A two-cylinder, 1260 cm3 diesel engine with a compression ratio of 23:1 was fueled by a dual system formed by its injection system for diesel oil and a carburation system for ethanol and ethanol-water blends. In a first test, m e injection advance was varied between 18 and 26 o BTDC (Before Top Dead Center to determine the optimum injection advance in the original engine and the engine fueled with the dual system. According to the maximum power point, 20 and 22° BTDC were selected as the optimum

  15. MODERNIZATION OF CUPOLA EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2015-01-01

    Full Text Available This article presents an automated cupola complex, developed by scientific-production enterprise «Technolit» together with GSTU named after P. O. Sukhoi, launched in the spring of 2015 at the plant «Stroiex» in the city of Chelyabinsk (the Russian Federation. The old cupolas (open type have been replaced by the new cupolas of the closed type, equipped with automatic control and management system and multistage wet gas treatment system. Cupolas are equipped with systems of post-combustion gases and the batch charging, the separate systems of air blast, systems of sludge removal and recirculation of water, the slag granulation installations, mechanized cleaning of cupola furnace and automatic safety system. These activities allowed the company to increase production and improve the quality of cast iron, reduce the coke consumption by 20% and reducing emissions of pollutants into the atmosphere almost 30 times.

  16. CO2 emission benefit of diesel (versus gasoline) powered vehicles.

    Science.gov (United States)

    Sullivan, J L; Baker, R E; Boyer, B A; Hammerle, R H; Kenney, T E; Muniz, L; Wallington, T J

    2004-06-15

    Concerns regarding global warming have increased the pressure on automobile manufacturers to decrease emissions of CO2 from vehicles. Diesel vehicles have higher fuel economy and lower CO2 emissions than their gasoline counterparts. Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. To facilitate discussions regarding the relative merits of diesel vehicles it is important to have a clear understanding of their CO2 emission benefits. Based on European diesel and gasoline certification data, this report quantifies such CO2 reduction opportunities for cars and light duty trucks in today's vehicles and those in the year 2015. Overall, on a well-to-wheels per vehicle per mile basis, the CO2 reduction opportunity for today's vehicles is approximately 24-33%. We anticipate that the gap between diesel and gasoline well-to-wheel vehicle CO2 emissions will decrease to approximately 14-27% by the year 2015.

  17. Investigation of Diesel Engine Performance Based on Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performance process in the engine cylinder. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. In this model it can to know the diesel engine performance effect with simulation and modeling in any speeds (rpm parameters. The performance trend of the diesel engine model developed result of this model based on the theoretical and computational model shows in graphics in the paper.

  18. Rheological Properties of Vegetable Oil-Diesel Fuel Blends

    Science.gov (United States)

    Franco, Z.; Nguyen, Q. D.

    2008-07-01

    Straight vegetable oils provide cleaner burning and renewable alternatives to diesel fuels, but their inherently high viscosities compared to diesel are undesirable for diesel engines. Lowering the viscosity can be achieved by either increasing the temperature of the oil or by blending it with diesel fuel, or both. In this work the viscosity of diesel fuel and vegetable oil mixtures at differing compositions is measured as a function of temperature to determine a viscosity-temperature-composition relationship for use in design and optimization of heating and fuel injection systems. The oils used are olive, soybean, canola and peanut oils which are commercially available. All samples tested between 20°C and 80°C exhibit time-independent Newtonian behaviour. A modified Arrhenius relationship has been developed to predict the viscosity of the mixtures as functions of temperature and composition.

  19. Volatilization behaviors of diesel oil from the soils

    Institute of Scientific and Technical Information of China (English)

    LI Yu-ying; ZHENG Xi-lai; LI Bing; MA Yu-xin; CAO Jing-hua

    2004-01-01

    The volatilization of diesel oil, Shengli crude oil and 90# gasoline on glass surface of petri dishes were conducted at the ambient temperature of 25℃. Diesel oil evaporates in a power manner, where the loss of mass is approximately power with time. 90# gasoline evaporates in a logarithmic with time. Where as the volatilization of Shengli crude oil fit either the logarithmic or power equation after different time, and has similar R2. And the effects of soil type and diesel oil and water content on volatilization behavior in unsaturated soil were studied in this paper. Diesel oil and water content in the soils play a large role in volatilization from soils. Appropriate water helps the wicking action but too much water stops it. The wicking action behaves differently in four different types of soils in the same volatilization experiment of 18% diesel oil content and air-dry condition.

  20. The hard choice for alternative biofuels to diesel in Brazil.

    Science.gov (United States)

    Carioca, J O B; Hiluy Filho, J J; Leal, M R L V; Macambira, F S

    2009-01-01

    This paper selects biofuel scenarios to substitute diesel in Brazil based on oil reserves increase, diesel imports, CO(2) emissions, crops agronomic yields, byproducts marketing and social impacts. This hard task still considers that agricultural practices in developing countries have large social impacts. Brazil presents high consumption of diesel oil in transport; low agronomic yield of traditional vegetable oil crops, which demand large cultivation areas contrasting with microalgae and palm oils which present high productivity. Concerning technologies, thermal cracking and transesterification of vegetable oils present a difficult economic situation related to vegetable oils price, food competition and glycerin market; BTL technology, meaning thermal gasification of biomass to liquids, faces problems related to low density of biomaterials and low viscosity of synthetic biodiesel produced. Biorefinery algal integrated systems and co-solvent technology to introduce up to 8% of ethanol into diesel seem to be feasible routes to reduce diesel consumption.

  1. Black carbon emissions from diesel sources in Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kholod, Nazar [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.

  2. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  3. Study on Kinetics for Desulfurization of Model Diesel

    Institute of Scientific and Technical Information of China (English)

    Qian Jianhua; Zhou Yuenan; Liu Lin; Wang Yue; Xing Jinjuan; Lü Hong

    2009-01-01

    In this study, by means of the experiments for desulfurization of model diesel through oxi-dative extraction, the changes associated with the rate of desulfurization of diesel and the mechanism for oxidation of sulfides in diesel were explored. Through studying the mechanism for oxidation of sulfides and the principle of solvent extraction, the kinetic equation of desulfurization via oxidative extraction were determined. By means of the evaluation of model parameters and curve fitting, the reaction order between organic sulfide and sulfone, the intrinsic oxidation rate constant of organic sulfide and sulfone, and the equilibrium constant between suifone in model diesel and extractive sol-vent were determined. The experimental values of the desulfurization rate and the theoretical values of the corresponding model equation had closely demonstrated that the desulfurization reaction rate had high accuracy. And the reaction kinetics could provide an important basis for diesel desulfurization process in the future.

  4. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  5. Soviet equipment flies in

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    End of February 1977 a Soviet Ilyushin-76 heavy freight aircraft landed at Cointrin airport having on board fifty large wire proprtional chambers and associated apparatus, together weighing 10 tons, supplied by the Joint Institute for Nuclear Research, Dubna, USSR. The equipment was for the CERN- Dubna-Munich-Saclay experiment NA4 on deep inelastic muon scattering being set up in the North Area of SPS. See Weekly Bulletin 11/78.

  6. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  7. Equipment Obsolescence Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.

    2014-07-01

    Nuclear Power Plant (NPP) Operators are challenged with securing reliable supply channels for safety related equipment due to equipment obsolescence. Many Original Equipment Manufacturers (OEMs) have terminated production of spare parts and product life-cycle support. The average component life cycles are much shorter than the NPP design life, which means that replacement components and parts for the original NPP systems are not available for the complete design life of the NPPs. The lack or scarcity of replacement parts adversely affects plant reliability and ultimately the profitability of the affected NPPs. This problem is further compounded when NPPs pursue license renewal and approval for plant-life extension. A reliable and predictable supply of replacement co components is necessary for NPPs to remain economically competitive and meet regulatory requirements and guidelines. Electrical and I and C components, in particular, have short product life cycles and obsolescence issues must be managed pro actively and not reactively in order to mitigate the risk to the NPP to ensure reliable and economic NPP operation. (Author)

  8. Equipment for gas conversion

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    Equipment is proposed for vapor conversion of hydrocarbons (Uv), possibly in a mixture with air, in order to produce an inorganic gas, which chiefly consists of H2 and COx. It consists of a reaction pipe made of an inorganic refractory ceramic and equipped along the wall circumference with heaters. The reaction pipe is filled with a combined, multilayer catalyst (Kt) carrier, made of gamma-A1203 which in the transverse cross section has a multipore reticular or fibrous structure. Replacement of the traditional steel (St) materials for the walls of the reaction pipe with ceramic materials reduces the output of the hydrocarbon which contaminates the surface (Pv) of the catalyst; the use of a multilayer carrier for the catalyst made of gamma-A1203 with a porous reticular or fibrous structure reduces the pressure losses in the reactor and facilitates the replacement of the spent catalyst. The equipment is designed for vapor conversion of natural gas, C3H8, and vapors of kerosene, naphtha and so on.

  9. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  10. Mathematical modeling of diesel fuel hydrotreating

    Science.gov (United States)

    Tataurshikov, A.; Ivanchina, E.; Krivtcova, N.; Krivtsov, E.; Syskina, A.

    2015-11-01

    Hydrotreating of the diesel fraction with the high initial sulfur content of 1,4 mass% is carried out in the flow-through laboratory setup with the industrial GKD-202 catalyst at various process temperature. On the basis of the experimental data the regularities of the hydrogenation reactions are revealed, and the formalized scheme of sulfur-containing components (sulfides, benzothiophenes, and dibenzothiophenes) transformations is made. The mathematical model of hydrotreating process is developed, the constant values for the reaction rate of hydrodesulfurization of the specified components are calculated.

  11. Note on the sanitary impact of diesel particulates; Note sur l'impact sanitaire des particules diesel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-15

    In the actual situation of scientific works, the epidemiology studies on environment do not allow to say the carcinogen contribution of diesel particulates at the concentration levels measured in the urban air. But according to the experimental data for the rat and the data observed for the personnel exposed to diesel particulates these particulates are classified as probably carcinogen. (N.C.)

  12. The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Lubin, J.H.; Portengen, L.; Blair, A.; Attfield, M.D.; Silverman, D.T.; Stewart, P.A.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no histori

  13. Diesel hybrid powertrain for passenger and light commercial vehicles; Diesel-Hybrid-Antriebsstrang fuer PKW und leichte Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, David [Ricardo Deutschland GmbH, Schwaebisch Gmuend (Germany). Productgruppe Hybrid and Electric Vehicles; Wren, Corin [Ricardo Midlands Technical Centre, Leamington Spa (United Kingdom). Hi-CEPS Project for Hybrid and Electrical Vehicles

    2011-03-15

    As part of the European funded FP6 project Hi-CEPS, Ricardo, Ford and Eldor have collaborated to develop an efficient diesel powertrain concept suitable for a family of vehicles on a C-segment platform, including a light commercial vehicle variant. The powertrain architecture incorporates a downsized diesel engine mated to an electromechanically actuated dual clutch transmission developed by Ricardo. (orig.)

  14. Residential photovoltaic installations in communities which possess Diesel generators; Instalacoes fotovoltaicas domiciliares em comunidades que possuam geradores a Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Zilles, Andre Mocelin Roberto; Morante, Federico [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Eletrotecnica e Energia. Lab. de Sistemas Fotovoltaicos]. E-mail: mocelin@iee.usp.br

    2006-07-01

    This article presents a discussion on two possible options to provide with power energy one using Diesel generators with mini networks for distribution and other using residential photovoltaic systems. The objective of this article is to discuss some questions referring to the planing required by electrification projects using photovoltaic systems in communities already possessing distribution mini network and Diesel generators.

  15. EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    R. Parthasarathi

    2014-01-01

    Full Text Available The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10% ethanol and 10% surfactant (Identified as D80E10; 70% diesel, 20% ethanol and 10% surfactant (denoted as D70 E20; 60% diesel 30% ethanol and 10% surfactant (denoted as D60 E30; 50% diesel, 40% ethanol and 10% surfactant (denoted as D50 E40 by volume respectively. In this test, Benzal konium chloride is added as an emulsifier to the diesel-ethanol blend to prevent layer formation and to make it a homogeneous blend. At maximum brake power, the comparison of best emulsified fuel ratio with diesel fuel results showed improvement in brake thermal efficiency with decrease in specific fuel consumption and smoke. The NOX, HC, CO2, cylinder pressure and heat release rate for D50 E40 emulsions are higher when compared to diesel fuel.

  16. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor...

  17. 30 CFR 57.5060 - Limit on exposure to diesel particulate matter.

    Science.gov (United States)

    2010-07-01

    ... MINES Air Quality, Radiation, Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5060 Limit on exposure to diesel particulate matter. (a) A miner's personal exposure to... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Limit on exposure to diesel particulate matter...

  18. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  19. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    Science.gov (United States)

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  20. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  1. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  2. Self-ignition of diesel spray combustion

    Science.gov (United States)

    Dhuchakallaya, Isares; Watkins, A. P.

    2009-10-01

    This work presents the development and implementation of auto-ignition modelling for DI diesel engines by using the probability density function-eddy break-up (PDF-EBU) model. The key concept of this approach is to combine the chemical reaction rate dealing with low-temperature mode, and the turbulence reaction rate governing the high-temperature part by a reaction progress variable coupling function which represents the level of reaction. The average reaction rate here is evaluated by a PDF averaging approach. In order to assess the potential of this developed model, the well-known Shell ignition model is chosen to compare in auto-ignition analysis. In comparison, the PDF-EBU ignition model yields the ignition delay time in good agreement with the Shell ignition model prediction. However, the ignition kernel location predicted by the Shell model is slightly nearer injector than that by the PDF-EBU model leading to shorter lift-off length. As a result, the PDF-EBU ignition model developed here are fairly satisfactory in predicting the auto-ignition of diesel engines with the Shell ignition model.

  3. Dimensionless Parameter Scaling of Diesel Engine Combustion

    Science.gov (United States)

    Dowling, David R.; Filipi, Zoran

    1996-11-01

    Combustion in a modern heavy-duty Diesel engine with direct radial fuel injection typically takes place in a short nearly-cylindrical volume at a rate determined by turbulent mixing. Simple dimensionless-parameter scaling laws for turbulent gas-phase mixing and heat transfer have been shown to be effective for a variety of (oxidizer) flow and (fuel) injection conditions within a cylindrical geometry (Edwards et al., AIChE J., Vol. 31, 516 [1985].) (Breidenthal et al., JFM, Vol. 219, 531 [1990].) (Dowling et al., AIAA J. Thermophys. & HT, Vol. 4, 504 [1990].). These studies were driven by chemical laser applications emphasizing long cylinders and sidewall injection. The current investigation seeks to determine the applicability of dimensionless parameter scaling to the instantaneous in-cylinder fuel burning rate in a multi-cylinder Diesel engine typical of Class VIII trucks. Comparisons are made between scaled and unscaled fuel burning rate, as inferred from time-resolved in-cylinder pressure measurements, across the test engine's normal operating range. This research is supported by the US Army Tank-Automotive Research, Development, and Engineering Center.

  4. Speed control of automotive diesel engines

    Science.gov (United States)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  5. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Matsui, Y.; Kimura, S. [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  6. How to Use Equipment Therapeutically.

    Science.gov (United States)

    Bowne, Douglas

    1986-01-01

    Shares therapeutic and economic practices surrounding equipment used in New York's Higher Horizons adventure program of therapy for troubled youth. Encourages educators, therapists, and administrators to explore relationship between equipment selection, program goals, and clients. (NEC)

  7. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  8. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  9. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object

  10. Effect ofHydrogen Use on Diesel Engine Performance

    Science.gov (United States)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  11. Water-in-diesel emulsions and related systems.

    Science.gov (United States)

    Lif, Anna; Holmberg, Krister

    2006-11-16

    Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.

  12. Minimum Favorable Conditions for Hydrogen-Diesel Combustion

    Science.gov (United States)

    Hanson, Jacob Dylan

    A test apparatus was designed and fabricated that allowed very small amounts of diesel fuel to be injected into a hydrogen-air mixture. This apparatus was designed to be able to operate near the limits of diesel fuel injectors. The purpose of this apparatus is to find out if the injectors in diesel engines are capable of igniting a hydrogen-air mixture when operated at their limits and to explore past their limits for further advancement in the field of dual-fuel hydrogen-diesel combustion. The minimum flow rate of diesel fuel the apparatus could produce was 120.46 (cm3)/min and the fastest response time that could be achieved was 1 ms. Both of these parameters at least met the limits of the current diesel injection setups. The smallest mass of diesel fuel that could be injected was 15.7 mg. This mass produced combustion in the hydrogen-air mixture for all hydrogen concentrations and temperatures tested.

  13. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  14. Price discrimination and tax incidence: Evidence from gasoline and diesel cars

    OpenAIRE

    Verboven, F.L.

    1998-01-01

    The existing tax policies towards gasoline and diesel cars in European countries provide a unique opportunity to analyze quality-based price discrimination and implied tax incidence. We develop an econometric framework for the demand and pricing of gasoline and diesel cars. Consumers choose a gasoline or a diesel car based on their annual mileage. Manufacturers set gasoline and diesel car prices. Our empirical results show that the relative pricing of gasoline and diesel cars is consistent wi...

  15. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Barrutia, O., E-mail: oihana.barrutia@ehu.es [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, C.; Epelde, L. [NEIKER-Tecnalia, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio (Spain); Sampedro, M.C.; Goicolea, M.A. [Department of Analytical Chemistry, University of the Basque Country/EHU, E-01006 Vitoria (Spain); Becerril, J.M. [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain)

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg{sup -1} DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 {sup o}C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 {mu}mol photon m{sup -2} s{sup -1}) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F{sub v}/F{sub m}), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of

  16. NIH Standard. Animal Care Equipment.

    Science.gov (United States)

    National Institutes of Health (DHEW), Bethesda, MD. Office of Administrative Management.

    The National Institutes of Health standardized animal care equipment is presented in this catalog. Each piece of equipment is illustrated and described in terms of overall dimensions, construction, and general usage. A price list is included to estimate costs in budgeting, planning, and requisitioning animal care equipment. The standards and…

  17. Abyssal soil investigation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Smits, F.P.; Maggioni, W.; Mainardi, U. [ISMES, Bergamo (Italy)

    1994-12-31

    The present paper deals with the development of a testing device for quick offshore geotechnical investigations. The equipment, at present, consists of a penetrometer, mounted on a sea bed platform, a handling frame and a control cabin; a further development includes a drill rig and a geotechnical laboratory. All this is designed so as to be an autonomous unit that can be handled by various types of non-specialized ships which have the necessary deck space. The sea bed platform can operate in 2,000 m of waterdepth and is provided with a hydraulic penetrometer, with a thrust capacity of 400 kN, able to carry out cone penetration type testing until a depth of more than 100 m, as well as shallow depth continuous sampling. The penetrometer can be equipped with a series of probes (piezocone, pressiocone, total radial pressure transducer, seismic cone) allowing the execution of the wide range of direct geotechnical measurements normally performed during on-land penetration tests.

  18. 40 CFR 1054.130 - What installation instructions must I give to equipment manufacturers?

    Science.gov (United States)

    2010-07-01

    ... in an equivalent format. For example, you may post instructions on a publicly available Web site for... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD...

  19. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India); Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering College, Avadi, Chennai (India)

    2010-06-15

    Biodiesel is a fatty acid alkyl ester, which is renewable, biodegradable and non-toxic fuel which can be derived from any vegetable oil by transesterification. One of the popularly used biodiesel in India is Mahua oil (Madhuca Indica). In the present investigation Mahua oil was transesterified using methanol in the presence of alkali catalyst and was used to study the performance and emission characteristics. The biodiesel was tested on a single cylinder, four stroke compression ignition engine. Engine performance tests showed that power loss was around 13% combined with 20% increase in fuel consumption with Mahua oil methyl ester at full load. Emissions such as carbon monoxide, hydrocarbon were lesser for Mahua ester compared to diesel by 26% and 20% respectively. Oxides of nitrogen were lesser by 4% for the ester compared to diesel. (author)

  20. Situation analysis of physical independence of the equipment and safety circuits of Almaraz NPP regarding R.G. 1.75 rev.3 (2005); Analisis de la situacion de la independencia fisica de los equipos y circuitos electricos de seguridad de C. N. Almaraz respecto a la R. G. 1.75 rev 3 (2005)

    Energy Technology Data Exchange (ETDEWEB)

    Seijas Portela, S.

    2010-07-01

    Situation analysis of physical independence of the electrical equipment and circuits CN safety Almaraz about R.G. 1.75 rev. 3. (2005) The aim of this paper is to present the work done in the analysis of the physical separation of redundant safety electrical equipment (emergency diesel generators, medium voltage, electrical cabinets, etc.) and physical separation of circuits and electrical conduits.

  1. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  2. Design and Research of the EQ6105DTAA Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  3. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel...

  4. Wind diesel systems - design assessment and future potential

    DEFF Research Database (Denmark)

    Infield, D.G.; Scotney, A.; Lundsager, P.

    1992-01-01

    system models for assessing both dynamic characteristics and overall performance and economics. An introduction is provided to the Wind Diesel Engineering Design Toolkit currently under development (for implementation on PC) by a consortium of leading wind diesel experts, representing six European......Diesels are the obvious form. of back-up electricity generation in small to medium sized wind systems. High wind penetrations pose significant technical problems for the system designer, ranging from component sizing to control specification and dynamic stability. A key role is seen for proven...

  5. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  6. Test and Analysis for Spraying Ammonia in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  7. Optimizing Hybrid Wind/Diesel Generator System Using BAT Algorithm

    Directory of Open Access Journals (Sweden)

    Sudhir Sharma,

    2016-01-01

    Full Text Available Hybrid system comprising of Wind/Diesel generation system for a practical standalone application considers Wind turbine generators and diesel generator as primary power sources for generating electricity. Battery banks are considered as a backup power source. The total value of cost is reduced by meeting energy demand required by the customers. Bat optimization technique is implemented to optimize wind and battery modules. Wind and battery banks are considered as primary sources and diesel generator as a secondary power source for the system

  8. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    Science.gov (United States)

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  9. PERFORMANCE ANALYSIS OF DIESEL ENGINE FUELED USING JATROPHA BIO DIESEL BLENDED FUELED

    OpenAIRE

    2016-01-01

    Biodiesels have recently been recognized as a potential substitute to Diesel oil. It is produced from oils or fats using a process called transesterification, in which oils are reacted with alcohols in order to form the esters, which are called biodiesels. Feedstock for biodiesel include animal fats, vegetable oils Jatropha, Mahua, Sunflower, Palm, Pongamia Pinnata (Karanja), Cotton seed, Neem, Rubber seed, Corn, Sesame, Cotton seed. Biodiesel is a liquid closely similar in properties to foss...

  10. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  11. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  12. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  13. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  14. Bio-Diesel production and Effect of Catalytic Converter on Emission performance with Bio-Diesel Blends

    Directory of Open Access Journals (Sweden)

    R.Murali Manohar

    2010-06-01

    Full Text Available Bio-Diesel the word itself defines almost all the features of the Bio-Diesel literary. In the Era of this Global Warming where the people are making their living more and more comfortable and they are deteriorating the environment also. The uses of the automobiles with the conventional source of fuel leads to the production of the toxic gaseous substances like carbon monoxide, carbon dioxide, oxides of nitrogen, oxide of sulphur, hydro-carbons etc. The limitation comes with the rise in the price of the fuel as well as the produce of the green house gases as the exhaust gas. In the present study, a new method has been employed to produce Bio-Diesel in a homely basis. Theproduction of the Bio-Diesel is done by using Bio-Diesel processor. It requires the used vegetable oil, methanol and the lye with the accurate proportionate. Generally, emissions of regulated compounds changed linearly with the blend level. The objective is to detect any posit ive or negative effects depending on blend levels, because conventional diesel fuel and biodiesel can be blended in every ratio. The known positive and negative effects of biodiesel varied accordingly and investigate the effect of Catalytic Converter on emission performance with Bio- Diesel Blends.

  15. Effects of gaseous sulphuric acid on diesel exhaust nanoparticle formation and characteristics.

    Science.gov (United States)

    Rönkkö, Topi; Lähde, Tero; Heikkilä, Juha; Pirjola, Liisa; Bauschke, Ulrike; Arnold, Frank; Schlager, Hans; Rothe, Dieter; Yli-Ojanperä, Jaakko; Keskinen, Jorma

    2013-10-15

    Diesel exhaust gaseous sulphuric acid (GSA) concentrations and particle size distributions, concentrations, and volatility were studied at four driving conditions with a heavy duty diesel engine equipped with oxidative exhaust after-treatment. Low sulfur fuel and lubricant oil were used in the study. The concentration of the exhaust GSA was observed to vary depending on the engine driving history and load. The GSA affected the volatile particle fraction at high engine loads; higher GSA mole fraction was followed by an increase in volatile nucleation particle concentration and size as well as increase of size of particles possessing nonvolatile core. The GSA did not affect the number of nonvolatile particles. At low and medium loads, the exhaust GSA concentration was low and any GSA driven changes in particle population were not observed. Results show that during the exhaust cooling and dilution processes, besides critical in volatile nucleation particle formation, GSA can change the characteristics of all nucleation mode particles. Results show the dual nature of the nucleation mode particles so that the nucleation mode can include simultaneously volatile and nonvolatile particles, and fulfill the previous results for the nucleation mode formation, especially related to the role of GSA in formation processes.

  16. CFD Prediction and Experimental Measurement of Blade Water Coverage in a Diesel Turbocharger

    Directory of Open Access Journals (Sweden)

    Jun Yao

    2012-01-01

    Full Text Available A turbocharger unit for diesel engine is often equipped with a built-in online water washing system and its performance is not always satisfactory because of efficiency declination due to deposit accumulated on blade surfaces not being washed away. In this study, a systematic approach of using experimental measurements and computational fluid dynamics (CFD is adopted to analyse liquid/gas two-phase flow associated with a turbocharger water washing system, in order to understand the underlying flow physics. A medium-sized diesel engine turbocharger configuration is chosen for this purpose. Experiments are focussed on blade surface temperature measurements, while CFD modelling with a coupled Eulerian/Lagrangian method is used for capturing the complex gas/liquid two-phase flow behaviours inside the induction duct and the blade passage. It was found that numerical predictions are in a good agreement with experimental data in terms of temperature distributions of the blade leading edge region and water coverage over the blade ring. Other flow features such as the water droplet trajectories and the particle size distributions are also explored and analysed in further details, and they are useful for understanding the deposit removal mechanism.

  17. Remanufacturing strategy for chemical equipment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-cheng; XU Bin-shi; WANG Hai-dou; JIANG Yi; WU Yi-xiong; GONG Jian-ming; TU Shan-dong

    2005-01-01

    Failure, especially induced by cracks, usually occurred in the service process of chemical equipment, which could cause the medium leakage, fire hazard and explosion and induced the personnel casualty and economic losses. To assure the long-term and safety service, it is necessary to apply the remanufacturing technology on the chemical equipment containing cracks. The recent research advances on the remanufacturing, the failure modes and the life extension technology for chemical equipment were reviewed. The engineering strategy of the remanufacturing for the chemical equipment was proposed, which could provide a reasonable and reliable technical route for the remanufacturing operation of chemical equipment. In the strategy, the redesign was also been considered.

  18. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  19. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Science.gov (United States)

    2012-05-10

    ... Common Synonyms: Automotive diesel oil; Diesel fuel; Diesel oil (petroleum); Diesel oils; Diesel test... and underground sources of drinking water versus any additional workload for applicants. Geomechanical... additional workload for applicants. Should the Agency request submittal of seismic data, such as the presence...

  20. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  1. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  2. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  3. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    Directory of Open Access Journals (Sweden)

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  4. Combustion and environment. The answers from the energy and equipment suppliers; Combustion et environnement. Les reponses des fournisseurs d`energie et d`equipements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This paper is a reprint of an article published in `Energie Plus` magazine which questions the capability of commercial fuels and combustion equipments (central heating plants, burners, turbines and engines) available today of respecting the limit values of pollutant emissions (SO{sub x}, NO{sub x}, CO, dusts) of forthcoming regulations. An analysis of the situation is given separately for the fuels (natural gas, coal, heavy fuels) with a stress on the competition aspects, and for the combustion systems (turbines, diesel and gas engines, central heating plants). (J.S.)

  5. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2008-01-01

    The paper is investigated the application of compressed natural gas (CNG) as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine pe...

  6. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    conditions. During specific idle engine operation without EGR and adjusted fueling conditions, brown carbon can be formed in significant amounts, requiring careful management tactics. Control technologies for particulate matter are very effective for light-absorbing carbon, reducing black carbon emissions to near zero for modern engines equipped with a DPF. Efforts to control atmospheric brown carbon need to focus on other sources other than modern diesel engines, such as biomass burning.

  7. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  8. Gel cast foam diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Binner, J.G.P.; Hughes, S. [IPTME, Loughborough Univ., Loughborough (United Kingdom); Sambrook, R.M. [Dytech Corp. Ltd., Dronfield (United Kingdom)

    2004-07-01

    A new manufacturing route for foam ceramics based on gel casting has been developed and is being commercialised. Gel casting employs an organic monomer that is polymerised to cause the in-situ gelation of a foamed aqueous ceramic slurry. The primary advantage is the inherent flexibility of the process; the foams can be near net shape manufactured in a variety of shapes and sizes and after production are simply dried and fired. In addition, the porosity and pore size distribution can be varied to suit the application and a wide range of ceramics can be foamed with densities ranging from 5-40% of theoretical. Applications are diverse and include the potential to be used as diesel particulate filters (DPF). The present work examines this and concludes that filtration efficiencies of {>=}90% are achievable without generating a significant backpressure for the engine. (orig.)

  9. Investigation and Modelling of Diesel Hydrotreating Reactions

    DEFF Research Database (Denmark)

    Boesen, Rasmus Risum

    This project consists of a series of studies, that are related to hydrotreating of diesel. Hy- drotreating is an important refinery process, in which the oil stream is upgraded to meet the required environmental specifications and physical properties. Although hydrotreating is a ma- ture technology...... on a commercial CoMo catalyst, and a simple kinetic model is presented. Hydrogenation of fused aromatic rings are known to be fast, and it is possible, that the reaction rates are limited by either internal or external mass transfer. An experiment conducted at industrial temperatures and pressure, using...... kinetic models. Hydrogenation reactions are quite fast, and in order to avoid mass transfer limitations, and only measure intrinsic rates, experiments are often conducted, at conditions that are milder than in industrial units. A reactor model for a Robinson-Mahoney reactor that takes mass transfer...

  10. Heavy Truck Clean Diesel Cooperative Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Milam, David

    2006-12-31

    This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

  11. Supercritical fluid mixing in Diesel Engine Applications

    Science.gov (United States)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  12. Vehicle testing of Cummins turbocompound diesel engine

    Science.gov (United States)

    Brands, M. C.; Werner, J. R.; Hoehne, J. L.

    1980-01-01

    Two turbocompound diesel engines were installed in Class VIII heavy-duty vehicles to determine the fuel consumption potential and performance characteristics. One turbocompound powered vehicle was evaluated at the Cummins Pilot Center where driveability, fuel consumption, torsional vibration, and noise were evaluated. Fuel consumption testing showed a 14.8% benefit for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved driveability, improved gradeability, and marginally superior engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.

  13. Development of a diesel substitute fuel

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Anton; Mair-Zelenka, Philipp [Graz Univ. of Technology (Austria). Inst. of Chemical Engineering and Environmental Technology; Zeymer, Marc [OMV Refining and Marketing GmbH, Vienna (Austria). MRDI-D Product Development and Innovation

    2013-06-01

    Substitute fuels composed of few real chemical compounds are an alternative characterisation approach for conventional fuels as opposed to the traditional pseudo-component method. With the algorithm proposed in this paper the generation of such substitutes will be facilitated and well-established thermodynamic methods can be applied for physical property-data prediction. Based on some quality criteria like true boiling-point curve, liquid density, C/H ratio, or cloud point of a target fuel a surrogate which meets these properties is determined by fitting its composition. The application and capabilities of the algorithm developed are demonstrated by means of an exemplary diesel substitute fuel. The substitute mixture obtained can be generated and used for evaluation of property-prediction methods. Furthermore this approach can help to understand the effects of mixing fossil fuels with biogenic compounds. (orig.)

  14. Diesel injector fouling bench test methodology

    Science.gov (United States)

    Stavinoha, Leon L.; Yost, Douglas M.; Lestz, Sidney J.

    1992-06-01

    Compared to conventional compression ignition (CI) engine operation with the fuel being delivered at approximately 149 C (300 F), adiabatic engine operation potentially may deliver the fuel at temperatures as high as 260 C (500 F). Hypergolic CI engine combustion systems now in theoretical design stages will deliver fuel at temperatures approaching 427 to 538 C (800 to 1000 F). The ability of a fuel to resist formation of deposits on internal injector system surfaces is a form of thermal oxidative stability for which test methodology will be required. The injector Fouling Bench Test (IFBT) methodology evaluated in this report will assist in defining fuel contribution to injector fouling and control of fuel thermal stability in procurement specifications. The major observations from this project are discussed. Forty-hour cyclic IFB tests employing both Bosch APE 113 and Detroit Diesel (DD) N70 injectors are viable procedures for evaluating fuel effects on injector fouling. Cyclic operation appears to be superior to steady-state operation for both type injectors. Eighty-hour cyclic tests are more discriminating than 40-hour cyclic tests using the Bosch APE 113 injectors. JFTOT tests of fuels provide directional information on thermal stability-related deposits and filter plugging but show limited good correlation with IFBT DD N70 ratings, and none with IFBT Bosch APE 113 injector ratings. Deposition on injector pintles was more realistically rated by optical microscopy and Scanning Electron Microscopy (SEM) than conventional visual and bench rating methods. High-sulfur fuel readily caused sticking of Detroit Diesel injectors. Injector sticking is an important mode of injector fouling.

  15. The Research of Simplification Of 1.9 TDI Diesel Engine Heat Release Parameters Determination

    Directory of Open Access Journals (Sweden)

    Justas Žaglinskis

    2014-12-01

    Full Text Available The investigation of modified methodology of Audi 1.9 TDI 1Z diesel engine heat release parameters’ determination is represented in the article. In this research the AVL BOOST BURN and IMPULS software was used to treat data and to simulate engine work process. The reverse task of indicated pressure determination from heat release data was solved here. T. Bulaty and W. Glanzman methodology was modified for purpose to simplify the determination of heat release parameters. The maximal cylinder pressure, which requires additional expensive equipment, was changed into the objective indicator – exhaust gas temperature. This modification allowed to simplify the experimental engine tests and also gave simulation results in an error range up to 2% of main engine operating parameters. The study results are assessed as an important point for the simplification of engine test under field conditions.

  16. New two-stroke marine diesel engines from Waertsilae; Neue Zweitakt-Schiffsdieselmotoren von Waertsilae

    Energy Technology Data Exchange (ETDEWEB)

    Frigge, Patrick; Affolter, Samuel; Bachmann, Daniel; Jong, Ronald de [Waertsilae, Winterthur (Switzerland)

    2011-11-15

    Waertsilaehas developed a new generation of small marine diesel engines with the designations RT-flex35 and RT-flex40 with cylinder bores of 35 cm and 40 cm. The engines are equipped exclusively with an integrated electronic control system, and for the first time in a low-speed two-stroke engine, a common rail fuel injection system has been adopted from the medium-speed four-stroke engine. The bore designs are based on a joint concept with Mitsubishi Heavy Industries and were developed in close cooperation. The acceptance test of the first engine, in accordance with the order of a six-cylinder engine, is planned for November 2011. (orig.)

  17. Monitoring diesel engine parameters based on FBG probe

    Science.gov (United States)

    Zhang, Hao; Jiang, Qi; Wang, Bao-yan; Wang, Jun-jie

    2016-09-01

    This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating (FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.

  18. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    Science.gov (United States)

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  19. Cold Vacuum Drying (CVD) Facility, Diesel Generator Fire Protection

    CERN Document Server

    Singh, G

    2000-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  20. Isolation and characterization of diesel oil degrading indigenous ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... achieved 86.94% of diesel degradation in 2 weeks. Additional degradation ... spills, especially in soil contamination have prompted research on ... hydrocarbons are natural products, it is not surprising to find organisms that ...

  1. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  2. Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions

    Science.gov (United States)

    Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic...

  3. DIESEL ENGINES' VIBROACOUSTIC SIGNATURE EXTRACTION BY WAVELET PACKET TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 邹军; 耿遵敏

    2002-01-01

    Multisource unstable impulsive excitations, time-varying transmission path, concentrated mode, dispersion and reverberation that are important characteristics of reciprocating machines such as diesel engines result in wide-band non-stationary vibroacoustic responses which influence the effective extraction of vibroacoustic signatures and become a key factor to limit diesel engines' vibration diagnosis. In this paper, a serial theoretical deduction on the unstable dynamic properties of diesel engines was made; the mechanism of non-stationary vibroacoustic responses was elucidated. Based upon that, the wavelet packet technique was introduced. The reason for the existence of frequency aliasing in the Paley series from wavelet packets' decomposition was analyzed, and the wavelet packet frequency-shifting algorithm was given. Experiments on 190 serial diesel engines verify the given method's significant validity in vibroacoustic signature extraction and reciprocating machines' vibration diagnosis.

  4. Trends from the South African historical diesel particulate matter data

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2012-03-01

    Full Text Available Currently, there is no occupational exposure limit (OEL) for diesel particulate matter (DPM) in South Africa. Recently the Department of Mineral Resources and the mining industry have made efforts to determine which concentration of DPM could...

  5. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  6. Exposure of firefighters to diesel emissions in fire stations

    Energy Technology Data Exchange (ETDEWEB)

    Froines, J.R.; Hinds, W.C.; Duffy, R.M.; Lafuente, E.J.; Liu, W.C.

    1987-03-01

    Personal sampling techniques were used to evaluate firefighter exposure to particulates from diesel engine emissions. Selected fire stations in New York, Boston and Los Angeles were studied. Firefighter exposure to total particulates increased with the number of runs conducted during an 8-hr period. In New York and Boston where the response level ranged from 7 to 15 runs during an 8-hr shift, the resulting exposure levels of total airborne particulates from diesel exhaust were 170 to 480 ..mu..g/m/sup 3/ (TWA). Methylene chloride extracts of the diesel particulates averaged 24% of the total. The authors' findings suggest that additional research is necessary to assess fire station concentrations of vehicle diesel exhaust that may have adverse health consequences to firefighters.

  7. Status of the Wind-Diesel Market (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. I.

    2014-02-01

    This presentation offers an overview of the wind-diesel market, including the range of power systems, recent progress, current energy situation of remote communities, operating projects, current market approaches and ongoing challenges.

  8. A Study On The Acute Toxicological Effects Of Commercial Diesel ...

    African Journals Online (AJOL)

    g/kg) of diesel fuel were administered intraperitoneally, into the rats and the effect monitored. I within 24hours. ... coagulation, to obtain the blood serum needed for enzyme assay. .... district biochemical changes manifesting as altered enzyme ...

  9. Comparison Tests of Fossil Diesel Fuel and TBK-Biofuel

    National Research Council Canada - National Science Library

    György Szabados; Tamás Merétei

    2015-01-01

      The objective of our measurements was to determine the most important properties of the TBK bio-diesel with relevance to ICE use and to evaluate its effects on the power output, fuel consumption...

  10. NOx Emissions from Diesel Passenger Cars Worsen with Age

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  11. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    Science.gov (United States)

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  12. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    Science.gov (United States)

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  13. Model and experiments of diesel fuel HCCI combustion with external mixture formation

    Energy Technology Data Exchange (ETDEWEB)

    Canova, M.; Vosz, A.; Dumbauld, D.; Garcin, R.; Midlam-Mohler, S.; Guezennec, Y.; Rizzoni, G. [Ohio State Univ. (United States)

    2005-07-01

    Homogeneous Charge Compression Ignition represents a promising concept for achieving high efficiencies and low emissions at part-load operations. In particular, HCCI combustion can be successfully applied to conventional Direct Injection Diesel engines with very low extra costs and no modification to the DI system by performing the mixture formation in the intake manifold with a novel fuel atomizer. The present paper describes the experimental and modeling activity oriented to the control of HCCI combustion on a conventional CIDI 4-cylinder engine fitted with this external fueling device. Paralleling preliminary results obtained last year on single-cylinder engine in collaboration with FKFS at the University of Stuttgart, Diesel-fuel HCCI combustion was achieved and characterized over a range of engine speeds, loads, EGR dilution and boost pressure. Stable HCCI combustion with negligible NO{sub x} formation (10 ppm) was achieved with no modification of a high compression ratio engine (c{sub r}=18). The in-cylinder pressure traces were analyzed by performing a detailed heat release analysis while accounting for the wall heat transfer, which is substantially higher during the combustion phase than in a conventional CIDI engine. This analysis led to the joint identification of 2 sub-models: a heat transfer model, and a heat release model. It was found that under the wide range of conditions experimentally measured, the heat release can be approximated by the superposition of 3 Wiebe functions. The sub-models developed were then implemented in a combustion model based on a first-law thermodynamic analysis of in-cylinder processes, in order to identify the influence of the main control parameters on HCCI auto-ignition and to control the combustion process in a HCCI Diesel engine with external mixture formation. The model predictions were then compared to the results of a parallel experimental activity made on a 4-cylinder CIDI Diesel engine equipped with the fuel

  14. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  15. Morphological and semi-quantitative characteristics of diesel soot agglomerates emitted from commercial vehicles and a dynamometer

    Institute of Scientific and Technical Information of China (English)

    LUO Chin-Hsiang; LEE Whei-May; LIAW Jiun-Jian

    2009-01-01

    Diesel soot aggregates emitted from a model dynamometer and 11 on-road vehicles were segregated by a micro-orifice uniform deposit impactor (MOUDI). The elemental contents and morphological parameters of the aggregates were then examined by scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS), and combined with a fractional Brownian motion (fBm) processor. Two mode-size distributions of aggregates collected from diesel vehicles were confirmed. Mean mass concentration of 339 mg/m3 (dC/dlogdp) existed in the dominant mode (180-320 nm). A relatively high proportion of these aggregates appeared in PM1, accentuating the relevance regarding adverse health effects. Furthermore, the fBm processor directly parameterized the SEM images of fractal like aggregates and successfully quantified surface texture to extract Hurst coefficients (H) of the aggregates. For aggregates from vehicles equipped with a universal cylinder number, the H value was independent of engine operational conditions. A small H value existed in emitted aggregates from vehicles with a large number of cylinders. Generally, this study found that aggregate fractal dimension related to H was in the range of 1.641-1.775, which is in agreement with values reported by previous TEM-based experiments. According to EDS analysis, carbon content ranged in a high level of 30%-50% by weight for diesel soot aggregates. The presence of Na and Mg elements in these sampled aggregates indicated the likelihood that some engine enhancers composed of biofuel or surfactants were commonly used in on-road vehicles in Taiwan. In particular, the morphological H combined with carbon content detection can be useful for characterizing chain-like or cluster diesel soot aggregates in the atmosphere.

  16. The new 'Earth Dreams Technology i-DTEC' 1.6 l diesel engine from Honda

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, J.; Ikoma, K.; Matsui, R.; Ikegami, N.; Mori, S.; Yano, T. [Honda R and D Co., Ltd., Tochigi (Japan)

    2013-08-01

    Honda has developed a 3rd-generation diesel engine, seeking to balance further CO{sub 2} reductions with dynamic performance. This development focused on downsizing the engine and succeeded in developing a compact, lightweight and high-efficiency 1.6 L in-line 4-cylinder turbocharged i-DTEC diesel engine. Optimization of engine rigidity in the newly developed 1.6 L diesel engine has made it possible to use an aluminum cylinder block with an open-deck structure. Furthermore, weight could be reduced by means of an efficient structure and engine layout. In addition, mechanical friction has been minimized via reducing weight of the reciprocating components and downsizing auxiliary equipment. These innovations made it possible for the engine to achieve the same level of friction as a Honda petrol engine of the same displacement. Thermal management has also been optimized by enhancement of the engine cooling system. In addition, low-pressure loop exhaust gas recirculation (LP-EGR) was applied to achieve increased thermal efficiency. These measures have helped the engine to realize a high level of boost and high EGR, increasing fuel efficiency and reducing emissions across a wide range of operating conditions. Like the 2.2 L model, the Civic fitted with this 1.6 L diesel engine uses idle-stop and deceleration energy regeneration control. With all these measures, the Civic achieved CO{sub 2} emissions of 94 g/km (3.6 L/100km) in NEDC, a reduction of 14.5% in CO{sub 2} emissions against the 110 g/km recorded by the 2.2 L model. (orig.)

  17. Emission characteristics of a turbocharged diesel engine fueled with gas-to-liquids

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHANG Wugao; FANG Junhua; HUANG Zhen

    2007-01-01

    Emission characteristics of a turbocharged,intercooled,heavy-duty diesel engine operating on neat gas-toliquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel.The results show that nitrogen oxides (NOx),smoke,and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends.Engine emissions decrease with an increase of GTL fraction in the blends.Compared with diesel fuel,an engine operatingon GTL can reduce NOx,PM,carbon monoxide (CO),and hydrocarbon (HC) by 23.7%,27.6%,16.6% and 12.9% in ECE R49 13-mode procedure,respectively.Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine.The study indicates that GTL is a promisingalternative fuel for diesel engines to reduce emissions.

  18. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Directory of Open Access Journals (Sweden)

    P. Venkateswara Rao, B. V. Appa Rao

    2012-01-01

    Full Text Available The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME is used with additive Triacetin (T at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load. The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  19. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  20. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.