Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Nonrelativistic Quantum Mechanics with Fundamental Environment
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
Nonrelativistic quantum X-ray physics
Hau-Riege, Stefan P
2015-01-01
Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...
Thermal quantum electrodynamics of nonrelativistic charged fluids.
Buenzli, Pascal R; Martin, Philippe A; Ryser, Marc D
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r(-6) decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Thermal quantum electrodynamics of nonrelativistic charged fluids
Buenzli, Pascal R.; Martin, Philippe A.; Ryser, Marc D.
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r-6 decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Effective approach to non-relativistic quantum mechanics
Jacobs, David M
2015-01-01
Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...
Noninertial effects on nonrelativistic topological quantum scattering
Mota, H. F.; Bakke, K.
2017-08-01
We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g_ashot@sci.am [NAS of Armenia, Institute for Informatics and Automation Problems (Armenia)
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-01
Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ℝ3⊗Ξ n , where ℝ3 and Ξ n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach
Espinosa, Olivier R; Lepe, S; Méndez, F
2001-01-01
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Radożycki, Tomasz
2016-11-01
The probability density distributions for the ground states of certain model systems in quantum mechanics and for their classical counterparts are considered. It is shown, that classical distributions are remarkably improved by incorporating into them the Heisenberg uncertainty relation between position and momentum. Even the crude form of this incorporation makes the agreement between classical and quantum distributions unexpectedly good, except for the small area, where classical momenta are large. It is demonstrated that the slight improvement of this form, makes the classical distribution very similar to the quantum one in the whole space. The obtained results are much better than those from the WKB method. The paper is devoted to ground states, but the method applies to excited states too.
Effective Lagrangian for Nonrelativistic Systems
Directory of Open Access Journals (Sweden)
Haruki Watanabe
2014-09-01
Full Text Available The effective Lagrangian for Nambu-Goldstone bosons (NGBs in systems without Lorentz invariance has a novel feature that some of the NGBs are canonically conjugate to each other, hence describing 1 dynamical degree of freedom by two NGB fields. We develop explicit forms of their effective Lagrangian up to the quadratic order in derivatives. We clarify the counting rules of NGB degrees of freedom and completely classify possibilities of such canonically conjugate pairs based on the topology of the coset spaces. Its consequence on the dispersion relations of the NGBs is clarified. We also present simple scaling arguments to see whether interactions among NGBs are marginal or irrelevant, which justifies a lore in the literature about the possibility of symmetry breaking in 1+1 dimensions.
Scattering theory the quantum theory of nonrelativistic collisions
Taylor, John R
2006-01-01
This graduate-level text is intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering. It is designed for readers who are already familiar with the general principles of quantum mechanics and who have some small acquaintance with scattering theory. Study of this text will allow students of atomic or nuclear physics to begin reading the literature and tackling real problems, with a complete grasp of the underlying principles. For students of high-energy physics, it provides the necessary background for later study of relativistic p
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Time as an Observable in Nonrelativistic Quantum Mechanics
Hahne, G. E.
2003-01-01
The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.
Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics
Tessarotto, Massimo; Cremaschini, Claudio
2016-08-01
In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path (LP) which lies at the heart of the deBroglie-Bohm " pilot-wave" interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths (GLP). This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and of the associated quantum hydrodynamic equations. The remarkable aspect of the GLP approach presented here is that it realizes at the same time also a new solution method for the N-body Schrödinger equation. As an application, Gaussian-like particular solutions for the quantum probability density function (PDF) are considered, which are proved to be dynamically consistent. For them, the Schrödinger equation is reduced to a single Hamilton-Jacobi evolution equation. Particular solutions of this type are explicitly constructed, which include the case of free particles occurring in 1- or N-body quantum systems as well as the dynamics in the presence of suitable potential forces. In all these cases the initial Gaussian PDFs are shown to be free of the spreading behavior usually ascribed to quantum wave-packets, in that they exhibit the characteristic feature of remaining at all times spatially-localized.
Virial Theorem for Non-relativistic Quantum Fields in D Spatial Dimensions
Lin, Chris L
2015-01-01
The virial theorem for non-relativistic complex fields in $D$ spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in lower-dimensional systems. The potential appearance of a Jacobian $J$ due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the $J=1$ case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, $J=1$, is not natural, and the generalization to the case $J\
Energy Technology Data Exchange (ETDEWEB)
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
A group of invariance transformations for nonrelativistic quantum mechanics
Galvan, B
2000-01-01
This paper defines, on the Galilean space-time, the group of asymptoticallyEuclidean transformations (AET), which are equivalent to Euclideantransformations at space-time infinity, and proposes a formulation ofnonrelativistic quantum mechanics which is invariant under suchtransformations. This formulation is based on the asymptotic quantum measure,which is shown to be invariant under AET's. This invariance exposes animportant connection between AET's and Feynman path integrals, and reveals thenonmetric character of the asymptotic quantum measure. The latter featurebecomes even clearer when the theory is formulated in terms of thecoordinate-free formalism of asymptotically Euclidean manifold, which do nothave a metric structure. This mathematical formalism suggests the followingphysical interpretation: (i) Particles evolution is represented by trajectorieson an asymptotically Euclidean manifold; (ii) The metric and the law of motionare not defined a priori as fundamental entities, but they are properties of ap...
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
The confined hydrogenoid ion in non-relativistic quantum electrodynamics
Amour, L
2006-01-01
We consider a system of a nucleus with an electron together with the quantized electromagnetic field. Instead of fixing the nucleus, the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke and the M\\"ossbauer effects (see [CTDRG]). When an ultraviolet cut-off is imposed we initiate the spectral analysis of the Hamiltonian describing the system and we derive the existence of a ground state. This is achieved without conditions on the fine structure constant. [CTDRG] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, 2001.
Virial Theorem for Nonrelativistic Quantum Fields in D Spatial Dimensions
Directory of Open Access Journals (Sweden)
Chris L. Lin
2015-01-01
appearance of a Jacobian J due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the J=1 case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, J=1, is not natural, and the generalization to the case J≠1 is briefly presented.
Static spherically symmetric solutions in the IR limit of nonrelativistic quantum gravity
Harada, Tomohiro; Tsukamoto, Naoki
2009-01-01
We investigate static spherically symmetric vacuum solutions in the IR limit of projectable nonrelativistic quantum gravity, including the renormalisable quantum gravity recently proposed by Ho\\v{r}ava. It is found that the projectability condition plays an important role. Without the cosmological constant, the spacetime is uniquely given by the Schwarzschild solution. With the cosmological constant, the spacetime is uniquely given by the Kottler (Schwarzschild-(anti) de Sitter) solution for the entirely vacuum spacetime. However, the ``ultra-static'' metric of spherical and hyperbolic spaces can be also admissible for the locally empty region, for the positive and negative cosmological constants, respectively, if its nonvanishing contribution to the global Hamiltonian constraint can be compensated by that from the nonempty or nonstatic region. This implies that static spherically symmetric entirely vacuum solutions would not admit the freedom to reproduce the observed flat rotation curves of galaxies. On the...
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Energy Technology Data Exchange (ETDEWEB)
Butenschoen, Mathias; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-09-15
We calculate the cross section of inclusive direct J/{psi} photoproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics, for the first time including the full relativistic corrections due to the intermediate {sup 1}S{sub 0}{sup [8]}, {sup 3}S{sub 1}{sup [8]}, and {sup 3}P{sub J}{sup [8]} color-octet states. A comparison of our results to recent H1 data suggests that the color octet mechanism is indeed realized in J/{psi} photoproduction, although the predictivity of our results still suffers from uncertainties in the color-octet long-distance matrix elements. (orig.)
Non-relativistic Schroedinger theory on q-deformed quantum spaces III, Scattering theory
Wachter, H
2007-01-01
This is the third part of a paper about non-relativistic Schroedinger theory on q-deformed quantum spaces like the braided line or the three-dimensional q-deformed Euclidean space. Propagators for the free q-deformed particle are derived and their basic properties are discussed. A time-dependent formulation of scattering is proposed. In this respect, q-analogs of the Lippmann-Schwinger equation are given. Expressions for their iterative solutions are written down. It is shown how to calculate S-matrices and transition probabilities. Furthermore, attention is focused on the question what becomes of unitarity of S-matrices in a q-deformed setting. The examinations are concluded by a discussion of the interaction picture and its relation to scattering processes.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Quantum Exact Non-Abelian Vortices in Non-relativistic Theories
Nitta, Muneto; Vinci, Walter
2014-01-01
Non-Abelian vortices arise when a non-Abelian global symmetry is exact in the ground state but spontaneously broken in the vicinity of their cores. In this case, there appear (non-Abelian) Nambu-Goldstone (NG) modes confined and propagating along the vortex. In relativistic theories, the Coleman-Mermin-Wagner theorem forbids the existence of a spontaneous symmetry breaking, or a long-range order, in 1+1 dimensions: quantum corrections restore the symmetry along the vortex and the NG modes acquire a mass gap. We show that in non-relativistic theories NG modes with quadratic dispersion relation confined on a vortex can remain gapless at quantum level. We provide a concrete and experimentally realizable example of a three-component Bose-Einstein condensate with U(1) x U(2) symmetry. We first show, at the classical level, the existence of S^3 = S^1 |x S^2 (S^1 fibered over S^2) NG modes associated to the breaking U(2) -> U(1) on vortices, where S^1 and S^2 correspond to type I and II NG modes, respectively. We th...
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
Mignemi, S
2011-01-01
The Snyder-de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales beside the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder-de Sitter (aSdS). We discuss the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In analogy with the flat case, the properties of the SdS and aSdS model are rather different. In the SdS case, a lower bound on the localization in position and momentum space exists, which does not arise in the aSdS model. In both cases the energy of the harmonic oscillator acquires a dependence on the frequency, but the quantum mechanical aSdS oscillator admits only a finite numb...
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. Then, we extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from the $\\theta$-modified Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which...
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. We extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the...
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Persico, Franco; Power, Edwin A.
1988-01-01
The physics of the electromagnetic vacuum, its fluctuations and its role in spontaneous emission has been studied since the early days of the quantum theory of radiation. In recent years there has been a renewed interest in the nature of the vacuum state and its potency in giving rise to observable effects. For example the question of amplification of photon signals and the way vacuum fluctuations may provide inescapable noise is fundamental to the theory of measurement. Quantum electrodynamics in cavities has become a very active area of research both experimentally and theoretically and the way the radiation field, even in vacuo, is changed by confinement is of interest and importance. The effective Einstein A-coefficient can be much smaller than in free space because the available modes are sparser in a cavity. Radiative connections such as the Lamb shift energies are also changed as the virtual photon modes are varied by the confinement. The existence of electromagnetic field energy (from the vacuum fluctuations) in the neighbourhood of atoms/molecules in their ground state is demonstrated by its effect on test molecules brought into the vicinity of the original sources. All the forces analogous to that of Van der Waals, including of course their Casimir retardations at long range, are explicable in terms of these virtual cloud effects. The Adriatico Conference on "Vacuum in Non-Relativistic Matter-Radiation Systems" held in July 1987 brought together scientists in quantum optics, quantum field theorists and others interested in the electromagnetic vacuum. It was most successful in that the participants found enough mutual agreement but with clearly defined tensions between them to provide excitement and argument throughout the four days' meeting. This volume consists of most of the papers presented at the conference. It is clear that the collection ranges from the pedagogical and the review type article to research papers with original material. The
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Nonrelativistic gauged quantum mechanics: From Kaluza–Klein compactifications to Bargmann structures
Energy Technology Data Exchange (ETDEWEB)
Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-08-14
Highlights: • Null compactification techniques are used to derive the nonrelativistic gauged Schrödinger equation. • Compactification of both Klein–Gordon and Maxwell theories are revisited. • Connections with Kaluza–Klein-like Bargmann frameworks are established. - Abstract: The Schrödinger equation for a spinless particle in presence of an external electromagnetic field is derived by means of null compactification of five dimensional massless Klein–Gordon theory and five–dimensional Maxwell electrodynamics. Connections with Kaluza–Klein-like Bargmann frameworks are established.
Effective Constraints for Quantum Systems
Bojowald, Martin; Skirzewski, Aureliano; Tsobanjan, Artur
2008-01-01
An effective formalism for quantum constrained systems is presented which allows manageable derivations of solutions and observables, including a treatment of physical reality conditions without requiring full knowledge of the physical inner product. Instead of a state equation from a constraint operator, an infinite system of constraint functions on the quantum phase space of expectation values and moments of states is used. The examples of linear constraints as well as the free non-relativistic particle in parameterized form illustrate how standard problems of constrained systems can be dealt with in this framework.
The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory
Ohsaku, Tadafumi
2013-01-01
The anomalous Nambu-Goldstone (NG) theorem which is found as a violation of counting law of the number of NG bosons of the normal NG theorem in nonrelativistic and Lorentz-symmetry-violated relativistic theories is studied in detail, with emphasis on its mathematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras (local) and Lie groups (global). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anomalous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be experimentally confirmed. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangi...
Harada, Koji; Yoshimoto, Issei
2012-01-01
Low-energy effective field theory describing a nonrelativistic three-body system is analyzed in the Wilsonian renormalization group (RG) method. No effective auxiliary field (dimeron) that corresponds to two-body propagation is introduced. The Efimov effect is expected in the case of an infinite two-body scattering length, and is believed to be related to the limit cycle behavior in the three-body renormalization group equations (RGEs). If the one-loop property of the RGEs for the nonrelativistic system without the dimeron field, which is essential in deriving RGEs in the two-body sector, persists in the three-body sector, it appears to prevent the emergence of limit cycle behavior. We explain how the multi-loop diagrams contribute in the three-body sector without contradicting the one-loop property of the RGEs, and derive the correct RGEs, which lead to the limit cycle behavior. The Efimov parameter, $s_{0}$, is obtained within a few percent error in the leading orders. We also remark on the correct use of t...
Abdelmadjid Maireche
2015-01-01
The paper describes the deformed Hamiltonian for Schrödinger equation with mixed harmonic potential known by sextic potential and the corresponding spectrum of energies which depended with 3-new quantum numbers (j = l ± 1/2, l) and s = 1/2 in the non-commutativity infinitesimal parameter θ.
GenASiS: General Astrophysical Simulation System. II. Nonrelativistic Hydrodynamics
Cardall, Christian Y; Endeve, Eirik; Mezzacappa, Anthony
2012-01-01
In this paper, the second in a series, we document the algorithms and solvers for compressible nonrelativistic hydrodynamics implemented in GenASiS (General Astrophysical Simulation System)---a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae. In the Mathematics division of GenASiS we introduce Solvers, which includes finite-volume updates for generic hyperbolic BalanceEquations and ordinary differential equation integration Steps. We also introduce the Physics division of GenASiS; this extends the Manifolds division of Mathematics into physical Spaces, defines StressEnergies, and combines these into Universes. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the manifest superiority of the HLLC over the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's abili...
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2007-11-01
Full Text Available A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators.
Axiomatic foundations of quantum mechanics revisited the case for systems
Romero, G E; Romero, Gustavo E; Vucetich, Hector
1995-01-01
We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.
Surprises with Nonrelativistic Naturalness
Horava, Petr
2016-01-01
We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Nonrelativistic Geodesic Motion
Mangiarotti, L
1999-01-01
We show that any second order dynamic equation on a configuration space $X\\to R$ of nonrelativistic mechanics can be seen as a geodesic equation with respect to some (nonlinear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. We compare relativistic and nonrelativistic geodesic equations, and study the Jacobi vector fields along nonrelativistic geodesics.
Wachter, H
2007-01-01
The aim of these three papers (I, II, and III) is to develop a q-deformed version of non-relativistic Schroedinger theory. Paper I introduces the fundamental mathematical and physical concepts. The braided line and the three-dimensional q-deformed Euclidean space play the role of position space. For both cases the algebraic framework is extended by a time element. A short review of the elements of q-deformed analysis on the spaces under consideration is given. The time evolution operator is introduced in a consistent way and its basic properties are discussed. These reasonings are continued by proposing q-deformed analogs of the Schroedinger and the Heisenberg picture.
Hernandez-Zapata, Sergio; 10.1007/s10701-010-9413-7
2010-01-01
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\\sigma} as the dynamical temporal...
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Burgarth, Daniel; Yuasa, Kazuya
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification...
Advanced quantum communication systems
Jeffrey, Evan Robert
Quantum communication provides several examples of communication protocols which cannot be implemented securely using only classical communication. Currently, the most widely known of these is quantum cryptography, which allows secure key exchange between parties sharing a quantum channel subject to an eavesdropper. This thesis explores and extends the realm of quantum communication. Two new quantum communication protocols are described. The first is a new form of quantum cryptography---relativistic quantum cryptography---which increases communication efficiency by exploiting a relativistic bound on the power of an eavesdropper, in addition to the usual quantum mechanical restrictions intrinsic to quantum cryptography. By doing so, we have observed over 170% improvement in communication efficiency over a similar protocol not utilizing relativity. A second protocol, Quantum Orienteering, allows two cooperating parties to communicate a specific direction in space. This application shows the possibility of using joint measurements, or projections onto an entangled state, in order to extract the maximum useful information from quantum bits. For two-qubit communication, the maximal fidelity of communication using only separable operations is 73.6%, while joint measurements can improve the efficiency to 78.9%. In addition to implementing these protocols, we have improved several resources for quantum communication and quantum computing. Specifically, we have developed improved sources of polarization-entangled photons, a low-loss quantum memory for polarization qubits, and a quantum random number generator. These tools may be applied to a wide variety of future quantum and classical information systems.
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Open quantum system identification
Schirmer, Sophie G; Zhou, Weiwei; Gong, Erling; Zhang, Ming
2012-01-01
Engineering quantum systems offers great opportunities both technologically and scientifically for communication, computation, and simulation. The construction and operation of large scale quantum information devices presents a grand challenge and a major issue is the effective control of coherent dynamics. This is often in the presence of decoherence which further complicates the task of determining the behaviour of the system. Here, we show how to determine open system Markovian dynamics of a quantum system with restricted initialisation and partial output state information.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Controllability of Quantum Systems
Schirmer, S G; Solomon, A I
2003-01-01
An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Holographic thermalization from nonrelativistic branes
Roychowdhury, Dibakar
2016-05-01
In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.
Dusek, Miloslav; Haderka, Ondrej; Hendrych, Martin; Myska, Robert
1998-01-01
A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of ...
Raginsky, M
2003-01-01
We formulate and study, in general terms, the problem of quantum system identification, i.e., the determination (or estimation) of unknown quantum channels through their action on suitably chosen input density operators. We also present a quantitative analysis of the worst-case performance of these schemes.
Burgarth, Daniel
2011-01-01
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.
New approach to nonrelativistic diffeomorphism invariance and its applications
Banerjee, Rabin
2015-01-01
A comprehensive account of a new structured algorithm for obtaining nonrelativistic diffeomorphism invariances in both space and spacetime by gauging the Galilean symmetry in a generic nonrelativistic field theoretical model is provided. % where the original (global) symmetry is localised. Various applications like the obtention of nonrelativistic diffeomorphism invariance, the introduction of Chern-Simons term and its role in fractional quantum Hall effect, induction of diffeomorphism in irrotational fluid model, abstraction of Newton-Cartan geometry and the emergence of Horava-Lifshitz gravity are discussed in details.
Weiss, Ulrich
2008-01-01
Major advances in the quantum theory of macroscopic systems, in combination with stunning experimental achievements, have brightened the field and brought it to the attention of the general community in natural sciences. Today, working knowledge of dissipative quantum mechanics is an essential tool for many physicists. This book - originally published in 1990 and republished in 1999 as an enlarged second edition - delves much deeper than ever before into the fundamental concepts, methods, and applications of quantum dissipative systems, including the most recent developments. In this third edi
Weiss, Ulrich
1993-01-01
This book deals with the statistical mechanics and dynamics of open quantum systems moving irreversibly under the influence of a dissipative environment. The basic concepts and methods are described on the basis of a microscopic description with emphasis on the functional integral approach. The general theory for the time evolution of the density matrix of the damped system is developed. Many of the sophisticated ideas in the field are explained with simple models. The discussion includes, among others, the interplay between thermal and quantum fluctuations, quantum statistical decay, macrosco
Finite and profinite quantum systems
Vourdas, Apostolos
2017-01-01
This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...
Energy Technology Data Exchange (ETDEWEB)
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Energy shift of interacting non-relativistic fermions in noncommutative space
Directory of Open Access Journals (Sweden)
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
Quantum Computing via The Bethe Ansatz
Zhang, Yong,
2011-01-01
We recognize quantum circuit model of computation as factorisable scattering model and propose that a quantum computer is associated with a quantum many-body system solved by the Bethe ansatz. As an typical example to support our perspectives on quantum computation, we study quantum computing in one-dimensional nonrelativistic system with delta-function interaction, where the two-body scattering matrix satisfies the factorisation equation (the quantum Yang--Baxter equation) and acts as a para...
Energy Technology Data Exchange (ETDEWEB)
Micheli, Fiorenza de [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Zanelli, Jorge [Centro de Estudios Cientificos, Arturo Prat 514, Valdivia (Chile); Universidad Andres Bello, Av. Republica 440, Santiago (Chile)
2012-10-15
A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
More On Nonrelativistic Diffeomorphism Invariance
Andreev, Oleg
2014-01-01
Certain aspects of nonrelativistic diffeomorphisms in 2+1 dimensions are investigated. These include a nonrelativistic limit of some relativistic actions in 3 dimensions, the Seiberg-Witten map, a modification of the viscosity tensor in particular due to a non-uniform magnetic field, a redefinition of background fields, and 1/R terms on Riemann surfaces of constant curvature.
Energy Technology Data Exchange (ETDEWEB)
Freitag, Mark A. [Iowa State Univ., Ames, IA (United States)
2001-12-31
The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate for most systems of chemical interest.
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Quantum Cybernetics and Complex Quantum Systems Science - A Quantum Connectionist Exploration
Gonçalves, Carlos Pedro
2014-01-01
Quantum cybernetics and its connections to complex quantum systems science is addressed from the perspective of complex quantum computing systems. In this way, the notion of an autonomous quantum computing system is introduced in regards to quantum artificial intelligence, and applied to quantum artificial neural networks, considered as autonomous quantum computing systems, which leads to a quantum connectionist framework within quantum cybernetics for complex quantum computing systems. Sever...
Scheme of thinking quantum systems
Yukalov, V I
2009-01-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
Scheme of thinking quantum systems
Yukalov, V. I.; Sornette, D.
2009-11-01
A general approach describing quantum decision procedures is developed. The approach can be applied to quantum information processing, quantum computing, creation of artificial quantum intelligence, as well as to analyzing decision processes of human decision makers. Our basic point is to consider an active quantum system possessing its own strategic state. Processing information by such a system is analogous to the cognitive processes associated to decision making by humans. The algebra of probability operators, associated with the possible options available to the decision maker, plays the role of the algebra of observables in quantum theory of measurements. A scheme is advanced for a practical realization of decision procedures by thinking quantum systems. Such thinking quantum systems can be realized by using spin lattices, systems of magnetic molecules, cold atoms trapped in optical lattices, ensembles of quantum dots, or multilevel atomic systems interacting with electromagnetic field.
A Structurally Relativistic Quantum Theory. Part 1: Foundations
Grgin, Emile
2012-01-01
The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.
Quantum iterated function systems.
Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech
2003-10-01
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
Quantum critical points in quantum impurity systems
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyun Jung [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany); Bulla, Ralf [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)]. E-mail: bulla@cpfs.mpg.de
2005-04-30
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Quantum critical points in quantum impurity systems
Lee, Hyun Jung; Bulla, Ralf
2005-04-01
The numerical renormalization group method is used to investigate zero-temperature phase transitions in quantum impurity systems, in particular in the soft-gap Anderson model, where an impurity couples to a non-trivial fermionic bath. In this case, zero-temperature phase transitions occur between two different phases whose fixed points can be built up of non-interacting single-particle states. However, the quantum critical point cannot be described by non-interacting fermionic or bosonic excitations.
Non-Relativistic Limit of the Dirac Equation
Ajaib, Muhammad Adeel
2016-01-01
We show that the first order form of the Schrodinger equation proposed in [1] can be obtained from the Dirac equation in the non-relativistic limit. We also show that the Pauli Hamiltonian is obtained from this equation by requiring local gauge invariance. In addition, we study the problem of a spin up particle incident on a finite potential barrier and show that the known quantum mechanical results are obtained. Finally, we consider the symmetric potential well and show that the quantum mechanical expression for the quantized energy levels of a particle is obtained with periodic boundary conditions. Based on these conclusions, we propose that the equation introduced in [1] is the non-relativistic limit of the Dirac equation and more appropriately describes spin 1/2 particles in the non-relativistic limit.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Non-relativistic particles in a thermal bath
Directory of Open Access Journals (Sweden)
Vairo Antonio
2014-04-01
Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.
Non-relativistic classical mechanics for spinning particles
Salesi, G
2004-01-01
We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.
Quantum Iterated Function Systems
Lozinski, A; Slomczynski, W; Lozinski, Artur; Zyczkowski, Karol; Slomczynski, Wojciech
2003-01-01
Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on the initial point. In an analogous way, we define quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant state.
Iqbal, A
2002-01-01
We find quantum mechanics playing a role in evolutionary dynamics described by the notion of an Evolutionary Stable Strategy (ESS). An ESS being a refinement of Nash equilibrium concept is a stable strategy in an evolutionary game with replicator dynamic as the underlying process. We investigate ESSs in two and three player symmetric quantum games played by the proposed scheme of applying $^{\\prime}$identity$^{\\prime}$ and $^{\\prime}$Pauli spin-flip$^{\\prime}$ operators on an initial state with classical probabilities. The mixed Nash equilibrium (NE) we search for is not affected by a switchover between two forms of the game, one quantized and other classical, however it is an ESS when the game is played classically.We show no such mixed NE exists for two player games but there is a class of three player games where they do exist.Our results imply that an evolutionary approach originating with Darwin's idea of natural selection can be used even for quantum systems. It also indicates the possibility of genetic...
Duality quantum algorithm efficiently simulates open quantum systems
Shi-Jie Wei; Dong Ruan; Gui-Lu Long
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the op...
Microscopic picture of non-relativistic classicalons
Energy Technology Data Exchange (ETDEWEB)
Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert, E-mail: felix.berkhahn@physik.lmu.de, E-mail: sophia.x.mueller@physik.uni-muenchen.de, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich (Germany)
2013-08-01
A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.
Quantum fluctuations in mesoscopic systems
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2017-10-01
Recent experimental results point to the existence of coherent quantum phenomena in systems made of a large number of particles, despite the fact that for many-body systems the presence of decoherence is hardly negligible and emerging classicality is expected. This behaviour hinges on collective observables, named quantum fluctuations, that retain a quantum character even in the thermodynamic limit: they provide useful tools for studying properties of many-body systems at the mesoscopic level, in-between the quantum microscopic scale and the classical macroscopic one. We herein present the general theory of quantum fluctuations in mesoscopic systems, and study their dynamics in a quantum open system setting, taking into account the unavoidable effects of dissipation and noise induced by the external environment. As in the case of microscopic systems, decoherence is not always the only dominating effect at the mesoscopic scale: certain types of environment can provide means for entangling collective fluctuations through a purely noisy mechanism.
Quantum Effects in Biological Systems
2016-01-01
Since the last decade the study of quantum mechanical phenomena in biological systems has become a vibrant field of research. Initially sparked by evidence of quantum effects in energy transport that is instrumental for photosynthesis, quantum biology asks the question of how methods and models from quantum theory can help us to understand fundamental mechanisms in living organisms. This approach entails a paradigm change challenging the related disciplines: The successful framework of quantum theory is taken out of its low-temperature, microscopic regimes and applied to hot and dense macroscopic environments, thereby extending the toolbox of biology and biochemistry at the same time. The Quantum Effects in Biological Systems conference is a platform for researchers from biology, chemistry and physics to present and discuss the latest developments in the field of quantum biology. After meetings in Lisbon (2009), Harvard (2010), Ulm (2011), Berkeley (2012), Vienna (2013), Singapore (2014) and Florence (2015),...
Quantum walks public key cryptographic system
Vlachou, C; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2016-01-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public key is given by a quantum state generated by performing a quantum walk. We show that th...
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Directory of Open Access Journals (Sweden)
Abdelmadjid Maireche
2016-12-01
Full Text Available In our recent work, three-dimensional modified time-independent Schrödinger equation (MSE of modified vibrational-rotational analysis of supersingular plus quadratic potential (v.r.a.s.q. potential was solved using Boopp’s shift method instead to apply star product, in the framework of both noncommutativity three dimensional real space and phase (NC: 3D-RSP. Furthermore, the exact correction for ground state and first excited state are found straightforwardly for interactions in one-electron atoms has been solved using standard perturbation theory. Furthermore, the obtained corrections of energies are depended on infinitesimal parameters and which are induced by position-position and momentum-momentum noncommutativity, respectively, in addition to the discreet atomic quantum numbers: and . Moreover, the usual states in ordinary quantum mechanics for vibrational-rotational analysis of supersingular plus quadratic potential are canceled and has been replaced by new degenerated sub-states in the extended new quantum symmetries of (NC: 3D-RSP.
Feedback control of quantum system
Institute of Scientific and Technical Information of China (English)
DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin
2006-01-01
Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.
Quantum point contacts in quantum wire systems
Energy Technology Data Exchange (ETDEWEB)
Sternemann, E.; Buchholz, S.S.; Fischer, S.F.; Kunze, U. [Werkstoffe und Nanoelektronik, Ruhr-Universitaet Bochum (Germany); Reuter, D.; Wieck, A.D. [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)
2010-07-01
Quantum point contacts (QPCs) attract high interest for applications as magnetic focussing, beam splitting (quantum Hall edge states), spin filtering and electron thermometry. Here, we investigate QPCs in complex quantum wire (QWR) systems such as quantum rings. The QPCs were realized by lithographical definition of a short (150 nm) constriction (170 nm width) in (a) a 540 nm wide QWR and (b) 520 nm wide QWR leads of a QWR ring as in. Nanogates on top of the constrictions allow for the control of occupied modes in the QPCs. The devices are based on a GaAs/AlGaAs heterostructure with a 2DEG 55 nm below the surface, patterned by electron beam lithography and wet-chemical etching. Two- and four-terminal conductance measurements at temperatures between 23 mK and 4.2 K were performed using lock-in technique. Our measurements reveal that QPCs in 1D nanostructures can be prepared to show subband separations of 6 meV, clear conductance quantization as well as the 0.7 anomaly. We further show that electron injection across a QPC into a QWR ring allows for electron interference (Aharonov-Bohm effect).
Quantum Effects in Biological Systems
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Decoherence in quantum spin systems
De Raedt, H; Dobrovitski, VV; Landau, DP; Lewis, SP; Schuttler, HB
2003-01-01
Computer simulations of decoherence in quantum spin systems require the solution of the time-dependent Schrodinger equation for interacting quantum spin systems over extended periods of time. We use exact diagonalization, the Chebyshev polynomial technique, four Suzuki-formula algorithms, and the sh
Bahder, T B
2004-01-01
A quantum positioning system (QPS) is proposed that can provide a user with all four of his space-time coordinates. The user must carry a corner cube reflector, a good clock, and have a two-way classical channel of communication with the origin of the reference frame. Four pairs of entangled photons (biphotons) are sent through four interferometers: three interferometers are used to determine the user's spatial position, and an additional interferometer is used to synchronize the user's clock to coordinate time in the reference frame. The spatial positioning part of the QPS is similar to a classical time-of-arrival (TOA) system, however, a classical TOA system (such as GPS) must have synchronized clocks that keep coordinate time and therefore the clocks must have long-term stability, whereas in the QPS only a photon coincidence counter is needed and the clocks need only have short-term stability. Several scenarios are considered for a QPS: one is a terrestrial system and another is a space-based-system compos...
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
Noncommutative mathematics for quantum systems
Franz, Uwe
2016-01-01
Noncommutative mathematics is a significant new trend of mathematics. Initially motivated by the development of quantum physics, the idea of 'making theory noncommutative' has been extended to many areas of pure and applied mathematics. This book is divided into two parts. The first part provides an introduction to quantum probability, focusing on the notion of independence in quantum probability and on the theory of quantum stochastic processes with independent and stationary increments. The second part provides an introduction to quantum dynamical systems, discussing analogies with fundamental problems studied in classical dynamics. The desire to build an extension of the classical theory provides new, original ways to understand well-known 'commutative' results. On the other hand the richness of the quantum mathematical world presents completely novel phenomena, never encountered in the classical setting. This book will be useful to students and researchers in noncommutative probability, mathematical physi...
Decoherence in infinite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Blanchard, Philippe; Hellmich, Mario [Faculty of Physics, University of Bielefeld, Universitaetsstr. 25, 33615 Bielefeld (Germany); Bundesamt fuer Strahlenschutz (Federal Office for Radiation Protection), Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany)
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Communication: quantum mechanics without wavefunctions.
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications-theoretical, computational, and interpretational-are discussed.
Generalized quantum similarity in atomic systems: A quantifier of relativistic effects
Martín, A. L.; Angulo, J. C.; Antolín, J.; López-Rosa, S.
2017-02-01
Quantum similarity between Hartree-Fock and Dirac-Fock electron densities reveals the depth of relativistic effects on the core and valence regions in atomic systems. The results emphasize the relevance of differences in the outermost subshells, as pointed out in recent studies by means of Shannon-like functionals. In this work, a generalized similarity functional allows us to go far beyond the Shannon-based analyses. The numerical results for systems throughout the Periodic Table show that discrepancies between the relativistic and non-relativistic descriptions are patently governed by shell-filling patterns.
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Preconditioned quantum linear system algorithm.
Clader, B D; Jacobs, B C; Sprouse, C R
2013-06-21
We describe a quantum algorithm that generalizes the quantum linear system algorithm [Harrow et al., Phys. Rev. Lett. 103, 150502 (2009)] to arbitrary problem specifications. We develop a state preparation routine that can initialize generic states, show how simple ancilla measurements can be used to calculate many quantities of interest, and integrate a quantum-compatible preconditioner that greatly expands the number of problems that can achieve exponential speedup over classical linear systems solvers. To demonstrate the algorithm's applicability, we show how it can be used to compute the electromagnetic scattering cross section of an arbitrary target exponentially faster than the best classical algorithm.
Screening in quantum charged systems
Martin, Ph. A.; Gruber, Ch.
1984-07-01
For stationary states of quantum charged systems in ν dimensions, ν>=2, it is proven that the reduced-density matrices satisfy a set of sum rules whenever the clustering is faster than |x|-(ν+l). These sum rules, describing the screening properties, are analogous to those previously derived for classical systems. For neutral quantum fluids, it is shown that the clustering cannot be faster than the decay of the force.
Quantum contextuality in complex systems
Cabello, Adan
2010-01-01
We show that, for a system of several qubits, there is an inequality for the correlations between three compatible dichotomic measurements which must be satisfied by any noncontextual theory, but is violated by any quantum state. Remarkably, the violation grows exponentially with the number of qubits, and the tolerated error per correlation also increases with the number of qubits, showing that state-independent quantum contextuality is experimentally observable in complex systems.
Universal blind quantum computation for hybrid system
Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang
2017-08-01
As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.
Quantum Dot Systems: a versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulati
Quantum Dot Systems: a versatile platform for quantum simulations
Barthelemy, P.J.C.; Vandersypen, L.M.K.
2013-01-01
Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum
Introduction to quantum spin systems
Directory of Open Access Journals (Sweden)
A. Langari
2008-06-01
Full Text Available This manuscript is the collection of lectures given in the summer school on strongly correlated electron systems held at Isfahan university of technology, June 2007. A short overview on quantum magnetism and spin systems is presented. The numerical exact diagonalization (Lanczos alghorithm is explained in a pedagogical ground. This is a method to get some ground state properties on finite cluster of lattice models. Two extensions of Lanczos method to get the excited states and also finite temperature properties of quantum models are also explained. The basic notions of quantum phase transition is discussed in term of Ising model in transverse field. Its phase diagram and critical properties are explained using the quantum renormalization group approach. Most of the topics are in tutorial level with hints to recent research activities.
Quantum walk public-key cryptographic system
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Abdelmadjid Maireche
2016-01-01
A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-28
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Real-time quantum dynamics of heavy quark systems at high temperature
Akamatsu, Yukinao
2012-01-01
On the basis of the closed-time path formalism of non-equilibrium quantum field theory, we derive the real-time quantum dynamics of heavy quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified description of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the non-relativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and time-evolution equation for heavy quark and quarkonium forward correlators, are obtained from a single operator, the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for heavy quark and quarkonium wave function, which are equivalent to the dynamical equations.
Real-time quantum dynamics of heavy-quark systems at high temperature
Akamatsu, Yukinao
2013-02-01
On the basis of the closed-time-path formalism of nonequilibrium quantum field theory, we derive the real-time quantum dynamics of heavy-quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified description of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the nonrelativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and the time-evolution equation for heavy-quark and quarkonium forward correlators, are obtained from a single operator: the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for the heavy-quark and quarkonium wave function, which are equivalent to the dynamical equations.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic and non-relativistic geodesic equations
Energy Technology Data Exchange (ETDEWEB)
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Quantum dynamics in open quantum-classical systems.
Kapral, Raymond
2015-02-25
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Quantum energy teleportation in a quantum Hall system
Energy Technology Data Exchange (ETDEWEB)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
2013-02-15
Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and
2008-03-15
Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39-18 Publications: 1) W. Wasilewski and...K. Banaszek, Protecting an optical qubit against photon loss, Phys. Rev. A 75, 042316 (2007) 2) K. Banaszek and W. Wasilewski , Linear-optics...manipulations of photon-loss codes, Proceedings of NATO Advanced Research Workshop "Quantum Communication and Security" 3) W. Wasilewski , P. Kolenderski
On the Theory of Resonances in Non-Relativistic QED and Related Models
DEFF Research Database (Denmark)
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Hypothesis testing with open quantum systems.
Mølmer, Klaus
2015-01-30
Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum information retrievable from continuous quantum measurement records, available when a quantum system is perturbatively coupled to a broadband quantized environment.
Open Quantum Systems An Introduction
Rivas, ´Angel
2012-01-01
In this volume the fundamental theory of open quantum systems is revised in the light of modern developments in the field. A unified approach to the quantum evolution of open systems is presented by merging concepts and methods traditionally employed by different communities, such as quantum optics, condensed matter, chemical physics and mathematical physics. The mathematical structure and the general properties of the dynamical maps underlying open system dynamics are explained in detail. The microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions, is also discussed. Because of the step-by-step explanations, this work is a useful reference to novices in this field. However, experienced researches can also benefit from the presentation of recent results.
Quantum cloning attacks against PUF-based quantum authentication systems
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Is quantum theory compatible with special relativity?
Indian Academy of Sciences (India)
M Bahrami; A Shafiee; M Saravani; M Golshani
2013-03-01
How a proposed quantum nonlocal phenomenon could be incompatible with the requirements of special relativity is studied. To show this, the least set of assumptions about the formalism and the interpretation of non-relativistic quantum theory is considered. Then, without any reference to the collapse assumption or any other stochastic processes, an experiment is proposed, involving two quantum systems, that interacted at an arbitrary time, with results which seem to be in conflict with requirements of special relativity.
Quantum Indeterminacy of Cosmic Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Quantum Indeterminacy of Cosmic Systems
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Quantum theory of many-particle systems
Fetter, Alexander L
2003-01-01
""Singlemindedly devoted to its job of educating potential many-particle theorists…deserves to become the standard text in the field."" - Physics Today""The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy."" - EndeavorA self-contained, unified treatment of nonrelativistic many-particle systems, this text offers a solid introduction to procedures in a manner that enables students to adopt techniques for their own use. Its discussions of formalism and applications move easily between general theo
Polygamy of entanglement in multipartite quantum systems
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Quantum phase transitions in constrained Bose systems
Bonnes, Lars
2011-01-01
This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...
Overview of progress in quantum systems control
Institute of Scientific and Technical Information of China (English)
CONG Shuang; ZHENG Yisong; JI Beichen; DAI Yi
2007-01-01
The development of the theory on quantum systems control in the last 20 years is reviewed in detail.The research on the controllability of quantum systems is first introduced,then the study on the quantum open-loop control methods often used for controlling simple quantum systems is analyzed briefly.The learning control method and the feedback control method are mainly discussed for they are two important methods in quantum systems control and their advantages and disadvantages are presented.According to the trends in quantum systems control development,the paper predicts the future trends of its development and applications.A complete design procedure necessary for the quantum control system is presented.Finally,several vital problems hindering the advancement of quantum control are pointed out.
Understanding quantum work in a quantum many-body system.
Wang, Qian; Quan, H T
2017-03-01
Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.
Quantum Information Processing in Disordered and Complex Quantum Systems
De, A S; Ahufinger, V; Briegel, H J; Sanpera, A; Lewenstein, M; De, Aditi Sen; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2005-01-01
We investigate quantum information processing and manipulations in disordered systems of ultracold atoms and trapped ions. First, we demonstrate generation of entanglement and local realization of quantum gates in a quantum spin glass system. Entanglement in such systems attains significantly high values, after quenched averaging, and has a stable positive value for arbitrary times. Complex systems with long range interactions, such as ion chains or dipolar atomic gases, can be modeled by neural network Hamiltonians. In such systems, we find the characteristic time of persistence of quenched averaged entanglement, and also find the time of its revival.
Quantum Computing in Solid State Systems
Ruggiero, B; Granata, C
2006-01-01
The aim of Quantum Computation in Solid State Systems is to report on recent theoretical and experimental results on the macroscopic quantum coherence of mesoscopic systems, as well as on solid state realization of qubits and quantum gates. Particular attention has been given to coherence effects in Josephson devices. Other solid state systems, including quantum dots, optical, ion, and spin devices which exhibit macroscopic quantum coherence are also discussed. Quantum Computation in Solid State Systems discusses experimental implementation of quantum computing and information processing devices, and in particular observations of quantum behavior in several solid state systems. On the theoretical side, the complementary expertise of the contributors provides models of the various structures in connection with the problem of minimizing decoherence.
Eigenfunctions in chaotic quantum systems
Energy Technology Data Exchange (ETDEWEB)
Baecker, Arnd
2007-07-01
The structure of wavefunctions of quantum systems strongly depends on the underlying classical dynamics. In this text a selection of articles on eigenfunctions in systems with fully chaotic dynamics and systems with a mixed phase space is summarized. Of particular interest are statistical properties like amplitude distribution and spatial autocorrelation function and the implication of eigenfunction structures on transport properties. For systems with a mixed phase space the separation into regular and chaotic states does not always hold away from the semiclassical limit, such that chaotic states may completely penetrate into the region of the regular island. The consequences of this flooding are discussed and universal aspects highlighted. (orig.)
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Perturbative approach to Markovian open quantum systems.
Li, Andy C Y; Petruccione, F; Koch, Jens
2014-05-08
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
A Diffusion Equation for Quantum Adiabatic Systems
Jain, S R
1998-01-01
For ergodic adiabatic quantum systems, we study the evolution of energy distribution as the system evolves in time. Starting from the von Neumann equation for the density operator, we obtain the quantum analogue of the Smoluchowski equation on coarse-graining over the energy spectrum. This result brings out the precise notion of quantum diffusion.
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Resonances in open quantum systems
Eleuch, Hichem; Rotter, Ingrid
2017-02-01
The Hamilton operator of an open quantum system is non-Hermitian. Its eigenvalues are generally complex and provide not only the energies but also the lifetimes of the states of the system. The states may couple via the common environment of scattering wave functions into which the system is embedded. This causes an external mixing (EM) of the states. Mathematically, EM is related to the existence of singular (the so-called exceptional) points. The eigenfunctions of a non-Hermitian operator are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wave functions. At and near an exceptional point (EP), the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. At the parameter value of maximum width bifurcation, the phase rigidity approaches the value one, meaning that the two eigenfunctions become orthogonal. However, the eigenfunctions are externally mixed at this parameter value. The S matrix and therewith the cross section do contain, in the one-channel case, almost no information on the EM of the states. The situation is completely different in the case with two (or more) channels where the resonance structure is strongly influenced by the EM of the states and interesting features of non-Hermitian quantum physics are revealed. We provide numerical results for two and three nearby eigenstates of a non-Hermitian Hamilton operator that are embedded in one common continuum and are influenced by two adjoining EPs. The results are discussed. They are of interest for an experimental test of the non-Hermitian quantum physics as well as for applications.
Quantum chaotic attractor in a dissipative system
Liu, W V; Schieve, William C.
1997-01-01
A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.
Dissipative properties of quantum systems.
Grecos, A P; Prigogine, I
1972-06-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large "volume," becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration.
One-parameter nonrelativistic supersymmetry for microtubules
Rosu, H C
2003-01-01
The simple supersymmetric model of Caticha [PRA 51, 4264 (1995)], as used by Rosu [PRE 55, 2038 (1997)] for microtubules, is generalized to the case of Mielnik's one-parameter nonrelativistic susy [JMP 25, 3387 (1984)
Quantum state engineering in hybrid open quantum systems
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Simulation of n-qubit quantum systems. III. Quantum operations
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Could nanostructure be unspeakable quantum system?
Aristov, V V
2010-01-01
Heisenberg, Bohr and others were forced to renounce on the description of the objective reality as the aim of physics because of the paradoxical quantum phenomena observed on the atomic level. The contemporary quantum mechanics created on the base of their positivism point of view must divide the world into speakable apparatus which amplifies microscopic events to macroscopic consequences and unspeakable quantum system. Examination of the quantum phenomena corroborates the confidence expressed by creators of quantum theory that the renunciation of realism should not apply on our everyday macroscopic world. Nanostructures may be considered for the present as a boundary of realistic description for all phenomena including the quantum one.
Path integral polymer propagator of relativistic and non-relativistic particles
Morales-Técotl, Hugo A; Ruelas, Juan C
2016-01-01
A recent proposal to connect the loop quantization with the spin foam model for cosmology via the path integral is hereby adapted to the case of mechanical systems within the framework of the so called polymer quantum mechanics. The mechanical models we consider are deparametrized and thus the group averaging technique is used to deal with the corresponding constraints. The transition amplitudes are written in a vertex expansion form used in the spin foam models, where here a vertex is actually a jump in position. Polymer Propagators previously obtained by spectral methods for a nonrelativistic polymer particle, both free and in a box, are regained with this method. Remarkably, the approach is also shown to yield the polymer propagator of the relativistic particle. This reduces to the standard form in the continuum limit for which the length scale parameter of the polymer quantization is taken to be small. Some possible future developments are commented upon.
Semi-classical locality for the non-relativistic path integral in configuration space
Gomes, Henrique
2015-01-01
In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...
Optimal Control of Finite Dimensional Quantum Systems
Mendonca, Paulo E M F
2009-01-01
This thesis addresses the problem of developing a quantum counter-part of the well established classical theory of control. We dwell on the fundamental fact that quantum states are generally not perfectly distinguishable, and quantum measurements typically introduce noise in the system being measured. Because of these, it is generally not clear whether the central concept of the classical control theory -- that of observing the system and then applying feedback -- is always useful in the quantum setting. We center our investigations around the problem of transforming the state of a quantum system into a given target state, when the system can be prepared in different ways, and the target state depends on the choice of preparation. We call this the "quantum tracking problem" and show how it can be formulated as an optimization problem that can be approached both numerically and analytically. This problem provides a simple route to the characterization of the quantum trade-off between information gain and distu...
Past Quantum States of a Monitored System
DEFF Research Database (Denmark)
Gammelmark, Søren; Julsgaard, Brian; Mølmer, Klaus
2013-01-01
A density matrix ρ(t) yields probabilistic information about the outcome of measurements on a quantum system. We introduce here the past quantum state, which, at time T, accounts for the state of a quantum system at earlier times tstate Ξ(t) is composed of two objects, ρ......(t) and E(t), conditioned on the dynamics and the probing of the system until t and in the time interval [t, T], respectively. The past quantum state is characterized by its ability to make better predictions for the unknown outcome of any measurement at t than the conventional quantum state at that time....... On the one hand, our formalism shows how smoothing procedures for estimation of past classical signals by a quantum probe [M. Tsang, Phys. Rev. Lett. 102 250403 (2009)] apply also to describe the past state of the quantum system itself. On the other hand, it generalizes theories of pre- and postselected...
Classical equations for quantum systems
Energy Technology Data Exchange (ETDEWEB)
Gell-Mann, M. (Theoretical Astrophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545) (United States) (Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501); Hartle, J.B. (Department of Physics, University of California enSanta Barbara, Santa Barbara, (California) 93106)
1993-04-15
The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. A formulation of quantum mechanics is used that predicts probabilities for the individual members of a set of alternative coarse-grained histories that [ital decohere], which means that there is negligible quantum interference between the individual histories in the set. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e., such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of the noise consisting of the fluctuations that typical mechanisms of decoherence produce. We describe the derivation of phenomenological equations of motion explicitly for a particular class of models.
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Joint system quantum descriptions arising from local quantumness
Cooney, Tom; Navascues, Miguel; Perez-Garcia, David; Villanueva, Ignacio
2012-01-01
Bipartite correlations generated by non-signalling physical systems that admit a finite-dimensional local quantum description cannot exceed the quantum limits, i.e., they can always be interpreted as distant measurements of a bipartite quantum state. Here we consider the effect of dropping the assumption of finite dimensionality. Remarkably, we find that the same result holds provided that we relax the tensor structure of space-like separated measurements to mere commutativity. We argue why an extension of this result to tensor representations seems unlikely.
Non-Markovian dynamics of open quantum systems
Fleming, Chris H.
An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature
A study of Quantum Correlations in Open Quantum Systems
Chakrabarty, Indranil; Siddharth, Nana
2010-01-01
In this work, we study quantum correlations in mixed states. The states studied are modelled by a two-qubit system interacting with its environment via a quantum nondemolition (purely dephasing) as well as dissipative type of interaction. The entanglement dynamics of this two qubit system is analyzed and the existence of entangled states which do not violate Bell's inequality, but can still be useful as a potential resource for teleportation are reported. In addition, a comparative study of various measures of quantum correlations, like Concurrence, Bell's inequality, Discord and Teleportation fidelity, is made on these states, generated by the above evolutions. Interestingly, examples are found, of states, where entanglement is vanishing, but discord is non-vanishing, bringing out the fact that entanglement is a subset of quantum correlations.
Quantum speed limits in open system dynamics.
del Campo, A; Egusquiza, I L; Plenio, M B; Huelga, S F
2013-02-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.
Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas
Niemiec, Jacek; Bret, Antoine; Wieland, Volkmar
2012-01-01
We present results of 2D3V particle-in-cell simulations of non-relativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While non-relativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.
Quantum ratchets in dissipative chaotic systems.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio; Shepelyansky, Dima L
2005-04-29
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for the implementation of the quantum ratchet effect with cold atoms in optical lattices.
Hybrid quantum systems of atoms and ions
Zipkes, Christoph; Palzer, Stefan; Sias, Carlo; Köhl, Michael
2010-01-01
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ...
Hybrid quantum systems of atoms and ions
Energy Technology Data Exchange (ETDEWEB)
Zipkes, Christoph; Ratschbacher, Lothar; Palzer, Stefan; Sias, Carlo; Koehl, Michael [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)
2011-01-10
In recent years, ultracold atoms have emerged as an exceptionally controllable experimental system to investigate fundamental physics, ranging from quantum information science to simulations of condensed matter models. Here we go one step further and explore how cold atoms can be combined with other quantum systems to create new quantum hybrids with tailored properties. Coupling atomic quantum many-body states to an independently controllable single-particle gives access to a wealth of novel physics and to completely new detection and manipulation techniques. We report on recent experiments in which we have for the first time deterministically placed a single ion into an atomic Bose Einstein condensate. A trapped ion, which currently constitutes the most pristine single particle quantum system, can be observed and manipulated at the single particle level. In this single-particle/many-body composite quantum system we show sympathetic cooling of the ion and observe chemical reactions of single particles in situ.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2016-11-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum chaos in open systems a quantum state diffusion analysis
Brun, T A; Schack, R; Brun, Todd A; Percival, Ian C; Schack, Rudiger
1995-01-01
Except for the universe, all quantum systems are open, and according to quantum state diffusion theory, many systems localize to wave packets in the neighborhood of phase space points. This is due to decoherence from the interaction with the environment, and makes the quasiclassical limit of such systems both more realistic and simpler in many respects than the more familiar quasiclassical limit for closed systems. A linearized version of this theory leads to the correct classical dynamics in the macroscopic limit, even for nonlinear and chaotic systems. We apply the theory to the forced, damped Duffing oscillator, comparing the numerical results of the full and linearized equations, and argue that this can be used to make explicit calculations in the decoherent histories formalism of quantum mechanics.
Quantum physics of light and matter photons, atoms, and strongly correlated systems
Salasnich, Luca
2017-01-01
This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...
Quasi-Periodically Driven Quantum Systems
Verdeny, Albert; Puig, Joaquim; Mintert, Florian
2016-10-01
Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasi-periodically driven quantum systems can be treated with generalisations of Floquet theory in suitable parameter regimes. Moreover, we provide a generalisation of the Floquet-Magnus expansion and argue that quasi-periodic driving offers a promising route for quantum simulations.
Adiabatic Quantum Search in Open Systems.
Wild, Dominik S; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y; Lukin, Mikhail D
2016-10-07
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Adiabatic Quantum Search in Open Systems
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Geometric quenches in quantum integrable systems
Mossel, J.; Palacios, G.; Caux, J.S.
2010-01-01
We consider the generic problem of suddenly changing the geometry of an integrable, one-dimensional many-body quantum system. We show how the physics of an initial quantum state released into a bigger system can be completely described within the framework of the algebraic Bethe ansatz, by providing
Linear response theory for quantum open systems
Wei, J. H.; Yan, YiJing
2011-01-01
Basing on the theory of Feynman's influence functional and its hierarchical equations of motion, we develop a linear response theory for quantum open systems. Our theory provides an effective way to calculate dynamical observables of a quantum open system at its steady-state, which can be applied to various fields of non-equilibrium condensed matter physics.
BANDWIDTH OF QUANTUM OPTICAL COMMUNICATION SYSTEM
Directory of Open Access Journals (Sweden)
I. R. Gulakov
2012-01-01
Full Text Available Impact of registered optical radiation intensity, overvoltage, dimensions of photosensitive surface, structure of p-n junction and avalanche photodetectors dead time operating in the photon counting mode on quantum optical system capacity has been carried out in this investigation. As a result, the quantum optical system maximum capacity of 81 kbit/s has been obtained.
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum Models of Classical World
Directory of Open Access Journals (Sweden)
Petr Hájíček
2013-02-01
Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.
Classical Equations for Quantum Systems
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e. such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of t...
Coherent Dynamics of Complex Quantum Systems
Akulin, Vladimir M
2006-01-01
A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...
Symmetries of Nonrelativistic Phase Space and the Structure of Quark-Lepton Generation
Zenczykowski, Piotr
2009-01-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x^2+p^2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space ...
Quantum Dynamics of Nonlinear Cavity Systems
Nation, Paul D.
2010-01-01
We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...
Anions, quantum particles in planar systems; Anions, particulas quanticas em sistemas planares
Energy Technology Data Exchange (ETDEWEB)
Monerat, Germano Amaral [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica]. E-mail: monerat@if.uff.br
2000-03-01
Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Non-perturbative description of quantum systems
Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander
2015-01-01
This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Imprints of the Quantum World in Classical Mechanics
de Gosson, Maurice A.; Hiley, Basil
2010-01-01
The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show Using no physical hypotheses) that the Schroedinger equation for a nonrelativistic system of spinless particles is a classical equation which is equivalent to Hamilton's equations.
Simulation of n-qubit quantum systems. V. Quantum measurements
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Conservation of energy and momentum in nonrelativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Watanabe, T.-H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Graduate University for Advanced Studies, Toki 509-5292 (Japan); Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan)
2013-02-15
Conservation laws of energy and momentum for nonrelativistic plasmas are derived from applying Noether's theorem to the action integral for the Vlasov-Poisson-Ampere system [Sugama, Phys. Plasmas 7, 466 (2000)]. The symmetric pressure tensor is obtained from modifying the asymmetric canonical pressure tensor with using the rotational symmetry of the action integral. Differences between the resultant conservation laws and those for the Vlasov-Maxwell system including the Maxwell displacement current are clarified. These results provide a useful basis for gyrokinetic conservation laws because gyrokinetic equations are derived as an approximation of the Vlasov-Poisson-Ampere system.
General coordinate invariance in quantum many-body systems
Brauner, Tomas; Monin, Alexander; Penco, Riccardo
2014-01-01
We extend the notion of general coordinate invariance to many-body, not necessarily relativistic, systems. As an application, we investigate nonrelativistic general covariance in Galilei-invariant systems. The peculiar transformation rules for the background metric and gauge fields, first introduced by Son and Wingate in 2005 and refined in subsequent works, follow naturally from our framework. Our approach makes it clear that Galilei or Poincare symmetry is by no means a necessary prerequisite for making the theory invariant under coordinate diffeomorphisms. General covariance merely expresses the freedom to choose spacetime coordinates at will, whereas the true, physical symmetries of the system can be separately implemented as "internal" symmetries within the vielbein formalism. A systematic way to implement such symmetries is provided by the coset construction. We illustrate this point by applying our formalism to nonrelativistic s-wave superfluids.
Limit cycles in quantum systems
Energy Technology Data Exchange (ETDEWEB)
Niemann, Patrick
2015-04-27
In this thesis we investigate Limit Cycles in Quantum Systems. Limit cycles are a renormalization group (RG) topology. When degrees of freedom are integrated out, the coupling constants flow periodically in a closed curve. The presence of limit cycles is restricted by the necessary condition of discrete scale invariance. A signature of discrete scale invariance and limit cycles is log-periodic behavior. The first part of this thesis is concerned with the study of limit cycles with the similarity renormalization group (SRG). Limit cycles are mainly investigated within conventional renormalization group frameworks, where degrees of freedom, which are larger than a given cutoff, are integrated out. In contrast, in the SRG potentials are unitarily transformed and thereby obtain a band-diagonal structure. The width of the band structure can be regarded as an effective cutoff. We investigate the appearance of limit cycles in the SRG evolution. Our aim is to extract signatures as well as the scaling factor of the limit cycle. We consider the 1/R{sup 2}-potential in a two-body system and a three-body system with large scattering lengths. Both systems display a limit cycle. Besides the frequently used kinetic energy generator we apply the exponential and the inverse generator. In the second part of this thesis, Limit Cycles at Finite Density, we examine the pole structure of the scattering amplitude for distinguishable fermions at zero temperature in the medium. Unequal masses and a filled Fermi sphere for each fermion species are considered. We focus on negative scattering lengths and the unitary limit. The properties of the three-body spectrum in the medium and implications for the phase structure of ultracold Fermi gases are discussed.
Nonrelativistic QED approach to the bound-electron g factor
Pachucki, K; Yerokhin, V A
2004-01-01
Within a systematic approach based on nonrelativistic quantum electrodynamics (NRQED), we derive the one-loop self-energy correction of order alpha (Zalpha)^4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order alpha^2 (Zalpha)^4 ln[(Zalpha)^-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g factor measurements.
Nonrelativistic QED Approach to the Bound-Electron g Factor
Pachucki, Krzysztof; Jentschura, Ulrich D.; Yerokhin, Vladimir A.
2004-10-01
Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order α(Zα)4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order α2(Zα)4ln([(Zα)-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g-factor measurements.
Quantum Simulation for Open-System Dynamics
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Workshop on quantum stochastic differential equations for the quantum simulation of physical systems
2016-09-22
SECURITY CLASSIFICATION OF: This is a report on the “Workshop on quantum stochastic differential equations for the quantum simulation of physical ...mathematical tools to the quantum simulation of physical systems of interest to the Army. There were participants from US Government agencies, industry, and... quantum stochastic differential equations for the quantum simulation of physical systems Report Title This is a report on the “Workshop on quantum
Quantum entanglement in condensed matter systems
Energy Technology Data Exchange (ETDEWEB)
Laflorencie, Nicolas, E-mail: laflo@irsamc.ups-tlse.fr
2016-08-03
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Quantum entanglement in condensed matter systems
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
An Application of Quantum Finite Automata to Interactive Proof Systems
Nishimura, H; Nishimura, Harumichi; Yamakami, Tomoyuki
2004-01-01
Quantum finite automata have been studied intensively since their introduction in late 1990s as a natural model of a quantum computer with finite-dimensional quantum memory space. This paper seeks their direct application to interactive proof systems in which a mighty quantum prover communicates with a quantum-automaton verifier through a common communication cell. Our quantum interactive proof systems are juxtaposed to Dwork-Stockmeyer's classical interactive proof systems whose verifiers are two-way probabilistic automata. We demonstrate strengths and weaknesses of our systems and further study how various restrictions on the behaviors of quantum-automaton verifiers affect the power of quantum interactive proof systems.
Emergent "Quantum" Theory in Complex Adaptive Systems.
Minic, Djordje; Pajevic, Sinisa
2016-04-30
Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.
Open quantum systems and error correction
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Supersymmetric solutions for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)
2009-01-15
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model
Żenczykowski, Piotr
2015-01-01
We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
Quantum liquids in correlated systems
Kusminskiy, Silvia Viola
Particular aspects of two different relevant systems in contemporary Condensed Matter Physics are studied: heavy fermion materials and the newly discovered graphene (an atom thick layer of graphite), specifically its bilayer. On one hand, the physics of heavy fermion materials under strong external magnetic fields is analyzed from a mean field point of view. The evolution of the heavy fermion ground state under the application of a magnetic field is investigated. A richer version of the usual hybridization mean field theory is presented, which allows for hybridization in both the singlet and triplet channels and incorporates a self-consistent Weiss field. It is shown that for a magnetic field strength B⋆, at a filling-dependent fraction of the zero-field hybridization gap, the spin up quasiparticle band becomes fully polarized---an event marked by a sudden jump in the magnetic susceptibility. The system exhibits a kind of quantum rigidity in which the susceptibility (and several other physical observables) are insensitive to further increases in field strength. This behavior ends abruptly with the collapse of the hybridization order parameter in a first-order transition to the normal metallic state. It is argued that the feature at B⋆ corresponds to the "metamagnetic transition" in YbRh2Si2. These results are in good agreement with recent experimental measurements. For the case of the graphene bilayer, the effect of electron-electron interactions on the properties of a graphene bilayer is studied within the Hartree-Fock-Thomas-Fermi theory. It is found that the electronic compressibility is rather different from those of either the two-dimensional electron gas or ordinary semiconductors. An inherent competition between the contributions coming from intra-band exchange interactions and inter-band interactions leads to a non-monotonic behavior of the compressibility as a function of carrier density. Also analyzed is the effect of the interactions on the
Elements of a new approach to time in Quantum Mechanics
Dias, Eduardo O.; Parisio, Fernando
2015-01-01
In this work we present a re-evaluation of the concept of time in non-relativistic quantum theory. We suggest a formalism in which time is changed into the status of an operator, and where expectation values of observables and the state of a quantum system are reworked. This approach leads us to an additional concept, given by a temporal probability distribution associated with the actual measurement of an observable.
Abdelmadjid Maireche
2017-01-01
The modified theories of noncommutative quantum mechanics have engrossed much attention in the last decade, especially its application to the fundamental three equations: Schrödinger, Klein-Gordon and Dirac equations. In this contextual exploration, we further investigate for modified quadratic Yukawa potential plus Mie-type potential (MIQYM) in the framework of modified nonrelativistic Schrödinger equation (MSE) using generalization of Bopp’s shift method and standard perturbation theory ins...
Directory of Open Access Journals (Sweden)
Bezyaev Vladimir Ivanovich
2014-09-01
Full Text Available The authors present an efficient algorithm different from the previously known to construct the asymptotics of solutions of nonautonomous systems of ordinary differential equations with meromorphic matrix. Schrödinger equation, Dirac system, Lippman-Schwinger equation and other equations of quantum mechanics with spherically symmetric and meromorphic potentials may be reduced to such systems. The Schrödinger equation and the Dirac system describe the stationary states of an electron in a Coulomb field with a fixed point charge in the description of the relativistic and nonrelativistic hydrogen atom. The Lippman-Schwinger equation of scattering theory describes the results of collision and interaction of quantum-mechanical particles in mathematical language after these particles have already diverged a long way from one another and ceased to interact. The observed algorithm supplements the known results and allows you to approach the analysis of the problems of this type with a fairly simple and at the same time, a universal point of view.
Excess entropy production in quantum system: Quantum master equation approach
Nakajima, Satoshi; Tokura, Yasuhiro
2016-01-01
For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess...
Noise management to achieve superiority in quantum information systems
Nemoto, Kae; Devitt, Simon; Munro, William J.
2017-06-01
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority. This article is part of the themed issue 'Quantum technology for the 21st century'.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-01
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Note on quantum groups and integrable systems
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Toward simulating complex systems with quantum effects
Kenion-Hanrath, Rachel Lynn
Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Classical Boolean logic gates with quantum systems
Energy Technology Data Exchange (ETDEWEB)
Renaud, N; Joachim, C, E-mail: n-renaud@northwestern.edu [Nanoscience Group and MANA Satellite CEMES/CNRS, 29 rue J Marvig, BP 94347, 31055 Toulouse Cedex (France)
2011-04-15
An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, {alpha} = {l_brace}{alpha}{sub 1}, ..., {alpha}{sub N}{r_brace}, is used to control well-identified parameters of the Hamiltonian of the system noted H{sub 0}({alpha}). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.
Open quantum systems far from equilibrium
Schaller, Gernot
2014-01-01
This monograph provides graduate students and also professional researchers aiming to understand the dynamics of open quantum systems with a valuable and self-contained toolbox. Special focus is laid on the link between microscopic models and the resulting open-system dynamics. This includes how to derive the celebrated Lindblad master equation without applying the rotating wave approximation. As typical representatives for non-equilibrium configurations it treats systems coupled to multiple reservoirs (including the description of quantum transport), driven systems, and feedback-controlled quantum systems. Each method is illustrated with easy-to-follow examples from recent research. Exercises and short summaries at the end of every chapter enable the reader to approach the frontiers of current research quickly and make the book useful for quick reference.
Quantum hacking: attacking practical quantum key distribution systems
Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong
2007-09-01
Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.
Nonrelativistic QED expansion for the electron self-energy
Patkóš, V.; Šimsa, D.; Zamastil, J.
2017-01-01
The recently proposed relativistic multipole expansion (RME) of the self-energy effect suggests some observations on the nonrelativistic expansion of the effect. First, the nature of the series for the one-loop self-energy of an electron bound by the Coulomb field of the nucleus is clarified. It is shown that the expansion of the energy shift caused by the self-energy effect contains terms of the form α (Zα ) 7ln(Z α ) , α (Zα ) 8ln3(Z α ) , α (Zα ) 9ln2(Z α ) , α (Zα ) 10ln4(Z α ) , and so on. Here Z is the charge of the nucleus. The origin of these terms is traced back to the logarithmic divergence of the Dirac S -wave function at the origin. These terms eventually lead to breakdown of the nonrelativistic quantum electrodynamics approach. Second, at leading order relativistic multipole expansion requires an evaluation of the "extended Bethe logarithm" (EBL). When expanded in series in Z α EBL reduces at leading order to the ordinary Bethe logarithm. However, it is argued that it is both more accurate and easier to calculate the EBL than the ordinary Bethe logarithm. Both variants of the Bethe logarithm can be calculated by means of the pseudostate method. An improvement of this method is suggested. Finally, the contribution of the combined self-energy vacuum polarization contribution to the Lamb shift in muonic hydrogen for the 1 s -4 s and 2 p -4 p states by means of the EBL is calculated. For cases that had already been calculated the results reported here are more accurate than the previous ones.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco; 10.1038/srep00885
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Superconducting Quantum Arrays for Broadband RF Systems
Kornev, V.; Sharafiev, A.; Soloviev, I.; Kolotinskiy, N.; Mukhanov, O.
2014-05-01
Superconducting Quantum Arrays (SQAs), homogenous arrays of Superconducting Quantum Cells, are developed for implementation of broadband radio frequency (RF) systems capable of providing highly linear magnetic signal to voltage transfer with high dynamic range, including active electrically small antennas (ESAs). Among the proposed quantum cells which are bi-SQUID and Differential Quantum Cell (DQC), the latter delivered better performance for SQAs. A prototype of the transformer-less active ESA based on a 2D SQA with nonsuperconducting electric connection of the DQCs was fabricated using HYPRES niobium process with critical current density 4.5 kA/cm2. The measured voltage response is characterized by a peak-to-peak swing of ~100 mV and steepness of ~6500 μV/μT.
Stochastic description for open quantum systems
Calzetta, E A; Verdaguer, E; Calzetta, Esteban; Roura, Albert; Verdaguer, Enric
2000-01-01
A linear open quantum system consisting of a harmonic oscillator coupled linearly to an infinite set of independent harmonic oscillators is considered; these oscillators have a general spectral density function and are initially in thermal equilibrium. Using the influence functional formalism a formal Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. It is shown that the reduced Wigner function for the system is exactly the formal distribution function resulting from averaging both over the initial conditions and the stochastic source of the formal Langevin equation. The master equation for the reduced density matrix is then obtained in the same way a Fokker-Planck equation can always be derived from a Langevin equation characterizing a stochastic process. We also show that the quantum correlation functions for the system can be deduced within the stochastic description provided by the Langevin equation. It is emphasized that when the s...
Quantum scaling in many-body systems
Continentino, Mucio A
2001-01-01
This book on quantum phase transitions has been written by one of the pioneers in the application of scaling ideas to many-body systems - a new and exciting subject that has relevance to many areas of condensed matter and theoretical physics. One of the few books on the subject, it emphasizes strongly correlated electronic systems. Although dealing with complex problems in statistical mechanics, it does not lose sight of the experiments and the actual physical systems which motivate the theoretical work. The book starts by presenting the scaling theory of quantum critical phenomena. Critical e
On the Velocity of Moving Relativistic Unstable Quantum Systems
Directory of Open Access Journals (Sweden)
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Scattering theory for open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Behrndt, Jussi [Technische Univ. Berlin (Germany). Inst. fuer Mathematik; Malamud, Mark M. [Donetsk National University (Ukraine). Dept. of Mathematics; Neidhardt, Hagen [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)
2006-07-01
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator A{sub D} in a Hilbert space H is used to describe an open quantum system. In this case the minimal self-adjoint dilation K of A{sub D} can be regarded as the Hamiltonian of a closed system which contains the open system {l_brace}A{sub D},h{r_brace}, but since K is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family {l_brace}A({mu}){r_brace} of maximal dissipative operators depending on energy {mu}, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schroedinger-Poisson systems. (orig.)
Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking
Griffin, Tom; Horava, Petr; Yan, Ziqi
2015-01-01
Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.
Statistical thermodynamics of polymer quantum systems
Chacón-Acosta, Guillermo; Dagdug, Leonardo; Morales-Técotl, Hugo A
2011-01-01
Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the...
Heisenberg Picture Approach to the Stability of Quantum Markov Systems
Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-01-01
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this...
On the velocity of moving relativistic unstable quantum systems
Urbanowski, K
2015-01-01
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not definite.
Magnetically driven quantum heat engine
Muñoz, Enrique; Peña, Francisco J.
2014-05-01
We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the "working substance" a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.
The quantum human central neural system.
Alexiou, Athanasios; Rekkas, John
2015-01-01
In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere.
Quantum Aharonov-Bohm Billiard System
Chuu, D S; Chuu, Der-San; Lin, De-Hone
1999-01-01
The Green's functions of the two and three-dimensional relativistic Aharonov-Bohm (A-B) systems are given by the path integral approach. In addition the exact radial Green's functions of the spherical A-B quantum billiard system in two and three-dimensional are obtained via the perturbation techanique of $\\delta $-function.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...
Recent advances in quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F
2005-07-01
This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.
Mass of nonrelativistic meson from leading twist distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)
2011-01-15
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
Quantum Algorithm for the Toeplitz Systems
Wan, Lin-Chun; Pan, Shi-Jie; Gao, Fei; Wen, Qiao-Yan
2016-01-01
Solving the Toeplitz systems, which is to find the vector $x$ such that $T_nx = b$ given a $n\\times n$ Toeplitz matrix $T_n$ and a vector $b$, has a variety of applications in mathematics and engineering. In this paper, we present a quantum algorithm for solving the Toeplitz systems, in which a quantum state encoding the solution with error $\\epsilon$ is generated. It is shown that our algorithm's complexity is nearly linear in the condition number, and polylog in the dimensions $n$ and in the inverse error $\\epsilon^{-1}$. This implies our algorithm is exponentially faster than the best classical algorithm for the same problem if the condition number of $T_n$ is $O(\\textrm{poly}(\\textrm{log}\\,n))$. Since no assumption on the sparseness of $T_n$ is demanded in our algorithm, the algorithm can serve as an example of quantum algorithms for solving non-sparse linear systems.
Adiabatic Theorem for Quantum Spin Systems
Bachmann, S.; De Roeck, W.; Fraas, M.
2017-08-01
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
Heisenberg picture approach to the stability of quantum Markov systems
Energy Technology Data Exchange (ETDEWEB)
Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au [Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Amini, Hadis, E-mail: nhamini@stanford.edu [Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Gough, John, E-mail: jug@aber.ac.uk [Institute of Mathematics and Physics, Aberystwyth University, SY23 3BZ Wales (United Kingdom); Ugrinovskii, Valery, E-mail: v.ugrinovskii@gmail.com [School of Engineering and Information Technology, University of New South Wales at ADFA, Canberra, ACT 2600 (Australia); James, Matthew R., E-mail: matthew.james@anu.edu.au [ARC Centre for Quantum Computation and Communication Technology, Research School of Engineering, Australian National University, Canberra, ACT 0200 (Australia)
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu; Amini, Hadis; Miao, Zibo; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-01
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Palge, Veiko; Dunningham, Jacob; Hasegawa, Yuji
2016-01-01
In quantum physics Wigner's rotation is commonly regarded as confirmed by the Thomas precession in a hydrogen like atom. In this paper we show that a direct experimental verification of Wigner's rotation is in principle accessible in the regime of non-relativistic velocities at $2 \\cdot 10^3\\,$m/s and propose an experiment using thermal neutrons. The experiment can be carried out in a laboratory and it provides a test of relativity in the quantum domain.
Relativistic quantum metrology in open system dynamics.
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-22
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.
Time dilation in quantum systems and decoherence
Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2017-02-01
Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered.
Network realization of triplet-type quantum stochastic systems
Zhou, Shaosheng; Fu, Shizhou; Chen, Yuping
2017-01-01
This paper focuses on a problem of network synthesis for a class of quantum stochastic systems. The systems under consideration are of triplet-type form and stem from linear quantum optics and linear quantum circuits. A new quantum network realization approach is proposed by generalizing the scattering operator from the scalar form to a unitary matrix in network components. It shows that the triplet-type quantum stochastic system can be approximated by a quantum network which consists of some one-degree-of-freedom generalized open-quantum harmonic oscillators (1DGQHOs) via series, concatenation and feedback connections.
Energy Technology Data Exchange (ETDEWEB)
Scheck, Florian [Mainz Univ. (Germany). Inst. fuer Physik, Theoretische Elementarteilchenphysik
2013-11-01
New edition with added sections on nonlinear quantum mechanics and path integral methods in field theory. Contains an encyclopedic coverage from uncertainty relation to many-body systems, from symmetries to electroweak interation. Includes problems, partly with solutions, partly with hints towards solutions. Starting with basic principles and providing the framework all vital elements of nonrelativistic quantum mechanics are explained, even an introduction to quantum electrodynamics is included. Scheck's Quantum Physics presents a comprehensive introductory treatment, ideally suited for a two-semester course. Part One covers the basic principles and prime applications of quantum mechanics, from the uncertainty relations to many-body systems. Part Two introduces to relativistic quantum field theory and ranges from symmetries in quantum physics to electroweak interactions. Numerous worked-out examples as well as exercises, with solutions or hints, enables the book's use as an accompanying text for courses, and also for independent study. For both parts, the necessary mathematical framework is treated in adequate form and detail. The book ends with appendices covering mathematical fundamentals and enrichment topics, plus selected biographical notes on pioneers of quantum mechanics and quantum field theory. The new edition was thoroughly revised and now includes new sections on quantization using the path integral method and on deriving generalized path integrals for bosonic and fermionic fields.
Constraint algebra for interacting quantum systems
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Storage of energy in confined quantum systems
Malbouisson, A. P. C.
2002-01-01
Using the non-perturbative method of {\\it dressed} states introduced in previous publications [N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.{\\bf A34}, 3735, (2001); G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, Phys. Rev. A, {\\bf 65}, 063314 (2002)], we study the evolution of a confined quantum mechanical system embedded in a {\\it ohmic} environment. Our approach furnishes a theoretical mechanism to control inhibition of the decay of excited quantum systems in cavities, in b...
Quons in a Quantum Dissipative System
Lee, Taejin
2015-01-01
String theory proves to be an imperative tool to explore the critical behavior of the quantum dissipative system. We discuss the quantum particles moving in two dimensions, in the presence of a uniform magnetic field, subject to a periodic potential and a dissipative force, which are described by the dissipative Wannier-Azbel-Hofstadter (DWAH) model. Using string theory formulation of the model, we find that the elementary excitations of the system at the generic points of the off-critical regions, in the zero temperature limit are quons, which satisfy q-deformed statistics.
Reversible part of a quantum dynamical system
2016-01-01
In this work a quantum dynamical system $(\\mathfrak M,\\Phi, \\varphi)$ is constituted by a von Neumann algebra $\\mathfrak M$, by a unital Schwartz map $\\Phi:\\mathfrak{M\\rightarrow M}$ and by a $\\Phi$-invariant normal faithful state $\\varphi$ on $\\mathfrak M$. The ergodic properties of a quantum dynamical system, depends on its reversible part $(\\mathfrak{D}_\\infty,\\Phi_\\infty, \\varphi_\\infty)$. It is constituted by a von Neumann sub-algebra $\\mathfrak{D}_\\infty$ of $\\mathfrak M$ by an automorp...
Teleportation in an indivisible quantum system
Directory of Open Access Journals (Sweden)
Kiktenko E.O.
2016-01-01
Full Text Available Teleportation protocol is conventionally treated as a method for quantum state transfer between two spatially separated physical carriers. Recent experimental progress in manipulation with high-dimensional quantum systems opens a new framework for implementation of teleportation protocols. We show that the one-qubit teleportation can be considered as a state transfer between subspaces of the whole Hilbert space of an indivisible eight-dimensional system. We explicitly show all corresponding operations and discuss an alternative way of implementation of similar tasks.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Nonequilibrium quantum dynamics in optomechanical systems
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Feshbach Projection Formalism for Open Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2013-08-01
We provide a new approach to open quantum systems which is based on the Feshbach projection method. Instead of looking for a master equation for the dynamical map acting in the space of density operators we provide the corresponding equation for the evolution in the Hilbert space of the amplitude operators. Its solution enables one to construct a legitimate quantum evolution (completely positive and trace preserving). Our approach, contrary to the standard Nakajima-Zwanzig method, allows for a series of consistent approximations resulting in a legitimate quantum evolution. The new scheme is illustrated by the well-known spin-boson model beyond the rotating wave approximation. It is shown that the presence of counterrotating terms dramatically changes the asymptotic evolution of the system.
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Quantum emulation of quasiperiodic systems
Senaratne, Ruwan; Geiger, Zachary; Fujiwara, Kurt; Singh, Kevin; Rajagopal, Shankari; Weld, David
2016-05-01
Tunable quasiperiodic optical traps can enable quantum emulation of electronic phenomena in quasicrystals. A 1D bichromatic lattice or a Gaussian beam intersecting a 2D square lattice in a direct analogy of the ``cut-and-project'' construction can be used to create tunable 1D quasiperiodic potentials for cold neutral atoms. We report on progress towards the observation of singular continuous diffraction patterns, fractal energy spectra, and Bloch oscillations in these synthetic quasicrystals. We will also discuss the existence of edge states which can be topologically pumped across the lattice by varying a phasonic parameter. We acknowledge support from the ONR, the ARO and the PECASE and DURIP programs, the AFOSR, the Alfred P. Sloan foundation and the President's Research Catalyst Award from the University of California Office of the President.
Lyapunov control of quantum systems with impulsive control fields.
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Topics on the stochastical treatement of an open quantum system
Sturzu, I
2002-01-01
The paper shortly presents the role of Stochastic Processes Theory in the present day Quantum Theory, and the relation to Operational Quantum Physics. The dynamics of an open quantum system is studied on a usual example from Quantum Optics, suggesting the definition of a Neumark-type dilation for the non-thermal states.
Classical system boundaries cannot be determined within quantum Darwinism
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
Quantum dynamics of biological systems and dust plasma nanoparticles
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.
2012-12-01
A quantum solution of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with convection and linear diffusion is obtained which can provide the basis for the quantum biology and quantum microphysics equation. On this basis, quantum emission of biological systems, separate microorganisms (cells or bacteria), and dust plasma particles is investigated.
Quantum Entanglement in Optical Lattice Systems
2015-02-18
SECURITY CLASSIFICATION OF: Optical lattice systems provide an ideal platform for investigating entanglement because of their unprecedented level of...ABSTRACT Final report for ARO grant entitled "Quantum Entanglement in Optical Lattice Systems" Report Title Optical lattice systems provide an ideal ...2010): 0. doi: 10.1103/PhysRevA.82.063612 D. Blume, K. Daily. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
System and method for making quantum dots
Bakr, Osman M.
2015-05-28
Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.
Quantum Phase Transitions in a Finite System
Leviatan, A
2006-01-01
A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.
Eigenstate tracking in open quantum systems
Jing, Jun; Sarandy, Marcelo S.; Lidar, Daniel A.; Luo, Da-Wei; Wu, Lian-Ao
2016-10-01
Keeping a quantum system in a given instantaneous eigenstate is a control problem with numerous applications, e.g., in quantum information processing. The problem is even more challenging in the setting of open quantum systems, where environment-mediated transitions introduce additional decoherence channels. Adiabatic passage is a well-established solution but requires a sufficiently slow evolution time that is dictated by the adiabatic theorem. Here we develop a systematic projection theory formulation for the transitionless evolution of general open quantum systems described by time-local master equations. We derive a time-convolutionless dynamical equation for the target instantaneous eigenstate of a given time-dependent Hamiltonian. A transitionless dynamics then arises in terms of a competition between the average Hamiltonian gap and the decoherence rate, which implies optimal adiabaticity timescales. We show how eigenstate tracking can be accomplished via control pulses, without explicitly incorporating counter-diabatic driving, thus offering an alternative route to accelerate adiabaticity. We examine rectangular pulses, chaotic signals, and white noise, and find that, remarkably, the effectiveness of eigenstate tracking hardly depends on the details of the control functions. In all cases the control protocol keeps the system in the desired instantaneous eigenstate throughout the entire evolution, along an accelerated adiabatic path.
Lithography system using quantum entangled photons
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Duality in the quantum Hall system
Lütken, C. A.; Ross, G. G.
1992-05-01
We suggest that a unified description of the integer and fractional phases of the quantum Hall system may be possible if the scaling diagram of transport coefficients is invariant under linear fractional (modular) transformations. In this model the hierarchy of states, as well as the observed universality of critical exponents, are consequences of a discrete SL(2,openZ) symmetry acting on the parameter space of an effective quantum-field theory. Available scaling data on the position of delocalization fixed points in the integer case and the position of mobility fixed points in the fractional case agree with the model within experimental accuracy.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Energy Technology Data Exchange (ETDEWEB)
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Star Products for Relativistic Quantum Mechanics
Henselder, P.
2007-01-01
The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.
Global canonical symmetry in a quantum system
Institute of Scientific and Technical Information of China (English)
李子平
1996-01-01
Based on the phase-space path integral for a system with a regular or singular Lagrangian the generalized canonical Ward identities under the global symmetry transformation in extended phase space are deduced respectively, thus the relations among Green functions can be found. The connection between canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage of our formulation is that we do not need to carry out the integration over the canonical momenta in phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear sigma model with Hopf and Chern-Simons terms is reexamined. The property of fractional spin at quantum level has been clarified.
Dynamics of quantum trajectories in chaotic systems
Wisniacki, D A; Benito, R M
2003-01-01
Quantum trajectories defined in the de Broglie--Bohm theory provide a causal way to interpret physical phenomena. In this Letter, we use this formalism to analyze the short time dynamics induced by unstable periodic orbits in a classically chaotic system, a situation in which scars are known to play a very important role. We find that the topologies of the quantum orbits are much more complicated than that of the scarring and associated periodic orbits, since the former have quantum interference built in. Thus scar wave functions are necessary to analyze the corresponding dynamics. Moreover, these topologies imply different return routes to the vicinity of the initial positions, and this reflects in the existence of different contributions in each peak of the survival probability function.
Simple quantum systems in the momentum representation
Núñez-Yépez, H N; Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
The momentum representation is seldom used in quantum mechanics courses. Some students are thence surprised by the change in viewpoint when, in doing advanced work, they have to use the momentum rather than the coordinate representation. In this work, we give an introduction to quantum mechanics in momentum space, where the Schrödinger equation becomes an integral equation. To this end we discuss standard problems, namely, the free particle, the quantum motion under a constant potential, a particle interacting with a potential step, and the motion of a particle under a harmonic potential. What is not so standard is that they are all conceived from momentum space and hence they, with the exception of the free particle, are not equivalent to the coordinate space ones with the same names. All the problems are solved within the momentum representation making no reference to the systems they correspond to in the coordinate representation.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Polymer quantum mechanics some examples using path integrals
Energy Technology Data Exchange (ETDEWEB)
Parra, Lorena [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., México and Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Vergara, J. David [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F. (Mexico)
2014-01-14
In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.
Edge reconstructions in fractional quantum Hall systems.
Joglekar, Yogesh; Nguyen, Hoang; Murthy, Ganpathy
2003-03-01
Two dimensional electron systems exhibiting fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are possible [1]. We present a microscopic calculation of these egde-states at filling factors ν=1/3 and ν=2/5 using the Hamiltonian theory of the fractional quantum Hall effect [2]. We find that the quantum Hall egde undergoes a reconstruction as the confining potential, produced by the background charge density, softens [3,4]. Our results have implications to the tunneling experiments into the edge of a fractional quantum Hall system [5]. 1: X. G.Wen, Phys. Rev. Lett. 64, 2206 (1990). 2: R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 3: C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227 (1994). 4: X. Wan, K. Yang, and E. H. Razayi, Phys. Rev. Lett. 88, 056802 (2002). 5: A.M.Chang et al., Phys. Rev. Lett. 86, 143 (2000).
Periodic thermodynamics of open quantum systems
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Nonrelativistic effective field theory for axions
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-10-01
Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .
Vortex dynamics in nonrelativistic Abelian Higgs model
Directory of Open Access Journals (Sweden)
A.A. Kozhevnikov
2015-11-01
Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Statistical entropy of open quantum systems
Durão, L. M. M.; Caldeira, A. O.
2016-12-01
Dissipative quantum systems are frequently described within the framework of the so-called "system-plus-reservoir" approach. In this work we assign their description to the Maximum Entropy Formalism and compare the resulting thermodynamic properties with those of the well-established approaches. Due to the non-negligible coupling to the heat reservoir, these systems are nonextensive by nature, and the former task may require the use of nonextensive parameter dependent informational entropies. In doing so, we address the problem of choosing appropriate forms of those entropies in order to describe a consistent thermodynamics for dissipative quantum systems. Nevertheless, even having chosen the most successful and popular forms of those entropies, we have proven our model to be a counterexample where this sort of approach leads us to wrong results.
Security of practical quantum key distribution systems
Energy Technology Data Exchange (ETDEWEB)
Jain, Nitin
2015-02-24
This thesis deals with practical security aspects of quantum key distribution (QKD) systems. At the heart of the theoretical model of any QKD system lies a quantum-mechanical security proof that guarantees perfect secrecy of messages - based on certain assumptions. However, in practice, deviations between the theoretical model and the physical implementation could be exploited by an attacker to break the security of the system. These deviations may arise from technical limitations and operational imperfections in the physical implementation and/or unrealistic assumptions and insufficient constraints in the theoretical model. In this thesis, we experimentally investigate in depth several such deviations. We demonstrate the resultant vulnerabilities via proof-of-principle attacks on a commercial QKD system from ID Quantique. We also propose countermeasures against the investigated loopholes to secure both existing and future QKD implementations.
Notions of controllability for quantum mechanical systems
Albertini, F
2001-01-01
In this paper, we define four different notions of controllability of physical interest for multilevel quantum mechanical systems. These notions involve the possibility of driving the evolution operator as well as the state of the system. We establish the connections among these different notions as well as methods to verify controllability. The paper also contains results on the relation between the controllability in arbitrary small time of a system varying on a compact transformation Lie group and the corresponding system on the associated homogeneous space. As an application, we prove that, for the system of two interacting spin 1/2 particles, not every state transfer can be obtained in arbitrary small time.
Quantum chaos inside space-temporal Sinai billiards
Addazi, Andrea
2016-01-01
We discuss general aspects of non-relativistic quantum chaos theory of scattering of a quantum particle on a system of a large number of naked singularities. We define such a system space-temporal Sinai billiard We dis- cuss the problem in semiclassical approach. We show that in semiclassical regime the formation of trapped periodic semiclassical orbits inside the sys- tem is unavoidable. This leads to general expression of survival probabilities and scattering time delays, expanded to the chaotic Pollicott-Ruelle reso- nances. Finally, we comment on possible generalizations of these aspects to relativistic quantum field theory.
Geometric measure of quantum discord for an arbitrary state of a bipartite quantum system
Hassan, Ali Saif M; Joag, Pramod S
2010-01-01
Quantum discord, as introduced by Olliver and Zurek [Phys. Rev. Lett. \\textbf{88}, 017901 (2001)], is a measure of the discrepancy between quantum versions of two classically equivalent expressions for mutual information. Dakic, Vedral, and Brukner [arXiv:1004.0190 (2010)] introduced a geometric measure of quantum discord and derived an explicit formula for any two-qubit state. Luo and Fu [Phys. Rev. A \\textbf{82}, 034302 (2010)] introduced another form for geometric measure of quantum discord. We find an exact formula for the geometric measure of quantum discord for an arbitrary state of a $m\\times n$ bipartite quantum system.
Quantum computation in a quantum-dot-Majorana-fermion hybrid system
Xue, Zheng-Yuan
2012-01-01
We propose a scheme to implement universal quantum computation in a quantum-dot-Majorana-fermion hybrid system. Quantum information is encoded on pairs of Majorana fermions, which live on the the interface between topologically trivial and nontrivial sections of a quantum nanowire deposited on an s-wave superconductor. Universal single-qubit gates on topological qubit can be achieved. A measurement-based two-qubit Controlled-Not gate is produced with the help of parity measurements assisted by the quantum-dot and followed by prescribed single-qubit gates. The parity measurement, on the quantum-dot and a topological qubit, is achieved by the Aharonov- Casher effect.
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
Nonrelativistic anti-Snyder model and some applications
Ching, C. L.; Yeo, C. X.; Ng, W. K.
2017-01-01
In this paper, we examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the nonrelativistic anti-Snyder model which is relevant to doubly/deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigensolutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states nmax due to the orthogonality of the polynomials and the maximum energy is truncated at nmax. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti-Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit β → 0. By taking m → 0, we explore the motion of effective massless charged fermions in graphene-like material and obtained a maximum bound of deformed parameter βmax. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.
Quantum Monte Carlo approaches for correlated systems
Becca, Federico
2017-01-01
Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-01
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Multiple-state quantum Otto engine, 1D box system
Energy Technology Data Exchange (ETDEWEB)
Latifah, E., E-mail: enylatifah@um.ac.id [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya, Indonesia and Physics Department, Malang State University (Indonesia); Purwanto, A. [Laboratory of Theoretical Physics and Natural Philosophy, Physics Department, Institut Teknologi Sepuluh Nopember, ITS, Surabaya (Indonesia)
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Mesoscopic systems: classical irreversibility and quantum coherence.
Barbara, Bernard
2012-09-28
Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like
Semi-classical Locality for the Non-relativistic Path Integral in Configuration Space
Gomes, Henrique
2017-09-01
In an accompanying paper Gomes (arXiv:1504.02818, 2015), we have put forward an interpretation of quantum mechanics based on a non-relativistic, Lagrangian 3+1 formalism of a closed Universe M, existing on timeless configuration space Q of some field over M. However, not much was said there about the role of locality, which was not assumed. This paper is an attempt to fill that gap. Locality in full can only emerge dynamically, and is not postulated. This new understanding of locality is based solely on the properties of extremal paths in configuration space. I do not demand locality from the start, as it is usually done, but showed conditions under which certain systems exhibit it spontaneously. In this way we recover semi-classical local behavior when regions dynamically decouple from each other, a notion more appropriate for extension into quantum mechanics. The dynamics of a sub-region O within the closed manifold M is independent of its complement, M-O, if the projection of extremal curves on Q onto the space of extremal curves intrinsic to O is a surjective map. This roughly corresponds to e^{i\\hat{H}t}circ prO= prOcirc e^{i\\hat{H}t}, where prO:Q→ Q_O^{partial O} is a linear projection. This criterion for locality can be made approximate—an impossible feat had it been already postulated—and it can be applied for theories which do not have hyperbolic equations of motion, and/or no fixed causal structure. When two regions are mutually independent according to the criterion proposed here, the semi-classical path integral kernel factorizes, showing cluster decomposition which is the ultimate aim of a definition of locality.
Nearly-linear light cones in long-range interacting quantum systems
Foss-Feig, Michael; Clark, Charles W; Gorshkov, Alexey V
2014-01-01
In non-relativistic quantum theories with short-range Hamiltonians, a velocity $v$ can be chosen such that the influence of any local perturbation is approximately confined to within a distance $r$ until a time $t \\sim r/v$, thereby defining a linear light cone and giving rise to an emergent notion of locality. In systems with power-law ($1/r^{\\alpha}$) interactions, when $\\alpha$ exceeds the dimension $D$, an analogous bound confines influences to within a distance $r$ only until a time $t\\sim(\\alpha/v)\\log r$, suggesting that the velocity, as calculated from the slope of the light cone, may grow exponentially in time. We rule out this possibility; light cones of power-law interacting systems are algebraic for $\\alpha>2D$, becoming linear as $\\alpha\\rightarrow\\infty$. Our results impose strong new constraints on the growth of correlations and the production of entangled states in a variety of rapidly emerging, long-range interacting atomic, molecular, and optical systems.
Controllability of multi-partite quantum systems and selective excitation of quantum dots
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S G [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Pullen, I C H [Department of Applied Mathematics and Computing, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Solomon, A I [Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2005-10-01
We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots.
Classical synchronization indicates persistent entanglement in isolated quantum systems
Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc
2017-04-01
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.
Multimode optomechanical system in the quantum regime
Nielsen, William H P; Møller, Christoffer B; Polzik, Eugene S; Schliesser, Albert
2016-01-01
We realise a simple and robust optomechanical system with a multitude of long-lived ($Q>10^7$) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate ($96~\\mathrm{kHz}$) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures ($10\\,\\mathrm{K}$). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths $\\lesssim 90\\,\\mathrm{ kHz}$. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.
Path integrals for dimerized quantum spin systems
Energy Technology Data Exchange (ETDEWEB)
Foussats, Adriana, E-mail: afoussats@gmail.co [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Greco, Andres [Facultad de Ciencias Exactas, Ingenieria y Agrimensura and Instituto de Fisica Rosario (UNR-CONICET), Av. Pellegrini 250, 2000 Rosario (Argentina); Muramatsu, Alejandro [Institut fuer Theoretische Physik III, Universitaet Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany)
2011-01-11
Dimerized quantum spin systems may appear under several circumstances, e.g. by a modulation of the antiferromagnetic exchange coupling in space, or in frustrated quantum antiferromagnets. In general, such systems display a quantum phase transition to a Neel state as a function of a suitable coupling constant. We present here two path-integral formulations appropriate for spin S=1/2 dimerized systems. The first one deals with a description of the dimers degrees of freedom in an SO(4) manifold, while the second one provides a path-integral for the bond-operators introduced by Sachdev and Bhatt. The path-integral quantization is performed using the Faddeev-Jackiw symplectic formalism for constrained systems, such that the measures and constraints that result from the algebra of the operators is provided in both cases. As an example we consider a spin-Peierls chain, and show how to arrive at the corresponding field-theory, starting with both an SO(4) formulation and bond-operators.
Institute of Scientific and Technical Information of China (English)
Ji Ying-Hua; Hu Ju-Ju; Hu Yan
2012-01-01
We investigate the influence of environmental decoherence on the dynamics of a coupled qubit system and quantum correlation.We analyse the relationship between concurrence and the degree of initial entanglement or the purity of initial quantum state,and also their relationship with quantum discord.The results show that the decrease of the purity of an initial quantum state can induce the attenuation of concurrence or quantum discord,but the attenuation of quantum discord is obviously slower than the concurrence's,correspondingly the survival time of quantum discord is longer.Further investigation reveals that the robustness of quantum discord and concurrence relies on the entanglement degree of the initial quantum state.The higher the degree of entanglement,the more robust the quantum discord is than concurrence.And the reverse is equally true.Birth and death happen to quantum discord periodically and a newborn quantum discord comes into being under a certain condition,so does the concurrence.
Quantum Correlations Relativity for Continuous-Variables Bipartite Systems
Dugic, M; Jeknic-Dugic, J
2011-01-01
Based on the so-called Entanglement Relativity, we point out relativity of the more general non-classical (quantum) correlations for the continuous-variables bipartite systems. Our observation points out that quantum processing resources based on the non-classical correlations (non-zero quantum discord) are ubiquitous in such systems.
Isochronous classical systems and quantum systems with equally spaced spectra
Energy Technology Data Exchange (ETDEWEB)
Carinena, J F; Perelomov, A M; Ranada, M F [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain)
2007-11-15
We study isoperiodic classical systems, what allows us to find the classical isochronous systems, i.e. having a period independent of the energy. The corresponding quantum analog, systems with an equally spaced spectrum are analysed by looking for possible creation-like differential operators. The harmonic oscillator and the isotonic oscillator are the two main essentially unique examples of such situation.
Artificial quantum thermal bath: Engineering temperature for a many-body quantum system
Shabani, Alireza; Neven, Hartmut
2016-11-01
Temperature determines the relative probability of observing a physical system in an energy state when that system is energetically in equilibrium with its environment. In this paper we present a theory for engineering the temperature of a quantum system different from its ambient temperature. We define criteria for an engineered quantum bath that, when coupled to a quantum system with Hamiltonian H , drives the system to the equilibrium state e/-H/TTr (e-H /T) with a tunable parameter T . This is basically an analog counterpart of the digital quantum metropolis algorithm. For a system of superconducting qubits, we propose a circuit-QED approximate realization of such an engineered thermal bath consisting of driven lossy resonators. Our proposal opens the path to simulate thermodynamical properties of many-body quantum systems of size not accessible to classical simulations. Also we discuss how an artificial thermal bath can serve as a temperature knob for a hybrid quantum-thermal annealer.
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
The Quantum as an Emergent System
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2012-05-01
Double slit interference is explained with the aid of what we call "21st century classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
The Quantum as an Emergent System
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert; 10.1088/1742-6596/361/1/012008
2012-01-01
Double slit interference is explained with the aid of what we call "21stcentury classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
Measuring entanglement entropy in a quantum many-body system
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Randomized control of open quantum systems
Viola, L
2006-01-01
The problem of open-loop dynamical control of generic open quantum systems is addressed. In particular, I focus on the task of effectively switching off environmental couplings responsible for unwanted decoherence and dissipation effects. After revisiting the standard framework for dynamical decoupling via deterministic controls, I describe a different approach whereby the controller intentionally acquires a random component. An explicit error bound on worst-case performance of stochastic decoupling is presented.
Quantum phase transition and entanglement in Li atom system
Institute of Scientific and Technical Information of China (English)
2008-01-01
By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-01
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ3(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ3(L) statistic exhibit the signatures of missed levels.
Open quantum systems and random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Mulhall, Declan [Department of Physics/Engineering, University of Scranton, Scranton, Pennsylvania 18510-4642 (United States)
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Open quantum systems and Random Matrix Theory
Mulhall, Declan
2014-01-01
A simple model for open quantum systems is analyzed with Random Matrix Theory. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the $\\Delta_3(L)$ statistic, width distribution and level spacing are examined as a function of the strength of this coupling. A super-radiant transition is observed, and it is seen that as it is formed, the level spacing and $\\Delta_3(L)$ statistic exhibit the signatures of missed levels.
Open quantum systems and random matrix theory
Mulhall, Declan
2015-01-01
A simple model for open quantum systems is analyzed with random matrix theory. The system is coupled to the continuum in a minimal way. In this paper the effect on the level statistics of opening the system is seen. In particular the Δ3(L ) statistic, the width distribution and the level spacing are examined as a function of the strength of this coupling. The emergence of a super-radiant transition is observed. The level spacing and Δ3(L ) statistics exhibit the signatures of missed levels or intruder levels as the super-radiant state is formed.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Quantum scaling in many-body systems an approach to quantum phase transitions
Continentino, Mucio
2017-01-01
Quantum phase transitions are strongly relevant in a number of fields, ranging from condensed matter to cold atom physics and quantum field theory. This book, now in its second edition, approaches the problem of quantum phase transitions from a new and unifying perspective. Topics addressed include the concepts of scale and time invariance and their significance for quantum criticality, as well as brand new chapters on superfluid and superconductor quantum critical points, and quantum first order transitions. The renormalisation group in real and momentum space is also established as the proper language to describe the behaviour of systems close to a quantum phase transition. These phenomena introduce a number of theoretical challenges which are of major importance for driving new experiments. Being strongly motivated and oriented towards understanding experimental results, this is an excellent text for graduates, as well as theorists, experimentalists and those with an interest in quantum criticality.
Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories
Wiese, U -J
2013-01-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...
Noise management to achieve superiority in quantum information systems.
Nemoto, Kae; Devitt, Simon; Munro, William J
2017-08-06
Quantum information systems are expected to exhibit superiority compared with their classical counterparts. This superiority arises from the quantum coherences present in these quantum systems, which are obviously absent in classical ones. To exploit such quantum coherences, it is essential to control the phase information in the quantum state. The phase is analogue in nature, rather than binary. This makes quantum information technology fundamentally different from our classical digital information technology. In this paper, we analyse error sources and illustrate how these errors must be managed for the system to achieve the required fidelity and a quantum superiority.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).
Energy Technology Data Exchange (ETDEWEB)
Nikitin, N. V., E-mail: nnikit@mail.cern.ch; Sotnikov, V.P., E-mail: sotnikov@physics.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Toms, K. S., E-mail: ktoms@mail.cern.ch [The University of New Mexico, Department of Physics and Astronomy (United States)
2015-10-15
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelated spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.
Colloquium: Non-Markovian dynamics in open quantum systems
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Źenczykowski, Piotr
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x2 + p2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Energy Technology Data Exchange (ETDEWEB)
Zenczykowski, Piotr, E-mail: piotr.zenczykowski@ifj.edu.p [Division of Theoretical Physics, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x{sup 2} + p{sup 2} constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)
2010-04-26
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.
Coherent manipulation of single quantum systems in the solid state
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Preparing ground States of quantum many-body systems on a quantum computer.
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Decoherence, delocalization and irreversibility in quantum chaotic systems
Shiokawa, K; Shiokawa, K; Hu, B L
1995-01-01
Decoherence in quantum systems which are classically chaotic is studied. The Arnold cat map and the quantum kicked rotor are chosen as examples of linear and nonlinear chaotic systems. The Feynman-Vernon influence functional formalism is used to study the effect of the environment on the system. It is well-known that quantum coherence can obliterate many chaotic behavior in the corresponding classical system. But interaction with an environment can under general circumstances quickly diminish quantum coherence and reenact many classical chaotic behavior. How effective decoherence works to sustain chaos, and how the resultant behavior qualitatively differs from the quantum picture depend on the coupling of the system with the environment and the spectral density and temperature of the environment. We show how recurrence in the quantum cat map is lost and classical ergodicity is recovered due to the effect of the environment. Quantum coherence and diffusion suppression are instrumental to dynamical localization...
General System theory, Like-Quantum Semantics and Fuzzy Sets
Licata, Ignazio
2006-01-01
It is outlined the possibility to extend the quantum formalism in relation to the requirements of the general systems theory. It can be done by using a quantum semantics arising from the deep logical structure of quantum theory. It is so possible taking into account the logical openness relationship between observer and system. We are going to show how considering the truth-values of quantum propositions within the context of the fuzzy sets is here more useful for systemics . In conclusion we propose an example of formal quantum coherence.
Quantum information storage and state transfer based on spin systems
Song, Z
2004-01-01
The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.
Non-Markovian Dynamics of Quantum Systems
Chruściński, Dariusz; Kossakowski, Andrzej
2011-01-01
We analyze a local approach to the non-Markovian evolution of open quantum systems. It turns out that any dynamical map representing evolution of such a system may be described either by non-local master equation with memory kernel or equivalently by equation which is local in time. The price one pays for the local approach is that the corresponding generator might be highly singular and it keeps the memory about the starting point 't0'. Remarkably, singularities of generator may lead to interesting physical phenomena like revival of coherence or sudden death and revival of entanglement.
Parallel decoherence in composite quantum systems
Indian Academy of Sciences (India)
M Dugići; J Jeknić-Dugić
2012-08-01
For the standard quantum Brownian motion (QBM) model, we point out the occurrence of simultaneous (parallel), mutually irreducible and autonomous decoherence processes. Besides the standard Brownian particle, we show that there is at least another system undergoing the dynamics described by the QBM model. We do this by selecting the two mutually irreducible, global structures (decompositions into subsystems) of the composite system of the QBM model. The generalization of this observation is a new, challenging task in the foundations of the decoherence theory. We do not place our findings in any interpretational context.
Twisted CFT and bilayer Quantum Hall systems
Cristofano, G; Naddeo, A
2003-01-01
We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.
Effective operator formalism for open quantum systems
DEFF Research Database (Denmark)
Reiter, Florentin; Sørensen, Anders Søndberg
2012-01-01
We present an effective operator formalism for open quantum systems. Employing perturbation theory and adiabatic elimination of excited states for a weakly driven system, we derive an effective master equation which reduces the evolution to the ground-state dynamics. The effective evolution...... involves a single effective Hamiltonian and one effective Lindblad operator for each naturally occurring decay process. Simple expressions are derived for the effective operators which can be directly applied to reach effective equations of motion for the ground states. We compare our method...
Nonrelativistic limit of solution of radial quasipotential equations
Energy Technology Data Exchange (ETDEWEB)
Minh, Vu.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1986-10-01
For the S-wave case, solutions of relativistic radial quasipotential equations that degenerate in the limit c ..-->.. infinity into the Jost solutions of the corresponding nonrelativistic radial Schrodinger equations are found.
Optimal state estimation for d-dimensional quantum systems
Bruss, D
1999-01-01
We establish a connection between optimal quantum cloning and optimal state estimation for d-dimensional quantum systems. In this way we derive an upper limit on the fidelity of state estimation for d-dimensional pure quantum states and, furthermore, for generalized inputs supported on the symmetric subspace.
The Harari Shupe preon model and nonrelativistic quantum phase space
Żenczykowski, P.
2008-03-01
We propose that the whole algebraic structure of the Harari-Shupe rishon model originates via a Dirac-like linearization of quadratic form x2 +p2, with position and momentum satisfying standard commutation relations. The scheme does not invoke the concept of preons as spin-1/2 subparticles, thus evading the problem of preon confinement, while fully explaining all symmetries emboded in the Harari-Shupe model. Furthermore, the concept of quark colour is naturally linked to the ordering of rishons. Our scheme leads to group U (1) ⊗ SU (3) combined with SU (2), with two of the SU (2) generators not commuting with reflections. An interpretation of intra-generation quark-lepton transformations in terms of genuine rotations and reflections in phase space is proposed.
Propagation of Disturbances in Degenerate Quantum Systems
Chancellor, Nicholas
2011-01-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system, and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit, and study how couplings away from the Majumdar-Ghosh point aff...
Corrections to the Nonrelativistic Ground Energy of a Helium Atom
Institute of Scientific and Technical Information of China (English)
段一士; 刘玉孝; 张丽杰
2004-01-01
Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.
Quantum Sensing of Noisy and Complex Systems under Dynamical Control
Directory of Open Access Journals (Sweden)
Gershon Kurizki
2016-12-01
Full Text Available We review our unified optimized approach to the dynamical control of quantum-probe interactions with noisy and complex systems viewed as thermal baths. We show that this control, in conjunction with tools of quantum estimation theory, may be used for inferring the spectral and spatial characteristics of such baths with high precision. This approach constitutes a new avenue in quantum sensing, dubbed quantum noise spectroscopy.
Quantum Entanglement for Systems of Identical Bosons. I General Theory
Dalton, Bryan; Goold, John; Garraway, Barry; Reid, Margaret
2015-01-01
These two accompanying papers treat two mode entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. Entanglement is a key quantum feature of composite systems where the probabilities for joint measurements on the composite sub-systems are no longer determined from measurement probabilities on the separate sub-systems. We focus on the meaning of entanglement, the quantum paradoxes associated with entangled states, and ...
Thermalization and Pseudolocality in Extended Quantum Systems
Doyon, Benjamin
2017-04-01
Recently, it was understood that modified concepts of locality played an important role in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by thermodynamic susceptibilities. Using this, we define the family of pseudolocal states, which are determined by pseudolocal charges. This family includes thermal Gibbs states at high enough temperatures, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to the evolution dynamics. If the evolution dynamics does not admit any conserved pseudolocal charges other than the evolution Hamiltonian, we show that any stationary pseudolocal state with respect to these dynamics is a thermal Gibbs state, and that Gibbs thermalization occurs. The framework is that of translation-invariant states on hypercubic quantum lattices of any dimensionality (including quantum chains) and finite-range Hamiltonians, and does not involve integrability.
Advanced Topic: Quasi-Hermitian Quantum Systems
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-11-01
So far, the discussion has limited itself to hermitian operators and systems. However, superficially non-hermitian Hamiltonian quantum systems are also of considerable current interest, especially in the context of PT symmetric models [Ben07, Mos05], although many of the main ideas appeared earlier [SGH92, XA96]. For such systems, the Hilbert space structure is at first sight very different from that for hermitian Hamiltonian systems, inasmuch as the dual wavefunctions are not just the complex conjugates of the wavefunctions, or, equivalently, the Hilbert space metric is not the usual one. While it is possible to keep most of the compact Dirac notation in analyzing such systems, here we work with explicit functions and avoid abstract notation, in the hope to fully expose all the structure, rather than to hide it...
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
Directory of Open Access Journals (Sweden)
Yong He
2017-06-01
Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System
He, Yong; Zhu, Ka-Di
2017-01-01
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction. PMID:28632165
Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
He, Yong; Zhu, Ka-Di
2017-06-20
In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.
The transition to chaos conservative classical systems and quantum manifestations
Reichl, Linda E
2004-01-01
This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...
The general dispersion relation of induced streaming instabilities in quantum outflow systems
Energy Technology Data Exchange (ETDEWEB)
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
On the notion of a macroscopic quantum system
Khrenikov, A Yu
2004-01-01
We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.
Environment-assisted quantum transport in ordered systems
Kassal, Ivan
2012-01-01
Noise-assisted transport in quantum systems occurs when quantum time-evolution and decoherence conspire to produce a transport efficiency that is higher than what would be seen in either the purely quantum or purely classical cases. It has been understood as the suppression of coherent quantum localization through noise, which brings detuned quantum levels into resonance and thus facilitates transport. We report several new mechanisms of environment-assisted transport in ordered systems, in which there is no localization to be overcome.
Quantum MIMO n-Systems and Conditions for Stability
Mansourbeigi, Seyed M H
2009-01-01
In this paper we present some conditions for the (strong) stabilizability of an n-D Quantum MIMO system P(X). It contains two parts. The first part is to introduce the n-D Quantum MIMO systems where the coefficients vary in the algebra of Q-meromorphic functions. Then we introduce some conditions for the stabilizability of these systems. The second part is to show that this Quantum system has the n-D system as its quantum limit and the results for the SISO,SIMO,MISO,MIMO are obtained again as special cases.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Linear dynamical quantum systems analysis, synthesis, and control
Nurdin, Hendra I
2017-01-01
This monograph provides an in-depth treatment of the class of linear-dynamical quantum systems. The monograph presents a detailed account of the mathematical modeling of these systems using linear algebra and quantum stochastic calculus as the main tools for a treatment that emphasizes a system-theoretic point of view and the control-theoretic formulations of quantum versions of familiar problems from the classical (non-quantum) setting, including estimation and filtering, realization theory, and feedback control. Both measurement-based feedback control (i.e., feedback control by a classical system involving a continuous-time measurement process) and coherent feedback control (i.e., feedback control by another quantum system without the intervention of any measurements in the feedback loop) are treated. Researchers and graduates studying systems and control theory, quantum probability and stochastics or stochastic control whether from backgrounds in mechanical or electrical engineering or applied mathematics ...
Quantum Physics Without Quantum Philosophy
Dürr, Detlef; Zanghì, Nino
2013-01-01
It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
The Dalton quantum chemistry program system
DEFF Research Database (Denmark)
Aidas, Kestutis; Angeli, C.; Bak, K.L.
2014-01-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self-consistent-field, Møller–Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide vari......-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms....
Blockspin Cluster Algorithms for Quantum Spin Systems
Wiese, U J
1992-01-01
Cluster algorithms are developed for simulating quantum spin systems like the one- and two-dimensional Heisenberg ferro- and anti-ferromagnets. The corresponding two- and three-dimensional classical spin models with four-spin couplings are maped to blockspin models with two-blockspin interactions. Clusters of blockspins are updated collectively. The efficiency of the method is investigated in detail for one-dimensional spin chains. Then in most cases the new algorithms solve the problems of slowing down from which standard algorithms are suffering.
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-07-13
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Limit theorems for dilute quantum systems leading to quantum poisson processes
Alicki, Robert; Rudnicki, Sławomir; Sadowski, Sławomir
1993-12-01
The limit theorems for sums of independent or correlated operators representing observables of dilute quantum systems and leading to quantum Poisson processes are proved. Examples of systems of unstable particles and a Fermi lattice gas are discussed. For the latter, relations between low density limit and central limit are given.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
Dynamics and Quantum Transport in Small Systems.” The PI is Ying-Cheng Lai from Arizona State University. The duration of the project was 12/1/2008...military systems may contain some graphene components. To understand various fundamental aspects of quantum transport dynamics is key to developing...conductance fluctuations, not seen previously in any quantum transport systems. This phenomenon has profound implications to the development of graphene
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Statistical mechanics of quantum-classical systems with holonomic constraints.
Sergi, Alessandro
2006-01-14
The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.
Probability representation of kinetic equation for open quantum system
Man'ko, V I; Shchukin, E V
2003-01-01
The tomographic probability distribution is used to decribe the kinetic equations for open quantum systems. Damped oscillator is studied. Purity parameter evolution for different damping regime is considered.
Asymptotically open quantum systems; Asymptotisch offene Quantensysteme
Energy Technology Data Exchange (ETDEWEB)
Westrich, M.
2008-04-15
In the present thesis we investigate the structure of time-dependent equations of motion in quantum mechanics.We start from two coupled systems with an autonomous equation of motion. A limit, in which the dynamics of one of the two systems has a decoupled evolution and imposes a non-autonomous evolution for the second system is identified. A result due to K. Hepp that provides a classical limit for dynamics turns out to be part and parcel for this limit and is generalized in our work. The method introduced by J.S. Howland for the solution of the time-dependent Schroedinger equation is interpreted as such a limit. Moreover, we associate our limit with the modern theory of quantization. (orig.)
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Quantum simulation of disordered systems with cold atoms
Garreau, Jean-Claude
2017-01-01
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"
Deformed oscillator algebras for two dimensional quantum superintegrable systems
Bonatsos, Dennis; Kokkotas, K D; Bonatsos, Dennis
1994-01-01
Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
Amour, Laurent
2011-01-01
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.
Duality constructions from quantum state manifolds
Kriel, J N; Scholtz, F G
2015-01-01
The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS_2/CFT_1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et. al. the corresponding state manifol...
Quantum Gravitational Decoherence of Light and Matter
Oniga, Teodora
2015-01-01
Real world quantum systems are open to perpetual influence from the wider environment. Vacuum gravitational fluctuations provide a most fundamental source of the environmental influence through their universal interactions with all forms of energy and matter causing decoherence. This may have subtle implications on precision laboratory experiments and astronomical observations and could limit the ultimate capacities for quantum technologies prone to decoherence. To establish the essential physical mechanism of decoherence under weak spacetime fluctuations, we carry out a sequence of analytical steps utilizing the Dirac constraint quantization and gauge invariant influence functional techniques, resulting in a general master equation of a compact form, that describes an open quantum gravitational system with arbitrary bosonic fields. An initial application of the theory is illustrated by the implied quantum gravitational dissipation of light as well as (non)relativistic massive or massless scalar particles. Re...
Coulomb crystallization in classical and quantum systems
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Device-independent certification of high-dimensional quantum systems.
D'Ambrosio, Vincenzo; Bisesto, Fabrizio; Sciarrino, Fabio; Barra, Johanna F; Lima, Gustavo; Cabello, Adán
2014-04-11
An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question is whether such certification is experimentally feasible for high-dimensional quantum systems. Here we experimentally witness in a device-independent manner the generation of six-dimensional quantum systems encoded in the orbital angular momentum of single photons and show that the same method can be scaled, at least, up to dimension 13.
Quantum dynamics of bio-molecular systems in noisy environments
Huelga S.F.; Plenio M.B.
2012-01-01
We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical descripti...
Capacities of linear quantum optical systems
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-06-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Capacities of linear quantum optical systems
Lupo, Cosmo; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-01-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Phase transitions in open quantum systems
Jung, C; Rotter, I
1999-01-01
We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.
Relativity stability of quantum gas in a weak magnetic field
Institute of Scientific and Technical Information of China (English)
Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu
2009-01-01
Based on the analytical expression of relativistic free energy for a weakly interacting Fermi gas in a weak magnetic field,by using the method of quantum statistics,the stability conditions of the system at both high and low temperatures axe given,and the effects of magnetic field and interpaxticle interactions on the stability of the system are analysed. It is shown that at high temperatures,the stability conditions of the system are completely the same,no matter whether it is the ultrarelativistic case or nonrelativistic case. At extremely low temperatures,the mechanical stability conditions of the system show a similar rule through a comparison between the ultrarelativistic case and nonrelativistic case. At the same time,thermal stability of a relativistic Bose gas in a weak magnetic field is discussed,and the influence of the effect of relativity on the thermal stability of the system is investigated.
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
Quantum statistical gravity: time dilation due to local information in many-body quantum systems
Sels, Dries; Wouters, Michiel
2017-08-01
We propose a generic mechanism for the emergence of a gravitational potential that acts on all classical objects in a quantum system. Our conjecture is based on the analysis of mutual information in many-body quantum systems. Since measurements in quantum systems affect the surroundings through entanglement, a measurement at one position reduces the entropy in its neighbourhood. This reduction in entropy can be described by a local temperature, that is directly related to the gravitational potential. A crucial ingredient in our argument is that ideal classical mechanical motion occurs at constant probability. This definition is motivated by the analysis of entropic forces in classical systems.
Efficient numerical solution of excitation number conserving quantum systems
Zhang, Zheyong; Ding, Jianping; Wang, Hui-Tian
2017-08-01
A system composed of a harmonic oscillator coupled to a two-level atom is one of the quantum systems, which can be completely solved. Although this system is simple, it is never a easy work for the quantum calculations, especially when the system consists of many such simple constituent parts. In this paper, we present a programming method, by which the calculation tasks for the matrix representation of the Hamiltonian of system can be automatically fulfilled. Coupled-cavity array systems are used to demonstrate our programming method. Some quantum properties of these systems are also discussed.
Quantum algorithm for linear systems of equations.
Harrow, Aram W; Hassidim, Avinatan; Lloyd, Seth
2009-10-09
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.
Quantum Computing in Fock Space Systems
Berezin, Alexander A.
1997-04-01
Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).
Emulation of complex open quantum systems using superconducting qubits
Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán
2017-02-01
With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.
Hybrid quantum systems with ultracold spins and optomechanics
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Software Systems for High-performance Quantum Computing
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Britt, Keith A [ORNL
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Energy Technology Data Exchange (ETDEWEB)
Parvan, A.S. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Horia Hulubei National Institute of Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest (Romania); Moldova Academy of Sciences, Institute of Applied Physics, Chisinau (Moldova, Republic of)
2015-09-15
In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q - 1) is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated. (orig.)
Correlation Functions in Open Quantum-Classical Systems
Directory of Open Access Journals (Sweden)
Chang-Yu Hsieh
2013-12-01
Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.
Renner, R.; Cirac, J. I.
2009-03-01
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
Dynamical algebra of observables in dissipative quantum systems
Alipour, Sahar; Chruściński, Dariusz; Facchi, Paolo; Marmo, Giuseppe; Pascazio, Saverio; Rezakhani, Ali T.
2017-02-01
Dynamics and features of quantum systems can be drastically different from classical systems. Dissipation is understood as a general mechanism through which quantum systems may lose part or all of their quantum aspects. Here we discuss a method to analyze behaviors of dissipative quantum systems in an algebraic sense. This method employs a time-dependent product between system’s observables which is induced by the underlying dissipative dynamics. We argue that the long-time limit of the algebra of observables defined with this product yields a contractive algebra which reflects the loss of some quantum features of the dissipative system, and it bears relevant information about irreversibility. We illustrate this result through several examples of dissipation in various Markovian and non-Markovian systems.
An Operator-Based Exact Treatment of Open Quantum Systems
Nicolosi, S
2005-01-01
"Quantum mechanics must be regarded as open systems. On one hand, this is due to the fact that, like in classical physics, any realistic system is subjected to a coupling to an uncontrollable environment which influences it in a non-negligible way. The theory of open quantum systems thus plays a major role in many applications of quantum physics since perfect isolation of quantum system is not possible and since a complete microscopic description or control of the environment degrees of freedom is not feasible or only partially so" [1]. Practical considerations therefore force one to seek for a simpler, effectively probabilistic description in terms of an open system. There is a close physical and mathematical connection between the evolution of an open system, the state changes induced by quantum measurements, and the classical notion of a stochastic process. The paper provides a bibliographic review of this interrelations, it shows the mathematical equivalence between markovian master equation and generaliz...
Quantum Phase Transitions in Conventional Matrix Product Systems
Zhu, Jing-Min; Huang, Fei; Chang, Yan
2017-02-01
For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Ultracold atoms for simulation of many body quantum systems
Hutchinson, David A. W.
2017-01-01
Feynman famously proposed simulating quantum physics using other, better controlled, quantum systems. This vision is now a reality within the realm of ultracold atomic physics. We discuss how these systems can be used to simulate many body physics, concentrating the Berezinskii-Kosterlitz-Thouless transition in 2D physics and the role of disorder.
Quantum Discrete Fourier Transform in an Ion Trap System
Institute of Scientific and Technical Information of China (English)
ZHENG Shi-Biao
2007-01-01
We propose two schemes for the implementation of quantum discrete Fourier transform in the ion trap system. In each scheme we design a tunable two-qubit phase gate as the main ingredient. The experimental implementation of the schemes would be an important step toward complex quantum computation in the ion trap system.
Quantum-classical correspondence in steady states of nonadiabatic systems
Energy Technology Data Exchange (ETDEWEB)
Fujii, Mikiya; Yamashita, Koichi [Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); CREST, JST, Tokyo 113-8656 (Japan)
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Experimental quantum simulation of entanglement in many-body systems.
Zhang, Jingfu; Wei, Tzu-Chieh; Laflamme, Raymond
2011-07-01
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudoentanglement. The observed pseudoentanglement for a small-size system already displays a singularity, a signature which is qualitatively similar to that in the thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.
Experimental Quantum Simulation of Entanglement in Many-body Systems
Zhang, Jingfu; Laflamme, Raymond
2011-01-01
We employ a nuclear magnetic resonance (NMR) quantum information processor to simulate the ground state of an XXZ spin chain and measure its NMR analog of entanglement, or pseudo-entanglement. The observed pseudo-entanglement for a small system size already displays singularity, a signature which is qualitatively similar to that in thermodynamical limit across quantum phase transitions, including an infinite-order critical point. The experimental results illustrate a successful approach to investigate quantum correlations in many-body systems using quantum simulators.
Automated drawing system of quantum energy levels
Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.
2014-03-01
The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.
Eigenstate Gibbs ensemble in integrable quantum systems
Nandy, Sourav; Sen, Arnab; Das, Arnab; Dhar, Abhishek
2016-12-01
The eigenstate thermalization hypothesis conjectures that for a thermodynamically large system in one of its energy eigenstates, the reduced density matrix describing any finite subsystem is determined solely by a set of relevant conserved quantities. In a chaotic quantum system, only the energy is expected to play that role and hence eigenstates appear locally thermal. Integrable systems, on the other hand, possess an extensive number of such conserved quantities and therefore the reduced density matrix requires specification of all the corresponding parameters (generalized Gibbs ensemble). However, here we show by unbiased statistical sampling of the individual eigenstates with a given finite energy density that the local description of an overwhelming majority of these states of even such an integrable system is actually Gibbs-like, i.e., requires only the energy density of the eigenstate. Rare eigenstates that cannot be represented by the Gibbs ensemble can also be sampled efficiently by our method and their local properties are then shown to be described by appropriately truncated generalized Gibbs ensembles. We further show that the presence of these rare eigenstates differentiates the model from the chaotic case and leads to the system being described by a generalized Gibbs ensemble at long time under a unitary dynamics following a sudden quench, even when the initial state is a typical (Gibbs-like) eigenstate of the prequench Hamiltonian.
Quantum integrable systems. Quantitative methods in biology
Feverati, Giovanni
2011-01-01
Quantum integrable systems have very strong mathematical properties that allow an exact description of their energetic spectrum. From the Bethe equations, I formulate the Baxter "T-Q" relation, that is the starting point of two complementary approaches based on nonlinear integral equations. The first one is known as thermodynamic Bethe ansatz, the second one as Kl\\"umper-Batchelor-Pearce-Destri- de Vega. I show the steps toward the derivation of the equations for some of the models concerned. I study the infrared and ultraviolet limits and discuss the numerical approach. Higher rank integrals of motion can be obtained, so gaining some control on the eigenvectors. After, I discuss the Hubbard model in relation to the N = 4 supersymmetric gauge theory. The Hubbard model describes hopping electrons on a lattice. In the second part, I present an evolutionary model based on Turing machines. The goal is to describe aspects of the real biological evolution, or Darwinism, by letting evolve populations of algorithms. ...
Slow scrambling in disordered quantum systems
Swingle, Brian
2016-01-01
Recent work has studied the growth of commutators as a probe of chaos and information scrambling in quantum many-body systems. In this work we study the effect of static disorder on the growth of commutators in a variety of contexts. We find generically that disorder slows the onset of scrambling, and, in the case of a many-body localized state, partially halts it. We access the many-body localized state using a standard fixed point Hamiltonian, and we show that operators exhibit slow logarithmic growth under time evolution. We compare the result with the expected growth of commutators in both localized and delocalized non-interacting disordered models. Finally, based on a scaling argument, we state a conjecture about the effect of weak interactions on the growth of commutators in an interacting diffusive metal.
Thermalization and pseudolocality in extended quantum systems
Doyon, Benjamin
2015-01-01
Recently, it was understood that extended concepts of locality played important roles in the study of extended quantum systems out of equilibrium, in particular in so-called generalized Gibbs ensembles. In this paper, we rigorously study pseudolocal charges and their involvement in time evolutions and in the thermalization process of arbitrary states with strong enough clustering properties. We show that the densities of pseudolocal charges form a Hilbert space, with inner product determined by response functions. Using this, we define the family of pseudolocal states: clustering states connected to the infinite-temperature state by paths whose tangents are actions of pseudolocal charges. This family includes thermal Gibbs states, as well as (a precise definition of) generalized Gibbs ensembles. We prove that the family of pseudolocal states is preserved by finite time evolution, and that, under certain conditions, the stationary state emerging at infinite time is a generalized Gibbs ensemble with respect to ...
Quantum correlations in non-inertial cavity systems
Harsij, Zeynab; Mirza, Behrouz
2016-10-01
Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discord disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory.
Fate of classical solitons in one-dimensional quantum systems.
Energy Technology Data Exchange (ETDEWEB)
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Nussinov, Zohar; Johnson, Patrick; Graf, Matthias J.; Balatsky, Alexander V.
2013-05-01
Many electronic systems (e.g., the cuprate superconductors and heavy fermions) exhibit striking features in their dynamical response over a prominent range of experimental parameters. While there are some empirical suggestions of particular increasing length scales that accompany such transitions in some cases, this identification is not universal and in numerous instances no large correlation length is evident. To better understand, as a matter of principle, such behavior in quantum systems, we extend a known mapping (earlier studied in stochastic or supersymmetric quantum mechanics) between finite temperature classical Fokker-Planck systems and related quantum systems at zero temperature to include general nonequilibrium dynamics. Unlike Feynman mappings or stochastic quantization methods in field theories (as well as more recent holographic type dualities), the classical systems that we consider and their quantum duals reside in the same number of space-time dimensions. The upshot of our very broad and rigorous result is that a Wick rotation exactly relates (i) the dynamics in general finite temperature classical dissipative systems to (ii) zero temperature dynamics in the corresponding dual many-body quantum systems. Using this correspondence, we illustrate that, even in the absence of imposed disorder, many continuum quantum fluid systems (and possible lattice counterparts) may exhibit a zero-point “quantum dynamical heterogeneity” wherein the dynamics, at a given instant, is spatially nonuniform. While the static length scales accompanying this phenomenon do not seem to exhibit a clear divergence in standard correlation functions, the length scale of the dynamical heterogeneities can increase dramatically. We further study “quantum jamming” and illustrate how a hard-core bosonic system can undergo a zero temperature quantum critical metal-to-insulator-type transition with an extremely large effective dynamical exponent z>4 that is consistent with
Strong polygamy of quantum correlations in multi-party quantum systems
San Kim, Jeong
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
Quantum-biological control of energy transfer in hybrid quantum dot-metallic nanoparticle systems
Sadeghi, Seyed M.; Hood, Brady; Patty, Kira
2016-09-01
We show theoretically that when a semiconductor quantum dot and metallic nanoparticle system interacts with a laser field, quantum coherence can introduce a new landscape for the dynamics of Forster resonance energy transfer (FRET). We predict adsorption of biological molecules to such a hybrid system can trigger dramatic changes in the way energy is transferred, blocking FRET while the distance between the quantum dot and metallic nanoparticle (R) and other structural specifications remain unchanged. We study the impact of variation of R on the FRET rate in the presence of quantum coherence and its ultrafast decay, offering a characteristically different dependency than the standard 1/R6. Application of the results for quantum nanosensors is discussed.
Ideal Quantum Gases with Planck Scale Limitations
Collier, Rainer
2015-01-01
A thermodynamic system of non-interacting quantum particles changes its statistical distribution formulas if there is a universal limitation for the size of energetic quantum leaps (magnitude of quantum leaps smaller than Planck energy). By means of a restriction of the a priori equiprobability postulate one can reach a thermodynamic foundation of these corrected distribution formulas. The number of microstates is determined by means of a suitable counting method and combined with thermodynamics via the Boltzmann principle. The result is that, for particle energies that come close to the Planck energy, the thermodynamic difference between fermion and boson distribution vanishes. Both distributions then approximate a Boltzmann distribution. The wave and particle character of the quantum particles, too, can be influenced by choosing the size of the temperature and particle energy parameters relative to the Planck energy, as you can see from the associated fluctuation formulas. In the case of non-relativistic de...
Quantum features of natural cellular automata
Elze, Hans-Thomas
2016-03-01
Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
Quantum Cost Efficient Reversible BCD Adder for Nanotechnology Based Systems
Islam, Md Saiful; Begum, Zerina
2011-01-01
Reversible logic allows low power dissipating circuit design and founds its application in cryptography, digital signal processing, quantum and optical information processing. This paper presents a novel quantum cost efficient reversible BCD adder for nanotechnology based systems using PFAG gate. It has been demonstrated that the proposed design offers less hardware complexity and requires minimum number of garbage outputs than the existing counterparts. The remarkable property of the proposed designs is that its quantum realization is given in NMR technology.
Approach to Equilibrium for Quantum Systems with Continuous Spectrum
Laura, Roberto
Considering quantum states as functionals acting on observables to give their mean values, it is possible to deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic expression for time evolution is obtained. The "final" state (t → ∞) is presented as a weak limit. Finite and infinite number of exited modes of the field are considered.
Quantum Chaos in Physical Systems: from Super Conductors to Quarks
Bittner, Elmar; Markum, Harald; Pullirsch, Rainer
2001-01-01
This article is the written version of a talk delivered at the Bexbach Colloquium of Science 2000 and starts with an introduction into quantum chaos and its relationship to classical chaos. The Bohigas-Giannoni-Schmit conjecture is formulated and evaluated within random-matrix theory. Several examples of physical systems exhibiting quantum chaos ranging from nuclear to solid state physics are presented. The presentation concludes with recent research work on quantum chromodynamics and the qua...
Advanced-Retarded Differential Equations in Quantum Photonic Systems
Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique
2017-01-01
We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090
Detective quantum efficiency of the LODOX system
de Villiers, Mattieu; de Jager, Gerhard
2003-06-01
The Detective Quantum Efficiency (DQE) of a digital x-ray imaging system describes how much of the signal to noise ratio of the incident radiation is sustained in the resultant digital image. This measure of dose efficiency is suitable for the comparison of detectors produced by different manufacturers. The International Electrotechnical Commission (IEC) stipulates standard methods and conditions for the measurement of the DQE for single exposure imaging systems such as flat panel detectors. This paper shows how the calculation is adapted for DQE measurements of scanning systems. In this paper it is described how to measure the presampled Modulation Transfer Function (MTF) using an edge test method and how to extract the horizontal and vertical components of the Noise Power Spectrum (NPS) in a way that is insensitive to structured noise patterns often found in scanned images. The calculation of the total number of incident photons from the radiation dose measurement is explained and results are provided for the Lodox low dose full body digital x-ray scanning system which is developed in South Africa.
Gain and loss in open quantum systems
Eleuch, Hichem; Rotter, Ingrid
2017-06-01
Photosynthesis is the basic process used by plants to convert light energy in reaction centers into chemical energy. The high efficiency of this process is not yet understood today. Using the formalism for the description of open quantum systems by means of a non-Hermitian Hamilton operator, we consider initially the interplay of gain (acceptor) and loss (donor). Near singular points it causes fluctuations of the cross section which appear without any excitation of internal degrees of freedom of the system. This process occurs therefore very quickly and with high efficiency. We then consider the excitation of resonance states of the system by means of these fluctuations. This second step of the whole process takes place much slower than the first one, because it involves the excitation of internal degrees of freedom of the system. The two-step process as a whole is highly efficient, and the decay is biexponential. We provide, if possible, the results of analytical studies, otherwise characteristic numerical results. The similarities of the obtained results to light harvesting in photosynthetic organisms are discussed.
Nonrelativistic factorizable scattering theory of multicomponent Calogero-Sutherland model
Ahn, C; Nam, S; Ahn, Changrim; Lee, Kong Ju Bock; Nam, Soonkeon
1995-01-01
We relate two integrable models in (1+1) dimensions, namely, multicomponent Calogero-Sutherland model with particles and antiparticles interacting via the hyperbolic potential and the nonrelativistic factorizable S-matrix theory with SU(N)-invariance. We find complete solutions of the Yang-Baxter equations without implementing the crossing symmetry, and one of them is identified with the scattering amplitudes derived from the Schr\\"{o}dinger equation of the Calogero-Sutherland model. This particular solution is of interest in that it cannot be obtained as a nonrelativistic limit of any known relativistic solutions of the SU(N)-invariant Yang-Baxter equations.
On the Failure of Multiconfiguration Methods in the Nonrelativistic Limit
Esteban, Maria J; Savin, Andreas
2009-01-01
The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.
Effects of symmetry breaking in finite quantum systems
Energy Technology Data Exchange (ETDEWEB)
Birman, J.L. [Department of Physics, City College, City University of New York, New York, NY 10031 (United States); Nazmitdinov, R.G. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca 07122 (Spain); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)
2013-05-15
The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Entangled Systems New Directions in Quantum Physics
Audretsch, Jürgen
2007-01-01
An introductory textbook for advanced students of physics, chemistry and computer science, covering an area of physics that has lately witnessed rapid expansion. The topics treated here include quantum information, quantum communication, quantum computing, teleportation and hidden parameters, thus imparting not only a well-founded understanding of quantum theory as such, but also a solid basis of knowledge from which readers can follow the rapid development of the topic or delve deeper into a more specialized branch of research. Commented recommendations for further reading as well as end-of-chapter problems help the reader to quickly access the theoretical basics of future key technologies
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Wavefunction controllability for finite-dimensional bilinear quantum systems
Energy Technology Data Exchange (ETDEWEB)
Turinici, Gabriel [INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France); Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544-1009 (United States)
2003-03-14
We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.
The Rabi Oscillation in Subdynamic System for Quantum Computing
Directory of Open Access Journals (Sweden)
Bi Qiao
2015-01-01
Full Text Available A quantum computation for the Rabi oscillation based on quantum dots in the subdynamic system is presented. The working states of the original Rabi oscillation are transformed to the eigenvectors of subdynamic system. Then the dissipation and decoherence of the system are only shown in the change of the eigenvalues as phase errors since the eigenvectors are fixed. This allows both dissipation and decoherence controlling to be easier by only correcting relevant phase errors. This method can be extended to general quantum computation systems.
Dynamics of genuine multipartite correlations in open quantum systems
Grimsmo, Arne L; Skagerstam, Bo-Sture K
2012-01-01
We propose a measure for genuine multipartite correlations suited for the study of dynamics in open quantum systems. This measure is contextual in the sense that it depends on how information is read from the environment. It is used to study an interacting collective system of atoms undergoing phase transitions as external parameters are varied. We show that the steady state of the system can have a significant degree of genuine multipartite quantum and classical correlations, and that the proposed measure can serve as a witness of critical behavior in quantum systems.
Using a quantum dot system to realize perfect state transfer
Institute of Scientific and Technical Information of China (English)
Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang
2011-01-01
There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M,Petrosyan D and Lambropoulos P 2004 Europhys.Lett.65 297] where a quantum dot system is used to realize quantum communication.To overcome these disadvantages,we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST).First,we calculate the interaction relation for PQST in the spin chain.Second,we review the interaction between the quantum dots in the Heitler-London approach.Third,we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.
Quantum Arnol'd Diffusion in a Simple Nonlinear System
Demikhovskii, V Y; Malyshev, A I
2002-01-01
We study the fingerprint of the Arnol'd diffusion in a quantum system of two coupled nonlinear oscillators with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the classical data. However, the quantum diffusion happens to be slower that the classical one. Another result is the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show that this effect has the same nature as for the studied earlier dynamical localization in the presence of global chaos. The quantum Arnol'd diffusion represents a new type of quantum dynamics and can be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.
Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems
Directory of Open Access Journals (Sweden)
Tomáš Brauner
2010-04-01
Full Text Available Spontaneous symmetry breaking is a general principle that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii Minimization of Higgs-type potentials for higher-dimensional representations. (iii Counting rules for Nambu–Goldstone bosons and their dispersion relations. (iv Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail.
Computational physics simulation of classical and quantum systems
Scherer, Philipp O J
2017-01-01
This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...
On the geometry of quantum indistinguishability
Reyes-Lega, A F
2011-01-01
An algebraic approach to the study of quantum mechanics on configuration spaces with a finite fundamental group is presented. It uses, in an essential way, the Gelfand-Naimark and Serre-Swan equivalences and thus allows one to represent geometric properties of such systems in algebraic terms. As an application, the problem of quantum indistinguishability is reformulated in the light of the proposed approach. Previous attempts aiming at a proof of the spin-statistics theorem in non-relativistic quantum mechanics are explicitly recast in the global language inherent to the presented techniques. This leads to a critical discussion of single-valuedness of wave functions for systems of indistinguishable particles. Potential applications of the methods presented in this paper to problems related to quantization, geometric phases and phase transitions in spin systems are proposed.
Bayesian parameter inference from continuously monitored quantum systems
DEFF Research Database (Denmark)
Gammelmark, Søren; Mølmer, Klaus
2013-01-01
We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject...
Security Proof for Quantum Key Distribution Using Qudit Systems
Sheridan, Lana
2010-01-01
We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use $d$-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with $d$. The finite-key corrections are found to be almost insensitive to $d\\lesssim 20$.
Speed limits for quantum gates in multiqubit systems
Ashhab, S.; De Groot, P.C.; Nori, F.
2012-01-01
We use analytical and numerical calculations to obtain speed limits for various unitary quantum operations in multiqubit systems under typical experimental conditions. The operations that we consider include single-, two-, and three-qubit gates, as well as quantum-state transfer in a chain of qubits
Quantum-Classical Connection for Hydrogen Atom-Like Systems
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Phase-modulation transmission system for quantum cryptography.
Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T
1999-01-15
We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.
Spectroscopic studies in open quantum systems
Rotter, I; Pichugin, K N; Seba, P
2000-01-01
The spectroscopic properties of an open quantum system are determined by theeigenvalues and eigenfunctions of an effective Hamiltonian H consisting of theHamiltonian H_0 of the corresponding closed system and a non-Hermitiancorrection term W arising from the interaction via the continuum of decaychannels. The eigenvalues E_R of H are complex. They are the poles of theS-matrix and provide both the energies and widths of the states. We illustratethe interplay between Re(H) and Im(H) by means of the different interferencephenomena between two neighboured resonance states. Level repulsion along thereal axis appears if the interaction is caused mainly by Re(H) while abifurcation of the widths appears if the interaction occurs mainly due toIm(H). We then calculate the poles of the S-matrix and the correspondingwavefunctions for a rectangular microwave resonator with a scatter as afunction of the area of the resonator as well as of the degree of opening to aguide. The calculations are performed by using the method o...
Precise semiconductor nanotubes and nanocorrugated quantum systems
Prinz, V. Ya.
2004-08-01
A concept in precise nanostructuring permitting the formation of solid-state nanoshells of various shapes from monocrystalline InGaAs/GaAs or Si/GeSi strained heterofilms, or from metal-semiconductor, metal-metal and hybrid films is outlined. Ultra-thin strained films released from the massive substrate tend to acquire a new equilibrium shape for which their elastic energy is minimal. Bending off from the substrate or rolling into cylindrical objects, the films form nanotubes, rings, helices, open and closed 3D nanoshells and their ordered arrays. The present work focuses on the set of newly proposed methods and realized processes constituting a fabrication technology for these free-standing precise nanoobjects and systems. New results on the formation of spatially periodic structures, nanocorrugated systems, shells with the minimum radius of curvature of ∼1 nm, and assembling these shells in even more complex architectures, for example, quantum-dots molecules, are described. The fabricated nanoshells offer much promise as building blocks for nanoelectronic and nanomechanic devices, their fabrication technology being quite compatible with the well-established integrated-circuit technology.
Implementing quantum electrodynamics with ultracold atomic systems
Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.
2017-02-01
We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson–fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose–Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.
Spectroscopic studies in open quantum systems
Rotter; Persson; Pichugin; Seba
2000-07-01
The Hamiltonian H of an open quantum system is non-Hermitian. Its complex eigenvalues E(R) are the poles of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance states. Level repulsion may occur along the real or imaginary axis (the latter is called resonance trapping). In any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory (random matrix theory).
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary coordinat
A brief introduction to non-relativistic supergravity
Energy Technology Data Exchange (ETDEWEB)
Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen (Netherlands)
2016-04-15
Non-relativistic geometries have received more attention lately. We review our attempts to construct supersymmetric extensions of this so-called Newton-Cartan geometry in three space-time dimensions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
When the Standard-Model Extension (SME) is applied in curved spacetime, the Lorentz-violation coefficients must depend on spacetime position. This work describes some of the consequences of this spacetime variation. We focus on effects that appear at a nonrelativistic scale and extract sensitivity of completed experiments to derivatives of SME coefficient fields.
Theory of non-relativistic three-particle scattering
Malfliet, R.; Ruijgrok, Th.
1967-01-01
A new method, using asymptotically stationary states, is developed to calculate the S-matrix for the scattering of a non-relativistic particle by the bound state of two other particles. For the scattering with breakup of this bound state, we obtain a simplified form of the Faddeev integral
Quantum spin systems on infinite lattices a concise introduction
Naaijkens, Pieter
2017-01-01
This course-based primer offers readers a concise introduction to the description of quantum mechanical systems with infinitely many degrees of freedom – and quantum spin systems in particular – using the operator algebraic approach. Here, the observables are modeled using elements of some operator algebra, usually a C*-algebra. This text introduces readers to the framework and the necessary mathematical tools without assuming much mathematical background, making it more accessible than advanced monographs. The book also highlights the usefulness of the so-called thermodynamic limit of quantum spin systems, which is the limit of infinite system size. For example, this makes it possible to clearly distinguish between local and global properties, without having to keep track of the system size. Together with Lieb-Robinson bounds, which play a similar role in quantum spin systems to that of the speed of light in relativistic theories, this approach allows ideas from relativistic field theories to be implemen...
Gol'dman, I I
2010-01-01
A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. Among the topics: one-dimensional motion, transmission through a potential barrier, commutation relations, angular momentum and spin, and motion of a particle in a magnetic field. An ideal adjunct to any textbook in quantum mechanics, useful in courses in atomic and nuclear physics, mathematical methods in physics, quantum statistics and applied differential equations. 1961 edition.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Model-Checking Linear-Time Properties of Quantum Systems
Ying, Mingsheng; Yu, Nengkun; Feng, Yuan
2011-01-01
We define a formal framework for reasoning about linear-time properties of quantum systems in which quantum automata are employed in the modeling of systems and certain closed subspaces of state (Hilbert) spaces are used as the atomic propositions about the behavior of systems. We provide an algorithm for verifying invariants of quantum automata. Then automata-based model-checking technique is generalized for the verification of safety properties recognizable by reversible automata and omega-properties recognizable by reversible Buechi automata.
Evaluation of the Quantum II yeast identification system.
Kiehn, T E; Edwards, F F; Tom, D; LIEBERMAN, G; Bernard, E M; Armstrong, D.
1985-01-01
We compared three methods for identifying clinical yeast isolates: Abbott Quantum II, API 20C, and a modified BBL Minitek system. The API 20C and modified Minitek systems agreed on the identification of 243 of 245 yeasts (99.2%). The Quantum II system correctly identified 197 (80.4%), incorrectly identified 19 (7.8%), and did not identify 29 (11.8%) of the yeasts. Most of the misidentifications with the Quantum II occurred because assimilation or biochemical results were false-positive. Sixte...
Multiple System-Decomposition Method for Avoiding Quantum Decoherence
Institute of Scientific and Technical Information of China (English)
J.Jekni(c)-Dugi(c); M.Dugi(c)
2008-01-01
Decomposition of a composite system C into different subsystems,A+B or D+ε,may help in avoiding decoherence.For example,the environment-induced decoherence for an A+B system need not destroy entanglement present in the D+ε system(A+B=C=D+ε).This new approach opens some questions also in the foundations of the quantum computation theory that might eventually lead to a new model of quantum computation.
Introduction to the Time Evolution of Open Quantum Systems
Rivas, Ángel
2011-01-01
We revise fundamental concepts in the dynamics of open quantum systems in the light of modern developments in the field. Our aim is to present a unified approach to the quantum evolution of open systems that incorporates the concepts and methods traditionally employed by different communities. We present in some detail the mathematical structure and the general properties of the dynamical maps underlying open system dynamics. We also discuss the microscopic derivation of dynamical equations, including both Markovian and non-Markovian evolutions.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Schwager, Heike
2012-07-04
In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with
Bohmian mechanics, open quantum systems and continuous measurements
Nassar, Antonio B
2017-01-01
This book shows how Bohmian mechanics overcomes the need for a measurement postulate involving wave function collapse. The measuring process plays a very important role in quantum mechanics. It has been widely analyzed within the Copenhagen approach through the Born and von Neumann postulates, with later extension due to Lüders. In contrast, much less effort has been invested in the measurement theory within the Bohmian mechanics framework. The continuous measurement (sharp and fuzzy, or strong and weak) problem is considered here in this framework. The authors begin by generalizing the so-called Mensky approach, which is based on restricted path integral through quantum corridors. The measuring system is then considered to be an open quantum system following a stochastic Schrödinger equation. Quantum stochastic trajectories (in the Bohmian sense) and their role in basic quantum processes are discussed in detail. The decoherence process is thereby described in terms of classical trajectories issuing from th...
Detecting quantum speedup in closed and open systems
Xu, Zhen-Yu
2016-07-01
We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.
Contextuality without nonlocality in a superconducting quantum system
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-10-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Quantum physics without quantum philosophy
Energy Technology Data Exchange (ETDEWEB)
Duerr, Detlef [Muenchen Univ. (Germany). Mathematisches Inst.; Goldstein, Sheldon [Rutgers State Univ., Piscataway, NJ (United States). Dept. of Mathematics; Zanghi, Nino [Genova Univ. (Italy); Istituto Nazionale Fisica Nucleare, Genova (Italy)
2013-02-01
Integrates and comments on the authors' seminal papers in the field. Emphasizes the natural way in which quantum phenomena emerge from the Bohmian picture. Helps to answer many of the objections raised to Bohmian quantum mechanics. Useful overview and summary for newcomers and students. It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schroedinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.
PT phase transition in multidimensional quantum systems
Bender, Carl M
2012-01-01
Non-Hermitian PT-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken PT symmetry in which the eigenvalues are all real, and (ii) a region of broken PT symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the PT phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled PT-symmetric Hamiltonians, $H=p^2/2+x^2/2+q^2/2+y^2/2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2/2+r^2/2+z^2/2+igxyz$, and $H=p^2/2+x^2/2+q^2/2+y^2+r^2/2+3z^2/2+igxyz$ are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at $g\\approx 0.1$, $g\\approx 0.04$, $g\\approx 0.1$, and $g\\approx 0.05$. These results suggest that the PT phase transition is a robust phen...
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Closed-Loop and Robust Control of Quantum Systems
Directory of Open Access Journals (Sweden)
Chunlin Chen
2013-01-01
Full Text Available For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA, and reinforcement learning (RL methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Self-assembled quantum dots in a nanowire system for quantum photonics.
Heiss, M; Fontana, Y; Gustafsson, A; Wüst, G; Magen, C; O'Regan, D D; Luo, J W; Ketterer, B; Conesa-Boj, S; Kuhlmann, A V; Houel, J; Russo-Averchi, E; Morante, J R; Cantoni, M; Marzari, N; Arbiol, J; Zunger, A; Warburton, R J; Fontcuberta i Morral, A
2013-05-01
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.
Lu, Yun-Gang
1995-01-01
The present article is devoted to the explanation of the irreversible behavior of quantum systems as a limiting case (in a sense to be made precise) of usual quantum dynamics. One starts with a system, whose Hamiltonian has a continuous spectrum, interacting with a reservoir and studies the limits of quantities related to the whole compound system. A macroscopic equation is obtained for the limit of the compound system, which is a quantum stochastic differential equation of Poisson type on some Hilbert module (no longer a space) and whose coefficients are uniquely determined by the one-particle Hamiltonian of the original system and whose driving noises are the creation, annihilation, and number (or gauge) processes living on the Fock module over this module.
Entanglement Concentration for Higher-Dimensional Quantum Systems
Institute of Scientific and Technical Information of China (English)
姚春梅; 顾永建; 叶柳; 郭光灿
2002-01-01
Using local operations and classicalcommunication, we present two schemes for realizing entanglement concentration from pure entangled pairs of qutrits. These methods can be easily generalized to d-dimensional (d ＞ 3)quantum systems.
Quantum feedback in a weakly driven cavity QED system
Reiner, J. E.; Smith, W. P.; Orozco, L. A.; Wiseman, H. M.; Gambetta, Jay
2004-08-01
Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity QED system. The time evolution of the conditional state, following a photodetection, can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The feedback works only because we have an entangled quantum system, rather than an analogous correlated classical system.
Quantum entropy of non-Hermitian entangled systems
Zhang, Shi-Yang; Fang, Mao-Fa; Xu, Lan
2017-10-01
Non-Hermitian Hamiltonians are an effective tool for describing the dynamics of open quantum systems. Previous research shows that the restrictions of conventional quantum mechanics may be violated in the non-Hermitian cases. We studied the entropy of a system of entangled qubits governed by a local non-Hermitian Hamiltonian operator. We find that local non-Hermitian operation influences the entropies of the two subsystems equally and simultaneously. This indicates that non-Hermitian operators possess the property of non-locality, which makes information exchange possible between subsystems. These information exchanges reduce the uncertainty of outcomes associated with two incompatible quantum measurements.
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
Directory of Open Access Journals (Sweden)
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
The static hyperpolarizability of space-fractional quantum systems
Dawson, Nathan J
2016-01-01
The nonlinear response is investigated for a space-fractional quantum mechanical system subject to a static electric field. Expressions for the polarizability and hyperpolarizability are derived from the fractional Schrodinger equation in the particle-centric view under the three-level ansatz. Two types of asymmetric single-particle quantum systems are studied and both the linear and first nonlinear response to the perturbing field are analyzed with respect to the space-fractional parameter.
Entropies and correlations in classical and quantum systems
Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe
2016-09-01
We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
Auffèves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Neutron interferometry for precise characterization of quantum systems
Sarenac, Dusan; Shahi, Chandra; Mineeva, Taisiya; Wood, Christopher J.; Huber, Michael G.; Arif, Muhammad; Clark, Charles W.; Cory, David G.; Pushin, Dmitry A.
Neutron interferometry (NI) is among the most precise techniques used to test the postulates of quantum mechanics. It has demonstrated coherent spinor rotation and superposition, gravitationally induced quantum interference, the Aharonov-Casher effect, violation of a Bell-like inequality, and generation of a single-neutron entangled state. As massive, penetrating and neutral particles neutrons now provide unique capabilities in classical imaging applications that we seek to extend to the quantum domain. We present recent results on NI measurements of quantum discord in a bipartite quantum system and neutron orbital angular momentum multiplexing, and review progress on our commissioning of a decoherence-free-subspace NI user facility at the NIST Center for Neutron Research. Supported in part by CERC, CIFAR, NSERC and CREATE.
Quantum theory and chemistry: Two propositions
Aronowitz, S.
1980-01-01
Two propositions concerning quantum chemistry are proposed. First, it is proposed that the nonrelativistic Schroedinger equation, where the Hamiltonian operator is associated with an assemblage of nuclei and electrons, can never be arranged to yield specific molecules in the chemists' sense. It is argued that this result is a necessary condition if the Schroedinger has relevancy to chemistry. Second, once a system is in a particular state with regard to interactions among its components (the assemblage of nuclei and electrons), it cannot spontaneously eliminate any of those interactions. This leads to a subtle form of irreversibility.
Quantum Control of Open Systems and Dense Atomic Ensembles
DiLoreto, Christopher
Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated
The quantum measurement of time
Shepard, Scott R.
1994-01-01
Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.
Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiongwen, E-mail: hnsxw617@163.com [Department of Physics, Huaihua University, Huaihua 418008 (China); Chen, Baoju; Song, Kehui [Department of Physics, Huaihua University, Huaihua 418008 (China); Zhou, Guanghui [Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation (Ministry of Education), Hunan Normal University, Changsha 410081 (China)
2016-05-01
Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov–Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage V{sub g} applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.
Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system
Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui
2016-05-01
Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.
The entropy power inequality for quantum systems
Koenig, Robert
2012-01-01
When two independent analog signals, X and Y are added together giving Z=X+Y, the entropy of Z, H(Z), is not a simple function of the entropies H(X) and H(Y), but rather depends on the details of X and Y's distributions. Nevertheless, the entropy power inequality (EPI), which states that exp [2H(Z)] \\geq exp[2H(X) + exp[2H(Y)], gives a very tight restriction on the entropy of Z. This inequality has found many applications in information theory and statistics. The quantum analogue of adding two random variables is the combination of two independent bosonic modes at a beam splitter. The purpose of this work is to give a detailed outline of the proof of two separate generalizations of the entropy power inequality to the quantum regime. Our proofs are similar in spirit to standard classical proofs of the EPI, but some new quantities and ideas are needed in the quantum setting. Specifically, we find a new quantum de Bruijin identity relating entropy production under diffusion to a divergence-based quantum Fisher i...
Path Integrals in Quantum Physics
Rosenfelder, R
2012-01-01
These lectures aim at giving graduate students an introduction to and a working knowledge of path integral methods in a wide variety of fields in physics. Consequently, the lecture notes are organized in three main parts dealing with non-relativistic quantum mechanics, many-body physics and field theory. In the first part the basic concepts of path integrals are developed in the usual heuristic, non-mathematical way followed by standard examples and special applications including numerical evaluation of (euclidean) path integrals by Monte-Carlo methods with a program for the anharmonic oscillator. The second part deals with the application of path integrals in statistical mechanics and many-body problems treating the polaron problem, dissipative quantum systems, path integrals over ordinary and Grassmannian coherent states and perturbation theory for both bosons and fermions. Again a simple Fortran program is included for illustrating the use of strong-coupling methods. Finally, in the third part path integra...
Manipulating quantum information on the controllable systems or subspaces
Zhang, Ming
2010-01-01
In this paper, we explore how to constructively manipulate quantum information on the controllable systems or subspaces. It is revealed that one can make full use of distinguished properties of Pauli operators to design control Hamiltonian based on the geometric parametrization of quantum states. It is demonstrated in this research that Bang-Bang controls, triangle-function controls and square-function control can be utilized to manipulate controllable qubits or encoded qubits on controllable subspace for both open quantum dynamical systems and uncontrollable closed quantum dynamical systems. Furthermore, we propose a new kind of time-energy performance index to trade-off time and energy resource cost, and comprehensively discuss how to design control magnitude to minimize a kind of time-energy performance. A comparison has been made among these three kind of optimal control. It is underlined in this research that the optimal time performance can be always expressed as J^{*} =\\lamda{\\cdot}t^{*}_{f} +E^{*} for...
Nanoscale thermal imaging of dissipation in quantum systems
Halbertal, Dorri; Shalom, Moshe Ben; Embon, Lior; Shadmi, Nitzan; Anahory, Yonathan; Naren, HR; Sarkar, Jayanta; Uri, Aviram; Ronen, Yuval; Myasoedov, Yury; Levitov, Leonid; Joselevich, Ernesto; Geim, Andre Konstantin; Zeldov, Eli
2016-01-01
Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal se...
Markovian Classicality from Zero Discord for Bipartite Quantum Systems
Arsenijevic, M; Dugic, M
2012-01-01
Modern quantum information theory provides new tools for investigating the decoherence-induced "classicality" of open quantum systems. Recent observation that almost all quantum states bear non-classical correlations [A. Ferraro {\\it et al}, Phys. Rev. A {\\bf 81}, 052318 (2010)] distinguishes the zero-discord classicality essentially as a pathology of the Markovian bipartite-systems realm. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. A need for the more elaborate and more systematic search for the alternative such models reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.
Applying quantum mechanics to macroscopic and mesoscopic systems
T., N Poveda
2012-01-01
There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.
Electron-phonon interaction in quantum transport through quantum dots and molecular systems
Ojeda, J. H.; Duque, C. A.; Laroze, D.
2016-12-01
The quantum transport and effects of decoherence properties are studied in quantum dots systems and finite homogeneous chains of aromatic molecules connected to two semi-infinite leads. We study these systems based on the tight-binding approach through Green's function technique within a real space renormalization and polaron transformation schemes. In particular, we calculate the transmission probability following the Landauer-Büttiker formalism, the I - V characteristics and the noise power of current fluctuations taken into account the decoherence. Our results may explain the inelastic effects through nanoscopic systems.
Tampering detection system using quantum-mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN
2011-12-13
The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.
Non-relativistic twistor theory and Newton--Cartan geometry
Dunajski, Maciej
2015-01-01
We develop a non-relativistic twistor theory, in which Newton--Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle ${\\mathcal O}\\oplus{\\mathcal O}(2)$. We show that the Newton--Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton--Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non--trivial on twistor lines. The resulting geometries agree with non--relativistic limits of anti-self-dual gravitational instantons.
Entanglement and mutual information in 2d nonrelativistic field theories
Hosseini, Seyed Morteza
2015-01-01
We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories --- this is done both at zero and finite temperature. Based on these results, we pose a conjecture for the anomaly coefficient of a Lifshitz field theory dual to new massive gravity. It is found that the Lifshitz entanglement entropy at finite temperature displays a striking similarity with that corresponding to a flat space cosmology in three dimensions. We claim that this structure is an inherent feature of the entanglement entropy for nonrelativistic conformal field theories. We finish by exploring the behavior of the mutual information for such theories.
Dynamics of open quantum spin systems : An assessment of the quantum master equation approach
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-01-01
Data of the numerical solution of the time-dependent Schrodinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtainin
Quantum features of natural cellular automata
Elze, Hans-Thomas
2016-01-01
Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...