Gauge Invariance of a Time-Dependent Harmonic Oscillator in Magnetic Dipole Approximation
Institute of Scientific and Technical Information of China (English)
WANG Fei; QIAN Shang-Wu; FU Li-Ping; WANG Jing-Shan; GUO Ke-Tao
2008-01-01
A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A genera/ equation for obtaining gauge-invariant transition probability amplitudes is derived.
Photoelectron spectroscopy and the dipole approximation
Energy Technology Data Exchange (ETDEWEB)
Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others
1997-04-01
Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.
Scattering from rough thin films: discrete-dipole-approximation simulations.
Parviainen, Hannu; Lumme, Kari
2008-01-01
We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical roughness models, model dependent roughness parameters, and uncorrelated, random, small-scale porosity of the inhomogeneous medium are studied. The suitability of the discrete-dipole approximation for rough-surface scattering problems is evaluated by considering thin films as computationally feasible rough-surface analogs. The effects due to small-scale inhomogeneity of the scattering medium are compared with the analytic approximation by Maxwell Garnett, and the results are found to agree with the approximation.
On the Purcell effect beyond the dipole approximation
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter;
2012-01-01
We investigate spontaneous emission from excitons in quantum dots beyond the dipole approximation and show how the symmetry of the exciton wavefunction plays a crucial role. We show explicitly that for spherically symmetric excitons, the Purcell effect is independent of the exciton size and is go......We investigate spontaneous emission from excitons in quantum dots beyond the dipole approximation and show how the symmetry of the exciton wavefunction plays a crucial role. We show explicitly that for spherically symmetric excitons, the Purcell effect is independent of the exciton size...
Applicability of point dipoles approximation to all-dielectric metamaterials
Kuznetsova, S M; Lavrinenko, A V
2015-01-01
All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this contribution we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to ~0.8 of the lattice constant. The results provide important guidelines for design and optimization of all-dielectric metamaterials.
Convergence of the discrete dipole approximation. I. Theoretical analysis
Yurkin, Maxim A; Hoekstra, Alfons G
2006-01-01
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in the range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
Breakdown of the Dipole Approximation in Strong-Field Ionization
Ludwig, A; Mayer, B W; Phillips, C R; Gallmann, L; Keller, U
2014-01-01
We report the breakdown of the electric dipole approximation in the long-wavelength limit in strong-field ionization with linearly polarized few-cycle mid-infrared laser pulses at intensities on the order of 10$^{13}$ W/cm$^2$. Photoelectron momentum distributions were recorded by velocity map imaging and projected onto the beam propagation axis. We observe an increasing shift of the peak of this projection opposite to the beam propagation direction with increasing laser intensities. From a comparison with semi-classical simulations, we identify the combined action of the magnetic field of the laser pulse and the Coulomb potential as origin of our observations.
Discrete Dipole Approximation Aided Design Method for Nanostructure Arrays
Institute of Scientific and Technical Information of China (English)
ZHU Shao-Li; LUO Xian-Gang; DU Chun-Lei
2007-01-01
A discrete dipole approximation (DDA) aided design method is proposed to determine the parameters of nanostructure arrays. The relationship between the thickness, period and extinction efficiency of nanostructure arrays for the given shape can be calculated using the DDA. Based on the calculated curves, the main parameters of the nanostructure arrays such as thickness and period can be determined. Using this aided method, a rhombic sliver nanostructure array is designed with the determinant parameters of thickness (40 nm) and period (440 nm).We further fabricate the rhombic sliver nanostructure arrays and testify the character of the extinction spectra.The obtained extinction spectra is within the visible range and the full width at half maximum is 99nm, as is expected.
Breakdown of the dipole approximation for large quantum dot emitters coupled to an interface
DEFF Research Database (Denmark)
Stobbe, Søren; Johansen, Jeppe; Löffler, A.
2008-01-01
We measured time-resolved photoluminescence from large quantum dots near a semiconductor-air interface. Far from the interface our data are consistent with dipole theory, but near the interface they question the validity of the dipole approximation.......We measured time-resolved photoluminescence from large quantum dots near a semiconductor-air interface. Far from the interface our data are consistent with dipole theory, but near the interface they question the validity of the dipole approximation....
Egorova, Irina A
2016-01-01
New results for electric dipole strength in the chain of even-even Calcium isotopes with the mass numbers A = 40 - 54 are presented. Starting from the covariant Lagrangian of Quantum Hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for $J \\leq 6$ and normal parity were computed in a self-consistent relativistic quasiparticle random phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2q$\\otimes$phonon) form the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation (RQTBA). The results for giant dipole resonance in the latter approach are compared to those obtained in RQRPA and to available data. Evolution of the dipole strength with neutron number is investigated for both high-frequency giant dipole resonance (GDR) and low-lying strength. Development of a pygmy resonant structure on the low-energy shoulder of GDR is traced and analyzed in terms...
Applicability of point-dipoles approximation to all-dielectric metamaterials
DEFF Research Database (Denmark)
Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei
2015-01-01
All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....
Energy Technology Data Exchange (ETDEWEB)
Buehring, W.
1983-03-01
Non-relativistic scattering phase shifts, bound state energies, and wave function normalization factors for a screened Coulomb potential of the Hulthen type are presented in the form of relatively simple analytic expressions. These formulae have been obtained by a suitable renormalization procedure applied to the quantities derived from an approximate Schroedinger equation which contains the exact Hulthen potential together with an approximate angular momentum term. When the screening exponent vanishes, our formulae reduce to the exact Coulomb expresions. The interrelation between our formulae and Pratt's analytic perturbation theory for screened Coulomb potentials' is discussed.
Nonrelativistic quantum X-ray physics
Hau-Riege, Stefan P
2015-01-01
Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...
Directory of Open Access Journals (Sweden)
M. P. Menguc
2011-09-01
Full Text Available We embark on this preliminary study of the suitability of the discrete dipole approximation with surface interaction (DDA-SI method to model electric field scattering from noble metal nano-structures on dielectric substrates. The refractive index of noble metals, particularly due to their high imaginary components, require smaller lattice spacings and are especially sensitive to the shape integrity and the volume of the dipole model. The results of DDA-SI method are validated against those of the well-established finite element method (FEM and the finite difference time domain (FDTD method.
Energy Technology Data Exchange (ETDEWEB)
Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)
2015-12-21
The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.
Effective restoration of dipole sum rules within the renormalized random-phase approximation
Hung, N. Quang; Dang, N. Dinh; Hao, T. V. Nhan; Phuc, L. Tan
2016-12-01
The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in 48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-weighted sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking into account the contribution of the particle-particle and hole-hole excitations together with the particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.
Foreman, Matthew R; Treasurer, Eshan; Lopez, Jehovani; Arnold, Stephen
2016-01-01
Interactions between whispering gallery modes (WGMs) and small nanoparticles are commonly modelled by treating the particle as a point dipole scatterer. This approach is assumed to be accurate as long as the nanoparticle radius, $a$, is small compared to the WGM wavelength $\\lambda$. In this article, however, we show that the large field gradients associated with the evanescent decay of a WGM causes the dipole theory to significantly underestimate the interaction strength, and hence induced WGM resonance shift, even for particles as small as $a\\sim \\lambda/10$. To mitigate this issue we employ a renormalized Born approximation to more accurately determine nanoparticle induced resonance shifts and hence enable improved particle sizing. The domain of validity of this approximation is investigated and supporting experimental results are presented.
Silver nanodisks: optical properties study using the discrete dipole approximation method.
Brioude, A; Pileni, M P
2005-12-15
The simulated optical properties of silver nanodisks are presented. The extinction, absorption, and scattering efficiencies are calculated using the discrete dipole approximation. The influence of the nanodisk size, truncature (snip), aspect ratio, and environment on the plasmon resonance bands is investigated. In particular, the dipolar and multipolar resonance peak positions have been related to the specific features of the nanodisk geometry. An interpretation of the origins of each multipolar mode is proposed for the first time taking into account this geometry.
Effective restoration of dipole sum rules within the renormalized random-phase approximation
Hung, N Quang; Hao, T V Nhan; Phuc, L Tan
2016-01-01
The dipole excitations for calcium and zirconium isotopes are studied within the fully self-consistent Hartree-Fock mean field incorporated with the renormalized random-phase approximation (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole transitions, whose effects are treated here in an effective way. By comparing the RPA results with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in $^{48, 52, 58}$Ca and $^{90, 96, 110}$Zr, it is shown that ground-state correlations beyond the RPA reduce the IS transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums of strengths of both IS and IV modes decrease, cau...
RCS estimation of linear and planar dipole phased arrays approximate model
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...
Yurkin, Maxim A; Hoekstra, Alfons G
2006-01-01
We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different discretizations. The quality of the extrapolation improves with refining discretization reaching extraordinary performance especially for cubically shaped particles. A two order of magnitude decrease of error was demonstrated. We also propose estimates of the extrapolation error, which were proven to be reliable. Finally we propose a simple method to directly separate shape and discretization errors and illustrated this for one test case.
Froelich, P.; Weyrich, Wolf
1984-06-01
Basic electrodynamical and collision theory presumptions related to Compton scattering are critically reconsidered (with particular emphasis on identifying the proper transition matrix element effectively controlling the process, and on framing it within time dependent perturbation theory and scattering theory) in order to indicate the main features and the validity of the proposed method. The on-energy-shell transition matrix element governing the cross-sectional formula is obtained from Furry's two-potential formalism, which makes possible a treatment of the primary electron-photon interaction to first order while incorporating the effects of the final state Coulombic interaction to all orders. Furry's procedure, in addition to defining clearly which initial and final states should enter the transition matrix element, also brings additional insight into the nature of the so-called ``sudden impulse approximation.'' A treatment is proposed in which the decisive transition matrix element is obtained without explicit calculation of the distorted continuum solutions implied by Furry's procedure, but is instead extracted from the dispersion relations of the ``beat-frequency'' dependent generalized polarizability by means of the L2 treatment based on the complex-coordinate method. The practical advantage of the method will be its ability to incorporate correlation between the ejected electron and the electrons remaining in the ion.
Spin dephasing in a magnetic dipole field around large capillaries: Approximative and exact results
Kurz, F. T.; Buschle, L. R.; Kampf, T.; Zhang, K.; Schlemmer, H. P.; Heiland, S.; Bendszus, M.; Ziener, C. H.
2016-12-01
We present an analytical solution of the Bloch-Torrey equation for local spin dephasing in the magnetic dipole field around a capillary and for ensembles of capillaries, and adapt this solution for the study of spin dephasing around large capillaries. In addition, we provide a rigorous mathematical derivation of the slow diffusion approximation for the spin-bearing particles that is used in this regime. We further show that, in analogy to the local magnetization, the transverse magnetization of one MR imaging voxel in the regime of static dephasing (where diffusion effects are not considered) is merely the first term of a series expansion that constitutes the signal in the slow diffusion approximation. Theoretical results are in agreement with experimental data for capillaries in rat muscle at 7 T.
Yurkin, Maxim A; Hoekstra, Alfons G
2007-01-01
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA computer program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.0
Draine, B T
2008-01-01
DDSCAT 7.0 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2009). DDSCAT 7.0 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.3
Draine, B T
2013-01-01
DDSCAT 7.3 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008), and efficient near-field calculations in Flatau & Draine (2012). DDSCAT 7.3 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCA...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.1
Draine, B T
2010-01-01
DDSCAT 7.1 is an open-source Fortran-90 software package applying the discrete dipole approximation to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", allowing calculation of absorption, scattering, and electric fields around arrays of nanostructures. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures (and near-field calculations) in Draine & Flatau (2008). DDSCAT 7.1 includes support for MPI, OpenMP, and the Intel Math Kernel Library (MKL). DDSCAT supports calculations for a variety of target geometries. Target materials may be both inhomogeneous and anisotropic. It is straightforward for the user to "import" arbitrary target geometries into the code. DDSCAT automatically calculates total cross ...
Directory of Open Access Journals (Sweden)
DePrince A
2010-01-01
Full Text Available Abstract We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small.
Opendda: a Novel High-Performance Computational Framework for the Discrete Dipole Approximation
Donald, James Mc; Jennings, S Gerard
2009-01-01
This work presents a highly optimized computational framework for the Discrete Dipole Approximation, a numerical method for calculating the optical properties associated with a target of arbitrary geometry that is widely used in atmospheric, astrophysical and industrial simulations. Core optimizations include the bit-fielding of integer data and iterative methods that complement a new Discrete Fourier Transform (DFT) kernel, which efficiently calculates the matrix vector products required by these iterative solution schemes. The new kernel performs the requisite 3-D DFTs as ensembles of 1-D transforms, and by doing so, is able to reduce the number of constituent 1-D transforms by 60% and the memory by over 80%. The optimizations also facilitate the use of parallel techniques to further enhance the performance. Complete OpenMP-based shared-memory and MPI-based distributed-memory implementations have been created to take full advantage of the various architectures. Several benchmarks of the new framework indica...
User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2
Draine, Bruce T
2012-01-01
DDSCAT 7.2 is a freely available open-source Fortran-90 software package applying the discrete dipole approximation (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The targets may be isolated entities (e.g., dust particles), but may also be 1-d or 2-d periodic arrays of "target unit cells", which can be used to study absorption, scattering, and electric fields around arrays of nanostructures. The DDA approximates the target by an array of polarizable points. The theory of the DDA and its implementation in DDSCAT is presented in Draine (1988) and Draine & Flatau (1994), and its extension to periodic structures in Draine & Flatau (2008). Efficient near-field calculations are enabled following Flatau & Draine (2012). DDSCAT 7.2 allows accurate calculations of electromagnetic scattering from targets with size parameters 2*pi*aeff/lambda < 25 provided the refractive index m is not large compared to unity (|m-1| ...
Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.
Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Zhu, Nan; Chábera, Pavel; Lenngren, Nils; Chi, Qijin; Pullerits, Tõnu
2014-04-30
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account the distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can significantly improve light harvesting efficiency of QD devices.
Johnson, Mikala; Bowen, Patrick; Kundtz, Nathan; Bily, Adam
2014-09-01
Since the discovery of materials with negative refractive index, widely known as metamaterials, it has been possible to develop new devices that utilize a metamaterial's ability to control the path of electromagnetic energy. Of particular promise, and already under intensive development for commercial applications, are metamaterial antennas for satellite communications. Using reconfigurable metamaterials in conjunction with the principles of holography, these new antennas can electronically steer the high gain antenna beam required for broadband communications while not having any moving parts, being thinner, lighter weight, and less expensive, and requiring less power to operate than conventional alternatives. Yet, the promise of these devices will not be realized without efficient and effective control and optimization. Toward this end, in this paper a discrete-dipole approximation (DDA) model of a waveguide-fed planar metamaterial antenna is derived. The proposed model is demonstrated to accurately predict the radiation of a two-dimensional metamaterial at a much reduced computational cost to full-wave simulation and at much greater fidelity than simpler models typically used in the field. The predictive capabilities of the derived DDA model opens possibilities for model-based control design for optimal beam steering.
Exact Answers to Approximate Questions Noncommutative Dipoles, Open Wilson Lines, and UV-IR Duality
Rey, S J
2002-01-01
In this lecture, I put forward conjectures asserting that, in all noncommutative field theories, (1) open Wilson lines and their descendants constitute a complete set of interpolating operators of `noncommutative dipoles', obeying dipole relation, (2) infrared dynamics of the noncommutative dipoles is dual to ultraviolet dynamics of the elementary noncommutative fields, and (3) open string field theory is a sort of noncommutative field theory, whose open Wilson lines are interpolating operators for closed strings. I substantiate these conjectures by various intuitive arguments and explicit computations of one- and two-loop Feynman diagrammatics.
Energy Technology Data Exchange (ETDEWEB)
Lindsay, Sean S. [Department of Earth and Planetary Sciences, University of Tennessee, 1421 Circle Drive, Knoxville, TN 37996-2366 (United States); Wooden, Diane H. [Space Science Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035-0001 (United States); Harker, David E. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424 (United States); Kelley, Michael S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Murphy, Jim R., E-mail: slindsay@utk.edu, E-mail: diane.h.wooden@nasa.gov, E-mail: dharker@uscd.edu, E-mail: msk@astro.umd.edu, E-mail: chelsea@astro.umn.edu, E-mail: murphy@nmsu.edu [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States)
2013-03-20
We compute the absorption efficiency (Q{sub abs}) of forsterite using the discrete dipole approximation in order to identify and describe what characteristics of crystal grain shape and size are important to the shape, peak location, and relative strength of spectral features in the 8-40 {mu}m wavelength range. Using the DDSCAT code, we compute Q{sub abs} for non-spherical polyhedral grain shapes with a{sub eff} = 0.1 {mu}m. The shape characteristics identified are (1) elongation/reduction along one of three crystallographic axes; (2) asymmetry, such that all three crystallographic axes are of different lengths; and (3) the presence of crystalline faces that are not parallel to a specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids. Elongation/reduction dominates the locations and shapes of spectral features near 10, 11, 16, 23.5, 27, and 33.5 {mu}m, while asymmetry and tips are secondary shape effects. Increasing grain sizes (0.1-1.0 {mu}m) shifts the 10 and 11 {mu}m features systematically toward longer wavelengths and relative to the 11 {mu}m feature increases the strengths and slightly broadens the longer wavelength features. Seven spectral shape classes are established for crystallographic a-, b-, and c-axes and include columnar and platelet shapes plus non-elongated or equant grain shapes. The spectral shape classes and the effects of grain size have practical application in identifying or excluding columnar, platelet, or equant forsterite grain shapes in astrophysical environs. Identification of the shape characteristics of forsterite from 8 to 40 {mu}m spectra provides a potential means to probe the temperatures at which forsterite formed.
Shao, Hongbing
Software testing with scientific software systems often suffers from test oracle problem, i.e., lack of test oracles. Amsterdam discrete dipole approximation code (ADDA) is a scientific software system that can be used to simulate light scattering of scatterers of various types. Testing of ADDA suffers from "test oracle problem". In this thesis work, I established a testing framework to test scientific software systems and evaluated this framework using ADDA as a case study. To test ADDA, I first used CMMIE code as the pseudo oracle to test ADDA in simulating light scattering of a homogeneous sphere scatterer. Comparable results were obtained between ADDA and CMMIE code. This validated ADDA for use with homogeneous sphere scatterers. Then I used experimental result obtained for light scattering of a homogeneous sphere to validate use of ADDA with sphere scatterers. ADDA produced light scattering simulation comparable to the experimentally measured result. This further validated the use of ADDA for simulating light scattering of sphere scatterers. Then I used metamorphic testing to generate test cases covering scatterers of various geometries, orientations, homogeneity or non-homogeneity. ADDA was tested under each of these test cases and all tests passed. The use of statistical analysis together with metamorphic testing is discussed as a future direction. In short, using ADDA as a case study, I established a testing framework, including use of pseudo oracles, experimental results and the metamorphic testing techniques to test scientific software systems that suffer from test oracle problems. Each of these techniques is necessary and contributes to the testing of the software under test.
Nonrelativistic Geodesic Motion
Mangiarotti, L
1999-01-01
We show that any second order dynamic equation on a configuration space $X\\to R$ of nonrelativistic mechanics can be seen as a geodesic equation with respect to some (nonlinear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. We compare relativistic and nonrelativistic geodesic equations, and study the Jacobi vector fields along nonrelativistic geodesics.
Lindsay, Sean Stephen
The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline
Draine, B. T.; Goodman, Jeremy
1993-01-01
We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.
Energy Technology Data Exchange (ETDEWEB)
Laidman, S.; Pangilinan, J.; Guillemin, R.; Yu, S.U.; Ohrwall, G.; Lindle, D.; Hemmers, O.
2002-01-01
Understanding the electronic structure of atoms and molecules is fundamental in determining their basic properties as well as the interactions that occur with different particles such as light. One such interaction is single photoionization; a process in which a photon collides with an atom or molecule and an electron with a certain kinetic energy is emitted, leaving behind a residual ion. Theoretical models of electronic structures use the dipole approximation to simplify x-ray interactions by assuming that the electromagnetic field of the radiation, expressed as a Taylor-series expansion, can be simplified by using only the first term. It has been known for some time that the dipole approximation becomes inaccurate at high photon energies, but the threshold at which this discrepancy begins is ambiguous. In order to enhance our understanding of these limitations, we measured the electron emissions of nitrogen. Beamline 8.0.1 at the Advanced Light Source was used with an electron Time-of-Flight (TOF) end station, which measures the time required for electrons emitted to travel a fixed distance. Data were collected over a broad range of photon energies (413 - 664 eV) using five analyzers rotated to 15 chamber angles. Preliminary analysis indicates that these results confirm the breakdown of the dipole approximation at photon energies well below 1 keV and that this breakdown is greatly enhanced in molecules just above the core-level ionization threshold. As a result, new theoretical models must be made that use higher order terms that were previously truncated.
Gilev, Konstantin V; Eremina, Elena; Yurkin, Maxim A; Maltsev, Valeri P
2010-03-15
The discrete sources method (DSM) and the discrete dipole approximation (DDA) were compared for simulation of light scattering by a red blood cell (RBC) model. We considered RBCs with diameters up to 8 mum (size parameter up to 38), relative refractive indices 1.03 and 1.06, and two different orientations. The agreement in the angle-resolved S(11) element of the Mueller matrix obtained by these methods is generally good, but it deteriorates with increasing scattering angle, diameter and refractive index of a RBC. Based on the DDA simulations with very fine discretization (up to 93 dipoles per wavelength) for a single RBC, we attributed most of the disagreement to the DSM, which results contain high-frequency ripples. For a single orientation of a RBC the DDA is comparable to or faster than the DSM. However, the relation is reversed when a set of particle orientations need to be simulated at once. Moreover, the DSM requires about an order of magnitude less computer memory. At present, application of the DSM for massive calculation of light scattering patterns of RBCs is hampered by its limitations in size parameter of a RBC due to the high number of harmonics used for calculations.
Energy Technology Data Exchange (ETDEWEB)
Haiwei, Mu; Jingwei, Lv; Zhaoting, Liu; Lin, Yang; Qiang, Liu; Chao, Liu [Northeast Petroleum University, School of Electronics Science, Daqing (China); Shijie, Zheng [Harbin Institute of Technology, School of Civil Engineering, Harbin (China); Tao, Sun [Agency for Science, Technology and Research (A-STAR), Institute of Microelectronics, Singapore (Singapore)
2016-04-15
Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing. (orig.)
Abraham Ekeroth, R. M.; García-Martín, A.; Cuevas, J. C.
2017-06-01
We present here a generalization of the thermal discrete dipole approximation (TDDA) that allows us to describe the near-field radiative heat transfer between finite objects of arbitrary shape that exhibit magneto-optical (MO) activity. We also extend the TDDA approach to describe the thermal emission of a finite object with and without MO activity. Our method is also valid for optically anisotropic materials described by an arbitrary permittivity tensor and we provide simple closed formulas for the basic thermal quantities that considerably simplify the implementation of the TDDA method. Moreover, we show that by employing our TDDA approach one can rigorously demonstrate Kirchhoff's radiation law relating the emissivity and absorptivity of an arbitrary MO object. Our work paves the way for the theoretical study of the active control of emission and radiative heat transfer between MO systems of arbitrary size and shape.
Calculation of electric dipole hypershieldings at the nuclei in the Hellmann-Feynman approximation.
Soncini, Alessandro; Lazzeretti, Paolo; Bakken, Vebjørn; Helgaker, Trygve
2004-02-15
The third-rank electric hypershieldings at the nuclei of four small molecules have been evaluated at the Hartree-Fock level of theory in the Hellmann-Feynman approximation. The nuclear electric hypershieldings are closely related to molecular vibrational absorption intensities and a generalization of the atomic polar tensors (expanded in powers of the electric field strength) is proposed to rationalize these intensities. It is shown that the sum rules for rototranslational invariance and the constraints imposed by the virial theorem provide useful criteria for basis-set completeness and for near Hartree-Fock quality of nuclear shieldings and hypershieldings evaluated in the Hellmann-Feynman approximation. Twelve basis sets of different size and quality have been employed for the water molecule in an extended numerical test on the practicality of the proposed scheme. The best results are obtained with the R12 and R12+ basis sets, designed for the calculation of electronic energies by the explicitly correlated R12 method. The R12 basis set is subsequently used to investigate three other molecules, CO, N2, and NH3, verifying that the R12 basis consistently performs very well.
Asenchik, O. D.
2017-02-01
A method of approximate calculation of the interaction inverse matrix in the method of discrete dipoles is proposed. The knowledge of this matrix makes it possible to determine the optical response of a system to the action of an electromagnetic wave with an arbitrary shape, which can be represented as a combination of vector spherical wave functions. The number of calculation operations of the matrix in the proposed method is considerably smaller than in the case of its direct calculation. In the case of a change in the refractive index of scattering particles, two methods of approximate calculation of the interaction inverse matrix are also proposed. This makes it possible to calculate the optical response of systems with new characteristics without direct solving equations of a system with a large dimension. The accuracy of the methods is numerically determined for particles with spherical and cubic shapes. It is shown that the methods are computationally efficient and can be used to calculate the values of polarization vectors inside particles and extinction and absorption cross sections of systems.
Wang, Anna; Fung, Jerome; Razavi, Sepideh; Kretzschmar, Ilona; Chaudhary, Kundan; Lewis, Jennifer A; Manoharan, Vinothan N
2013-01-01
We present a new, high-speed technique to track the three-dimensional translation and rotation of non-spherical colloidal particles. We capture digital holograms of micrometer-scale silica rods and sub-micrometer-scale Janus particles freely diffusing in water, and then fit numerical scattering models based on the discrete dipole approximation to the measured holograms. This inverse-scattering approach allows us to extract the the position and orientation of the particles as a function of time, along with static parameters including the size, shape, and refractive index. The best-fit sizes and refractive indices of both particles agree well with expected values. The technique is able to track the center of mass of the rod to a precision of 35 nm and its orientation to a precision of 1.5$^\\circ$, comparable to or better than the precision of other 3D diffusion measurements on non-spherical particles. Furthermore, the measured translational and rotational diffusion coefficients for the silica rods agree with hy...
Surprises with Nonrelativistic Naturalness
Horava, Petr
2016-01-01
We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: The cosmological constant problem and the Higgs mass hierarchy problem.
Directory of Open Access Journals (Sweden)
B. Scarnato
2012-10-01
Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation. When BC is internally mixed with NaCl (100–300 nm in radius, strong depolarization features for near-VIS incident radiation are evident
Zhang, Wen-Zhuo
2012-01-01
We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
More On Nonrelativistic Diffeomorphism Invariance
Andreev, Oleg
2014-01-01
Certain aspects of nonrelativistic diffeomorphisms in 2+1 dimensions are investigated. These include a nonrelativistic limit of some relativistic actions in 3 dimensions, the Seiberg-Witten map, a modification of the viscosity tensor in particular due to a non-uniform magnetic field, a redefinition of background fields, and 1/R terms on Riemann surfaces of constant curvature.
Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi
2017-04-01
We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.
Excitation energy and strength of the pygmy dipole resonance in stable tin isotopes
Özel, B; Lenske, H; Von Neumann-Cosel, P; Poltoratska, I; Ponomarev, V Yu; Richter, A; Savran, D; Tsoneva, N
2009-01-01
The $^{112,120}$Sn$(\\gamma,\\gamma')$ reactions have been studied at the S-DALINAC. Electric dipole (E1) strength distributions have been determined including contributions from unresolved strength extracted by a fluctuation analysis. Together with available data on $^{116,124}$Sn, an experimental systematics of the pygmy dipole resonance (PDR) in stable even-mass tin isotopes is established. The PDR centroid excitation energies and summed strengths are in reasonable agreement with quasiparticle-phonon model calculations based on a nonrelativistic description of the mean field but disagree with relativistic quasiparticle random-phase approximation predictions.
Martini, M; Dupuis, M
2011-01-01
Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones 24O, 26Ne, 28Mg, and 30Si are characterized by a similar behavior. The occupation of the 2s_1/2 neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of 28Ne and 30Ne, characterized by transitions involving the neutron 1d_3/2 state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is id...
Energy Technology Data Exchange (ETDEWEB)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
Drechsler, Wolfgang; Havas, Peter; Rosenblum, Arnold
1984-02-01
In the preceding paper, the laws of motion were established for classical particles with spin which are monopole-dipole singularities of Yang-Mills-Higgs fields. In this paper, a systematic approximation scheme is developed for solving the coupled nonlinear field equations in any order and for determining the corresponding equations of motion. In zeroth order the potentials are taken as the usual Liénard-Wiechert and Bhabha-Harish-Chandra potentials (generalized to isospace); in this order the solutions are necessarily Abelian, since the isovector describing the charge is constant. The regularization necessary to obtain expressions finite on the world lines of the particles is achieved by the method of Riesz potentials. All fields are taken as retarded and are expressed in integral form. Omitting dipole interactions, the integrals for the various terms are carried out as far as possible for general motions, including radiation-reaction terms. In first order, the charge isovectors are no longer necessarily constant; thus the solutions are not necessarily Abelian, and it is possible for charge to be radiated away. The cases of time-symmetric field theory and of an action-at-a-distance formulation of the theory are discussed in an appendix.
Andersen, A C; Pustovit, V N; Niklasson, G A
2001-01-01
Certain dust particles in space are expected to appear as clusters of individual grains. The morphology of these clusters could be fractal or compact. In this paper we study the light scattering by compact and fractal polycrystalline graphite clusters consisting of touching identical spheres. We compare three general methods for computing the extinction of the clusters in the wavelength range 0.1 - 100 micron, namely, a rigorous solution (Gerardy & Ausloos 1982) and two different discrete-dipole approximation methods -- MarCODES (Markel 1998) and DDSCAT (Draine & Flatau 1994). We consider clusters of N = 4, 7, 8, 27,32, 49, 108 and 343 particles of radii either 10 nm or 50 nm, arranged in three different geometries: open fractal (dimension D = 1.77), simple cubic and face-centred cubic. The rigorous solution shows that the extinction of the fractal clusters, with N 5 micron, the rigorous solution indicates that the extinction from fractal and compact clusters are of the same order of magnitude. It wa...
Yurkin, Maxim A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P
2005-01-01
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed with the discrete dipole approximation (DDA) and the scanning flow cytometry (SFC), respectively. SFC permits measurement of angular dependence of light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the incident light upon the indicatrix. Numerical calculations of indicatrices for several aspect ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e. face-o...
Nonrelativistic effective field theory for axions
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-10-01
Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .
Microscopic picture of non-relativistic classicalons
Energy Technology Data Exchange (ETDEWEB)
Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert, E-mail: felix.berkhahn@physik.lmu.de, E-mail: sophia.x.mueller@physik.uni-muenchen.de, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich (Germany)
2013-08-01
A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic and non-relativistic geodesic equations
Energy Technology Data Exchange (ETDEWEB)
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Lamb Shift in Nonrelativistic Quantum Electrodynamics.
Grotch, Howard
1981-01-01
The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)
Holographic thermalization from nonrelativistic branes
Roychowdhury, Dibakar
2016-05-01
In this paper, based on the fundamental principles of gauge/gravity duality and considering a global quench, we probe the physics of thermalization for certain special classes of strongly coupled nonrelativistic quantum field theories that are dual to an asymptotically Schrödinger D p brane space time. In our analysis, we note that during the prelocal stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the postlocal stages of thermal equilibrium where the so-called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint certain parameters of the theory in a specific way in order to have discontinuous transitions at the point of saturation.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Nonrelativistic mean-field description of the deformation of Λ hypernuclei
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The deformations of light Λ hypernuclei are studied in an extended nonrelativistic deformed Skyrme-Hartree-Fock approach with realistic modern nucleonic Skyrme forces,pairing correlations,and a microscopical lambda-nucleon interaction derived from Brueckner-Hartree-Fock calculations.Compared to the large effect of an additional Λ particle on nuclear deformation in the light soft nuclei within relativistic mean field method,this effect is much smaller in the nonrelativistic mean-field approximation.
Pygmy dipole resonance and dipole polarizability in 90Zr
Iwamoto, C.; Tamii, A.; Utsunomiya, H.; Akimune, H.; Nakada, H.; Shima, T.; Hashimoto, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Suzuki, T.; Fujita, H.; Shimbara, Y.; Nagashima, M.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Lui, T.-W.; Bilgier, B.; Kozer, H. C.; Hatanaka, K.
2014-05-01
Electric dipole (E1) reduced transition probability B(E1) of 90Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability αD which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.
Pygmy dipole resonance and dipole polarizability in {sup 90}Zr
Energy Technology Data Exchange (ETDEWEB)
Iwamoto, C.; Tamii, A.; Shima, T.; Hashimoto, T.; Suzuki, T.; Fujita, H.; Hatanaka, K. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Utsunomiya, H.; Akimune, H.; Yamagata, T.; Okamoto, A.; Kondo, T. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Nakada, H. [Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba 263-8522 (Japan); Kawabata, T. [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Fujita, Y. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Matsubara, H. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Shimbara, Y.; Nagashima, M. [Department of Physics, Niigata University, Niigata 950-21-2 (Japan); Sakuda, M.; Mori, T. [Department of Physics, Okayama University, Okayama 900-0082 (Japan); and others
2014-05-02
Electric dipole (E1) reduced transition probability B(E1) of {sup 90}Zr was obtained by the inelastic proton scattering near 0 degrees using a 295 MeV proton beam and multipole decomposition analysis of the angular distribution by the distorted-wave Born approximation with the Hartree-Fock plus random-phase approximation model and inclusion of El Coulomb excitation, and the E1 strength of the pygmy dipole resonance was found in the vicinity of the neutron threshold in the low-energy tail of the giant dipole resonance. Using the data, we plan to determine the precise dipole polarizability α{sub D} which is defined as an inversely energy-weighted sum value of the elecrric dipole strength. The dipole polarizability is expected to constrain the symmetry energy term of the neutron matter equation of state. Thus systematical measurement of the dipole polarizability is important.
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
One-parameter nonrelativistic supersymmetry for microtubules
Rosu, H C
2003-01-01
The simple supersymmetric model of Caticha [PRA 51, 4264 (1995)], as used by Rosu [PRE 55, 2038 (1997)] for microtubules, is generalized to the case of Mielnik's one-parameter nonrelativistic susy [JMP 25, 3387 (1984)
Energy Technology Data Exchange (ETDEWEB)
Miyamoto, R.; Kopp, S.E.; /Texas U.; Jansson, A.; Syphers, M.J.; /Fermilab
2007-06-01
The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.
Conservation of energy and momentum in nonrelativistic plasmas
Energy Technology Data Exchange (ETDEWEB)
Sugama, H.; Watanabe, T.-H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Graduate University for Advanced Studies, Toki 509-5292 (Japan); Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan)
2013-02-15
Conservation laws of energy and momentum for nonrelativistic plasmas are derived from applying Noether's theorem to the action integral for the Vlasov-Poisson-Ampere system [Sugama, Phys. Plasmas 7, 466 (2000)]. The symmetric pressure tensor is obtained from modifying the asymmetric canonical pressure tensor with using the rotational symmetry of the action integral. Differences between the resultant conservation laws and those for the Vlasov-Maxwell system including the Maxwell displacement current are clarified. These results provide a useful basis for gyrokinetic conservation laws because gyrokinetic equations are derived as an approximation of the Vlasov-Poisson-Ampere system.
Pygmy dipole resonance in stable nuclei
Indian Academy of Sciences (India)
P Von Neumann-Cosel
2010-07-01
Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution (, ′) experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a non-relativistic mean-field description, predicting significantly different properties of the PDR. The second part presents a novel approach to measure the complete electric dipole strength distribution from excitation energies starting at about 5 MeV across the giant dipole resonance (GDR) with high-resolution inelastic proton scattering under 0° at energies of a few 100 MeV/nucleon. The case of 208Pb is discussed in detail and first result from a recent experiment on 120Sn is presented.
Noninertial effects on nonrelativistic topological quantum scattering
Mota, H. F.; Bakke, K.
2017-08-01
We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Sukhovoj, A M; Khitrov, V A
2008-01-01
The sums k(E1)+k(M1) of radiative strength functions of dipole primary gamma-transitions were approximated with high precision in the energy region of $0.5 < E_1 < B_n-0.5$ MeV for nuclei: 40K, 60Co, 71,74Ge, 80Br, 114Cd, 118Sn, 124,125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, 200Hg by sum of two independent functions. It has been shown that this parameter of gamma-decay are determined by the structure of the decaying and excited levels, at least, up to the neutron binding energy.
Sukhovoj, A. M.; Furman, W. I.; Khitrov, V. A.
2008-06-01
The sums of radiative strength functions for primary dipole gamma transitions, k( E1) + k( M1), are approximated to a high precision by a superposition of two functional dependences in the energy range 0.5 125Te, 128I, 137,138,139Ba, 140La, 150Sm, 156,158Gd, 160Tb, 163,164,165Dy, 166Ho, 168Er, 170Tm, 174Yb, 176,177Lu, 181Hf, 182Ta, 183,184,185,187W, 188,190,191,193Os, 192Ir, 196Pt, 198Au, and 200Hg nuclei. It is shown that, in any nuclei, radiative strength functions are a dynamical quantity and that the values of k( E1) + k( M1) for specific energies of gamma transitions and specific nuclei are determined by the structure of decaying and excited levels, at least up to the neutron binding energy B n .
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Supersymmetric solutions for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)
2009-01-15
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.
Simmen, Benjamin; Mátyus, Edit; Reiher, Markus
2014-10-21
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.
Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking
Griffin, Tom; Horava, Petr; Yan, Ziqi
2015-01-01
Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.
Mass of nonrelativistic meson from leading twist distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)
2011-01-15
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Vortex dynamics in nonrelativistic Abelian Higgs model
Directory of Open Access Journals (Sweden)
A.A. Kozhevnikov
2015-11-01
Full Text Available The dynamics of the gauge vortex with arbitrary form of a contour is considered in the framework of the nonrelativistic Abelian Higgs model, including the possibility of the gauge field interaction with the fermion asymmetric background. The equations for the time derivatives of the curvature and the torsion of the vortex contour generalizing the Betchov–Da Rios equations in hydrodynamics, are obtained. They are applied to study the conservation of helicity of the gauge field forming the vortex, twist, and writhe numbers of the vortex contour. It is shown that the conservation of helicity is broken when both terms in the equation of the vortex motion are present, the first due to the exchange of excitations of the phase and modulus of the scalar field and the second one due to the coupling of the gauge field forming the vortex, with the fermion asymmetric background.
Thermal quantum electrodynamics of nonrelativistic charged fluids.
Buenzli, Pascal R; Martin, Philippe A; Ryser, Marc D
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r(-6) decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Thermal quantum electrodynamics of nonrelativistic charged fluids
Buenzli, Pascal R.; Martin, Philippe A.; Ryser, Marc D.
2007-04-01
The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for nonrelativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems, which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It still has the r-6 decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.
Nonrelativistic Quantum Mechanics with Fundamental Environment
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Non-relativistic particles in a thermal bath
Directory of Open Access Journals (Sweden)
Vairo Antonio
2014-04-01
Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.
New approach to nonrelativistic diffeomorphism invariance and its applications
Banerjee, Rabin
2015-01-01
A comprehensive account of a new structured algorithm for obtaining nonrelativistic diffeomorphism invariances in both space and spacetime by gauging the Galilean symmetry in a generic nonrelativistic field theoretical model is provided. % where the original (global) symmetry is localised. Various applications like the obtention of nonrelativistic diffeomorphism invariance, the introduction of Chern-Simons term and its role in fractional quantum Hall effect, induction of diffeomorphism in irrotational fluid model, abstraction of Newton-Cartan geometry and the emergence of Horava-Lifshitz gravity are discussed in details.
Energy Technology Data Exchange (ETDEWEB)
Protsenko, I E; Uskov, A V; Krotova, K E [Lebedev Physical Institute, Leninsky prospect 53, Moscow (Russian Federation); O' Reilly, E P [Tyndall National Institute, ' Lee Maltings' , Prospect Row, Cork (Ireland)], E-mail: protsen@sci.lebedev.ru, E-mail: protsenk@gmail.com
2008-03-15
Theoretically predicted 'dipole lasing', i.e., spontaneous excitation of coherent metal nano-particle dipole oscillations through interaction with a quantum-dot two-level system subject to population inversion is demonstrated. Equations for dipole lasing are the same as equations for ordinary laser, where the dipole momentum of nano-particle stands for the electromagnetic field cavity mode. Dipole lasing frequency corresponds to the localized plasmon resonance of the nano-particle. Dipole momentum of nano-particle leads to coherent dipole radiation. Optical cavity is not necessary, the size of the dipole laser can be smaller than the optical wavelength, i.e. it is dipole nano-laser. Threshold conditions and optical bistability in dipole nano-lasers are considered.
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Nonrelativistic limit of solution of radial quasipotential equations
Energy Technology Data Exchange (ETDEWEB)
Minh, Vu.X.; Kadyshevskii, V.G.; Zhidkov, E.P.
1986-10-01
For the S-wave case, solutions of relativistic radial quasipotential equations that degenerate in the limit c ..-->.. infinity into the Jost solutions of the corresponding nonrelativistic radial Schrodinger equations are found.
Corrections to the Nonrelativistic Ground Energy of a Helium Atom
Institute of Scientific and Technical Information of China (English)
段一士; 刘玉孝; 张丽杰
2004-01-01
Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.
Mineev, V. P.
2009-01-01
The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...
Comparison of approximations to the transition rate in the DDHMS preequilibrium model
Energy Technology Data Exchange (ETDEWEB)
Brito, L.; Carlson, B.V., E-mail: britoluc@ita.br [Instituto Tecnologia de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)
2014-07-01
The double differential hybrid Monte Carlo simulation model (DDHMS) originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities. (author)
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Non-Relativistic Limit of the Dirac Equation
Ajaib, Muhammad Adeel
2016-01-01
We show that the first order form of the Schrodinger equation proposed in [1] can be obtained from the Dirac equation in the non-relativistic limit. We also show that the Pauli Hamiltonian is obtained from this equation by requiring local gauge invariance. In addition, we study the problem of a spin up particle incident on a finite potential barrier and show that the known quantum mechanical results are obtained. Finally, we consider the symmetric potential well and show that the quantum mechanical expression for the quantized energy levels of a particle is obtained with periodic boundary conditions. Based on these conclusions, we propose that the equation introduced in [1] is the non-relativistic limit of the Dirac equation and more appropriately describes spin 1/2 particles in the non-relativistic limit.
Nonrelativistic Fermions in Magnetic Fields a Quantum Field Theory Approach
Espinosa, Olivier R; Lepe, S; Méndez, F
2001-01-01
The statistical mechanics of nonrelativistic fermions in a constant magnetic field is considered from the quantum field theory point of view. The fermionic determinant is computed using a general procedure that contains all possible regularizations. The nonrelativistic grand-potential can be expressed in terms polylogarithm functions, whereas the partition function in 2+1 dimensions and vanishing chemical potential can be compactly written in terms of the Dedekind eta function. The strong and weak magnetic fields limits are easily studied in the latter case by using the duality properties of the Dedekind function.
Nonrelativistic factorizable scattering theory of multicomponent Calogero-Sutherland model
Ahn, C; Nam, S; Ahn, Changrim; Lee, Kong Ju Bock; Nam, Soonkeon
1995-01-01
We relate two integrable models in (1+1) dimensions, namely, multicomponent Calogero-Sutherland model with particles and antiparticles interacting via the hyperbolic potential and the nonrelativistic factorizable S-matrix theory with SU(N)-invariance. We find complete solutions of the Yang-Baxter equations without implementing the crossing symmetry, and one of them is identified with the scattering amplitudes derived from the Schr\\"{o}dinger equation of the Calogero-Sutherland model. This particular solution is of interest in that it cannot be obtained as a nonrelativistic limit of any known relativistic solutions of the SU(N)-invariant Yang-Baxter equations.
On the Failure of Multiconfiguration Methods in the Nonrelativistic Limit
Esteban, Maria J; Savin, Andreas
2009-01-01
The multiconfiguration Dirac-Fock method allows to calculate the state of relativistic electrons in atoms or molecules. This method has been known for a long time to provide certain wrong predictions in the nonrelativistic limit. We study in full mathematical details the nonlinear model obtained in the nonrelativistic limit for Be-like atoms. We show that the method with sp+pd configurations in the J=1 sector leads to a symmetry breaking phenomenon in the sense that the ground state is never an eigenvector of L^2 or S^2. We thereby complement and clarify some previous studies.
On the dipole moment of CO/+/.
Certain, P. R.; Woods, R. C.
1973-01-01
Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary coordinat
A brief introduction to non-relativistic supergravity
Energy Technology Data Exchange (ETDEWEB)
Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen (Netherlands)
2016-04-15
Non-relativistic geometries have received more attention lately. We review our attempts to construct supersymmetric extensions of this so-called Newton-Cartan geometry in three space-time dimensions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary
Non-relativistic classical mechanics for spinning particles
Salesi, G
2004-01-01
We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
When the Standard-Model Extension (SME) is applied in curved spacetime, the Lorentz-violation coefficients must depend on spacetime position. This work describes some of the consequences of this spacetime variation. We focus on effects that appear at a nonrelativistic scale and extract sensitivity of completed experiments to derivatives of SME coefficient fields.
Theory of non-relativistic three-particle scattering
Malfliet, R.; Ruijgrok, Th.
1967-01-01
A new method, using asymptotically stationary states, is developed to calculate the S-matrix for the scattering of a non-relativistic particle by the bound state of two other particles. For the scattering with breakup of this bound state, we obtain a simplified form of the Faddeev integral
Non-relativistic twistor theory and Newton--Cartan geometry
Dunajski, Maciej
2015-01-01
We develop a non-relativistic twistor theory, in which Newton--Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle ${\\mathcal O}\\oplus{\\mathcal O}(2)$. We show that the Newton--Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton--Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non--trivial on twistor lines. The resulting geometries agree with non--relativistic limits of anti-self-dual gravitational instantons.
Entanglement and mutual information in 2d nonrelativistic field theories
Hosseini, Seyed Morteza
2015-01-01
We carry out a systematic study of entanglement entropy in nonrelativistic conformal field theories via holographic techniques. After a discussion of recent results concerning Galilean conformal field theories, we deduce a novel expression for the entanglement entropy of (1+1)-dimensional Lifshitz field theories --- this is done both at zero and finite temperature. Based on these results, we pose a conjecture for the anomaly coefficient of a Lifshitz field theory dual to new massive gravity. It is found that the Lifshitz entanglement entropy at finite temperature displays a striking similarity with that corresponding to a flat space cosmology in three dimensions. We claim that this structure is an inherent feature of the entanglement entropy for nonrelativistic conformal field theories. We finish by exploring the behavior of the mutual information for such theories.
Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas
Niemiec, Jacek; Bret, Antoine; Wieland, Volkmar
2012-01-01
We present results of 2D3V particle-in-cell simulations of non-relativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While non-relativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution.
Elementary quantum mechanics of the neutron with an electric dipole moment
Baym, Gordon
2016-01-01
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified non-relativistic description of these two phenomena, in which the dipole moment operator, $\\vec{\\cal D}$, is not constrained to lie along the spin operator. Although the expectation value of $\\vec{\\cal D}$ in the neutron is less than $10^{-13}$ of the neutron radius, $r_n$, the expectation value of $\\vec {\\cal D}\\,^2$ is of order $r_n^2$. We determine the spin motion in external electric and magnetic fields, as employed in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple non-relativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the ...
Elementary quantum mechanics of the neutron with an electric dipole moment.
Baym, Gordon; Beck, D H
2016-07-05
The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Do non-relativistic neutrinos constitute the dark matter?
Nieuwenhuizen, T.M.
2009-01-01
The dark matter of the Abell 1689 Galaxy Cluster is modeled by thermal, non-relativistic gravitating fermions and its galaxies and X-ray gas by isothermal distributions. A fit yields a mass of h(70)(1/2) (12/(g) over bar)(1)/(4) 1.445(30) eV. A dark-matter fraction Omega(nu) = h(70)(-3/2) 0.1893(39)
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Energy Technology Data Exchange (ETDEWEB)
Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu [Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Symmetries and couplings of non-relativistic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
Symmetries and Couplings of Non-Relativistic Electrodynamics
Festuccia, Guido; Hartong, Jelle; Obers, Niels A
2016-01-01
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...
Bubnov, Igor N.; Falkovych, I. S.; Gridin, A. A.; Stanislavsky, A. A.; Reznik, A. P.
2015-01-01
Advantages of the diamond dipole antenna as an active antenna are presented. Such an antenna is like an inverted bow-tie antenna, but the former has some advantages over the ordinary bow-tie antenna. It is shown that the diamond dipole antenna may be an effective element of a new antenna array for low-frequency radio astronomy as well as a communication antenna.
The isotopic dipole moment of HDO
Energy Technology Data Exchange (ETDEWEB)
Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)
2007-03-14
An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)
Construction of the ground state in nonrelativistic QED by continuous flows
Bach, Volker; Könenberg, Martin
For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection P by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct P=limP as the limit of a continuously differentiable family ()t⩾0 of ground state projections of infrared regularized Hamiltonians H. Using the ODE solved by this family of projections, we show that the norm ‖P‖ of their derivative is integrable in t which in turn yields the convergence of P by the fundamental theorem of calculus.
Cotner, Eric
2016-09-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations but may be approximated in the nonrelativistic regime with a coupled Schrödinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods
Watson, Derek W; Ruostekoski, Janne; Fedotov, Vassili A; Zheludev, Nikolay I
2015-01-01
We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration - a toroidal metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be excited by linearly polarized light and we provide simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.
A systematic sequence of relativistic approximations.
Dyall, Kenneth G
2002-06-01
An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.
Spacetime Variation of Lorentz-Violation Coefficients at Nonrelativistic Scale
Lane, Charles D
2016-01-01
The notion of uniform and/or constant tensor fields of rank $>0$ is incompatible with general curved spacetimes. This work considers the consequences of certain tensor-valued coefficients for Lorentz violation in the Standard-Model Extension varying with spacetime position. We focus on two of the coefficients, $a_\\mu$ and $b_\\mu$, that characterize Lorentz violation in massive fermions, particularly in those fermions that constitute ordinary matter. We calculate the nonrelativistic hamiltonian describing these effects, and use it to extract the sensitivity of several precision experiments to coefficient variation.
Δ - Δ resonance in the nonrelativistic quark model
Cvetič, M.; Golli, B.; Mankoč-Borštnik, N.; Rosina, M.
1980-06-01
The Δ - Δ resonance is treated in the nonrelativistic quark model. The trial wave function is a colour singlet including N-N, Δ - Δ and coloured baryon channels. The effective Δ - Δ potential is repulsive at all distances for T=0, S=1, L=0,2,4 while for T=3, S=0, L=0 and T=0, S=3, L=0 it has a minimum. The GCM calculation gives for the latter state the binding emergy ∼ -40 MeV.
Non-relativistic Bondi–Metzner–Sachs algebra
Batlle, Carles; Delmastro, Diego; Gomis, Joaquim
2017-09-01
We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein–Gordon field.
Scattering theory the quantum theory of nonrelativistic collisions
Taylor, John R
2006-01-01
This graduate-level text is intended for any student of physics who requires a thorough grounding in the quantum theory of nonrelativistic scattering. It is designed for readers who are already familiar with the general principles of quantum mechanics and who have some small acquaintance with scattering theory. Study of this text will allow students of atomic or nuclear physics to begin reading the literature and tackling real problems, with a complete grasp of the underlying principles. For students of high-energy physics, it provides the necessary background for later study of relativistic p
On the question of symmetries in non-relativistic diffeomorphism invariant theories
Banerjee, Rabin; Mukherjee, Pradip
2016-01-01
Nonrelativistic diffeomorphism invariance has recently emerged as a powerful tool for investigating various phenomena. The flat limit of such an invariance which should yield the Galilean invariance is, surprisingly, riddled with ambiguities and anomalies. We show that our approach, based on Galilean gauge theory, resolves these shortcomings. As a spin-off, we provide a systematic and unique way of interpreting nonrelativistic diffeomorphism invariance and Galilean invariance as appropriate nonrelativistic limits of relativistic invariances in curved and flat backgrounds, respectively. The complementary role of flat and nonrelativistic limits is highlighted.
From Gauging Nonrelativistic Translations to N-Body Dynamics
Lukierski, J; Zakrzewski, W J
2001-01-01
We consider the gauging of space translations with time-dependent gauge functions. Using fixed time gauge of relativistic theory, we consider the gauge-invariant model describing the motion of nonrelativistic particles. When we use gauge-invariant nonrelativistic velocities as independent variables the translation gauge fields enter the equations through a d\\times (d+1) matrix of vielbein fields and their Abelian field strengths, which can be identified with the torsion tensors of teleparallel formulation of relativity theory. We consider the planar case (d=2) in some detail, with the assumption that the action for the dreibein fields is given by the translational Chern-Simons term. We fix the asymptotic transformations in such a way that the space part of the metric becomes asymptotically Euclidean. The residual symmetries are (local in time) translations and rigid rotations. We describe the effective interaction of the d=2 N-particle problem and discuss its classical solution for N=2. The phase space Hamilt...
Strongly magnetized rotating dipole in general relativity
Pétri, J.
2016-10-01
Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.
Experiments with Dipole Antennas
Kraftmakher, Yaakov
2009-01-01
Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a…
Electric Transition Dipole Moment in pre-Born-Oppenheimer Molecular Structure Theory
Simmen, Benjamin; Reiher, Markus
2014-01-01
This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed with explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The complete derivation and the calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated via translationally invariant integral expressions. As a numerical example the electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrati...
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2015-07-01
We analyze some dimension-five C P T -even and Lorentz-violating nonminimal couplings between fermionic and gauge fields in the context of the Dirac equation. After evaluating the nonrelativistic Hamiltonian, we discuss the behavior of the terms under discrete symmetries and analyze the implied effects. We then use the anomalous magnetic dipole moment and electron electric dipole moment measurements to reach upper bounds of 1 part in 1020 and 1024 (eV )-1 , improving the level of restriction on such couplings by at least 8 orders of magnitude. These upper bounds are also transferred to the Sun-centered frame by considering the Earth's rotational motion.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Newton-Cartan (super)gravity as a non-relativistic limit
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2015-01-01
We define a procedure that, starting from a relativistic theory of supergravity, leads to a consistent, non-relativistic version thereof. As a first application we use this limiting procedure to show how the Newton-Cartan formulation of non-relativistic gravity can be obtained from general relativit
Effective approach to non-relativistic quantum mechanics
Jacobs, David M
2015-01-01
Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Differential Regularization of a Non-relativistic Anyon Model
Freedman, Daniel Z; Rius, N
1994-01-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\\phi$ with $\\lambda (\\phi {}^{*} \\phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\\phi {}^{*} \\phi {}^{*} \\phi \\phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to $\\beta(\\lambda,e)$ vanish, and $\\beta(\\lambda,e)$ itself vanishes when the ``self-dual'' condition relating $\\lambda$ to the gauge coupling $e$ is imposed.
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Nonrelativistic QED approach to the bound-electron g factor
Pachucki, K; Yerokhin, V A
2004-01-01
Within a systematic approach based on nonrelativistic quantum electrodynamics (NRQED), we derive the one-loop self-energy correction of order alpha (Zalpha)^4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order alpha^2 (Zalpha)^4 ln[(Zalpha)^-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g factor measurements.
Nonrelativistic QED Approach to the Bound-Electron g Factor
Pachucki, Krzysztof; Jentschura, Ulrich D.; Yerokhin, Vladimir A.
2004-10-01
Within a systematic approach based on nonrelativistic quantum electrodynamics, we derive the one-loop self-energy correction of order α(Zα)4 to the bound-electron g factor. In combination with numerical data, this analytic result improves theoretical predictions for the self-energy correction for carbon and oxygen by an order of magnitude. Basing on one-loop calculations, we obtain the logarithmic two-loop contribution of order α2(Zα)4ln([(Zα)-2] and the dominant part of the corresponding constant term. The results obtained improve the accuracy of the theoretical predictions for the 1S bound-electron g factor and influence the value of the electron mass determined from g-factor measurements.
Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Spitkovsky, Anatoly
2014-01-01
We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...
Nonrelativistic QED expansion for the electron self-energy
Patkóš, V.; Šimsa, D.; Zamastil, J.
2017-01-01
The recently proposed relativistic multipole expansion (RME) of the self-energy effect suggests some observations on the nonrelativistic expansion of the effect. First, the nature of the series for the one-loop self-energy of an electron bound by the Coulomb field of the nucleus is clarified. It is shown that the expansion of the energy shift caused by the self-energy effect contains terms of the form α (Zα ) 7ln(Z α ) , α (Zα ) 8ln3(Z α ) , α (Zα ) 9ln2(Z α ) , α (Zα ) 10ln4(Z α ) , and so on. Here Z is the charge of the nucleus. The origin of these terms is traced back to the logarithmic divergence of the Dirac S -wave function at the origin. These terms eventually lead to breakdown of the nonrelativistic quantum electrodynamics approach. Second, at leading order relativistic multipole expansion requires an evaluation of the "extended Bethe logarithm" (EBL). When expanded in series in Z α EBL reduces at leading order to the ordinary Bethe logarithm. However, it is argued that it is both more accurate and easier to calculate the EBL than the ordinary Bethe logarithm. Both variants of the Bethe logarithm can be calculated by means of the pseudostate method. An improvement of this method is suggested. Finally, the contribution of the combined self-energy vacuum polarization contribution to the Lamb shift in muonic hydrogen for the 1 s -4 s and 2 p -4 p states by means of the EBL is calculated. For cases that had already been calculated the results reported here are more accurate than the previous ones.
On the Mean Spherical Approximation for Hard Ions and Dipoles
1991-11-09
de Ingenieria Universidad Nacional de La Plata, La Plata, Argentina ***Department of Chemistry, University of California Davis, CA 95616 Reproduction...Fernando Vericat Instituto de Ffsica de Lfquidos y Sistemas Biologicos (IFLYSIB) c.c 565 (1900) and Departamento de Ffsicomatematicas, Facultad de... Ingenieria , Universidad Nacional de La Plata, La Plata, Argentina and W.R. Fawcett Department of Chemistry, University of California, Davis CA 95616
2004-01-01
The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.
Maximilien Brice
2004-01-01
The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.
Giant Primeval Magnetic Dipoles
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Girwidz, Raimund V.
2016-11-01
The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures.
Energy Technology Data Exchange (ETDEWEB)
Holanda, B A; Cordeiro, R C; Blak, A R, E-mail: bruna.holanda@usp.br, E-mail: renan.cordeiro@usp.br, E-mail: anablak@if.usp.br
2010-11-15
Dipole defects in gamma irradiated and thermally treated beryl (Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.
Properties and significance of the surface dipole mode
Papakonstantinou, P
2014-01-01
A strong isoscalar dipole resonance is known to be excited in a variety of nuclei, including isospin symmetric ones, at approximately 6-7 MeV. A series of theoretical studies and accumulating experimental evidence support an interpretation of the above dipole resonance as an elementary surface vibration. Obviously, such a mode is potentially as interesting as any collective excitation for a variety of reasons. In addition, though, it is found to account for the observed isoscalar segment of pygmy dipole strength. As discussed here, this has important implications for pygmy-strength interpretations and searches for genuine neutron-skin oscillations.
QCD dipole model and $k_{T}$ factorization
Bialas, A; Peschanski, R
2001-01-01
It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k_T factorization at the leading logarithm approximation (in -log x_Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k_T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.
Genetic algorithms for dipole location of fetal magnetocardiography.
Escalona-Vargas, D; Murphy, P; Lowery, C L; Eswaran, H
2016-08-01
In this paper, we explore the use of Maximum Likelihood (ML) method with Genetic Algorithms (GA) as global optimization procedure for source reconstruction in fetal magnetocardiography (fMCG) data. A multiple equivalent current dipole (ECD) model was used for sources active in different time samples. Inverse solutions across time were obtained for a single-dipole approximation to estimate the trajectory of the dipole position. We compared the GA and SIMPLEX methods in a simulation environment under noise conditions. Methods are applied on a real fMCG data. Results show robust estimators of the cardiac sources when GA is used as optimization technique.
Many-body dipole-induced dipole model for electrorheological fluids
Institute of Scientific and Technical Information of China (English)
Huang Ji-Ping; Yu Kin-Wah
2004-01-01
Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch each other due to many-body and multipolar interactions. Thus various works have attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipoleinduced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield a correction.
Quantum emitter dipole-dipole interactions in nanoplasmonic systems
Nečada, Marek; Törmä, Päivi
2016-01-01
We introduce a generalized Dicke-like model to describe two-level systems coupled with a single bosonic mode. In addition, the two-level systems mutually interact via direct dipole-dipole interaction. We apply the model to an ensemble of dye molecules coupled to a plasmonic excitation in a metallic nanoparticle and study how the dipole-dipole interaction and configurational randomness introduced to the system affect the energy spectra. Comparing the system eigenenergies obtained by our model with the light spectra from a multiple-scattering simulation, we suggest a way to identify dark modes in our model. Finally, we perform a parameter sweep in order to determine the scaling properties of the system and to classify the regions of the parameter space where the dipole-dipole interactions can have significant effects.
Retardation effects in induced atomic dipole-dipole interactions
Graham, S D
2016-01-01
We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to retardation effects. This enhancement, along with inclusion of the dynamic polarizability, indicate a method of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than previously realized.
Superconducting dipole electromagnet
Purcell, John R.
1977-07-26
A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.
Holographic energy loss in non-relativistic backgrounds
Atashi, Mahdi; Farahbodnia, Mitra
2016-01-01
In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius $l$ with angular velocity $\\omega$ in theories with general dynamical exponent $z$ and hyperscaling violation exponent $\\theta$. It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown that how the total energy loss rate depends non-trivially on two characteristic exponents $(z,\\theta)$. We find that at zero temperature there is a special radius $l_c$ where the energy loss is independent of different values of $(z,\\theta)$. Also, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We discover different behaviors at finite temperature case.
Bottom mass from nonrelativistic sum rules at NNLL
Energy Technology Data Exchange (ETDEWEB)
Stahlhofen, Maximilian
2013-01-15
We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g_ashot@sci.am [NAS of Armenia, Institute for Informatics and Automation Problems (Armenia)
2013-08-15
Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic quantum mechanics with consideration of influence of fundamental environment
Gevorkyan, A. S.
2013-08-01
Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ℝ3⊗Ξ n , where ℝ3 and Ξ n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.
Nonrelativistic anti-Snyder model and some applications
Ching, C. L.; Yeo, C. X.; Ng, W. K.
2017-01-01
In this paper, we examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the nonrelativistic anti-Snyder model which is relevant to doubly/deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigensolutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states nmax due to the orthogonality of the polynomials and the maximum energy is truncated at nmax. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti-Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit β → 0. By taking m → 0, we explore the motion of effective massless charged fermions in graphene-like material and obtained a maximum bound of deformed parameter βmax. Furthermore, we consider the modified energy dispersion relations and its application in describing the behavior of neutrinos oscillation under modified commutation relations.
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Bruno; Dias Junior, Mario Marcio [Instituto Federal de Educacacao, Ciencia e Tecnologia Sudeste de Minas Gerais, Juiz de Fora, MG (Brazil)
2013-07-01
Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S{sub μ}. The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S{sub 0} is constant and is the unique non-vanishing term of S{sub μ}. This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)
Radiation of non-relativistic particle on a conducting sphere and a string of spheres
Shul'ga, N F; Larikova, E A
2016-01-01
The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. Then, we extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from the $\\theta$-modified Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which...
Adorno, T C; Gitman, D M
2010-01-01
We construct a nonrelativistic wave equation for spinning particles in the noncommutative space (in a sense, a $\\theta$-modification of the Pauli equation). To this end, we consider the nonrelativistic limit of the $\\theta$-modified Dirac equation. To complete the consideration, we present a pseudoclassical model (\\`a la Berezin-Marinov) for the corresponding nonrelativistic particle in the noncommutative space. To justify the latter model, we demonstrate that its quantization leads to the $\\theta$-modified Pauli equation. We extract $\\theta$-modified interaction between a nonrelativistic spin and a magnetic field from such a Pauli equation and construct a $\\theta$-modification of the Heisenberg model for two coupled spins placed in an external magnetic field. In the framework of such a model, we calculate the probability transition between two orthogonal EPR (Einstein-Podolsky-Rosen) states for a pair of spins in an oscillatory magnetic field and show that some of such transitions, which are forbidden in the...
Magnetic dipole moment of a moving electric dipole
Hnizdo, V.
2012-01-01
The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.
Splitting of the Dipole and Spin Dipole Resonances in Pb
Austin, Sam M.
2000-10-01
The response to different neutrino flavors of a supernova neutrino detector based on Pb depends on the position of the spin-dipole resonance(Fuller, Fowler and McLaughlin, Phys. Rev. D59,085005(1999)). In this talk I will present a phenomenolgical model that allows one to extract the splitting of the dipole and spin-dipole resonances from the variation with bombarding energy of the L=1 resonance in (p,n) reactions. This model has been applied previously to the Zr isotopes (Sam M. Austin, Phys. Rev. C, submitted). The dipole splitting for ^208Pb is determined from available data on the (p,n) reaction for bombarding energies between 45 to 200 MeV. It is found to be 4.7±2.0 MeV, with the spin-dipole resonance lying at lower excitation energy.
Interaction between two magnetic dipoles in a uniform magnetic field
Directory of Open Access Journals (Sweden)
J. G. Ku
2016-02-01
Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.
Covariant Impulse Approximation for the study of the internal structure of composite particles
De Sanctis, M; Milanes, D A; Sandoval, C E; Sanctis, Maurizio De; Acero, Mario A.; Milanes, Diego A.; Sandoval, Carlos E.
2004-01-01
We present a brief review on the Impulse Approximation method to study processes of scattering off composite particles. We first construct the model in a non-relativistic fashion that enables us to extend the model to a covariant Impulse Approximation, which is needed for the study of high momentum transfer processes.
Axion Induced Oscillating Electric Dipole Moment of the Electron
Hill, Christopher T
2016-01-01
The axion electromagnetic anomaly induces an oscillating electric dipole for the electron of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model constant limit. We give a detailed study of this phenomenon via the interaction of the cosmic axion, through the electromagnetic anomaly, with particular emphasis on the decoupling limit of the axion, $\\partial_t a(t)\\propto m_a \\rightarrow 0$. The general form of the action involves a local contact interaction and a nonlocal contribution that enforces the decoupling limit. We derive the effective action in the Pauli-Schroedinger non-relativistic formalism, and in Georgi's heavy quark formalism adapted to the "heavy electron" (heavy compared to $m_a$). We compute the electric dipole radiation emitted by stationary electrons, and we discuss a number of experimental configurations that may yield detectable signals. Phased array radiators with $N^2$ unit cell magn...
Time as an Observable in Nonrelativistic Quantum Mechanics
Hahne, G. E.
2003-01-01
The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.
Backfire antennas with dipole elements
DEFF Research Database (Denmark)
Nielsen, Erik Dragø; Pontoppidan, Knud
1970-01-01
A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...
Magnetic Field of a Dipole and the Dipole-Dipole Interaction
Kraftmakher, Yaakov
2007-01-01
With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R[superscript 3] law for the magnetic field…
Cotner, Eric
2016-01-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Schiff moment of the Mercury nucleus and the proton dipole moment
Dmitriev, V. F.; Sen'kov, R. A.
2003-01-01
We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of $^{199}$Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound $|d_p|< 5.4\\times 10^{-24} e\\cdot$cm of the proton electric dipole moment.
Relativistic and non-relativistic solitons in plasmas
Barman, Satyendra Nath
This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields
Dipole-Dipole Interactions of Charged Magnetic Grains
Perry, Jonathan; Hyde, Truell
2010-01-01
The interaction between dust grains is an important process in fields as diverse as planetesimal formation or the plasma processing of silicon wafers into computer chips. This interaction depends in large part on the material properties of the grains, for example whether the grains are conducting, non-conducting, ferrous or non-ferrous. This work considers the effects that electrostatic and magnetic forces, alone or in combination, can have on the coagulation of dust in various environments. A numerical model is used to simulate the coagulation of charged, charged-magnetic and magnetic dust aggregates formed from ferrous material and the results are compared to each other as well as to those from uncharged, non-magnetic material. The interactions between extended dust aggregates are also examined, specifically looking at how the arrangement of charge over the aggregate surface or the inclusion of magnetic material produces dipole-dipole interactions. It will be shown that these dipole-dipole interactions can ...
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...
2001-01-01
Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...
Fractional vortex dipole phase filter
Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, Paramasivam
2014-10-01
In spatial filtering experiments, the use of vortex phase filters plays an important role in realizing isotropic edge enhancement. In this paper, we report the use of a vortex dipole phase filter in spatial filtering. A dipole made of fractional vortices is used, and its filtering characteristics are studied. It is observed that the filter performance can be tuned by varying the distance of separation between the vortices of the dipole to achieve better contrast and output noise suppression, and when this distance tends to infinity, the filter performs like a 1-D Hilbert mask. Experimental and simulation results are presented.
Fermion Dipole Moment and Holography
Kulaxizi, Manuela
2015-01-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
The Nonrelativistic Scattering States of the Deng-Fan Potential
Directory of Open Access Journals (Sweden)
Bentol Hoda Yazarloo
2013-01-01
Full Text Available The approximately analytical scattering state solution of the Schrodinger equation is obtained for the Deng-Fan potential by using an approximation scheme to the centrifugal term. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated. We consider and verify two special cases: the l=0 and the s-wave Hulthén potential.
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Dipoles, unintentional antennas and EMC
Directory of Open Access Journals (Sweden)
Berend Danker
2008-01-01
Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.
Synchronization of interacting quantum dipoles
Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.
2015-08-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases in the presence of nonlinear coupling. Here we investigate the corresponding phenomenon with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that by incoherently driving dense packed arrays of strongly interacting dipoles, the dipoles can overcome the decoherence induced by quantum fluctuations and inhomogeneous coupling and reach a synchronized steady-state characterized by a macroscopic phase coherence. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quantum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Quantum optical dipole radiation fields
Stokes, Adam
2016-01-01
We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.
Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to Z
Screening of nucleon electric dipole moments in nuclei
Inoue, Satoru; Gudkov, Vladimir; Schindler, Matthias R.; Song, Young-Ho
2016-05-01
A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by about 1% in a zero-range approximation calculation.
Screening of Nucleon Electric Dipole Moments in Nuclei
Inoue, Satoru; Schindler, Matthias R; Song, Young-Ho
2015-01-01
A partial screening of nucleon electric dipole moments (EDMs) in nuclear systems, which is related to the Schiff mechanism known for neutral atomic systems, is discussed. It is shown that the direct contribution from the neutron EDM to the deuteron EDM is partially screened by almost 50% in a zero-range approximation calculation.
Are non-relativistic neutrinos the dark matter particles?
Nieuwenhuizen, Theo M.
2010-06-01
. Thereby the spead up the intracluster gas to virial speeds of 10 keV, which causes reionization without assistance of heavy stars. Within the analysis, the baryons are poor tracers of the dark matter density. This work is described in Theo M. Nieuwenhuizen, Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86, 59001 (2009). This text of this paper is an update of this work. Structure formation is presently believed to need cold dark matter. However, hydrodynamics alone may explain baryonic clustering without this trigger. Th. M. Nieuwenhuizen, C. H. Gibson and R. E. Schild, Gravitational hydrodynamics of large scale structure formation, Europhysics Letters 2009, to appear.
Physical stress, mass, and energy for non-relativistic spinful matter
Geracie, Michael; Roberts, Matthew M
2016-01-01
For theories of relativistic matter fields with spin there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Energy Technology Data Exchange (ETDEWEB)
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi [Department of Electrophysics, National Chiao Tung University,1001 University Street, Hsinchu, ROC (China)
2016-05-31
We review and extend high energy four point string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s−t and t−u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one higher spin string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
Lai, Sheng-Hong; Yang, Yi
2016-01-01
We review and extend high energy string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s-t and t-u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one leading trojectory string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi
2016-05-01
We review and extend high energy four point string BCJ relations in both the fixed angle and Regge regimes. We then give an explicit proof of four point string BCJ relations for all energy. This calculation provides an alternative proof of the one based on monodromy of integration in string amplitude calculation. In addition, we calculate both s- t and t- u channel nonrelativistic low energy string scattering amplitudes of three tachyons and one higher spin string state at arbitrary mass levels. We discover that the mass and spin dependent nonrelativistic string BCJ relations can be expressed in terms of Gauss hypergeometry functions. As an application, for each fixed mass level N, we derive extended recurrence relations among nonrelativistic low energy string scattering amplitudes of string states with different spins and different channels.
Electric dipole moment of ^{129}Xe atom
Singh, Yashpal; Das, B P
2013-01-01
The parity (P) and time-reversal (T) odd coupling constant associated with the tensor-pseudotensor (T-PT) electron-nucleus interaction and the nuclear Schiff moment (NSM) have been determined by combining the result of the measurement of the electric dipole moment (EDM) of ^{129}Xe atom and calculations based on the relativistic coupled-cluster (RCC) theory. Calculations using various relativistic many-body methods have been performed at different levels of approximation. The accuracies of these calculations are estimated by comparing the results of the calculated dipole polarizability of the ground state of the above atom with the most precise available experimental data. The non-linear terms that arise in the RCC theory at the singles and doubles approximation (CCSD method) were found to be crucial for achieving high accuracy in the calculations. Our results for the ^{129}Xe EDM due to the odd T-PT interaction and the NSM are, respectively, d_A=0.501 x 10^{-20} C_T |e|cm and d_A=0.336 x 10^{-17} S/(|e| fm^...
Energy Technology Data Exchange (ETDEWEB)
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
A simple approximation for the current-voltage characteristics of high-power, relativistic diodes
Ekdahl, Carl
2016-06-01
A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.
Coherent manipulation of two dipole-dipole interacting ions
Beige, A; Knight, P L; Plenio, M B; Thompson, R C
2000-01-01
We investigate to what extent two trapped ions can be manipulated coherently when their coupling is mediated by a dipole-dipole interaction. We will show how the resulting level shift induced by this interaction can be used to create entanglement, while the decay of the states remains nearly negligible. This will allow us to implement conditional dynamics (a CNOT gate) and single qubit operations. We propose two different experimental realisations where a large level shift can be achieved and discuss both the strengths and weaknesses of this scheme from the point of view of a practical realization.
On the collectivity of Pygmy Dipole Resonance within schematic TDA and RPA models
Baran, V; Colonna, M; Di Toro, M; Croitoru, A; Nicolin, A I
2014-01-01
Within schematic models based on the Tamm-Dancoff Approximation and the Random-Phase Approximation with separable interactions, we investigate the physical conditions which determine the emergence of the Pygmy Dipole Resonance in the E1 response of atomic nuclei. We find that if some particle-hole excitation manifests a different, weaker residual interaction, an additional mode will appear, with an energy centroid closer to the distance between two major shells and therefore well below the Giant Dipole Resonance. This state, together with Giant Dipole Resonance, exhausts all the transition strength in the Tamm-Dancoff Approximation and all the Energy Weighted Sum Rule in the Random-Phase Approximation. These features suggest a collective nature for this mode which we identify with the Pygmy Dipole Resonance.
1974-01-01
Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.
Synchronization of Interacting Quantum Dipoles
Zhu, Bihui; Xu, Minghui; Urbina, Felipe H; Restrepo, Juan G; Holland, Murray J; Rey, Ana Maria
2015-01-01
Macroscopic ensembles of radiating dipoles are ubiquitous in the physical and natural sciences. In the classical limit the dipoles can be described as damped-driven oscillators, which are able to spontaneously synchronize and collectively lock their phases. Here we investigate the correspond- ing phenomenon in the quantum regime with arrays of quantized two-level systems coupled via long-range and anisotropic dipolar interactions. Our calculations demonstrate that the dipoles may overcome the decoherence induced by quantum fluctuations and inhomogeneous couplings and evolve to a synchronized steady-state. This steady-state bears much similarity to that observed in classical systems, and yet also exhibits genuine quantum properties such as quantum correlations and quan- tum phase diffusion (reminiscent of lasing). Our predictions could be relevant for the development of better atomic clocks and a variety of noise tolerant quantum devices.
Light Fermion Finite Mass Effects in Non-relativistic Bound States
Eiras, D; Eiras, Dolors; Soto, Joan
2000-01-01
We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Energy Technology Data Exchange (ETDEWEB)
Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)
2016-03-15
We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)
Cannoni, Mirco
2015-01-01
We find an exact formula for the thermally averaged cross section times the relative velocity $\\langle \\sigma v_{\\text{rel}} \\rangle$ with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at $x=m/T\\gg 1$ directly gives the nonrelativistic limit of $\\langle \\sigma v_{\\text{rel}}\\rangle$ which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section $\\sigma(s)$ in powers of the nonrelativistic relative velocity $v_r$. We show the correct invariant procedure that gives the nonrelativistic average $\\langle \\sigma_{nr} v_r \\rangle_{nr}$ coinciding with the large $x$ expansion of $\\langle \\sigma v_{\\text{rel}}\\rangle$ in the comoving frame. We explicitly formulate flux, cross section, thermal aver...
On the Theory of Resonances in Non-Relativistic QED and Related Models
DEFF Research Database (Denmark)
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
3D Design & Simulation of Printed Dipole Antenna
Directory of Open Access Journals (Sweden)
Protap Mollick
2015-09-01
Full Text Available This paper represents design of a printed dipole antenna with both lambda by 2 & half dipole. In this research paper the impedance increases with combined design on the FR-4 substrate and ground plane. The main feature of printed dipole antenna is there is a feeder between the radiant elements. Average impedance about 73 ohm, which is very large form other antenna. For vertical earth position impedance decreases about 36 ohm. Applied AC voltage forwarding bias dipole antenna gains are high but when reverse bias condition gains are low. Between ropes to station there is need extra insulator that abate high impedance current flow to dipole antenna. Feed lines are approximately 75 ohm and the main length between two poles are 143 meter. The radius of two pole line is very thin it’s about 2.06 meter. Transmission lines are added in the last portion of feed lines, which situated apposite of two poles. Designs are simulated by hfss and solving equations are done my matlab.
Radiation from an off-centred rotating dipole in vacuum
Pétri, J.
2016-12-01
When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter ɛ = d/R, where d is the displacement of the dipole from the stellar centre and R the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in ɛ. Results are compared to earlier works and a discussion on repercussions on pulsar braking index and multiwavelength light curves is proposed.
Radiation from an off-centred rotating dipole in vacuum
Pétri, J
2016-01-01
When a neutron star forms, after the collapse of its progenitor, a strong magnetic field survives in its interior. This magnetic topology is usually assumed to be well approximated by a dipole located right at the centre of the star. However, there is no particular reason why this dipole should be attached to this very special point. A slight shift from the stellar centre could have strong implications for the surrounding electromagnetic field configuration leading to clear observational signatures. We study the effect of the most general off-centred dipole anchored in the neutron star interior. Exact analytical solutions are given in vacuum outside the star to any order of accuracy in the small parameter $\\epsilon = d/R$, where $d$ is the displacement of the dipole from the stellar centre and $R$ the neutron star radius. As a simple diagnostic of this decentred dipole, the spin-down luminosity and the torque exerted on its crust are computed to the lowest leading order in~$\\epsilon$. Results are compared to ...
Searching for electric dipole moments
Jungmann, Klaus
2013-01-01
Searches for a permanent Electric Dipole Moment (EDM) of a fundamental particle provide a wide window for the discovery of potential New Physics. Within todays Standard Model in particle physics the well established violation of CP symmetry gives rise to EDMs which are several orders of magnitude be
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
Schildknecht, Dieter
2016-01-01
We give a brief representation of the theoretical results from the color dipole picture, covering the total photoabsorption cross section, high-energy $J/\\psi$ photoproduction with respect to recent experimental data from the LHCb Collaboration at CERN, and ultra-high energy neutrino scattering, relevant for the ICE-CUBE experiment.
DEFF Research Database (Denmark)
Andersen, Jørgen Bach
2006-01-01
A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...
Nadykto, Alexey B; Yu, Fangqun
2008-08-07
Sulfuric acid is a primary atmospheric nucleation precursor, with the ability to form stable aqueous hydrogen-bonded clusters/complexes. The electrical dipole moment of such clusters/complexes is important for ion-induced nucleation, largely controlled by dipole-charge interaction of airborne ions with vapor monomers and pre-existing clusters. Although experiments typically trace a single lowest energy conformer at low temperatures, the present study shows that the immediate vicinity (dipole moments. The difference in the dipole moment of mono-, di-, and trihydrates of the sulfuric acid exceeds 1.3-1.5 Debyes ( approximately 50-60%), 1.4-2.6 Debyes ( approximately 50-90%), and 3.8-4.2 Debyes ( approximately 370-550%), respectively. Being driven by the temperature dependence of the Boltzmann distribution, the difference between the Boltzmann-Gibbs average dipole moment and the dipole moment of the most stable isomer increases with the ambient temperature, leading to large variations in the dipole-ion interaction strength, which may have important implications for the ion-mediated production of ultrafine aerosol particles associated with various climatic and health impacts.
Refutation of stability proofs for dipole vortices
DEFF Research Database (Denmark)
Nycander, J.
1992-01-01
Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs.......Five stability proofs for dipole vortices (modons) that have been presented by various authors are examined. It is shown that they are all incorrect, and that westward-propagating dipoles are in fact unstable, in contradiction to some of the proofs....
Quantum Zeno suppression of dipole-dipole forces
Wüster, Sebastian
2016-01-01
We consider inter-atomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultra-cold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing controllable interactions with the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete arrest of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.
Effects of dipole-dipole interaction on entanglement transfer
Institute of Scientific and Technical Information of China (English)
Guo Hong; Xiong Heng-Na
2008-01-01
A system consisting of two different atoms interacting with a two-mode vacuum, where each atom is resonant only with one cavity mode, is considered.The effects of dipole-dipole (dd) interaction between two atoms on the atom-atom entanglement and mode-mode entanglement are investigated. For a weak dd interaction, when the atoms are initially separable, the entanglement between them can be induced by the dd interaction, and the entanglement transfer between the atoms and the modes occurs efficiently; when the atoms are initially entangled, the entanglement transfer is almost not influenced by the dd interaction. However, for a strong dd interaction, it is difficult to transfer the entanglement from the atoms to the modes, but the atom-atom entanglement can be maintained when the atoms are initially entangled.
Noncommutative Dipole Field Theories And Unitarity
Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.
2004-01-01
We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.
Perturbative Odderon in the Dipole Model
Kovchegov, Yu V; Wallon, S; Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel
2003-01-01
We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a $C$-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions $E^{n,\
Critical behavior of isotropic three-dimensional systems with dipole-dipole interactions
Energy Technology Data Exchange (ETDEWEB)
Belim, S. M., E-mail: sbelim@mail.ru [Dostoevsky Omsk State University (Russian Federation)
2013-06-15
The critical behavior of Heisenberg magnets with dipole-dipole interactions near the line of second-order phase transitions directly in three-dimensional space is investigated in terms of a field-theoretic approach. The dependences of critical exponents on the dipole-dipole interaction parameter are derived. Comparison with experimental facts is made.
Energy Technology Data Exchange (ETDEWEB)
Parvan, A.S. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Horia Hulubei National Institute of Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest (Romania); Moldova Academy of Sciences, Institute of Applied Physics, Chisinau (Moldova, Republic of)
2015-09-15
In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q - 1) is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated. (orig.)
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J
2015-01-01
Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...
From Clifford Algebra of Nonrelativistic Phase Space to Quarks and Leptons of the Standard Model
Żenczykowski, Piotr
2015-01-01
We review a recently proposed Clifford-algebra approach to elementary particles. We start with: (1) a philosophical background that motivates a maximally symmetric treatment of position and momentum variables, and: (2) an analysis of the minimal conceptual assumptions needed in quark mass extraction procedures. With these points in mind, a variation on Born's reciprocity argument provides us with an unorthodox view on the problem of mass. The idea of space quantization suggests then the linearization of the nonrelativistic quadratic form ${\\bf p}^2 +{\\bf x}^2$ with position and momentum satisfying standard commutation relations. This leads to the 64-dimensional Clifford algebra ${Cl}_{6,0}$ of nonrelativistic phase space within which one identifies the internal quantum numbers of a single Standard Model generation of elementary particles (i.e. weak isospin, hypercharge, and color). The relevant quantum numbers are naturally linked to the symmetries of macroscopic phase space. It is shown that the obtained pha...
Symmetries of Nonrelativistic Phase Space and the Structure of Quark-Lepton Generation
Zenczykowski, Piotr
2009-01-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x^2+p^2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space ...
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Kanazawa, Takuya; Yamamoto, Arata
2016-01-01
We apply QCD-inspired techniques to study nonrelativistic N -component degenerate fermions with attractive interactions. By analyzing the singular-value spectrum of the fermion matrix in the Lagrangian, we derive several exact relations that characterize spontaneous symmetry breaking U (1 )×SU (N )→Sp (N ) through bifermion condensates. These are nonrelativistic analogues of the Banks-Casher relation and the Smilga-Stern relation in QCD. Nonlocal order parameters are also introduced and their spectral representations are derived, from which a nontrivial constraint on the phase diagram is obtained. The effective theory of soft collective excitations is derived, and its equivalence to random matrix theory is demonstrated in the ɛ regime. We numerically confirm the above analytical predictions in Monte Carlo simulations.
Technology of superconducting accelerator dipoles
Energy Technology Data Exchange (ETDEWEB)
Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.
1983-06-01
We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.
Radiating dipoles in photonic crystals
Busch, Kurt; Vats, Nipun; John, Sajeev; Sanders, Barry C.
2000-01-01
The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra ar...
Monolayer patterning using ketone dipoles.
Kim, Min Kyoung; Xue, Yi; Pašková, Tereza; Zimmt, Matthew B
2013-08-14
The self-assembly of multi-component monolayers with designed patterns requires molecular recognition among components. Dipolar interactions have been found to influence morphologies of self-assembled monolayers and can affect molecular recognition functions. Ketone groups have large dipole moments (2.6 D) and are easily incorporated into molecules. The potential of ketone groups for dipolar patterning has been evaluated through synthesis of two 1,5-disubstituted anthracenes bearing mono-ketone side chains, STM characterization of monolayers self-assembled from their single and two component solutions and molecular mechanics simulations to determine their self-assembly energetics. The results reveal that (i) anthracenes bearing self-repulsive mono-ketone side chains assemble in an atypical monolayer morphology that establishes dipolar attraction, instead of repulsion, between ketones in adjacent side chains; (ii) pairs of anthracene molecules whose self-repulsive ketone side chains are dipolar complementary spontaneously assemble compositionally patterned monolayers, in which the two components segregate into neighboring, single component columns, driven by side chain dipolar interactions; (iii) compositionally patterned monolayers also assemble from dipolar complementary anthracene pairs that employ different dipolar groups (ketones or CF2 groups) in their side chains; (iv) the ketone group, with its larger dipole moment and size, provides comparable driving force for patterned monolayer formation to that of the smaller dipole, and smaller size, CF2 group.
Abdelmadjid Maireche
2017-01-01
The modified theories of noncommutative quantum mechanics have engrossed much attention in the last decade, especially its application to the fundamental three equations: Schrödinger, Klein-Gordon and Dirac equations. In this contextual exploration, we further investigate for modified quadratic Yukawa potential plus Mie-type potential (MIQYM) in the framework of modified nonrelativistic Schrödinger equation (MSE) using generalization of Bopp’s shift method and standard perturbation theory ins...
Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory
Németh, Z A
1997-01-01
The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of Lévy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.
Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED
Amour, L
2010-01-01
We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
Amour, Laurent
2011-01-01
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.
Quantization of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L; Leal, Lorenzo
2005-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model comprises open-strings interacting through a Kalb-Ramond field in four dimensions. It is shown that a consistent geometric-representation can be built using a scheme of ``surfaces and lines of Faraday'', provided that the coupling constant (the ``charge'' of the string) is quantized.
Energy shift of interacting non-relativistic fermions in noncommutative space
Directory of Open Access Journals (Sweden)
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
Sum Rule for a Schiff-Like Dipole Moment
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
Energy Technology Data Exchange (ETDEWEB)
Kullie, Ossama [University of Kassel, Department of Natural Science, Institute of Physics (Germany)
2008-07-01
Using two spinor minimax method combined with finite element methods accompanied with extrapolation and counterpoise techniques enable us to obtain relativistic highly accurate results for two atomic molecules. Like in our previous work for the (Hartree-) Dirac-Fock-Slater (DFS) functional approximation, we investigate in this work the density functional approximations of the relativistic and nonrelativistic local-density functional, presenting highly accurate benchmark results of chemical properties on the dimers of the group 11(Ib) of the periodic table of elements. The comparison with DFS, with experimental and literature's results shows that DFS is better behaved than the other two local functionals.
Condensation for non-relativistic matter in Hořava–Lifshitz gravity
Directory of Open Access Journals (Sweden)
Jiliang Jing
2015-10-01
Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
Wieland, Volkmar; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-01-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of 2D3V particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at 45-deg angle to the simulation plane to approximate 3D physics. We developed an improved clean setup that uses the collision of two plasma slabs with different density and velocity, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations on account of shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales given by gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but commensurates with E x B drift. We observe a stabl...
Static dipole polarizability for the 1s{sigma} electronic state of the H{sup +}{sub 2} molecular ion
Energy Technology Data Exchange (ETDEWEB)
Tsogbayar, Ts, E-mail: tsogbayar@ipt.ac.m [Institute of Physics and Technology, Mongolian Academy of Sciences, Peace Avenue 54B, 210651, Ulaanbaatar 51 (Mongolia)
2009-08-28
The static dipole polarizability for the 1s{sigma} electron state of the H{sup +}{sub 2} hydrogen molecular ion is calculated within the Born-Oppenheimer approximation. The variational expansion with randomly chosen exponents has been used for numerical studies. The results obtained for the dipole polarizability are accurate to nine digits.
Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments
Forcherio, Gregory T.; Blake, Phillip; Seeram, Manoj; DeJarnette, Drew; Roper, D. Keith
2015-11-01
Two-dimensional metamaterials support both plasmonic and coupled lattice (Fano) resonant modes that together could enhance optoelectronics. Descriptions for plasmon excitation in Fano resonant lattices in non-vacuum environments typically use idealized, homogeneous matrices due to computational expense and limitations of common approaches. This work described both localized and coupled resonance activity of two-dimensional, square lattices of gold (Au) nanospheres (NS) in discontinuous, complex dielectric media using compact synthesis of discrete and coupled dipole approximations. This multi-scale approach supported attribution of experimentally observed spectral resonance energy and bandwidth to interactions between metal and dielectric substrate(s) supporting the lattices. Effective polarizabilities of single AuNS, either in vacuo or supported by glass and/or indium tin oxide (ITO) substrates, were obtained with discrete dipole approximation (DDA). This showed plasmon energy transport varied with type of substrate: glass increased scattering, while ITO increased absorption and energy confinement. Far-field lattice interactions between AuNS with/without substrates were computed by coupled dipole approximation (CDA) using effective polarizabilities. This showed glass enhanced diffractive features (e.g., coupled lattice resonance), while ITO supported plasmon modes. This compact, multiscale approach to describe metasurfaces in complex environments could accelerate their development and application.
A skull-based multiple dipole phantom for EEG and MEG studies
Energy Technology Data Exchange (ETDEWEB)
Spencer, M.E.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)
1996-07-01
A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.
Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Nature of low-lying electric dipole resonance excitations in 74Ge
Negi, D; Lanza, E G; Litvinova, E; Vitturi, A; Bark, R A; Bernstein, L A; Bleuel, D L; Bvumbi, S; Bucher, T D; Daub, B H; Dinoko, T S; Easton, J L; Gorgen, A; Guttormsen, M; Jones, P; Kheswa, B V; Khumalo, N A; Larsen, A C; Lawrie, E A; Lawrie, J J; Majola, S N T; Masiteng, L P; Nchodu, M R; Ndayishimye, J; Newman, R T; Noncolela, S P; Orce, J N; Papka, P; Pellegri, L; Renstrøm, T; Roux, D G; Schwengner, R; Shirinda, O; Siem, S
2016-01-01
Isospin properties of dipole excitations in 74 Ge are investigated using the ({\\alpha},{\\alpha}'{\\gamma}) reaction and compared to ({\\gamma},{\\gamma}) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the scenario of the recently found splitting of the region of dipole excitations into two separated parts: one at low energy, being populated by both isoscalar and isovector probes, and the other at high energy, excited only by the electromagnetic probe. Relativistic quasiparticle time blocking approximation (RQTBA) calculations show a reduction in the isoscalar E1 strength with an increase in excitation energy, which is consistent with the measurement.
Space-time evolution of ultrarelativistic quantum dipoles in quantum electrodynamics
Blok, B.
2004-09-01
We discuss space-time evolution of ultrarelativistic quantum dipole in QED. We show that the space-time evolution can be described, in a certain approximation, by means of a regularized wave function, whose parameters are determined by the process of the dipole creation by a local current. Using these wave functions, we derive the dipole expansion law that is found to coincide parametrically in the leading order with the one suggested by G. R. Farrar et al. (G. R. Farrar, H. Liu, L. Frankfurt and M. Strikman, Phys. Rev. Lett, Vol.61, p.686, 1988).
Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas
Teixeira, R Celistrino; Nguyen, Thanh Long; Cantat-Moltrecht, T; Raimond, Jean-Michel; Haroche, S; Gleyzes, S; Brune, M
2015-01-01
We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.
Collectivity of dipole bands in {sup 196}Pb
Energy Technology Data Exchange (ETDEWEB)
Carpenter, M.P.; Liang, Y.; Janssens, R.V.F. [and others
1995-08-01
The region of nuclei with mass {approximately} 190 was studied extensively over the last few years following the discovery of superdeformation in {sup 190}Hg. More recently, considerable interest in the neutron-deficient Pb isotopes developed with the discover of a number of bands at high spin connected by dipole transitions in both even {sup 192-200}Pb and odd {sup 197-201}Pb nuclei. The majority of the dipole bands are regular in character (i.e. transition energies increase smoothly with spin) while the remaining bands are referred to as irregular in character, due to the fact that the transition energies do not increase smoothly with spin. The properties of the dipole bands were interpreted in terms of high-K, moderately-deformed oblate states built on configurations involving high-J, shape-driving quasiproton excitations coupled to rotation-aligned quasineutrons. It was suggested that the difference between the regular and irregular dipole sequences is related to the deformation where the irregular sequences are thought to be less collective than their regular counterparts.
Forward and inverse problems of EEG dipole localization.
Musha, T; Okamoto, Y
1999-01-01
Mathematical procedures are discussed in detail of numerical solutions for obtaining scalp potentials from the electric sources. The finite-element method for an inhomogeneous volume conductor, the boundary-element method for a compartment model, and their hybrid for more general cases are discussed. Construction of the head model and typical estimation of electric conductivity of the compartment model is described, which can reduce errors in estimated dipole location caused by incorrect head geometry. The concept of reciprocity is explained, which is applied to understanding a relation between the electrode configuration and its sensitivity for various source conditions. Typical techniques for solving the inverse problem are reviewed for discrete source models. Methods of estimating accuracy of the dipole location in the presence of noise are discussed, together with some numerical examples. The dipolarity is a goodness-of-fit of the dipole approximation, and lowering of the dipolarity is related to inhomogeneous neuronal activity in the cortex. Finally, a criterion of determining the optimal number of model parameters is given in terms of AIC (Akaike Information Criterion), which is applied to decide the most probable number of equivalent dipoles.
RHIC spin flipper AC dipole controller
Energy Technology Data Exchange (ETDEWEB)
Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.
2011-03-28
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.
Hu, Kan-Nian; Tycko, Robert
2009-07-28
We describe a method for measuring magnetic dipole-dipole interactions, and hence distances, between pairs of like nuclear spins in a many-spin system under magic-angle spinning (MAS). This method employs a homonuclear dipolar recoupling sequence that creates an average dipole-dipole coupling Hamiltonian under MAS with full zero-quantum symmetry, including both secular and flip-flop terms. Flip-flop terms are then attenuated by inserting rotor-synchronized periods of chemical shift evolution between recoupling blocks, leaving an effective Hamiltonian that contains only secular terms to a good approximation. Couplings between specific pairs of nuclear spins can then be selected with frequency-selective pi pulses. We demonstrate this technique, which we call zero-quantum shift evolution assisted homonuclear recoupling, in a series of one-dimensional and two-dimensional (13)C NMR experiments at 17.6 T and 40.00 kHz MAS frequency on uniformly (13)C-labeled L-threonine powder and on the helix-forming peptide MB(i+4)EK, synthesized with a pair of uniformly (13)C-labeled L-alanine residues. Experimental demonstrations include measurements of distances between (13)C sites that are separated by three bonds, placing quantitative constraints on both sidechain and backbone torsion angles in polypeptides.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Collective Dipole-Dipole Interactions in an Atomic Array
Sutherland, R T
2016-01-01
The coherent dipole-dipole interactions of atoms in an atomic array are studied. It is found that the excitation probability of an atom in an array parallel to the direction of laser propagation ($\\boldsymbol{\\hat{k}}$) will either grow or decay logarithmically along $\\boldsymbol{\\hat{k}}$, depending on the detuning of the laser. The symmetry of the system for atomic separations of $\\delta r = j\\lambda/2$, where $j$ is an integer, causes the excitation distribution and scattered radiation to abruptly become symmetric about the center of the array. For atomic separations of $\\delta r < \\lambda/2$, the appearance of a collection of extremely subradiant states ($\\Gamma\\sim 0$), disrupts the described trend. In order to interpret the results from a finite array of atoms, a band structure calculation in the $N\\rightarrow \\infty$ limit is conducted where the decay rates and the Collective Lamb Shifts of the eigenmodes along the Brillouin zone are shown. Finally, the band structure of an array strongly affects it...
The sign of the dipole-dipole potential by axion exchange
Daido, Ryuji; Takahashi, Fuminobu
2017-09-01
We calculate a dipole-dipole potential between fermions mediated by a light pseudoscalar, axion, paying a particular attention to the overall sign. While the sign of the potential is physical and important for experiments to discover or constrain the axion coupling to fermions, there is often a sign error in the literature. The purpose of this short note is to clarify the sign issue of the axion-mediated dipole-dipole potential. As a by-product, we find a sign change of the dipole-dipole potenital due to the different spin of the mediating particle.
Electron correlation within the relativistic no-pair approximation
Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.; Dyall, Kenneth G.; Saue, Trond
2016-08-01
This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying
DEFF Research Database (Denmark)
Gammelmark, Søren; Zinner, Nikolaj Thomas
2013-01-01
We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... of lattice filling fractions, perpendicular hopping between the legs, and dipole interaction strength. We show that the system exhibits zig-zag ordering when the dipolar interactions are predominantly repulsive. As a function of dipole moment orientation with respect to the ladder, we find...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....
LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS
The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the
The Inverse Problem for the Dipole Field
Epp, V
2015-01-01
The Inverse problem for an electromagnetic field produced by a dipole is solved. It is assumed that the field of an arbitrary changing dipole is known. Obtained formulae allow calculation of the position and dynamics of the dipole which produces the measured field. The derived results can be used in investigations on radiative process in solids caused by changing of the charge distribution. For example, generation of the electromagnetic field caused by oscillations of atoms or electron gas at the trace of a particle channeling in a crystal, or fields arising at solids cracking or dislocation formation -- in any case when one is interested in the details of the dipole field source.
Which dipole are you studying in lab?
Binder, P.-M.; Tate, Reuben B.; Crowder, Callie K.
2017-01-01
We explore the similarities and differences between the electric dipole studied in introductory physics and the purportedly equivalent elementary experiment in which the electric potential is measured on a conductive sheet as a current flows. The former is a three-dimensional electrostatic dipole while the latter is a two-dimensional steady-state dipole. In spite of these differences, and as shown in this work, the potentials due to these dipoles look very similar. This may be misleading to either students or unaware instructors.
Axion Induced Oscillating Electric Dipole Moments
Hill, Christopher T
2015-01-01
The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.
Simplified approach to double jumps for fluorescing dipole-dipole interacting atoms
Hannstein, V; Hannstein, Volker; Hegerfeldt, Gerhard C.
2006-01-01
A simplified scheme for the investigation of cooperative effects in the quantum jump statistics of small numbers of fluorescing atoms and ions in a trap is presented. It allows the analytic treatment of three dipole-dipole interacting four-level systems which model the relevant level scheme of Ba+ ions. For the latter, a huge rate of double and triple jumps was reported in a former experiment and the huge rate was attributed to the dipole-dipole interaction. Our theoretical results show that the effect of the dipole-dipole interaction on these rates is at most 5% and that for the parameter values of the experiment there is practically no effect. Consequently it seems that the dipole-dipole interaction can be ruled out as a possible explanation for the huge rates reported in the experiment.
DEFF Research Database (Denmark)
Popov, Vladislav; Lavrinenko, Andrei; Novitsky, Andrey
2016-01-01
that the zeroth-, first-, and second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic effective medium obtained in the second...... of metamaterials and subwavelength nanophotonics....
Bound Chains of Tilted Dipoles in Layered Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.;
2012-01-01
is fascinating. Here we concentrate on few-body states in a multilayered setup. We exploit the geometry of the interlayer potential to calculate the two- and three-body chains with one molecule in each layer. The focus is on dipoles that are aligned at some angle with respect to the layer planes by means...... of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic...... oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account....
Cable Magnetization Effects in the LHC Main Dipole Magnets
Bottura, L; Walckiers, L; Wolf, R
1998-01-01
Several short (1 m) and long (10 m) dipole models have been tested within the scope of the on-going R&D programme for LHC at CERN. We report here the results of measurements of field quality in these dipoles, focussing on the contribution of cable magnetization. We show that the results obtained over a significant (> 10) number of magnets at 1.8 and 4.2 K are in reasonable agreement with calculati ons of the dependence of allowed harmonics on field. The calculations are based on the Bean model of filament magnetization and assume an approximate Jc(B) dependence, calibrated against low field mea surements of strand magnetization. The field quality measurements at low field also correlate satisfactorily to measurements of cable critical current at high field and geometric filament diameter.
Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure
Energy Technology Data Exchange (ETDEWEB)
Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN
2014-07-01
FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.
Search for non-relativistic magnetic monopoles with IceCube
Energy Technology Data Exchange (ETDEWEB)
Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others
2014-07-15
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)
Operator Product Expansion and Conservation Laws in Non-Relativistic Conformal Field Theories
Golkar, Siavash
2014-01-01
We explore the consequences of conformal symmetry for the operator product expansions in nonrelativistic field theories. Similar to the relativistic case, the OPE coefficients of descendants are related to that of the primary. However, unlike relativistic CFTs the 3-point function of primaries is not completely specified by conformal symmetry. Here, we show that the 3-point function between operators with nonzero particle number, where (at least) one operator has the lowest dimension allowed by unitarity, is determined up to a numerical coefficient. We also look at the structure of the family tree of primaries with zero particle number and discuss the presence of conservation laws in this sector.
$\\eta_c$ production at the LHC challenges nonrelativistic-QCD factorization
Butenschoen, Mathias; Kniehl, Bernd A
2014-01-01
We analyze the first measurement of $\\eta_c$ production, performed by the LHCb Collaboration, in the nonrelativistic-QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant $\\alpha_s$ and the relative velocity $v$ of the bound quarks including the feeddown from $h_c$ mesons. Converting the long-distance matrix elements (LDMEs) extracted by various groups from $J/\\psi$ yield and polarization data to the $\\eta_c$ case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.
Testing the Higgs sector directly in the non-relativistic domain
Zhang, Zhentao
2016-01-01
Directly measuring the Higgs self-coupling is of great importance for testing the Brout-Englert-Higgs mechanism in the Standard Model. As a scattering that contains the direct information from the Higgs self-coupling, we investigate the process $\\mu^-\\mu^+\\rightarrow HH$ in the threshold region. We calculate the one-loop corrections to the cross section and consider the non-perturbative contribution from the Higgs self-interactions in the final state. It is found that the scattering in the non-relativistic domain could be an especial process to testing the Higgs sector directly.
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)
2010-04-26
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.
A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density
Nicolis, Alberto
2012-01-01
We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. These would normally be associated with gapless Goldstone excitations. We find that, in fact, their currents interpolate gapped excitations. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.
Nonrelativistic gauged quantum mechanics: From Kaluza–Klein compactifications to Bargmann structures
Energy Technology Data Exchange (ETDEWEB)
Bargueño, Pedro, E-mail: p.bargueno@uniandes.edu.co
2015-08-14
Highlights: • Null compactification techniques are used to derive the nonrelativistic gauged Schrödinger equation. • Compactification of both Klein–Gordon and Maxwell theories are revisited. • Connections with Kaluza–Klein-like Bargmann frameworks are established. - Abstract: The Schrödinger equation for a spinless particle in presence of an external electromagnetic field is derived by means of null compactification of five dimensional massless Klein–Gordon theory and five–dimensional Maxwell electrodynamics. Connections with Kaluza–Klein-like Bargmann frameworks are established.
η(c) production at the LHC challenges nonrelativistic QCD factorization.
Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A
2015-03-06
We analyze the first measurement of η_{c} production, performed by the LHCb Collaboration, in the nonrelativistic QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant α_{s} and the relative velocity v of the bound quarks including the feeddown from h_{c} mesons. Converting the long-distance matrix elements extracted by various groups from J/ψ yield and polarization data to the η_{c} case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.
Geometric Representation of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L
2013-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model consists of open-strings interacting through a Kalb-Ramond field in four dimensions. The geometric representation proposed uses lines and surfaces that can be interpreted as an extension of the picture of Faraday's lines of classical electromagnetism. This representation results to be consistent, provided the coupling constant (the "charge" of the string) is quantized. The Schr\\"odinger equation in this representation is also presented.
Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence
Lopez-Arcos, Cristhiam; Murugan, Jeff; Nastase, Horatiu
2016-05-01
We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in [1], obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an mathcal{N}=2 Super-Schrödinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this (2 + 1)-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
Directory of Open Access Journals (Sweden)
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Dipole Engineering for Conducting Polymers
McClain, William Edward
A method for the growth of a TiO2 adhesion layer on PEDOT:PSS (poly[3,4- ethylenedioxythiophene]: poly[styrenesulfonate]) and for further functionalization with self-assembled monolayers of phosphonates (SAMPs) was developed. The TiO2 adhesion layer was grown via chemical vapor deposition using a titanium(IV) t-butoxide precursor, and was characterized by goniometry and X-ray photoelectron spectroscopy. TiO 2 grown on a model system, H-terminated silicon, indicated that the surface was t-butoxide terminated. Phenylphosphonic acids were synthesized with a variety of molecular dipoles and were used to change the work function of PEDOT:PSS through the formation of an aggregate surface dipole. Good correlation was found between the z-component of the molecular dipole and the change in work function, indicating that the film was well-ordered and dense. The magnitude of the changes in work function and goniometry measurements were similar to measurements on ITO, a substrate on which phosphonates form well-ordered monolayers. As-grown PEDOT:PSS/TiO 2 electrodes showed a lower work function compared to PEDOT:PSS, which is attributed to residual t-butoxide groups on the TiO 2 surface. UPS measurements revealed that reductions in work function in the modified electrodes lowered the difference in energy between the Fermi energy (EF) of the conducting polymer and the LUMO of PCBM ([6,6]-phenyl-C 61-butyric acid methyl ester). A reduction of this energy difference should translate into increased electron injection in electron-only diodes; however, devices with modified electrodes showed decreased current densities. UPS/IPES measurements show that TiO2 grown using this method has a much larger band gap than bulk or nanocrystalline TiO2, which is likely responsible for this decrease in device currents. At high bias, device currents increase dramatically, and the effects of the phosphonates or t-butoxide terminated TiO2 vanish. This is attributed to a reduction of the TiO2 to
Spherically restricted motion of a charge in the field of a magnetic dipole
Cortés, Emilio
2013-01-01
We study the restricted motion of an electric charge in a spherical surface in the field of a magnetic dipole. This is the classical non-relativistic St\\"oermer problem within a sphere, with the dipole in its centre. We start from a Lagrangian approach which allows us to analyze the dynamical properties of the system, such as the role of a velocity dependent potential, the symmetries and the conservation properties. We derive the Hamilton equations of motion and observe that in this restricted case the equations can be reduced to a quadrature. From the Hamiltonian function we find for the polar angle an equivalent one-dimensional system of a particle in the presence of an effective potential. This equivalent potential function, which is a double well potential, allows us to get a clear description of this dynamical problem. We are able to find closed horizontal trajectories, as well as their period. Depending on initial conditions, we can find also some bands covered by non-periodic trajectories, as well as t...
Radiating dipoles in photonic crystals
Busch; Vats; John; Sanders
2000-09-01
The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.
Final Report: Levitated Dipole Experiment
Energy Technology Data Exchange (ETDEWEB)
Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m^{-3}. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.
Integral Measurement of Dipole Prototype of CSR
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The dipole prototype is C type used as bending magnet of the injection beam line in CSR, and acts as a model of the dipoles in the CSR main ring simultaneously. The designed relative uniformity of good field is 0.001 in 100 mm width. The results of the local distribution and transfunction at transverse profile measured
Gravitational radiation from a rotating magnetic dipole
Hacyan, Shahen
2016-01-01
The gravitational radiation emitted by a rotating magnetic dipole is calculated. Formulas for the polarization amplitudes and the radiated power are obtained in closed forms, considering both the near and radiation zones of the dipole. For a neutron star, a comparison is made with other sources of gravitational and electromagnetic radiation.
Magnetic dipole oscillations and radiation damping
Stump, Daniel R.; Pollack, Gerald L.
1997-01-01
We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.
Experimental results on the Pygmy Dipole Resonance
Directory of Open Access Journals (Sweden)
Savran Deniz
2014-03-01
Full Text Available The so-called Pygmy Dipole Resonance, an additional structure of low-lying electric dipole strength, has attracted strong interest in the last years. Different experimental approaches have been used in the last decade in order to investigate this new interesting nuclear excitation mode. In this contribution an overview on the available experimental data is given.
How to Introduce the Magnetic Dipole Moment
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Electric dipoles on the Bloch sphere
Vutha, Amar C
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Quantum–classical correspondence and the role of the dipole function in molecular dissociation
Energy Technology Data Exchange (ETDEWEB)
Lima, E.F. de, E-mail: eflima@rc.unesp.br [Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Rio Claro, São Paulo 13506-900 (Brazil); Rosado, E.C., E-mail: tcortez@rc.unesp.br [Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 (Brazil); Castelano, L.K., E-mail: lkcastelano@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 (Brazil); Egydio de Carvalho, R., E-mail: regydio@rc.unesp.br [Instituto de Geociências e Ciências Exatas, UNESP – Univ. Estadual Paulista, Rio Claro, São Paulo 13506-900 (Brazil)
2014-07-18
We consider the quantum and classical dissociation dynamics of heteronuclear diatomic molecules induced by infrared laser pulses. The field–molecule interaction is given by the product of the time-dependent electric field and the molecule permanent dipole. We investigate the influence of the dipole function in molecular dissociation. We show that the dissociation can be suppressed at certain external field frequencies for a nonlinear and finite-range dipole function. The correspondence between quantum and classical results is established by relating classical Fourier amplitudes to discrete–continuum quantum matrix elements. - Highlights: • A finite-range dipole can prevent laser-induced dissociation for particular external frequencies. • Quantum and classical calculations show good agreement when the system is initially in excited levels. • An approximation of discrete–continuum matrix elements by Fourier components is obtained.
Bound states of a light atom and two heavy dipoles in two dimensions
Rosa, D S; Jensen, A S; Krein, G; Yamashita, M T
2016-01-01
We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles. It expresses the large-distance universal properties which must be reproduced by all realistic short-range interactions. We calculate the three-body spectrum for zero heavy-heavy interaction as function of light to heavy mass ratio. We discuss the relatively small deviations from Coulomb estimates and the degeneracies related to radial nodes and angular momentum quantum numbers. We include a repulsive dipole-dipole interaction and investigate the three-body solutions as functions of strength and dipole direction. Avoided crossings occur between levels localized in the emerging small and large-distance minima, respectively. The characteristic exchange of properties like mean square radii are calculated. Simulation ...
Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory
Jagau, Thomas-C.; Gauss, Jürgen; Ruud, Kenneth
2013-10-01
The general theory required for the calculation of analytic third energy derivatives at the coupled-cluster level of theory is presented and connected to preceding special formulations for hyperpolarizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy when taking into account anharmonic effects and is also essential for computing vibrational corrections to dipole moments. The superior accuracy of the analytic evaluation of third energy derivatives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.
Directory of Open Access Journals (Sweden)
James Jaeyoon Jun
Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole
Direct summation of dipole-dipole interactions using the Wolf formalism.
Stenqvist, Björn; Trulsson, Martin; Abrikosov, Alexei I; Lund, Mikael
2015-07-07
We present an expanded Wolf formalism for direct summation of long-range dipole-dipole interactions and rule-of-thumbs how to choose optimal spherical cutoff (Rc) and damping parameter (α). This is done by comparing liquid radial distribution functions, dipole-dipole orientation correlations, particle energies, and dielectric constants, with Ewald sums and the Reaction field method. The resulting rule states that ασ 3 for reduced densities around ρ(∗) = 1 where σ is the particle size. Being a pair potential, the presented approach scales linearly with system size and is applicable to simulations involving point dipoles such as the Stockmayer fluid and polarizable water models.
Efimov effect for three interacting bosonic dipoles.
Wang, Yujun; D'Incao, J P; Greene, Chris H
2011-06-10
Three oriented bosonic dipoles are treated by using the hyperspherical adiabatic representation, providing numerical evidence that the Efimov effect persists near a two-dipole resonance and in a system where angular momentum is not conserved. Our results further show that the Efimov features in scattering observables become universal, with a known three-body parameter; i.e., the resonance energies depend only on the two-body physics, which also has implications for the universal spectrum of the four-dipole problem. Moreover, the Efimov states should be long-lived, which is favorable for their creation and manipulation in ultracold dipolar gases. Finally, deeply bound two-dipole states are shown to be relatively stable against collisions with a third dipole, owing to the emergence of a repulsive interaction originating in the angular momentum nonconservation for this system.
Multiscale dipole relaxation in dielectric materials
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2016-01-01
the cross coupling between the electric field fluctuations and dipole moment fluctuations can be ignored. The peak frequencies in the spectra of the autocorrelation functions are also derived. They depend on the wave vector squared which is a fingerprint of the underlying dipole diffusion mechanism....... For the longitudinal direction the simulation results show that the cross coupling between the electric field and the dipole moment is non-negligible compromising the theoretical predictions. The underlying mechanism for this coupling is not clear.......Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...
High-field dipoles for future accelerators
Energy Technology Data Exchange (ETDEWEB)
Wipf, S.L.
1984-09-01
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Źenczykowski, Piotr
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x2 + p2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Harada, Koji; Yoshimoto, Issei
2012-01-01
Low-energy effective field theory describing a nonrelativistic three-body system is analyzed in the Wilsonian renormalization group (RG) method. No effective auxiliary field (dimeron) that corresponds to two-body propagation is introduced. The Efimov effect is expected in the case of an infinite two-body scattering length, and is believed to be related to the limit cycle behavior in the three-body renormalization group equations (RGEs). If the one-loop property of the RGEs for the nonrelativistic system without the dimeron field, which is essential in deriving RGEs in the two-body sector, persists in the three-body sector, it appears to prevent the emergence of limit cycle behavior. We explain how the multi-loop diagrams contribute in the three-body sector without contradicting the one-loop property of the RGEs, and derive the correct RGEs, which lead to the limit cycle behavior. The Efimov parameter, $s_{0}$, is obtained within a few percent error in the leading orders. We also remark on the correct use of t...
Search for non-relativistic Magnetic Monopoles with IceCube
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Meli, A; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M
2014-01-01
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\\,\\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\\,\\mathrm{cm^2}$ to $10^{-21}\\,\\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal ...
Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly
2015-01-01
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Symmetries of nonrelativistic phase space and the structure of quark-lepton generation
Energy Technology Data Exchange (ETDEWEB)
Zenczykowski, Piotr, E-mail: piotr.zenczykowski@ifj.edu.p [Division of Theoretical Physics, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow (Poland)
2009-06-01
According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x{sup 2} + p{sup 2} constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.
Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-03-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.
Final Report: Levitated Dipole Experiment
Energy Technology Data Exchange (ETDEWEB)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross
Spectral distortions of the CMB dipole
Balashev, S A; Chluba, J; Ivanchik, A V; Varshalovich, D A
2015-01-01
We consider the distortions of the CMB dipole anisotropy related to the primordial recombination radiation (PRR) and primordial $y$- and $\\mu$-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of CMB dipole does not depend on the particular observation directions and reaches the level of $10^{-6}$ for the PRR- and $\\mu$-distortions and $10^{-5}$ for the $y$-distortion in the frequency range 1 $-$ 700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences because of the PRR- and $\\mu$-dipole anisotropy attain values $\\Delta T\\simeq 10\\,$nK in the considered range. The temperature difference arising from the $y$-dipole anisotropy may reach values up to $1\\,\\mu$K. The key features of the ...
Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses
Koprinkov, I. G.
2006-01-01
Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.
Layers of Cold Dipolar Molecules in the Harmonic Approximation
DEFF Research Database (Denmark)
R. Armstrong, J.; Zinner, Nikolaj Thomas; V. Fedorov, D.
2012-01-01
We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used...
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X. The clas......Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...
Electric dipole polarizabilities of Rydberg states of alkali atoms
Yerokhin, V A; Fritzsche, S; Surzhykov, A
2016-01-01
Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali atoms, Rb and Cs, for the $nS$, $nP_{1/2, 3/2}$, and $nD_{3/2, 5/2}$ states with large principal quantum numbers up to $n = 50$. The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semi-empirical core-polarization potential. The obtained results are compared with those from a simpler semi-empirical approach and with available experimental data.
Comparative study between toroidal coordinates and the magnetic dipole field
Chávez-Alarcón, Esteban
2012-01-01
There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.
Formation number for vortex dipoles
Sadri, Vahid; Krueger, Paul S.
2016-11-01
This investigation considers the axisymmetric formation of two opposite sign concentric vortex rings from jet ejection between concentric cylinders. This arrangement is similar to planar flow in that the vortex rings will travel together when the gap between the cylinders is small, similar to a vortex dipole, but it has the advantage that the vortex motion is less constrained than the planar case (vortex stretching and vortex line curvature is allowed). The flow was simulated numerically at a jet Reynolds number of 1,000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio (L / ΔR) in the range 10-20, and gap-to-outer radius ratio (ΔR /Ro) in the range 0.01-0.1. Small gap ratios were chosen for comparison with 2D results. In contrast with 2D results, the closely paired vortices in this study exhibited pinch-off from the generating flow and finite formation numbers. The more complex flow evolution afforded by the axisymmetric model and its influence on the pinch-off process will be discussed. This material is based on work supported by the National Science Foundation under Grant No. 1133876 and SMU. This supports are gratefully acknowledged.
Superconducting Coil of Po Dipole
1983-01-01
The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.
Dielectric laser acceleration of non-relativistic electrons at a photonic structure
Energy Technology Data Exchange (ETDEWEB)
Breuer, John
2013-08-29
This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in
Axion induced oscillating electric dipole moments
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2015-06-24
In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency m_{a} and strength ~ 10^{-32} e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.
Collisional blockade in microscopic optical dipole traps.
Schlosser, N; Reymond, G; Grangier, P
2002-07-08
We analyze the operating regimes of a very small optical dipole trap, loaded from a magneto-optical trap, as a function of the atom loading rate, i.e., the number of atoms per second entering the dipole trap. We show that, when the dipole trap volume is small enough, a "collisional blockade" mechanism locks the average number of trapped atoms on the value 0.5 over a large range of loading rates. We also discuss the "weak loading" and "strong loading" regimes outside the blockade range, and we demonstrate experimentally the existence of these three regimes.
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
GenASiS: General Astrophysical Simulation System. II. Nonrelativistic Hydrodynamics
Cardall, Christian Y; Endeve, Eirik; Mezzacappa, Anthony
2012-01-01
In this paper, the second in a series, we document the algorithms and solvers for compressible nonrelativistic hydrodynamics implemented in GenASiS (General Astrophysical Simulation System)---a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae. In the Mathematics division of GenASiS we introduce Solvers, which includes finite-volume updates for generic hyperbolic BalanceEquations and ordinary differential equation integration Steps. We also introduce the Physics division of GenASiS; this extends the Manifolds division of Mathematics into physical Spaces, defines StressEnergies, and combines these into Universes. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the manifest superiority of the HLLC over the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's abili...
Path integral polymer propagator of relativistic and non-relativistic particles
Morales-Técotl, Hugo A; Ruelas, Juan C
2016-01-01
A recent proposal to connect the loop quantization with the spin foam model for cosmology via the path integral is hereby adapted to the case of mechanical systems within the framework of the so called polymer quantum mechanics. The mechanical models we consider are deparametrized and thus the group averaging technique is used to deal with the corresponding constraints. The transition amplitudes are written in a vertex expansion form used in the spin foam models, where here a vertex is actually a jump in position. Polymer Propagators previously obtained by spectral methods for a nonrelativistic polymer particle, both free and in a box, are regained with this method. Remarkably, the approach is also shown to yield the polymer propagator of the relativistic particle. This reduces to the standard form in the continuum limit for which the length scale parameter of the polymer quantization is taken to be small. Some possible future developments are commented upon.
Ultra high energy cosmic rays from non-relativistic quasar outflows
Wang, Xiawei
2016-01-01
It has been suggested that non-relativistic outflows from quasars can naturally account for the missing component of the extragalactic $\\gamma$-ray background and explain the cumulative neutrino background through pion decay in collisions between protons accelerated by the outflow shock and interstellar protons. Here we show that the same quasar outflows are capable of accelerating protons to energies of $\\sim 10^{20}$ eV during the early phase of their propagation. The overall quasar population is expected to produce a cumulative ultra high energy cosmic ray flux of $\\sim10^{-7}\\,\\rm GeV\\,cm^{-2}s^{-1}sr^{-1}$ at $E_{\\rm CR}\\gtrsim10^{18}$ eV. The spectral shape and amplitude is consistent with recent observations for outflow parameters constrained to fit secondary $\\gamma$-rays and neutrinos without any additional parameter tuning. This indicates that quasar outflows simultaneously account for all three messengers at their observed levels.
On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field
Amour, Laurent; Grebert, Benoit; Guillot, Jean-Claude
2008-01-01
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \\mapsto E'(P_3)$ is the derivative of the map $P_3 \\mapsto E(P_3) = \\inf \\sigma (H(P_3))$. If $E'(P_3) \
Energy Technology Data Exchange (ETDEWEB)
Butenschoen, Mathias; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-09-15
We calculate the cross section of inclusive direct J/{psi} photoproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics, for the first time including the full relativistic corrections due to the intermediate {sup 1}S{sub 0}{sup [8]}, {sup 3}S{sub 1}{sup [8]}, and {sup 3}P{sub J}{sup [8]} color-octet states. A comparison of our results to recent H1 data suggests that the color octet mechanism is indeed realized in J/{psi} photoproduction, although the predictivity of our results still suffers from uncertainties in the color-octet long-distance matrix elements. (orig.)
Failure of relativistic codes in the non-relativistic limit: the role of Brillouin configurations
Indelicato, P J; Desclaux, J P
2004-01-01
In the present letter we solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method. We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We identify the role of single excitations obeying to Brillouin's theorem in this problem. We show that with large scale calculations in which this problem is properly treated, we can reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
Institute of Scientific and Technical Information of China (English)
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit
Ishikawa, R.; Bae, J.; Mizuno, K.
2001-04-01
Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.
Semi-classical locality for the non-relativistic path integral in configuration space
Gomes, Henrique
2015-01-01
In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...
Nonrelativistic limit of the abelianized ABJM model and the ADS/CMT correspondence
Lopez-Arcos, Cristhiam; Nastase, Horatiu
2015-01-01
We consider the nonrelativistic limit of the abelian reduction of the massive ABJM model proposed in \\cite{Mohammed:2012gi}, obtaining a supersymmetric version of the Jackiw-Pi model. The system exhibits an ${\\cal N}=2$ Super-Schr\\"odinger symmetry with the Jackiw-Pi vortices emerging as BPS solutions. We find that this $(2+1)$-dimensional abelian field theory is dual to a certain (3+1)-dimensional gravity theory that differs somewhat from previously considered abelian condensed matter stand-ins for the ABJM model. We close by commenting on progress in the top-down realization of the AdS/CMT correspondence in a critical string theory.
Static spherically symmetric solutions in the IR limit of nonrelativistic quantum gravity
Harada, Tomohiro; Tsukamoto, Naoki
2009-01-01
We investigate static spherically symmetric vacuum solutions in the IR limit of projectable nonrelativistic quantum gravity, including the renormalisable quantum gravity recently proposed by Ho\\v{r}ava. It is found that the projectability condition plays an important role. Without the cosmological constant, the spacetime is uniquely given by the Schwarzschild solution. With the cosmological constant, the spacetime is uniquely given by the Kottler (Schwarzschild-(anti) de Sitter) solution for the entirely vacuum spacetime. However, the ``ultra-static'' metric of spherical and hyperbolic spaces can be also admissible for the locally empty region, for the positive and negative cosmological constants, respectively, if its nonvanishing contribution to the global Hamiltonian constraint can be compensated by that from the nonempty or nonstatic region. This implies that static spherically symmetric entirely vacuum solutions would not admit the freedom to reproduce the observed flat rotation curves of galaxies. On the...
Virial Theorem for Non-relativistic Quantum Fields in D Spatial Dimensions
Lin, Chris L
2015-01-01
The virial theorem for non-relativistic complex fields in $D$ spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in lower-dimensional systems. The potential appearance of a Jacobian $J$ due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the $J=1$ case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, $J=1$, is not natural, and the generalization to the case $J\
Non-relativistic Schroedinger theory on q-deformed quantum spaces III, Scattering theory
Wachter, H
2007-01-01
This is the third part of a paper about non-relativistic Schroedinger theory on q-deformed quantum spaces like the braided line or the three-dimensional q-deformed Euclidean space. Propagators for the free q-deformed particle are derived and their basic properties are discussed. A time-dependent formulation of scattering is proposed. In this respect, q-analogs of the Lippmann-Schwinger equation are given. Expressions for their iterative solutions are written down. It is shown how to calculate S-matrices and transition probabilities. Furthermore, attention is focused on the question what becomes of unitarity of S-matrices in a q-deformed setting. The examinations are concluded by a discussion of the interaction picture and its relation to scattering processes.
Electron acceleration in a nonrelativistic shock with very high Alfv\\'en Mach number
Matsumoto, Y; Hoshino, M
2013-01-01
Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic, very-high-Alfv\\'en Mach-number ($M_A \\sim 45$) shock is revealed by means of a two-dimensional fully kinetic PIC simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-hi...
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at ExThomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
Nguyen, Thanh Long; Celistrino Teixeira, Raul; Hermann Avigliano, Carla; Cantat Moltrecht, Tigrane; Raimond, Jean Michel; Haroche, Serge; Gleyzes, Sebastiens; Brune, Michel
2016-05-01
Dipole-dipole interactions between Rydberg atoms are a flourishing tool for quantum information processing and for quantum simulation of complex many-body problems. Microwave spectroscopy of a dense Rydberg gas trapped close to a superconducting atom chip in the strong dipole blockade regime reveals directly the many-body atomic interaction spectrum. We present here a direct measurement of the interaction energy distribution in the strong dipole blockade regime, based on microwave spectroscopy. We first apply this method to the observation of the excitation dynamics of the Rydberg gas, conditioned by dipole-dipole interactions, in either the strong blockade regime or the so-called facilitation regime. We also observe with this method the atomic cloud expansion driven by the repulsive Van der Waals interaction after excitation. This measurement, in good agreement with Monte Carlo simulations of the excitation process and of the cloud dynamics, reveals the limits of the frozen gas approximation. This method can help investigate self-organization and dynamical phase transitions in Rydberg-atom based quantum simulators. This study thus opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atom.
Energy Technology Data Exchange (ETDEWEB)
Sharma, M. [Dept. of Physics and Astro-Physics, Univ. of Delhi (India); Govind, N.; Pratap, A. [Condense Matter Theory Group, National Physical Lab., New Delhi (India); Ajay; Tripathi, R.S. [Dept. of Physics, G.B. Pant Univ. of Agriculture and Technology, Pantnagar (India)
2001-07-01
In the present paper, we report the role of dipole-dipole interaction on the magnetic dynamics of single layer antiferromagnets. For this, the model Hamiltonian includes the exchange Heisenberg Hamiltonian as well as dipole-dipole interactions. Within the linear spin-wave theory, we employ the double time Green's function technique to obtain expressions for the spin wave dispersion, sublattice magnetization and the magnetic contribution to specific heat as a function of various parameters of the model Hamiltonian. We observe through numerical calculations that in the absence of anisotropy in exchange couplings the dipole-dipole interaction works as an anisotropy and sustains the magnetization even in a pure 2D system. (orig.)
Leike, Reimar H
2016-01-01
In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...
Plasmonic functionalities based on detuned electrical dipoles
DEFF Research Database (Denmark)
Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.
2013-01-01
We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...
Plasmonic functionalities based on detuned electrical dipoles
DEFF Research Database (Denmark)
Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.
2013-01-01
We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...
Population Dynamics in Cold Gases Resulting from the Long-Range Dipole-Dipole Interaction
Mandilara, A; Pillet, P
2009-01-01
We consider the effect of the long range dipole-dipole interaction on the excitation exchange dynamics of cold two-level atomic gase in the conditions where the size of the atomic cloud is large as compared to the wavelength of the dipole transition. We show that this interaction results in population redistribution across the atomic cloud and in specific spectra of the spontaneous photons emitted at different angles with respect to the direction of atomic polarization.
De Soto, F
2006-01-01
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.
Cosmological CMBR dipole in open universes?
Langlois, D
1997-01-01
The observed CMBR dipole is generally interpreted as a Doppler effect arising from the motion of the Earth relative to the CMBR frame. An alternative interpretation, proposed in the last years, is that the dipole results from ultra-large scale isocurvature perturbations. We examine this idea in the context of open cosmologies and show that the isocurvature interpretation is not valid in an open universe, unless it is extremely close to a flat universe, $|\\Omega_0 -1|< 10^{-4}$.
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Intrinsic Decoherence of a Two-Atom System with Dipole-Dipole Interaction
Institute of Scientific and Technical Information of China (English)
QI Lin-Na; ZHU Ai-Dong; ZHANG Shou
2008-01-01
@@ We investigate the effect of dipole-dipole interaction on the intrinsic decoherence of a system which consists of two two-level atoms and an optical cavity. The entanglement of the system is calculated by making use of concurrence. Our results show that the appropriate choice for the coupling constant Ω of dipole-dipole interaction can restrain the intrinsic decoherence of the system. We also find a special phenomenon. No matter what the value of γ is, the concurrence of system slowly increases and cannot exceed 0.71 when Ω= 1.
Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2005-01-01
Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes.......Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....
Dipole-moment-driven cooperative supramolecular polymerization.
Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J
2015-03-25
While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.
Pinto, Sérgio Alexandre; Gross, Franz
2009-01-01
We present the first calculations of the electromagnetic form factors of $^3$He and $^3$H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs", but omits other two and three-body currents. We compare our results to non-relativistic calculations augmented by relativistic corrections of ${\\cal O}(v/c)^2$.
Energy Technology Data Exchange (ETDEWEB)
Pinto, Sérgio Alexandre; Stadler, Alfred; Gross, Franz
2009-05-01
We present the first calculations of the electromagnetic form factors of ^{3}He and ^{3}H within the framework of the Covariant Spectator Theory (CST). This first exploratory study concentrates on the sensitivity of the form factors to the strength of the scalar meson-nucleon off-shell coupling, known from previous studies to have a strong influence on the three-body binding energy. Results presented here were obtained using the complete impulse approximation (CIA), which includes contributions of relativistic origin that appear as two-body corrections in a non-relativistic framework, such as "Z-graphs," but omits other two and three-body currents. Finally, we compare our results to non-relativistic calculations augmented by relativistic corrections of O(v/c)^{2}.
Bound states of a light atom and two heavy dipoles in two dimensions
DEFF Research Database (Denmark)
Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm
2016-01-01
We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particl...
Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability
Energy Technology Data Exchange (ETDEWEB)
DeJarnette, Drew; Forcherio, Gregory T. [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Blake, Phillip [Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Keith Roper, D., E-mail: dkroper@uark.edu [Microelectronics and Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)
2014-01-14
Coupling and extinction of light among particles representable as point dipoles can be characterized using the coupled dipole approximation (CDA). The analytic form for dipole polarizability of spheroidal particles supports rapid electrodynamic analysis of nanoparticle lattices using CDA. However, computational expense increases for complex shapes with non-analytical polarizabilities which require discrete dipole (DDA) or higher order approximations. This work shows fast CDA analysis of assembled nanorings is possible using a single dipole nanoring polarizability extrapolated from a DDA calculation by summing contributions from individual polarizable volume elements. Plasmon resonance wavelengths of nanorings obtained using extracted polarizabilities blueshift as wall dimensions-to-inner radius aspect ratio increases, consistent with published theory and experiment. Calculated far-field Fano resonance energy maximum and minimum wavelengths were within 1% of full volume element results. Considering polarizability allows a more complete physical picture of predicting plasmon resonance location than metal dielectric alone. This method reduces time required for calculation of diffractive coupling more than 40 000-fold in ordered nanoring systems for 400–1400 nm incident wavelengths. Extension of this technique beyond nanorings is possible for more complex shapes that exhibit dipolar or quadrupole radiation patterns.
Rašin, Andrija
1994-01-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
On Element SDD Approximability
Avron, Haim; Toledo, Sivan
2009-01-01
This short communication shows that in some cases scalar elliptic finite element matrices cannot be approximated well by an SDD matrix. We also give a theoretical analysis of a simple heuristic method for approximating an element by an SDD matrix.
Approximate iterative algorithms
Almudevar, Anthony Louis
2014-01-01
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a
750 GeV diphoton resonance and electric dipole moments
Choi, Kiwoon; Im, Sang Hui; Kim, Hyungjin; Mo, Doh Young
2016-09-01
We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O (10-1). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O (10-3). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α ∼(750 GeV /ΛHC) 2θHC, where θHC is the hypercolor vacuum angle.
750 GeV diphoton resonance and electric dipole moments
Directory of Open Access Journals (Sweden)
Kiwoon Choi
2016-09-01
Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.
750 GeV diphoton resonance and electric dipole moments
Choi, Kiwoon; Kim, Hyungjin; Mo, Doh Young
2016-01-01
We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle {\\alpha} in the underlying new physics is of O(10^{-1}). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle {\\alpha} for an approximately scalar resonance, is of O(10^{-3}). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at \\Lambda_HC, the resulting neutron EDM can be estimated with \\alpha ~ (750 GeV / \\Lambda_HC...
Expectation values of single-particle operators in the random phase approximation ground state
Kosov, Daniel S
2016-01-01
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.
Approximation of distributed delays
Lu, Hao; Eberard, Damien; Simon, Jean-Pierre
2010-01-01
We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X. The clas......Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X...
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes
DEFF Research Database (Denmark)
Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng;
2004-01-01
A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...
Terahertz emission by diffusion of carriers and metal-mask dipole inhibition of radiation
Barnes, M E; Daniell, G J; Whitworth, G; Chung, A L; Quarterman, A H; Wilcox, K G; Beere, H E; Ritchie, D A; Apostolopoulos, V
2011-01-01
Terahertz (THz) radiation can be generated by ultrafast photo-excitation of carriers in a semiconductor partly masked by a gold surface. A simulation of the effect taking into account the diffusion of carriers and the electric field shows that the total net current is approximately zero and cannot account for the THz radiation. Finite element modelling and analytic calculations indicate that the THz emission arises because the metal inhibits the radiation from part of the dipole population, thus creating an asymmetry and therefore a net current. Experimental investigations confirm the simulations and show that metal-mask dipole inhibition can be used to create THz emitters.
Plasmon-Induced Resonant Energy Transfer: a coherent dipole-dipole coupling mechanism
Bristow, Alan D.; Cushing, Scott K.; Li, Jiangtian; Wu, Nianqiang
Metal-insulator-semiconductor core-shell nanoparticles have been used to demonstrate a dipole-dipole coupling mechanism that is entirely dependent on the dephasing time of the localized plasmonic resonance. Consequently, the short-time scale of the plasmons leads to broad energy uncertainty that allows for excitation of charge carriers in the semiconductor via stimulation of photons with energies below the energy band gap. In addition, this coherent energy transfer process overcomes interfacial losses often associated with direct charge transfer. This work explores the efficiency of the energy transfer process, the dipole-dipole coupling strength with dipole separation, shell thickness and plasmonic resonance overlap. We demonstrate limits where the coherent nature of the coupling is switched off and charge transfer processes can dominate. Experiments are performed using transient absorption spectroscopy. Results are compared to calculations using a quantum master equation. These nanostructures show strong potential for improving solar light-harvesting for power and fuel generation.
Artificial abelian gauge potentials induced by dipole-dipole interactions between Rydberg atoms
Cesa, A
2013-01-01
We analyze the influence of dipole-dipole interactions between Rydberg atoms on the generation of abelian artificial gauge potentials and fields. When two Rydberg atoms are driven by a uniform laser field, we show that the combined atom-atom and atom-field interactions give rise to new, non-uniform, artificial gauge potentials. We identify the mechanism responsible for the emergence of these gauge potentials. Analytical expressions for the latter indicate that the strongest artificial magnetic fields are reached in the regime intermediate between the dipole blockade regime and the regime in which the atoms are sufficiently far apart such that atom-light interaction dominates over atom-atom interactions. We discuss the differences and similarities of artificial gauge fields originating from resonant dipole-dipole and van der Waals interactions. We also give an estimation of experimentally attainable artificial magnetic fields resulting from this mechanism.
Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole
Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T
2015-01-01
We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.
LHC dipoles: the countdown has begun
Patrice Loiez
2002-01-01
At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...
Dipole strength distribution of {sup 50}Ti
Energy Technology Data Exchange (ETDEWEB)
Gayer, Udo; Beck, Tobias; Beller, Jacob; Mertes, Laura; Pai, Haridas; Pietralla, Norbert; Ries, Philipp; Romig, Christopher; Werner, Volker; Zweidinger, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany)
2015-07-01
A first nuclear resonance fluorescence (NRF) experiment with a 68% isotopically enriched {sup 50}Ti target has been performed at the superconducting Darmstadt electron linear accelerator S-DALINAC to investigate particle-bound dipole excitations in this nucleus. The target was irradiated with an unpolarized bremsstrahlung photon beam at endpoint energies of 7.5 MeV and 9.7 MeV. The observed excited states are analyzed with respect to their excitation energies, spin quantum numbers and transition strengths. A complementary NRF experiment with polarized photons will be conducted at the High Intensity gamma-ray Source in Durham, NC, USA to determine the polarity of the dipole transitions. Data will be analyzed with regard to the Pygmy Dipole Resonance, a weakly-collective electric dipole excitation which starts to form in nuclei of this mass region. The measured transition strengths will be compared to microscopic calculations in the quasiparticle-phonon model. The investigation of the magnetic dipole strength distribution will focus on strong spin-flip transitions between the p,f spin-orbit partners expected in the nuclear shell model. First results of the measurements and the evaluation will be presented and discussed.
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Achieser, N I
2004-01-01
A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of pr
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: l.f.alday@phys.uu.nl; Boer, Jan de [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: jdeboer@science.uva.nl; Messamah, Ilies [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: imessama@science.uva.nl
2006-07-03
We study gravitational solutions that admit a dual CFT description and carry non-zero dipole charge. We focus on the black ring solution in AdS{sub 3}xS{sup 3} and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q{sub 3}, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.
Theory of Dipole Induced Electromagnetic Transparency
Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric
2015-01-01
A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...
Dipole hearing measurements in elasmobranch fishes.
Casper, Brandon M; Mann, David A
2007-01-01
The hearing thresholds of the horn shark Heterodontus francisci and the white-spotted bamboo shark Chiloscyllium plagiosum were measured using auditory evoked potentials (AEP) in response to a dipole sound stimulus. The audiograms were similar between the two species with lower frequencies yielding lower particle acceleration thresholds. The particle acceleration audiograms showed more sensitive hearing at low frequencies than previous elasmobranch audiograms, except for the lemon shark Negaprion brevirsotris. Auditory evoked potential signals were also recorded while the dipole stimulus was moved to different locations above the head and body. The strongest AEP signals were recorded from the area around the parietal fossa, supporting previous experiments that suggested this region is important for elasmobranch hearing. This is the first time that hearing experiments have been conducted using a dipole stimulus with elasmobranchs, which more closely mimics the natural sounds of swimming prey.
Alday, L F; Messamah, I; Alday, Luis F.; Boer, Jan de; Messamah, Ilies
2006-01-01
We study gravitational solutions that admit a dual CFT description and carry non zero dipole charge. We focus on the black ring solution in AdS_3 x S^3 and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q_3, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.
Pursuit and Synchronization in Hydrodynamic Dipoles
Kanso, Eva
2015-01-01
We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic \\textit{Hele-Shaw} type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly-periodic domains, and focus on the dynamics of swimmer pairs. We obtain two families of `relative equilibria'-type solutions that correspond to pursuit and synchronization of the two swimmers, respectively. Interestingly, the pursuit mode is stable for large tail swimmers whereas the synchronization mode is stable for large head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.
Effect of rotational-state-dependent molecular alignment on the optical dipole force
Kim, Lee Yeong; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk
2016-01-01
The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. However, in previous experimental studies, the effects of state-dependent alignment have never been included in estimates of the optical dipole force acting on the molecules while previous theoretical investigations took the state-dependent molecular alignment into account only implicitly. Herein, we consider the effects of molecular alignment explicitly and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear mo...
Quark contribution to the small-x evolution of color dipole
Energy Technology Data Exchange (ETDEWEB)
Ian Balitsky
2006-09-11
The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.
Parunakian, David
2014-05-01
In this paper we build upon the results previously produced by numerous attempts, including our own, to approximate the geomagnetic field with a an eccentric dipole instead of spherical harmonics expansions. Among other motivations to do so is that dipole-related effects are much more pronounced relative to higher-order harmonics at large distances from the Earth, and that the shift of the order of magnitude about 0.1 Earth radii is significant enough for many magnetospheric structures such as the current sheet. We present the results of multivariate simulated annealing, which includes translational and rotational repositioning of the dipole. We also include similar results produced for Mercury and Saturn, and we extend Earth-related data with Oersted and Cluster measurements in order to further improve our accuracy.
Investigating the role of average color dipole size in BFKL Pomeron phenomenology
Lengyel, A I
2005-01-01
Based on the QCD dipole picture of the BFKL Pomeron, we investigate the role played by the saturation scale, $Q_{\\mathrm{sat}}$, in obtaining physical values for the affective strong coupling in phenomenological fits to small-$x$ HERA data. The dependence on this scale appears since the collection of color dipoles characterizing the proton target have average size $1/Q_{\\mathrm{sat}}$, which is energy dependent. Physically, this means most of the color dipoles are above but sufficiently close to the border between a saturated and the dilute system. The analysis is first performed in the leading-logs BFKL approach in the saddle-point approximation and it could shed light in further investigations using resummed NLO BFKL kernels.
Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument
Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.
1994-01-01
The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Cooperative Ordering in Lattices of Interacting Dipoles
Bettles, Robert J; Adams, Charles S
2014-01-01
Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.
Complete electric dipole response in 208Pb
Tamii, A; von Neumann-Cosel, P; Fujita, Y; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Hatanaka, K; Heilmann, A M; Ishikawa, D; Itoh, M; Ong, H J; Kawabata, T; Kalmykov, Y; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yamada, R; Yosoi, M; Zenihiro, J
2011-01-01
A benchmark experiment on 208Pb shows that polarized proton inelastic scattering at very forward angles including 0{\\deg} is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range testing up-to-date nuclear model calculations. The E1 polarizability extracted from the data provides a constraint on the neutron skin thickness in 208Pb and the poorly known density dependence of the symmetry energy, relevant to the description of neutron stars.
A HTS dipole insert coil constructed
Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P
2013-01-01
This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Approximate Modified Policy Iteration
Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu
2012-01-01
Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...
Non-Relativistic Chern-Simons Theories and Three-Dimensional Horava-Lifshitz Gravity
Hartong, Jelle; Obers, Niels A
2016-01-01
We show that certain three-dimensional Horava-Lifshitz gravity theories can be written as Chern-Simons gauge theories on various non-relativistic algebras. The algebras are specific extensions of the Bargmann, Newton-Hooke and Schroedinger algebra each of which has the Galilean algebra as a subalgebra. To show this we employ the fact that Horava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable Horava-Lifshitz gravity with a local U(1) gauge symmetry without (with) a cosmological constant. Moreover we identify an extended Schroedinger algebra containing 3 extra generators that are central with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons theory gives rise to a novel version of non-projectable conformal Horava-Lifshitz gravity that we refer to as Schroedinger gravity. This theory has a z=2 Lifshitz geometry as a vacuum solution and thus provides a...
The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory
Ohsaku, Tadafumi
2013-01-01
The anomalous Nambu-Goldstone (NG) theorem which is found as a violation of counting law of the number of NG bosons of the normal NG theorem in nonrelativistic and Lorentz-symmetry-violated relativistic theories is studied in detail, with emphasis on its mathematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras (local) and Lie groups (global). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anomalous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be experimentally confirmed. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangi...
Effects of high-order operators in non-relativistic Lifshitz holography
Wang, Xinwen; Tian, Miao; Wang, Anzhong; Deng, Yanbin; Cleaver, Gerald
2014-01-01
In this paper, we study the effects of high-order operators on the non-relativistic Lifshitz holography in the framework of the Ho\\v{r}ava-Lifshitz (HL) theory of gravity, which naturally contains high-order operators in order for the theory to be power-counting renormalizble, and provides an ideal place to study these effects. In particular, we show that the Lifshitz space-time is still a solution of the full theory of the HL gravity. The effects of the high-oder operators on the space-time itself is simply to shift the Lifshitz dynamical exponent. However, while in the infrared the asymptotic behavior of a (probe) scalar field near the boundary is similar to that studied in the literature, it gets dramatically modified in the UV limit, because of the presence of the high-order operators in this regime. Then, according to the gauge/gravity duality, this in turn affects the two-point correlation functions.
Continuity properties of the semi-group and its integral kernel in non-relativistic QED
Matte, Oliver
2016-07-01
Employing recent results on stochastic differential equations associated with the standard model of non-relativistic quantum electrodynamics by B. Güneysu, J. S. Møller, and the present author, we study the continuity of the corresponding semi-group between weighted vector-valued Lp-spaces, continuity properties of elements in the range of the semi-group, and the pointwise continuity of an operator-valued semi-group kernel. We further discuss the continuous dependence of the semi-group and its integral kernel on model parameters. All these results are obtained for Kato decomposable electrostatic potentials and the actual assumptions on the model are general enough to cover the Nelson model as well. As a corollary, we obtain some new pointwise exponential decay and continuity results on elements of low-energetic spectral subspaces of atoms or molecules that also take spin into account. In a simpler situation where spin is neglected, we explain how to verify the joint continuity of positive ground state eigenvectors with respect to spatial coordinates and model parameters. There are no smallness assumptions imposed on any model parameter.
Quantum Exact Non-Abelian Vortices in Non-relativistic Theories
Nitta, Muneto; Vinci, Walter
2014-01-01
Non-Abelian vortices arise when a non-Abelian global symmetry is exact in the ground state but spontaneously broken in the vicinity of their cores. In this case, there appear (non-Abelian) Nambu-Goldstone (NG) modes confined and propagating along the vortex. In relativistic theories, the Coleman-Mermin-Wagner theorem forbids the existence of a spontaneous symmetry breaking, or a long-range order, in 1+1 dimensions: quantum corrections restore the symmetry along the vortex and the NG modes acquire a mass gap. We show that in non-relativistic theories NG modes with quadratic dispersion relation confined on a vortex can remain gapless at quantum level. We provide a concrete and experimentally realizable example of a three-component Bose-Einstein condensate with U(1) x U(2) symmetry. We first show, at the classical level, the existence of S^3 = S^1 |x S^2 (S^1 fibered over S^2) NG modes associated to the breaking U(2) -> U(1) on vortices, where S^1 and S^2 correspond to type I and II NG modes, respectively. We th...
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
Energy Technology Data Exchange (ETDEWEB)
Ko, Sung Moon [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of); Melby-Thompson, Charles M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of)
2015-12-22
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (‘non-geometry’), but even locally (‘non-Riemannian’). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri http://dx.doi.org/10.1063/1.1372697 arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of http://dx.doi.org/10.1016/j.nuclphysb.2014.01.003 on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
Stepanov, Nikolay S.; Zelekson, Lev A.
2017-03-01
The exact stationary solution of one-dimensional non-relativistic Vlasov equation is obtained in the article. It is shown that in the energy exchange with the self-consistent longitudinal electric field, both wave trapped charged particles and the passing ones take part. It is proved that the trapped electron distribution is fundamentally different from distribution functions described by other authors, which used the Bernstein, Greene, and Kruskal method. So, the correct distribution function is characterized by its sudden change at the equality of wave and electrons' velocity but not on the edges of the potential well. This jump occurs for any arbitrary small value of wave potential. It was also found that the energy density of fast electrons trapped by the wave is less than the energy density of slow trapped electrons. This leads to the fact that the energy of the self-consistent electric field may both increase and decrease due to the nonlinear Landau damping. The conditions under which a similar effect can be observed are defined. Also for the first time, it is shown that the self-generated strong electric field always produces antitropic electron beams.
Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics
Tessarotto, Massimo; Cremaschini, Claudio
2016-08-01
In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path (LP) which lies at the heart of the deBroglie-Bohm " pilot-wave" interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths (GLP). This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and of the associated quantum hydrodynamic equations. The remarkable aspect of the GLP approach presented here is that it realizes at the same time also a new solution method for the N-body Schrödinger equation. As an application, Gaussian-like particular solutions for the quantum probability density function (PDF) are considered, which are proved to be dynamically consistent. For them, the Schrödinger equation is reduced to a single Hamilton-Jacobi evolution equation. Particular solutions of this type are explicitly constructed, which include the case of free particles occurring in 1- or N-body quantum systems as well as the dynamics in the presence of suitable potential forces. In all these cases the initial Gaussian PDFs are shown to be free of the spreading behavior usually ascribed to quantum wave-packets, in that they exhibit the characteristic feature of remaining at all times spatially-localized.
Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity
Hartong, Jelle; Lei, Yang; Obers, Niels A.
2016-09-01
We show that certain three-dimensional Hořava-Lifshitz gravity theories can be written as Chern-Simons gauge theories on various nonrelativistic algebras. The algebras are specific extensions of the Bargmann, Newton-Hooke and Schrödinger algebras each of which has the Galilean algebra as a subalgebra. To show this we employ the fact that Hořava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable Hořava-Lifshitz gravity with a local U (1 ) gauge symmetry without (with) a cosmological constant. Moreover we identify an extended Schrödinger algebra containing three extra generators that are central with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons theory gives rise to a novel version of nonprojectable conformal Hořava-Lifshitz gravity that we refer to as Chern-Simons Schrödinger gravity. This theory has a z =2 Lifshitz geometry as a vacuum solution and thus provides a new framework to study Lifshitz holography.
Accurate determination of the free-free Gaunt factor; I - non-relativistic Gaunt factors
van Hoof, P A M; Volk, K; Chatzikos, M; Ferland, G J; Lykins, M; Porter, R L; Wang, Y
2014-01-01
Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data exists that would meet this need in a fully satisfactory way. We have therefore undertaken to produce a table of very accurate non-relativistic Gaunt factors over a much wider range of parameters than has ever been produced before. We first produced a table of non-averaged Gaunt factors, covering the parameter space log10(epsilon_i) = -20 to +10 and log10(w) = -30 to +25. We then continued to produce a table of thermally averaged Gaunt factors covering the parameter space log10(gamma^2) = -6 to +10 and log10(u) = -16 to +13. Finally we produced a table of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to +10. All the data presented in this paper are available online.
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Classical and quantum mechanics of the nonrelativistic Snyder model in curved space
Mignemi, S
2011-01-01
The Snyder-de Sitter (SdS) model is a generalization of the Snyder model to a spacetime background of constant curvature. It is an example of noncommutative spacetime admitting two fundamental scales beside the speed of light, and is invariant under the action of the de Sitter group. Here, we consider its nonrelativistic counterpart, i.e. the Snyder model restricted to a three-dimensional sphere, and the related model obtained by considering the anti-Snyder model on a pseudosphere, that we call anti-Snyder-de Sitter (aSdS). We discuss the classical and the quantum mechanics of a free particle and of an oscillator in this framework. In analogy with the flat case, the properties of the SdS and aSdS model are rather different. In the SdS case, a lower bound on the localization in position and momentum space exists, which does not arise in the aSdS model. In both cases the energy of the harmonic oscillator acquires a dependence on the frequency, but the quantum mechanical aSdS oscillator admits only a finite numb...
Simulations of ion acceleration at non-relativistic shocks: i) Acceleration efficiency
Caprioli, Damiano
2013-01-01
We use 2D and 3D hybrid (kinetic ions - fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfv\\'enic Mach numbers, produces universal power-law spectra proportional to p^(-4), where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10-20% of the bulk kinetic energy can be converted to energetic particles, and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration, and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shoc...
``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence
Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.
2014-03-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
Fu, X.; Waters, T.; Gary, S. P.
2014-12-01
Collisionless space plasmas often deviate from Maxwellian-like velocity distributions. To study kinetic waves and instabilities in such plasmas, the dispersion relation, which depends on the velocity distribution, needs to be solved numerically. Most current dispersion solvers (e.g. WHAMP) take advantage of mathematical properties of the Gaussian (or generalized Lorentzian) function, and assume that the velocity distributions can be modeled by a combination of several drift-Maxwellian (or drift-Lorentzian) components. In this study we are developing a kinetic dispersion solver that admits nearly arbitrary non-relativistic parallel velocity distributions. A key part of any dispersion solver is the evaluation of a Hilbert transform of the velocity distribution function and its derivative along Landau contours. Our new solver builds upon a recent method to compute the Hilbert transform accurately and efficiently using the fast Fourier transform, while simultaneously treating the singularities arising from resonances analytically. We have benchmarked our new solver against other codes dealing with Maxwellian distributions. As an example usage of our code, we will show results for several instabilities that occur for electron velocity distributions observed in the solar wind.
AdS and dS black hole solutions in analogue gravity: The relativistic and non-relativistic cases
Dey, Ramit; Turcati, Rodrigo
2016-01-01
We show that Schwarzschild black hole solutions in asymptotically Anti-de Sitter (AdS) and de Sitter (dS) spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The aforementioned derivation is performed using relativistic and non-relativistic Bose-Einstein condensates. In addition, we demonstrate that the (2+1) planar AdS black hole can be mapped into the non-relativistic acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then comment on the possibility to study the AdS/CFT correspondence and gravity/fluid duality from an analogue gravity perspective.
Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation
DEFF Research Database (Denmark)
Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed
2014-01-01
Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size...... dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can...... ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account...
A periodic charge-dipole electrostatic model: parametrization for silver slabs.
Bodrenko, I V; Sierka, M; Fabiano, E; Della Sala, F
2012-10-07
We present an extension of the charge-dipole model for the description of periodic systems. This periodic charge-dipole electrostatic model (PCDEM) allows one to describe the linear response of periodic structures in terms of charge- and dipole-type gaussian basis functions. The long-range electrostatic interaction is efficiently described by means of the continuous fast multipole method. As a first application, the PCDEM method is applied to describe the polarizability of silver slabs. We find that for a correct description of the polarizability of the slabs both charges and dipoles are required. However a continuum set of parametrizations, i.e., different values of the width of charge- and dipole-type gaussians, leads to an equivalent and accurate description of the slabs polarizability but a completely unphysical description of induced charge-density inside the slab. We introduced the integral squared density measure which allows one to obtain a unique parametrization which accurately describes both the polarizability and the induced density profile inside the slab. Finally the limits of the electrostatic approximations are also pointed out.
Asymmetry of Neoclassical Transport by Dipole Electric Field
Institute of Scientific and Technical Information of China (English)
王中天; 王龙
2004-01-01
Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity.
Kobayashi, Michikazu
2014-01-01
We show that a momentum operator of a translational symmetry may not commute with an internal symmetry operator in the presence of a topological soliton in non-relativistic theories. As a striking consequence, there appears a coupled Nambu-Goldstone mode with a quadratic dispersion consisting of translational and internal zero modes in the vicinity of a domain wall in an O(3) sigma model, a magnetic domain wall in ferromagnets with an easy axis.
Beneke, M.; Hellmann, C.; Ruiz-Femenia, P.
2012-01-01
We compute analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM, including the previously unknown off-diagonal rates. The results are prerequisites to the calculation of the Sommerfeld enhancement in the MSSM, which will be presented in subsequent work. They can also be used to obtain concise analytic expressions for MSSM dark matter pair annihilation in the present Universe for a large number of exc...
Palge, Veiko; Dunningham, Jacob; Hasegawa, Yuji
2016-01-01
In quantum physics Wigner's rotation is commonly regarded as confirmed by the Thomas precession in a hydrogen like atom. In this paper we show that a direct experimental verification of Wigner's rotation is in principle accessible in the regime of non-relativistic velocities at $2 \\cdot 10^3\\,$m/s and propose an experiment using thermal neutrons. The experiment can be carried out in a laboratory and it provides a test of relativity in the quantum domain.
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
Griffith, Joel; Blundell, Steven; Sapirstein, Jonathan
2013-04-01
Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.
Energy Technology Data Exchange (ETDEWEB)
Schofield, Jennifer, E-mail: Jennifer.schofield@postgrad.manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Pimblott, Simon M. [School of Chemistry, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); The University of Manchester Dalton Cumbrian Facility, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom)
2016-04-01
A formalism for the inelastic cross-section for electronic collisions of protons and heavier ions in a material is developed based on a quadratic extrapolation of the experimentally based dipole oscillator strength distribution (DOSD) of the material into the energy momentum plane. The approach is tested by calculating various energy loss properties in zirconium dioxide. Mean free path, stopping power and continuous slowing down approximation (csda) range are predicted as a function of ion energy for various incident ions, with the stopping powers compared to experimental data to assess the effectiveness of the methodology. The DOSD is straightforwardly obtained from the experimentally measured energy loss function data below 80 eV and atomic photo-absorption cross-section data above 100 eV. Agreement between the results of the calculation for stopping power and the experimental data is within 10% for all ions when compared for energies greater than the Bragg peak. The discrepancy is larger below the peak due to limitations in the methodology, especially the failure to make corrections for the Barkas and higher order effects and the lack of charge cycling cross-section data.
Low-energy dipole strength in 112,120Sn
Özel-Tashenov, B; Lenske, H; Krumbholz, A M; Litvinova, E; von Neumann-Cosel, P; Poltoratska, I; Richter, A; Rusev, G; Savran, D; Tsoneva, N
2014-01-01
The 112,120Sn(gamma,gamma') reactions below the neutron separation energies have been studied at the superconducting Darmstadt electron linear accelerator S-DALINAC for different endpoint energies of the incident bremsstrahlung spectrum. Dipole strength distributions are extracted for 112Sn up to 9.5 MeV and for 120Sn up to 9.1 MeV. A concentration of dipole excitations is observed between 5 and 8 MeV in both nuclei. Missing strength due to unobserved decays to excited states is estimated in a statistical model. A fluctuation analysis is applied to the photon scattering spectra to extract the amount of the unresolved strength hidden in background due to fragmentation. The strength distributions are discussed within different model approaches such as the quasiparticle-phonon model and the relativistic time blocking approximation allowing for an inclusion of complex configurations beyond the initial particle-hole states. While a satisfactory description of the fragmentation can be achieved for sufficently large...
Approximate calculation of integrals
Krylov, V I
2006-01-01
A systematic introduction to the principal ideas and results of the contemporary theory of approximate integration, this volume approaches its subject from the viewpoint of functional analysis. In addition, it offers a useful reference for practical computations. Its primary focus lies in the problem of approximate integration of functions of a single variable, rather than the more difficult problem of approximate integration of functions of more than one variable.The three-part treatment begins with concepts and theorems encountered in the theory of quadrature. The second part is devoted to t
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximating Stationary Statistical Properties
Institute of Scientific and Technical Information of China (English)
Xiaoming WANG
2009-01-01
It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. Many times these statistical properties of the system must be approximated numerically. The main contribution of this manuscript is to provide simple and natural criterions on numerical methods (temporal and spatial discretization) that are able to capture the stationary statistical properties of the underlying dissipative chaotic dynamical systems asymptotically. The result on temporal approximation is a recent finding of the author, and the result on spatial approximation is a new one. Applications to the infinite Prandtl number model for convection and the barotropic quasi-geostrophic model are also discussed.
Institute of Scientific and Technical Information of China (English)
Liu An-Wen; Hu Shui-Ming; Ding Yun; Zhu Qing-Shi
2005-01-01
Stretching vibrational band intensities of XH3 (X=N, Sb) molecules are investigated employing three-dimensional dipole moment surfaces combined with the local mode Hamiltonian model. The dipole moment surfaces of NH3 and SbH3 are calculated with the density functional theory and at the correlated MP2 level, respectively. The calculated band intensities are in good agreement with the available experimental data. The contribution to the band intensities from the different terms in the polynomial expansion of the dipole moments of four group V hydrides (NH3, PH3, AsH3 and SbH3) are discussed. It is concluded that the breakdown of the bond dipole approximation must be considered.The intensity "borrowing" effect due to the wave function mixing among the stretching vibrational states is found to be less significant for the molecules that reach the local mode limit.
LHC Dipoles: The countdown has begun
2002-01-01
One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.
Reorientation of Defect Dipoles in Ferroelectric Ceramics
Institute of Scientific and Technical Information of China (English)
LI Bao-Shan; LI Guo-Rong; ZHAO Su-Chuan; ZHU Zhi-Gang; DING Ai-Li
2005-01-01
@@ We investigate the frequency, temperature, tetragonality and quenched temperature dependences of the hysteresis loops in Pb[(Zr0.52 Ti0.48)0.95 (Mn1/3Nb2/3)0.05]O3 (PMnN-PZT) ceramics. It has been demonstrated that the polarization-field hysteresis curves show "pinched" shapes when tested at room temperature, higher frequency or using the large-tetragonality specimen. While normal square-like loops are observed at 200 ℃ and 0.01 Hz or using the small-tetragonality one. Meanwhile, close relations between the P-E loops and the applied frequency,temperature or tetragonality reveal that there exists a typical relaxation time corresponding to the reorientation of the defect dipoles. It can be seen further from the quenched temperature dependences of the loops that the reorientation of the defect dipoles may influence the pinching. Compared to the intrinsic depinning procedure induced by changes of the distribution of defect dipoles, we provide new evidence for extrinsic depinning mechanism of the defect dipoles in the ferroelectric ceramics.
Zeroes in continuum - continuum dipole matrix elements
Obolensky, Oleg I.; Pratt, R. H.; Korol, Andrei
2003-05-01
It is well known that Cooper minima in photoeffect cross sections are due to zeroes in corresponding bound-free dipole matrix elements. As was discussed before(C. D. Shaffer, R. H. Pratt, and S. D. Oh, Phys. Rev. A. 57), 227 (1998)., free-free dipole matrix elements in screened (atomic or ionic) potentials can also have zeroes. Such zeroes (existing at energies of the order of 1-100 eV) result in structures in the energy dependence of bremsstrahlung cross sections and angular distributions(A. Florescu, O. I. Obolensky, C. D. Shaffer, and R. H. Pratt, AIP Conference Proceedings, 576), 60 (2001).. In the soft photon limit, zeroes of radiative free-free matrix elements are related to Ramsauer-Townsend minima in elastic scattering of electrons by atoms. Here we study properties of the trajectories of dipole matrix element zeroes in the plane of initial and final electron energies. We show how the trajectories in this plane evolve with ionicity for several low ℓ dipole transitions ℓ → ℓ ± 1.
Scattering properties of point dipole interactions
DEFF Research Database (Denmark)
Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.
2006-01-01
dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...
Installation of the ALICE dipole magnet
Maximilien Brice
2005-01-01
The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.
A Microstrip Reflect Array Using Crossed Dipoles
Pozar, David M.; Targonski, Stephen D.
1998-01-01
Microstrip reflect arrays offer a flat profile and light weight, combined with many of the electrical characteristics of reflector antennas. Previous work [1]-[7] has demonstrated a variety of microstrip reflect arrays, using different elements at a range of frequencies. In this paper we describe the use of crossed dipoles as reflecting elements in a microstrip reflectarray. Theory of the solution will be described, with experimental results for a 6" square reflectarray operating at 28 GHz. The performance of crossed dipoles will be directly compared with microstrip patches, in terms of bandwidth and loss. We also comment on the principle of operation of reflectarray elements, including crossed dipoles, patches of variable length, and patch elements with tuning stubs. This research was prompted by the proposed concept of overlaying a flat printed reflectarray on the surface of a spacecraft solar panel. Combining solar panel and antenna apertures in this way would lead to a reduction in weight and simpler deployment, with some loss of flexibility in independently pointing the solar panel and the antenna. Using crossed dipoles as reflectarray elements will minimize the aperture blockage of the solar cells, in contrast to the use of elements such as microstrip patches.
Anharmonic effects and double giant dipole resonances
Voronov, V V
2001-01-01
A brief review of recent results of the microscopic calculations to describe characteristics of the double giant dipole resonances (DGDR) is presented. A special attention is paid to a microscopic study of the anharmonic properties of the DGDR. It is found that the deviation of the energy centroid of the DGDR from the harmonic limit follows A sup - sup 1 dependence
Conceptual design of Dipole Research Experiment (DREX)
Qingmei, XIAO; Zhibin, WANG; Xiaogang, WANG; Chijie, XIAO; Xiaoyi, YANG; Jinxing, ZHENG
2017-03-01
A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).
Gravitational Radiation from Oscillating Gravitational Dipole
De Aquino, Fran
2002-01-01
The concept of Gravitational Dipole is introduced starting from the recent discovery of negative gravitational mass (gr-qc/0005107 and physics/0205089). A simple experiment, a gravitational wave transmitter, to test this new concept of gravitational radiation source is presented.
The SPS tunnel with a dipole magnet
1976-01-01
The SPS uses about 800 6-m long dipole magnets to bend the beam around its path. Particle beams come into the SPS from the smaller PS accelerator at 26 GeV. The SPS then accelerates the beam further up to 450 GeV when the beam is extracted and transferred to the LHC or CERN Neutrinos to Gran Sasso (CNGS).
Directory of Open Access Journals (Sweden)
Malvina Baica
1985-01-01
Full Text Available The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF, and defines it as Generalized Euclidean Algorithm (abbr. GEA to approximate irrationals.
Approximations in Inspection Planning
DEFF Research Database (Denmark)
Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.
2000-01-01
Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....
The Karlqvist approximation revisited
Tannous, C
2015-01-01
The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.
Approximations in Inspection Planning
DEFF Research Database (Denmark)
Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.
2000-01-01
Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Approximation Behooves Calibration
DEFF Research Database (Denmark)
da Silva Ribeiro, André Manuel; Poulsen, Rolf
2013-01-01
Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....
Adiabatic approximation for the Rabi model with broken inversion symmetry
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
Directory of Open Access Journals (Sweden)
Maksim Duškin
2015-11-01
Full Text Available Approximation and supposition This article compares exponents of approximation (expressions like Russian около, примерно, приблизительно, более, свыше and the words expressing supposition (for example Russian скорее всего, наверное, возможно. These words are often confused in research, in particular researchers often mention exponents of supposition in case of exponents of approximation. Such approach arouses some objections. The author intends to demonstrate in this article a notional difference between approximation and supposition, therefore the difference between exponents of these two notions. This difference could be described by specifying different attitude of approximation and supposition to the notion of knowledge. Supposition implies speaker’s ignorance of the exact number, while approximation does not mean such ignorance. The article offers examples proving this point of view.
Master equation with quantized atomic motion including dipole-dipole interactions
Damanet, François; Braun, Daniel; Martin, John
2016-05-01
We derive a markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and is relevant for experiments with ultracold trapped atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find analytical formulas for a number of relevant states (Gaussian states, Fock states and thermal states). In particular, we show that the dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion. The effects predicted should be experimentally observable with Rydberg atoms. FD would like to thank the F.R.S.-FNRS for financial support. FD is a FRIA Grant holder of the Fonds de la Recherche Scientifique-FNRS.
Dipole-Dipole Interaction and the Directional Motion of Brownian Motors
Institute of Scientific and Technical Information of China (English)
YU Hui; ZHAO TongJun; JI Qing; SONG YanLi; WANG YongHong; ZHAN Yong
2002-01-01
The electric field of the microtubule is calculated according to its dipole distribution. The conformationalchange of a molecular motor is described by the rotation ofa dipole which interacts with the microtubulc. The mricalsimulation for the particle current shows that this interaction helps to produce a directional motion along the microtubule.And tte average displacement executes step changes that resemble the experimental result for kinesin motors.
Model dependence of the deuteron electric dipole moment
Gibson, B. F.; Afnan, I. R.
2012-09-01
Direct measurement of the electric dipole moment (EDM) of the neutron lies in the future; measurement of a nuclear EDM may well be obtained first. The deuteron is the one nucleus for which exact model calculations can easily be performed. In this report we explore the model dependence of deuteron EDM calculations. Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variations in the nucleon-nucleon interaction, including contemporary potential models. We compare the full calculation with the result in the plane-wave approximation, explore the tensor force contribution to the model results, and examine the effects of short range repulsion that characterizes realistic, contemporary potential models of the deuteron. We find that separable potential model calculations will provide an adequate description of the deuteron EDM until such time as a measurement of better than 10% is achieved.
Intrinsic electric dipole moments of paramagnetic atoms: rubidium and cesium.
Nataraj, H S; Sahoo, B K; Das, B P; Mukherjee, D
2008-07-18
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximately Z;{3}. Thus, the heavy paramagnetic atoms will exhibit large EDM enhancement factors. However, the sizes of the couplings are so small that they are of interest of high precision atomic experiments. In this work we have computed the EDM enhancement factors of the ground states of Rb and Cs due to both the electron EDM and the S-PS EDM using the relativistic coupled-cluster theory. The importance of determining precise ab initio enhancement factors and experimental results of atomic EDMs in deducing a reliable limit on the electron EDM is emphasized.
Low-cost, pseudo-Halbach dipole magnets for NMR
Tayler, Michael C. D.; Sakellariou, Dimitrios
2017-04-01
We present designs for compact, inexpensive and strong dipole permanent magnets aimed primarily at magnetic resonance applications where prepolarization and detection occur at different locations. Low-homogeneity magnets with a 7.5 mm bore size and field up to nearly 2 T are constructed using low-cost starting materials, standard workshop tools and only few hours of labor - an achievable project for a student or postdoc with spare time. As an application example we show how our magnet was used to polarize the nuclear spins in approximately 1 mL of pure [13C ]-methanol prior to detection of its high-resolution NMR spectrum at zero field (measurement field below 10-10 T), where signals appear at multiples of the carbon-hydrogen spin-spin coupling frequency 1JCH = 140.7 (1) Hz.
Semi-classical Locality for the Non-relativistic Path Integral in Configuration Space
Gomes, Henrique
2017-09-01
In an accompanying paper Gomes (arXiv:1504.02818, 2015), we have put forward an interpretation of quantum mechanics based on a non-relativistic, Lagrangian 3+1 formalism of a closed Universe M, existing on timeless configuration space Q of some field over M. However, not much was said there about the role of locality, which was not assumed. This paper is an attempt to fill that gap. Locality in full can only emerge dynamically, and is not postulated. This new understanding of locality is based solely on the properties of extremal paths in configuration space. I do not demand locality from the start, as it is usually done, but showed conditions under which certain systems exhibit it spontaneously. In this way we recover semi-classical local behavior when regions dynamically decouple from each other, a notion more appropriate for extension into quantum mechanics. The dynamics of a sub-region O within the closed manifold M is independent of its complement, M-O, if the projection of extremal curves on Q onto the space of extremal curves intrinsic to O is a surjective map. This roughly corresponds to e^{i\\hat{H}t}circ prO= prOcirc e^{i\\hat{H}t}, where prO:Q→ Q_O^{partial O} is a linear projection. This criterion for locality can be made approximate—an impossible feat had it been already postulated—and it can be applied for theories which do not have hyperbolic equations of motion, and/or no fixed causal structure. When two regions are mutually independent according to the criterion proposed here, the semi-classical path integral kernel factorizes, showing cluster decomposition which is the ultimate aim of a definition of locality.
On the electric dipole moments of small sodium clusters from different theoretical approaches
Energy Technology Data Exchange (ETDEWEB)
Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)
2012-05-03
Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible
On the integrability of halo dipoles in gravity
Vieira, Werner M.; Letelier, Patricio S.
1997-01-01
We stress that halo dipole components are nontrivial in core-halo systems in both Newton's gravity and General Relativity. To this end, we extend a recent exact relativistic model to include also a halo dipole component. Next, we consider orbits evolving in the inner vacuum between a monopolar core and a pure halo dipole and find that, while the Newtonian dynamics is integrable, its relativistic counterpart is chaotic. This shows that chaoticity due only to halo dipoles is an intrinsic relati...
Color dipole chain and its hadronization in pp collision
Institute of Scientific and Technical Information of China (English)
赵晋全; 王群; 谢去病
1995-01-01
High energy pp collision is dealt with by double-string model. Each string corresponds to one initial color dipole which will radiate gluons to form color dipole chain. Such gluon radiation process is described by color dipole model. According to the quark combination rule, the total multiplicity formulae for calculating primary meson and baryon of one dipole chain are presented- The calculated yields of various final hadrons in energy range =53- 1 800GeV agree well with available data.
Absolute absorption on rubidium D1 line: including resonant dipole-dipole interactions
Weller, Lee; Siddons, Paul; Adams, Charles S; Hughes, Ifan G
2011-01-01
Here we report on measurements of the absolute absorption spectra of dense rubidium vapour on the D1 line in the weak-probe regime for temperatures up to 170 C and number densities up to 3 \\times 10^14 cm^-3. In such vapours, modifications to the homogeneous linewidth of optical transitions arise due to dipole-dipole interactions between identical atoms, in superpositions of the ground and excited states. Absolute absorption spectra were recorded with deviation of 0.1% between experiment and a theory incorporating resonant dipole-dipole interactions. The manifestation of dipole-dipole interactions is a self-broadening contribution to the homogeneous linewidth, which grows linearly with number density of atoms. Analysis of the absolute absorption spectra allow us to ascertain the value of the self-broadening coefficient for the rubidium D1 line: \\beta/2\\pi = (0.69 \\pm 0.04) \\times 10^-7 Hz cm^3, in excellent agreement with the theoretical prediction.
Mu, Yan; Gao, Yi Qin
2007-09-01
We studied the effects of hydrophobicity and dipole-dipole interactions between the nearest-neighbor amide planes on the secondary structures of a model polypeptide by calculating the free energy differences between different peptide structures. The free energy calculations were performed with low computational costs using the accelerated Monte Carlo simulation (umbrella sampling) method, with a bias-potential method used earlier in our accelerated molecular dynamics simulations. It was found that the hydrophobic interaction enhances the stability of α helices at both low and high temperatures but stabilizes β structures only at high temperatures at which α helices are not stable. The nearest-neighbor dipole-dipole interaction stabilizes β structures under all conditions, especially in the low temperature region where α helices are the stable structures. Our results indicate clearly that the dipole-dipole interaction between the nearest neighboring amide planes plays an important role in determining the peptide structures. Current research provides a more unified and quantitative picture for understanding the effects of different forms of interactions on polypeptide structures. In addition, the present model can be extended to describe DNA/RNA, polymer, copolymer, and other chain systems.
Competition between finite-size effects and dipole-dipole interactions in few-atom systems
Damanet, François; Martin, John
2016-11-01
In this paper, we study the competition between finite-size effects (i.e. discernibility of particles) and dipole-dipole interactions in few-atom systems coupled to the electromagnetic field in vacuum. We consider two hallmarks of cooperative effects, superradiance and subradiance, and compute for each the rate of energy radiated by the atoms and the coherence of the atomic state during the time evolution. We adopt a statistical approach in order to extract the typical behaviour of the atomic dynamics and average over random atomic distributions in spherical containers with prescribed {k}0R with k 0 the radiation wavenumber and R the average interatomic distance. Our approach allows us to highlight the tradeoff between finite-size effects and dipole-dipole interactions in superradiance/subradiance. In particular, we show the existence of an optimal value of {k}0R for which the superradiant intensity and coherence pulses are the less affected by dephasing effects induced by dipole-dipole interactions and finite-size effects.
Formation and temporal evolution of the Lamb-dipole
DEFF Research Database (Denmark)
Nielsen, A.H.; Juul Rasmussen, J.
1997-01-01
of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...
Covariant approximation averaging
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2014-01-01
We present a new class of statistical error reduction techniques for Monte-Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in $N_f=2+1$ lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte-Carlo calculations over conventional methods for the same cost.
Diophantine approximations on fractals
Einsiedler, Manfred; Shapira, Uri
2009-01-01
We exploit dynamical properties of diagonal actions to derive results in Diophantine approximations. In particular, we prove that the continued fraction expansion of almost any point on the middle third Cantor set (with respect to the natural measure) contains all finite patterns (hence is well approximable). Similarly, we show that for a variety of fractals in [0,1]^2, possessing some symmetry, almost any point is not Dirichlet improvable (hence is well approximable) and has property C (after Cassels). We then settle by similar methods a conjecture of M. Boshernitzan saying that there are no irrational numbers x in the unit interval such that the continued fraction expansions of {nx mod1 : n is a natural number} are uniformly eventually bounded.
Monotone Boolean approximation
Energy Technology Data Exchange (ETDEWEB)
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.
Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.
2011-10-01
Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Norton, Andrew H.
1991-01-01
Local spline approximants offer a means for constructing finite difference formulae for numerical solution of PDEs. These formulae seem particularly well suited to situations in which the use of conventional formulae leads to non-linear computational instability of the time integration. This is explained in terms of frequency responses of the FDF.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Approximation by Cylinder Surfaces
DEFF Research Database (Denmark)
Randrup, Thomas
1997-01-01
We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...
Quantum mechanics with applications to quarkonium. [Review, WKB approximation, scale invariance
Energy Technology Data Exchange (ETDEWEB)
Quigg, C.; Rosner, J.L.
1979-02-01
Some methods of nonrelativistic quantum mechanics which are particularly useful for studying the variation of bound-state parameters with constituent mass and excitation energy are reviewed. These techniques rely upon elementary scaling arguments and on the semiclassical (WKB) approximation. They are of general interest, but are applied here to the study of bound systems of a heavy quark and antiquark. Properties of the interquark interaction are extracted from information about masses and leptonic widths of the Psi and T families. It is shown how general methods can be applied to the determination of the electric charge of quarks and to the prediction of properties of new families. 113 references.
Effective potential and off-shell two-body scattering amplitudes in the eikonal approximation
Energy Technology Data Exchange (ETDEWEB)
Bartnik, E.A.; Rek, Z.
1973-12-31
An effective potential is computed for 2-body elastic scattering with the experimental on-shell t-matrices as an input. Nonrelativistic elkonal approximation and locality together with spherical ial are assumed. The explicit form of potential for pp, pi /sup +/p, and pi /sup -/p in the energy range from 5 to 20 GeV is investigated. The half off-shell scattering amplitude is calculated in the potential model. In the position representation this amplitude is found to be asymmetric along the eikonal direction, and an interesting absorption interpretation of this fact is given. (auth)
Indian Academy of Sciences (India)
M Hamzavi; S M Ikhdair
2014-07-01
The Hellmann potential is simply a superposition of an attractive Coulomb potential $−a/r$ plus a Yukawa potential e${}^{−δr} /r$. The generalized parametric Nikiforov–Uvarov (NU) method is used to examine the approximate analytical energy eigenvalues and two-component wave function of the Dirac equation with the Hellmann potential for arbitrary spin-orbit quantum number in the presence of exact spin and pseudospin (p-spin) symmetries. As a particular case, we obtain the energy eigenvalues of the pure Coulomb potential in the non-relativistic limit.
Propagating and annihilating vortex dipoles in the Gross-Pitaevskii equation
Rorai, Cecilia; Fisher, Michael E
2013-01-01
Quantum vortex dynamics in Bose-Einstein condensates or superfluid helium can be informatively described by the Gross-Pitaevskii (GP) equation. Various approximate analytical formulae for a single stationary vortex are recalled and their shortcomings demonstrated. Significantly more accurate two-point [2/2] and [3/3] Pade' approximants for stationary vortex profiles are presented. Two straight, singly quantized, antiparallel vortices, located at a distance d apart, form a vortex dipole, which, in the GP model, can either annihilate or propagate indefinitely as a `solitary wave'. We show, through calculations performed in a periodic domain, that the details and types of behavior displayed by vortex dipoles depend strongly on the initial conditions rather than only on the separation distance (as has been previously claimed). It is found, indeed, that the choice of the initial two-vortex profile (i.e., the modulus of the `effective wave function'), strongly affects the vortex trajectories and the time scale of t...
Dipole vortices in the Great Australian Bight
DEFF Research Database (Denmark)
Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard
2015-01-01
Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...
Directional Dipole Model for Subsurface Scattering
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim
2014-01-01
Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...... similar to that of the standard dipole model, but we now have positive and negative ray sources with a mirrored pair of directions. Our model is as computationally efficient as existing models while it includes single scattering without relying on a separate Monte Carlo simulation, and the rendered images...
Pygmy dipole resonance in 208Pb
Poltoratska, I; Tamii, A; Adachi, T; Bertulani, C A; Carter, J; Dozono, M; Fujita, H; Fujita, K; Fujita, Y; Hatanaka, K; Itoh, M; Kawabata, T; Kalmykov, Y; Krumbholz, A M; Litvinova, E; Matsubara, H; Nakanishi, K; Neveling, R; Okamura, H; Ong, H J; Özel-Tashenov, B; Ponomarev, V Yu; Richter, A; Rubio, B; Sakaguchi, H; Sakemi, Y; Sasamoto, Y; Shimbara, Y; Shimizu, Y; Smit, F D; Suzuki, T; Tameshige, Y; Wambach, J; Yosoi, M; Zenihiro, J
2012-01-01
Scattering of protons of several hundred MeV is a promising new spectroscopic tool for the study of electric dipole strength in nuclei. A case study of 208Pb shows that at very forward angles J^pi = 1- states are strongly populated via Coulomb excitation. A separation from nuclear excitation of other modes is achieved by a multipole decomposition analysis of the experimental cross sections based on theoretical angular distributions calculated within the quasiparticle-phonon model. The B(E1) transition strength distribution is extracted for excitation energies up to 9 MeV, i.e., in the region of the so-called pygmy dipole resonance (PDR). The Coulomb-nuclear interference shows sensitivity to the underlying structure of the E1 transitions, which allows for the first time an experimental extraction of the strength and energy centroid of the PDR.
"Good-Walker" + QCD dipoles = Hard Diffraction
Peschanski, R
1998-01-01
The Good-Walker mechanism for diffraction is shown to provide a link between total and diffractive structure functions and to be relevant for QCD calculations at small x_{Bj}. For Deep-Inelastic scattering on a small-size target (cf. an onium) the r\\^ ole of Good-Walker ``diffractive eigenstates'' is played by the QCD dipoles appearing in the $1/N_C$ limit of QCD. Hard diffraction is thus related to the QCD tripe-dipole vertex which has been recently identified (and calculated) as being a conformal invariant correlator and/or a closed-string amplitude. An extension to hard diffraction at HERA via $k_T-$factorisation of the proton vertices leads to interesting phenomenology.
Chaos in a gravitational field with dipoles
Institute of Scientific and Technical Information of China (English)
陈菊华; 王永久
2003-01-01
In this paper we investigate the dyna nics of a test particle in the gravitational field with dipoles. At first we study the gravitational potential by numerical simulations, we find that, for appropriate parameters, there are two different cases in the potential curve: one is the one-well case with a stable critical point, and the other is the three-well case with three stable critical points and two unstable critical points. By performing Poincare sections for different values of the parameters and initial conditions, we find a regular motion and a chaotic motion. From these Poincare sections,we further confirm that the chaotic motion of the test particle originates mainly from the dipoles.
RHIC AC DIPOLE DESIGN AND CONSTRUCTION.
Energy Technology Data Exchange (ETDEWEB)
BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.
2001-06-18
Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.
Magnetic Dipole Band in 113^In
Institute of Scientific and Technical Information of China (English)
马克岩; 杨东; 陆景彬; 王烈林; 王辉东; 刘运祚; 刘弓冶; 李黎; 马英君; 杨森; 李广生; 贺创业; 李雪琴
2012-01-01
High spin states in the odd-A nucleus 113^In have been investigated using the re- action 110^Pd（7^Li, 4n） at a beam energy of 50 MeV. A new positive parity dipole band with the configuration of π（g9/2）^-lv（h11/2）^2 v （g7/2）^2 is established. The effective interaction V（θ） values of this band have been successfully described by a semiclassical geometric model based on shear mechanism, which show that the dipole band has the characteristics of magnetic rotation. In addition the collective rotational angular momentum for this band is extracted. The results show that the core contribution increases gradually with the increase of the rotation frequency.
Projected Dipole Model for Quantum Plasmonics
DEFF Research Database (Denmark)
Yan, Wei; Wubs, Martijn; Mortensen, N. Asger
2015-01-01
Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...... of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects...
3-wave mixing Josephson dipole element
Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.
2017-05-01
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.
Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions
Kuznetsov, Andrey A.; Pshenichnikov, Alexander F.
2017-03-01
Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a high-density gradient separating the area with high and low particle concentration is formed on the profiles. Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational field the dipole-dipole interactions do not lead to the "gas-liquid" phase transition: no separation of the system into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ , the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab (i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The critical values of the coupling constant corresponding to the transition into an ordered state are very close for two geometries.
Minimum emittance in storage rings with uniform or nonuniform dipoles
Directory of Open Access Journals (Sweden)
Chun-xi Wang
2009-06-01
Full Text Available A simple treatment of minimum emittance theory in storage rings is presented, favoring vector and matrix forms for a more concise picture. Both conventional uniform dipoles and nonuniform dipoles with bending radius variation are treated. Simple formulas are given for computing the minimum emittance, optimal lattice parameters, as well as effects of nonoptimal parameters. For nonuniform dipoles, analytical results are obtained for a three-piece sandwich dipole model. Minimization of the effective emittance for light sources is given in detail. Usefulness of gradient and/or nonuniform dipoles for reducing the effective emittance is addressed.
Trapped field internal dipole superconducting motor generator
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Downers Grove, IL)
2001-01-01
A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.
Electric dipole moment of light nuclei
Afnan, Iraj R.; Gibson, Benjamin F.
2010-07-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the 3P1 channel. This second contribution is sensitive to off-shell behavior of the 3P1 amplitude.
Electric dipole moment of light nuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Electric dipole moment of light nuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Analog of landau Levels to Electric Dipole
Ribeiro, L R; Nascimento, J R; Furtado, Claudio
2006-01-01
In this article we discuss the analogy between the dynamics of a neutral particle with an electric dipole, in the presence of configuration of magnetic field, with Landau level quantization for charged particle. We analyze this quantization based on the He-Mckelar-Wilkens interaction developed of similar way that Ericsson and Sj\\"oqvist[Phys Rev. A {\\bf 65} 013607 (2001)] was analyzed the Landau-Aharonov-Casher effect. The energy level and eingenfuctions and eigenvalues are obtained.
Phenomenology on the QCD dipole picture revisited
Lengyel, A I
2003-01-01
We perform an adjust to the most recent structure function data, considering the QCD dipole picture applied to ep scattering. The structure function F2 at small x and intermediate Q2 can be described by the model containing an economical number of free-parameters, which encodes the hard Pomeron physics. The longitudinal structure function and the gluon distribution are predicted without further adjustments. The data description is effective, whereas a resummed next-to-leading level analysis is deserved.
On the Neutron Electric Dipole Moment
Institute of Scientific and Technical Information of China (English)
Z. Bentalha; O. Lazrec
2004-01-01
@@ Within the Kobayashi-Maskawa mechanism of electroweak interaction and using the recent measured mass of the top quark, we estimate the neutron electric dipole moment (NEDM) via the diquark electroweak interaction.The resulting moment is about 10-30 e cm. The actual upper bound on the NEDM is 6.3 × 10-26 ecm and it can reach the value 5 × 10-28 ecm predicted by experiments in recent years.
Dark forces and atomic electric dipole moments
Gharibnejad, Heman; Derevianko, Andrei
2015-02-01
Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons and nucleons, we consider its effect on the permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis, we derive limits on coupling strengths and carrier masses from experimental limits on EDM of the 199Hg atom.
CP-violation and electric dipole moments
Le Dall, Matthias; Ritz, Adam
2013-03-01
Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.
Bent Solenoids with Superimposed Dipole Fields
Energy Technology Data Exchange (ETDEWEB)
Meinke, Rainer, B.; Goodzeit, Carl, L.
2000-03-21
A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.
SPS Dipole Multipactor Test and TEWave Diagnostics
Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M
2013-01-01
Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...
Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?
Han, Hong-Yin; Wand, Yi-Hua; Mouze, G.
2001-11-01
The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.
Simulation Analysis of a Strip Dipole Excited Electromagnetic Band-Gap (EBG) Structure
2015-07-01
that the phase of the scattered near fields at the EBG surface is more applicable to characterizing the EBG for antenna applications. A new set of...number of unit cells is also demonstrated. 15. SUBJECT TERMS electromagnetic band gap, strip dipole, reflection phase, vias, near fields, bandwidth...Image Theory Approximation 10 2.4 The Periodic Boundary Condition (PBC) Approach 11 2.5 The Phase of the Near Electric Field (NEF) 12 3. Analysis of an
Is the Double Giant Dipole Resonance Process Responsible for Alpha Emission in Ternary Fission?
Institute of Scientific and Technical Information of China (English)
HAN Hong-Yin(韩洪银); WAND Yi-Hua(王屹华); G.Mouze
2001-01-01
The Monte Carlo program built on the double giant dipole resonance model proposed by Mouze et al. [Nuovo Cimento A 110(1997)1097] was employed to calculate the energy spectrum of alpha particles emitted in the spontaneous ternary fission of 252Cf. It has been found that in the case of the zero orbital angular momentum of alpha particles in the alpha decay of the fragments, the measured alpha spectrum can be reproduced approximately by the model without any adjustable parameter.
Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury; Koshkina, Yulia; Trubacheva, Olga; Zlobinskiy, Arkadiy
2016-12-01
Theoretically, a circular electric dipole is a horizontal analogue of a vertical electric dipole and, similarly to the latter, it generates the unimodal transverse magnetic field. As a result, it demonstrates exceptionally high signal detectability and both vertical and lateral resolutions, particularly regarding thin resistive targets. The ideal circular electric dipole is represented by two concentric continuums of electrodes connected to different poles of the transmitter. In practice, the ideal dipole is adequately approximated by eight outer electrodes and one central electrode. The greatest disadvantage of circular electric dipoles stems from the necessity to provide perfectly symmetrical radial grounded lines with equal current in each line. In addition, relocating such a cumbersome system is very difficult on land and offshore. All these disadvantages might be significantly reduced in the proposed ice-borne system. The system utilizes drifting ice floes in high latitude Arctic regions as stable platforms for locating marine circular electric dipole transmitters, while the underlain ocean water is a perfect environment for grounding transmitter and receiver electrodes. Taking into account the limited size of drifting floes, mainly short offset methods can be applied from the surface. Among those, the proposed method is superior in providing sufficiently high signal detectability and resolution to delineate deep targets below very conductive ocean water and sub-seafloor sediments. Other existing methods, which are able to provide similar characteristics, utilize near bottom arrays and would be hard to employ in the presence of a thick ice cover.
ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK
Institute of Scientific and Technical Information of China (English)
FANG Qi-hong; LIU You-wen
2006-01-01
The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.
Persico, Franco; Power, Edwin A.
1988-01-01
The physics of the electromagnetic vacuum, its fluctuations and its role in spontaneous emission has been studied since the early days of the quantum theory of radiation. In recent years there has been a renewed interest in the nature of the vacuum state and its potency in giving rise to observable effects. For example the question of amplification of photon signals and the way vacuum fluctuations may provide inescapable noise is fundamental to the theory of measurement. Quantum electrodynamics in cavities has become a very active area of research both experimentally and theoretically and the way the radiation field, even in vacuo, is changed by confinement is of interest and importance. The effective Einstein A-coefficient can be much smaller than in free space because the available modes are sparser in a cavity. Radiative connections such as the Lamb shift energies are also changed as the virtual photon modes are varied by the confinement. The existence of electromagnetic field energy (from the vacuum fluctuations) in the neighbourhood of atoms/molecules in their ground state is demonstrated by its effect on test molecules brought into the vicinity of the original sources. All the forces analogous to that of Van der Waals, including of course their Casimir retardations at long range, are explicable in terms of these virtual cloud effects. The Adriatico Conference on "Vacuum in Non-Relativistic Matter-Radiation Systems" held in July 1987 brought together scientists in quantum optics, quantum field theorists and others interested in the electromagnetic vacuum. It was most successful in that the participants found enough mutual agreement but with clearly defined tensions between them to provide excitement and argument throughout the four days' meeting. This volume consists of most of the papers presented at the conference. It is clear that the collection ranges from the pedagogical and the review type article to research papers with original material. The
Energy Technology Data Exchange (ETDEWEB)
Sapir, Nir; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Katz, Boaz [Institute for Advanced Study, Princeton, NJ 08540 (United States)
2013-09-01
The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile {rho}{proportional_to}x{sup n} is investigated. Assuming planar geometry, local Compton equilibrium, and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity v{sub 0} and the pre-shock breakout density {rho}{sub 0} and depend weakly on the value of n. Fitting formulae for the peak surface temperature at breakout as a function of v{sub 0} and {rho}{sub 0} are provided, with T{sub peak} approx. 9.44 exp [12.63(v{sub 0}/c){sup 1/2}] eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by T{sub peak} and v{sub 0} alone and insensitive to details of light travel time or slight deviations from spherical symmetry. Adopting commonly assumed progenitor parameters, breakout luminosities of Almost-Equal-To 10{sup 45} erg s{sup -1} and Almost-Equal-To 10{sup 44} erg s{sup -1} in the 0.3-10 keV band are expected for blue supergiant (BSG) and red supergiant (RSG)/He-WR progenitors, respectively (T{sub peak} is well below the band for RSGs, unless their radius is {approx}10{sup 13} cm). >30 detections of SN 1987A-like (BSG) breakouts are expected over the lifetime of ROSAT and XMM-Newton. An absence of such detections would imply either that the typical parameters assumed for BSG progenitors are grossly incorrect or that their envelopes are not hydrostatic. The observed spectrum and duration of XRF 080109/SN 2008D are in tension with a non-relativistic breakout from a stellar surface interpretation.
Topology, calculus and approximation
Komornik, Vilmos
2017-01-01
Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...