WorldWideScience

Sample records for nonrelativistic dipole approximation

  1. On the dipole approximation with error estimates

    Science.gov (United States)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  2. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  3. Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD

    Science.gov (United States)

    Segovia, Jorge; Steinbeißer, Sebastian

    2018-05-01

    The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].

  4. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor

    International Nuclear Information System (INIS)

    Arif, Khalid Mahmood

    2016-01-01

    We present the discrete dipole approximation simulation of light scattering from bead enhanced diffraction biosensor and report the effect of bead material, number of beads forming the grating and spatial randomness on the diffraction intensities of 1st and 0th orders. The dipole models of gratings are formed by volume slicing and image processing while the spatial locations of the beads on the substrate surface are randomly computed using discrete probability distribution. The effect of beads reduction on far-field scattering of 632.8 nm incident field, from fully occupied gratings to very coarse gratings, is studied for various bead materials. Our findings give insight into many difficult or experimentally impossible aspects of this genre of biosensors and establish that bead enhanced grating may be used for rapid and precise detection of small amounts of biomolecules. The results of simulations also show excellent qualitative similarities with experimental observations. - Highlights: • DDA was used to study the relationship between the number of beads forming gratings and ratio of first and zeroth order diffraction intensities. • A very flexible modeling program was developed to design complicated objects for DDA. • Material and spatial effects of bead distribution on surfaces were studied. • It has been shown that bead enhanced grating biosensor can be useful for fast detection of small amounts of biomolecules. • Experimental results qualitatively support the simulations and thus open a way to optimize the grating biosensors.

  5. Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles

    NARCIS (Netherlands)

    Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.

    2010-01-01

    We studied the accuracy of the discrete dipole approximation (DDA) for simulations of absorption and scattering spectra by gold nanoparticles (spheres, cubes, and rods ranging in size from 10 to 100 nm). We varied the dipole resolution and applied two DDA formulations, employing the standard lattice

  6. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  7. A second-order approximation of particle motion in the fringing field of a dipole magnet

    International Nuclear Information System (INIS)

    Tarantin, N.I.

    1980-01-01

    The radial and axial motion of charged particles in the fringing field of an arbitrary dipole magnet has been considered with accuracy to the second-order of small quantities. The dipole magnet has an inhomogeneous field and oblique entrance and exit boundaries in the form of second-order curves. The region of the fringing field has a variable extension. A new definition of the effective boundary of the real fringing field has a variable extension. A new definition of the effective boundary of the real fringing field of the dipole magnet is used. A better understanding of the influence of the fringing magnetic field on the motion of charged particles in the pole gap of the dipole magnet has been obtained. In particular, it is shown that it is important to take into account, in the second approximation, some terms related formally to the next approximations. The results are presented in a form convenient for practical calculations. (orig.)

  8. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  9. Circumstances under which various approximate relativistic and nonrelativistic theories yield accurate Compton scattering doubly differential cross sections at high photon energy

    International Nuclear Information System (INIS)

    LaJohn, L A; Pratt, R H

    2009-01-01

    We discuss the increase in error with increasing nuclear charge Z in the use of the relativistic impulse approximation (RIA) for the calculation of Compton K-shell scattering doubly differential cross sections (DDCS). We also show that nonrelativistic (nr) expressions can be used to obtain accurate peak region DDCS at scattering angles less than about 35 0 even at incident photon energies ω i exceeding 1 MeV, if Z<30. This is possible because in the Compton peak region, as θ→0, a low momentum transfer limit is being approached.

  10. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random–phase approximation

    Directory of Open Access Journals (Sweden)

    D. Gambacurta

    2018-02-01

    Full Text Available The second random–phase–approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random–phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  11. Electric dipole strength and dipole polarizability in 48Ca within a fully self-consistent second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Vasseur, O.

    2018-02-01

    The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.

  12. Nonrelativistic quantum X-ray physics

    CERN Document Server

    Hau-Riege, Stefan P

    2015-01-01

    Providing a solid theoretical background in photon-matter interaction, Nonrelativistic Quantum X-Ray Physics enables readers to understand experiments performed at XFEL-facilities and x-ray synchrotrons. As a result, after reading this book, scientists and students will be able to outline and perform calculations of some important x-ray-matter interaction processes. Key features of the contents are that the scope reaches beyond the dipole approximation when necessary and that it includes short-pulse interactions. To aid the reader in this transition, some relevant examples are discussed in detail, while non-relativistic quantum electrodynamics help readers to obtain an in-depth understanding of the formalisms and processes. The text presupposes a basic (undergraduate-level) understanding of mechanics, electrodynamics, and quantum mechanics. However, more specialized concepts in these fields are introduced and the reader is directed to appropriate references. While primarily benefiting users of x-ray light-sou...

  13. Hydrogen atom excitation in intense attosecond laser field: Gauge dependence of dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Aldarmaa, Ch., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com; Khenmedekh, L., E-mail: aldaraa2004@yahoo.com, E-mail: l-xemee@yahoo.com [Theoretical Physics and Simulation Group, School of Materials Technology, MUST (Mongolia); Lkhagva, O. [School of Physics and Electronics, NUM (Mongolia)

    2014-03-24

    It is assumed that, the atomic excitations probability can be calculated using first order perturbation theory and dipole approximations. The validity of the dipole approximations had been examined by comparing the results with the results obtained by exact calculations within the first order perturbation theory[2]. Figure 1 shows the time dependence of the transition probability in the dipole approximation. From these plots it is obvious that, the probabilities obtained in the length gauge are higher than that in the velocity gauge, in the interaction period (−τ/2dipole approximation) calculations results. (Figure 2) Though the time evolution of the same transition probabilities are different for these cases, the final results are the same for all three cases, excluding the 6s-6p{sub 0} transition. For the later case, only the length gauge give a false results, but the velocity gauge give the same result as the exact one, for the final value of the transition probability.

  14. The discrete-dipole-approximation code ADDA: capabilities and known limitations

    NARCIS (Netherlands)

    Yurkin, M.A.; Hoekstra, A.G.

    2011-01-01

    The open-source code ADDA is described, which implements the discrete dipole approximation (DDA), a method to simulate light scattering by finite 3D objects of arbitrary shape and composition. Besides standard sequential execution, ADDA can run on a multiprocessor distributed-memory system,

  15. High-order above-threshold ionization beyond the electric dipole approximation

    Science.gov (United States)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  16. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  17. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    Science.gov (United States)

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  18. Soft dipole mode of 11Li in approximation of asymptotic potential

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.

    2001-01-01

    The soft dipole mode of 11 Li is studied in the frame of microscopic tri-cluster model and in the asymptotic potential approximation. The theory reproduces well the ground state energy, matter radius and the behaviour of the effective photodisintegration cross section in the range of low energies above the decay threshold of 11 Li. Our calculations point two resonant states in this range [ru

  19. Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

    International Nuclear Information System (INIS)

    Litvinova, E.; Ring, P.; Tselyaev, V.

    2008-01-01

    The self-consistent relativistic quasiparticle random-phase approximation (RQRPA) is extended by the quasiparticle-phonon coupling (QPC) model using the quasiparticle time blocking approximation (QTBA). The method is formulated in terms of the Bethe-Salpeter equation (BSE) in the two-quasiparticle space with an energy-dependent two-quasiparticle residual interaction. This equation is solved either in the basis of Dirac states forming the self-consistent solution of the ground state or in the momentum representation. Pairing correlations are treated within the Bardeen-Cooper-Schrieffer (BCS) model with a monopole-monopole interaction. The same NL3 set of the coupling constants generates the Dirac-Hartree-BCS single-quasiparticle spectrum, the static part of the residual two-quasiparticle interaction and the quasiparticle-phonon coupling amplitudes. A quantitative description of electric dipole excitations in the chain of tin isotopes (Z=50) with the mass numbers A=100,106,114,116,120, and 130 and in the chain of isotones with (N=50) 88 Sr, 90 Zr, 92 Mo is performed within this framework. The RQRPA extended by the coupling to collective vibrations generates spectra with a multitude of 2q x phonon (two quasiparticles plus phonon) states providing a noticeable fragmentation of the giant dipole resonance as well as of the soft dipole mode (pygmy resonance) in the nuclei under investigation. The results obtained for the photo absorption cross sections and for the integrated contributions of the low-lying strength to the calculated dipole spectra agree very well with the available experimental data

  20. Using the DDA (Discrete Dipole Approximation Method in Determining the Extinction Cross Section of Black Carbon

    Directory of Open Access Journals (Sweden)

    Skorupski Krzysztof

    2015-03-01

    Full Text Available BC (Black Carbon, which can be found in the atmosphere, is characterized by a large value of the imaginary part of the complex refractive index and, therefore, might have an impact on the global warming effect. To study the interaction of BC with light often computer simulations are used. One of the methods, which are capable of performing light scattering simulations by any shape, is DDA (Discrete Dipole Approximation. In this work its accuracy was estimated in respect to BC structures using the latest stable version of the ADDA (vr. 1.2 algorithm. As the reference algorithm the GMM (Generalized Multiparticle Mie-Solution code was used. The study shows that the number of volume elements (dipoles is the main parameter that defines the quality of results. However, they can be improved by a proper polarizability expression. The most accurate, and least time consuming, simulations were observed for IGT_SO. When an aggregate consists of particles composed of ca. 750 volume elements (dipoles, the averaged relative extinction error should not exceed ca. 4.5%.

  1. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  2. The approximation of asymptotic potential and the soft dipole mode of the 6He

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvrdov, L.P.; Kato, K.

    1999-01-01

    The soft dipole mode of a three-cluster 6 He nucleus is investigated on the basis of the generalized version of the zero-radius nuclear forces approximation, taking into account a slowly decreasing asymptotic potential and influence of the Paulo exclusion principle on the asymptotic of the wave function, and also the fact of degeneration of 1 - continuous spectrum states. The issue of the behaviour of matrix elements of the two-channel S-matrix and problem of existence of the super-threshold 1 - resonance are discussed [ru

  3. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  4. Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation

    International Nuclear Information System (INIS)

    Skorupski, Krzysztof; Hellmers, Jens; Feng, Wen; Mroczka, Janusz; Wriedt, Thomas; Mädler, Lutz

    2015-01-01

    In this paper we study the spectral behaviour of indium tin oxide (ITO) nanoparticle clusters using different sinter neck models for the connections between the primary particles. The investigations include light scattering calculations based on the Discrete Dipole Approximation (DDA). The corresponding clusters are generated using the Cluster–Cluster algorithm proposed by Filippov et al. Different sintering neck models led to significantly different spectral features. A spectral neck factor that reveals the thickness of the necks connecting the primary particles with a simple measurement method is introduced. - Highlights: • We investigate the necking phenomenon in ITO fractal-like aggregates. • Extinction diagrams are sensitive to changes of the neck size. • We propose a simple procedure for measuring the neck size in ITO aggregates

  5. High-order harmonic propagation in gases within the discrete dipole approximation

    International Nuclear Information System (INIS)

    Hernandez-Garcia, C.; Perez-Hernandez, J. A.; Ramos, J.; Jarque, E. Conejero; Plaja, L.; Roso, L.

    2010-01-01

    We present an efficient approach for computing high-order harmonic propagation based on the discrete dipole approximation. In contrast with other approaches, our strategy is based on computing the total field as the superposition of the driving field with the field radiated by the elemental emitters of the sample. In this way we avoid the numerical integration of the wave equation, as Maxwell's equations have an analytical solution for an elementary (pointlike) emitter. The present strategy is valid for low-pressure gases interacting with strong fields near the saturation threshold (i.e., partially ionized), which is a common situation in the experiments of high-order harmonic generation. We use this tool to study the dependence of phase matching of high-order harmonics with the relative position between the beam focus and the gas jet.

  6. Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation

    Directory of Open Access Journals (Sweden)

    DePrince A

    2010-01-01

    Full Text Available Abstract We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small.

  7. Zeroth order regular approximation approach to electric dipole moment interactions of the electron

    Science.gov (United States)

    Gaul, Konstantin; Berger, Robert

    2017-07-01

    A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  8. Accurate Computation of Electric Field Enhancement Factors for Metallic Nanoparticles Using the Discrete Dipole Approximation

    Science.gov (United States)

    2010-01-01

    We model the response of nanoscale Ag prolate spheroids to an external uniform static electric field using simulations based on the discrete dipole approximation, in which the spheroid is represented as a collection of polarizable subunits. We compare the results of simulations that employ subunit polarizabilities derived from the Clausius–Mossotti relation with those of simulations that employ polarizabilities that include a local environmental correction for subunits near the spheroid’s surface [Rahmani et al. Opt Lett 27: 2118 (2002)]. The simulations that employ corrected polarizabilities give predictions in very good agreement with exact results obtained by solving Laplace’s equation. In contrast, simulations that employ uncorrected Clausius–Mossotti polarizabilities substantially underestimate the extent of the electric field “hot spot” near the spheroid’s sharp tip, and give predictions for the field enhancement factor near the tip that are 30 to 50% too small. PMID:20672062

  9. The discrete-dipole-approximation code ADDA: Capabilities and known limitations

    International Nuclear Information System (INIS)

    Yurkin, Maxim A.; Hoekstra, Alfons G.

    2011-01-01

    The open-source code ADDA is described, which implements the discrete dipole approximation (DDA), a method to simulate light scattering by finite 3D objects of arbitrary shape and composition. Besides standard sequential execution, ADDA can run on a multiprocessor distributed-memory system, parallelizing a single DDA calculation. Hence the size parameter of the scatterer is in principle limited only by total available memory and computational speed. ADDA is written in C99 and is highly portable. It provides full control over the scattering geometry (particle morphology and orientation, and incident beam) and allows one to calculate a wide variety of integral and angle-resolved scattering quantities (cross sections, the Mueller matrix, etc.). Moreover, ADDA incorporates a range of state-of-the-art DDA improvements, aimed at increasing the accuracy and computational speed of the method. We discuss both physical and computational aspects of the DDA simulations and provide a practical introduction into performing such simulations with the ADDA code. We also present several simulation results, in particular, for a sphere with size parameter 320 (100-wavelength diameter) and refractive index 1.05.

  10. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    Science.gov (United States)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  11. Optical response of hybrid semiconductor quantum dot-metal nanoparticle system: Beyond the dipole approximation

    Science.gov (United States)

    Mohammadzadeh, Atefeh; Miri, MirFaez

    2018-01-01

    We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E 0 cos ( ω t ) . The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.

  12. Coulomb couplings in solubilised light harvesting complex II (LHCII): challenging the ideal dipole approximation from TDDFT calculations.

    Science.gov (United States)

    López-Tarifa, P; Liguori, Nicoletta; van den Heuvel, Naudin; Croce, Roberta; Visscher, Lucas

    2017-07-19

    The light harvesting complex II (LHCII), is a pigment-protein complex responsible for most of the light harvesting in plants. LHCII harvests sunlight and transfers excitation energy to the reaction centre of the photo-system, where the water oxidation process takes place. The energetics of LHCII can be modulated by means of conformational changes allowing a switch from a harvesting to a quenched state. In this state, the excitation energy is no longer transferred but converted into thermal energy to prevent photooxidation. Based on molecular dynamics simulations at the microsecond time scale, we have recently proposed that the switch between different fluorescent states can be probed by correlating shifts in the chromophore-chromophore Coulomb interactions to particular protein movements. However, these findings are based upon calculations in the ideal point dipole approximation (IDA) where the Coulomb couplings are simplified as first order dipole-dipole interactions, also assuming that the chromophore transition dipole moments lay in particular directions of space with constant moduli (FIX-IDA). In this work, we challenge this approximation using the time-dependent density functional theory (TDDFT) combined with the frozen density embedding (FDE) approach. Our aim is to establish up to which limit FIX-IDA can be applied and which chromophore types are better described under this approximation. For that purpose, we use the classical trajectories of solubilised light harvesting complex II (LHCII) we have recently reported [Liguori et al., Sci. Rep., 2015, 5, 15661] and selected three pairs of chromophores containing chlorophyll and carotenoids (Chl and Car): Chla611-Chla612, Chlb606-Chlb607 and Chla612-Lut620. Using the FDE in the Tamm-Dancoff approximation (FDEc-TDA), we show that IDA is accurate enough for predicting Chl-Chl Coulomb couplings. However, the FIX-IDA largely overestimates Chl-Car interactions mainly because the transition dipole for the Cars is not

  13. Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method

    International Nuclear Information System (INIS)

    Tyynelae, Jani; Nousiainen, Timo; Goeke, Sabine; Muinonen, Karri

    2009-01-01

    We study the applicability of the discrete-dipole approximation by modeling centimeter (C-band) radar echoes for hydrometeors, and compare the results to exact theories. We use ice and water particles of various shapes with varying water-content to investigate how the backscattering, extinction, and absorption cross sections change as a function of particle radius. We also compute radar parameters, such as the differential reflectivity, the linear depolarization ratio, and the copolarized correlation coefficient. We find that using discrete-dipole approximation (DDA) to model pure ice and pure water particles at the C-band, is a lot more accurate than particles containing both ice and water. For coated particles, a large grid-size is recommended so that the coating is modeled adequately. We also find that the absorption cross section is significantly less accurate than the scattering and backscattering cross sections. The accuracy of DDA can be increased by increasing the number of dipoles, but also by using the filtered coupled dipole-option for the polarizability. This halved the relative errors in cross sections.

  14. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  15. Optical Response of CeB_6 Nanoparticles with Different Sizes and Shapes from Discrete-Dipole Approximation

    International Nuclear Information System (INIS)

    Chao Luo-Meng; Bao Li-Hong; Tegus, O.

    2015-01-01

    The discrete dipole approximation is used to investigate the optical response of CeB_6 nanoparticles with different sizes and different shapes. The extinction valley in the visible light range becomes narrower and the extinction peak at the near infrared region (NIR) is red-shifted with the increasing particle size. In addition, the extinction peak value of the spherical particle decreases more rapidly than that of cubic-shaped particle with an increase in the particle size, and the cubic-shaped particles exhibit better performance on blocking NIR radiation than spherical-shaped particles. The calculation results coincide well with the reported experimental results. (paper)

  16. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-01-01

    The low-lying dipole strength distributions of 40 CaCa and 48 Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle −2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle −1 hole nature and its transition densities.

  17. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-10-01

    The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  18. Soft dipole mode of neutron-rich light nuclei in asymptotic potential approximation

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvedov, L.P.

    2000-01-01

    Completely antisymmetrized 1''-continuum wave functions as well as the ground state wave function for ''6He have been constructed in asymptotic potential approximation. The behaviour of two-channel S-matrix elements shows on the existence of 1''- resonant state just above the three-body decay threshold of ''6He

  19. On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-10-15

    The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)

  20. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  1. Nonrelativistic superstring theories

    International Nuclear Information System (INIS)

    Kim, Bom Soo

    2007-01-01

    We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the βγ CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory

  2. Nonrelativistic closed string theory

    International Nuclear Information System (INIS)

    Gomis, Jaume; Ooguri, Hirosi

    2001-01-01

    We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting

  3. Effects of thermal and particle-number fluctuations on the giant isovector dipole modes for the 58Ni nucleus in the finite-temperature random-phase approximation

    International Nuclear Information System (INIS)

    Nguyen Dinhdang; Nguyen Zuythang

    1988-01-01

    Using the realistic single-particle energy spectrum obtained in the Woods-Saxon nucleon mean-field potential, we calculate the BCS pairing gap for 58 Ni as a function of temperature taking into account the thermal and particle-number fluctuations. The strength distributions of the electric dipole transitions and the centroids of the isovector giant dipole resonance (IV-GDR) are computed in the framework of the finite-temperature random-phase approximation (RPA) based on the Hamiltonian of the quasiparticle-phonon nuclear model with separate dipole forces. It is shown that the change of the pairing gap at finite temperature can noticeably influence the IV-GDR localisation in realistic nuclei. By taking both thermal and quasiparticle fluctuations in the pairing gap into account the effect of the phase transition from superfluid to normal in the temperature dependence of the IV-GDR centroid is completely smeared out. (author)

  4. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model

    Directory of Open Access Journals (Sweden)

    B. V. Scarnato

    2013-05-01

    Full Text Available According to recent studies, internal mixing of black carbon (BC with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT. DDSCAT is flexible in simulating the geometry and refractive index of particle aggregates. DDSCAT predicts a higher mass absorption coefficient (MAC, lower single scattering albedo (SSA, and higher absorption Angstrom exponent (AAE for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.16 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. The MAC of BC (averaged over the 200–1000 nm range is amplified when internally mixed with NaCl (100–300 nm in radius by factors ranging from 1.0 for lacy BC aggregates partially immersed in NaCl to 2.2 for compact BC aggregates fully immersed in NaCl. The SSA of BC internally mixed with NaCl is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle size and morphology. This study shows that DDSCAT predicts complex morphology and mixing state dependent aerosol optical properties that have

  5. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  6. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    Bassi, A.; Donadi, S.

    2014-01-01

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  7. Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    International Nuclear Information System (INIS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Low-lying dipole response in the stable {sup 40,48}Ca nuclei within the second random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, D.; Grasso, M.; Catara, F. [GANIL,CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Dipartimento di Fisica e Astronomia dell' Universita di and INFN Catania (Italy)

    2012-10-20

    The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  9. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    International Nuclear Information System (INIS)

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-01

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report

  10. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Kauczor, Joanna; Norman, Patrick, E-mail: panor@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, Linköping SE 58183 (Sweden); Saue, Trond [Laboratoire de Chimie et Physique Quantiques, UMR 5626—CNRS/Université Toulouse III (Paul Sabatier), 118 route de Narbonne, F-31062 Toulouse Cedex (France)

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  11. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation.

    Science.gov (United States)

    List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  12. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation.

    Science.gov (United States)

    O'Brien, Daniel B; Massari, Aaron M

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  13. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, Daniel B.; Massari, Aaron M., E-mail: massari@umn.edu [Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States)

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  14. The notion of nonrelativistic isoparticle

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    We introduce the notion of nonrelativistic isoparticle as a representation of a Galilei-isotopic symmetry studied in preceding works or, equivalently, as the generalization of the conventional notion of particle characterized by the isotopic liftings of the unit. We show that the lifting represents the transition from massive points moving in vacuum to extended-deformable particles moving within physical media. As explicit examples, we work out the cases of an extended-deformable particle: 1) in free conditions; 2) under external potential-selfadjoint interactions; and 3) under external potential-selfadjoint and nonhamiltonian-nonselfadjoint interactions. The emerging methods are applied to a first classical and nonrelativistic treatment of Rauch's experiments on the spinorial symmetry of thermal neutrons under external (magnetic and) nuclear fields. The notion nonrelativistic isoquark is submitted as a conceivable classical basis for future operator studies. (author). 12 refs, 1 fig

  15. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation.

    Science.gov (United States)

    Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P

    2005-09-01

    Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.

  16. Radiation reaction in nonrelativistic quantum theory

    International Nuclear Information System (INIS)

    Sharp, D.H.

    1979-01-01

    Some recent work is reviewed on the quantum theory of radiation reaction. The starting point is the Heisenberg operator equation of motion for a nonrelativistic point electron coupled to the quantized electromagnetic field. It is shown that this equation, in contrast to its classical counterpart, leads to a finite value for the electrostatic self-energy of a point electron and, for values of the fine structure constant α approximately less than 1, admits neither runaway behavior nor noncausal motion. Furthermore, the correspondence limit of the solution to the quantum mechanical equation of motion agrees with that of the Lorentz--Dirac theory in the classical regime, but without the imposition of additional conditions and with no possibility of observable noncausality. Thus, a consistent picture of a classical point electron emerges in the correspondence limit of the quantum mechanical theory. 17 references

  17. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    Science.gov (United States)

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  18. On causal nonrelativistic classical electrodynamics

    International Nuclear Information System (INIS)

    Goedecke, G.H.

    1984-01-01

    The differential-difference (DD) motion equations of the causal nonrelativistic classical electrodynamics developed by the author in 1975 are shown to possess only nonrunaway, causal solutions with no discontinuities in particle velocity or position. As an example, the DD equation solution for the problem of an electromagnetic shock incident on an initially stationary charged particle is contrasted with the standard Abraham-Lorentz equation solution. The general Cauchy problem for these DD motion equations is discussed. In general, in order to uniquely determine a solution, the initial data must be more detailed than the standard Cauchy data of initial position and velocity. Conditions are given under which the standard Cauchy data will determine the DD equation solutions to sufficient practical accuracy

  19. ACOL dipoles

    International Nuclear Information System (INIS)

    Vlogaert, J.

    1987-01-01

    This paper describes the general design of ACOL dipoles, including the special injection area dipole. A list of mechanical, electrical and magnetic parameters and results of magnetic measurements are presented. Particular attention is paid to the proximity effects between quadrupoles and dipoles

  20. Nonrelativistic quantum electrodynamic approach to photoemission theory

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Arai, Hiroko

    2005-01-01

    A new nonrelativistic many-body theory to analyze X-ray photoelectron spectroscopy (XPS) spectra has been developed on the basis of quantum electrodynamic (QED) Keldysh Green's function approach. To obtain XPS current density we calculate electron Green's function g which partly includes electron-photon interactions. We first separate longitudinal and transverse parts of these Green's functions in the Coulomb gauge. The transverse electron selfenergy describes the electron-photon interaction, whereas the longitudinal electron selfenergy describes the electron-electron interaction. We derive the QED Hedin's equation from which we obtain systematic skeleton expansion in the power series of the screened Coulomb interaction W and the photon Green's function D kl . We show the present theory provides a sound theoretical tool to study complicated many-body processes such as the electron propagation damping, intrinsic, extrinsic losses and their interference, and furthermore, resonant photoemission processes. We have also found the importance of the mixed photon Green's functions D 0k and D k0 which have been supposed to be unimportant for the XPS analyses. They, however, directly describe the radiation field screening. In this work, photon field screening effects are discussed in one-step theory, where the electron-photon interaction operator Δ is proved to be replaced by ε -1 Δ beyond linear approximation. Beyond free photon Green's function approximation, photon scatterings from the electron density are incorporated within the present QED theory. These photon field effects can directly describe the microscopic photon field spatial variation specific to near the surface region and nanoparticle systems

  1. One step beyond the electric dipole approximation: An experiment to observe the 5p → 6p forbidden transition in atomic rubidium

    Science.gov (United States)

    Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.

    2018-01-01

    An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.

  2. Electric dipole transitions of heavy quarkonium

    Energy Technology Data Exchange (ETDEWEB)

    Pietrulewicz, Piotr [Universitaet Wien (Austria)

    2012-07-01

    In this talk we present the theoretical treatment of electric dipole transitions of heavy quarkonia within an effective field theory formalism. Inside the effective field theory called potential nonrelativistic QCD (pNRQCD) we account for the relativistic corrections to the decay rate in a systematic and model-independent way. Former results from potential model calculations are scrutinized, and a phenomenological analysis in relation to the experimental data is presented.

  3. Nonrelativistic hyperfine splitting in muonic helium by adiabatic perturbation theory

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1980-01-01

    Huang and Hughes have recently discussed the hyperfine splitting Δν of muonic helium (α ++ μ - e - ) using a variational approach. In this paper, the Born-Oppenheimer approximation is used to simplify the evaluation of Δν in the nonrelativistic limit. The first-order perturbed wave function of the electron is obtained in closed form by slightly modifying the method used by Dalgarno and Lynn. The result Δν=4450 MHz, is quite close to the published result of Huang and Hughes 4455.2 +- 1 MHz, which required a very large Hylleraas expansion as well as considerable extrapolation

  4. Conservation of energy and momentum in nonrelativistic plasmas

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2013-01-01

    Conservation laws of energy and momentum for nonrelativistic plasmas are derived from applying Noether's theorem to the action integral for the Vlasov-Poisson-Ampère system [Sugama, Phys. Plasmas 7, 466 (2000)]. The symmetric pressure tensor is obtained from modifying the asymmetric canonical pressure tensor with using the rotational symmetry of the action integral. Differences between the resultant conservation laws and those for the Vlasov-Maxwell system including the Maxwell displacement current are clarified. These results provide a useful basis for gyrokinetic conservation laws because gyrokinetic equations are derived as an approximation of the Vlasov-Poisson-Ampère system.

  5. Dipole plasma in molecular crystals

    International Nuclear Information System (INIS)

    Kotel'nikov, Yu.E.; Kochelaev, B.I.

    1976-01-01

    Collective oscillations in a system of electric dipoles of molecular crystals are investigated. It has been proved in the exciton approximation that in an elementary cell of a molecular crystal with one molecule there may exist energy fluctuations of the ''dipole'' plasma, analogous to plasma oscillations in the charged Fermi liquid

  6. Polarizational bremsstrahlung in non-relativistic collisions

    International Nuclear Information System (INIS)

    Korol, A.V.; Solov'yov, A.V.

    2006-01-01

    We review the developments made during the last decade in the theory of polarization bremsstrahlung in the non-relativistic domain. A literature survey covering the latest history of the phenomenon is given. The main features which distinguish the polarization bremsstrahlung from other mechanisms of radiation are discussed and illustrated by the results of numerical calculations

  7. Spectral concentration in the nonrelativistic limit

    International Nuclear Information System (INIS)

    Gesztesy, F.; Grosse, H.; Thaller, B.

    1982-01-01

    First order relativistic corrections to the Schroedinger operator according to Foldy and Wouthuysen are rigorously discussed in the framework of singular perturbation theory. For Coulomb plus short-range interactions we investigate the corresponding spectral properties and prove spectral concentration and existence of first order pseudoeigenvalues in the nonrelativistic limit. (Author)

  8. Studies on the quark confinement in a non-relativistic quark model

    International Nuclear Information System (INIS)

    Pfenninger, T.

    1988-01-01

    In the framework of the non-relativistic quark model we have studied several aspects of the description of the confinement by a confinement potential. A first consideration applied to the effects of the long-range color van-der-Waals forces on the nucleon-nucleon scattering. Regarding color dipole states as an additional closed channel in a dynamical and nonlocal resonating-group calculation we found a strong attraction. Additionally it was possible by means of the RGM kernels to derive an against earlier calculations improved color van-der-Waals potential in adiabatic approximation which regards correctly the internal kinetic and the confinement energy of the color octet states. This potential is not confined to large NN distances and shows asymptotically a 1/R 2 behaviour if it is based on a harmonic confinement. A further study applied to the question how far a possible vector character of the confinement, which is suggested by the elementary quark-gluon vertex, has effects on baryon properties and the NN interaction. Here it resulted that the vector confinement reacts in view of the model parameters very sensitively in the baryon properties whereas the scalar confinement did not show this dependence. In the NN scattering this vector confinement however plays a more secondary role. Because of the difficulties of the usual confinement potential with long-range color van-der-Waals forces we proposed in the last part a new potential and additional orthogonality relations for the quark wave functions in order to accomodate in the potential model to the string degrees of freedom. In scattering calculations we again studied the effects of the modification on the NN interaction. (orig./HSI) [de

  9. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method

    International Nuclear Information System (INIS)

    Ma Ye-Wan; Wu Zhao-Wang; Zhang Li-Hua; Liu Wan-Fang; Zhang Jie

    2015-01-01

    The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discretedipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω_− shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect. (paper)

  10. Local supersymmetry in non-relativistic systems

    International Nuclear Information System (INIS)

    Urrutia, L.F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs

  11. Phenomenological aspects of nonrelativistic potential models

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-01-01

    This review reports on the description of hardrons as bound states of quarks by nonrelativistic potential models. It contains a brief sketch of the way in which information on the form of the inter-quark potential may be gained from quantum chromodynamics, proofs of some general theorems related to the potential-model approach, a discussion of the significance of the treatment of bound states consisting of relativistically-moving constituents by the nonrelativistic Schroedinger formalism, as well as a brief survey of the motivations for the various proposed potential models. Finally, it illustrates the application of the developed theoretical framework at a few selected examples. 60 refs., 8 figs., 17 tabs. (Authors)

  12. On non-relativistic electron theory

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, R G

    1975-01-01

    A discussion of non-relativistic electron theory, which makes use of the electromagnetic field potentials only as useful working variables in the intermediate stages, is presented. The separation of the (transverse) radiation field from the longitudinal electric field due to the sources is automatic, and as a result, this formalism is often more convenient than the usual Coulomb gauge theory used in molecular physics.

  13. Supersymmetric solutions for non-relativistic holography

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2009-01-01

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  14. Selected topics on the nonrelativistic diagram technique

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Narodetskij, I.M.

    1983-01-01

    The construction of the diagrams describing various processes in the four-particle systems is considered. It is shown that these diagrams, in particular the diagrams corresponding to the simple mechanisms often used in nuclear and atomic reaction theory, are readily obtained from the Faddeev-Yakubovsky equations. The covariant four-dimensional formalism of nonrelativistic Feynman graphs and its connection to the three-dimensional graph technique are briefly discussed

  15. Electric transition dipole moment in pre-Born-Oppenheimer molecular structure theory.

    Science.gov (United States)

    Simmen, Benjamin; Mátyus, Edit; Reiher, Markus

    2014-10-21

    This paper presents the calculation of the electric transition dipole moment in a pre-Born-Oppenheimer framework. Electrons and nuclei are treated equally in terms of the parametrization of the non-relativistic total wave function, which is written as a linear combination of basis functions constructed from explicitly correlated Gaussian functions and the global vector representation. The integrals of the electric transition dipole moment are derived corresponding to these basis functions in both the length and the velocity representation. The calculations are performed in laboratory-fixed Cartesian coordinates without relying on coordinates which separate the center of mass from the translationally invariant degrees of freedom. The effect of the overall motion is eliminated through translationally invariant integral expressions. The electric transition dipole moment is calculated between two rovibronic levels of the H2 molecule assignable to the lowest rovibrational states of the X (1)Σ(g)(+) and B (1)Σ(u)(+) electronic states in the clamped-nuclei framework. This is the first evaluation of this quantity in a full quantum mechanical treatment without relying on the Born-Oppenheimer approximation.

  16. Three-hair relations for rotating stars: Nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Leo C. [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States); Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-06-10

    The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations of rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.

  17. Spacetime coarse grainings in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1991-01-01

    Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry

  18. Bottomonium above Deconfinement in Lattice Nonrelativistic QCD

    International Nuclear Information System (INIS)

    Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.

    2011-01-01

    We study the temperature dependence of bottomonium for temperatures in the range 0.4T c c , using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for N f =2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χ b propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T≅2T c .

  19. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  20. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  1. Fermions in nonrelativistic AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Akhavan, Amin; Alishahiha, Mohsen; Davody, Ali; Vahedi, Ali

    2009-01-01

    We extend the nonrelativistic AdS/CFT correspondence to the fermionic fields. In particular, we study the two point function of a fermionic operator in nonrelativistic CFTs by making use of a massive fermion propagating in geometries with Schroedinger group isometry. Although the boundary of the geometries with Schroedinger group isometry differ from that in AdS geometries where the dictionary of AdS/CFT is established, using the general procedure of AdS/CFT correspondence, we see that the resultant two point function has the expected form for fermionic operators in nonrelativistic CFTs, though a nontrivial regularization may be needed.

  2. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  3. Nonrelativistic trace and diffeomorphism anomalies in particle number background

    Science.gov (United States)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2018-04-01

    Using the heat kernel method, we compute nonrelativistic trace anomalies for Schrödinger theories in flat spacetime, with a generic background gauge field for the particle number symmetry, both for a free scalar and a free fermion. The result is genuinely nonrelativistic, and it has no counterpart in the relativistic case. Contrary to naive expectations, the anomaly is not gauge invariant; this is similar to the nongauge covariance of the non-Abelian relativistic anomaly. We also show that, in the same background, the gravitational anomaly for a nonrelativistic scalar vanishes.

  4. Finite nucleus Dirac mean field theory and random phase approximation using finite B splines

    International Nuclear Information System (INIS)

    McNeil, J.A.; Furnstahl, R.J.; Rost, E.; Shepard, J.R.; Department of Physics, University of Maryland, College Park, Maryland 20742; Department of Physics, University of Colorado, Boulder, Colorado 80309)

    1989-01-01

    We calculate the finite nucleus Dirac mean field spectrum in a Galerkin approach using finite basis splines. We review the method and present results for the relativistic σ-ω model for the closed-shell nuclei 16 O and 40 Ca. We study the convergence of the method as a function of the size of the basis and the closure properties of the spectrum using an energy-weighted dipole sum rule. We apply the method to the Dirac random-phase-approximation response and present results for the isoscalar 1/sup -/ and 3/sup -/ longitudinal form factors of 16 O and 40 Ca. We also use a B-spline spectral representation of the positive-energy projector to evaluate partial energy-weighted sum rules and compare with nonrelativistic sum rule results

  5. Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory

    International Nuclear Information System (INIS)

    Milonni, P.W.

    1976-01-01

    Theoretical aspects of the interaction of atoms with the radiation field are reviewed with emphasis on those features of the interaction requiring field quantization. The approach is nonrelativistic, with special attention given to the theory of spontaneous emission. (Auth.)

  6. Random path formulation of nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Roncadelli, M.

    1993-01-01

    Quantum amplitudes satisfy (almost) the same calculus that probabilities obey in the theory of classical stochastic diffusion processes. As a consequence of this structural analogy, a new formulation of (nonrelativistic) quantum mechanics naturally arises as the quantum counterpart of the Langevin description of (classical) stochastic diffusion processes. Quantum fluctuations are simulated here by a Fresnel white noise (FWN), which is a (real) white noise with imaginary diffusion constant, whose functional (pseudo) measure yields the amplitude distribution for its configurations. Central to this approach is the idea that classical dynamical trajectories in configuration space are perturbed by the FWN. Hence, a single (arbitrary) classical dynamical path gets replaced by a family of quantum random paths (QRPs) - one for each FWN sample - all originating from the same space-time point (x', t'). The QRPs are the basic objects of the present formulation and are given by a Langevin equation with the FWN, whose drift is controlled by a (arbitrary) solution to the classical Hamilton-Jacobi equation. So, our approach is manifestly based on classical dynamics. Now, a transition amplitude is associated with each QRP: it gives the amplitude that a particle starting from (x', t') will reach (x'', t'') by travelling just along the considered QRP. The quantum mechanical propagator (x'', t'' modul x', t') then emerges as the FWN average of the transition amplitude along a QRP. Thus, quantum mechanics looks like classical mechanics as perturbed by the FWN. The general structure of this formulation is discussed in detail, along with some practical and conceptual implications. (author). 14 refs

  7. Classical trajectory in non-relativistic scattering

    International Nuclear Information System (INIS)

    Williams, A.C.

    1978-01-01

    With the statistical interpretation of quantum mechanics as a guide, the classical trajectory is incorporated into quantum scattering theory. The Feynman path integral formalism is used as a starting point, and classical transformation theory is applied to the phase of the wave function so derived. This approach is then used to derive an expression for the scattering amplitude for potential scattering. It is found that the amplitude can be expressed in an impact parameter representation similar to the Glauber formalism. Connections are then made to the Glauber approximation and to semiclassical approximations derived from the Feynman path integral formalism. In extending this analysis to projectile-nucleus scattering, an approximation scheme is given with the first term being the same as in Glauber's multiple scattering theory. Higher-order approximations, thus, are found to give corrections to the fixed scatterer form of the impulse approximation inherent in the Glauber theory

  8. Screening of electron electric dipole moment through the Foldy-Wouthuysen representation

    Directory of Open Access Journals (Sweden)

    M M Ettefaghi

    2015-07-01

    Full Text Available The existent of the intrinsic electric dipole moments (EDM lead to CP violation in a physical system. In the non-relativistic and point like limits, the effects of them in atoms are canceled which is well-known as Schiff screening effects. It is why that the energy shift due to the EDM is proportional to the expectation value of which vanishes in non-relativistic limit. In this paper, using Foldy-Wouthuysen representation we remove the odd terms (those terms mix the positive and negative energy solutions up to order and then study the Schiff screening effects.

  9. X-versus y-scaling in non-relativistic deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Santos Padula, S. dos; Escobar, C.O.

    1983-06-01

    It is shown, in the context of non-relativistic potential scattering, that the appropriate scaling variable for the deep inelastic region is not the usual Bjorken one x sub(Bj) = Q/sup 2//2 M..nu.. but instead, the variable y=(2m..nu..-q/sup 2/ sup(..-->..))/2q. The y-scaling is shown to be obtained in a natural way by using the WKB approximation. Numerical results are presented comparing the approach to scaling in terms of x sub(Bj) and y.

  10. X-versus y-scaling in non-relativistic deep inelastic scattering

    International Nuclear Information System (INIS)

    Santos Padula, S. dos; Escobar, C.O.

    1983-01-01

    It is shown, in the context of non-relativistic potential scattering, that the appropriate scaling variable for the deep inelastic region is not the usual Bjorken one x sub(Bj) = Q 2 /2 Mν but instead, the variable y=(2mν-q 2 sup(→))/2q. The y-scaling is shown to be obtained in a natural way by using the WKB approximation. Numerical results are presented comparing the approach to scaling in terms of x sub(Bj) and y. (Author) [pt

  11. Comparison of approximations to the transition rate in the DDHMS preequilibrium model

    International Nuclear Information System (INIS)

    Brito, L.; Carlson, B.V.

    2014-01-01

    The double differential hybrid Monte Carlo simulation model (DDHMS) originally used exciton model densities and transition densities with approximate angular distributions obtained using linear momentum conservation. Because the model uses only the simplest transition rates, calculations using more complex approximations to these are still viable. We compare calculations using the original approximation to one using a nonrelativistic Fermi gas transition densities with the approximate angular distributions and with exact nonrelativistic and relativistic transition transition densities. (author)

  12. Non-relativistic conformal symmetries and Newton-Cartan structures

    International Nuclear Information System (INIS)

    Duval, C; Horvathy, P A

    2009-01-01

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  13. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  14. Nonrelativistic Conformed Symmetry in 2 + 1 Dimensional Field Theory.

    Science.gov (United States)

    Bergman, Oren

    This thesis is devoted to the study of conformal invariance and its breaking in non-relativistic field theories. It is a well known feature of relativistic field theory that theories which are conformally invariant at the classical level can acquire a conformal anomaly upon quantization and renormalization. The anomaly appears through the introduction of an arbitrary, but dimensionful, renormalization scale. One does not usually associate the concepts of renormalization and anomaly with nonrelativistic quantum mechanics, but there are a few examples where these concepts are useful. The most well known case is the two-dimensional delta -function potential. In two dimensions the delta-function scales like the kinetic term of the Hamiltonian, and therefore the problem is classically conformally invariant. Another example of classical conformal invariance is the famous Aharonov-Bohm (AB) problem. In that case each partial wave sees a 1/r^2 potential. We use the second quantized formulation of these problems, namely the nonrelativistic field theories, to compute Green's functions and derive the conformal anomaly. In the case of the AB problem we also solve an old puzzle, namely how to reproduce the result of Aharonov and Bohm in perturbation theory. The thesis is organized in the following manner. Chapter 1 is an introduction to nonrelativistic field theory, nonrelativistic conformal invariance, contact interactions and the AB problem. In Chapter 2 we discuss nonrelativistic scalar field theory, and how its quantization produces the anomaly. Chapter 3 is devoted to the AB problem, and the resolution of the perturbation puzzle. In Chapter 4 we generalize the discussion of Chapter 3 to particles carrying nonabelian charges. The structure of the nonabelian theory is much richer, and deserves a separate discussion. We also comment on the issues of forward scattering and single -valuedness of wavefunctions, which are important for Chapter 3 as well. (Copies available

  15. Fragments of reminiscences and exactly solvable nonrelativistic quantum models

    International Nuclear Information System (INIS)

    Zakhariev, B.N.

    1994-01-01

    Some exactly solvable nonrelativistic quantum models are discussed. Special attention is paid to the quantum inverse problem. It is pointed out that by analyzing the inverse problem pictures one can get a deeper insight into the laws of the microworld and acquire the ability to make the qualitative predictions without computers and formulae. 5 refs

  16. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  17. Non-relativistic supergravity in three space-time dimensions

    NARCIS (Netherlands)

    Zojer, Thomas

    2016-01-01

    This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary

  18. On the role of time in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chattaraj, P.K.; Sannigrahi, A.B.

    1994-01-01

    It has been didactically analysed that time appears as a parameter in nonrelativistic quantum mechanics. Corresponding Heisenberg's uncertainty principle is discussed. Dynamical behaviour of time and its operator equivalence are generally obtained from analogy and should not be treated at par with other dynamical observables, e.g. momentum. (author). 8 refs

  19. New singularities in nonrelativistic coupled channel scattering. II. Fourth order

    International Nuclear Information System (INIS)

    Khuri, N.N.; Tsun Wu, T.

    1997-01-01

    We consider a two-channel nonrelativistic potential scattering problem, and study perturbation theory in fourth order for the forward amplitude. The main result is that the new singularity demonstrated in second order in the preceding paper I also occurs at the same point in fourth order. Its strength is again that of a pole. copyright 1997 The American Physical Society

  20. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  1. ARIADNE 3. A Monte Carlo for QCD cascades in the colour dipole formulation

    International Nuclear Information System (INIS)

    Loennblad, Leif.

    1989-06-01

    A Monte Carlo program for generating QCD cascades, based on the colour dipole approximation is presented. The program is an extension of the program ARIADNE 2, including gluon splitting in the colour dipole formulation of QCD. (author)

  2. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  3. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  4. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    Science.gov (United States)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  5. Non-Relativistic Twistor Theory and Newton-Cartan Geometry

    Science.gov (United States)

    Dunajski, Maciej; Gundry, James

    2016-03-01

    We develop a non-relativistic twistor theory, in which Newton-Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle O oplus O(2)}. We show that the Newton-Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton-Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non-trivial on twistor lines. The resulting geometries agree with non-relativistic limits of anti-self-dual gravitational instantons.

  6. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  7. Holographic stress tensor for non-relativistic theories

    International Nuclear Information System (INIS)

    Ross, Simon F.; Saremi, Omid

    2009-01-01

    We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.

  8. Generalized dilatation operator method for non-relativistic holography

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, Wissam, E-mail: wissam@stanford.edu [Department of Physics and SITP, Stanford University, Stanford, CA 94305 (United States); Papadimitriou, Ioannis, E-mail: ioannis.papadimitriou@csic.es [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Madrid 28049 (Spain)

    2014-10-07

    We present a general algorithm for constructing the holographic dictionary for Lifshitz and hyperscaling violating Lifshitz backgrounds for any value of the dynamical exponent z and any value of the hyperscaling violation parameter θ compatible with the null energy condition. The objective of the algorithm is the construction of the general asymptotic solution of the radial Hamilton–Jacobi equation subject to the desired boundary conditions, from which the full dictionary can be subsequently derived. Contrary to the relativistic case, we find that a fully covariant construction of the asymptotic solution for running non-relativistic theories necessitates an expansion in the eigenfunctions of two commuting operators instead of one. This provides a covariant but non-relativistic grading of the expansion, according to the number of time derivatives.

  9. Connection of relativistic and nonrelativistic wave functions in the calculation of leptonic widths

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1984-01-01

    We generalize our previous JWKB relations between the relativistic qq-bar wave function at the origin and (a) the inverse density of states of the qq-bar system and (b) the nonrelativistic qq-bar wave function at the origin, to the case of potentials with a Coulomb singularity. We show that the square of the Bethe-Salpeter wave function at the the origin is given approximately for 1 - states by for M/sub n/>2m/sub q/, where F(v) = (4πα/sub s//3v)[1-exp(-4πα /sub s//3v)] -1 is the usual Coulomb factor and g(v)approx. =1 is associated with the lowest-order gluonic radiative corrections. We present numerical evidence for the remarkable accuracy of these relations, which have important implications for the use of nonrelativistic potential models to describe quarkonium systems. We also discuss some subtleties in the v and α/sub s/ dependence of corrections to leptonic widths

  10. Elementary quantum mechanics of the neutron with an electric dipole moment.

    Science.gov (United States)

    Baym, Gordon; Beck, D H

    2016-07-05

    The neutron, in addition to possibly having a permanent electric dipole moment as a consequence of violation of time-reversal invariance, develops an induced electric dipole moment in the presence of an external electric field. We present here a unified nonrelativistic description of these two phenomena, in which the dipole moment operator, [Formula: see text], is not constrained to lie along the spin operator. Although the expectation value of [Formula: see text] in the neutron is less than [Formula: see text] of the neutron radius, [Formula: see text], the expectation value of [Formula: see text] is of order [Formula: see text] We determine the spin motion in external electric and magnetic fields, as used in past and future searches for a permanent dipole moment, and show that the neutron electric polarizability, although entering the neutron energy in an external electric field, does not affect the spin motion. In a simple nonrelativistic model we show that the expectation value of the permanent dipole is, to lowest order, proportional to the product of the time-reversal-violating coupling strength and the electric polarizability of the neutron.

  11. A new formulation of non-relativistic diffeomorphism invariance

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Rabin, E-mail: rabin@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mitra, Arpita, E-mail: arpita12t@bose.res.in [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata-700 098 (India); Mukherjee, Pradip, E-mail: mukhpradip@gmail.com [Department of Physics, Barasat Government College, Barasat, West Bengal (India)

    2014-10-07

    We provide a new formulation of non-relativistic diffeomorphism invariance. It is generated by localising the usual global Galilean symmetry. The correspondence with the type of diffeomorphism invariant models currently in vogue in the theory of fractional quantum Hall effect has been discussed. Our construction is shown to open up a general approach of model building in theoretical condensed matter physics. Also, this formulation has the capacity of obtaining Newton–Cartan geometry from the gauge procedure.

  12. Comparison between relativistic, semirelativistic, and nonrelativistic approaches of quarkonium

    International Nuclear Information System (INIS)

    Semay, C.; Silvestre-Brac, B.

    1992-01-01

    We study the connections existing between relativistic, semirelativistic, and nonrelativistic potential models of quarkonium using an interaction composed of an attractive Coulomb potential and a confining power-law term. We show that the spectra of these very different models become nearly similar provided specific relations exist between the dimensionless parameters peculiar to each model. As our analysis is carried out by taking advantage of scaling laws, our results are applicable for a wide range of physical parameters

  13. On some solvable models in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Shabani, J.; Shayo, L.K.

    1985-11-01

    The theory of self-adjoint extensions is employed to generalize some previous results in non-relativistic quantum interactions. In particular, the Hamiltonian H=-Δ+V, where Δ is the Laplacian and the potential V consists of a strongly singular interaction, a Coulomb and a delta-shell interaction is studied. The spectral properties are discussed and phase shifts as well as low energy parameters are obtained. (author)

  14. Non-relativistic model of two-particle decay

    International Nuclear Information System (INIS)

    Dittrich, J.; Exner, P.

    1986-01-01

    A simple non-relativistic model of a spinless particle decaying into two lighter particles is treated in detail. It is similar to the Lee-model description of V-particle decay. Galilean covariance is formulated properly, by means of a unitary projective representation acting on the state space of the model. After separating the centre-of-mass motion the meromorphic structure of the reduced resolvent is deduced

  15. OPE convergence in non-relativistic conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)

    2015-12-09

    Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.

  16. Coupling constants and the nonrelativistic quark model with charmonium potential

    International Nuclear Information System (INIS)

    Chaichian, M.; Koegerler, R.

    1978-01-01

    Hadronic coupling constants of the vertices including charm mesons are calculated in a nonrelativistic quark model. The wave functions of the mesons which enter the corresponding overlap integrals are obtained from the charmonium picture as quark-antiquark bound state solutions of the Schroedinger equation. The model for the vertices takes into account in a dynamical way the SU 4 breakings through different masses of quarks and different wave functions in the overlap integrals. All hadronic vertices involving scalar, pseudoscalar, vector, pseudovector and tensor mesons are calculated up to an overall normalization constant. Regularities among the couplings of mesons and their radial excitations are observed: i) Couplings decrease with increasing order of radial excitations; ii) In general they change sign if a particle is replaced by its next radial excitation. The k-dependence of the vertices is studied. This has potential importance in explaining the unorthodox ratios in different decay channels. Having got the hadronic couplings radiative transitions are obtained with the current coupled to mesons and their recurrences. The resulting width values are smaller than those conventionally obtained in the naive quark model. The whole picture is only adequate for nonrelativistic configurations, as for the members of the charmonium- or of the UPSILON-family and most calculations have been done for transitions among charmed states. To see how far nonrelativistic concepts can be applied, couplings of light mesons are also considered. (author)

  17. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  18. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  19. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  20. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  1. Search for a neutron electric dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J [Rutherford Appleton Laboratory, Chilton (U.K.)

    1984-03-01

    To search for evidence of a breakdown of symmetry under the time reversal transformation, a magnetic resonance measurement is made to detect an electric dipole moment (EDM) of ultracold neutrons stored for periods approximately= 60s in the presence of a strong electric field. The measured neutron EDM is (0.3 +- 4.8) x 10/sup -25/ ecm.

  2. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  3. Dynamics of nonstationary dipole vortices

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nycander, J.

    1993-01-01

    The dynamics of tilted dipole vortices in the equivalent barotropic vorticity (or Hasegawa-Mima) equation is studied. A recent theory is compared with numerical simulations and found to describe the short time behavior of dipole vortices well. In the long time limit the dipoles are found to eithe...... disintegrate or relax toward a steady eastward propagating dipole vortex. This relaxation is a consequence of nonviscous enstrophy loss by the dipole vortex....

  4. Non-relativistic Bondi-Metzner-Sachs algebra

    Science.gov (United States)

    Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

    2017-09-01

    We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

  5. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  6. Non-relativistic scalar field on the quantum plane

    International Nuclear Information System (INIS)

    Jahan, A.

    2005-01-01

    We apply the coherent state approach to the non-commutative plane to check the one-loop finiteness of the two-point and four-point functions of a non-relativistic scalar field theory in 2+1 dimensions. We show that the two-point and four-point functions of the model are finite at one-loop level and one recovers the divergent behavior of the model in the limit θ->0 + by appropriate redefinition of the non-commutativity parameter

  7. Weyl consistency conditions in non-relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Grinstein, Benjamín [Department of Physics, University of California,San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2+1 dimensions with anisotropic scaling exponent z=2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem in higher dimensions.

  8. Short-time perturbation theory and nonrelativistic duality

    International Nuclear Information System (INIS)

    Whitenton, J.B.; Durand, B.; Durand, L.

    1983-01-01

    We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers

  9. H-particle stability in the nonrelativistic quark model

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1987-01-01

    The H particle with quark content (uuddss) is presented as a good candidate to be stable with respect to strong interactions. In the framework of a nonrelativistic potential model, the binding energy is calculated by a full dynamical approach using a resonating group trial wave function. The center-of-mass motion and the Pauli principle are correctly treated. Sophisticated baryon wave functions are employed and the equation of motion is solved with six coupled channels including radial excited baryon states. The effect of breaking SU(3)-flavor symmetry is discussed in detail

  10. The dressed nonrelativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Grebert, B.; Guillot, J.C.

    2005-01-01

    We consider a nonrelativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. Because of the translation invariance along the x 3 -axis, we consider the reduced Hamiltonian associated with the total momentum along the x 3 -axis and, after introducing an ultraviolet cutoff and an infrared regularization, we prove that the reduced Hamiltonian has a ground state if the coupling constant and the total momentum along the x 3 -axis are sufficiently small. Finally, we determine the absolutely continuous spectrum of the reduced Hamiltonian and we prove that the renormalized mass of the electron is greater than its bare one. (authors)

  11. Dipole-dipole dispersion interactions between neutrons

    OpenAIRE

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2016-01-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...

  12. Approach to the nonrelatiVistic scattering theory based on the causality superposition and unitarity principles

    International Nuclear Information System (INIS)

    Gajnutdinov, R.Kh.

    1983-01-01

    Possibility is studied to build the nonrelativistic scattering theory on the base of the general physical principles: causality, superposition, and unitarity, making no use of the Schroedinger formalism. The suggested approach is shown to be more general than the nonrelativistic scattering theory based on the Schroedinger equation. The approach is applied to build a model ofthe scattering theory for a system which consists of heavy nonrelativistic particles and a light relativistic particle

  13. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  14. ARIADNE - A Monte Carlo for QCD cascades in the colour dipole formulation

    International Nuclear Information System (INIS)

    Pettersson, U.

    1988-04-01

    We present a Monte Carlo program for generating QCD cascades, based on the colour dipole approximation. In this formulation the gluons are radiated from dipoles that are stretched from one colour charge to the corresponding anti-charge. The subsequent emission of gluons thus corresponds to the dipoles being split into smaller and smaller dipoles. This formulation automatically takes into account the angular ordering and the ordering in transverse momenta, and it also gives some nontrivial azimuthal effects. (author)

  15. Dipoles at rest

    International Nuclear Information System (INIS)

    Griffiths, D.J.

    1992-01-01

    In a world populated by magnetic monopoles (as well as ordinary electric charges), there are two kinds of electric dipoles: those due to separated electric charges, and those due to current loops of magnetic charge. Similarly, there are two kinds of magnetic dipoles: those due to separated magnetic monopoles, and those due to electric current loops. This paper derives the potentials and fields of each of the four dipole species, and calculates the force, torque, energy, momentum, and angular momentum of each type, when placed (at rest) in a static external field (which may itself be produced by electric charges and currents, magnetic charges and currents, or all of these). Some implications and applications of the various results are discussed

  16. Non-relativistic holography and singular black hole

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2009-01-01

    We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton-Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza-Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.

  17. Automating dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2008-07-01

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)

  18. Automating dipole subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-07-15

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)

  19. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  20. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  1. Dipole-dipole dispersion interactions between neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)

    2017-06-15

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)

  2. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  3. Top down electroweak dipole operators

    Science.gov (United States)

    Fuyuto, Kaori; Ramsey-Musolf, Michael

    2018-06-01

    We derive present constraints on, and prospective sensitivity to, the electric dipole moment (EDM) of the top quark (dt) implied by searches for the EDMs of the electron and nucleons. Above the electroweak scale v, the dt arises from two gauge invariant operators generated at a scale Λ ≫ v that also mix with the light fermion EDMs under renormalization group evolution at two-loop order. Bounds on the EDMs of first generation fermion systems thus imply bounds on |dt |. Working in the leading log-squared approximation, we find that the present upper bound on |dt | is 10-19 e cm for Λ = 1 TeV, except in regions of finely tuned cancellations that allow for |dt | to be up to fifty times larger. Future de and dn probes may yield an order of magnitude increase in dt sensitivity, while inclusion of a prospective proton EDM search may lead to an additional increase in reach.

  4. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory.

    Science.gov (United States)

    Amin, Elizabeth A; Truhlar, Donald G

    2008-01-01

    We present nonrelativistic and relativistic benchmark databases (obtained by coupled cluster calculations) of 10 Zn-ligand bond distances, 8 dipole moments, and 12 bond dissociation energies in Zn coordination compounds with O, S, NH3, H2O, OH, SCH3, and H ligands. These are used to test the predictions of 39 density functionals, Hartree-Fock theory, and seven more approximate molecular orbital theories. In the nonrelativisitic case, the M05-2X, B97-2, and mPW1PW functionals emerge as the most accurate ones for this test data, with unitless balanced mean unsigned errors (BMUEs) of 0.33, 0.38, and 0.43, respectively. The best local functionals (i.e., functionals with no Hartree-Fock exchange) are M06-L and τ-HCTH with BMUEs of 0.54 and 0.60, respectively. The popular B3LYP functional has a BMUE of 0.51, only slightly better than the value of 0.54 for the best local functional, which is less expensive. Hartree-Fock theory itself has a BMUE of 1.22. The M05-2X functional has a mean unsigned error of 0.008 Å for bond lengths, 0.19 D for dipole moments, and 4.30 kcal/mol for bond energies. The X3LYP functional has a smaller mean unsigned error (0.007 Å) for bond lengths but has mean unsigned errors of 0.43 D for dipole moments and 5.6 kcal/mol for bond energies. The M06-2X functional has a smaller mean unsigned error (3.3 kcal/mol) for bond energies but has mean unsigned errors of 0.017 Å for bond lengths and 0.37 D for dipole moments. The best of the semiempirical molecular orbital theories are PM3 and PM6, with BMUEs of 1.96 and 2.02, respectively. The ten most accurate functionals from the nonrelativistic benchmark analysis are then tested in relativistic calculations against new benchmarks obtained with coupled-cluster calculations and a relativistic effective core potential, resulting in M05-2X (BMUE = 0.895), PW6B95 (BMUE = 0.90), and B97-2 (BMUE = 0.93) as the top three functionals. We find significant relativistic effects (∼0.01 Å in bond lengths, ∼0

  5. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  6. Impurity and quaternions in nonrelativistic scattering from a quantum memory

    International Nuclear Information System (INIS)

    Margetis, Dionisios; Grillakis, Manoussos G

    2008-01-01

    Models of quantum computing rely on transformations of the states of a quantum memory. We study mathematical aspects of a model proposed by Wu in which the memory state is changed via the scattering of incoming particles. This operation causes the memory content to deviate from a pure state, i.e. induces impurity. For nonrelativistic particles scattered from a two-state memory and sufficiently general interaction potentials in (1+1) dimensions, we express impurity in terms of quaternionic commutators. In this context, pure memory states correspond to null hyperbolic quaternions. In the case with point interactions, the scattering process amounts to appropriate rotations of quaternions in the frequency domain. Our work complements previous analyses by Margetis and Myers (2006 J. Phys. A 39 11567)

  7. Classical particle limit of non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zucchini, R.

    1984-01-01

    We study the classical particle limit of non-relativistic quantum mechanics. We show that the unitary group describing the evolution of the quantum fluctuation around any classical phase orbit has a classical limit as h → 0 in the strong operator topology for a very large class of time independent scalar and vector potentials, which in practice covers all physically interesting cases. We also show that the mean values of the quantum mechanical position and velocity operators on suitable states, obtained by time evolution of the product of a Weyl operator centred around the large coordinates and momenta and a fixed n-independent wave function, converge to the solution of the classical equations with initial data as h → 0 for a broad class of repulsive interactions

  8. Differential regularization of a non-relativistic anyon model

    International Nuclear Information System (INIS)

    Freedman, D.Z.; Rius, N.

    1993-07-01

    Differential regularization is applied to a field theory of a non-relativistic charged boson field φ with λ(φ * φ) 2 self-interaction and coupling to a statistics-changing 0(1) Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the φ * φ * φφ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the β-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to β(λ, e) vanish, and β(λ, ε) itself vanishes when the ''self-dual'' condition relating λ to the gauge coupling e is imposed. (author). 12 refs, 1 fig

  9. Virial Theorem for Nonrelativistic Quantum Fields in D Spatial Dimensions

    International Nuclear Information System (INIS)

    Lin, Chris L.; Ordóñez, Carlos R.

    2015-01-01

    The virial theorem for nonrelativistic complex fields in D spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in low-dimensional systems. The potential appearance of a Jacobian J due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the J=1 case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, J=1, is not natural, and the generalization to the case J≠1 is briefly presented

  10. Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation

    DEFF Research Database (Denmark)

    Popov, Vladislav; Lavrinenko, Andrei; Novitsky, Andrey

    2016-01-01

    that the zeroth-, first-, and second-order approximations of the operator effective medium theory correspond to electric dipoles, chirality, and magnetic dipoles plus electric quadrupoles, respectively. We discover that the spatially dispersive bianisotropic effective medium obtained in the second...

  11. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    Science.gov (United States)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  12. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  13. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  14. Experiments with dipole antennas

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2009-01-01

    Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.

  15. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  16. The dipole representation of vector meson electroproduction beyond leading twist

    International Nuclear Information System (INIS)

    Besse, A.; Szymanowski, L.; Wallon, S.

    2013-01-01

    We link the recent computation beyond leading twist of the impact factor of the transition γ T ⁎ →ρ T performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura–Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the ρ-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura–Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.

  17. Visualizing dipole radiation

    International Nuclear Information System (INIS)

    Girwidz, Raimund V

    2016-01-01

    The Hertzian dipole is fundamental to the understanding of dipole radiation. It provides basic insights into the genesis of electromagnetic waves and lays the groundwork for an understanding of half-wave antennae and other types. Equations for the electric and magnetic fields of such a dipole can be derived mathematically. However these are very abstract descriptions. Interpreting these equations and understanding travelling electromagnetic waves are highly limited in that sense. Visualizations can be a valuable supplement that vividly present properties of electromagnetic fields and their propagation. The computer simulation presented below provides additional instructive illustrations for university lectures on electrodynamics, broadening the experience well beyond what is possible with abstract equations. This paper refers to a multimedia program for PCs, tablets and smartphones, and introduces and discusses several animated illustrations. Special features of multiple representations and combined illustrations will be used to provide insight into spatial and temporal characteristics of field distributions—which also draw attention to the flow of energy. These visualizations offer additional information, including the relationships between different representations that promote deeper understanding. Finally, some aspects are also illustrated that often remain unclear in lectures. (paper)

  18. Dipole defects in beryl

    International Nuclear Information System (INIS)

    Holanda, B A; Cordeiro, R C; Blak, A R

    2010-01-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be 3 Al 2 Si 6 O 18 ) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  19. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  20. Breakdown of the few-level approximation in collective systems

    International Nuclear Information System (INIS)

    Kiffner, M.; Evers, J.; Keitel, C. H.

    2007-01-01

    The validity of the few-level approximation in dipole-dipole interacting collective systems is discussed. As an example system, we study the archetype case of two dipole-dipole interacting atoms, each modeled by two complete sets of angular momentum multiplets. We establish the breakdown of the few-level approximation by first proving the intuitive result that the dipole-dipole induced energy shifts between collective two-atom states depend on the length of the vector connecting the atoms, but not on its orientation, if complete and degenerate multiplets are considered. A careful analysis of our findings reveals that the simplification of the atomic level scheme by artificially omitting Zeeman sublevels in a few-level approximation generally leads to incorrect predictions. We find that this breakdown can be traced back to the dipole-dipole coupling of transitions with orthogonal dipole moments. Our interpretation enables us to identify special geometries in which partial few-level approximations to two- or three-level systems are valid

  1. AutoDipole - Automated generation of dipole subtraction terms

    International Nuclear Information System (INIS)

    Hasegawa, K.; Uwer, P.

    2009-11-01

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  2. AutoDipole - Automated generation of dipole subtraction terms

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Uwer, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-11-15

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for bothmassless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. (orig.)

  3. The AGL equation from the dipole picture

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit

  4. Dynamic dipole polarizabilities of the Li atom and the Be+ ion

    International Nuclear Information System (INIS)

    Tang Liyan; Yan Zongchao; Shi Tingyun; Mitroy, J.

    2010-01-01

    The dynamic dipole polarizabilities for Li atoms and Be + ions in the 2 2 S and 2 2 P states are calculated using the variational method with a Hylleraas basis. The present polarizabilities represent the definitive values in the nonrelativistic limit. Corrections due to relativistic effects are also estimated. Analytic representations of the polarizabilities for frequency ranges encompassing the n=3 excitations are presented. The recommended polarizabilities for 7 Li and 9 Be + are 164.11±0.03 a 0 3 and 24.489±0.004 a 0 3 , respectively.

  5. Radiation from a pulsed dipole source in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V. G.; Petrov, E. Yu.; Pikulin, V. D.; Sutyagina, D. A.

    2006-01-01

    The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources

  6. Sensitivity of the electric dipole polarizability to the neutron skin thickness in {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Roca-Maza, X.; Agrawal, B. K.; Colo, G.; Nazarewicz, W.; Paar, N.; Piekarewicz, J.; Reinhard, P.-G.; Vretenar, D. [INFN, sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano (Italy); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Institute of Theoretical Physics, University of Warsaw, Hoza 69, PL-00-681 Warsaw (Poland); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia); Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Institut fuer Theoretische Physik II, Universitaet Erlangen-Nuernberg, Staudtstrasse 7, D-91058 Erlangen (Germany); Physics Department, Faculty of Science, University of Zagreb, Zagreb (Croatia)

    2012-10-20

    The static dipole polarizability, {alpha}{sub D}, in {sup 208}Pb has been recently measured with highresolution via proton inelastic scattering at the Research Center for Nuclear Physics (RCNP) [1]. This observable is thought to be intimately connected with the neutron skin thickness, r{sub skin}, of the same nucleus and, more fundamentally, it is believed to be associated with the density dependence of the nuclear symmetry energy. The impact of r{sub skin} on {alpha}{sub D} in {sup 208}Pb is investigated and discussed on the basis of a large and representative set of relativistic and non-relativistic nuclear energy density functionals (EDF) [2].

  7. A signed particle formulation of non-relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  8. Nonrelativistic Schroedinger equation in quasi-classical theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1987-01-01

    The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials

  9. Relativistic form factors for clusters with nonrelativistic wave functions

    International Nuclear Information System (INIS)

    Mitra, A.N.; Kumari, I.

    1977-01-01

    Using a simple variant of an argument employed by Licht and Pagnamenta (LP) on the effect of Lorentz contraction on the elastic form factors of clusters with nonrelativistic wave functions, it is shown how their result can be generalized to inelastic form factors so as to produce (i) a symmetrical appearance of Lorentz contraction effects in the initial and final states, and (ii) asymptotic behavior in accord with dimensional scaling theories. A comparison of this result with a closely analogous parametric form obtained by Brodsky and Chertok from a propagator chain model leads, with plausible arguments, to the conclusion of an effective mass M for the cluster, with M 2 varying as the number n of the quark constituents, instead of as n 2 . A further generalization of the LP formula is obtained for an arbitrary duality-diagram vertex, again with asymptotic behavior in conformity with dimensional scaling. The practical usefulness of this approach is emphasized as a complementary tool to those of high-energy physics for phenomenological fits to data up to moderate values of q 2

  10. Bottom mass from nonrelativistic sum rules at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Stahlhofen, Maximilian

    2013-01-15

    We report on a recent determination of the bottom quark mass from nonrelativistic (large-n) {Upsilon} sum rules with renormalization group improvement (RGI) at next-to-next-to-leading logarithmic (NNLL) order. The comparison to previous fixed-order analyses shows that the RGI computed in the vNRQCD framework leads to a substantial stabilization of the theoretical sum rule moments with respect to scale variations. A single moment fit (n=10) to the available experimental data yields M{sub b}{sup 1S}=4.755{+-}0.057{sub pert}{+-}0.009{sub {alpha}{sub s}}{+-}0.003{sub exp} GeV for the bottom 1S mass and anti m{sub b}(anti m{sub b})=4.235{+-}0.055{sub pert}{+-}0.003{sub exp} GeV for the bottom MS mass. The quoted uncertainties refer to the perturbative error and the uncertainties associated with the strong coupling and the experimental input.

  11. Holographic energy loss in non-relativistic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir; Farahbodnia, Mitra [Shahrood University of Technology, Physics Department, P.O. Box 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-03-15

    In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius l with angular velocity ω in theories with general dynamical exponent z and hyperscaling violation exponent θ. It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown how the total energy loss rate depends non-trivially on two characteristic exponents (z,θ). We find that at zero temperature there is a special radius l{sub c} where the energy loss is independent of different values of (θ,z). Also at zero temperature, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We find that the energy loss of the particle decreases by increasing θ and z. We note that, unlike in the zero temperature, there is no special radius l{sub c} at finite temperature case. (orig.)

  12. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  13. Neutron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Mischke, R.E.

    2003-01-01

    The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study

  14. Non-relativistic correspondence of Dirac equation with external electromagnetic field and space-time torsion

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Dias Junior, Mario Marcio

    2013-01-01

    Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S μ . The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S 0 is constant and is the unique non-vanishing term of S μ . This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)

  15. Nonlinear de Broglie waves and the relation between relativistic and nonrelativistic solitons

    International Nuclear Information System (INIS)

    Barut, A.O.; Baby, B.V.

    1988-07-01

    It is shown that the well-known envelope soliton and kink solutions of the nonlinear Schroedinger equation are the nonrelativistic limit of the corresponding solutions of the nonlinear Klein-Gordon equation. 34 refs

  16. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    International Nuclear Information System (INIS)

    Voitkiv, A.B

    2007-01-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z a ∼ a is the atomic nuclear charge

  17. Particle production in high energy collisions and the non-relativistic quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Nyiri, J.

    1981-07-01

    The present review deals with multiparticle production processes at high energies using ideas which originate in the non-relativistic quark model. Consequences of the approach are considered and they are compared with experimental data. (author)

  18. Magnetic dipole moment of a moving electric dipole

    OpenAIRE

    Hnizdo, V.

    2012-01-01

    The current density of a moving electric dipole is expressed as the sum of polarization and magnetization currents. The magnetic field due to the latter current is that of a magnetic dipole moment that is consistent with the relativistic transformations of the polarization and magnetization of macroscopic electrodynamics.

  19. Collisional transfer of coherence by electric dipole-dipole interaction

    OpenAIRE

    Gough , W.

    1983-01-01

    An expression is derived for the contribution from dipole-dipole interaction to the intensity of sensitized fluorescence, from the results of a theory by Chiu. Tensor operator methods are used. The degree of polarization is deduced for certain particular cases.

  20. Quantum electrodynamics with nonrelativistic sources. V. Electromagnetic field correlations and intermolecular interactions between molecules in either ground or excited states

    International Nuclear Information System (INIS)

    Power, E.A.; Thirunamachandran, T.

    1993-01-01

    Spatial correlations between electromagnetic fields arising from neutral sources with electric-dipole transition moments are calculated using nonrelativistic quantum electrodynamics in the multipolar formalism. Expressions for electric-electric, magnetic-magnetic, and electric-magnetic correlation functions at two points r and r' are given for a source molecule in either a ground or an excited state. In contrast to the electric-electric and magnetic-magnetic cases there are no electric-magnetic correlations for a ground-state molecule. For an excited molecule the downward transitions contribute additional terms which have modulating factors depending on (r-r')/λ. From these correlation functions electric and magnetic energy densities are found by setting r=r'. These energy densities are then used in a response formalism to calculate intermolecular energy shifts. In the case of two ground-state molecules this leads to the Casimir-Polder potential. However, for a pair of molecules, one or both excited, there are additional terms arising from downward transitions. An important feature of these energies is that they exhibit an R -2 dependence for large intermolecular separations R. This dependence is interpreted in terms of the Poynting vector, which itself can be obtained by setting r=r' in the electric-magnetic correlation function

  1. Magnetic field of a dipole and the dipole-dipole interaction

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    With a data-acquisition system and sensors commercially available, it is easy to determine magnetic fields produced by permanent magnets and to study the dipole-dipole interaction for different separations and angular positions of the magnets. For sufficiently large distances, the results confirm the 1/R 3 law for the magnetic field and the 1/R 4 law for the interaction force between two dipoles, as well as their angular dependences

  2. Time as an Observable in Nonrelativistic Quantum Mechanics

    Science.gov (United States)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  3. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  4. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  5. Mapping the HISS Dipole

    International Nuclear Information System (INIS)

    McParland, C.; Bieser, F.

    1984-01-01

    The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow

  6. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  7. Approximate Likelihood

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...

  8. Diophantine approximation

    CERN Document Server

    Schmidt, Wolfgang M

    1980-01-01

    "In 1970, at the U. of Colorado, the author delivered a course of lectures on his famous generalization, then just established, relating to Roth's theorem on rational approxi- mations to algebraic numbers. The present volume is an ex- panded and up-dated version of the original mimeographed notes on the course. As an introduction to the author's own remarkable achievements relating to the Thue-Siegel-Roth theory, the text can hardly be bettered and the tract can already be regarded as a classic in its field."(Bull.LMS) "Schmidt's work on approximations by algebraic numbers belongs to the deepest and most satisfactory parts of number theory. These notes give the best accessible way to learn the subject. ... this book is highly recommended." (Mededelingen van het Wiskundig Genootschap)

  9. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  10. On the nonperturbative foundations of the dipole picture

    Energy Technology Data Exchange (ETDEWEB)

    Ewerz, C. [Milano Univ., INFN, Dipt. di Fisica (Italy); ECT, Villazzano (Trento) (Italy); Nachtmannc, B.O. [Heidelberg Univ., Institut fur Theoretische Physik (Germany)

    2005-07-01

    Starting from a completely non-perturbative formulation of photon-proton scattering we have identified the assumptions and approximations that are needed in order to obtain the dipole picture at high energies. At the same time we have found corrections to the dipole picture which can become large at small photon virtualities. We consider it as an important task for the future to investigate in detail the validity of the assumptions, the accuracy of the approximations, and the size of the corrections. In our opinion these issues should be addressed in order to put the results obtained in the framework of the dipole picture on solid ground. The framework developed here should be suitable for studying the effects caused by the non-existence of a mass-shell for quarks, and for using non-perturbative quark propagators, obtained for example from Dyson-Schwinger equations or from lattice simulations.

  11. The Nonrelativistic Scattering States of the Deng-Fan Potential

    Directory of Open Access Journals (Sweden)

    Bentol Hoda Yazarloo

    2013-01-01

    Full Text Available The approximately analytical scattering state solution of the Schrodinger equation is obtained for the Deng-Fan potential by using an approximation scheme to the centrifugal term. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated. We consider and verify two special cases: the l=0 and the s-wave Hulthén potential.

  12. Continuous millennial decrease of the Earth's magnetic axial dipole

    Science.gov (United States)

    Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe

    2018-01-01

    Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.

  13. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  14. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  15. Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements

    International Nuclear Information System (INIS)

    Ramos, A.F.; Pyper, N.C.; Malli, G.L.

    1988-01-01

    Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign

  16. Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium

    NARCIS (Netherlands)

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to

  17. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  18. Dipole Bands in 196Hg

    International Nuclear Information System (INIS)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-01-01

    High spin states in 196 Hg have been populated in the 198 Pt(α,6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  19. A Note on the Dipole Coordinates

    OpenAIRE

    Kageyama, Akira; Sugiyama, Tooru; Watanabe, Kunihiko; Sato, Tetsuya

    2004-01-01

    A couple of orthogonal coordinates for dipole geometry are proposed for numerical simulations of plasma geophysics in the Earth's dipole magnetic field. These coordinates have proper metric profiles along field lines in contrast to the standard dipole coordinate system that is commonly used in analytical studies for dipole geometry.

  20. Heavy-to-light form factors for non-relativistic bound states

    International Nuclear Information System (INIS)

    Bell, G.; Feldmann, Th.

    2007-01-01

    We investigate transition form factors between non-relativistic QCD bound states at large recoil energy. Assuming the decaying quark to be much heavier than its decay product, the relativistic dynamics can be treated according to the factorization formula for heavy-to-light form factors obtained from the heavy-quark expansion in QCD. The non-relativistic expansion determines the bound-state wave functions to be Coulomb-like. As a consequence, one can explicitly calculate the so-called 'soft-overlap' contribution to the transition form factor

  1. On the question of symmetries in nonrelativistic diffeomorphism-invariant theories

    Science.gov (United States)

    Banerjee, Rabin; Gangopadhyay, Sunandan; Mukherjee, Pradip

    2017-07-01

    A novel algorithm is provided to couple a Galilean-invariant model with curved spatial background by taking nonrelativistic limit of a unique minimally coupled relativistic theory, which ensures Galilean symmetry in the flat limit and canonical transformation of the original fields. That the twin requirements are fulfilled is ensured by a new field, the existence of which was demonstrated recently from Galilean gauge theory. The ambiguities and anomalies concerning the recovery of Galilean symmetry in the flat limit of spatial nonrelativistic diffeomorphic theories, reported in the literature, are focused and resolved from a new angle.

  2. Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region

    Science.gov (United States)

    Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.

    2014-11-01

    The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.

  3. A simple approximation for the current-voltage characteristics of high-power, relativistic diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl, E-mail: cekdahl@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-06-15

    A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.

  4. On the Effect of Dipole-Dipole Interactions on the Quantum Statistics of Surface Plasmons in Multiparticle Spaser Systems

    Science.gov (United States)

    Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.

    2018-04-01

    The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.

  5. Atom-Pair Kinetics with Strong Electric-Dipole Interactions.

    Science.gov (United States)

    Thaicharoen, N; Gonçalves, L F; Raithel, G

    2016-05-27

    Rydberg-atom ensembles are switched from a weakly to a strongly interacting regime via adiabatic transformation of the atoms from an approximately nonpolar into a highly dipolar quantum state. The resultant electric dipole-dipole forces are probed using a device akin to a field ion microscope. Ion imaging and pair-correlation analysis reveal the kinetics of the interacting atoms. Dumbbell-shaped pair-correlation images demonstrate the anisotropy of the binary dipolar force. The dipolar C_{3} coefficient, derived from the time dependence of the images, agrees with the value calculated from the permanent electric-dipole moment of the atoms. The results indicate many-body dynamics akin to disorder-induced heating in strongly coupled particle systems.

  6. Upper and lower bounds in nonrelativistic scattering theory

    International Nuclear Information System (INIS)

    Darewych, J.W.; Pooran, R.

    1980-01-01

    We consider the problem of determining rigorous upper and lower bounds to the difference between the exact and approximate scattering phase shift, for the case of central potential scattering. The present work is based on the Kato identities and the phase-amplitude formalism of potential scattering developed by Calogero. For nonstationary approximations, a new first-order (in small quantities) bound is established which is particularly useful for partial waves other than s waves. Similar, but second-order, bounds are established for approximations which are stationary. Some previous results, based on the use of the Lippman--Schwinger equation are generalized, and some new bounds are established. These are illustrated, and compared to previous results, by a simple example. We discuss the advantages and disadvantages of the present results in comparison to those derived previously. Finally, we present the generalization of some of the present formalism to the case of many-channel scattering involving many-particle systems, and discuss some of the difficulties of their practical implementation

  7. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, Mirco [Universidad de Huelva, Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Huelva (Spain)

    2016-03-15

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv{sub rel} right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv{sub rel} right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv{sub rel} right angle {sub nr} coinciding with the large x expansion of left angle σv{sub rel} right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v{sub rel}, showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  8. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  9. Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

    International Nuclear Information System (INIS)

    Cannoni, Mirco

    2016-01-01

    We find an exact formula for the thermally averaged cross section times the relative velocity left angle σv rel right angle with relativistic Maxwell-Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x = m/T >> 1 directly gives the nonrelativistic limit of left angle σv rel right angle, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s) in powers of the nonrelativistic relative velocity vr. We show the correct invariant procedure that gives the nonrelativistic average left angle σv rel right angle nr coinciding with the large x expansion of left angle σv rel right angle in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative v rel , showing the uselessness of the Moeller velocity and further elucidating the conceptual and numerical inconsistencies related with its use. (orig.)

  10. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  11. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  12. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  13. Derivation of the dipole map

    International Nuclear Information System (INIS)

    Ali, Halima; Punjabi, Alkesh; Boozer, Allen

    2004-01-01

    In our method of maps [Punjabi et al., Phy. Rev. Lett. 69, 3322 (1992), and Punjabi et al., J. Plasma Phys. 52, 91 (1994)], symplectic maps are used to calculate the trajectories of magnetic field lines in divertor tokamaks. Effects of the magnetic perturbations are calculated using the low MN map [Ali et al., Phys. Plasmas 11, 1908 (2004)] and the dipole map [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. The dipole map is used to calculate the effects of externally located current carrying coils on the trajectories of the field lines, the stochastic layer, the magnetic footprint, and the heat load distribution on the collector plates in divertor tokamaks [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. Symplectic maps are general, efficient, and preserve and respect the Hamiltonian nature of the dynamics. In this brief communication, a rigorous mathematical derivation of the dipole map is given

  14. Coupled-resonator waveguide perfect transport single-photon by interatomic dipole-dipole interaction

    Science.gov (United States)

    Yan, Guo-an; Lu, Hua; Qiao, Hao-xue; Chen, Ai-xi; Wu, Wan-qing

    2018-06-01

    We theoretically investigate single-photon coherent transport in a one-dimensional coupled-resonator waveguide coupled to two quantum emitters with dipole-dipole interactions. The numerical simulations demonstrate that the transmission spectrum of the photon depends on the two atoms dipole-dipole interactions and the photon-atom couplings. The dipole-dipole interactions may change the dip positions in the spectra and the coupling strength may broaden the frequency band width in the transmission spectrum. We further demonstrate that the typical transmission spectra split into two dips due to the dipole-dipole interactions. This phenomenon may be used to manufacture new quantum waveguide devices.

  15. A quantum theory of the self-energy of non-relativistic fermions and of the Coulomb-Yukawa force acting between them

    International Nuclear Information System (INIS)

    Ernst, V.

    1978-01-01

    The idea of the systematic Weisskopf-Wigner approximation as used sporadically in atomic physics and quantum optics, is extended here to the interaction of a field of non-relativistic fermions with a field of relativistic bosons. It is shown that the usual (non-existing) interaction Hamiltonian of this system can be written as a sum of a countable number of self-adjoint and bounded partial Hamiltonians. The system of these Hamiltonians defines the order hierarchy of the present approximation scheme. To demonstrate its physical utility it is shown that in a certain order it provides satisfactory quantum theory of the 'self-energy' of the fermions under discussion. This is defined as the binding energy of bosons bound to the fermions and building up the latter's 'individual Coulomb or Yukawa fields' in the sense of expectation values of the corresponding field operator. In states of more than one fermion the bound photons act as a mediating agent between the fermions; this mechanism closely resembles the Coulomb or Yukawa 'forces' used in conventional non-relativistic quantum mechanics. (author)

  16. The dipole representation of vector meson electroproduction beyond leading twist

    Energy Technology Data Exchange (ETDEWEB)

    Besse, A. [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); Szymanowski, L. [National Center for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S., E-mail: wallon@th.u-psud.fr [LPT, Universite Paris-Sud, CNRS, 91405, Orsay (France); UPMC Univ. Paris 06, Faculte de Physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2013-02-01

    We link the recent computation beyond leading twist of the impact factor of the transition {gamma}{sub T}{sup Low-Asterisk }{yields}{rho}{sub T} performed in the light-cone collinear approach, to the dipole picture by expressing the hard part of the process through its Fourier transform in coordinate space. We show that in the Wandzura-Wilczek approximation the impact factor up to twist 3 factorises in the wave function of the photon combined with the distribution amplitudes of the {rho}-meson and the colour dipole scattering amplitude with the t-channel gluons. We show also that beyond the Wandzura-Wilczek approximation, the hard contribution of the amplitude still exhibits the signature of the interaction of a single colour dipole with the t-channel gluons. This result allows a phenomenological approach of the helicity amplitudes of the leptoproduction of vector meson, by combining our results to a dipole/target scattering amplitude model.

  17. Raising the last LEP dipole

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.

  18. Locating a buried magnetic dipole

    Energy Technology Data Exchange (ETDEWEB)

    Caffey, T.W.H.

    1977-01-01

    The theoretical basis and required computations for locating a buried magnetic dipole are outlined. The results are compared with measurements made with a tiltable coil lowered to a depth of 20 m in a vertical borehole within a three-layered earth. this work has application to the rescue of trapped miners. 3 figures, 1 table. (RWR)

  19. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  20. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  1. The Collider dipole magnet program

    International Nuclear Information System (INIS)

    Baldi, R.W.; Bailey, R.; Bever, D.; Bogart, L.; Gigg, G.; Packer, M.; Page, L.; Stranberg, N.

    1991-01-01

    The Superconducting Super Collider will consist of more large superconducting magnets than have been built to date. Over 12,000 superconducting magnets are required and more than 8,000 will be Collider dipoles. The dipole magnet program is on the critical path of the project and requires the optimized utilization of the Nation's resources - National Laboratories, Universities and Industry. General Dynamics and Westinghouse Electric Corporation have been chosen as the Leader and Follower companies for the design of producible magnets and the manufacturing of the SSC dipoles. Industry has the necessary experience, skills and facilities required to produce reliable and cost effective dipole magnets. At peak production, 10 CDMs per day, very large quantities (nearly 130 metric tonnes/day) of materials will have to be procured from companies nationwide and fabricated into defect-free magnets. A key element of the SSCL's strategy to produce the most efficient CDM program is to employ the Leader-Follower approach, with the Leader transferring technology from the laboratories to the Leader's facility, fully integrating the Follower in the producibility and tooling/factory design efforts, and assisting the Follower in magnet qualification tests. General Dynamics is ready to help build America's most powerful research tool. Management is in place, the facilities are ready for activation and resources are available for immediate assignment

  2. A Tale of Two Dipoles

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach

    2006-01-01

    A number of antenna topics may be treated by studying just two parallel, closely spaced electrical dipoles. They form an array and they may be coupled to form a single antenna with one port, or coupled through a coupling network to form a multiport antenna. The situations discussed are the creation...

  3. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  4. Dipole rescattering and the nuclear structure function

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. [Depto de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, SP (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Navarra, F. S.; Oliveira, E. G. [Instituto de Fisica, Universidade de Sao Paulo Rua do Matao, Travessa R, 187, 05508-090 Sao Paulo, SP (Brazil)

    2013-03-25

    In the framework of the dipole model, we study the effects of the dipole multiple scatterings in a nuclear target and compute the nuclear structure function. We compare different unitarization schemes and confront our results with the E665 data.

  5. Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills

    Science.gov (United States)

    Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin

    2017-09-01

    We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.

  6. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  7. Vacuum electron acceleration by coherent dipole radiation

    International Nuclear Information System (INIS)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-01-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. copyright 1999 The American Physical Society

  8. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  9. Dipole-sheet multipole magnets for accelerators

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1993-01-01

    The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly

  10. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    Directory of Open Access Journals (Sweden)

    N. Nakatsuka

    2017-05-01

    Full Text Available The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (O20+Au and a dominant isoscalar probe (O20+α were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1− states with large isovector dipole strengths at energies of 5.36(5 MeV (11− and 6.84(7 MeV (12− were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32% (11− and 0.67(12% (12−, respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  11. Dynamics of a nonlinear dipole vortex

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.

    1995-01-01

    A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...

  12. Formation of dislocation dipoles in irradiated graphite

    International Nuclear Information System (INIS)

    Niwase, Keisuke

    2005-01-01

    Recently, we have proposed a dislocation dipole accumulation model to explain the irradiation-induced amorphization of graphite. However, the structure of dislocation dipole in the hexagonal networks is still an open question at the atomic-level. In this paper, we propose a possible formation process of the dislocation dipole

  13. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  14. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  15. Approximate, analytic solutions of the Bethe equation for charged particle range

    OpenAIRE

    Swift, Damian C.; McNaney, James M.

    2009-01-01

    By either performing a Taylor expansion or making a polynomial approximation, the Bethe equation for charged particle stopping power in matter can be integrated analytically to obtain the range of charged particles in the continuous deceleration approximation. Ranges match reference data to the expected accuracy of the Bethe model. In the non-relativistic limit, the energy deposition rate was also found analytically. The analytic relations can be used to complement and validate numerical solu...

  16. Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->

    Science.gov (United States)

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2008-05-01

    By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

  17. Models of non-relativistic quantum gravity: the good, the bad and the healthy

    CERN Document Server

    Blas, Diego; Sibiryakov, Sergey

    2011-01-01

    Horava's proposal for non-relativistic quantum gravity introduces a preferred time foliation of space-time which violates the local Lorentz invariance. The foliation is encoded in a dynamical scalar field which we call `khronon'. The dynamics of the khronon field is sensitive to the symmetries and other details of the particular implementations of the proposal. In this paper we examine several consistency issues present in three non-relativistic gravity theories: Horava's projectable theory, the healthy non-projectable extension, and a new extension related to ghost condensation. We find that the only model which is free from instabilities and strong coupling is the non-projectable one. We elaborate on the phenomenology of the latter model including a discussion of the couplings of the khronon to matter. In particular, we obtain the parameters of the post-Newtonian expansion in this model and show that they are compatible with current observations.

  18. Magnetisation of magnetite nanoparticles medium with dipol-dipol interaction

    International Nuclear Information System (INIS)

    Ali-zade, R. A.

    2005-01-01

    Full text: Magnetisation expression for magnetite nanoparticles medium with dipo-dipol interaction has been obtained. We suggested, that energy magnetic dipol-dipol interaction of magnetite nanopaticles is determined by: E d-d = - m 2 /4πμ 0 r 3 (cth x -1/x) 2 where x=mH/kT. This expression has been substituted in statistical sum of magnetite nanoparticles medium. Obtained statistical sum consists the production of two statistical sums. The first statistical sum described non-interacting magnetite nanoparticle medium and from this is obtained Langevan equation. Second statistical sum is: Z 2 -∫exp(Σm 2 /4π 0 r 3 (cth x -1/x) 2 ) dΩ 2 . The second statistical sum has been expanded in Taylor's set and taken into consideration first two terms. Integration has been carried out over all volume. In this case take into account that, number twice interactions of magnetite nanoparticles in unit volume is equal to N(N-1)/2 at N>>1 to N 2 /2. We obtain expressions for magnetisation and initial magnetic susceptibility of interacting magnetite nanoparticles medium take into account that Φ=-kT ln Z, M=-dΦ/dH, χ=dM/dH: M=M Sφm (cth x -1/x)+ 1/3 M S 2 φ m 2 (1μ 0 H) ln(VM S /kT).(cth x -1/x)(-xcsch 2 x+1/x) χ 0 =1/3 (m/kT)+ 1/27 M S 2 φ m 2 (1μ 0 )ln(VM S /kT).(m/kT) 2 . Second term in the magnetisation is sufficient at weak and middle magnetic fields. At large magnetic fields, it leads to zero. The second term of magnetisation has maximum at x=1.566. The values of experimental and calculated magnetic field corresponding to magnetisation maximum for magnetite nanoparticles medium (mean diameter of nanoparticle is 9.4 nm) are 1.19 10 4 A/m and 1.25 10 4 A/m respectively. Magnetic dipol-dipol interaction influence to magnetisation of magnetite nanoparticles. Magnetite nanoparticles lined along external magnetic fields line and formatted chains. Magnetisation of medium occurs by the 'parallel' mechanism method magnetisation of chains

  19. Bound Chains of Tilted Dipoles in Layered Systems

    DEFF Research Database (Denmark)

    G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.

    2012-01-01

    of an external eletric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic...... oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account....

  20. On dipole interaction of the oxcillator with a scalar field

    International Nuclear Information System (INIS)

    Razumov, A.V.; Taranov, A.Yu.

    1979-01-01

    Dipole interaction of the oscillator with scalar field in one-dimensional case is studied. Solutions of the classical equations of motion are found and the conditions of the boundedness of the classical Hamiltonian from below are obtained. In the quantum theory the problem of choosing the zeroth approximation of perturbation theory in the case when the spectra of the free and complete Hamiltonian do not coincide with each other, is analysed

  1. Octet dominance of nonleptonic hyperon decays in a nonrelativistic quark model

    International Nuclear Information System (INIS)

    Riazuddin; Fayyazuddin

    1978-01-01

    Extracting an effective Hamiltonian by taking the nonrelativistic limit of quark-quark scattering through W-boson exchange, it is shown that we obtain octet dominance for the matrix elements , where B/sub r/,B/sub s/ denote ordinary baryons. Further, it is shown that the above matrix elements are enhanced so as to compensate the Cabibbo suppression factor sintheta/sub C/ to some extent

  2. Some no-go theorems for string duals of non-relativistic Lifshitz-like theories

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi; Nishioka, Tatsuma

    2009-01-01

    We study possibilities of string theory embeddings of the gravity duals for non-relativistic Lifshitz-like theories with anisotropic scale invariance. We search classical solutions in type IIA and eleven-dimensional supergravities which are expected to be dual to (2+1)-dimensional Lifshitz-like theories. Under reasonable ansaetze, we prove that such gravity duals in the supergravities are not possible. We also discuss a possible physical reason behind this.

  3. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    OpenAIRE

    R., Ishikawa; Jongsuck, Bae; K., Mizuno

    2001-01-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analy...

  4. Probabilistic solutions of generalized birth and death equations and application to non-relativistic electrodynamics

    International Nuclear Information System (INIS)

    Serva, M.

    1986-01-01

    In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)

  5. Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom

    International Nuclear Information System (INIS)

    Chen Panying; Ji Xiangdong; Xu Yang; Zhang Yue

    2010-01-01

    We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, α em 3 /18π, which might be measurable in future atomic experiments.

  6. Prototype and proposed ISABELLE dipoles

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Robins, K.E.; Dahl, P.F.; Damm, R.

    1977-01-01

    Data are presented on the latest dipole prototypes to update the operational parameters possible for ISABELLE. This data base will constantly expand until the start of construction of the storage rings. The data will include field quality, stray field magnitudes, quench temperature and propagation times, protection capabilities singly and in multiple units, maximum central fields obtained and training behavior. Performance of the dipoles versus temperature and mode of refrigeration will be discussed. The single layer cosine theta turns distribution coils' parameters are better than those required for the operation of the 200 x 200 GeV version of ISABELLE. The double layer prototype has exceeded the magnetic field performance and two dimensional quality of field needed for the 400 x 400 GeV version of ISABELLE

  7. Nucleon-nucleus scattering: a microscopic nonrelativistic approach

    International Nuclear Information System (INIS)

    Amos, K.; Dortmans, H.V.; Raynal, J.

    1998-01-01

    structure, give NA potentials from which good fits are found to NA scattering data from targets ranging from 3 He to 238 U, for energies from 40 to 300 MeV. The nuclear structure is required in all cases, and so in Chapter 8, a brief discussion of those used to date in the folding calculations is given. To confirm that the wave functions are appropriate, they have been used in analyses of electron scattering form factors, and the results of those analyses are presented. That validates use of those wave functions in DWBA analyses of inelastic proton scattering and of charge exchange reactions. With effective interactions and structure wave functions set, the folding procedure described in Chapter 4 has been applied to analyse pA scattering from stable nuclei. Those results are shown and discussed in Chapter 10. So also are those found by using the folding model to analyse the elastic scattering of radioactive beams of 6,8 He and 9,11 Li from hydrogen. There are many applications in which use of a non-local NA potential is impractical. For such cases, equivalent local potentials and approximate forms for the exact wave functions are sought. There are several means by which these equivalent quantities can be found and these are presented in Chapter 11. By equivalent it is usually meant that the local potential gives the same scattering phase shifts as does the non-local one. There are more approximate conditions though which can be made through equating non-local and local Schroedinger equations by transforms on the solutions or by finding equivalent wave number functions. Of more precise nature are the local optical potentials developed from data by use of inverse scattering theories. Finally, the authors consider the extension of NA scattering to inelastic scattering and charge exchange reactions to discrete excited states using the DWBA with the non-local microscopic optical potentials specifying the distorted wares and the effective interactions as the transition operators

  8. Diophantine approximation and badly approximable sets

    DEFF Research Database (Denmark)

    Kristensen, S.; Thorn, R.; Velani, S.

    2006-01-01

    . The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension...

  9. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  10. Electric Dipole Moments of Hadrons

    OpenAIRE

    Wirzba, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...

  11. Calculation of the dispersion-dipole coefficients for interactions between H, He, and H2

    International Nuclear Information System (INIS)

    Bishop, D.M.; Pipin, J.

    1993-01-01

    Collisions between atoms and molecules create an induced dipole moment which, at long range separations, stems, in part, from the van der Waals interactions between the colliding species. This contribution is known as the dispersion dipole moment and is of the order R -7 , where R is the separation between particles. Although there have been several approximate calculations of the dispersion-dipole coefficients which govern this contribution, and are the counterparts to the van der Waals dispersion-energy coefficients, there have been few ab initio calculations. In this article we present highly accurate results, based on explicitly electron-correlated wave functions, for the dispersion-dipole coefficients pertaining to interactions between pairs chosen from H, He, and H 2 . We also obtain values with some of the currently used approximate formulas. A comparison shows that these values differ, in general, by a significant amount (∼20--∼40 %) from the accurate ones. We also tabulate values of the dipole--dipole-quadrupole polarizability tensor (B) for imaginary frequency (iω) for a range of frequencies appropriate to a 64-point Gauss--Legendre quadrature for H, He, and H 2 . These values were used in certain numerical integrations we made to verify our original results which had been obtained by analytic integration---they may, however, be useful in other contexts. For H--H 2 and H 2 --H 2 , these are the only ab initio calculations of the dispersion-dipole coefficients of which we are aware

  12. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  13. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    Science.gov (United States)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  14. Coupling of linearized gravity to nonrelativistic test particles: Dynamics in the general laboratory frame

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.; Chiao, Raymond Y.

    2004-01-01

    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a general laboratory frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves present (GWs), it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic deviation motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field N a , the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects, as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from N a that obey equations of the same form as Maxwell's equations. A gedankin gravitational Aharonov-Bohm-type experiment using N a to measure the interference of quantum test particles is presented

  15. Condensation for non-relativistic matter in Hořava–Lifshitz gravity

    Directory of Open Access Journals (Sweden)

    Jiliang Jing

    2015-10-01

    Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.

  16. Dipole-induced exchange bias.

    Science.gov (United States)

    Torres, Felipe; Morales, Rafael; Schuller, Ivan K; Kiwi, Miguel

    2017-11-09

    The discovery of dipole-induced exchange bias (EB), switching from negative to positive sign, is reported in systems where the antiferromagnet and the ferromagnet are separated by a paramagnetic spacer (AFM-PM-FM). The magnitude and sign of the EB is determined by the cooling field strength and the PM thickness. The same cooling field yields negative EB for thin spacers, and positive EB for thicker ones. The EB decay profile as a function of the spacer thickness, and the change of sign, are attributed to long-ranged dipole coupling. Our model, which accounts quantitatively for the experimental results, ignores the short range interfacial exchange interactions of the usual EB theories. Instead, it retains solely the long range dipole field that allows for the coupling of the FM and AFM across the PM spacer. The experiments allow for novel switching capabilities of long range EB systems, while the theory allows description of the structures where the FM and AFM are not in atomic contact. The results provide a new approach to design novel interacting heterostructures.

  17. Collectivity of dipole bands in {sup 196}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Liang, Y.; Janssens, R.V.F. [and others

    1995-08-01

    The region of nuclei with mass {approximately} 190 was studied extensively over the last few years following the discovery of superdeformation in {sup 190}Hg. More recently, considerable interest in the neutron-deficient Pb isotopes developed with the discover of a number of bands at high spin connected by dipole transitions in both even {sup 192-200}Pb and odd {sup 197-201}Pb nuclei. The majority of the dipole bands are regular in character (i.e. transition energies increase smoothly with spin) while the remaining bands are referred to as irregular in character, due to the fact that the transition energies do not increase smoothly with spin. The properties of the dipole bands were interpreted in terms of high-K, moderately-deformed oblate states built on configurations involving high-J, shape-driving quasiproton excitations coupled to rotation-aligned quasineutrons. It was suggested that the difference between the regular and irregular dipole sequences is related to the deformation where the irregular sequences are thought to be less collective than their regular counterparts.

  18. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  19. The experimental test of the adequateness of relativistic impulse approximation when describing the lightest nuclei break-up

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    1995-01-01

    The behaviour of the lightest nuclei break-up cross sections at zero angle has been analyzed in vicinity of the maximum. It is shown that asymmetry of cross sections relatively maximum is in conflict with nonrelativistic impulse approximation, but agrees well with one of relativistic approaches to describe this process. 10 refs., 9 figs

  20. Electric dipole polarizability from first principles calculations

    International Nuclear Information System (INIS)

    Miorelli, M.; University of British Columbia, Vancouver, BC; Bacca, S.; University of Manitoba; Barnea, N.

    2016-01-01

    The electric dipole polarizability quantifies the low-energy behavior of the dipole strength and is related to critical observables such as the radii of the proton and neutron distributions. Its computation is challenging because most of the dipole strength lies in the scattering continuum. In our paper we combine integral transforms with the coupled-cluster method and compute the dipole polarizability using bound-state techniques. Furthermore, employing different interactions from chiral effective field theory, we confirm the strong correlation between the dipole polarizability and the charge radius, and study its dependence on three-nucleon forces. Finally, we find good agreement with data for the 4 He, 40 Ca, and 16 O nuclei, and predict the dipole polarizability for the rare nucleus 22 O.

  1. CERN LHC dipole prototype success

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In a crash programme, the first prototype superconducting dipole magnet for CERN's LHC protonproton collider was successfully powered for the first time at CERN on 14 April, eventually sailing to 9T, above the 8.65T nominal LHC field, before quenching for the third time. The next stage is to install the delicate measuring system for making comprehensive magnetic field maps in the 10 m long, 50 mm diameter twin-apertures of the magnet. These measurements will check that the required LHC field quality has been achieved at both the nominal and injection fields

  2. Alternative dipole magnets for ISABELLE

    Science.gov (United States)

    Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.

    1982-05-01

    A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).

  3. Electric and Magnetic Dipole Moments

    CERN Document Server

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  4. The Muon Electric Dipole Moment

    OpenAIRE

    Barger, Vernon; Kao, Chung; Das, Ashok

    1997-01-01

    The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...

  5. Permanent Magnet Dipole for DIRAC Design Report

    CERN Document Server

    Vorozhtsov, Alexey

    2012-01-01

    Two dipole magnets including one spare unit are needed for the for the DIRAC experiment. The proposed design is a permanent magnet dipole. The design based on Sm2Co17 blocks assembled together with soft ferromagnetic pole tips. The magnet provides integrated field strength of 24.6 10-3 T×m inside the aperture of 60 mm. This Design Report summarizes the main magnetic and mechanic design parameters of the permanent dipole magnets.

  6. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  7. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, M.; Leung, K.K.

    1991-01-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described

  8. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  9. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  10. The dipole-dipole dispersion forces for small, intermediate and large distances

    International Nuclear Information System (INIS)

    Antonio, J.C.

    1986-10-01

    An improved expression is obtained for the dipole-dipole London dispersion force between closed shell atoms for small, intermediate and large distances compared with their linear dimensions. (Author) [pt

  11. Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction

    International Nuclear Information System (INIS)

    Parker, G.W.

    1986-01-01

    The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2

  12. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  13. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  14. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  15. Dislocation self-organization under single slip straining and dipole properties

    International Nuclear Information System (INIS)

    Chiu, Y.-L.; Veyssiere, Patrick

    2008-01-01

    Spontaneous microstructural organization under single slip is investigated by transmission electron microscopy. The formation and the structure of dislocation entanglements are analyzed on three types of fcc-based systems, Al, Cu and TiAl, all deformed by {1 1 1} slip. Differences are found that depend on stacking fault energy and lattice friction. The importance of dipolar configurations is outlined. Selected properties of dipoles are analyzed theoretically under isotropic and anisotropic elasticity in cubic systems. At variance from screw and near-screw dipoles, the stress-free equilibrium angle of an edge dipole is little dependent on the material's elastic anisotropy. In Cu, for instance, a screw dipole is at equilibrium at around 59 deg. from the slip plane, and this angle is unchanged over a range of dislocation characters of approximately ±20 deg. On the other hand, given a dipole height, the passing stress is a maximum in the screw orientation. It is, however, not a minimum in the edge orientation. Static and dynamic dipole properties are but little affected by dissociation down to a dipole height of the order of a few times the dissociation distance

  16. Isospin properties of electric dipole excitations in 48Ca

    Science.gov (United States)

    Derya, V.; Savran, D.; Endres, J.; Harakeh, M. N.; Hergert, H.; Kelley, J. H.; Papakonstantinou, P.; Pietralla, N.; Ponomarev, V. Yu.; Roth, R.; Rusev, G.; Tonchev, A. P.; Tornow, W.; Wörtche, H. J.; Zilges, A.

    2014-03-01

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus 48Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α‧γ) experiment at Eα=136 MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  17. Finite temperature effects on monopole and dipole excitations

    International Nuclear Information System (INIS)

    Niu, Y F; Paar, N; Vretenar, D; Meng, J

    2011-01-01

    The relativistic random phase approximation based on effective Lagrangian with density dependent meson-nucleon couplings has been extended to finite temperature and employed in studies of multipole excitations within the temperature range T = 1 - 2 MeV. The model calculations showed that isoscalar giant monopole and isovector giant dipole resonances are only slightly modified with temperature, but additional transition strength appears at low energies because of thermal unblocking of single-particle orbitals close to the Fermi level. The analysis of low-lying states shows that isoscalar monopole response in 132 Sn results from single particle transitions, while the isovector dipole strength for 60 Ni, located around 10 MeV, is composed of several single particle transitions, accumulating a small degree of collectivity.

  18. A cosmological lower bound on the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-10-01

    We argue that in a wide class of grand unified theories diagrams similar to those generating baryon number in the early universe also contribute to renormalization of the CP-violating theta parameter of QCD and hence to the neutron electric dipole moment dsub(n). We then use the apparent baryon-to-photon ratio (nsub(B)/nsub(γ))>=1.3 x 10 -10 to deduce an order-of-magnitude lower bound on the neutron electric dipole moment: dsub(n) > approximately 3 x 10 -28 e-cm. Conversely the present experimental upper limit on dsub(n) implies (nsub(B)/nsub(γ) -7 . We find as a corollary that there is not much scope for entropy generation after the creation of the baryon-antibaryon asymmetry in the very early universe

  19. Isospin properties of electric dipole excitations in {sup 48}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Derya, V., E-mail: derya@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany); Savran, D. [ExtreMe Matter Institute EMMI and Research Division, GSI, 64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies FIAS, 60438 Frankfurt am Main (Germany); Endres, J. [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen (France); Hergert, H. [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Papakonstantinou, P. [Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811 (Korea, Republic of); Pietralla, N.; Ponomarev, V.Yu.; Roth, R. [Institut für Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Rusev, G.; Tonchev, A.P.; Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Wörtche, H.J. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Zilges, A. [Institut für Kernphysik, Universität zu Köln, 50937 Köln (Germany)

    2014-03-07

    Two different experimental approaches were combined to study the electric dipole strength in the doubly-magic nucleus {sup 48}Ca below the neutron threshold. Real-photon scattering experiments using bremsstrahlung up to 9.9 MeV and nearly mono-energetic linearly polarized photons with energies between 6.6 and 9.51 MeV provided strength distribution and parities, and an (α,α{sup ′}γ) experiment at E{sub α}=136MeV gave cross sections for an isoscalar probe. The unexpected difference observed in the dipole response is compared to calculations using the first-order random-phase approximation and points to an energy-dependent isospin character. A strong isoscalar state at 7.6 MeV was identified for the first time supporting a recent theoretical prediction.

  20. Testing of a Single 11 T $Nb_3Sn$ Dipole Coil Using a Dipole Mirror Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Andreev, Nicolai [Fermilab; Barzi, Emanuela [Fermilab; Chlachidze, Guram [Fermilab; Kashikhin, Vadim [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Turrioni, Daniele [Fermilab; Karppinen, Mikko [CERN; Smekens, David [CERN

    2014-07-01

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC. To optimize coil design parameters and fabrication process and study coil performance, a series of 1 m long dipole coils is being fabricated. One of the short coils has been tested using a dipole mirror structure. This paper describes the dipole mirror magnetic and mechanical designs, and reports coil parameters and test results.

  1. Non-relativistic AdS branes and Newton-Hooke superalgebra

    International Nuclear Information System (INIS)

    Sakaguchi, Makoto; Yoshida, Kentaroh

    2006-01-01

    We examine a non-relativistic limit of D-branes in AdS 5 x S 5 and M-branes in AdS 4/7 x S 7/4 . First, Newton-Hooke superalgebras for the AdS branes are derived from AdS x S superalgebras as Inoenue-Wigner contractions. It is shown that the directions along which the AdS-brane worldvolume extends are restricted by requiring that the isometry on the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally extend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes and show that the directions along which a brane worldvolume extends are restricted. Then the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg cohomology on the super-AdS x S algebra, and the non-relativistic limit of the AdS-brane actions is considered. We show that the consistent limit is possible for the following branes: Dp (even,even) for p = 1 mod 4 and Dp (odd,odd) for p = 3 mod 4 in AdS 5 x S 5 , and M2 (0,3), M2 (2,1), M5 (1,5) and M5 (3,3) in AdS 4 x S 7 and S 4 x AdS 7 . We furthermore present non-relativistic actions for the AdS branes

  2. Search for non-relativistic magnetic monopoles with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2014-07-15

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)

  3. Search for non-relativistic magnetic monopoles with IceCube

    International Nuclear Information System (INIS)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J.; Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P.; Adams, J.; Brown, A.M.; Hickford, S.; Macias, O.; Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.; Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M.; Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G.; Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S.; Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Barwick, S.W.; Yodh, G.; Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K.; Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K.; Beatty, J.J.; Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E.; Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A.; Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H.; Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y.; Besson, D.Z.; Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.; Bose, D.; Rott, C.

    2014-01-01

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km 3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10 -27 to 10 -21 cm 2 . In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10 -22 (10 -24 ) cm 2 the flux of non-relativistic GUT monopoles is constrained up to a level of Φ 90 ≤ 10 -18 (10 -17 ) cm -2 s -1 sr -1 at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)

  4. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Horton, R.; Ono, M.; Ashour-Abdalla, M.

    1986-10-01

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam-plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity

  5. ηc production at the LHC challenges nonrelativistic-QCD factorization

    International Nuclear Information System (INIS)

    Butenschoen, Mathias; He, Zhi-Guo; Kniehl, Bernd A.

    2014-11-01

    We analyze the first measurement of η c production, performed by the LHCb Collaboration, in the nonrelativistic-QCD (NRQCD) factorization framework at next-to-leading order (NLO) in the strong-coupling constant α s and the relative velocity v of the bound quarks including the feeddown from h c mesons. Converting the long-distance matrix elements (LDMEs) extracted by various groups from J/ψ yield and polarization data to the η c case using heavy-quark spin symmetry, we find that the resulting NLO NRQCD predictions greatly overshoot the LHCb data, while the color-singlet model provides an excellent description.

  6. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  7. Spin rotation function in a microscopic non-relativistic optical model

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1984-01-01

    A microscopic optical potential, which is calculated non-relativistically with a density-dependent effective force, is used to calculate cross-section, polarization and spin-rotation function for elastic proton scattering from 40 Ca at 160 MeV and 497 MeV. At 160 MeV, the agreement to the data is comparable to phenomenological fits, and the spin-rotation can be used to distinguish between microscopic and Woods-Saxon potentials. A good fit to the spin-rotation function results at 497 MeV, whereas the polarization data are not well reproduced

  8. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    OpenAIRE

    Jongsuck, Bae; Ryo, Ishikawa; Sumio, Okuyama; Takashi, Miyajima; Taiji, Akizuki; Tatsuya, Okamoto; Koji, Mizuno

    2000-01-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  9. Energy modulation of nonrelativistic electrons with a CO2 laser using a metal microslit

    Science.gov (United States)

    Bae, Jongsuck; Ishikawa, Ryo; Okuyama, Sumio; Miyajima, Takashi; Akizuki, Taiji; Okamoto, Tatsuya; Mizuno, Koji

    2000-04-01

    A metal microslit has been used as an interaction circuit between a CO2 laser beam and nonrelativistic free electrons. Evanescent waves which are induced on the slit by illumination of the laser light modulate the energy of electrons passing close to the surface of the slit. The electron-energy change of more than ±5 eV for the 80 keV electron beam has been observed using the 7 kW laser beam at the wavelength of 10.6 μm.

  10. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  11. Permanent Electric Dipole-Dipole Interactions in Lyotropic Polypeptide Liquid Crystals

    OpenAIRE

    MORI, Norio; Norio, MORI; Research Associate, Department of Industrial Chemistry

    1981-01-01

    The interaction energy between two adjacent α-helical molecules was calculated taking into account for permanent electric dipoles locating orl the helical core of a polymer mainchain in order to explain the cholesteric structure of lyotropic polypeptide liquid crystals. It was concluded that the dipole-dipole interactions were responsible for the formation of the cholesteric structure.

  12. Neutral dipole-dipole dimers: A new field in science

    Science.gov (United States)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another

  13. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish

    Science.gov (United States)

    Jun, James Jaeyoon; Longtin, André; Maler, Leonard

    2013-01-01

    In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI) and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT) to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF) requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal’s positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole source

  14. Real-Time Localization of Moving Dipole Sources for Tracking Multiple Free-Swimming Weakly Electric Fish.

    Directory of Open Access Journals (Sweden)

    James Jaeyoon Jun

    Full Text Available In order to survive, animals must quickly and accurately locate prey, predators, and conspecifics using the signals they generate. The signal source location can be estimated using multiple detectors and the inverse relationship between the received signal intensity (RSI and the distance, but difficulty of the source localization increases if there is an additional dependence on the orientation of a signal source. In such cases, the signal source could be approximated as an ideal dipole for simplification. Based on a theoretical model, the RSI can be directly predicted from a known dipole location; but estimating a dipole location from RSIs has no direct analytical solution. Here, we propose an efficient solution to the dipole localization problem by using a lookup table (LUT to store RSIs predicted by our theoretically derived dipole model at many possible dipole positions and orientations. For a given set of RSIs measured at multiple detectors, our algorithm found a dipole location having the closest matching normalized RSIs from the LUT, and further refined the location at higher resolution. Studying the natural behavior of weakly electric fish (WEF requires efficiently computing their location and the temporal pattern of their electric signals over extended periods. Our dipole localization method was successfully applied to track single or multiple freely swimming WEF in shallow water in real-time, as each fish could be closely approximated by an ideal current dipole in two dimensions. Our optimized search algorithm found the animal's positions, orientations, and tail-bending angles quickly and accurately under various conditions, without the need for calibrating individual-specific parameters. Our dipole localization method is directly applicable to studying the role of active sensing during spatial navigation, or social interactions between multiple WEF. Furthermore, our method could be extended to other application areas involving dipole

  15. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  16. Microscopic evaluation of the nuclear dipole polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Orlandini, G; Stringari, S; Traini, M [Trento Univ. (Italy). Dept. di Matematica e Fisica

    1977-12-01

    The dipole polarizability sum rule has been evaluated by means of a restricted Hartree-Fock approach. The method leads to a simple and analytical expression for the dipole polarizability. Explicit calculations have been performed in /sup 16/O and /sup 40/Ca with different types of interaction.

  17. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  18. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  19. Electric dipoles on the Bloch sphere

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  20. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  1. Electrostatic-Dipole (ED) Fusion Confinement Studies

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.; Yang, Yang; Thomas, Robert

    2004-11-01

    The Electrostatic-Dipole (ED) concept significantly differs from a "pure" dipole confinement device [1] in that the charged particles are preferentially confined to the high-pressure region interior of the dipole coil by the assistance of a surrounding spherical electrostatic grid. In present ED experiments, a current carrying coil is embedded inside the grid of an IEC such as to produce a magnetic dipole field. Charged particles are injected axisymmetrically from an ion gun (or duo-plasmatron) into the center of the ED confinement grid/dipole ring where they oscillate along the magnetic field lines and pass the peak field region at the center of the dipole region. As particles begin accelerating away from the center region towards the outer electrostatic grid region, they encounter a strong electrostatic potential (order of 10's of kilovolts) retarding force. The particles then decelerate, reverse direction and re-enter the dipole field region where again magnetic confinement dominates. This process continues, emulating a complex harmonic oscillator motion. The resulting pressure profile averaged over the field curvature offers good plasma stability in the ED configuration. The basic concept and results from preliminary experiments will be described. [1] M.E. Mauel, et al. "Dipole Equilibrium and Stability," 18th IAEA Conference of Plasma Phys. and Control. Nuclear Fusion, Varenna, Italy 2000, IAEA-F1-CN-70/TH

  2. Relativistic description of nuclear systems in the Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Bouyssy, A.; Mathiot, J.F.; Nguyen Van Giai; Marcos, S.

    1986-03-01

    The structure of infinite nuclear matter and finite nuclei is studied in the framework of the relativistic Hartree-Fock approximation. A particular attention is paid to the contribution of isovector mesons. (π,p). A satisfactory description of binding energies and densities can be obtained for light as well as heavy nuclei. The spin-orbit splittings are well reproduced. Connections with non-relativistic formulations are also discussed

  3. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  4. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M. E. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Department of Science and Technology, Linkoeping University, SE-60174 Norrkoeping (Sweden); Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Romagnani, L. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Pohl, M. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); DESY, D-15738 Zeuthen (Germany)

    2013-04-15

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  5. Parametric study of non-relativistic electrostatic shocks and the structure of their transition layer

    International Nuclear Information System (INIS)

    Dieckmann, M. E.; Ahmed, H.; Sarri, G.; Doria, D.; Kourakis, I.; Borghesi, M.; Romagnani, L.; Pohl, M.

    2013-01-01

    Nonrelativistic electrostatic unmagnetized shocks are frequently observed in laboratory plasmas and they are likely to exist in astrophysical plasmas. Their maximum speed, expressed in units of the ion acoustic speed far upstream of the shock, depends only on the electron-to-ion temperature ratio if binary collisions are absent. The formation and evolution of such shocks is examined here for a wide range of shock speeds with particle-in-cell simulations. The initial temperatures of the electrons and the 400 times heavier ions are equal. Shocks form on electron time scales at Mach numbers between 1.7 and 2.2. Shocks with Mach numbers up to 2.5 form after tens of inverse ion plasma frequencies. The density of the shock-reflected ion beam increases and the number of ions crossing the shock thus decreases with an increasing Mach number, causing a slower expansion of the downstream region in its rest frame. The interval occupied by this ion beam is on a positive potential relative to the far upstream. This potential pre-heats the electrons ahead of the shock even in the absence of beam instabilities and decouples the electron temperature in the foreshock ahead of the shock from the one in the far upstream plasma. The effective Mach number of the shock is reduced by this electron heating. This effect can potentially stabilize nonrelativistic electrostatic shocks moving as fast as supernova remnant shocks.

  6. Gauging of 1D-space translations for nonrelativistic matter - Geometric bags

    International Nuclear Information System (INIS)

    Stichel, P.C.

    2000-01-01

    We develop in a systematic fashion the idea of gauging 1D-space translations with fixed Newtonian time for nonrelativistic matter (particles and fields). By starting with a nonrelativistic free theory we obtain its minimal gauge invariant extension by introducing two gauge fields with a Maxwellian self interaction. We fix the gauge so that the residual symmetry group is the Galilei group and construct a representation of the extended Galilei algebra. The reduced N-particle Lagrangian describes geodesic motion in a (N-1)-dimensional (Pseudo-) Riemannian space. The singularity of the metric for negative gauge coupling leads in classical dynamics to the formation of geometric bags in the case of two or three particles. The ordering problem within the quantization scheme for N-particles is solved by canonical quantization of a pseudoclassical Schroedinger theory obtained by adding to the continuum generalization of the point-particle Lagrangian an appropriate quantum correction. We solve the two-particle bound state problem for both signs of the gauge coupling. At the end we speculate on the possible physical relevance of the new interaction induced by the gauge fields

  7. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    International Nuclear Information System (INIS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-01-01

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas

  8. Symmetries of nonrelativistic phase space and the structure of quark-lepton generation

    International Nuclear Information System (INIS)

    Zenczykowski, Piotr

    2009-01-01

    According to the Hamiltonian formalism, nonrelativistic phase space may be considered as an arena of physics, with momentum and position treated as independent variables. Invariance of x 2 + p 2 constitutes then a natural generalization of ordinary rotational invariance. We consider Dirac-like linearization of this form, with position and momentum satisfying standard commutation relations. This leads to the identification of a quantum-level structure from which some phase space properties might emerge. Genuine rotations and reflections in phase space are tied to the existence of new quantum numbers, unrelated to ordinary 3D space. Their properties allow their identification with the internal quantum numbers characterising the structure of a single quark-lepton generation in the Standard Model. In particular, the algebraic structure of the Harari-Shupe preon model of fundamental particles is reproduced exactly and without invoking any subparticles. Analysis of the Clifford algebra of nonrelativistic phase space singles out an element which might be associated with the concept of lepton mass. This element is transformed into a corresponding element for a single coloured quark, leading to a generalization of the concept of mass and a different starting point for the discussion of quark unobservability.

  9. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  10. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points

    Science.gov (United States)

    Piñeiro Orioli, Asier; Boguslavski, Kirill; Berges, Jürgen

    2015-07-01

    We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant for a wide range of applications from ultracold quantum gases to high-energy particle physics. The universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems. For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform two independent nonperturbative calculations, first by using classical-statistical lattice simulation techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives to learn from experiments with cold atoms aspects about the dynamics during the early stages of our universe.

  11. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  12. Stability of high field superconducting dipole magnets

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Stevens, A.

    1977-01-01

    Superconducting dipole magnets of the window-frame type were constructed and operated successfully at Brookhaven National Laboratory. Examples of this type of magnet are the 6 T ''Model T'' magnet, and the 4 T 8 0 superconducting bending magnet. The latter magnet operated reliably since October 1973 as part of the proton beam transport to the north experimental area at the BNL AGS with intensities of typically 8 x 10 12 protons at 28.5 GeV/c passing through the magnet in a curved trajectory with the proton beam center only 2.0 cm from the beam pipe at both ends and the middle of each of the two units comprising the magnet. The energy in the beam is approximately 40 kJ per 3 μsec pulse. Targets were inserted in the beam at locations 2 m and 5.6 m upstream of the first magnet unit to observe the effects of radiation heating. The 8 0 magnet demonstrated ultrastability, surviving 3 μsec thermal pulses delivering up to 1 kJ into the cold magnet at repetition periods as short as 1.3 sec

  13. A Nb3Sn high field dipole

    International Nuclear Information System (INIS)

    McClusky, R.; Robins, K.E.; Sampson, W.B.

    1990-01-01

    A dipole magnet approximately 1 meter long with an 8 cm bore has been fabricated from cable made from Nb 3 Sn multifilamentary strands. The coil consists of four layers of conductor wound in pairs to eliminate internal joints. Each set of layers is separately constrained with Kevlar-epoxy bands and the complete assembly clamped in a split laminated iron yoke. The inner coil pairs were wound before heat treating while the outer coils were formed from pre-reacted cable using conventional insulation. A NbTi version of the magnet was fabricated using SSC version of the magnet was fabricated using SSC conductor to test the construction techniques. This magnet reached a maximum central field of 7.6 Tesla, at 4.4K which is very close to the limit estimated from conductor measurements. The Nb 3 Sn magnet, however, only reached a maximum field at 8.1T considerably short of the field expected from measurements on the inner cable. 7 refs., 5 figs

  14. High-field dipoles for future accelerators

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators

  15. The dipole response of {sup 132}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Philipp; Aumann, Thomas; Johansen, Jacob; Schindler, Fabia [IKP, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Rossi, Dominic [Michigan State University (United States); Collaboration: R3B-Collaboration

    2015-07-01

    The Isovector Giant Dipole Resonance (IVGDR) is a well-known collective excitation in which all protons oscillate against all neutrons of a nucleus. In neutron-rich nuclei an additional low-lying dipole excitation occurs, often denoted as Pygmy Dipole Resonance (PDR). To study the PDR in exotic Sn-isotopes, an experiment has been successfully performed with the upgraded R{sup 3}B-LAND setup at GSI. The complete-kinematics measurement of all reaction participants allows for the reconstuction of the excitation energy and, hence, the extraction of the dipole strength. Presented are the main features of the experiment, the analysis concept and the current status of the analysis of the dipole response of the doubly-magic isotope {sup 132}Sn.

  16. A new discrete dipole kernel for quantitative susceptibility mapping.

    Science.gov (United States)

    Milovic, Carlos; Acosta-Cabronero, Julio; Pinto, José Miguel; Mattern, Hendrik; Andia, Marcelo; Uribe, Sergio; Tejos, Cristian

    2018-09-01

    Most approaches for quantitative susceptibility mapping (QSM) are based on a forward model approximation that employs a continuous Fourier transform operator to solve a differential equation system. Such formulation, however, is prone to high-frequency aliasing. The aim of this study was to reduce such errors using an alternative dipole kernel formulation based on the discrete Fourier transform and discrete operators. The impact of such an approach on forward model calculation and susceptibility inversion was evaluated in contrast to the continuous formulation both with synthetic phantoms and in vivo MRI data. The discrete kernel demonstrated systematically better fits to analytic field solutions, and showed less over-oscillations and aliasing artifacts while preserving low- and medium-frequency responses relative to those obtained with the continuous kernel. In the context of QSM estimation, the use of the proposed discrete kernel resulted in error reduction and increased sharpness. This proof-of-concept study demonstrated that discretizing the dipole kernel is advantageous for QSM. The impact on small or narrow structures such as the venous vasculature might by particularly relevant to high-resolution QSM applications with ultra-high field MRI - a topic for future investigations. The proposed dipole kernel has a straightforward implementation to existing QSM routines. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  18. The pygmy dipole resonance in neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hung, Nguyen Quang; Kiet, Hoang Anh Tuan; Duc, Huynh Ngoc; Chuong, Nguyen Thi

    2016-01-01

    The pygmy dipole resonance (PDR), which has been observed via the enhancement of the electric dipole strength E 1 of atomic nuclei, is studied within a microscopic collective model. The latter employs the Hartree-Fock (HF) method with effective nucleon-nucleon interactions of the Skyrme types plus the random-phase approximation (RPA). The results of the calculations obtained for various even-even nuclei such as "1"6"-"2"8O, "4"0"-"5"8Ca, "1"0"0"-"1"2"0Sn, and "1"8"2"-"2"1"8Pb show that the PDR is significantly enhanced when the number of neutrons outside the stable core of the nucleus is increased, that is, in the neutron-rich nuclei. As the result, the relative ratio between the energy weighted sum of the strength of the PDR and that of the GDR (giant dipole resonance) does not exceed 4%. The collectivity of the PDR and GDR states will be also discussed. (paper)

  19. Theoretical expectations for the muon's electric dipole moment

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the muon's electric dipole moment d μ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's electric dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on d μ to date. This ambiguity could be definitively resolved by the dedicated search for d μ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for d μ in supersymmetry fall just below the proposed sensitivity. However, nondegeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to d μ ∼10 -22 e cm, two orders of magnitude above the sensitivity of the d μ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. We also derive new limits on the amount of flavor violation allowed and demonstrate that approximations previously used to obtain such limits are highly inaccurate in much of parameter space

  20. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  1. Electromagnetic Pulse of a Vertical Electric Dipole in the Presence of Three-Layered Region

    Directory of Open Access Journals (Sweden)

    D. Cheng

    2015-01-01

    Full Text Available Approximate formulas are obtained for the electromagnetic pulses due to a delta-function current in a vertical electric dipole on the planar surface of a perfect conductor coated by a dielectric layer. The new approximated formulas for the electromagnetic field in time domain are retreated analytically and some new results are obtained. Computations and discussions are carried out for the time-domain field components radiated by a vertical electric dipole in the presence of three-layered region. It is shown that the trapped-surface-wave terms should be included in the total transient field when both the vertical electric dipole and the observation point are on or near the planar surface of the dielectric-coated earth.

  2. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  3. Two particles interacting via the Yukawa potential in the frame of a truly nonrelativistic wave equation

    International Nuclear Information System (INIS)

    Kukhtin, V.V.; Kuzmenko, M.V.

    2000-01-01

    Complete text of publication follows. Recent studies (1) have shown that the Schroedinger nonrelativistic wave equation for a system of interacting particles is not a rigorously nonrelativistic one since it is based on the implicit assumption that the interaction propagation velocity is a finite value, which implies commutativity of the operators of coordinates and momenta of different particles. The refusal from this assumption implies their noncommutativity, which allows one to construct a truly nonrelativistic nonlinear self-consistent wave equation for a system of interacting particles. In the frame of the advanced wave equation, we investigate the spectrum of bound states for the two-body problem with the Yukawa potential V(r) = -V 0 a exp(-r/a)/r as a function of parameters of the potential. A peculiar feature of the spectrum is the presence of a critical value of V 0 (with the fixed parameter a), above which the given bound state cannot exist. In the ground state with l = 0 at a critical value of V 0 , the mean distance between particles takes the least value equal to the Compton wavelength of the particle with reduced mass. We estimate the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ([χ 1 , p 2x ] = i(h/2π)m 2 /M x ε) for the bound state of a deuteron, for which we consider the lowest state with l = 0 as its ground state. The parameter a of the Yukawa potential is taken to be equal to the Compton wavelength of a pion, 1.41 fm. In order to obtain the binding energy of a deuteron E = -2.22452 MeV, the parameter V 0 has to equal 51.23 MeV. In this case, the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ε = 0.0011, i.e., the commutator is nonzero even for such a weakly bound system as a deuteron where particles are located outside the region of action of nuclear forces for a significant fraction of time. Moreover

  4. SSC collider dipole magnet end mechanical design

    International Nuclear Information System (INIS)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M.; Leung, K.K.

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs

  5. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  6. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  7. Is the 2MASS dipole convergent?

    OpenAIRE

    Chodorowski, Michał; Bilicki, Maciej; Mamon, Gary A.; Jarrett, Thomas

    2010-01-01

    We study the growth of the clustering dipole of galaxies from the Two Micron All Sky Survey (2MASS). We find that the dipole does not converge before the completeness limit of the 2MASS Extended Source Catalog, i.e. up to about 300 Mpc/h. We compare the observed growth of the dipole with the theoretically expected, conditional growth for the LambdaCDM power spectrum and cosmological parameters constrained by WMAP. The observed growth turns out to be within 1-sigma confidence level of the theo...

  8. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  9. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  10. J/{psi} polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Butenschoen, Mathias; Kniel, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-12-15

    We study the polarization observables of J/{psi} hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate {sup 3}P{sup [8]}{sub J} color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/{psi} production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/{psi} polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  11. J/ψ polarization at Tevatron and LHC. Nonrelativistic-QCD factorization at the crossroads

    International Nuclear Information System (INIS)

    Butenschoen, Mathias; Kniel, Bernd A.

    2011-12-01

    We study the polarization observables of J/ψ hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate 3 P [8] J color-octet states, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/ψ production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/ψ polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.

  12. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  13. The infrared problem for the dressed non-relativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Faupin, J.; Grebert, B.; Guillot, J.C.

    2008-01-01

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. The system is translation invariant in the x 3 -direction and the corresponding Hamiltonian has a decomposition H ≅∫ R + H(P 3 )dP 3 . For a fixed momentum P 3 sufficiently small, we prove that H(P 3 ) has a ground state in the Fock representation if and only if E'(P 3 )=0, where P 3 →E'(P 3 ) is the derivative of the map P 3 →E(P 3 )=infσ(H(P 3 )). If E'(P 3 )≠0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)

  14. Bosonization of non-relativistic fermions and W-infinity algebra

    International Nuclear Information System (INIS)

    Das, S.R.; Dhar, A.; Mandal, G.; Wadia, S.R.

    1992-01-01

    In this paper the authors discuss the bosonization of non-relativistic fermions in one-space dimension in terms of bilocal operators which are naturally related to the generators of W-infinity algebra. The resulting system is analogous to the problem of a spin in a magnetic field for the group W-infinity. The new dynamical variables turn out to be W-infinity group elements valued in the coset W-infinity/H where H is a Cartan subalgebra. A classical action with an H gauge invariance is presented. This action is three-dimensional. It turns out to be similar to the action that describes the color degrees of freedom of a Yang-Mills particle in a fixed external field. The authors also discuss the relation of this action with the one recently arrived at in the Euclidean continuation of the theory using different coordinates

  15. J-matrix method of scattering in one dimension: The nonrelativistic theory

    International Nuclear Information System (INIS)

    Alhaidari, A.D.; Bahlouli, H.; Abdelmonem, M.S.

    2009-01-01

    We formulate a theory of nonrelativistic scattering in one dimension based on the J-matrix method. The scattering potential is assumed to have a finite range such that it is well represented by its matrix elements in a finite subset of a basis that supports a tridiagonal matrix representation for the reference wave operator. Contrary to our expectation, the 1D formulation reveals a rich and highly nontrivial structure compared to the 3D formulation. Examples are given to demonstrate the utility and accuracy of the method. It is hoped that this formulation constitutes a viable alternative to the classical treatment of 1D scattering problem and that it will help unveil new and interesting applications.

  16. Non-relativistic fermions, coadjoint orbits of W∞ and string field theory at c=1

    International Nuclear Information System (INIS)

    Dhar, A.; Mandal, G.; Wadia, S.R.

    1992-01-01

    In this paper, the authors apply the method of coadjoint orbits of W ∞ -algebra to the problem of non-relativistic fermions in one dimension. This leads to a geometric formulation of the quantum theory in terms of the quantum phase space distribution of the Fermi fluid. The action has an infinite series of expansion in the string coupling, which to leading order reduces to the previously discussed geometric action for the classical Fermi fluid based on the group w ∞ of area-preserving diffeomorphisms. The authors briefly discuss the strong coupling limit of the string theory which, unlike the weak coupling regime, does not seem to admit a two-dimensional space-time picture. The authors' methods are equally applicable to interacting fermions in one dimension

  17. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  18. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  19. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Boytsov A. Yu.

    2018-01-01

    Full Text Available Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  20. Ef: Software for Nonrelativistic Beam Simulation by Particle-in-Cell Algorithm

    Science.gov (United States)

    Boytsov, A. Yu.; Bulychev, A. A.

    2018-04-01

    Understanding of particle dynamics is crucial in construction of electron guns, ion sources and other types of nonrelativistic beam devices. Apart from external guiding and focusing systems, a prominent role in evolution of such low-energy beams is played by particle-particle interaction. Numerical simulations taking into account these effects are typically accomplished by a well-known particle-in-cell method. In practice, for convenient work a simulation program should not only implement this method, but also support parallelization, provide integration with CAD systems and allow access to details of the simulation algorithm. To address the formulated requirements, development of a new open source code - Ef - has been started. It's current features and main functionality are presented. Comparison with several analytical models demonstrates good agreement between the numerical results and the theory. Further development plans are discussed.

  1. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  2. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shtabovenko, Vladyslav

    2017-05-22

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m{sub e}α (with m{sub e} being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m{sub e}α{sup 2}), long (R>>1/m{sub e}α{sup 2}) and intermediate (R∝1/m{sub e}α{sup 2}) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α{sup 0}{sub s}υ{sup 2}) (with α{sub s} being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ {sub cJ} and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m{sub Q} >> m{sub Q}υ >> m{sub Q

  3. Nonrelativistic effective field theories of QED and QCD. Applications and automatic calculations

    International Nuclear Information System (INIS)

    Shtabovenko, Vladyslav

    2017-01-01

    This thesis deals with the applications of nonrelativistic Effective Field Theories to electromagnetic and strong interactions. The main results of this work are divided into three parts. In the first part, we use potential Nonrelativistic Quantum Electrodynamics (pNRQED), an EFT of QED at energies much below m e α (with m e being the electron mass and α the fine-structure constant), to develop a consistent description of electromagnetic van der Waals forces between two hydrogen atoms at a separation R much larger than the Bohr radius. We consider the interactions at short (R<<1/m e α 2 ), long (R>>1/m e α 2 ) and intermediate (R∝1/m e α 2 ) distances and identify the relevant dynamical scales that characterize each of the three regimes. For each regime we construct a suitable van der Waals EFT, that provides the simplest description of the low-energy dynamics. In this framework, van der Waals potentials naturally arise from the matching coefficients of the corresponding EFTs. They can be computed in a systematic way, order by order in the relevant expansion parameters, as is done in this work. Furthermore, the potentials receive contributions from radiative corrections and have to be renormalized. The development of a consistent EFT framework to treat electromagnetic van der Waals interactions between hydrogen atoms and the renormalization of the corresponding van der Waals potentials are the novel features of this study. In the second part, we study relativistic O(α 0 s υ 2 ) (with α s being the strong coupling constant) corrections to the exclusive electromagnetic production of the heavy quarkonium χ cJ and a hard photon in the framework of nonrelativistic Quantum Chromodynamics (NRQCD), an EFT of QCD that takes full advantage of the nonrelativistic nature of charmonia and bottomonia and exploits wide separation of the relevant dynamical scales. These scales are m Q >> m Q υ >> m Q υ 2 , where m Q is the heavy quark mass and υ is the relative

  4. Observation of dipole bands in 144Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Sahasarkar, M.; Goswami, A.; Basu, S.K.; Bhattacharjee, T.; Mukherjee, G.; Chakraborty, A.; Ghughre, S.S.; Krishichayan; Mukhopadhyay, S.; Gangopadhyay, G.; Singh, A.K.

    2007-01-01

    The nucleus 144 Sm (Z=62, N=82), with its proximity to the shell closure and possibilities of particles and holes occupying high j orbitals, following appropriate excitations, is a suitable system for observation of dipole (MR) bands

  5. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  6. Dislocation dipole annihilation in diamond and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rabier, J; Pizzagalli, L, E-mail: jacques.rabier@univ-poitiers.fr [Institut PPRIMME, Departement de Physique et Mecanique des Materiaux - UPR 3346 CNRS, Universite de Poitiers, ENSMA - SP2MI, BP 30179, F-86962 Chasseneuil Futuroscope Cedex (France)

    2011-02-01

    The mechanism of dislocation dipole annihilation has been investigated in C and Si using atomistic calculations with the aim of studying their annihilation by-products. It is shown, in C as well as in Si, that dipole annihilation yields debris that can be depicted as a cluster of vacancies, or alternately by two internal free surfaces. These defects have no strain field and can hardly be seen using usual TEM techniques. This suggests that the brown colouration of diamond could be due to microstructures resulting from deformation mechanisms associated with dipole formation and their annihilation rather than to a climb mechanism and vacancy aggregation. In silicon where a number of dipoles have been evidenced by TEM when dislocation trails are found, such debris could be the missing link responsible for the observation of strong chemical reactivity and electrical activity in the wake of moving dislocations.

  7. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  8. Centre-containing spiral-geometric structure of the space-time and nonrelativistic relativity of the unit time

    International Nuclear Information System (INIS)

    Shakhazizyan, S.R.

    1987-01-01

    The problem of nonrelativistic dependence of unit length and unit time on the position in the space is considered on the basis of centre-containing spiral-geometric structure of the space-time. The experimental results of variation of the unit time are analyzed which well agree with the requirements of the model proposed. 13 refs.; 12 figs

  9. Modulated Pade approximant

    International Nuclear Information System (INIS)

    Ginsburg, C.A.

    1980-01-01

    In many problems, a desired property A of a function f(x) is determined by the behaviour of f(x) approximately equal to g(x,A) as x→xsup(*). In this letter, a method for resuming the power series in x of f(x) and approximating A (modulated Pade approximant) is presented. This new approximant is an extension of a resumation method for f(x) in terms of rational functions. (author)

  10. Bound states of a light atom and two heavy dipoles in two dimensions

    DEFF Research Database (Denmark)

    Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm

    2016-01-01

    We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles...

  11. Relics of short distance effects for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Eeg, J.O.

    1982-12-01

    The Feynman diagrams which dominate the estimates of the electric dipole moment of the neutron with Kobayashi-Maskawa CP violation are considered. The extracted long distance contributions and the relics of short distance contributions are shown to be complementary and of the same magnitude, resulting in mod(Dsub(n)/e) approximately = (10 - 31 - 10 - 30 ) cm. (Auth.)

  12. Ariadne version 4 - a program for simulation of QCD cascades implementing the colour dipole model

    International Nuclear Information System (INIS)

    Loennblad, L.

    1992-01-01

    The fourth version of the Ariadne program for generating QCD cascades in the colour dipole approximation is presented. The underlying physics issues are discussed and a manual for using the program is given together with a few sample programs. The major changes from previous versions are the introduction of photon radiation from quarks and inclusion of interfaces to the LEPTO and PYTHIA programs. (orig.)

  13. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  14. Colour dipoles and virtual Compton scattering

    International Nuclear Information System (INIS)

    McDermott, M.

    2002-01-01

    An analysis of Deeply Virtual Compton Scattering (DVCS) is made within the colour dipole model. We compare and contrast two models for the dipole cross-section which have been successful in describing structure function data. Both models agree with the available cross section data on DVCS from HERA. We give predictions for various azimuthal angle asymmetries in HERA kinematics and for the DVCS cross section in the THERA region. (orig.)

  15. Electric Dipole Echoes in Rydberg Atoms

    International Nuclear Information System (INIS)

    Yoshida, S.; Reinhold, C. O.; Burgdoerfer, J.; Zhao, W.; Mestayer, J. J.; Lancaster, J. C.; Dunning, F. B.

    2007-01-01

    We report the first observation of echoes in the electric dipole moment of an ensemble of Rydberg atoms precessing in an external electric field F. Rapid reversal of the field direction is shown to play a role similar to that of a π pulse in NMR in rephasing a dephased ensemble of electric dipoles resulting in the buildup of an echo. The mechanisms responsible for this are discussed with the aid of classical trajectory Monte Carlo simulations

  16. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  17. High field dipole magnet design concepts

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1988-12-01

    High field dipole magnets will play a crucial role in the development of future accelerators whether at Fermilab or elsewhere. This paper presents conceptual designs for two such dipoles; 6.6 and 8.8 Tesla, with special focus on their suitability for upgrades to the Fermilab Tevatron. Descriptions and cross-sectional views will be presented as will preliminary estimates of heat loads and costs. 3 refs., 2 figs., 2 tabs

  18. Sparse approximation with bases

    CERN Document Server

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  19. 750 GeV diphoton resonance and electric dipole moments

    Directory of Open Access Journals (Sweden)

    Kiwoon Choi

    2016-09-01

    Full Text Available We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle α in the underlying new physics is of O(10−1. An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle α for an approximately scalar resonance, is of O(10−3. For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor dynamics confining at ΛHC, the resulting neutron EDM can be estimated with α∼(750 GeV/ΛHC2θHC, where θHC is the hypercolor vacuum angle.

  20. Cooperative behavior of qutrits with dipole-dipole interactions

    OpenAIRE

    Mandilara, A.; Akulin, V. M.

    2006-01-01

    We have identified a class of many body problems with analytic solution beyond the mean-field approximation. This is the case where each body can be considered as an element of an assembly of interacting particles that are translationally frozen multi-level quantum systems and that do not change significantly their initial quantum states during the evolution. In contrast, the entangled collective state of the assembly experiences an appreciable change. We apply this approach to interacting th...

  1. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  2. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  3. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  4. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Science.gov (United States)

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  5. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  6. Dynamic Dipole-Dipole Interactions between Excitons in Quantum Dots of Different Sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2005-01-01

    Micro-photoluminescence spectra of GaAs/AlGaAs coupled quantum dots (QDs) are given, and proposed to be analyzed by our resonance dynamic dipole-dipole interaction (RDDDI) model, based on parity inheritance and exchange of virtual photons among QDs of different sizes....

  7. Approximation techniques for engineers

    CERN Document Server

    Komzsik, Louis

    2006-01-01

    Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.

  8. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  9. Inhibition of two-photon absorption due to dipole-dipole interaction in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)], E-mail: msingh@uwo.ca

    2008-07-21

    We have investigated the inhibition of two-photon absorption in photonic crystals doped with an ensemble of four-level nanoparticles. The particles are interacting with one another by the dipole-dipole interaction. Dipoles in nanoparticles are induced by a selected transition. Numerical simulations have been performed for an isotropic photonic crystal. Interesting phenomena have been predicted such as the inhibition of the two-photon absorption due to the dipole-dipole interaction. It has also been found that the inhibition effect can be switched on and off by tuning a decay resonance energy within the energy band of the crystal. A theory of dressed states has been used to explain the results.

  10. LHC dipoles: the countdown has begun

    CERN Document Server

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  11. Expectation Consistent Approximate Inference

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2005-01-01

    We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...

  12. The reversed and normal flux contributions to axial dipole decay for 1880-2015

    Science.gov (United States)

    Metman, M. C.; Livermore, P. W.; Mound, J. E.

    2018-03-01

    The axial dipole component of Earth's internal magnetic field has been weakening since at least 1840, an effect widely believed to be attributed to the evolution of reversed flux patches (RFPs). These are regions on the core-mantle boundary (CMB) where the sign of radial flux deviates from that of the dominant sign of hemispheric radial flux. We study dipole change over the past 135 years using the field models gufm1, COV-OBS.x1 and CHAOS-6; we examine the impact of the choice of magnetic equator on the identification of reversed flux, the contribution of reversed and normal flux to axial dipole decay, and how reversed and normal field evolution has influenced the axial dipole. We show that a magnetic equator defined as a null-flux curve of the magnetic field truncated at spherical harmonic degree 3 allows us to robustly identify reversed flux, which we demonstrate is a feature of at least degree 4 or 5. Additionally, our results indicate that the evolution of reversed flux accounts for approximately two-thirds of the decay of the axial dipole, while one third of the decay is attributed to the evolution of the normal field. We find that the decay of the axial dipole over the 20th century is associated with both the expansion and poleward migration of reversed flux patches. In contrast to this centennial evolution, changes in the structure of secular variation since epoch 2000 indicate that poleward migration currently plays a much reduced role in the ongoing dipole decay.

  13. Quark contribution to the small-x evolution of color dipole

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2006-09-11

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.

  14. Cosmic microwave background dipole spectrum measured by the COBE FIRAS instrument

    Science.gov (United States)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Isaacman, R. B.; Mather, J. C.; Meyer, S. S.; Noerdlinger, P. D.; Shafer, R. A.; Weiss, R.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.

  15. Ordered cones and approximation

    CERN Document Server

    Keimel, Klaus

    1992-01-01

    This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.

  16. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  17. Perturbative odderon in the dipole model

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2004-01-01

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E n,ν and χ(n,ν) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by α odd -1=((2α s N c )/(π))χ(n=1,ν=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy

  18. Installation Strategy for the LHC Main Dipoles

    CERN Multimedia

    Fartoukh, Stephane David

    2004-01-01

    All positions in the LHC machine are not equivalent in terms of beam requirements on the geometry and the field quality of the main dipoles. In the presence of slightly or strongly out-of tolerance magnets, a well-defined installation strategy will therefore contribute to preserve or even optimize the performance of the machine. Based on the present status of the production, we have anticipated a list of potential issues (geometry, transfer function, field direction and random b3) which, combined by order of priority, have been taken into account to define a simple but efficient installation algorithm for the LHC main dipoles. Its output is a prescription for installing the available dipoles in sequence while reducing to an absolute minimum the number of holes required by geometry or FQ issues.

  19. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  20. Perturbative odderon in the dipole model

    Energy Technology Data Exchange (ETDEWEB)

    Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2004-04-29

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E{sup n,{nu}} and {chi}(n,{nu}) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by {alpha}{sub odd}-1=((2{alpha}{sub s}N{sub c})/({pi})){chi}(n=1,{nu}=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy.

  1. Neutron Electric Dipole Moment from colored scalars⋆

    Directory of Open Access Journals (Sweden)

    Fajfer Svjetlana

    2014-01-01

    Full Text Available We present new contributions to the neutron electric dipole moment induced by a color octet, weak doublet scalar, accommodated within a modified Minimal Flavor Violating framework. These flavor non-diagonal couplings of the color octet scalar might account for an assymmetry of order 3 × 10−3 for aCP(D0 → K−K+ − aCP(D0 → π+π− at tree level. The same couplings constrained by this assymmetry also induce two-loop contributions to the neutron electric dipole moment. We find that the direct CP violating asymmetry in neutral D-meson decays is more constraining on the allowed parameter space than the current experimental bound on neutron electric dipole moment.

  2. On the electric dipole moments of small sodium clusters from different theoretical approaches

    International Nuclear Information System (INIS)

    Aguado, Andrés; Largo, Antonio; Vega, Andrés; Balbás, Luis Carlos

    2012-01-01

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: ► Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. ► New van der Waals selfconsistent implementation of non-local dispersion interactions. ► New starting isomeric geometries from extensive search of global minimum structures. ► Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na n clusters in the size range 10 n clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible contribution of the core electrons to the electric dipole moments. Our new geometries possess significantly smaller electric dipole moments than previous density functional results, mostly when combined with the van der Waals exchange–correlation functional. However, although the agreement with experiment clearly improves upon previous calculations, the theoretical dipole moments are still about one order of magnitude larger than the experimental values, suggesting that the correct global minimum structures have not been

  3. Magnetohydrodynamic Kelvin-Helmholtz instabilities in astrophysics. 1. Relativistic flows-plane boundary layer in vortex sheet approximation

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)

    1980-11-01

    In this paper some unsolved problems of the linear MHD Kelvin-Helmholtz instability are re-examined, starting from the analysis of relativistic (and non-relativistic) flows in the approximation of a plane vortex sheet, for the contact layer between the fluids in relative motion. Results are discussed for a range of physical parameters in specific connection with application to models of jets in extragalactic radio sources. Other physical aspects of the instability will be considered in forthcoming papers.

  4. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    Science.gov (United States)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  5. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    Kunzle, H.P.; Duval, C.

    1985-07-01

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  6. Solution of the nonrelativistic wave equation using the tridiagonal representation approach

    Science.gov (United States)

    Alhaidari, A. D.

    2017-07-01

    We choose a complete set of square integrable functions as a basis for the expansion of the wavefunction in configuration space such that the matrix representation of the nonrelativistic time-independent linear wave operator is tridiagonal and symmetric. Consequently, the matrix wave equation becomes a symmetric three-term recursion relation for the expansion coefficients of the wavefunction. The recursion relation is then solved exactly in terms of orthogonal polynomials in the energy. Some of these polynomials are not found in the mathematics literature. The asymptotics of these polynomials give the phase shift for the continuous energy scattering states and the spectrum for the discrete energy bound states. Depending on the space and boundary conditions, the basis functions are written in terms of either the Laguerre or Jacobi polynomials. The tridiagonal requirement limits the number of potential functions that yield exact solutions of the wave equation. Nonetheless, the class of exactly solvable problems in this approach is larger than the conventional class (see, for example, Table XII in the text). We also give very accurate results for cases where the wave operator matrix is not tridiagonal but its elements could be evaluated either exactly or numerically with high precision.

  7. Simulations of non-relativistic quantum chromodynamics at strong and weak coupling

    Science.gov (United States)

    Shakespeare, Norman Harold

    In this thesis heavy quarks are investigated using lattice nonrelativistic quantum chromodynamics (NRQCD). Two major research works are presented. In the first major work, simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed at both leading and next-to-leading order in the relativistic expansion, using a large number of lattice spacings. A detailed comparison between mean-link and average plaquette tadpole renormalization schemes is undertaken with a number of features favouring the use of mean-links. These include much better scaling behavior of the hyperfine splittings and smaller relativistic corrections to the spin splittings. Signs of a breakdown in the NRQCD expansion are seen when the bare quark mass, in lattice units, falls below about one. In the second work, coefficients for the perturbative expansion of the static quark self energy are extracted from Monte Carlo simulations in the perturbative region of lattice quantum chromodynamics (QCD). A very large systematic study resulted in a major extension of existing methods. Twisted boundary conditions are used to eliminate the effects of zero modes and to suppress tunneling between the degenerate Z3 vacua. The Monte Carlo results are in excellent agreement with analytic perturbation theory, which is known through second order. New results for the third order coefficient are reported. Preliminary work is reported on quark propagators which will be used to measure second order mass renormalizations for NRQCD fermions.

  8. Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD

    Science.gov (United States)

    Hughes, Ciaran; Eichten, Estia; Davies, Christine T. H.

    2018-03-01

    Motivated by multiple phenomenological considerations, we perform the first search for the existence of a b ¯b ¯b b tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold using the first-principles lattice nonrelativistic QCD methodology. We use a full S -wave color/spin basis for the b ¯b ¯b b operators in the three 0++, 1+- and 2++ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from a =0.06 - 0.12 fm , all of which include u , d , s and c quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest noninteracting thresholds in the channels studied.

  9. Exact solution of nonrelativistic Schrodinger equation for certain central physical potential

    International Nuclear Information System (INIS)

    Bose, S.K.; Gupta, N.

    1998-01-01

    It is obtained here a class/classes of exact solution of the nonrelativistic Schrodinger equation for certain central potentials of physical interest by using proper ansatz/ansatze. The explicit expressions of energy eigenvalue and eigenfunction are obtained for each solution. These solutions are valid when for, in general, each solutions an interrelation between the parameters of the potential and the orbital-angular-momentum quantum number l is satisfied. These solutions, besides having an aesthetic appeal, can be used as benchmark to test the accuracy of nonperturbative methods, which sometimes yield wrong results, of solving the Schrodinger equation. The exact solution for the following central potentials, which are relevant in different areas of physics, have been obtained: 1) V(r)=ar 6 + br 4 + cr 2 ; 2) V(r)=ar 2 + br + c/r; 3) V(r)=r 2 + λr 2 /(1+gr 2 ); 4) V(r)= a/r + b/(r+λ); 5a) V(r)=a/r + b/r 2 +c/r 3 +d/r 4 ; 5)b V(r)=a/r 2 + b/r 2 + c/r 4 + d/r 6 ; 6a) V(r)=a/r 1/2 + b/r 3/2 ; 6b) V(r)=ar 2/3 + br -2/3 + cr -4/3

  10. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    Science.gov (United States)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  11. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Horton, R.; Ono, M.; Ashour-Abdalla, M.

    1987-01-01

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam--plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity. This rapid diffusion takes place within a several amplification length of the beam--plasma instability given by (ω/sub p/ω 2 /sub b/) -1 /sup // 3 V 0 , where ω/sub p/, ω/sub b/, and V 0 are the target plasma, beam--plasma frequencies, and the beam drift speed. This plateaulike distribution, however, becomes unstable as the high energy tail electrons free-stream, generating a secondary beam. A similar process is observed to take place for the case of continuous beam injection when the beam density is small compared with the total density n/sub b//n/sub t/<1. In particular, the electron velocity distribution is found monotonically decreasing in energy, having a high energy tail whose energy reaches twice the initial beam energy. Such an electron distribution is also seen in laboratory experiments and in computer simulations performed for a uniform, periodic system

  12. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    International Nuclear Information System (INIS)

    Klink, W.H.; Wickramasekara, S.

    2014-01-01

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected

  13. New approximation for Glauber theory on stripping of relativistic deuterons

    International Nuclear Information System (INIS)

    Nissen-Meyer, S.A.

    1978-03-01

    The momentum distribution of forward protons from relativistic collisions of deuterons with nuclei is computed from a Glauber theoretical Ansatz of Bertocchi and Tekou. The outgoing proton-neutron scattering state (disintegrated deuteron) with a plane wave minus the components of this plane wave along the deuteron bound state vector is approximated. With no fitted parameters good agreement is found with data from the reaction d + C 12 → p + X in the region corresponding to nonrelativistic Fermi momenta in the forward direction. At more relativistic Fermi momenta, the model deviates more from the data, which can be due to incorrect choice of the short distance part of the deuteron wave function as well as off-shell effects in the deuteron

  14. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  15. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  16. Approximations of Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Vinai K. Singh

    2013-03-01

    Full Text Available A fuzzy system can uniformly approximate any real continuous function on a compact domain to any degree of accuracy. Such results can be viewed as an existence of optimal fuzzy systems. Li-Xin Wang discussed a similar problem using Gaussian membership function and Stone-Weierstrass Theorem. He established that fuzzy systems, with product inference, centroid defuzzification and Gaussian functions are capable of approximating any real continuous function on a compact set to arbitrary accuracy. In this paper we study a similar approximation problem by using exponential membership functions

  17. General Rytov approximation.

    Science.gov (United States)

    Potvin, Guy

    2015-10-01

    We examine how the Rytov approximation describing log-amplitude and phase fluctuations of a wave propagating through weak uniform turbulence can be generalized to the case of turbulence with a large-scale nonuniform component. We show how the large-scale refractive index field creates Fermat rays using the path integral formulation for paraxial propagation. We then show how the second-order derivatives of the Fermat ray action affect the Rytov approximation, and we discuss how a numerical algorithm would model the general Rytov approximation.

  18. Dipole strength distributions from HIGS Experiments

    Science.gov (United States)

    Werner, V.; Cooper, N.; Goddard, P. M.; Humby, P.; Ilieva, R. S.; Rusev, G.; Beller, J.; Bernards, C.; Crider, B. P.; Isaak, J.; Kelley, J. H.; Kwan, E.; Löher, B.; Peters, E. E.; Pietralla, N.; Romig, C.; Savran, D.; Scheck, M.; Tonchev, A. P.; Tornow, W.; Yates, S. W.; Zweidinger, M.

    2015-05-01

    A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  19. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  20. Dipole strength distributions from HIGS Experiments

    Directory of Open Access Journals (Sweden)

    Werner V.

    2015-01-01

    76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  1. Spectral structure of the pygmy dipole resonance.

    Science.gov (United States)

    Tonchev, A P; Hammond, S L; Kelley, J H; Kwan, E; Lenske, H; Rusev, G; Tornow, W; Tsoneva, N

    2010-02-19

    High-sensitivity studies of E1 and M1 transitions observed in the reaction 138Ba(gamma,gamma{'}) at energies below the one-neutron separation energy have been performed using the nearly monoenergetic and 100% linearly polarized photon beams of the HIgammaS facility. The electric dipole character of the so-called "pygmy" dipole resonance was experimentally verified for excitations from 4.0 to 8.6 MeV. The fine structure of the M1 "spin-flip" mode was observed for the first time in N=82 nuclei.

  2. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  3. Multiple transparency windows and Fano interferences induced by dipole-dipole couplings

    Science.gov (United States)

    Diniz, E. C.; Borges, H. S.; Villas-Boas, C. J.

    2018-04-01

    We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we assume that it has a decay rate much greater than the decay rates of the other TLSs. For N =1 and in the limit of a Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS, i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT), and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented here are very general and can be implemented in different physical systems, such as an array of superconducting qubits, or an array of quantum dots, spin chains, optical lattices, etc.

  4. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation

    DEFF Research Database (Denmark)

    Zheng, Kaibo; Zídek, Karel; Abdellah, Mohamed

    2014-01-01

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of ...

  5. Classical theory of the Kumakhov radiation in axial channeling. 1. Dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Khokonov, M.K.; Komarov, F.F.; Telegin, V.I.

    1984-05-01

    The paper considers radiation of ultrarelativistic electrons in axial channeling initially predicted by Kumakhov. The consideration is based on the results of solution of the Fokker-Planck equation. The spectral-angular characteristics of the Kumakhov radiation in thick single crystals are calculated. It is shown that in heavy single crystals the energy losses on radiation can amount to a considerable portion of the initial beam energy. The possibility of a sharp increase of radiation due to a decrease of crystal temperature is discussed. It is shown that radiation intensity in axial channeling is weakly dependent on the initial angle of the electron entrance into the channel if this angle changes within the limits of a critical one.

  6. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  7. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  8. INTOR cost approximation

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1980-01-01

    A simplified cost approximation for INTOR parameter sets in a narrow parameter range is shown. Plausible constraints permit the evaluation of the consequences of parameter variations on overall cost. (orig.) [de

  9. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  10. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  11. Individual Low-Energy Toroidal Dipole State in Mg 24

    Science.gov (United States)

    Nesterenko, V. O.; Repko, A.; Kvasil, J.; Reinhard, P.-G.

    2018-05-01

    The low-energy dipole excitations in Mg 24 are investigated within the Skyrme quasiparticle random phase approximation for axial nuclei. The calculations with the force SLy6 reveal a remarkable feature: the lowest IπK =1-1 excitation (E =7.92 MeV ) in Mg 24 is a vortical toroidal state (TS) representing a specific vortex-antivortex realization of the well-known spherical Hill's vortex in a strongly deformed axial confinement. This is a striking example of an individual TS which can be much more easily discriminated in experiment than the toroidal dipole resonance embracing many states. The TS acquires the lowest energy due to the huge prolate axial deformation in Mg 24 . The result persists for different Skyrme parametrizations (SLy6, SVbas, SkM*). We analyze spectroscopic properties of the TS and its relation with the cluster structure of Mg 24 . Similar TSs could exist in other highly prolate light nuclei. They could serve as promising tests for various reactions to probe a vortical (toroidal) nuclear flow.

  12. Approximate kernel competitive learning.

    Science.gov (United States)

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  14. Conceptual design of Dipole Research Experiment (DREX)

    Science.gov (United States)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  15. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  16. LHC Dipoles: The countdown has begun

    CERN Document Server

    2002-01-01

    One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.

  17. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  18. Dipole nano-laser: Theory and properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, T., E-mail: gtalal@hotmail.com [King Abdullah Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-03-31

    In this paper we outline the main quantum properties of the system of nano-based laser called Dipole Nano-Laser emphasizing mainly on its ability to produce coherent light and for different configurations such as different embedding materials and subjecting it to an external classical electric field.

  19. Giant dipole resonances built on excited states

    International Nuclear Information System (INIS)

    Snover, K.A.

    1983-01-01

    The properties of giant dipole resonances built on excited nuclear states are reviewed, with emphasis on recent results. Nonstatistical (p,γ) reactions in light nuclei, and statistical complex-particle reactions in light and heavy nuclei are discussed. 27 references

  20. Formation of dipole vortex in the ionosphere

    International Nuclear Information System (INIS)

    Shukla, P.K.; Yu, M.Y.

    1985-01-01

    It is shown that isolated dipole vortices can exist in the F-region of the ionosphere. These are associated with the Rayleigh-Taylor and E x B 0 gradient drift instabilities. The vortices may be responsible for the rapid structuring of barium clouds as well as other phenomena observed in the upper ionosphere

  1. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  2. Scattering properties of point dipole interactions

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.

    2006-01-01

    dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...

  3. Stability of the giant dipole resonance

    International Nuclear Information System (INIS)

    Espino, J.M.; Gallardo, M.

    1987-01-01

    The Giant Dipole Resonance (GDR), because of its stability and its typical period of vibration, can be used as a test for compound nucleus reactions at high temperatures. This stability is studied in a simple model up to 6 MeV of temperature. The experimental methods for getting the properties of the GDR at T ≠ 0 are also commented. (author)

  4. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  5. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1987-01-01

    The contribution of CP violating nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated following a recent proposal for its experimental detection. Two models of CP violating interactions are used, namely, the Kobayashi-Maskawa mechanism and the occurrence of the Θ term in the QCD lagrangian. These CP violating interactions are combined with realistic strong nucleon-nucleon interactions to induce a CP forbidden component of the 3 He wave function. The matrix element of the electric dipole operator is then evaluated between CP allowed and CP forbidden components yielding the observable electric dipole moment. Using the parameters emerging from the penguin terms in the Kobaysashi-Maskawa model we obtain a result much larger than the electric dipole moment of the neutron in the same model. On the other hand, no enhancement is found for the Θ-term mechanism. A possible explanation for this difference is discussed. Numerical estimates can be given only in the Kobayashi-Maskawa model, giving d( 3 He) ≅ 10 30 e . cm. In the second mechanism, the estimate give d ( 3 He) ≅ 10 16 anti Θ. (orig.)

  6. Induced electric dipole in a quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, L.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br

    2013-12-02

    In this contribution, we investigate the quantum dynamics of a neutral particle confined in a quantum ring potential. We use two different field configurations for induced electric dipole in the presence of electric and magnetic fields and a general confining potential, for which we solve the Schrödinger equation and obtain the complete set of eigenfunctions and eigenvalues.

  7. On the electric dipole moments of small sodium clusters from different theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)

    2012-05-03

    Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible

  8. Ionization of Rb Rydberg atoms in the attractive nsnp dipole-dipole potential

    International Nuclear Information System (INIS)

    Park, Hyunwook; Shuman, E. S.; Gallagher, T. F.

    2011-01-01

    We have observed the ionization of a cold gas of Rb Rydberg atoms which occurs when nsns van der Waals pairs of ns atoms of n≅ 40 on a weakly repulsive potential are transferred to an attractive dipole-dipole nsnp potential by a microwave transition. Comparing the measurements to a simple model shows that the initial 300-μK thermal velocity of the atoms plays an important role. Excitation to a repulsive dipole-dipole potential does not lead to more ionization on a 15-μs time scale than leaving the atoms in the weakly repulsive nsns state. This observation is slightly surprising since a radiative transition must occur to allow ionization in the latter case. Finally, by power broadening of the microwave transition, to allow transitions from the initial nsns state to the nsnp state over a broad range of internuclear spacings, it is possible to accelerate markedly the evolution to a plasma.

  9. O (6 ) algebraic theory of three nonrelativistic quarks bound by spin-independent interactions

    Science.gov (United States)

    Dmitrašinović, V.; Salom, Igor

    2018-05-01

    We apply the newly developed theory of permutation-symmetric O (6 ) hyperspherical harmonics to the quantum-mechanical problem of three nonrelativistic quarks confined by a spin-independent three-quark potential. We use our previously derived results to reduce the three-body Schrödinger equation to a set of coupled ordinary differential equations in the hyper-radius R with coupling coefficients expressed entirely in terms of (i) a few interaction-dependent O (6 ) expansion coefficients and (ii) O (6 ) hyperspherical harmonics matrix elements that have been evaluated in our previous paper. This system of equations allows a solution to the eigenvalue problem with homogeneous three-quark potentials, the class of which includes a number of standard Ansätze for the confining potentials, such as the Y- and Δ -string ones. We present analytic formulas for the K =2 , 3, 4, 5 shell states' eigenenergies in homogeneous three-body potentials, which we then apply to the Y and Δ strings as well as the logarithmic confining potentials. We also present numerical results for power-law pairwise potentials with the exponent ranging between -1 and +2 . In the process, we resolve the 25-year-old Taxil and Richard vs Bowler et al. controversy regarding the ordering of states in the K =3 shell, in favor of the former. Finally, we show the first clear difference between the spectra of Δ - and Y-string potentials, which appears in K ≥3 shells. Our results are generally valid, not just for confining potentials but also for many momentum-independent permutation-symmetric homogenous potentials that need not be pairwise sums of two-body terms. The potentials that can be treated in this way must be square integrable under the O (6 ) hyperangular integral, the class of which, however, does not include the Dirac δ function.

  10. Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential

    Energy Technology Data Exchange (ETDEWEB)

    Long, Andrew J.; Lunardini, Cecilia; Sabancilar, Eray, E-mail: andrewjlong@asu.edu, E-mail: Cecilia.Lunardini@asu.edu, E-mail: Eray.Sabancilar@asu.edu [Physics Department, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-08-01

    We study the physics potential of the detection of the Cosmic Neutrino Background via neutrino capture on tritium, taking the proposed PTOLEMY experiment as a case study. With the projected energy resolution of Δ ∼ 0.15 eV, the experiment will be sensitive to neutrino masses with degenerate spectrum, m{sub 1} ≅ m{sub 2} ≅ m{sub 3} = m{sub ν} ∼> 0.1 eV. These neutrinos are non-relativistic today; detecting them would be a unique opportunity to probe this unexplored kinematical regime. The signature of neutrino capture is a peak in the electron spectrum that is displaced by 2 m{sub ν} above the beta decay endpoint. The signal would exceed the background from beta decay if the energy resolution is Δ ∼< 0.7 m{sub ν} . Interestingly, the total capture rate depends on the origin of the neutrino mass, being Γ{sup D} ≅ 4 and Γ{sup M} ≅ 8 events per year (for a 100 g tritium target) for unclustered Dirac and Majorana neutrinos, respectively. An enhancement of the rate of up to O(1) is expected due to gravitational clustering, with the unique potential to probe the local overdensity of neutrinos. Turning to more exotic neutrino physics, PTOLEMY could be sensitive to a lepton asymmetry, and reveal the eV-scale sterile neutrino that is favored by short baseline oscillation searches. The experiment would also be sensitive to a neutrino lifetime on the order of the age of the universe and break the degeneracy between neutrino mass and lifetime which affects existing bounds.

  11. High-energy Emission from Nonrelativistic Radiative Shocks: Application to Gamma-Ray Novae

    Science.gov (United States)

    Vurm, Indrek; Metzger, Brian D.

    2018-01-01

    The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the nonrelativistic radiative shocks in these systems can accelerate particles to energies of at least ∼10 GeV. The low-energy extension of the same nonthermal particle distribution inevitably gives rise to emission in the hard X-ray band. Above ≳ 10 {keV}, this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. We find that due to strong Coulomb losses, only a fraction of {10}-4{--}{10}-3 of the gamma-ray luminosity is radiated in the NuSTAR band; nevertheless, this emission could be detectable simultaneously with the LAT emission in bright gamma-ray novae with a ∼50 ks exposure. The spectral slope in hard X-rays is α ≈ 0 for typical nova parameters, thus serving as a testable prediction of the model. Our work demonstrates how combined hard X-ray and gamma-ray observations can be used to constrain properties of the nova outflow (velocity, density, and mass outflow rate) and particle acceleration at the shock. A very low X-ray to gamma-ray luminosity ratio ({L}{{X}}/{L}γ ≲ 5× {10}-4) would disfavor leptonic models for the gamma-ray emission. Our model can also be applied to other astrophysical environments with radiative shocks, including SNe IIn and colliding winds in massive star binaries.

  12. Observable effects and parametrized scaling limits of a model in nonrelativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    Hiroshima, Fumio

    2002-01-01

    Scaling limits of the Hamiltonian H of a system of N charged particles coupled to a quantized radiation field are considered. Ultraviolet cutoffs, λ 1 ,...,λ N , are imposed on the radiation field and the Coulomb gauge is taken. It is the so-called Pauli-Fierz model in nonrelativistic quantum electrodynamics. We mainly consider two cases: (i) all the ultraviolet cutoffs are identical, λ 1 =···=λ N , (ii) supports of ultraviolet cutoffs have no intersection, supp λ i intersection supp λ j = null-set , i≠j. The Hamiltonian acts on L 2 (R dN )(multiply-in-circle sign)F, where F is a symmetric Fock space, and has the form H=H el (multiply-in-circle sign)1+B+1(multiply-in-circle sign)H quad . Here H el denotes a particle Hamiltonian, H quad a quadratic field operator, and B an interaction term. The scaling is introduced as H(κ)=H el (multiply-in-circle sign)1+κ l B+κ 2 1(multiply-in-circle sign)H quad , where κ is a scaling parameter and l≤2 a parameter of the scaling. Performing a mass renormalization we consider the scaling limit of H(κ) as κ→∞ in the strong resolvent sense. Then effective Hamiltonians H eff in L 2 (R dN ) infected with reaction of effect of the radiation field is derived. In particular (1) effective Hamiltonians with an effective potential for l=2, and (2) effective Hamiltonians with an observed mass for l=1, are obtained

  13. Non-relativistic and relativistic quantum kinetic equations in nuclear physics

    International Nuclear Information System (INIS)

    Botermans, W.M.M.

    1989-01-01

    In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes

  14. Dual Aharonov-Casher effect and persistent dipole current

    International Nuclear Information System (INIS)

    Yi, J.; Jeon, G.S.; Choi, M.Y.

    1995-01-01

    An electric dipole moving in a magnetic field acquires a nontrivial quantum phase in the appropriate configuration. It is shown that this phase is manifested by the persistent dipole current induced on a ring pierced by a line of magnetic monopoles. Such a current depends on the statistics of the dipoles, which may have interesting implications for experiments. It is also pointed out that the dipole current cannot be self-sustained

  15. The effect of the charge density on the dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.; Germano, J.S.E.

    1986-01-01

    The results of the calculation, using the Variational Cellular Method (VCM), of the electric dipole moment of several diatomic molecules are improved. In previous calculations, the electronic charge density was treated like a spherically symmetric function in the inscribed sphere within each cell and as being the same constant value for all intercellular regions. Since the results obtained with such an approximation have not been satisfactory, an improved approximation for the charge density in the intercellular regions is needed. It is considered that the charge density is still constant outside the inscribed sphere but with different values in each intercellular region. A new expression for the dipole moment is obtained, and applied to the diatomic molecules HF, CO, BF and CS. In addition, the corresponding dipole moment curves, potential energy curves and spectroscopic constants are calculated taking into consideration our approximation and the traditional approximation for the charge density. The results of the two models are compared with each other and with experimental results for all the molecules considered. (Author) [pt

  16. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  17. Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    OpenAIRE

    Opatrny, T.; Deb, B.; Kurizki, G.

    2003-01-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR "paradox" with translational variables is then modified by lattice-diffraction effects, and can be verified to a high degree of ...

  18. The natural line shape of the giant dipole resonance

    International Nuclear Information System (INIS)

    Gordon, E.F.; Pitthan, R.

    1977-01-01

    Investigation of photoabsorption experiments in the spherical nucleus 141 Pr, the quasispherical dynamically deformed 197 Au, and the statically deformed 165 Ho showed that the function which describes best the energy dependence of the reduced transition probability is given by the Breit-Wigner form rather than the Lorentz form. However, the form of the resulting measured cross section is approximately of the Lorentz type. The dependence of the giant resonance width GAMMA on the excitation energy was also investigated, and found to be less than 1% per MeV if one considered the known isovector E2 resonance above the giant dipole resonance. Best fit values of the reduced transition probabilities for the three nuclei are given and compared to (e,e') results. (Auth.)

  19. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  20. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  1. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    Science.gov (United States)

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  2. Formation and temporal evolution of the Lamb-dipole

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Juul Rasmussen, J.

    1997-01-01

    of the evolving dipoles depend on the initial condition. However, the gross properties of their evolution are only weakly dependent on the detailed structure and can be well-described by the so-called Lamb-dipole solution. The viscous decay of the Lamb-dipole, leading to an expansion and a decreasing velocity...

  3. On Convex Quadratic Approximation

    NARCIS (Netherlands)

    den Hertog, D.; de Klerk, E.; Roos, J.

    2000-01-01

    In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of

  4. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-01-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  5. Approximating The DCM

    DEFF Research Database (Denmark)

    Madsen, Rasmus Elsborg

    2005-01-01

    The Dirichlet compound multinomial (DCM), which has recently been shown to be well suited for modeling for word burstiness in documents, is here investigated. A number of conceptual explanations that account for these recent results, are provided. An exponential family approximation of the DCM...

  6. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  7. Prestack wavefield approximations

    KAUST Repository

    Alkhalifah, Tariq

    2013-09-01

    The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.

  8. Electric Dipole-Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle.

    Science.gov (United States)

    Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P

    2017-12-07

    The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.

  9. Dipole-dipole interactions in a hot atomic vapor and in an ultracold gas of Rydberg atoms

    Science.gov (United States)

    Sautenkov, V. A.; Saakyan, S. A.; Bronin, S. Ya; Klyarfeld, A. B.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    In our paper ideal and non-ideal gas media of neutral atoms are analyzed. The first we discuss a dipole broadening of atomic transitions in excited dilute and dense metal vapors. Then the theoretical studies of the dipole-dipole interactions in dense ultracold gas of Rydberg atoms are considered. Possible future experiments on a base of our experimental arrangement are suggested.

  10. The local quantum-mechanical stress tensor in Thomas-Fermi approximation and gradient expansion method

    International Nuclear Information System (INIS)

    Kaschner, R.; Graefenstein, J.; Ziesche, P.

    1988-12-01

    From the local momentum balance using density functional theory an expression for the local quantum-mechanical stress tensor (or stress field) σ(r) of non-relativistic Coulomb systems is found out within the Thomas-Fermi approximation and its generalizations including gradient expansion method. As an illustration the stress field σ(r) is calculated for the jellium model of the interface K-Cs, containing especially the adhesive force between the two half-space jellia. (author). 23 refs, 1 fig

  11. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  12. An improved saddlepoint approximation.

    Science.gov (United States)

    Gillespie, Colin S; Renshaw, Eric

    2007-08-01

    Given a set of third- or higher-order moments, not only is the saddlepoint approximation the only realistic 'family-free' technique available for constructing an associated probability distribution, but it is 'optimal' in the sense that it is based on the highly efficient numerical method of steepest descents. However, it suffers from the problem of not always yielding full support, and whilst [S. Wang, General saddlepoint approximations in the bootstrap, Prob. Stat. Lett. 27 (1992) 61.] neat scaling approach provides a solution to this hurdle, it leads to potentially inaccurate and aberrant results. We therefore propose several new ways of surmounting such difficulties, including: extending the inversion of the cumulant generating function to second-order; selecting an appropriate probability structure for higher-order cumulants (the standard moment closure procedure takes them to be zero); and, making subtle changes to the target cumulants and then optimising via the simplex algorithm.

  13. Prestack traveltime approximations

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.

  14. Topology, calculus and approximation

    CERN Document Server

    Komornik, Vilmos

    2017-01-01

    Presenting basic results of topology, calculus of several variables, and approximation theory which are rarely treated in a single volume, this textbook includes several beautiful, but almost forgotten, classical theorems of Descartes, Erdős, Fejér, Stieltjes, and Turán. The exposition style of Topology, Calculus and Approximation follows the Hungarian mathematical tradition of Paul Erdős and others. In the first part, the classical results of Alexandroff, Cantor, Hausdorff, Helly, Peano, Radon, Tietze and Urysohn illustrate the theories of metric, topological and normed spaces. Following this, the general framework of normed spaces and Carathéodory's definition of the derivative are shown to simplify the statement and proof of various theorems in calculus and ordinary differential equations. The third and final part is devoted to interpolation, orthogonal polynomials, numerical integration, asymptotic expansions and the numerical solution of algebraic and differential equations. Students of both pure an...

  15. Approximate Bayesian recursive estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav

    2014-01-01

    Roč. 285, č. 1 (2014), s. 100-111 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Approximate parameter estimation * Bayesian recursive estimation * Kullback–Leibler divergence * Forgetting Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/karny-0425539.pdf

  16. Approximating Preemptive Stochastic Scheduling

    OpenAIRE

    Megow Nicole; Vredeveld Tjark

    2009-01-01

    We present constant approximative policies for preemptive stochastic scheduling. We derive policies with a guaranteed performance ratio of 2 for scheduling jobs with release dates on identical parallel machines subject to minimizing the sum of weighted completion times. Our policies as well as their analysis apply also to the recently introduced more general model of stochastic online scheduling. The performance guarantee we give matches the best result known for the corresponding determinist...

  17. Optimization and approximation

    CERN Document Server

    Pedregal, Pablo

    2017-01-01

    This book provides a basic, initial resource, introducing science and engineering students to the field of optimization. It covers three main areas: mathematical programming, calculus of variations and optimal control, highlighting the ideas and concepts and offering insights into the importance of optimality conditions in each area. It also systematically presents affordable approximation methods. Exercises at various levels have been included to support the learning process.

  18. Permanent and induced dipole requirements in ab initio calculations of electron affinities of polar molecules

    International Nuclear Information System (INIS)

    Garrett, W.R.

    1979-01-01

    Through the use of a molecular pseudopotential method, we determine the a approximate magnitudes of errors that result when electron affinity determinations of polar negative ions are made through ab initio calculations in which the use of a given basis set yields inappropriate values for permanent and induced dipole moments of the neutral molecule. These results should prove useful in assessing the adequacy of basis sets in ab initio calculations of molecular electron affinities for simple linear polar molecules

  19. Derivative corrections to the symmetry energy and the isovector dipole-resonance structure in nuclei

    International Nuclear Information System (INIS)

    Blocki, J P; Magner, A G; Ring, P

    2015-01-01

    The effective surface approximation is extended accounting for derivatives of the symmetry energy density per particle. The new expressions for the isovector surface energy constants are used for calculations of improved energies and sum rules of the isovector dipole-resonance strength structure within the Fermi-liquid droplet model. Our results are in reasonable agreement with experimental data and with other theoretical approaches. (paper)

  20. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...

  1. The LHC dipole test control architecture

    International Nuclear Information System (INIS)

    Gorskaya, E.; Samojlov, V.; Raimondo, A.; Rijllart, A.

    2003-01-01

    The next large accelerator project at CERN is the Large Hadron Collider, which is foreseen to be installed in the existing LEP tunnel, and scheduled to be commissioned in 2007. For this project, 1200 15-metre long dipole magnets need to be tested at CERN in warm and cold conditions on dedicated test benches that are under development. The final LHC dipole series test set-up will consist of 12 benches organized in 6 clusters of two benches sharing the largest and most expensive devices. This sharing is made possible by a deliberate de-phasing of the tests among magnets, ensuring an optimum use of resources, such as cryogenics and power equipment, without limiting the total throughput. An offered two-level control architecture includes: 1) the Test 'Master' that drives the test for a cluster; 2) the Resource 'Manager' that allocates common devices and central resources. The implementation of this architecture is done in the LabVIEW environment

  2. Broadband standard dipole antenna for antenna calibration

    Science.gov (United States)

    Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao

    1995-06-01

    Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.

  3. Electric Dipole Moment Results from lattice QCD

    Science.gov (United States)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  4. Electric Dipole Moment Results from lattice QCD

    Directory of Open Access Journals (Sweden)

    Dragos Jack

    2018-01-01

    Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  5. Energy flow of electric dipole radiation in between parallel mirrors

    Science.gov (United States)

    Xu, Zhangjin; Arnoldus, Henk F.

    2017-11-01

    We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.

  6. Bosonic and fermionic dipoles on a ring

    DEFF Research Database (Denmark)

    Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten

    2011-01-01

    We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...... to an inhomogeneous crystal-like one. For small enough angles between the dipoles and the plane of the ring, there are regions with attractive interactions, and clustered states can form....

  7. The LHC AC Dipole system: an introduction

    CERN Document Server

    Serrano, J; CERN. Geneva. BE Department

    2010-01-01

    The LHC AC Dipole is an instrument to study properties of the LHC lattice by inducing large transverse displacements in the beam. These displacements are generated by exciting the beam with an oscillating magnetic field at a frequency close to the tune. This paper presents the system requirements and the technical solution chosen to meet them, based of high-power audio amplifiers and a resonant parallel RLC circuit.

  8. Field quality of LHC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Mishra, R.K.

    2003-01-01

    The author reports here the main results of field measurements performed so far on the LHC superconducting dipoles at superfluid helium temperature. The main field strength at injection, collision conditions and higher order multipoles are discussed. Superconducting magnets exhibit additional field imperfections due to diamagnetic properties of superconducting cables, apart from geometric error, saturation of iron yoke and eddy currents error. Dynamic effects on field harmonics, such as field decay at injection and subsequent snap back are also discussed. (author)

  9. 15 T And Beyond - Dipoles and Quadrupoles

    International Nuclear Information System (INIS)

    Sabbi, GianLuca

    2008-01-01

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R and D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  10. Extended equivalent dipole model for radiated emissions

    OpenAIRE

    Obiekezie, Chijioke S.

    2016-01-01

    This work is on the characterisation of radiated fields from electronic devices. An equivalent dipole approach is used. Previous work showed that this was an effective approach for single layer printed circuit boards where an infinite ground plane can be assumed. In this work, this approach is extended for the characterisation of more complex circuit boards or electronic systems.\\ud For complex electronic radiators with finite ground planes, the main challenge is characterising field diffract...

  11. CP-violation and electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Le Dall, Matthias; Ritz, Adam, E-mail: aritz@uvic.ca [University of Victoria, Department of Physics and Astronomy (Canada)

    2013-03-15

    Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.

  12. Magnetic field modification of optical magnetic dipoles.

    Science.gov (United States)

    Armelles, Gaspar; Caballero, Blanca; Cebollada, Alfonso; Garcia-Martin, Antonio; Meneses-Rodríguez, David

    2015-03-11

    Acting on optical magnetic dipoles opens novel routes to govern light-matter interaction. We demonstrate magnetic field modification of the magnetic dipolar moment characteristic of resonant nanoholes in thin magnetoplasmonic films. This is experimentally shown through the demonstration of the magneto-optical analogue of Babinet's principle, where mirror imaged MO spectral dependencies are obtained for two complementary magnetoplasmonic systems: holes in a perforated metallic layer and a layer of disks on a substrate.

  13. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  14. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  15. Neutrino production of single pions: Dipole description

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Schmidt, Ivan; Siddikov, M.

    2011-01-01

    The light-cone distribution amplitudes for the axial current are derived within the instanton vacuum model, which incorporates nonperturbative effects including spontaneous chiral symmetry breaking. This allows one to extend applicability of the dipole approach, usually used in the perturbative domain, down to Q 2 →0, where the partially conserved axial current imposes a relation between the neutrino-production cross section and the one induced by pions. A dramatic breakdown of the Adler relation for diffractive neutrino production of pions, caused by absorptive corrections, was revealed recently by Kopeliovich et al.. Indeed, comparing with the cross section predicted by the dipole phenomenology at Q 2 →0 on a proton target we confirmed the sizable deviation from the value given by the Adler relation, as was estimated by Kopeliovich et al. within a simplified two-channel model. The dipole approach also confirms that in the black-disk limit, where the absorptive corrections maximize, the diffractive cross section ceases, on the contrary to the expectation based on the partially conserved axial current.

  16. Local electric dipole moments: A generalized approach.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A simulation assessment of the thermodynamics of dense ion-dipole mixtures with polarization

    International Nuclear Information System (INIS)

    Bastea, Sorin

    2014-01-01

    Molecular dynamics (MD) simulations are employed to ascertain the relative importance of various electrostatic interaction contributions, including induction interactions, to the thermodynamics of dense, hot ion-dipole mixtures. In the absence of polarization, we find that an MD-constrained free energy term accounting for the ion-dipole interactions, combined with well tested ionic and dipolar contributions, yields a simple, fairly accurate free energy form that may be a better option for describing the thermodynamics of such mixtures than the mean spherical approximation (MSA). Polarization contributions induced by the presence of permanent dipoles and ions are found to be additive to a good approximation, simplifying the thermodynamic modeling. We suggest simple free energy corrections that account for these two effects, based in part on standard perturbative treatments and partly on comparisons with MD simulation. Even though the proposed approximations likely need further study, they provide a first quantitative assessment of polarization contributions at high densities and temperatures and may serve as a guide for future modeling efforts

  18. Microscopic mean field approximation and beyond with the Gogny force

    Directory of Open Access Journals (Sweden)

    Péru S.

    2014-03-01

    Full Text Available Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. A brief review on the main results obtained in this approach is presented. After a reminder on the method and on the first results concerning giant resonances in deformed Mg and Si isotopes, the multipole responses up to octupole in the deformed and heavy nucleus 238U are discussed. In order to analyse soft dipole modes in exotic nuclei, the dipole responses have been studied in Ne isotopes and in N=16 isotopes, for which results are presented. In these nuclei, the QRPA results on the low lying 2+ states are compared to the 5-Dimensional Collective Hamiltonian ones.

  19. Isoscalar compression modes in relativistic random phase approximation

    International Nuclear Information System (INIS)

    Ma, Zhong-yu; Van Giai, Nguyen.; Wandelt, A.; Vretenar, D.; Ring, P.

    2001-01-01

    Monopole and dipole compression modes in nuclei are analyzed in the framework of a fully consistent relativistic random phase approximation (RRPA), based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The large effect of Dirac sea states on isoscalar strength distribution functions is illustrated for the monopole mode. The main contribution of Fermi and Dirac sea pair states arises through the exchange of the scalar meson. The effect of vector meson exchange is much smaller. For the monopole mode, RRPA results are compared with constrained relativistic mean-field calculations. A comparison between experimental and calculated energies of isoscalar giant monopole resonances points to a value of 250-270 MeV for the nuclear matter incompressibility. A large discrepancy remains between theoretical predictions and experimental data for the dipole compression mode

  20. Heisenberg equation for a nonrelativistic particle on a hypersurface: From the centripetal force to a curvature induced force

    Directory of Open Access Journals (Sweden)

    D. K. Lian

    2017-12-01

    Full Text Available In classical mechanics, a nonrelativistic particle constrained on an N − 1 curved hypersurface embedded in N flat space experiences the centripetal force only. In quantum mechanics, the situation is totally different for the presence of the geometric potential. We demonstrate that the motion of the quantum particle is ”driven” by not only the centripetal force, but also a curvature induced force proportional to the Laplacian of the mean curvature, which is fundamental in the interface physics, causing curvature driven interface evolution.

  1. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  2. Cyclic approximation to stasis

    Directory of Open Access Journals (Sweden)

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  3. On the WKBJ approximation

    International Nuclear Information System (INIS)

    El Sawi, M.

    1983-07-01

    A simple approach employing properties of solutions of differential equations is adopted to derive an appropriate extension of the WKBJ method. Some of the earlier techniques that are commonly in use are unified, whereby the general approximate solution to a second-order homogeneous linear differential equation is presented in a standard form that is valid for all orders. In comparison to other methods, the present one is shown to be leading in the order of iteration, and thus possibly has the ability of accelerating the convergence of the solution. The method is also extended for the solution of inhomogeneous equations. (author)

  4. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  5. Polynomial approximation on polytopes

    CERN Document Server

    Totik, Vilmos

    2014-01-01

    Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

  6. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  7. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    Science.gov (United States)

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-11-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.

  9. Eddington-inspired Born-Infeld gravity: nuclear physics constraints and the validity of the continuous fluid approximation

    International Nuclear Information System (INIS)

    Avelino, P.P.

    2012-01-01

    In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level

  10. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  11. Experimental determination of absolute-scale compton cross sections using the K X-ray escape and a comparison with three versions of the impulse approximation

    International Nuclear Information System (INIS)

    Pasic, S.; Uroic, M.; Tocilj, Z.; Majer, M.; Gamulin, O.; Bokulic, T.; Ilakovac, K.

    2005-01-01

    Double-differential Compton cross sections at two incident photon energies of 68.9 and 70.8 keV (mercury Kα X-rays) at the scattering angle of about 172 deg were measured in germanium using the coincidence technique with a detector as the scatterer. The cross sections were determined by normalization of the Compton spectra to the peaks due to the escape of characteristic Kα and Kβ X-rays from the target detector. This new approach of determination of absolute-scale Compton cross sections can also be applied in widely used single-mode measurements (source-scatterer-detector assembly). Our analysis shows that the new method is especially convenient and accurate at lower incident photon energies above the K-edge in the target atoms. The experimental results are compared with the non-relativistic impulse approximation, the frequently used simplified version of the relativistic impulse approximation and the non-relativistic impulse approximation used with the relativistic expression for the atomic electron momentum in the direction of the photon momentum transfer. Contrary to our expectation, the non-relativistic impulse approximation clearly gives the best agreement with the experimental data in the region of the Compton peak

  12. The second-order S-matrix element for the elastic scattering of photons by K-shell bound electrons: the nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)

    2007-08-14

    The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.

  13. The random phase approximation

    International Nuclear Information System (INIS)

    Schuck, P.

    1985-01-01

    RPA is the adequate theory to describe vibrations of the nucleus of very small amplitudes. These vibrations can either be forced by an external electromagnetic field or can be eigenmodes of the nucleus. In a one dimensional analogue the potential corresponding to such eigenmodes of very small amplitude should be rather stiff otherwise the motion risks to be a large amplitude one and to enter a region where the approximation is not valid. This means that nuclei which are supposedly well described by RPA must have a very stable groundstate configuration (must e.g. be very stiff against deformation). This is usually the case for doubly magic nuclei or close to magic nuclei which are in the middle of proton and neutron shells which develop a very stable groundstate deformation; we take the deformation as an example but there are many other possible degrees of freedom as, for example, compression modes, isovector degrees of freedom, spin degrees of freedom, and many more

  14. The quasilocalized charge approximation

    International Nuclear Information System (INIS)

    Kalman, G J; Golden, K I; Donko, Z; Hartmann, P

    2005-01-01

    The quasilocalized charge approximation (QLCA) has been used for some time as a formalism for the calculation of the dielectric response and for determining the collective mode dispersion in strongly coupled Coulomb and Yukawa liquids. The approach is based on a microscopic model in which the charges are quasilocalized on a short-time scale in local potential fluctuations. We review the conceptual basis and theoretical structure of the QLC approach and together with recent results from molecular dynamics simulations that corroborate and quantify the theoretical concepts. We also summarize the major applications of the QLCA to various physical systems, combined with the corresponding results of the molecular dynamics simulations and point out the general agreement and instances of disagreement between the two

  15. Proposal for Translational Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    Science.gov (United States)

    Opatrný, Tomáš; Deb, Bimalendu; Kurizki, Gershon

    2003-06-01

    We propose and investigate a realization of the position- and momentum-correlated Einstein-Podolsky-Rosen (EPR) states [Phys. Rev. 47, 777 (1935)] that have hitherto eluded detection. The realization involves atom pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The EPR “paradox” with translational variables is then modified by lattice-diffraction effects and can be verified to a high degree of accuracy in this scheme.

  16. Vortical structures for nanomagnetic memory induced by dipole-dipole interaction in monolayer disks

    Science.gov (United States)

    Liu, Zhaosen; Ciftja, Orion; Zhang, Xichao; Zhou, Yan; Ian, Hou

    2018-05-01

    It is well known that magnetic domains in nanodisks can be used as storage units for computer memory. Using two quantum simulation approaches, we show here that spin vortices on magnetic monolayer nanodisks, which are chirality-free, can be induced by dipole-dipole interaction (DDI) on the disk-plane. When DDI is sufficiently strong, vortical and anti-vortical multi-domain textures can be generated simultaneously. Especially, a spin vortex can be easily created and deleted through either external magnetic or electrical signals, making them ideal to be used in nanomagnetic memory and logical devices. We demonstrate these properties in our simulations.

  17. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  18. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  19. Information-entropic method for studying the stability bound of nonrelativistic polytropic stars within modified gravity theories

    Science.gov (United States)

    Wibisono, C.; Sulaksono, A.

    We study the stability of nonrelativistic polytropic stars within two modified gravity theories, i.e. beyond Horndeski gravity and Eddington-inspired Born-Infeld theories, using the configuration entropy method. We use the spatially localized bounded function of energy density as solutions from stellar effective equations to construct the corresponding configuration entropy. We use the same argument as the one used by Gleiser and coworkers [M. Gleiser and D. Sowinski, Phys. Lett. B 727 (2013) 272; M. Gleiser and N. Jiang, Phys. Rev. D 92 (2015) 044046] that the stars are stable if there is a peak in configuration entropy as a function of adiabatic index curve. Specifically, the boundary between stable and unstable regions which corresponds to Chandrasekhar stability bound is indicated from the existence of the maximum peak while the most stable polytropic stars are indicated by the minimum peak in the corresponding curve. We have found that the values of critical adiabatic indexes of Chandrasekhar stability bound and the most stable polytropic stars predicted by the nonrelativistic limits of beyond Horndeski gravity and Eddington-inspired Born-Infeld theories are different to those predicted by general relativity where the corresponding differences depend on the free parameters of both theories.

  20. Nanoscale shift of the intensity distribution of dipole radiation.

    Science.gov (United States)

    Shu, Jie; Li, Xin; Arnoldus, Henk F

    2009-02-01

    The energy flow lines (field lines of the Poynting vector) for radiation emitted by a dipole are in general curves, rather than straight lines. For a linear dipole the field lines are straight, but when the dipole moment of a source rotates, the field lines wind numerous times around an axis, which is perpendicular to the plane of rotation, before asymptotically approaching a straight line. We consider an elliptical dipole moment, representing the most general state of oscillation, and this includes the linear dipole as a special case. Due to the spiraling near the source, for the case of a rotating dipole moment, the field lines in the far field are displaced with respect to the outward radial direction, and this leads to a shift of the intensity distribution of the radiation in the far field. This shift is shown to be independent of the distance to the source and, although of nanoscale dimension, should be experimentally observable.