WorldWideScience

Sample records for nonradioactive hazardous chemicals

  1. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  2. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  3. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  4. Separation of non-hazardous, non-radioactive components from ICPP calcine via chlorination

    International Nuclear Information System (INIS)

    Nelson, L.O.

    1995-05-01

    A pyrochemical treatment method for separating non-radioactive from radioactive components in solid granular waste accumulated at the Idaho Chemical Processing Plant was investigated. The goal of this study was to obtain kinetic and chemical separation data on the reaction products of the chlorination of the solid waste, known as calcine. Thermodynamic equilibrium calculations were completed to verify that a separation of radioactive and non-radioactive calcine components was possible. Bench-scale chlorination experiments were completed subsequently in a variety of reactor configurations including: a fixed-bed reactor (reactive gases flowed around and not through the particle bed), a packed/fluidized-bed reactor, and a packed-bed reactor (reactive gases flowed through the particle bed). Chemical analysis of the reaction products generated during the chlorination experiments verified the predictions made by the equilibrium calculations. An empirical first-order kinetic rate expression was developed for each of the reactor configurations. 20 refs., 16 figs., 21 tabs

  5. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  6. Emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes - would geological disposal be an appropriate solution for some of these wastes

    International Nuclear Information System (INIS)

    Rein, K. von

    1994-01-01

    This work deals with the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. After some generalities on the pollution of natural environment and the legislations taken by the swedish government the author tries to answer to the question : would geological disposal be an appropriate solution for the non-radioactive hazardous wastes? Then is given the general discussion of the last three articles concerning the background to current environmental policies and their implementation and more particularly the evolution and current thoughts about environmental policies, the managing hazardous activities and substances and the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. Comments and questions concerning the similarity or otherwise between the present position of radioactive waste disposal and the background to current environmental policies are indicated. (O.L.)

  7. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  8. Non-radioactive waste management in a Nuclear Energy Research Institution

    International Nuclear Information System (INIS)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F.

    2013-01-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  9. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  10. Nonradioactive Dangerous Waste Landfill supplemental information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-05-01

    This document is a unit-specific contingency plan for the Nonradioactive Dangerous Waste Landfill and is intended to be used as a supplement to DOE/RL-93-75, 'Hanford Facility Contingency Plan.' This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of the Washington Administrative Code, Chapter 173-303 for certain Resource, Conservation and Recovery Act of 1976 waste management units. The Nonradioactive Dangerous Waste Landfill (located approximately 3.5 miles southeast of the 200 East Area at the Hanford Site) was used for disposal of nonradioactive dangerous waste from January 1975 to May 1985. Currently, there are no dangerous waste streams disposed in the Nonradioactive Dangerous Waste Landfill. Dangerous waste management activities are no longer required at the landfill. The landfill does not present a significant hazard to adjacent units, personnel, or the environment. It is unlikely that incidents presenting hazards to public health or the environment would occur at the Nonradioactive Dangerous Waste Landfill

  11. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  12. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  13. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  14. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  15. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  16. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  17. Zeolite Vitrification Demonstration Program nonradioactive-process operations summary

    International Nuclear Information System (INIS)

    Bryan, G.H.; Knox, C.A.; Goles, R.G.; Ethridge, L.J.; Siemens, D.H.

    1982-09-01

    The Submerged Demineralizer System is a process developed to decontaminate high-activity level water at Three Mile Island by sorbing the activity (primarily Cs and Sr) onto beds of zeolite. Pacific Northwest Laboratory's Zeolite Vitrification Demonstration Program has the responsibility of demonstrating the full-scale vitrification of this zeolite material. The first phase of this program has been to develop a glass formulation and demonstrate the vitrification process with the use of nonradioactive materials. During this phase, four full-scale nonradioactive demonstration runs were completed. The same zeolite mixture being used in the SDS system was loaded with nonradioactive isotopes of Cs and Sr, dried, blended with glass-forming chemicals and fed to a canister in an in-can melter furnace. During each run, the gaseous effluents were sampled. After each run, glass samples were removed and analyzed

  18. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.S.; Hartman, M.J.

    1999-01-01

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters

  19. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  20. Hazards in the chemical laboratory

    International Nuclear Information System (INIS)

    Bretherick, L.

    1987-01-01

    The contents of this book are: Preface; Introduction; Health and Safety at Work Act 1974; Safety Planning and Management; Fire Protection; Reactive Chemical Hazards; Chemical Hazards and Toxicology; Health Care and First Aid; Hazardous Chemicals; Precautions against Radiations; and An American View

  1. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  2. Managing hazardous activities and substances

    International Nuclear Information System (INIS)

    Morgenroth, V.H.

    1994-01-01

    The primary purpose of this paper is to provide background information on the process, principles and policies being employed in OECD Member Countries for managing hazardous activities (non-nuclear) and products involving chemicals (non-radioactive). In addition, the author highlights certain areas in the risk management process where certain assumptions and conclusions may be of particular relevance to the goal of a review, reconsideration and restatement of the strategy of geological disposal of radioactive wastes. (O.L.)

  3. Non-radioactive stand-in for radioactive contamination. I. Non-radioactive tests

    International Nuclear Information System (INIS)

    Rohe, M.J.; Rankin, W.N.; Postles, R.L.

    1985-01-01

    Candidate non-radioactive materials for use as a stand-in for radioactive contamination during application of a high-pressure, hot water decontamination were identified and evaluated. A stand-in for radioactive contamination is needed to evaluate the decontaminability of replacement canyon cranes at the manufacturers location where actual radioactive contamination cannot be used. This evaluation was conducted using high-pressure, hot-water at 420 psi, 190 0 F, and 20 gal/min through a 1/8-in.-diam nozzle, the decontamination technique preferred by SRP Separations Department for this application. A non-radioactive stand-in for radioactive contamination was desired that would be removed by direct blast stream contact but would remain intact on surfaces where direct contact does not occur. This memorandum describes identification of candidate non-radioactive stand-in materials and evaluation of these materials in screening tests and tests with high-pressure, hot-water blasting. The following non-radioactive materials were tested: carpenter's line chalk; typing correction fluid; dye penetrant developer; latex paint with attapulyite added; unaltered latex paint; gold enamel; layout fluid; and black enamel. Results show that blue layout fluid and gold enamel have similar adherence that is within the range expected for actual radioactive contamination. White latex paint has less adherence than expected for actual radioactive contamination. The film was removed at a rate of 2 . Black enamel has more adherence than expected from actual radioactive contamination. In these tests ASTM No. 2B surfaces were harder to clean than either ASTM No. 1 or electropolished surfaces which had similar cleaning properties. A 90 0 blast angle was more effective than a 45 0 blast angle. In these tests there was no discernible effect of blast distance between 1 and 3 ft

  4. 30 CFR 47.21 - Identifying hazardous chemicals.

    Science.gov (United States)

    2010-07-01

    ..., subpart Z, Toxic and Hazardous Substances. (4) American Conference of Governmental Industrial Hygienists... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The...

  5. Nonradioactive demonstration of the Alpha D and D Pilot Facility

    International Nuclear Information System (INIS)

    Wobser, J.K.

    1983-01-01

    The Alpha-Contained Decontamination and Disassembly (AD and D) pilot facility was designed to demonstrate the process flowsheet under conditions typical to those expected in a production facility. To achieve this, nonradioactive waste items similar to those in retrievable storage at the Savannah River Plant burial ground (e.g. gloveboxes), were chemically sprayed and size reduced. During process runs, parameters such as feed rate, oxide removal, etching rate, and secondary waste generation were determined. The exhaust system was monitored during operation to ensure that exhaust from the facility was sufficiently filtered before release to the atmosphere. The strategy for decontamination techniques required development during the nonradioactive testing period. Under investigation during process runs were both once-through and recirculating washes, and their correlation to oxide removal and etching rates on the stainless steel feed items. Wash products of the decontamination process were analyzed for concentration of Ni, Cr, Fe, Mn, and Si, major components of stainless steel. Size reduction techniques were also developed during the nonradioactive testing period. An array of conventional power and pneumatic tools were tested and evaluated. Plasma arc torch operating parameters; standoff distance, ampere setting, and cutting angle were determined

  6. How to control chemical hazards

    CERN Multimedia

    2012-01-01

    Improving protection against chemical hazards is one of the 2012 CERN safety objectives identified by the Director General. Identifying and drawing up a complete inventory of chemicals, and assessing the associated risks are important steps in this direction.   The HSE Unit has drawn up safety rules, guidelines and forms to help you to meet this objective. We would like to draw your attention to: • safety guidelines C-0-0-1 and C-1-0-2 (now also available in French), which deal with the identification of hazardous chemicals and the assessment of chemical risk; • safety guideline C-1-0-1, which deals with the storage of hazardous chemicals. All safety documents can be consulted at: cern.ch/regles-securite The HSE Unit will be happy to answer any questions you may have. Write to us at: safety-general@cern.ch The HSE Unit

  7. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  8. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  9. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  10. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  11. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  12. Informing Workers of Chemical Hazards: The OSHA Hazard Communication Standard.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    Practical information on how to implement a chemical-related safety program is outlined in this publication. Highlights of the federal Occupational Safety and Health Administrations (OSHA) Hazard Communication Standard are presented and explained. These include: (1) hazard communication requirements (consisting of warning labels, material safety…

  13. Beyond low-level activity: On a 'non-radioactive' gas mantle

    International Nuclear Information System (INIS)

    Poljanc, Karin; Steinhauser, Georg; Sterba, Johannes H.; Buchtela, Karl; Bichler, Max

    2007-01-01

    Gas mantles for camping gas lanterns sometimes contain thorium compounds. During the last years, the use of thorium-free gas mantles has become more and more popular due to the avoidance of a radioactive heavy metal. We investigated a gas mantle type that is declared to be 'non-radioactive' and that can be bought in Austria at the moment. Methods used were Instrumental Neutron Activation Analysis (INAA), γ-spectroscopy, and Liquid Scintillation Counting (LSC). We found massive thorium contents of up to 259 mg per gas mantle. Leaching experiments showed that only 0.4% of the Th but approximately 90% of the decay products of 232 Th can be leached under conditions simulating sucking and chewing with human saliva. In this paper, the investigation of these gas mantles including the consideration of the environmental hazard caused by disposed mantles and the health hazard for unsuspecting consumers is presented and legal consequences are discussed for this fraud

  14. 1992 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1993-03-01

    This report is a compilation of data on emergency and hazardous chemicals stored at the Hanford Reservation. The report lists name or chemical description, physical and health hazards, inventories and storage location

  15. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  16. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  17. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 2

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  18. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  19. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  20. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  1. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  2. Hazard assessment and risk management of offshore production chemicals

    International Nuclear Information System (INIS)

    Schobben, H.P.M.; Scholten, M.C.T.; Vik, E.A.; Bakke, S.

    1994-01-01

    There is a clear need for harmonization of the regulations with regard to the use and discharge of drilling and production chemicals in the North Sea. Therefore the CHARM (Chemical Hazard Assessment and Risk Management) model was developed. Both government (of several countries) and industry (E and P and chemical suppliers) participated in the project. The CHARM model is discussed and accepted by OSPARCON. The CHARM model consists of several modules. The model starts with a prescreening on the basis of hazardous properties like persistency, accumulation potential and the appearance on black lists. The core of the model.consists of modules for hazard assessment and risk analysis. Hazard assessment covers a general environmental evaluation of a chemical on the basis of intrinsic properties of that chemical. Risk analysis covers a more specific evaluation of the environmental impact from the use of a production chemical, or a combination of chemicals, under actual conditions. In the risk management module the user is guided to reduce the total risk of all chemicals used on a platform by the definition of measures in the most cost-effective way. The model calculates the environmental impact for the marine environment. Thereto three parts are distinguished: pelagic, benthic and food chain. Both hazard assessment and risk analysis are based on a proportional comparison of an estimated PEC with an estimated NEC. The PEC is estimated from the use, release, dilution and fate of the chemical and the NEC is estimated from the available toxicity data of the chemicals

  3. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    Science.gov (United States)

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  4. Chemical incidents resulted in hazardous substances releases in the context of human health hazards.

    OpenAIRE

    Palaszewska-Tkacz, Anna; Czerczak, Sławomir; Konieczko, Katarzyna

    2017-01-01

    Objectives: The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999–2009 in terms of health hazards. Material and Methods: The data was obtained, using multimodal information technology (IT) system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of uniden...

  5. Sensitive non-radioactive detection of HIV-1

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Nielsen, C; Hansen, J E

    1992-01-01

    This report describes the use of the polymerase chain reaction (PCR) for the non-radioactive detection of HIV-1 proviral genomic sequences in HIV-1 infected cells. We have developed a sensitive assay, using three different sets of nested primers and our results show that this method is superior...... to standard PCR for the detection of HIV-1 DNA. The assay described features the use of a simple and inexpensive sample preparation technique and a non-radioactive hybridization procedure for confirmation of results. To test the suitability of the assay for clinical purposes, we tested cell samples from 76...

  6. Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation

    OpenAIRE

    Jiang-Hua Zhang; Hai-Yue Liu; Rui Zhu; Yang Liu

    2017-01-01

    The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the...

  7. Safety, health and environmental committee (JKSHE): Establishing chemical hazard management

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Noriah Mod Ali; Sangau, J.K.

    2012-01-01

    Most of the laboratories in Malaysian Nuclear Agency are using chemicals in their research activities. However, it is known that using of chemicals without proper knowledge especially on the material characteristics as well as safe handling procedure may cause great harm to the workers. Therefore, Safety, Health and Environmental Committee (JKSHE) sees the need to establish a good chemical hazard management to ensure that a safe and healthy workplace and environment is provided. One of the elements in chemical hazard management is to carry out Chemical Hazard Risk Assessment (CHRA). The assessment was done so that decision can be made on suitable control measures upon use of such chemicals, such as induction and training courses to be given to the workers and health surveillance activities that may be needed to protect the workers. For this, JKSHE has recommended to conduct CHRA for one of the laboratories at Secondary Standard Dosimetry Laboratory (SSDL) namely Film Dosimeter Processing Room (dark room) as the initial effort towards a better chemical hazard management. This paper presents the case study where CHRA was conducted to identify the chemical hazards at the selected laboratory, the adequacy of existing control measures and finally the recommendation for more effective control measures. (author)

  8. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can...

  9. Radioactive acid digestion test unit nonradioactive startup operations

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Crippen, M.D.; Divine, J.R.

    1978-05-01

    The Radioactive Acid Digestion Test Unit (RADTU) will process 5 kg/hour of combustible solid waste and is designed to handle almost all solid combustible waste found in plutonium processing with plutonium contamination levels up to scrap. The RADTU is designed with special safety features to safely contain high masses of fissile materials and to safely handle unusual materials and reactive chemicals which may find their way into the waste. Nonradioactive operating experience to date has been very satisfactory. RADTU has been operated for extended runs on both a 24-hour per day basis as well as on a one shift per day basis. Some minor operating problems have been encountered as expected in a shakedown operation. In general, solutions to these have been readily found. 12 figures

  10. 1990 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1991-03-01

    This document contains the 1990 Two Tier Emergency and Hazardous Chemical Inventory. Submission of this Tier Two form (when requested) is required by Title 3 of the Superfund Amendments and Reauthorization Act of 1986, Section 312, Public Law 99--499, codified at 42 U.S.C. Section 11022. The purpose of this Tier Two form is to provide State and local officials and the public with specific information on hazardous chemicals present at your facility during the past year

  11. Emergency Evacuation of Hazardous Chemical Accidents Based on Diffusion Simulation

    Directory of Open Access Journals (Sweden)

    Jiang-Hua Zhang

    2017-01-01

    Full Text Available The recent rapid development of information technology, such as sensing technology, communications technology, and database, allows us to use simulation experiments for analyzing serious accidents caused by hazardous chemicals. Due to the toxicity and diffusion of hazardous chemicals, these accidents often lead to not only severe consequences and economic losses, but also traffic jams at the same time. Emergency evacuation after hazardous chemical accidents is an effective means to reduce the loss of life and property and to smoothly resume the transport network as soon as possible. This paper considers the dynamic changes of the hazardous chemicals’ concentration after their leakage and simulates the diffusion process. Based on the characteristics of emergency evacuation of hazardous chemical accidents, we build a mixed-integer programming model and design a heuristic algorithm using network optimization and diffusion simulation (hereafter NODS. We then verify the validity and feasibility of the algorithm using Jinan, China, as a computational example. In the end, we compare the results from different scenarios to explore the key factors affecting the effectiveness of the evacuation process.

  12. Chemical hazard evaluation of material disposal area (MDA) B closure project

    Energy Technology Data Exchange (ETDEWEB)

    Laul, Jagdish C [Los Alamos National Laboratory

    2010-04-19

    TA-21, MDA-B (NES) is the 'contaminated dump,' landfill with radionuclides and chemicals from process waste disposed in 1940s. This paper focuses on chemical hazard categorization and hazard evaluation of chemicals of concern (e.g., peroxide, beryllium). About 170 chemicals were disposed in the landfill. Chemicals included products, unused and residual chemicals, spent, waste chemicals, non-flammable oils, mineral oil, etc. MDA-B was considered a High hazard site. However, based on historical records and best engineering judgment, the chemical contents are probably at best 5% of the chemical inventory. Many chemicals probably have oxidized, degraded or evaporated for volatile elements due to some fire and limited shelf-life over 60 yrs, which made it possible to downgrade from High to Low chemical hazard site. Knowing the site history and physical and chemical properties are very important in characterizing a NES site. Public site boundary is only 20 m, which is a major concern. Chemicals of concern during remediation are peroxide that can cause potential explosion and beryllium exposure due to chronic beryllium disease (CBD). These can be prevented or mitigated using engineering control (EC) and safety management program (SMP) to protect the involved workers and public.

  13. Recovery of nonradioactive palladium and rhodium from high-level radioactive wastes

    International Nuclear Information System (INIS)

    McDuffie, H.F.

    1979-01-01

    A possible method for recovering significant quantities of nonradioactive palladium from fission-product wastes requires essentially complete separation of the fission-product (radioactive) palladium from fission-product ruthenium. After the decay of 106 Ru via 106 Rh to 106 Pd, this nonradioactive palladium is recovered for normal commercial use. The U.S. production of palladium has never been above 1000 kg per year vs consumption of about 46,000 kg per year. Most of the supply comes from Russia and South Africa. It has been estimated that a 400-GW(e) nuclear reactor economy will make available 2000 kg per year of 106 Ru at reactor fuel discharge. A substantial increase might be achieved if plutonium were recycled as fissionable material because of the higher yields of the 106 chain from plutonium. A literature search has uncovered support for three promising approaches to the required separation of palladium from ruthenium: (1) recrystallization from solution in bismuth or in zinc; (2) selective precipitation of a titanium--ruthenium intermetallic compound from bismuth, followed by precipitation of a zinc--palladium intermetallic compound; and (3) dissolution in molten magnesium followed by partitioning between molten magnesium and a molten uranium-5 wt % chromium eutectic at a temperature above 870 0 C. Liquid-liquid extraction appears to be the most promising method from a technological point of view, although intermetallic compound formation is much more interesting chemically. Recovery of some nonradioactive 103 Rh may be possible by liquid-liquid extraction of the fuel before the decay of the 39.8-d 103 Ru has gone substantially to completion. Demonstration of the practicality of these separations will contribute a positive factor to the evaluation of resumption in the United States of nuclear fuel reprocessing and plutonium recycle in light-water-moderated reactors

  14. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  15. Chemical incidents resulted in hazardous substances releases in the context of human health hazards

    Directory of Open Access Journals (Sweden)

    Anna Pałaszewska-Tkacz

    2017-02-01

    Full Text Available Objectives: The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999–2009 in terms of health hazards. Material and Methods: The data was obtained, using multimodal information technology (IT system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of unidentified substances where emergency services took action to protect human health or environment were also included. Results: The number of analyzed chemical incidents in 1999–2009 was 2930 with more than 200 different substances released. The substances were classified into 13 groups of substances and mixtures posing analogous risks. Most common releases were connected with non-flammable corrosive liquids, including: hydrochloric acid (199 cases, sulfuric(VI acid (131 cases, sodium and potassium hydroxides (69 cases, ammonia solution (52 cases and butyric acid (32 cases. The next group were gases hazardous only due to physico-chemical properties, including: extremely flammable propane-butane (249 cases and methane (79 cases. There was no statistically significant trend associated with the total number of incidents. Only with the number of incidents with flammable corrosive, toxic and/or harmful liquids, the regression analysis revealed a statistically significant downward trend. The number of victims reported was 1997, including 1092 children and 18 fatalities. Conclusions: The number of people injured, number of incidents and the high 9th place of Poland in terms of the number of Seveso establishments, and 4 times higher number of hazardous industrial establishments not covered by the Seveso Directive justify the need for systematic analysis of hazards and their proper identification. It is advisable enhance health risk assessment, both qualitative and

  16. Limits of the comparison between radiological and chemical hazards

    International Nuclear Information System (INIS)

    Maximilien, R.; Bounolleau, B.

    2003-01-01

    The primary reason for comparing radiological and chemical hazards is, in the absence of knowledge of similarities between underlying mechanisms, the comparability of the methods used to evaluate their long-term consequences, especially at low doses: carcinogenicity, mutagenicity and effects on reproduction. For radiations, the evaluation is performed above all in terms of risk quantification while for chemicals hazard identification is the main concern. (authors)

  17. 1993 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1994-03-01

    This document comprises the following (January 1 to December 31, 1993) data for chemicals at Hanford Site, for Washington community right-to-know purposes: Chemical name, physical and health hazards, inventory, and storage code/locations

  18. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  19. Chemical Hazards and Safety Issues in Fusion Safety Design

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard

  20. [Chemical hazards arising from shale gas extraction].

    Science.gov (United States)

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  1. Environmental Risk Assessment: Spatial Analysis of Chemical Hazards and Risks in South Korea

    Science.gov (United States)

    Yu, H.; Heo, S.; Kim, M.; Lee, W. K.; Jong-Ryeul, S.

    2017-12-01

    This study identified chemical hazard and risk levels in Korea by analyzing the spatial distribution of chemical factories and accidents. The number of chemical factories and accidents in 5-km2 grids were used as the attribute value for spatial analysis. First, semi-variograms were conducted to examine spatial distribution patterns and to identify spatial autocorrelation of chemical factories and accidents. Semi-variograms explained that the spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard and risk level. The level values were extracted from the Ordinary Kriging result and their spatial similarity was examined by juxtaposing the two values with respect to their location. Six peaks were identified in both the hazard and risk estimation result, and the peaks correlated with major cities in Korea. Third, the estimated hazard and risk levels were classified with geometrical interval and could be classified into four quadrants: Low Hazard and Low Risk (LHLR), Low Hazard and High Risk (LHHR), High Hazard and Low Risk (HHLR), and High Hazard and High Risk (HHHR). The 4 groups identified different chemical safety management issues in Korea; relatively safe LHLR group, many chemical reseller factories were found in HHLR group, chemical transportation accidents were in the LHHR group, and an abundance of factories and accidents were in the HHHR group. Each quadrant represented different safety management obstacles in Korea, and studying spatial differences can support the establishment of an efficient risk management plan.

  2. Haz-Map: Information on Hazardous Chemicals and Occupational Diseases

    Science.gov (United States)

    ... Help Glossary References About Us Search Hazardous Agents Occupational Diseases High Risk Jobs Non-Occupational Activities Industries Job ... Findings Haz-Map®: Information on Hazardous Chemicals and Occupational Diseases by Jay A. Brown, M.D., M.P. ...

  3. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska

    2015-02-01

    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  4. An open framework for automated chemical hazard assessment based on GreenScreen for Safer Chemicals: A proof of concept.

    Science.gov (United States)

    Wehage, Kristopher; Chenhansa, Panan; Schoenung, Julie M

    2017-01-01

    GreenScreen® for Safer Chemicals is a framework for comparative chemical hazard assessment. It is the first transparent, open and publicly accessible framework of its kind, allowing manufacturers and governmental agencies to make informed decisions about the chemicals and substances used in consumer products and buildings. In the GreenScreen® benchmarking process, chemical hazards are assessed and classified based on 18 hazard endpoints from up to 30 different sources. The result is a simple numerical benchmark score and accompanying assessment report that allows users to flag chemicals of concern and identify safer alternatives. Although the screening process is straightforward, aggregating and sorting hazard data is tedious, time-consuming, and prone to human error. In light of these challenges, the present work demonstrates the usage of automation to cull chemical hazard data from publicly available internet resources, assign metadata, and perform a GreenScreen® hazard assessment using the GreenScreen® "List Translator." The automated technique, written as a module in the Python programming language, generates GreenScreen® List Translation data for over 3000 chemicals in approximately 30 s. Discussion of the potential benefits and limitations of automated techniques is provided. By embedding the library into a web-based graphical user interface, the extensibility of the library is demonstrated. The accompanying source code is made available to the hazard assessment community. Integr Environ Assess Manag 2017;13:167-176. © 2016 SETAC. © 2016 SETAC.

  5. Chemical hazards analysis of resilient flooring for healthcare.

    Science.gov (United States)

    Lent, Tom; Silas, Julie; Vallette, Jim

    2010-01-01

    This article addresses resilient flooring, evaluating the potential health effects of vinyl flooring and the leading alternatives-synthetic rubber, polyolefin, and linoleum-currently used in the healthcare marketplace. The study inventories chemicals incorporated as components of each of the four material types or involved in their life cycle as feedstocks, intermediary chemicals, or emissions. It then characterizes those chemicals using a chemical hazard-based framework that addresses persistence and bioaccumulation, human toxicity, and human exposures.

  6. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT FOR PLANNING FUTURE DECONTAMINATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-01

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed

  7. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    International Nuclear Information System (INIS)

    Kim, Jeong Gon; Byun, Hun Soo

    2014-01-01

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks

  8. Hazard Assessment on Chlorine Distribution Use of Chemical Transportation Risk Index

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Gon [Hanwha Chemical Ulsan Site, Ulsan (Korea, Republic of); Byun, Hun Soo [Chonnam National University, Yeosu (Korea, Republic of)

    2014-12-15

    Chlorine is one of the most produced and most used non-flammable chemical substances in the world even though its toxicity and high reactivity cause the ozone layer depletion. However, in modern life, it is impossible to live a good life without using Chlorine and its derivatives since they are being used as an typical ingredient in more than 40 percent of the manufactured goods including medicines, detergents, deodorant, fungicides, herbicides, insecticides, and plastic, etc. Even if Chlorine has been handled and distributed in various business (small and medium-sized businesses, water purification plants, distribution company, etc.), there have been few researches about its possible health hazard and transportation risks. Accordingly, the purpose of this paper is to make a detailed assessment of Chlorinerelated risks and to model an index of chemicals transportation risks that is adequate for domestic circumstances. The assessment of possible health hazard and transportation risks was made on 13 kinds of hazardous chemicals, including liquid chlorine. This research may be contributed to standardizing the risk assessment of Chlorine and other hazardous chemicals by using an index of transportation risks.

  9. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    International Nuclear Information System (INIS)

    Dare, J. H.; Cournoyer, M. E.

    2002-01-01

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases

  10. Waste Issues Associated with the Safe Movement of Hazardous Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dare, J. H.; Cournoyer, M. E.

    2002-02-26

    Moving hazardous chemicals presents the risk of exposure for workers engaged in the activity and others that might be in the immediate area. Adverse affects are specific to the chemicals and can range from minor skin, eye, or mucous membrane irritation, to burns, respiratory distress, nervous system dysfunction, or even death. A case study is presented where in the interest of waste minimization; original shipping packaging was removed from a glass bottle of nitric acid, while moving corrosive liquid through a security protocol into a Radiological Control Area (RCA). During the transfer, the glass bottle broke. The resulting release of nitric acid possibly exposed 12 employees with one employee being admitted overnight at a hospital for observation. This is a clear example of administrative controls to reduce the generation of suspect radioactive waste being implemented at the expense of employee health. As a result of this event, material handling procedures that assure the safe movement of hazardous chemicals through a security protocol into a radiological control area were developed. Specifically, hazardous material must be transferred using original shipping containers and packaging. While this represents the potential to increase the generation of suspect radioactive waste in a radiological controlled area, arguments are presented that justify this change. Security protocols for accidental releases are also discussed. In summary, the 12th rule of ''Green Chemistry'' (Inherently Safer Chemistry for Accident Prevention) should be followed: the form of a substance used in a chemical process (Movement of Hazardous Chemicals) should be chosen to minimize the potential for chemical accidents, including releases.

  11. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  12. 76 FR 2388 - National Toxicology Program (NTP); NTP Interagency Center for the Evaluation of Alternative...

    Science.gov (United States)

    2011-01-13

    ... Nonradioactive Versions of the Murine Local Lymph Node Assay (LLNA) for Assessing Allergic Contact Dermatitis (ACD) Hazard Potential of Chemicals and Products, and Expanded Uses of the LLNA for Pesticide.... Federal agency responses to ICCVAM test method recommendations on two nonradioactive versions of the LLNA...

  13. Influence of non-radioactive payload parameters on radioactive shipping packages

    International Nuclear Information System (INIS)

    Drez, P.E.; Murthy, D.V.S.; Temus, C.J.; Quinn, G.J.; Ozaki, C.

    1989-01-01

    The transport of radioactive waste materials in radioactive material (RAM) packages involves two components: the packaging used for transportation, and the waste which forms the payload. The payload is usually comprised of non-radioactive materials contaminated with radionuclides. The non-radionuclide payload characteristics can often be a controlling factor in determining the restrictions imposed on the certification of the package. This paper describes these package/payload interactions and the limiting parameters for the Transuranic Package Transporter-II (TRUPACT-II), designed for the transportation of Contact Handled Transuranic (CH-TRU) waste. The parameters discussed include the physical and chemical form of the payload, the configuration of the waste, and resulting gas generation and gas release phenomena. Brief descriptions of the TRUPACT-II package and its payload are presented initially

  14. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    International Nuclear Information System (INIS)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research

  15. Survey of knowledge of hazards of chemicals potentially associated with the advanced isotope separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chester, R.O.; Kirkscey, K.A.; Randolph, M.L.

    1979-09-01

    Hazards of chemical potentially associated with the advanced isotope separation processes are estimated based on open literature references. The tentative quantity of each chemical associated with the processes and the toxicity of the chemical are used to estimate this hazard. The chemicals thus estimated to be the most potentially hazardous to health are fluorine, nitric acid, uranium metal, uranium hexafluoride, and uranium dust. The estimated next most hazardous chemicals are bromine, hydrobromic acid, hydrochloric acid, and hydrofluoric acid. For each of these chemicals and for a number of other process-associated chemicals the following information is presented: (1) any applicable standards, recommended standards and their basis; (2) a brief discussion to toxic effects including short exposure tolerance, atmospheric concentration immediately hazardous to life, evaluation of exposures, recommended control procedures, chemical properties, and a list of any toxicology reviews; and (3) recommendations for future research.

  16. Proposal of threshold levels for the definition of non-radioactive wastes

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    With increasing amounts of radioactive wastes along with the advances of nuclear power generation and radioactive material utilizations, the needs for management cost reduction and resource saving have arisen. Under the situation, the threshold levels for the definition of non-radioactive solid wastes are required. The problem has been studied by an ad hoc committee in Nuclear Safety Research Association, by the request of the Science and Technology Agency. The matters described are the procedures of deriving the threshold levels, the feasibility studies of the management of waste threshold-level with several enterprises, and future subjects of study. The threshold levels are grouped in two, i.e. the unconditional level and the conditional level. According to the unconditional threshold level, solid wastes are separated definitely into radioactive and non-radioactive ones. According to the conditional threshold level, under certain conditions, some radioactive solid wastes according to the unconditional level are regarded as non-radioactive ones. (J.P.N.)

  17. Computational Approaches to Chemical Hazard Assessment

    Science.gov (United States)

    Luechtefeld, Thomas; Hartung, Thomas

    2018-01-01

    Summary Computational prediction of toxicity has reached new heights as a result of decades of growth in the magnitude and diversity of biological data. Public packages for statistics and machine learning make model creation faster. New theory in machine learning and cheminformatics enables integration of chemical structure, toxicogenomics, simulated and physical data in the prediction of chemical health hazards, and other toxicological information. Our earlier publications have characterized a toxicological dataset of unprecedented scale resulting from the European REACH legislation (Registration Evaluation Authorisation and Restriction of Chemicals). These publications dove into potential use cases for regulatory data and some models for exploiting this data. This article analyzes the options for the identification and categorization of chemicals, moves on to the derivation of descriptive features for chemicals, discusses different kinds of targets modeled in computational toxicology, and ends with a high-level perspective of the algorithms used to create computational toxicology models. PMID:29101769

  18. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  19. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  20. Applicability of federal and state hazardous waste regulatory programs to waste chemical weapons and chemical warfare agents.; TOPICAL

    International Nuclear Information System (INIS)

    Haffenden, R.; Kimmell, T.

    2002-01-01

    This report reviews federal and state hazardous waste regulatory programs that govern the management of chemical weapons or chemical warfare agents. It addresses state programs in the eight states with chemical weapon storage facilities managed by the U.S. Army: Alabama, Arkansas, Colorado, Indiana, Kentucky, Maryland, Oregon, and Utah. It also includes discussions on 32 additional states or jurisdictions with known or suspected chemical weapons or chemical warfare agent presence (e.g., disposal sites containing chemical agent identification sets): Alaska, Arizona, California, Florida, Georgia, Hawaii, Idaho, Illinois, Iowa, Kansas, Louisiana, Massachusetts, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Jersey, New Mexico, New York, North Carolina, Ohio, Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, the U.S. Virgin Islands, Virginia, Washington, Washington, D.C., and Wyoming. Resource Conservation and Recovery Act (RCRA) hazardous waste programs are reviewed to determine whether chemical weapons or chemical warfare agents are listed hazardous wastes or otherwise defined or identified as hazardous wastes. Because the U.S. Environmental Protection Agency (EPA) military munitions rule specifically addresses the management of chemical munitions, this report also indicates whether a state has adopted the rule and whether the resulting state regulations have been authorized by EPA. Many states have adopted parts or all of the EPA munitions rule but have not yet received authorization from EPA to implement the rule. In these cases, the states may enforce the adopted munitions rule provisions under state law, but these provisions are not federally enforceable

  1. The underground diposal of hazardous wastes - necessity, possibilities and limitations

    International Nuclear Information System (INIS)

    Herrmann, A.G.; Brumsack, H.J.; Heinrichs, H.

    1985-01-01

    The natural geochemical cycles of many elements in the atmosphere, hydrosphere, and pedosphere have been changed during the past decades by anthropogenic activities. To put a stop to this development, a drastic reduction of the uncontrolled dispersal of potentially hazardous substances into our environment is necessary, compelling the need for the safe disposal of radioactive and nonradioactive hazardous wastes far away from the biosphere. The amount of potentially hazardous waste produced annually in West Germany is larger by a factor of at least 20 than the volume of hazardous material for which suitable underground disposal sites are planned and available at present. (orig.)

  2. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    Science.gov (United States)

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk.

  3. The situation of hazardous chemical accidents in China between 2000 and 2006

    Energy Technology Data Exchange (ETDEWEB)

    Duan Weili [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Chen Guohua, E-mail: scut.safetycenter@gmail.com [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Ye Qing; Chen Qingguang [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China)

    2011-02-28

    From the aspects of the total quantity of accidents, regional inequality, enterprises scale and environmental pollution accidents, this study makes an analysis of hazardous chemical accidents in China for the period spanning from 2000 to 2006. The following results are obtained: firstly, there were lots of accidents and fatalities in hazardous chemical business, i.e., the number of casualty accidents fluctuated between 200 and 600/year, the number of fatality fluctuated between 220 and 1100/year. Secondly, the accident rate in developed southeast coastal areas, e.g., Guangdong, Zhejiang and Jiangsu, was far higher than that in the northwest regions, e.g., Xizang, Xinjiang, and Qinghai. Thirdly, nearly 80% of dangerous chemical accidents had occurred in small and medium-sized enterprises (SMEs). Finally, various sudden environmental pollution accidents resulted from hazardous chemicals were frequent in recent years, causing a huge damage to human and property. Then, based on the readjustment of economic structure in the last decades, the development status of Occupational Health and Safety (OHS) in SMEs and other factors, the paper explores the main causes, which offers valuable insight into measures that should be taken to reduce hazardous chemical accidents.

  4. The situation of hazardous chemical accidents in China between 2000 and 2006

    International Nuclear Information System (INIS)

    Duan Weili; Chen Guohua; Ye Qing; Chen Qingguang

    2011-01-01

    From the aspects of the total quantity of accidents, regional inequality, enterprises scale and environmental pollution accidents, this study makes an analysis of hazardous chemical accidents in China for the period spanning from 2000 to 2006. The following results are obtained: firstly, there were lots of accidents and fatalities in hazardous chemical business, i.e., the number of casualty accidents fluctuated between 200 and 600/year, the number of fatality fluctuated between 220 and 1100/year. Secondly, the accident rate in developed southeast coastal areas, e.g., Guangdong, Zhejiang and Jiangsu, was far higher than that in the northwest regions, e.g., Xizang, Xinjiang, and Qinghai. Thirdly, nearly 80% of dangerous chemical accidents had occurred in small and medium-sized enterprises (SMEs). Finally, various sudden environmental pollution accidents resulted from hazardous chemicals were frequent in recent years, causing a huge damage to human and property. Then, based on the readjustment of economic structure in the last decades, the development status of Occupational Health and Safety (OHS) in SMEs and other factors, the paper explores the main causes, which offers valuable insight into measures that should be taken to reduce hazardous chemical accidents.

  5. On policies to regulate long-term risks from hazardous waste disposal sites under both intergenerational equity and intragenerational equity

    Science.gov (United States)

    Shu, Zhongbin

    In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the disposal of high-level radioactive wastes and global warming, but also include the disposal of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being disposed of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of disposal of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund sites that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the disposal of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate

  6. The development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals

    International Nuclear Information System (INIS)

    Winder, Chris; Azzi, Rola; Wagner, Drew

    2005-01-01

    The hazards of chemicals can be classified using classification criteria that are based on physical, chemical and ecotoxicological endpoints. These criteria may be developed be iteratively, based on scientific or regulatory processes. A number of national and international schemes have been developed over the past 50 years, and some, such as the UN Dangerous Goods system or the EC system for hazardous substances, are in widespread use. However, the unnecessarily complicated multiplicity of existing hazard classifications created much unnecessary confusion at the user level, and a recommendation was made at the 1992 Rio Earth summit to develop a globally harmonized chemical hazard classification and compatible labelling system, including material safety data sheets and easily understandable symbols, that could be used for manufacture, transport, use and disposal of chemical substances. This became the globally harmonized system for the Classification and Labelling of Chemicals (GHS). The developmental phase of the GHS is largely complete. Consistent criteria for categorising chemicals according to their toxic, physical, chemical and ecological hazards are now available. Consistent hazard communication tools such as labelling and material safety data sheets are also close to finalisation. The next phase is implementation of the GHS. The Intergovernmental Forum for Chemical Safety recommends that all countries implement the GHS as soon as possible with a view to have the system fully operational by 2008. When the GHS is in place, the world will finally have one system for classification of chemical hazards

  7. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  8. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  9. Hazardous chemical tracking system (HAZ-TRAC)

    International Nuclear Information System (INIS)

    Bramlette, J.D.; Ewart, S.M.; Jones, C.E.

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA)

  10. Hazardous chemical tracking system (HAZ-TRAC)

    Energy Technology Data Exchange (ETDEWEB)

    Bramlette, J D; Ewart, S M; Jones, C E

    1990-07-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) developed and implemented a computerized hazardous chemical tracking system, referred to as Haz-Trac, for use at the Idaho Chemical Processing Plant (ICPP). Haz-Trac is designed to provide a means to improve the accuracy and reliability of chemical information, which enhances the overall quality and safety of ICPP operations. The system tracks all chemicals and chemical components from the time they enter the ICPP until the chemical changes form, is used, or becomes a waste. The system runs on a Hewlett-Packard (HP) 3000 Series 70 computer. The system is written in COBOL and uses VIEW/3000, TurboIMAGE/DBMS 3000, OMNIDEX, and SPEEDWARE. The HP 3000 may be accessed throughout the ICPP, and from remote locations, using data communication lines. Haz-Trac went into production in October, 1989. Currently, over 1910 chemicals and chemical components are tracked on the system. More than 2500 personnel hours were saved during the first six months of operation. Cost savings have been realized by reducing the time needed to collect and compile reporting information, identifying and disposing of unneeded chemicals, and eliminating duplicate inventories. Haz-Trac maintains information required by the Superfund Amendment Reauthorization Act (SARA), the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the Occupational Safety and Health Administration (OSHA).

  11. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  12. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  13. 76 FR 72216 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-11-22

    ... accordance with the Standard's definitions for ``laboratory use of hazardous chemicals'' and ``laboratory... using hazardous chemicals; hazard-control techniques; equipment- reliability measures; worker... burden (time and costs) of the information collection requirements, including the validity of the...

  14. Investigation of radioactive contamination at non-radioactive drains of the Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Koide, Hiroaki; Imanaka, Tetsuji; Ebisawa, Toru; Kawano, Shinji; Kobayashi, Keiji.

    1982-05-01

    In April, 1981, it was disclosed that a drainage area at the Tsuruga Nuclear Power Station was so much contaminated with radioactivites. Although Ministry of International Trade and Industry (MITI) officially provided an explanation of a process that resulted in the contamination, many problems remain unsolved on account of insufficient and limited investigations. The authors collected mud samples from contaminated manholes and examined radioactivities in them through the measurement of #betta#- and #betta#-spectra. Chemical separation of the samples was carried out in order to obtain precise concentration of radioactive cesium. Results are as follows: i) the concentration of radioactivities does not show monotonous decrease along the stream line but an anomalous peak at downstream manholes, ii) at the manhole specified No. 6 located rather downstream, 137 Cs concentration is significantly high and the composition of radioactive nuclides is quite different from that in the other manholes, and iii) additional radioactive contamination was observed in other manholes of non-radioactive drains which would not be influenced by the accident explained by MITI. Our present work has provided much more data than by MITI and made it clear that the overall data cnnot be consistent with the simple MITI explanation; a single radioactive release accident caused the disclosed contamination. It is concluded that non-radioactive water drains at the Tsuruga Nuclear Power Station had been under continual contamination. (author)

  15. Application of a hazard and operability study method to hazard evaluation of a chemical unit of the power station.

    Science.gov (United States)

    Habibi, E; Zare, M; Barkhordari, A; Mirmohammadi, Sj; Halvani, Ghh

    2008-12-28

    The aim of this study was to identify the hazards, evaluate their risk factors and determine the measure for promotion of the process and reduction of accidents in the chemical unit of the power station. In this case and qualitative study, HAZOP technique was used to recognize the hazards and problems of operations on the chemical section at power station. Totally, 126 deviations were documented with various causes and consequences. Ranking and evaluation of identified risks indicate that the majority of deviations were categorized as "acceptable" and less than half of that were "unacceptable". The highest calculated risk level (1B) related to both the interruption of acid entry to the discharge pumps and an increased density of the acid. About 27% of the deviations had the lowest risk level (4B). The identification of hazards by HAZOP indicates that it could, systemically, assess and criticize the process of consumption or production of acid and alkali in the chemical unit of power plant.

  16. Assessment and management of cancer risks from radiological and chemical hazards

    International Nuclear Information System (INIS)

    1998-01-01

    A Joint Working Group was established in April 1995 by the President of the Atomic Energy Control Board (AECB) and the Assistant Deputy Minister of the Health Protection Branch of Health Canada to examine the similarities, disparities and inconsistencies between the levels of risk considered acceptable for regulating ionizing radiation and those considered acceptable for regulating chemical and microbiological hazards. During the process of collecting, analysing and interpreting information, the Joint Working Group realized that its terms of reference as written presented a major difficulty because of the lack of consensus on acceptable levels of risk. Consequently it decided that the most reasonable way to proceed was to compare the risk assessment and management processes used to protect the public from radiation, chemicals and microbiological hazards. This report concentrates on the assessment and management of ionizing radiation and genotoxic chemicals (which both cause cancer by damaging the DNA in cells) and pays less attention to non-genotoxic effects and microbiological hazards. The report also examines public more than occupational exposures and exposures from man-made rather than naturally occurring agents. (author)

  17. Comparative biological hazards of chemical pollutants and radiation

    International Nuclear Information System (INIS)

    Mukherjee, R.N.

    1978-01-01

    Chemical pollutants from conventional energy and industrial sources released to the environment presumably pose a hazard to man's health and environmental resources. Insufficient knowledge of their detailed mechanisms of interaction with the biological systems seems to provide the greatest drawback in current attempts for realistic assessment of the health risks of chemical pollutants in the short and long terms. Nevertheless, their detrimental health consequences are becoming more and more apparent as a result of recent epidemiological surveys of workers in conventional energy installations and of the chronically exposed general public. So far nuclear power has succeeded in achieving a remarkable health safety record. In view of its projected expansion, research on biological effects of low-level radiation and radionuclides should continue to re-evaluate the health safety consequences. However, a projection from past experiences together with continued efforts to improvements of health safety aspects seem to justify an expectation that the proposed expansions in the nuclear power programme should not have an unfavourable impact on the environment. The potential hazards and challenges from the associated radiation in man's environment have proved manageable. More attention now needs to be paid urgently to safeguard human health and environment against the chemical pollutants

  18. Comparative biological hazards of chemical pollutants and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, R N [International Atomic Energy Agency, Vienna (Austria). Div. of Life Sciences

    1978-06-01

    Chemical pollutants from conventional energy and industrial sources released to the environment presumably pose a hazard to man's health and environmental resources. Insufficient knowledge of their detailed mechanisms of interaction with the biological systems seems to provide the greatest drawback in current attempts for realistic assessment of the health risks of chemical pollutants in the short and long terms. Nevertheless, their detrimental health consequences are becoming more and more apparent as a result of recent epidemiological surveys of workers in conventional energy installations and of the chronically exposed general public. So far nuclear power has succeeded in achieving a remarkable health safety record. In view of its projected expansion, research on biological effects of low-level radiation and radionuclides should continue to re-evaluate the health safety consequences. However, a projection from past experiences together with continued efforts to improvements of health safety aspects seem to justify an expectation that the proposed expansions in the nuclear power programme should not have an unfavourable impact on the environment. The potential hazards and challenges from the associated radiation in man's environment have proved manageable. More attention now needs to be paid urgently to safeguard human health and environment against the chemical pollutants.

  19. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    International Nuclear Information System (INIS)

    Ades, M.J.; Vincent, A.M. III.

    1997-01-01

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins

  20. Assessment of chemical loadings to Newark Bay, New Jersey from petroleum and hazardous chemical accidents occurring from 1986 to 1991

    International Nuclear Information System (INIS)

    Gunster, D.G.; Bonnevie, N.L.; Gillis, C.A.; Wenning, R.J.

    1993-01-01

    Newark Bay, New Jersey, is particularly vulnerable to ecological damage from accidental petroleum and chemical spills due to the enclosed nature of the bay and the large volume of chemical and petroleum commerce within the region. A review of the New Jersey Department of Environmental Protection and Energy's database of hazardous chemical spills in New Jersey waterways was conducted to determine the frequency and volume of chemical and petroleum spills in Newark Bay and its major tributaries. Accidents reported from 1986 to 1991 were extracted from the database and summarized. The compilation of records indicated that 1400 incidents, resulting in the release of more than 18 million gallons of hazardous materials to the estuary had been reported to state officials. The bulk of the chemicals released to the aquatic environment were petroleum products, specifically No. 2 Fuel Oil (4,636,512 gallons) and No. 6 Fuel Oil (12,600,683 gallons). The majority of the reported incidents occurred in the Arthur Kill and its tributaries. The results indicate that accidental discharge of petroleum and other hazardous chemicals to Newark Bay represents a significant ongoing source of chemical pollution

  1. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  2. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  3. Environmental impact of industrial sludge stabilization/solidification products: chemical or ecotoxicological hazard evaluation?

    Science.gov (United States)

    Silva, Marcos A R; Testolin, Renan C; Godinho-Castro, Alcione P; Corrêa, Albertina X R; Radetski, Claudemir M

    2011-09-15

    Nowadays, the classification of industrial solid wastes is not based on risk analysis, thus the aim of this study was to compare the toxicity classifications based on the chemical and ecotoxicological characterization of four industrial sludges submitted to a two-step stabilization/solidification (S/S) processes. To classify S/S products as hazardous or non-hazardous, values cited in Brazilian chemical waste regulations were adopted and compared to the results obtained with a battery of biotests (bacteria, alga and daphnids) which were carried out with soluble and leaching fractions. In some cases the hazardous potential of industrial sludge was underestimated, since the S/S products obtained from the metal-mechanics and automotive sludges were chemically classified as non-hazardous (but non-inert) when the ecotoxicity tests showed toxicity values for leaching and soluble fractions. In other cases, the environmental impact was overestimated, since the S/S products of the textile sludges were chemically classified as non-inert (but non-hazardous) while ecotoxicity tests did not reveal any effects on bacteria, daphnids and algae. From the results of the chemical and ecotoxicological analyses we concluded that: (i) current regulations related to solid waste classification based on leachability and solubility tests do not ensure reliable results with respect to environmental protection; (ii) the two-step process was very effective in terms of metal immobilization, even at higher metal-concentrations. Considering that S/S products will be subject to environmental conditions, it is of great interest to test the ecotoxicity potential of the contaminants release from these products with a view to avoiding environmental impact given the unreliability of ecotoxicological estimations originating from chemical analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out

  5. OSHA safety requirements for hazardous chemicals in the workplace.

    Science.gov (United States)

    Dohms, J

    1992-01-01

    This article outlines the Occupational Safety and Health Administration (OSHA) requirements set forth by the Hazard Communication Standard, which has been in effect for the healthcare industry since 1987. Administrators who have not taken concrete steps to address employee health and safety issues relating to hazardous chemicals are encouraged to do so to avoid the potential of large fines for cited violations. While some states administer their own occupational safety and health programs, they must adopt standards and enforce requirements that are at least as effective as federal requirements.

  6. Environmental Product Development Combining the Life Cycle Perspective with Chemical Hazard Information

    DEFF Research Database (Denmark)

    Askham, Cecilia

    in the design or redesign process. This thesis concerns marrying the life cycle perspective with chemical hazard information, in order to advance the practice of environmental product development, and hence takes further steps towards sustainable development. The need to consider the full value chain...... for the life cycle of products meant that systems theory and systems engineering principles were important in this work. Life cycle assessment methodology was important for assessing environmental impacts for case products. The new European regulation for chemicals (REACH) provided the main driver......Concerns regarding the short- and long-term detrimental effects of chemicals on human health and ecosystems have made the minimisation of chemical hazards a vitally important issue. If sustainable development is to be achieved, environmental efficient products (and product life cycles...

  7. Perspectives on the chemical and radiological hazards of uranium

    International Nuclear Information System (INIS)

    Stansbury, P.S.

    1987-01-01

    Uranium is unique among the elements because it presents chemical and radiological hazards of comparable magnitude. Although the biological effects of a heavy metal damaging the kidneys are vastly different from the actions of an alpha-emitting nuclide in the lung or bone tissues, there are some perceptual and phenomenological similarities of note to health physicists. In a broad sense, the amount of uranium that could cause chemical kidney damage or pose a radiation hazard could go unnoticed in the work place. Once taken into the body, the chemical action or the radiological insult progresses without any warning signals. Ultrasensitive bioassay techniques could detect the presence of uranium in the body and quantify an intake that is known to have occurred. The adverse health effect of either the chemical or radiological mode of action is catastrophic: kidney failure on one hand, cancer on the other. Two other parallelisms should be noted. The natural loss of nephrons is part of the aging process. Similarly 15 to 20% of the population die of naturally caused cancer. Thus, the effects of uranium exposure mimic natural effects in unexposed populations. There are suspected adverse health effects at low levels of exposure to uranium. Even though there may be good reasons for suspecting low-level effects, both chemical and radiological, there is very little definitive evidence that these effects occur in human populations. 7 refs., 1 fig., 1 tab

  8. Toxic chemical hazard classification and risk acceptance guidelines for use in DOE facilities. Revision 2

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.S.; Prowse, J.; Hoffman, P.W.

    1995-01-01

    The concentration-limit guidelines presented in this document apply to airborne releases of chemicals evaluated with respect to human health effects for the purposes of hazard classification and categorization, risk assessment and safety analysis. They apply to all DOE facilities and operations involving the use of potentially hazardous chemicals. The guidelines do not address other nonradiological hazards such as fire, pressure releases (including explosions), and chemical reactivity, but the guidelines are applicable to hazardous chemical releases resulting from these events. This report presents the subcommittee's evaluation and recommendations regarding analyses of accidentally released toxic chemicals. The premise upon which these recommendations are based is that the mechanism of action of toxic chemicals is fundamentally different from that associated with radionuclides, with the exception of carcinogens. The recommendations reported herein are restricted to the airborne pathway because in an accident scenario this typically represents the most immediately significant route of public exposure. However, the subcommittee recognizes that exposure to chemicals through other pathways, in particular waterborne, can have significant impacts on human health and the environment. Although there are a number of chemicals for which absorption through the skin can contribute measurably to the total dose in chronic (e.g., occupational) exposure situations, this pathway has not been considered for the acute exposure scenarios considered in this report. Later studies. will address these issues if it appears desirable

  9. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1993-10-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical waste to LBL's Hazardous Waste Handling Facility (HWHF). Hazardous chemical waste is a necessary byproduct of LBL's research and technical support activities. This waste must be handled properly if LBL is to operate safely and provide adequate protection to staff and the environment. These guidelines describe how you, as a generator of hazardous chemical waste, can meet LBL's acceptance criteria for hazardous chemical waste

  10. Evaluation of Hazardous Material Management Safety in the Chemical Laboratory in BATAN

    International Nuclear Information System (INIS)

    Nur-Rahmah-Hidayati

    2005-01-01

    The management safety of the hazardous material (B3) in the chemical laboratory of BATAN was evaluated. The evaluation is necessary to be done because B3 is often used together with radioactive materials in the laboratory, but the attention to the safety aspect of B3 is not paid sufficiently in spite of its big potential hazard. The potential hazard generated from the nature of B3 could be flammable, explosive, oxidative, corrosive and poisonous. The handling of B3 could be conducted by enforcing the labelling and classification in the usage and disposal processes. Some observations of the chemical laboratory of BATAN show that the management safety of hazardous material in compliance with the government regulation no. 74 year 2001 has not been dully conducted. The management safety of B3 could be improved by, designating one who has adequate skill in hazardous material safety specially as the B3 safety officer, providing the Material Safety Data Sheet that is updated periodically to use in the laboratory and storage room, updating periodically the inventory of B3, performing training in work safety periodically, and monitoring the ventilation system intensively in laboratory and storage room. (author)

  11. Occupational health hazards in veterinary medicine: physical, psychological, and chemical hazards.

    Science.gov (United States)

    Epp, Tasha; Waldner, Cheryl

    2012-02-01

    This paper reports physical, psychological, and chemical hazards relevant to western Canadian veterinarians as obtained by a self-administered mailed questionnaire. Nine-three percent (750/806) of veterinarians reported some form of injury during the previous 5 years; 17% of respondents (131/791) indicated injuries that resulted in 1 or more days off work. Median stress levels were similar across work environments; overall, 7% (57/813) indicated either no stress or severe stress, while 53% (428/813) indicated moderate stress. Twenty percent (3/15) of food animal practitioners and 37% (114/308) of companion animal practitioners who took X-rays reported accidental exposure. Accidental exposure to gas anesthetic was reported by 69% (394/570) of those in private practice. Exposure to chemicals occurred in all work environments. Veterinarians in western Canada are at risk of minor to severe injury due to both animal and non-animal related causes.

  12. The OSHA hazardous chemical occupational exposure standard for laboratories.

    Science.gov (United States)

    Armbruster, D A

    1991-01-01

    OSHA's chemical occupational exposure standard for laboratories is an outgrowth of the previously issued Hazard Communication Standard. The standard relieves laboratories from complying with general industry standards but does require compliance with specific laboratory guidelines. The heart of the standard is the creation of a Chemical Hygiene Plan (CHP). The CHP addresses major issues such as safety equipment and procedures, work practices, training, the designation of a chemical hygiene officer, and the provision of medical consultation and examination for affected employees. This new standard, in full effect as of January 31, 1991, presents yet another regulatory challenge to laboratory managers but also ensures a safer environment for laboratory workers.

  13. An approach to quantitate and control the mutagenic hazards of environmental chemical and radioactive pollutants

    International Nuclear Information System (INIS)

    Murthy, M.S.S.

    1977-01-01

    Human population, both at the occupational and non-occupational levels, is exposed to the environment polluted by man-made chemicals and radiation sources. The parameters required for quantitating mutagenic hazards of any agent are listed and it has been pointed out that though sufficient information of this nature is available in the case of radiations, it is almost impossible to collect similar information for chemical substances due to their number running into astronomical figures. A short-cut approach, therefore, is suggested to quantitate and control the mutagenic hazards of these pollutants. It is to express the mutagenic hazards of a chemical substance in terms of equivalent radiation units. The unit proposed for this purpose is called as Rem-Equivalent Chemical (REC). Total mutagenic burden to the society should take account of exposure from both chemicals and radiations. Advantages and limitation of this approach are discussed. (M.G.B.)

  14. How synergistic or antagonistic effects may influence the mutual hazard ranking of chemicals

    Directory of Open Access Journals (Sweden)

    Lars Carlsen

    2015-04-01

    Full Text Available The presence of various agents, including humic materials, nanomaterials, microplastics, or simply specific chemical compounds, may cause changes in the apparent persistence, bioaccumulation, and/or toxicity (PBT of a chemical compound leading to an either increased or decreased PBT characteristics and thus an increased or decreased hazard evaluation. In the present paper, a series chloro-containing obsolete pesticides is studied as an illustrative example. Partial order methodology is used to quantify how changed P, B, or T characteristics of methoxychlor (MEC influences the measure of the hazard of MEC, relative to the other 11 compounds in the series investigated. Not surprisingly, an increase in one of the three indicators (P, B, or T lead to an increased average order and thus an increased relative hazard as a result of a synergistic effect. A decrease in one of the indicator values analogously causes a decreased average order/relative hazard through an antagonistic effect; the effect, however, being less pronounced. It is further seen that the effect of changing the apparent value of the three indicators is different. Thus, persistence apparently is more important that bioaccumulation which again appears more important than toxicity, which is in agreement with previous work. The results are discussed with reference to the European chemicals framework on registration, evaluation and authorization of chemicals (REACH framework.

  15. KNOWLEDGE DATABASE ON CHEMICAL AND AEROSOL HAZARDS CHEMPYŁ AVAILABLE IN CIOP-PIB PORTAL

    Directory of Open Access Journals (Sweden)

    Elżbieta Dobrzyńska

    2016-12-01

    Full Text Available CHEMPYŁ database, which is available on the website of the Central Institute for Labour Protection – National Research Institute, is a source of information for employers, employees and specialists of health and safety in the field of chemical and aerosol hazards at the workplace. The most useful materials in this field, collected in one place in the database are aimed to help in the efficient management of occupational risks associated with the presence of hazardous chemical substances and its mixtures in the working environment. The online CHEMPYŁ database contains sets of definitions, legal acts, database of hazardous chemicals and dusts, as well as the measurement results in form of sixteen separate sections and subsections. The database of measurement results is a collection of practical information on exposure to harmful chemical substances, the results of their qualitative and quantitative measurements in air at the exemplary workplaces or exemplary technological processes from various economy sectors and occupational risk assessment connected with it. The database on hazardous chemicals covers over five hundred and sixty substances, mainly with fixed values of maximum admissible concentrations in Poland, but also more than a thousand substances classified as carcinogenic and mutagenic according to the CLP Regulation, and this material is continuously expanded. Extensive materials are collected in the sections on assessment of occupational exposure to chemicals and dust, as well as risk assessment associated with their use and/or presence at the workplace. Apart from the materials on risk assessment in inhalation and dermal exposure or risk of explosion and fire, data were complemented with non-measurement methods for assessing exposure and occupational risk for carcinogenic and mutagenic substances, and methods to assess the risks associated with chemical substances of nanometric dimensions. Forum, which was created in 2015, allows

  16. Hazardous chemicals in marine mammals from the western North Pacific

    International Nuclear Information System (INIS)

    Miyazaki, N.; Tanabe, S.

    1999-01-01

    Marine mammals have long-term life and occupy the highest ecological niche in the marine ecosystem. Thus, higher concentration of hazardous chemicals are expected in marine mammals. In the present study, we review contamination of organochlorine compounds (DDTs, PCBs, HCHs, etc.), heavy metals (Hg, Cd, Pb, etc.) and butyltin (TBT, DBT and MBT) in marine mammals collected from the western North Pacific, and discuss the worldwide contamination of these chemicals

  17. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  18. Risk assessment of chemicals in food and diet: Hazard identification by methods of animal-based toxicology

    DEFF Research Database (Denmark)

    Barlow, S. M.; Greig, J. B.; Bridges, J. W.

    2002-01-01

    the current state of the science of risk assessment of chemicals in food and diet, by consideration of the four stages of risk assessment, that is. hazard identification. hazard characterisation, exposure assessment and risk characterisation. The contribution of animal-based methods in toxicology to hazard......, on hazard identification for food chemicals, such as new measurement techniques, the use of transgenic animals, assessment of hormone balance and the possibilities for conducting studies in which common human diseases have been modelled. is also considered. (C) 2002 ILSI. Published by Elsevier Science Ltd....... All rights reserved....

  19. The regulations for radionuclides and chemicals in the environment

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1991-01-01

    This presentation detail information on current and proposed standards, recommendations, and guidances for limiting routine and accidental radiation exposures of the public. It also reviews certain laws and regulations intended primarily for limiting exposures of the public to non-radioactive hazardous materials. Limits on risk to the public embodied in laws and regulations are emphasized. It considers the only basis for comparing potential impacts from exposure to radionuclides and other hazardous materials

  20. Hazard classification of environmental restoration activities at the INEL

    International Nuclear Information System (INIS)

    Peatross, R.G.

    1996-04-01

    The following documents require that a hazard classification be prepared for all activities for which US Department of Energy (DOE) has assumed environmental, safety, and health responsibility: the DOE Order 5481.1B, Safety Analysis and Review System and DOE Order 5480.23, Nuclear Safety Analysis Reports. A hazard classification defines the level of hazard posed by an operation or activity, assuming an unmitigated release of radioactive and nonradioactive hazardous material. For environmental restoration activities, the release threshold criteria presented in Hazard Baseline Documentation (DOE-EM-STD-5502-94) are used to determine classifications, such as Radiological, Nonnuclear, and Other Industrial facilities. Based upon DOE-EM-STD-5502-94, environmental restoration activities in all but one of the sites addressed by the scope of this classification (see Section 2) can be classified as ''Other Industrial Facility''. DOE-EM-STD-5502-94 states that a Health and Safety Plan and compliance with the applicable Occupational Safety and Health Administration (OSHA) standards are sufficient safety controls for this classification

  1. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  2. Preliminary hazard classification for Building 107-N

    International Nuclear Information System (INIS)

    Kloster, G.L.; Smith, R.L.

    1997-06-01

    Deactivation activities are planned for Building 107-N (Basin Recirculation Building). This document establishes the preliminary hazard classification (PHC) for the 100-N Area facility segment that includes this building.To establish the PHC, the inventories of radioactive and nonradioactive hazardous materials present within Building 107-N are identified and then compared to the corresponding threshold quantity values in DOE (1992) and reportable quantity values in 40 CFR 302.4. In this evaluation, no credit is taken for the form, location, and dispersibility of the materials; for their interaction with available energy sources; or for safety features that could prevent or mitigate a radioactive release. The result of this effort concluded that the PHC for Building 107-N is Nuclear Category 3

  3. [Exposure to hazardous chemical substances in furniture industry].

    Science.gov (United States)

    Pośniak, Małgorzata; Kowalska, Joanna; Makhniashvili, Ivan

    2005-01-01

    The aim of the study was to assess the exposure to organic solvents in plants of the furniture industry. Studies were conducted in five furniture plants. Hazardous chemicals present in the air at workposts were determined by capillary gas chromatography with mass spectrometry and flame ionization detection. The analysis of air samples collected at the workposts allowed to identify the following chemicals occurring during varnishing and cleaning of furniture surface elements: acetone, butan-2-one, ethyl, isobutyl and methoxypropyl acetate, 4-methylpentan-2-on, toluene, ethylbenzene and xylenes. Indices characteristic of combined exposure ranged from 0.13 to 1.67 and exceeded the limit value at 21% of workposts. The results of the study indicate that chemicals present at representative workposts during the furniture production are harmful to health of workers, especially those involved in varnishing and cleaning of furniture elements.

  4. Controlled air incineration of hazardous chemical and mixed waste at Los Alamos

    International Nuclear Information System (INIS)

    Borduin, L.C.; Hutchins, D.A.; Vavruska, J.J.; Warner, C.L.

    1987-01-01

    The Los Alamos National Laboratory (LANL) Controlled Air Incineration (CAI) system, originally developed for transuranic (TRU) waste volume reduction studies, is currently being qualified for hazardous chemical and mixed waste treatment under provisions of the Resource Conservation and Recovery Act (RCRA). The objective is to obtain a permanent RCRA Part B permit for thermal disposal of hazardous and mixed wastes generated by LANL. Constructed in the mid-1970s as a demonstration project for incineration of TRU solid wastes, the CAI process was substantially modified and tested in 1980-1983 for acceptance of both liquid and solid hazardous chemicals. Successful demonstration of TRU solid waste processing objectives in 1979 and later chemical waste incineration studies have been documented in several publications. In 1984, the LANL CAI became the first US Dept. of Energy (DOE) incinerator to be permitted for polychlorinated biphenyl disposal under the Toxic Substances Control Act. Following establishment of Environmental Protection Agency (EPA) jurisdiction over DOE chemical waste management in 1984, LANL sought and was granted interim status for the CAI and applied for a trial burn permit in the overall laboratory RCRA Part B application. A trial burn and final report have been completed; results have been submitted to EPA and the New Mexico Environmental Improvement Division. This paper provides an overview of trial burn planning and results together with the operational status of LANL's CAI

  5. Onshore preparedness for hazardous chemical marine vessel accidents: A case study

    Directory of Open Access Journals (Sweden)

    Faisel T. Illiyas

    2016-09-01

    Full Text Available Hazardous and noxious substances (HNS are widely transported in marine vessels to reach every part of the world. Bulk transportation of hazardous chemicals is carried out in tank container–carrying cargo ships or in designed vessels. Ensuring the safety of HNS containers during maritime transportation is critically important as the accidental release of any substance may be lethal to the on-board crew and marine environment. A general assumption in maritime accidents in open ocean is that it will not create any danger to the coastal population. The case study discussed in this article throws light on the dangers latent in maritime HNS accidents. An accident involving an HNS-carrying marine vessel in the Arabian Sea near the coast of Yemen became a safety issue to the coastal people of Kasargod District of Kerala, India. The ship carried more than 4000 containers, which were lost to the sea in the accident. Six HNS tank containers were carried by the waves and shored at the populated coast of Kasargod, more than 650 nautical miles east from the accident spot. The unanticipated sighting of tank containers in the coast and the response of the administration to the incident, the hurdles faced by the district administration in handling the case, the need for engaging national agencies and lessons learned from the incident are discussed in the article. This case study has proven that accidents in the open ocean have the potential to put the coastal areas at risk if the on-board cargo contains hazardous chemicals. Littoral nations, especially those close to the international waterlines, must include hazardous chemical spills to their oil spill contingency plans.

  6. Expert systems for the transportation of hazardous and radioactive materials

    International Nuclear Information System (INIS)

    Luce, C.E.; Clover, J.C.; Ferrada, J.J.

    1994-01-01

    Under the supervision of the Transportation Technologies Group which is in the Chemical Technology Division at Oak Ridge National Laboratory, an expert system prototype for the transportation and packaging of hazardous and radioactive materials has been designed and developed. The development of the expert system prototype focused on using the combination of hypermedia elements and the Visual Basic trademark programming language. Hypermedia technology uses software that allows the user to interact with the computing environment through many formats: text, graphics, audio, and full-motion video. With the use of hypermedia, a user-friendly prototype has been developed to sort through numerous transportation regulations, thereby leading to the proper packaging for the materials. The expert system performs the analysis of regulations that an expert in shipping information would do; only the expert system performs the work more quickly. Currently, enhancements in a variety of categories are being made to the prototype. These include further expansion of non-radioactive materials, which includes any material that is hazardous but not radioactive; and the addition of full-motion video, which will depict regulations in terms that are easy to understand and which will show examples of how to handle the materials when packaging them

  7. 78 FR 4324 - Occupational Exposure to Hazardous Chemicals in Laboratories (Non-Mandatory Appendix); Technical...

    Science.gov (United States)

    2013-01-22

    ... variety of physical and chemical reasons, reaction scale-ups pose special risks, which merit additional.... Engineering controls, such as chemical hoods, physically separate the employee from the hazard. Administrative..., engineering controls and apparel; (d) Laboratory equipment; (e) Safety equipment; (f) Chemical management; (g...

  8. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee on Acute Exposure Guideline Levels

    2001-01-01

    Standing Operating Procedures for Developing Acute Exposure Guideline Levels for Hazardous Chemicals contains a detailed and comprehensive methodology for developing acute exposure guideline levels (AEGLs...

  9. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  10. Decontamination and management of human remains following incidents of hazardous chemical release.

    Science.gov (United States)

    Hauschild, Veronique D; Watson, Annetta; Bock, Robert

    2012-01-01

    To provide specific guidance and resources for systematic and orderly decontamination of human remains resulting from a chemical terrorist attack or accidental chemical release. A detailed review and health-based decision criteria protocol is summarized. Protocol basis and logic are derived from analyses of compound-specific toxicological data and chemical/physical characteristics. Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present, such as sites of transportation accidents, terrorist operations, or medical examiner processing points. Guidance is developed from data-characterizing controlled experiments with laboratory animals, fabrics, and materiel. Logic and specific procedures for decontamination and management of remains, protection of mortuary affairs personnel, and decision criteria to determine when remains are sufficiently decontaminated are presented. Established procedures as well as existing materiel and available equipment for decontamination and verification provide reasonable means to mitigate chemical hazards from chemically exposed remains. Unique scenarios such as those involving supralethal concentrations of certain liquid chemical warfare agents may prove difficult to decontaminate but can be resolved in a timely manner by application of the characterized systematic approaches. Decision criteria and protocols to "clear" decontaminated remains for transport and processing are also provided. Once appropriate decontamination and verification have been accomplished, normal procedures for management of remains and release can be followed.

  11. Radioactive and non-radioactive polychlorinated biphenyl (PCB) management at Hanford

    International Nuclear Information System (INIS)

    Leonard, W.W.; Gretzinger, R.F.; Cox, G.R.

    1986-01-01

    Conformance to all state and federal regulations is the goal of Rockwell in the management of both radioactive and non-radioactive PCB's at Hanford. A continuing effort is being made to locate, remove, and properly dispose of all PCB's. As improved methods of management are developed, consideration will be given to them for their adaptation into the Hanford Site PCB Management Plan

  12. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  13. an investigation of the health hazards of some of the chemical ...

    African Journals Online (AJOL)

    Temechegn

    This short piece takes a limited look at the health hazards of the chemical contents of ... With this in mind, the researchers purchased all the powdered fruit juices sold in ... Administration (FDA) or some other regulatory body for low toxicity, ...

  14. Radioactive and hazardous chemical wastes. Impact on man and his environment

    International Nuclear Information System (INIS)

    Parker, F.L.; Suess, M.J.

    1984-01-01

    The main objective of the various safety measures in all fields of human activities is to prevent deleterious effects of various agents on human health. Preventive health and safety measures therefore play an important role in achieving the main goal of the World Health Organization (WHO): 'Health for all by the year 2000'. The present WHO programme on environmental health emphasizes the prevention of chemical hazards as one of the most important environmental factors affecting human health. At the same time, protection from physical factors, including radiological protection, is part of this programme. Therefore, WHO compares health detriments from both physical and chemical agents. The paper describes the hazardous waste problems of great concern in industrialized countries. For instance, the Commission of the European Communities countries produce about 2x10 9 tonnes of waste per year, a rate which grows by 2 to 3% annually. This poses serious problems of pollution, particularly where the toxic ingredients do not decay. Special attention will also be given to the safe handling of high-level radioactive waste from the peaceful use of nuclear technology. These wastes have to be stored in safe storage facilities, or be disposed of without causing damage to man and his environment. The international measures to contain and control these wastes are described, including the activities of WHO within the Global Environmental Monitoring System and Regional Sea programmes of the United Nations Environment Programme. Guidelines and methodologies for the management of hazardous chemical and radioactive wastes are being developed through WHO to assist national authorities in this task. The paper pays special attention to a comparative assessment of environmental and public health impacts of toxic chemical and radioactive wastes. (author)

  15. Hazard characterisation of chemicals in food and diet : dose response, mechanisms and extrapolation issues

    NARCIS (Netherlands)

    Dybing, E.; Doe, J.; Groten, J.; Kleiner, J.; O'Brien, J.; Renwick, A.G.; Schlatter, J.; Steinberg, P.; Tritscher, A.; Walker, R.; Younes, M.

    2002-01-01

    Hazard characterisation of low molecular weight chemicals in food and diet generally use a no-observed-adverse-effect level (NOAEL) or a benchmark dose as the starting point. For hazards that are considered not to have thresholds for their mode of action, low-dose extrapolation and other modelling

  16. Impacts on health and safety from transfer/consolidation of nuclear materials and hazardous chemicals

    International Nuclear Information System (INIS)

    Gallucci, R.H.V.

    1994-11-01

    Environmental restoration plans at the US Department of Energy (USDOE) Hanford Site calls for transfer/consolidation of ''targets/threats,'' namely nuclear materials and hazardous chemicals. Reductions in the health and safety hazards will depend on the plans implemented. Pacific Northwest Laboratory (PNL) estimated these potential impacts, assuming implementation of the current reference plan and employing ongoing risk and safety analyses. The results indicated the potential for ''significant'' reductions in health and safety hazards in the long term (> 25 years) and a potentially ''noteworthy'' reduction in health hazard in the short term (≤ 25 years)

  17. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  18. Instructions for the Tier I Emergency and Hazardous Chemical Inventory Form

    Science.gov (United States)

    The purpose of the Emergency Planning and Community Right-to-Know Act Tier I form is to provide State and local officials and the public with information on the general chemical hazard types and locations at your facility, if above reporting thresholds.

  19. Survey of awareness about hazardous chemicals of residents living near chemical plants in South Korea.

    Science.gov (United States)

    Han, Don-Hee; Park, Min Soo

    2018-02-10

    With economic growth, the use of chemicals has continually increased, resulting in an increase of chemical accidents. Chemical accidents pose a life threat and can lead to many health problems among the residents living in close proximity to chemical plants. This study aimed to investigate the awareness of the residents living near chemical plants about hazardous chemicals, as well as to survey the awareness of workers who do not directly handle chemicals at chemical plants (WNHCs). To this end, a questionnaire survey was conducted among a total of 600 residents and 160 WNHCs. The questionnaire was composed of three items: awareness of chemical risk, awareness of countermeasures in chemical accidents, and imperious necessity of PPE (personal protective equipment). Statistical analysis of the data was performed with the Statistical Package for Social Sciences (SPSS) version 18.0. The results show that the government needs to complement the notification system of chemical risk for residents who live close to chemical plants. The highest priority of PPE which residents want to prepare for chemical accidents was respiratory protective equipment (RPE). They responded that, if necessary to purchase PPE, they could bear a portion of the expenses (up to US $30). This study provides basic data for the development of programs and policies on chemical safety relevant for the residents living in close proximity to chemical plants in South Korea.

  20. Chemical dependency: An occupational hazard in the field of anaesthesia

    International Nuclear Information System (INIS)

    Ismail, S.

    2010-01-01

    The medical personnel are vulnerable to substance abuse and dependence due to ready access to substance of abuse. Addiction is considered as an occupational hazard for those involved in the practice of anaesthesia for the same reason. Substance abuse is defined as a psychosocial biogenetic disease, which results from dynamic interplay between a susceptible host and favourable environment. According to the fifth and the last National Survey on Drug Abuse (NSDA) in 1993 by Pakistan Narcotic Control, there are nearly three million drug dependants Review Article Chemical dependency: An occupational hazard in the field of anaesthesia Samina Ismail Department of Anaesthesia, Aga Khan University Hospital, Karachi. in Pakistan, but no data is available to determine the prevalence among medical or anaesthesia personnel. In order to handle the rising trend of chemical abuse, we need to have more surveys and studies on this subject, written policy and educational programme in postgraduate training with proper control and frequent checking of narcotic dispensing. Reporting of drug abuse and rehabilitation of affected doctors are areas which need to be worked upon. (author)

  1. Working group 6: Health. 3. Biological effects of nonradioactive pollutants associated with nuclear and conventional power plants

    International Nuclear Information System (INIS)

    Lauwerys, R.

    1976-01-01

    The major air pollutants released from conventional power plants have been found to be sulfur dioxide (SO 2 ), nitrogen oxides (NOx) and suspended particulates beside these three major pollutants other substances (CO, O 3 , hydrocarbons, vanadium...) occur in air or in water. Origin and extent of these pollutants as well as their main health hazards, especially for the respiratory system, have been evaluated. Other risks connected with the whole fuel cycle (coal extraction, petrol refining...) have been considered to be significant for human health. A mathematical model has been set up by the C.E.N. of Mol (Belgium) in order to predict the content of pollutants at the soil level, especially for SO 2 . A relationship between SO 2 content and the concentration of the other pollutants has been found by assuming certain hypothesis. Epidemiological and toxicological data connected with the SO 2 release have been given. As for nonradioactive pollutants released from nuclear power plants their amount has been considered to be negligible. (G.C.)

  2. The dilemma in prioritizing chemicals for environmental analysis: known versus unknown hazards.

    Science.gov (United States)

    Anna, Sobek; Sofia, Bejgarn; Christina, Rudén; Magnus, Breitholtz

    2016-08-10

    A major challenge for society is to manage the risks posed by the many chemicals continuously emitted to the environment. All chemicals in production and use cannot be monitored and science-based strategies for prioritization are essential. In this study we review available data to investigate which substances are included in environmental monitoring programs and published research studies reporting analyses of chemicals in Baltic Sea fish between 2000 and 2012. Our aim is to contribute to the discussion of priority settings in environmental chemical monitoring and research, which is closely linked to chemical management. In total, 105 different substances or substance groups were analyzed in Baltic Sea fish. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were the most studied substances or substance groups. The majority, 87%, of all analyses comprised 20% of the substances or substance groups, whereas 46 substance groups (44%) were analyzed only once. Almost three quarters of all analyses regarded a POP-substance (persistent organic pollutant). These results demonstrate that the majority of analyses on environmental contaminants in Baltic Sea fish concern a small number of already regulated chemicals. Legacy pollutants such as POPs pose a high risk to the Baltic Sea due to their hazardous properties. Yet, there may be a risk that prioritizations for chemical analyses are biased based on the knowns of the past. Such biases may lead to society failing in identifying risks posed by yet unknown hazardous chemicals. Alternative and complementary ways to identify priority chemicals are needed. More transparent communication between risk assessments performed as part of the risk assessment process within REACH and monitoring programs, and information on chemicals contained in consumer articles, would offer ways to identify chemicals for environmental analysis.

  3. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  4. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  5. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs

  6. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  7. Journal of NIRE, Vol. 5, No. 1, January 1996. Special issue: Behavior in the environment and countermeasure technology of hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Contents: Technique for Management of Hazardous Chemical Substances --Risk Assessment; Behaviors of Chemicals in the Aquatic Environment; Numerical Model of Chemical Fate in an Environment; Source Characterization and Chemical Processes of Volatile Organic Compounds in the Atmosphere; Development of Sensor for Hazardous Substances; Removal of Chemical Substances from the Atmosphere by Photocatalysis; Microbial Degradation of Organic Xenobiotics in Environment.

  8. Chemical Warfare Agent Operational Exposure Hazard Assessment Research: FY07 Report and Analysis

    Science.gov (United States)

    2010-07-01

    agent migration rates. As stated by Armour and Sturgeon (1992), the extent of the contact hazard depends on the initial degree of contamination, the...with a contaminated surface. 2.1.5 Literature Cited 1. Armour , S.J; Sturgeon, W.R. Liquid Hazard from Chemical Warfare Agents for Pilots of High...the neck area was clipped and prepped with betadine, and the animal covered with a sterile surgical drape . The planned incision areas in the

  9. Preliminary hazard classification for buildings 1310-N and 1314-N

    International Nuclear Information System (INIS)

    Kloster, G.L.; Smith, R.I.

    1997-01-01

    This document establishes the preliminary hazard classification (PHC) for the 100-N Area facility segment comprised of the 1310-N ''silo'' building and the 1314-N Liquid Waste Disposal Building. To establish the PHC, the inventories of radioactive and nonradioactive hazardous materials present within the segment are identified and then compared to the corresponding threshold quantity values in DOE-STD-1027-92 and reportable quantity values in 40 CFR 302.4. In this evaluation, no credit is taken for the form, location, and dispersibility of the materials; for their interaction with available energy sources; or for safety features that could prevent or mitigate a radiological release. The result of the PHC determined that the 1310-N and 1314-N building segments are classified as radiological

  10. An investigation of the health hazards of some of the chemical ...

    African Journals Online (AJOL)

    This short piece takes a limited look at the health hazards of the chemical contents of seven fruit juices sold in The Gambia. All of them have very negative effects on health. The following additives were considered: sweeteners, coloring agents, flavoring agents and acidifiers vis-à-vis established studies. [African Journal of ...

  11. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling.

    Science.gov (United States)

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2015-12-01

    Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  12. Endocrine effects of chemicals: aspects of hazard identification and human health risk assessment.

    Science.gov (United States)

    Dekant, Wolfgang; Colnot, Thomas

    2013-12-16

    Hazard and risk assessment of chemicals with endocrine activity is hotly debated due to claimed non-monotonous dose-response curves in the low-dose region. In hazard identification a clear definition of "endocrine disruptors" (EDs) is required; this should be based on the WHO/IPCS definition of EDs and on adverse effects demonstrated in intact animals or humans. Therefore, endocrine effects are a mode of action potentially resulting in adverse effects; any classification should not be based on a mode of action, but on adverse effects. In addition, when relying on adverse effects, most effects reported in the low-dose region will not qualify for hazard identification since most have little relation to an adverse effect. Non-monotonous dose-response curves that had been postulated from limited, exploratory studies could also not be reproduced in targeted studies with elaborate quality assurance. Therefore, regulatory agencies or advisory bodies continue to apply the safety-factor method or the concept of "margin-of-exposure" based on no observed adverse effect levels (NOAELs) in the risk assessment of chemicals with weak hormonal activity. Consistent with this approach, tolerable levels regarding human exposure have been defined for such chemicals. To conclusively support non-monotonous dose-response curves, targeted experiments with a sufficient number of animals, determination of adverse endpoints, adequate statistics and quality control would be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Chemical Contaminants Associated with Palm Wine from Nigeria Are Potential Food Safety Hazards

    Directory of Open Access Journals (Sweden)

    Ogueri Nwaiwu

    2017-03-01

    Full Text Available Recent analysis of palm wine, a traditional drink fermented mainly by yeasts, revealed the presence of several chemicals that were not products of yeast fermentation. The chemicals included styrene, benzene, trimethyldioxolane, dichloromethane, methylene fluoride, dichloroethanol, benzylisoquinoline and tetraacetyl-d-xylonic nitrile. A review of the concentrations of these compounds in palm wine found that the benzene concentrations in all samples reviewed ranged from 56–343 ppm and were within permissible limits, whereas the styrene values (1505–5614 ppm in all the palm wine samples evaluated were well over the recommended concentration that is immediately dangerous to life or health. Other chemical compounds evaluated varied according to location or sample source. The concentrations obtained are estimates only and a quantitative study needs to be carried out before the impact of these chemicals on health is evaluated. A search on The PubChem Project, the open chemical database, showed the description, properties and uses of these chemicals. Further searches carried out within other databases like PubMed, Scopus and Google Scholar, using each chemical’s name as a search term, showed possible hazards and adverse health conditions caused by these chemicals, especially styrene, benzene and dichloromethane. The point at which the chemicals are introduced into the drink is still not clear and requires further investigation. The chemicals can be hazardous to humans and there is need to establish and maintain a system that can guarantee permissible levels in the drink. This can be carried out using concentrations of the chemicals that are already known to be immediately dangerous to life or health as a reference point.

  14. Can the same principles be used for the management of radioactive and non-radioactive waste?

    International Nuclear Information System (INIS)

    Bengtsson, Gunnar.

    1989-01-01

    Non-radioactive waste has a much more complex composition than radioactive waste and appears in much larger quantities. The two types of waste have, however, some properties in common when it comes to their longterm impact on health and the environment. The occurrence in both of substances that may exist for generations and may cause cancer provides one example. Both types of waste also always occur together. It is therefore proposed that the same basic principles could be applied for the management of radioactive and non-radioactive waste. By doing so one may increase the efficiency of policy development, research and practical management. This is particurlarly importand for the very costly restoration of old disposal sites which have earlier been poorly managed. (author)

  15. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  16. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    International Nuclear Information System (INIS)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs

  17. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  18. 16 CFR 1500.231 - Guidance for hazardous liquid chemicals in children's products.

    Science.gov (United States)

    2010-01-01

    ..., distributors, and retailers to protect children from exposure to hazardous chemicals found in liquid-filled... purchasing products for resale, importers, distributors, and retailers obtain assurances from manufacturers... subsequent hand-to-mouth or hand-to-eye activity. The specific type and frequency of behavior that a child...

  19. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee on Acute Exposure Guideline Levels

    2001-01-01

    ... Exposure Guideline Levels for Hazardous Chemicals Subcommittee on Acute Exposure Guideline Levels Committee on Toxicology Board on Environmental Studies and Toxicology Commission on Life Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C. i Copyrightthe cannot be not from book, paper however, version for formatting, origina...

  20. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  1. Treatment of oil spill fire hazards with chemical dispersants: a case history

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, S.

    1982-10-01

    Federal contingency plans include the use of chemical dispersants to ameliorate hazardous situations caused by spills of flammable or explosive petroleum products. The closing of the Williamsburg Bridge in New York City, when a gasoline tanker exploded and sank under it, was nearly overshadowed by the leakage of 7 750 000 L (2 000 000 gal) of gasoline from a storage facility in Boston. The threat to a densely populated neighborhood of six-family tenement houses and a large racetrack that stabled hundreds of Thoroughbred horses led to the use of a chemical dispersant to neutralize the fire hazard. Favorable results by fire departments in recent years, as a result of training, have established dispersants as the method of choice to handle nonburning spill incidents. Even though the teams that responded to several such emergencies of course held the protection of life and property as paramount, no toxicological environmental effects were noted during subsequent observations.

  2. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  3. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  4. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  5. Savannah River Site TIER TWO report 1992: Emergency and Hazardous Chemical Inventory report

    International Nuclear Information System (INIS)

    Still, G.O.

    1993-03-01

    This report is a compilation of data on emergency and hazardous chemicals stored at the Savannah River Site. The report lists quantities of materials, general types of storage containment, types of storage conditions (pressure and temperature), and other information of relevance for particular materials

  6. Assessing food safety concepts on the dairy farm: the case of chemical hazards

    NARCIS (Netherlands)

    Valeeva, N.I.; Meuwissen, M.P.M.; Oude Lansink, A.G.J.M.; Bergevoet, R.H.M.; Huirne, R.B.M.

    2004-01-01

    Adaptive conjoint analysis was used to elicit farmers' and experts' preferences for attributes of improving food safety with respect to chemical hazards on the dairy farm. Groups of respondents were determined by cluster analysis based on similar farmers' and experts' perceptions of food safety

  7. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    Industrial or terroristic accidents in which toxic chemicals (TC) are the main or attendant damaging factors should be regarded as a new challenge for experts, because of little knowledge on the methodology to estimating the long-term risk for humans due to contamination of the building materials and environment. In the Russian Federation, there appeared to be a kind of model systems for developing an algorithm for solving these or similar problems. Under dismantling and liquidation of the former facilities for chemical weapon production (FCWP) the building materials are regarded as potential waste products the fate of which (processing, warehousing, utilization, and destruction) is dependent on their possible hazard for human population and environment. The standard approaches for hazard assessment of waste products of the FCWP turned out to be insufficient. When conducting the present work, the following problems have been solved: 1. Selection of representative samples taking into consideration a diversity of construction materials, great quantities of potentially toxic waste materials, information on the production conditions, breakdowns in the process of production, accidents, composition of the decontaminators used, decontamination frequency, etc. 2. Analysis of TC in composite matrixes complicated by the following problems: extraction, masking effects of concomitant components during indirect analysis, lack of certified methods of direct analysis of TC, discrepancy of results of GC and direct GCMS analysis, low sensitivity of GCMS analysis, big volume of samples (more than 0.5 kg), heterogeneity of physical-chemical properties of different matrixes influencing the process of degradation of TC. 3. Hazard assessment of the wastes in toxic-and-sanitary experiment relying on non-specific signs of intoxication due to relatively low percentage of TC and masking effects of various matrix components. Application of the integral toxicity tests with soil

  8. 75 FR 37443 - National Toxicology Program (NTP); NTP Interagency Center for the Evaluation of Alternative...

    Science.gov (United States)

    2010-06-29

    ... nonradioactive versions of the Local Lymph Node Assay (LLNA) for assessing allergic contact dermatitis (ACD) hazard potential of chemicals and products and expanded uses of the LLNA for pesticide formulations and... Authorization Act of 2000. The LLNA: 5-Bromo-2'-deoxyuridine-Enzyme- Linked Immunosorbent Assay (BrdU-ELISA) and...

  9. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  10. Effects of non-radioactive material around radioactive material on PET image quality

    International Nuclear Information System (INIS)

    Toshimitsu, Shinya; Yamane, Azusa; Hirokawa, Yutaka; Kangai, Yoshiharu

    2015-01-01

    Subcutaneous fat is a non-radioactive material surrounding the radioactive material. We developed a phantom, and examined the effect of subcutaneous fat on PET image quality. We created a cylindrical non-radioactive mimic of subcutaneous fat, placed it around a cylindrical phantom in up to three layers with each layer having a thickness of 20 mm to reproduce the obesity caused by subcutaneous fat. In the cylindrical phantom, hot spheres and cold spheres were arranged. The radioactivity concentration ratio between the hot spheres and B.G. was 4:1. The radioactivity concentration of B.G. was changed as follows : 1.33, 2.65, 4.00, and 5.30 kBq/mL. 3D-PET image were collected during 10 minutes. When the thickness of the mimicked subcutaneous fat increased from 0 mm to 60 mm, noise equivalent count decreased by 58.9-60.9% at each radioactivity concentration. On the other hand, the percentage of background variability increased 2.2-5.2 times. Mimic subcutaneous fat did not decrease the percentage contrast of the hot spheres, and did not affect the cold spheres. Subcutaneous fat decreases the noise equivalent count and increases the percentage of background variability, which degrades PET image quality. (author)

  11. The new equation of steam quality and the evaluation of nonradioactive tracer method in PWR steam generators

    International Nuclear Information System (INIS)

    Ki Bang, Sung; Young Jin, Chang

    2001-01-01

    The performance of steam turbines is tested as ANSI/ASME-PTC 6. This code provides rules for the accurate testing of steam turbines for the purpose of obtaining the level of performance with a minimum uncertainty. Only the relevant portion of this code needs to process any individual case, In some case the procedure is simple. However, in complex turbines or complex operation modes, more procedures are required to test the involved provisions. Anyway, to measure the steam quality in the Wolsong PHWR with 4 SGs in Korea by the methods in the section ''Measure of steam quality methods'' of ANSI/ASME PTC 6, the result was not good though the steam generators are efficient. So, the new testing method was developed and the sophisticated equation of steam quality was introduced and uses the nonradioactive chemical tracer, Lithium hydroxide(LiOH) instead of the radioactive tracer, Na-24. (author)

  12. 1995 Tier Two emergency and hazardous chemical inventory. Emergency Planning and Community Right-To-Know Act, Section 312

    International Nuclear Information System (INIS)

    1996-03-01

    Tier Two reports are required as part of the Superfund compliance. The purpose is to provide state and local officials and the public with specific information on hazardous chemicals present at a facility during the past year. The facility is required to provide specific information on description, hazards, amounts, and locations of all hazardous materials. This report compiled such information for the Hanford Reservation

  13. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  14. Performance Assessment of Hazardous Air Pollutant (HAP)Free Chemical Paint Strippers on Military Coatings for Validation to Federal Specification TT-R-2918A

    Science.gov (United States)

    2016-03-01

    ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint...the originator. ARL-TN-0742 ● MAR 2016 US Army Research Laboratory Performance Assessment of Hazardous Air Pollutant (HAP...COVERED (From - To) 1–30 April 2014 4. TITLE AND SUBTITLE Performance Assessment of Hazardous Air Pollutant (HAP)–Free Chemical Paint Strippers

  15. Long-term Problems of Land Contaminated by Nonradioactive Hazardous Chemicals: Sources, Impacts, and Countermeasures

    Science.gov (United States)

    1987-01-01

    Chromium deficiency in animals produces symptoms similar to those for diabetes . Deficiencies of chromiu,n have also been associated with heart disease...widespread mercury poisonings from environmental sources. In the early 1960s several instances of methyl mercury poisoning occurred in Iraq, Guatemala , and...carbon dioxide, wpter vapor, and ash; minor effluents include sulfur-, nitrogen-, andPi ’:uy,-n -ccntallnhi( products that may be of signifi..ant en ~ron6

  16. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  17. Allergenicity evaluation of p-chloro-m-cresol and p-chloro-m-xylenol by non-radioactive murine local lymph-node assay and multiple-dose guinea pig maximization test

    International Nuclear Information System (INIS)

    Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu

    2003-01-01

    p-Chloro-m-cresol (PCMC) and p-chloro-m-xylenol (PCMX) are known to cause allergic contact dermatitis. For risk assessment of skin sensitizers, information on dose-response profiles in the induction and elicitation phases and cross-reactivity with analogous chemicals are important. In the non-radioactive local lymph-node assay (LLNA) using 5-bromo-2'-deoxyuridine instead of 3 H-methyl thymidine, significant effect on lymph node cell proliferation was detected at 10% PCMC and 25% PCMX, while in the multiple-dose guinea pig maximization test (GPMT) at least one animal tested in the group was sensitized at a 5 ppm induction dose of either chemical. When mean skin reaction score in an animal group maximally sensitized with each allergen with the GPMT was plotted against log challenge concentration, linear regression lines with high correlations were obtained in both cases. The calculated elicitation threshold was lower for PCMC than PCMX. The area under the linear regression line between the threshold point and 1% of the elicitation concentration, another index of relative elicitation potency, was also greater for PCMC. Bidirectional cross-reactivity between PCMX and PCMC was detected in the GPMT. PCMC was thus identified in both LLNA and GPMT as a stronger sensitizer than PCMX in both the induction and elicitation phases. These results suggest that the non-radioactive LLNA is a simple and useful method for evaluating allergenicity in the induction phase, while the GPMT using a maximally sensitized animal group is more suitable for assessing the dose-response profile and cross-reactivity in the elicitation phase

  18. A nonradioactive assay for poly(a)-specific ribonuclease activity by methylene blue colorimetry.

    Science.gov (United States)

    Cheng, Yuan; Liu, Wei-Feng; Yan, Yong-Bin; Zhou, Hai-Meng

    2006-01-01

    A simple nonradioactive assay, which was based on the specific shift of the absorbance maximum of methylene blue induced by its intercalation into poly(A) molecules, was developed for poly(A)-specific ribonuclease (PARN). A good linear relationship was found between the absorbance at 662 nm and the poly(A) concentration. The assay conditions, including the concentration of methylene blue, the incubation temperature and time, and the poly(A) concentration were evaluated and optimized.

  19. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  20. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  1. A simple method for the verification of clearance levels for non-radioactive solid waste

    International Nuclear Information System (INIS)

    Holland, B.

    1997-01-01

    ANSTO's radiopharmaceutical production laboratories generate 25 m 3 of solid waste per month. Most of this waste is not radioactive. Up until recently the non-radioactive waste was cleared from the controlled area and stored for 10 halflives prior to disposal as normal solid refuse. To eliminate the storage and ''double handling'' of the large quantities of non-radioactive waste a simple clearance method was devised to allow direct disposal. This paper describes how clearance levels were determined. Here the term ''clearance level'' is used as a general term for the release of material regardless of whether it was previously subject to regulatory control. This contrasts with the IAEA definition of a clearance level and highlights a potential problem with the implementation of exemption levels to keep material out of regulatory control and the use of clearance levels to allow removal of materials from regulatory control. Several common hand held contamination monitors were tested to determine their limits of detection and ability to meet these clearance levels. The clearance method includes waste segregation and size limitation features to ensure the waste is monitored in a consistent manner, compatible with the limits of detection. The clearance levels achieved were subsequently found to be compatible with some of the unconditional clearance levels in IAEA-TECDOC-855 and the measurement method also meets the required features of that document. The ANSTO non-radioactive waste clearance system has been in operation for more than 12 months and has proved simple and effective to operate. Approximately 12m 3 of the solid waste is now been treated directly as normal solid refuse. This paper describes the ANSTO clearance system, the contamination monitor tests and details practical problems associated with the direct monitoring of solid waste, including averaging of the activity in the package. The paper also briefly highlights the potential problem with the use of

  2. Nonradioactive Dangerous Waste Landfill sampling and analysis plan and data quality objectives process summary report

    International Nuclear Information System (INIS)

    Smith, R.C.

    1997-08-01

    This sampling and analysis plan defines the sampling and analytical activities and associated procedures that will be used to support the Nonradioactive Dangerous Waste Landfill soil-gas investigation. This SAP consists of three sections: this introduction, the field sampling plan, and the quality assurance project plan. The field sampling plan defines the sampling and analytical methodologies to be performed

  3. Measurements and models for hazardous chemical and mixed wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Holcomb, C.; Louie, B.; Mullins, M.E.; Outcalt, S.L.; Rogers, T.N.; Watts, L.

    1998-01-01

    'Aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the US. A large quantity of the waste generated by the US chemical process industry is waste water. In addition, the majority of the waste inventory at DoE sites previously used for nuclear weapons production is aqueous waste. Large quantities of additional aqueous waste are expected to be generated during the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical property information is paramount. This knowledge will lead to huge savings by aiding in the design and optimization of treatment and disposal processes. The main objectives of this project are: Develop and validate models that accurately predict the phase equilibria and thermodynamic properties of hazardous aqueous systems necessary for the safe handling and successful design of separation and treatment processes for hazardous chemical and mixed wastes. Accurately measure the phase equilibria and thermodynamic properties of a representative system (water + acetone + isopropyl alcohol + sodium nitrate) over the applicable ranges of temperature, pressure, and composition to provide the pure component, binary, ternary, and quaternary experimental data required for model development. As of May, 1998, nine months into the first year of a three year project, the authors have made significant progress in the database development, have begun testing the models, and have been performance testing the apparatus on the pure components.'

  4. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2015-12-01

    Conclusion: Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  5. Final hazard classification for N basin water filtration and sediment relocation operations

    International Nuclear Information System (INIS)

    Pisarcik, D.J.; Kretzschmar, S.P.

    1996-02-01

    This document provides an auditable safety analysis and hazard classification for the filtration of basin water and the relocation of 105-N basin solids to the North Cask Pit within the basin complex. This report assesses the operation of the Water Filtration System and the Remotely Operated Sediment Extraction Equipment (ROSEE). These activities have an activity hazard classification of radiological. Inventories of potentially releasable nonradioactive hazardous materials are far below the reportable quantities of 40 CFR 302. No controls are required to maintain the releasable inventories of these materials below the reportable quantities. Descriptive material is included to provide a general understanding of the water filtration and sediment relocation processes. All equipment will be operated as described in work instructions and/or applicable procedures. Special controls associated with these activities are as follows: (1) A leak inspection of the ROSEE system shall be performed at least once every 5-hour period of sediment relocation operation. (2) A berm must be in place around the North Cask Pit to redirect a potential abovewater ROSEE system leak back to the basin

  6. European alerting and monitoring data as inputs for the risk assessment of microbiological and chemical hazards in spices and herbs

    NARCIS (Netherlands)

    Banach, J.L.; Stratakou, I.; Fels, van der Ine; Besten, den H.M.W.; Zwietering, M.H.

    2016-01-01

    Food chains are susceptible to contaminations from food-borne hazards, including pathogens and chemical contaminants. An assessment of the potential product-hazard combinations can be supported by using multiple data sources. The objective of this study was to identify the main trends of food

  7. Use of a New Method Involving Labelling with Non-Radioactive Elements and Activation Analysis to Investigate Wear

    International Nuclear Information System (INIS)

    Radvan, M.; Reven'ska-Kos'tsjuk, B.; Vez'ranovski, E

    1967-01-01

    In view of the considerable difficulties in using the labelled-atom method to investigate the wear of bearings in agricultural machines under operating conditions, and also to investigate the wear of fire-proof materials in steel production (owing to the occurrence of exogenous non-metallic inclusions), the authors turned their attention to labelling these parts with nonradioactive elements, which were then determined by activation analysis. In the work carried out by this method either mixtures of rare-earth oxides or lanthanum oxide alone were used as tracers, because of their useful nuclear properties. The use of rare-earth elements is also justified by the fact that their chemical properties differ from those of the remaining elements in the material investigated, which means that they can be separated from the respective carriers. In investigations of the wear of agricultural machine bearings made from cast-iron modified with rare-earth elements in an amount too low to cause structural changes, the authors used the modifier as a tracer. The wear of polyamide bearings was also investigated. The use of activation analysis is particularly interesting in this case, since certain properties of the polyamide make standard methods of investigation completely impossible. The products of wear were separated from the oil or grease by extraction or combustion. In determinations of non-metallic exogenous inclusions in ball-bearing steel, caused by certain fireproof materials, the wear of these materials was investigated using modem steel production technology. The aim of these investigations was to determine the effect of vacuum extraction and the use of induction mixers on the passage of fire-resistant particles into the steel. A method of determination was developed based on chemical separation of the tracer after activation with an appropriate surplus of non-radioactive carrier, and also a method of separating it before activation with a calcium carrier. The authors

  8. 化工企业危化品安全管理解析%Analysis on Safety Management of Hazardous Chemicals in Chemical Enterprises

    Institute of Scientific and Technical Information of China (English)

    韩宇

    2016-01-01

    With the development of economy in our country,chemical enterprises in our country are developing rapidly.The dangerous chemicals produced by chemical enterprises have certain function under specific environment.The chemical enterprise must make good safety management measures,To develop clear safety rules and sound rules and regulations to enhance the safety awareness of chemical workers,the use of hazardous chemicals and the use of good norms,enhance the safety of chemical enterprises,hazardous chemicals,and effectively prevent the occurrence of accidents,On the current chemical enterprises in China's chemical safety supervision and management of the existing problems,and in accordance with existing problems to develop a clear safety management measures to enhance the safety of chemical companies.%随着我国经济的不断发展,我国化工企业也在飞速的发展,在化工企业生产的危险化学品在特定的环境下有着特定的作用,化工企业一定要制定良好的安全管理措施,制定明确的安全准则和健全的规章制度,提升工作人员的安全意识,对危险化学品的使用范围和使用过程进行良好的规范,提升化工企业危险化学品的安全性,有效防止安全事故的发生。对现今我国化工企业危险化学品安全管理监督存在的问题进分析,并根据存在的问题制定明确的安全管理措施,以提升化工企业的安全性。

  9. The substitution of hazardous chemicals in the international context - Opportunity for promoting sustainable chemistry

    DEFF Research Database (Denmark)

    Weber, R.; Lissner, L.; Fantke, Peter

    While a wide range of sustainable/green chemicals for various applications is available, often only certain types of hazardous or unsustainably produced chemicals are continued to be used out of different reasons (“lock-in problem”) 1,2. One challenge is that policy makers and industries...... in the alternatives assessment process on international level. The POPs phase out document links also to the web-platform SUBSPORT (www.subsport.eu) which has been developed in the frame of an EU project for safer alternatives to toxic chemicals. In this presentation the Stockholm Convention alternatives assessment...... in particular in developing and transition countries do not know about more sustainable and green alternatives for a chemical in a particular application. Methodologies and tools are, hence, needed for the communication and dissemination of information on more sustainable alternatives. The substitution...

  10. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    International Nuclear Information System (INIS)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment

  11. Ultrastructural localization of human papilloma virus by nonradioactive in situ hybridization on tissue of human cervical intraepithelial neoplasia

    DEFF Research Database (Denmark)

    Multhaupt, H A; Rafferty, P A; Warhol, M J

    1992-01-01

    BACKGROUND: A nonradioactive in situ hybridization was developed to localize human papilloma virus (HPV) at the ultrastructural level. EXPERIMENTAL DESIGN: Cervical biopsies from human uterine cervices clinically suspicious of condyloma were embedded in Lowicryl K4M at low temperature...

  12. A chemical basis for the partitioning of radionuclides in incinerator operation

    International Nuclear Information System (INIS)

    Burger, L.L.

    1995-01-01

    Incineration as a method of treating radioactive or mixed waste is attractive because of volume reduction, but may result in high concentrations of some hazardous components. For safety reasons during operation, and because of the environmental impact of the plant, it is important to know how these materials partition between the furnace slay, the fly ash, and the stack emission. The chemistry of about 50 elements is discussed and through consideration of high temperature thermodynamic equilibria, an attempt is made to provide a basis for predicting how various radionuclides and heavy metals behave in a typical incinerator. The chemistry of the individual elements is first considered and a prediction of the most stable chemical species in the typical incinerator atmosphere is made. The treatment emphasizes volatility and the parameters considered are temperature, acidity, oxygen, sulfur, and halogen content, and the presence of several other key non-radioactive elements. A computer model is used to calculate equilibrium concentrations of many species in several systems at temperatures ranging from 500 to 1600 degrees K. It is suggested that deliberate addition of various feed chemicals can have a major impact on the fate of many radionuclides and heavy metals. Several problems concerning limitations and application of the data are considered

  13. The Problem of Assessment for Radionuclide and Chemical Hazard to People Heredity and Health

    International Nuclear Information System (INIS)

    Suskov, Igor I.; Glouchtchenko, Alexandre I.

    2003-01-01

    In the 21th century the assessment of the hazard to human heredity and health from the radionuclide and chemical environmental pollution becomes of prime social importance since it is related to the problems of utilization of great amounts of radioactive and chemical wastes, spent nuclear fuel, weapon plutonium, nuclear reactors and emergency discharges of isotopes which in total is higher than 1 billion Ci. Long-term cytogenetic monitoring of nuclear and chemical plant workers, local human populations of radioactive waste areas and radionuclide polluted territories has revealed that the level and spectrum of induced chromosome aberrations in blood lymphocytes correlate with the type, dose and duration of exposure. There is very strong evidence that the yield of chromosome aberrations (Y) is related to the dose (D) by the equation: Y=Ao+aD+bD 2 . Therefore the radiation/radionuclide risk (R(D) ) will correspond to a absorbed dose and its aberrational/mutational consequences ('doubling dose' coefficient). Increased levels of chromosome aberrations in the human body very often precede the development of several syndromes: chronic fatigue, secondary immune deficiency, early aging, reproductive dysfunction, oncological diseases and etc. The increased levels of chromosome aberrations in blood lymphocytes can serve as objective bio indicators of radiation and chemical risk to human heredity and health. Thus, monitoring of chromosome and genome aberrations must be of strategical importance in the system of governmental service for minimization of radionuclide and chemical hazard to human heredity and health the necessity of organization of which has already matured. The above mentioned confirms the necessity of founding a European network for ecological-genetic monitoring with 'Internet' translation of information on radionuclide composition and chromosome aberration levels in people, inhabiting polluted areas

  14. Los Alamos Controlled Air Incinerator for hazardous chemical and mixed radioactive wastes

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.; Hutchins, D.A.; Koenig, R.A.; Warner, C.L.

    1986-01-01

    The Los Alamos Controlled Air Incinerator (CAI) is currently the only radioactive waste incineration facility in the US permitted to treat polychlorinated biphenyls (PCBs). The CAI was developed in the mid-1970's as a demonstration system for volume reduction of transuranic (TRU) contaminated combustible solid wastes. It has since undergone additions and modifications to accommodate hazardous chemical wastes in response to a need within the Department of Energy (DOE) to treat mixed radioactive/chemical wastes. An overview of these additions which include a liquid feed system, a high intensity liquid injection burner, and an activated carbon adsorption unit is presented here. Also included is a discussion of the procedures required for Toxic Substances Control Act (TSCA) and Resource Conservation and Recovery Act (RCRA) permitting of the CAI

  15. Notification: FY 2012 Management Challenges and Internal Control Weaknesses for the Chemical Safety and Hazard Investigation Board

    Science.gov (United States)

    February 1, 2012. The EPA Office of Inspector General is beginning work to update our list of areas we consider to be the key management challenges confronting the Chemical Safety and Hazard Investigation Board.

  16. Superfund at work: Hazardous waste cleanup efforts nationwide, spring 1993 (Radium Chemical Site profile, Queens, New York)

    International Nuclear Information System (INIS)

    1993-01-01

    The Radium Chemical hazardous waste site in Queens, New York was contaminated with radium, posing a grave potential threat to the community. The US Environmental Protection Agency (EPA) used the Superfund program to design a long-term cleanup for the site using input from citizens and the business community. Superfund staff: Mobilized a quick cleanup action to remove 10,000 small containers of radium; Developed a streamlined approach to long-term cleanup; Secured the site to reduce the possibility of radiation exposure to the local residents; Cooperated with the community to design a well-organized emergency response plan; and Educated local citizens about site hazards, incorporating community concerns into the cleanup process. The Radium Chemical site is a clear example of EPA's effective management and problem-solving strategies at Superfund sites

  17. Chemical Emergencies

    Science.gov (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  18. 76 FR 25376 - Occupational Exposure to Hazardous Chemicals in Laboratories Standard; Extension of the Office of...

    Science.gov (United States)

    2011-05-04

    ...'') applies to laboratories that use hazardous chemicals in accordance with the Standard's definitions for...-reliability measures; worker information-and-training programs; conditions under which the employer must... validity of the methodology and assumptions used; The quality, utility, and clarity of the information...

  19. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. Brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling

    International Nuclear Information System (INIS)

    Bachmann, Udo; Biederbick, Walter; Derakshani, Nahid

    2010-01-01

    The recommendation for sampling for prevention of hazards in civil defense is describing the analytics of chemical, biological and radioactive contaminations and includes detail information on the sampling, protocol preparation and documentation procedures. The volume includes a separate brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling.

  20. 616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2

    International Nuclear Information System (INIS)

    Busching, K.R.

    1994-01-01

    This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A

  1. Ultrastructural localisation of intramuscular expression of BDNF mRNA by silver-gold intensified non-radioactive in situ hybridisation

    NARCIS (Netherlands)

    Liem, RSB; Brouwer, N; Copray, JCVM

    2001-01-01

    A non-radioactive in situ hybridisation method is described for the detection of low intramuscular levels of brain-derived neurotrophic factor (BDNF) mRNA at the electron microscope level. Application of high-grade silver-gold intensification of the diaminobenzidine end product of in situ

  2. Top five industries resulting in injuries from acute chemical incidents—Hazardous Substance Emergency Events Surveillance, nine states, 1999-2008.

    Science.gov (United States)

    Anderson, Ayana R; Wu, Jennifer

    2015-04-10

    Because industries using and/or producing chemicals are located in close proximity to populated areas, U.S. residents are at risk for unintentional chemical exposures. 1999-2008. The Hazardous Substances Emergency Events Surveillance (HSEES) system was operated by the Agency for Toxic Substances and Disease Registry during January 1991-September 2009 to collect data that would enable researchers to describe the public health consequences of chemical releases and to develop activities aimed at reducing the harm from such releases. This report summarizes data for the top five industries resulting in injuries from an acute chemical incident (lasting truck transportation, educational services, chemical manufacturing, utilities, and food manufacturing) accounted for approximately one third of all incidents in which persons were injured as a result of unintentional release of chemicals; the same five industries were responsible for approximately one third of all persons injured as a result of such releases. Acute chemical incidents in these five industries resulted in serious public health implications including the need for evacuations, morbidity, and mortality. PUBLIC HEALTH IMPLICATIONS: Targeting chemical incident prevention and preparedness activities towards these five industries provides an efficient use of resources for reducing chemical exposures. A variety of methods can be used to minimize chemical releases in industries. One example is the Occupational Safety and Health Administration's hierarchy of controls model, which focuses on controlling exposures to occupational hazards. The hierarchy includes elimination, substitution, engineering controls, administrative controls, and use of personal protective equipment.

  3. Comparison of the rationale used in setting occupational exposure standards for ionizing radiation and hazardous chemical substances

    International Nuclear Information System (INIS)

    Halton, D.M.

    1986-12-01

    Ten chemicals which create significant occupational hazard are reviewed. They are toluene diisocyanate, hydrogen fluoride, n-hexane, carbon disulphide, cadmium, inorganic mercury, cobalt, nitroglycerol, silica and vinyl chloride. Each is discussed under the headings of physiological intake and elimination in humans, characteristics of acute and chronic toxicity, sites of occupational exposure and rationale for limits of such exposure. Since radioactive substances yield ionizing radiation as the common hazard the treatment of the current permissible levels of exposure is somewhat simpler. Having set out industrial standards for exposure to hazardous substances and radionuclides, a detailed comparison is made. Exposure limits to ioninzing radiation are sufficiently low to remove the appearance of directly related injury. It is expected however that low level exposure may have a stochastic effect, that is, there is the possibility of a slightly increased incidence of neoplasms in a large exposed population, but numbers will be too small to be able to attribute any particular case to the exposure. TLVs on the other hand, depending on the particular chemical, may be high enough in the workplace to permit some directly related signs or symptoms in the exposed individual. 244 refs

  4. Genetic k-means clustering approach for mapping human vulnerability to chemical hazards in the industrialized city: a case study of Shanghai, China.

    Science.gov (United States)

    Shi, Weifang; Zeng, Weihua

    2013-06-20

    Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.

  5. Genetic k-Means Clustering Approach for Mapping Human Vulnerability to Chemical Hazards in the Industrialized City: A Case Study of Shanghai, China

    Directory of Open Access Journals (Sweden)

    Weihua Zeng

    2013-06-01

    Full Text Available Reducing human vulnerability to chemical hazards in the industrialized city is a matter of great urgency. Vulnerability mapping is an alternative approach for providing vulnerability-reducing interventions in a region. This study presents a method for mapping human vulnerability to chemical hazards by using clustering analysis for effective vulnerability reduction. Taking the city of Shanghai as the study area, we measure human exposure to chemical hazards by using the proximity model with additionally considering the toxicity of hazardous substances, and capture the sensitivity and coping capacity with corresponding indicators. We perform an improved k-means clustering approach on the basis of genetic algorithm by using a 500 m × 500 m geographical grid as basic spatial unit. The sum of squared errors and silhouette coefficient are combined to measure the quality of clustering and to determine the optimal clustering number. Clustering result reveals a set of six typical human vulnerability patterns that show distinct vulnerability dimension combinations. The vulnerability mapping of the study area reflects cluster-specific vulnerability characteristics and their spatial distribution. Finally, we suggest specific points that can provide new insights in rationally allocating the limited funds for the vulnerability reduction of each cluster.

  6. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The waste characterization for each treatment unit or process is based on treatment records from LLNL's computerized Hazardous Waste Management Inventory System (HWMIS). In 1990, these data were compiled into a single database comprising both hazardous waste and mixed waste data. Even though these data originate from the same source used in the previous HRA, the database was modified to set quantities and concentrations to a consistent set of units. This allowed an analysis of waste types by Hazardous Waste Management unit that was more accurate and did not rely upon many of the conservative assumptions used in the Phase II HRA waste characterization. Finally, the current waste characterizations are considered more representative of potential long-term wastes because they were developed by combining all wastes that could be treated in each unit, as opposed to the wastes treated only during 1988 to 1989. This final step more appropriately accounts for the variability in waste types likely to be seen by the Hazardous Waste Management Division. The quantities of each waste listed in the characterization tables represent the sum of all chemical quantities belonging to hazardous and mixed waste types potentially handled by each area

  7. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  8. Nanostructure Engineered Chemical Sensors for Hazardous Gas and Vapor Detection

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2005-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs) and metal oxides nanowires or nanobelts, on a pair of interdigitated electrodes (IDE) processed with a silicon based microfabrication and micromachining technique. The IDE fingers were fabricated using thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to hazardous gases and vapors, such as acetone, benzene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing in our sensor platform can be understood by electron modulation between the nanostructure engineered device and gas molecules. As a result of the electron modulation, the conductance of nanodevice will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost.

  9. SRS: Site ranking system for hazardous chemical and radioactive waste

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs

  10. Assessment of local wood species used for the manufacture of cookware and the perception of chemical benefits and chemical hazards associated with their use in Kumasi, Ghana

    Directory of Open Access Journals (Sweden)

    Mensah John Kenneth

    2012-12-01

    Full Text Available Abstract Background Historical proven wood species have no reported adverse health effect associated with its past use. Different historical proven species have traditionally been used to manufacture different wooden food contact items. This study uses survey questionnaires to assess suppliers’, manufacturers’, retailers’ and consumers’ (end-users’ preferences for specific wood species, to examine the considerations that inform these preferences and to investigate the extent of awareness of the chemical benefits and chemical hazards associated with wooden food contact material use. Methods Through the combined use of a cross sectional approach and a case study design, 25 suppliers, 25 manufacturers, 25 retailers and 125 consumers (end-users of wooden food contact materials in four suburbs in Kumasi Metropolitan Area (Anloga junction, Ahinsan Bus Stop, Ahwia-Pankrono and Race Course and Ashanti Akyim Agogo in the Ashanti Akyim North District of the Ashanti Region were administered with closed ended questionnaires. The questionnaires were prepared in English, but local language, Twi, was used to translate and communicate the content of the questionnaire where necessary. Results Suppliers’, manufacturers’ and retailers’ preferences for specific wood species for most wooden cookware differed from that of consumers (end-users. But all respondent groups failed to indicate any awareness of chemical benefits or chemical hazards associated with either the choice of specific wood species for specific wooden cookware or with the general use of wooden food contact materials. The lack of appreciation of chemical benefits or hazards associated with active principles of wooden cookware led to heavy reliance of consumers (end-users on the wood density, price, attractive grain pattern and colour or on the judgement of retailers in their choice of specific species for a wooden cookware. Conclusion This study contributes some practical suggestions

  11. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure

    OpenAIRE

    Ng, Carla A.; von Goetz, Natalie

    2016-01-01

    Background: Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and ...

  12. An OSHA based approach to safety analysis for nonradiological hazardous materials

    International Nuclear Information System (INIS)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities

  13. Hazardous substances in Europe's fresh and marine waters

    DEFF Research Database (Denmark)

    Collins, Robert; Brack, Werner; Lützhøft, Hans-Christian Holten

    Chemicals are an essential part of our daily lives. They are used to produce consumer goods, to protect or restore our health and to boost food production, to name but a few examples — and they are also involved in a growing range of environmental technologies. Europe's chemical and associated...... on their pattern of use and the potential for exposure. Certain types of naturally occurring chemicals, such as metals, can also be hazardous. Emissions of hazardous substances to the environment can occur at every stage of their life cycle, from production, processing, manufacturing and use in downstream...... regarding chemical contamination arising from the exploitation of shale gas has grown recently. Hazardous substances in water affect aquatic life… Hazardous substances are emitted to water bodies both directly and indirectly through a range of diffuse and point source pathways. The presence of hazardous...

  14. Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs

    International Nuclear Information System (INIS)

    Hale, S.L.; Alker, K.J.; Kloner, R.A.

    1988-01-01

    Measurement of regional myocardial blood flow (RMBF) is crucial in experimental studies of myocardial ischemia and reperfusion in dogs. The standard measurement technique uses radioactive microspheres; however, not all institutions are able to dispose of radioactive waste and therefore cannot make use of this method. We tested a new, nonradioactive microsphere, labeled with colors instead of nuclides. Simultaneous blood flow measurements with two nuclide-labeled and two colored microspheres were performed after coronary occlusion in dogs. Both techniques show a within-method correlation of r greater than 0.98. Duplicate variability for paired RMBF values in 80 samples was 8.7 +/- 0.1% when computed with radioactive microspheres and 13.2 +/- 1.8% when computed with colored microspheres. There was a good correlation in the measurement of RMBF between the radioactive- and colored-microsphere methods (r = 0.98). The best-fitting linear regression line was expressed by the formula: Colored-microsphere RMBF = 1.11 (radioactive-microsphere RMBF)-0.02. When measured by colored microspheres, RMBF was approximately 8% higher than when computed with radioactive microspheres for blood flow values of 0-2 ml/min/g. When blood flow was increased pharmacologically to levels of 2-7.5 ml/min/g, colored microspheres yielded blood flow values 39% higher than the values computed by radioactive microspheres. We conclude that the nonradioactive, colored-microsphere method correlates with the radioactive technique, but at high flows, it yields values greater than those obtained with radioactive microspheres

  15. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Chatzimouratidis, Athanasios I.; Pilavachi, Petros A.

    2007-01-01

    Non-nuclear power plant emissions are of great concern to the public and to scientists alike. As energy demand tends to rise rapidly, especially in the developing countries, the negative effects to human health and to the environment from gaseous emissions together with hazardous particulate matter released by power plants can no longer be ignored. In this study, the impact of non-radioactive emissions is evaluated with the Analytic Hierarchy Process (AHP) by synthesizing objective and subjective criteria. There are five main emissions to be evaluated, non-methane volatile organic compounds (NMVOC), carbon dioxide equivalent (CO 2 -eq), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ) and particulates or particulate matter (PM). Objective evaluation is achieved by expressing the impact of each emission released in monetary terms following generally accepted market rules, international agreements and protocols. That is, the Euro per kilogram of each emission exceeding a specific limit that should be paid as a penalty for environmental pollution and human health damage. Subjective assessment requires an intuitive expression of the percentage of damage to human health and to the ecosystem that each emission causes. Sensitivity analysis is then used in order to examine how change of input data affects final results. Finally, 10 main types of power plant are evaluated according to the level and kind of emissions they release. These types are coal/lignite, oil, natural gas turbine, natural gas combined cycle (NGCC), nuclear, hydro, wind, photovoltaic, biomass and geothermal

  16. Hazard Communication Standard

    International Nuclear Information System (INIS)

    Sichak, S.

    1991-01-01

    The current rate of technological advances has brought with it an overwhelming increase in the usage of chemicals in the workplace and in the home. Coupled to this increase has been a heightened awareness in the potential for acute and chronic injuries attributable to chemical insults. The Hazard Communication Standard has been introduced with the desired goal of reducing workplace exposures to hazardous substances and thereby achieving a corresponding reduction in adverse health effects. It was created and proclaimed by the US Department of Labor and regulated by the Occupational Safety and Health Administration. 1 tab

  17. [Comprehension of hazard pictograms of chemical products among cleaning workers].

    Science.gov (United States)

    Martí Fernández, Francesc; van der Haar, Rudolf; López López, Juan Carlos; Portell, Mariona; Torner Solé, Anna

    2015-01-01

    To assess the comprehension among cleaning workers of the hazard pictograms as defined by the Globally Harmonized System (GHS) of the United Nations, concerning the classification, labeling and packaging of substances and mixtures. A sample of 118 workers was surveyed on their perception of the GHS hazard pictograms. Comprehensibility was measured by the percentage of correct answers and the degree to which they reflected International Organization for Standardization and American National Standards Institute standards for minimum level of comprehension. The influence of different variables to predict comprehension capacity was assessed using a logistic regression model. Three groups of pictograms could be distinguished which were statistically differentiated by their comprehensibility. Pictograms reflecting "acute toxicity" and "flammable", were described correctly by 94% and 95% of the surveyed population, respectively. For pictograms reflecting "systemic toxicity", "corrosive", "warning", "environment" and "explosive" the frequency of correct answers ranged from 48% to 64%, whereas those for pictograms "oxidizing" and "compressed gas" were interpreted correctly by only 7% of respondents. Prognostic factors for poor comprehension included: not being familiar with the pictograms, not having received training on safe use of chemical products, being an immigrant and being 54 years of age or older. Only two pictograms exceeded minimum standards for comprehension. Training, a tool proven to be effective to improve the correct interpretation of danger symbols, should be encouraged, especially in those groups with greater comprehension difficulties. Copyright belongs to the Societat Catalana de Salut Laboral.

  18. Hazardous factories: Nigerian evidence.

    Science.gov (United States)

    Oloyede, Olajide

    2005-06-01

    The past 15 years have seen an increasing governmental and corporate concern for the environment worldwide. For governments, information about the environmental performance of the industrial sector is required to inform macro-level decisions about environmental targets such as those required to meet UN directives. However, in many African, Asian, and Latin American countries, researching and reporting company environmental performance is limited. This article serves as a contribution to filling the gap by presenting evidence of physical and chemical risk in Nigerian factories. One hundred and three factories with a total of 5,021 workers were studied. One hundred and twenty physical and chemical hazards were identified and the result shows a high number of workers exposed to such hazards. The study also reveals that workers' awareness level of chemical hazards was high. Yet the danger was perceived in behavioral terms, especially by manufacturing firms, which tend to see environmental investment in an increasingly global economy as detrimental to profitability.

  19. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  20. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  1. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  2. Hazard Communication Guidelines for Compliance

    National Research Council Canada - National Science Library

    2000-01-01

    OSHA's Hazard Communication Standard (HCS) is based on a simple concept that employees have both a need and a right to know the hazards and identities of the chemicals they are exposed to when working...

  3. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  4. Skin sensitization potency and cross-reactivity of p-phenylenediamine and its derivatives evaluated by non-radioactive murine local lymph node assay and guinea-pig maximization test.

    Science.gov (United States)

    Yamano, Tetsuo; Shimizu, Mitsuru

    2009-04-01

    p-Phenylenediamine (PPD)-related chemicals have been used as antioxidants in rubber products, and many cases of contact dermatitis caused by these chemicals have been reported. The aim of this study was to investigate relative sensitizing potency and cross-reactivity among PPD derivatives. Five PPD derivatives, p-aminodiphenylamine (PADPA), N,N'-diphenyl-p-phenylenediamine (DPPD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (DMBPPD), N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine (MHPPD), and the core chemical PPD were evaluated for their sensitizing potency and cross-reactivity using the non-radioactive murine local lymph node assay (LLNA) and the guinea-pig maximization test (GPMT). PPD and all the derivatives were identified as primary sensitizers in both tests. The order of potency in the LLNA was as follows: IPPD and PADPA > PPD > DMBPPD and MHPPD > DPPD. In the GPMT, all six groups of animals sensitized with one of these chemicals cross-reacted to four other derivatives. Specifically, the five groups that have a common basic PADPA structure, that is PADPA, DPPD, IPPD, DMBPPD, and MHPPD, all reacted to each other at almost the same scores, while none of them reacted to PPD. The cross-reactivity profile found in the study was to some extent different from that in previous human data, where distinction between cross-reaction and concomitant primary sensitization is not always clear.

  5. ANALYSIS OF SAMPLES FROM TANK 5F CHEMICAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-03-07

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. The conclusions from this work are: (1) With the exception of iron, the dissolution of sludge components from Tank 5F agreed with results from the actual waste demonstration performed in 2007. The fraction of iron removed from Tank 5F by chemical cleaning was significantly less than the fraction removed in the SRNL demonstrations. The likely cause of this difference is the high pH following the first oxalic acid strike. (2) Most of the sludge mass remaining in the tank is iron and nickel. (3) The remaining sludge contains approximately 26 kg of barium, 37 kg of chromium, and 37 kg of mercury. (4) Most of the radioactivity remaining in the residual material is beta emitters and {sup 90}Sr. (5) The chemical cleaning removed more than {approx} 90% of the uranium isotopes and {sup 137}Cs. (6) The chemical cleaning removed {approx} 70% of the neptunium, {approx} 83% of the {sup 90}Sr, and {approx} 21% of the {sup 60}Co. (7) The chemical cleaning removed less than 10% of the plutonium, americium, and curium isotopes. (8) The chemical cleaning removed more than 90% of the aluminium, calcium, and sodium from the tank. (9) The cleaning operations removed 61% of lithium, 88% of non-radioactive strontium, and 65% of zirconium. The {sup 90}Sr and non-radioactive strontium were

  6. Occupational hazards in hospitals: accidents, radiation, exposure to noxious chemicals, drug addiction and psychic problems, and assault

    Energy Technology Data Exchange (ETDEWEB)

    Gestal, J.J.

    1987-08-01

    Except for infectious diseases all the main occupational hazards affecting health workers are reviewed: accidents (explosions, fires, electrical accidents, and other sources of injury); radiation (stochastic and non-stochastic effects, protective measures, and personnel most at risk); exposure to noxious chemicals, whose effects may be either local (allergic eczema) or generalised (cancer, mutations), particular attention being paid to the hazards presented by formol, ethylene oxide, cytostatics, and anaesthetic gases; drug addiction (which is more common among health workers than the general population) and psychic problems associated with promotion, shift work, and emotional stress; and assault (various types of assault suffered by health workers, its causes, and the characterisation of the most aggressive patients).

  7. Occupational hazards in hospitals: accidents, radiation, exposure to noxious chemicals, drug addiction and psychic problems, and assault

    International Nuclear Information System (INIS)

    Gestal, J.J.

    1987-01-01

    Except for infectious diseases all the main occupational hazards affecting health workers are reviewed: accidents (explosions, fires, electrical accidents, and other sources of injury); radiation (stochastic and non-stochastic effects, protective measures, and personnel most at risk); exposure to noxious chemicals, whose effects may be either local (allergic eczema) or generalised (cancer, mutations), particular attention being paid to the hazards presented by formol, ethylene oxide, cytostatics, and anaesthetic gases; drug addiction (which is more common among health workers than the general population) and psychic problems associated with promotion, shift work, and emotional stress; and assault (various types of assault suffered by health workers, its causes, and the characterisation of the most aggressive patients). (author)

  8. Environmental and Medical Sciences Division progress report January - December, 1980

    International Nuclear Information System (INIS)

    Hainge, W.M.

    1982-02-01

    A progress report on the work performed during 1980 by the Environmental and Medical Sciences Division at UKAEA Harwell is given. The programmes considered were atmospheric pollution; landfill research; monitoring of radioactive fallout and other radionuclides and trace elements in the environment; radioactive and non-radioactive aerosol metabolic studies; inhalation toxicology of radioactive aerosols and other hazardous materials; chemical analytical services; and radiation physics in dosimetry research, applied radiation spectrometry and data systems. (U.K.)

  9. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  10. Chemical dependency: an occupational hazard in the field of anaesthesia.

    Science.gov (United States)

    Ismail, Samina

    2010-10-01

    The medical personnel are vulnerable to substance abuse and dependence due to ready access to substance of abuse. Addiction is considered as an occupational hazard for those involved in the practice of anaesthesia for the same reason. Substance abuse is defined as a psychosocial biogenetic disease, which results from dynamic interplay between a susceptible host and favourable environment. According to the 5th and the last National Survey on Drug Abuse (NSDA) in 1993 by Pakistan Narcotic Control, there are nearly three million drug dependants in Pakistan, but no data is available to determine the prevalence among medical or anaesthesia personnel. In order to handle the rising trend of chemical abuse, we need to have more surveys and studies on this subject, written policy and educational programme in postgraduate training with proper control and frequent checking of narcotic dispensing. Reporting of drug abuse and rehabilitation of affected doctors are areas which need to be worked upon.

  11. ''Hazardous'' terminology

    International Nuclear Information System (INIS)

    Powers, J.

    1991-01-01

    A number of terms (e.g., ''hazardous chemicals,'' ''hazardous materials,'' ''hazardous waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that apply, and the regulatory requirements for compliance under the applicable federal statutes. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and references for the precise terminology that should be used when referring to ''hazardous'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-004/0191) addresses ''toxic'' nomenclature

  12. Further experience with the local lymph node assay using standard radioactive and nonradioactive cell count measurements.

    Science.gov (United States)

    Kolle, Susanne N; Basketter, David; Schrage, Arnhild; Gamer, Armin O; van Ravenzwaay, Bennard; Landsiedel, Robert

    2012-08-01

    In a previous study, the predictive capacity of a modified local lymph node assay (LLNA) based on cell counts, the LNCC, was demonstrated to be closely similar to that of the original assay. In addition, a range of substances, including some technical/commercial materials and a range of agrochemical formulations (n = 180) have also been assessed in both methods in parallel. The results in the LNCC and LLNA were generally consistent, with 86% yielding an identical classification outcome. Discordant results were associated with borderline data and were evenly distributed between the two methods. Potency information derived from each method also demonstrated good consistency (n = 101), with 93% of predictions being close. Skin irritation was observed only infrequently and was most commonly associated with positive results; it was not associated with the discordant results. Where different vehicles were used with the same test material, the effect on sensitizing activity was modest, consistent with historical data. Analysis of positive control data indicated that the LNCC and LLNA displayed similar levels of biological variation. When taken in combination with the previously published results on LLNA Performance Standard chemicals, it is concluded that the LNCC provides a viable non-radioactive alternative to the LLNA for the assessment of substances, including potency predictions, as well as for the evaluation of preparations. Copyright © 2012 John Wiley & Sons, Ltd.

  13. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  14. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  15. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  16. Experimental outgassing of toxic chemicals to simulate the characteristics of hazards tainting globally shipped products.

    Directory of Open Access Journals (Sweden)

    Lygia Therese Budnik

    Full Text Available Ambient monitoring analyses may identify potential new public health hazards such as residual levels of fumigants and industrial chemicals off gassing from products and goods shipped globally. We analyzed container air with gas chromatography coupled to mass spectrometry (TD-2D-GC-MS/FPD and assessed whether the concentration of the volatiles benzene and 1,2-dichloroethane exceeded recommended exposure limits (REL. Products were taken from transport containers and analyzed for outgassing of volatiles. Furthermore, experimental outgassing was performed on packaging materials and textiles, to simulate the hazards tainting from globally shipped goods. The mean amounts of benzene in analyzed container air were 698-fold higher, and those of ethylene dichloride were 4.5-fold higher than the corresponding REL. More than 90% of all containers struck with toluene residues higher than its REL. For 1,2-dichloroethane 53% of containers, transporting shoes exceeded the REL. In standardized experimental fumigation of various products, outgassing of 1,2-dichloroethane under controlled laboratory conditions took up to several months. Globally produced transported products tainted with toxic industrial chemicals may contribute to the mixture of volatiles in indoor air as they are likely to emit for a long period. These results need to be taken into account for further evaluation of safety standards applying to workers and consumers.

  17. Hazardous Substances Data Bank (HSDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Comprehensive, peer-reviewed toxicology data for about 5,000 chemicals. The data bank focuses on the toxicology of potentially hazardous chemicals. It is enhanced...

  18. A suggested approach to the selection of chemical and biological protective clothing--meeting industry and emergency response needs for protection against a variety of hazards.

    Science.gov (United States)

    Stull, Jeffrey O

    2004-01-01

    The paper describes the development of a comprehensive decision logic for selection and use of biological and chemical protective clothing (BCPC). The decision logic recognizes the separate areas of BCPC use among emergency, biological, and chemical hazards. The proposed decision logic provides a system for type classifying BCPC in terms of its compliance with existing standards (for emergency applications), the overall clothing integrity, and the material barrier performance. Type classification is offered for garments, gloves, footwear, and eye/face protection devices. On the basis of multiple, but simply designed flowcharts, the type of BCPC appropriate for specific biological and chemical hazards can be selected. The decision logic also provides supplemental considerations for choosing appropriate BCPC features.

  19. Building 6630 hazards assessment document

    International Nuclear Information System (INIS)

    Williams, M.; Banda, Z.

    1996-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 6630. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which one chemical was kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the chemical release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 76 meters. The highest emergency classification is an Alert. The Emergency Planning Zone is a nominal 100 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  20. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2015-05-01

    Full Text Available Allergic contact dermatitis (ACD is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases (OSDs, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay (LLNA is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  1. The response of local residents to a chemical hazard warning: Prediction of behavioral intentions in France, Greece and the Netherlands

    NARCIS (Netherlands)

    Wiegman, O.; Komilis, Egli; Cadet, Bernard; Boer, Hendrik; Gutteling, Jan M.

    1993-01-01

    In this study Greek, French and Dutch residents of a hazardous chemical complex were confronted with a simulated warning scenario for an industrial accident and intended functional and dysfunctional behaviours were measured. Intended functional behaviours were poorly predicted by our model, while

  2. Detection of adenovirus in nasopharyngeal specimens by radioactive and nonradioactive DNA probes

    International Nuclear Information System (INIS)

    Hyypiae, T.

    1985-01-01

    The presence of adenovirus DNA in clinical specimens was analyzed by nucleic acid hybridization assays by both radioactive and enzymatic detection systems. The sensitivity of the hybridization tests was in the range of 10 to 100 pg of homologous adenovirus DNA. Minimal background was noticed with unrelated viral and nonviral DNA. Twenty-four nasopharyngeal mucus aspirate specimens, collected from children with acute respiratory infection, were assayed in the hybridization tests and also by an enzyme immunoassay for adenovirus hexon antigen which was used as a reference test. Sixteen specimens positive by the enzyme immunoassay also were positive in the two nucleic acid hybridization tests, and the remaining eight specimens were negative in all of the tests. The results indicate that nucleid acid hybridization tests with both radioactive and nonradioactive probes can be used for diagnosis of microbial infections

  3. Maintenance and hazardous substances

    NARCIS (Netherlands)

    Kuhl, K.; Terwoert, J.; Cabecas, J.J.M.

    2012-01-01

    Maintenance workers come into close contact with a broad variety of often hazardous chemicals. Depending on the specific type, these chemicals may not only cause diseases like skin sores or cancer, but many of them are highly flammable and explosive. This e-facts focuses on the specific risks

  4. University program in hazardous chemical and radioactive waste management

    International Nuclear Information System (INIS)

    Parker, F.L.

    1987-01-01

    The three main functions of a university program are education, training, and research. At Vanderbilt University, there is a Solid and Hazardous Waste option in the Master of Science in Engineering Program. The two main foci are treatment of wastes and environmental transport and transformation of the wastes. Courses in Hazardous Waste Engineering and Radioactive Waste Disposal present a synoptic view of the field, including legal, economic, and institutional aspects as well as the requisite technical content. The training is accomplished for some of the students through the aegis of an internship program sponsored by the US Department of Energy. In the summer between the two academic years of the program, the study works at a facility where decontamination and/or decommissioning and/or remedial actions are taking place. Progress in understanding the movement, transformation, and fate of hazardous materials in the environment is so rapid that it will not be possible to be current in the field without participating in that discovery. Therefore, their students are studying these processes and contributing to new knowledge. Some recent examples are the study of safety factors implicit in assuming a saturated zone below a hazardous waste landfill when an unsaturated zone exists, application of probabilistic risk assessment to three National Priority List sites in Tennessee, and the explanation of why certain organics precede pH, conductivity and nitrates through a clay liner at a hazardous waste disposal site

  5. Ascorbic acid: Nonradioactive extracellular space marker in canine heart

    International Nuclear Information System (INIS)

    Reil, G.H.; Frombach, R.; Kownatzki, R.; Quante, W.; Lichtlen, P.R.

    1987-01-01

    The distribution pattern of ascorbic acid and L-[ 14 C]ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers [ 3 H]-inulin, [ 3 H]sucrose, and Na 82 Br. A new polarographic techniques was developed for analogue registration of ascorbic acid concentration in coronary venous blood. The kinetic data of the markers were studied in an open-chest canine heart preparation during a constant tracer infusion of up to 9 min. Distribution volumes were calculated based on the mean transit time method of Zierler. The distribution volume of ascorbic acid as well as of L-[ 14 C]ascorbic acid in myocardial tissue agreed closely with those of [ 3 H]inulin and [ 3 H]sucrose as well as 82 Br. The obtained kinetic data confirmed that ascorbic acid exhibits the physicochemical properties of an extracellular space marker, though this compound was shown to leak slowly into myocardial cells. Favorable attributes of this indicator are its low molecular weight, high diffusibility in interstitial fluid, low binding affinity to macromolecules, and high transcapillary as well as low transplasmalemmal penetration rate. Therefore, this nonradioactive marker can be applied in a safe and simple fashion, and without untoward side effects in experimental animals as well as in patients

  6. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  7. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  8. Evaluation of In Vitro Biotransformation Using HepaRG Cells to Improve High-Throughput Chemical Hazard Prediction: A Toxicogenomics Analysis (SOT)

    Science.gov (United States)

    The US EPA’s ToxCast program has generated a wealth of data in >600 in vitro assayson a library of 1060 environmentally relevant chemicals and failed pharmaceuticals to facilitate hazard identification. An inherent criticism of many in vitro-based strategies is the inability of a...

  9. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  10. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    International Nuclear Information System (INIS)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  11. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    International Nuclear Information System (INIS)

    Bilbao, Jose I.; Martino, Alba de; Luis, Esther de; Diaz-Dorronsoro, Lourdes; Alonso-Burgos, Alberto; Martinez de la Cuesta, Antonio; Sangro, Bruno; Garcia de Jalon, Jose A.

    2009-01-01

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 μm in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and

  12. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    International Nuclear Information System (INIS)

    Fischer, L.; Deppert, W.R.; Pfeifer, D.; Stanzel, S.; Weimer, M.; Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P.; Schaefer, W.R.

    2012-01-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  13. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  14. 40 CFR 68.50 - Hazard review.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or operator shall conduct a review of the hazards associated with the regulated substances, process, and...

  15. The Chemistry Scoring Index (CSI: A Hazard-Based Scoring and Ranking Tool for Chemicals and Products Used in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Tim Verslycke

    2014-06-01

    Full Text Available A large portfolio of chemicals and products is needed to meet the wide range of performance requirements of the oil and gas industry. The oil and gas industry is under increased scrutiny from regulators, environmental groups, the public, and other stakeholders for use of their chemicals. In response, industry is increasingly incorporating “greener” products and practices but is struggling to define and quantify what exactly constitutes “green” in the absence of a universally accepted definition. We recently developed the Chemistry Scoring Index (CSI which is ultimately intended to be a globally implementable tool that comprehensively scores and ranks hazards to human health, safety, and the environment for products used in oil and gas operations. CSI scores are assigned to products designed for the same use (e.g., surfactants, catalysts on the basis of product composition as well as intrinsic hazard properties and data availability for each product component. As such, products with a lower CSI score within a product use group are considered to have a lower intrinsic hazard compared to other products within the same use group. The CSI provides a powerful tool to evaluate relative product hazards; to review and assess product portfolios; and to aid in the formulation of products.

  16. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    International Nuclear Information System (INIS)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability

  17. Dose and risk assessment for intrusion into mixed waste disposal sites

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Aaberg, R.L.

    1991-10-01

    Sites previously used for disposal of radioactive and hazardous chemical materials have resulted in situations that pose a potential threat to humans from inadvertent intrusion. An example generic scenario analysis was developed to demonstrate the evaluation of potential exposure to either cleanup workers or members of the public who intrude into buried waste containing both radioactive and hazardous chemical contaminants. The example scenarios consist of a collection of exposure routes (or pathways) with specific modeling assumptions for well-drilling and for excavation to construct buildings. These scenarios are used to describe conceptually some potential patterns of activity by non-protected human beings during intrusion into mixed-waste disposal sites. The dose from exposure to radioactive materials is calculated using the GENII software system and converted to risk by using factors from ICRP Publication 60. The hazard assessment for nonradioactive materials is performed using recent guidelines from the US Environmental Protection Agency (EPA). The example results are in the form of cancer risk for carcinogens and radiation exposure

  18. Knowledge acquisition on hazards in chemical and process industry

    International Nuclear Information System (INIS)

    Vojnovic, D.; Kozuh, M.

    1992-01-01

    The knowledge acquisition for probabilistic risk assessment and operational safety improvements are described. The procedure HazOp (Hazard and Operability Study) are used for hazard identification. The acquainted knowledge is condensed in the form of cause-consequence matrix which is very convenient for plant logic model start point definition. At the end, the possibility for HazOp performance support by use of Artificial Intelligence approach is considered. (author) [sl

  19. New York hazardous substances emergency events surveillance: learning from hazardous substances releases to improve safety

    International Nuclear Information System (INIS)

    Welles, Wanda Lizak; Wilburn, Rebecca E.; Ehrlich, Jenny K.; Floridia, Christina M.

    2004-01-01

    Since 1993, the New York State Department of Health, funded by the Agency for Toxic Substances and Disease Registry, has collected data about non-petroleum hazardous substances releases through the Hazardous Substances Emergency Events Surveillance (NYHSEES) project. This study investigates risk factors for hazardous substances releases that may result in public health consequences such as injury or reported health effects. The 6428 qualifying events that occurred during the 10-year-period of 1993-2002 involved 8838 hazardous substances, 842 evacuations, more than 75,419 people evacuated, and more than 3120 people decontaminated. These events occurred both at fixed facilities (79%) and during transport (21%). The causative factors most frequently contributing to reported events were equipment failure (39%) and human error (33%). Five of the 10 chemicals most frequently associated with injuries were also among the 10 chemicals most frequently involved in reported events: sulfuric acid, hydrochloric acid, ammonia, sodium hypochlorite, and carbon monoxide. The chemical categories most frequently associated with events, and with events with adverse health effects were volatile organic compounds (VOCs) and solvents, and acids. Events with releases of hazardous substances were associated with injuries to 3089 people including employees (37%), responders (12%), the general public (29%) and students (22%). The most frequently reported adverse health effects were respiratory irritation, headache, and nausea or vomiting. Most of the injured were transported to the hospital, treated, and released (55%) or treated at the scene (29%). These data have been used for emergency response training, planning, and prevention activities to reduce morbidity and mortality from future events

  20. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel

  1. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  2. Tier II Chemical Storage Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities that store hazardous chemicals above certain quantities must submit an annual emergency and hazardous chemical inventory on a Tier II form. This is a...

  3. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    International Nuclear Information System (INIS)

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste

  4. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  5. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  6. Investigation of Evaluation method of chemical runaway reaction

    International Nuclear Information System (INIS)

    Sato, Yoshihiko; Sasaya, Shinji; Kurakata, Koichiro; Nojiri, Ichiro

    2002-02-01

    Safety study 'Study of evaluation of abnormal occurrence for chemical substances in the nuclear fuel facilities' will be carried out from 2001 to 2005. In this study, the prediction of thermal hazards of chemical substances will be investigated and prepared. The hazard prediction method of chemical substances will be constructed from these results. Therefore, the hazard prediction methods applied in the chemical engineering in which the chemical substances with the hazard of fire and explosion were often treated were investigated. CHETAH (The ASTM Computer Program for Chemical Thermodynamic and Energy Release Evaluation) developed by ASTM (American Society for Testing and Materials) and TSS (Thermal Safety Software) developed by CISP (ChemInform St. Petersburg) were introduced and the fire and explosion hazards of chemical substances and reactions in the reprocessing process were evaluated. From these evaluated results, CHETAH could almost estimate the heat of reaction at 10% accuracy. It was supposed that CHETAH was useful as a screening for the hazards of fire and explosion of the new chemical substances and so on. TSS could calculate the reaction rate and the reaction behavior from the data measured by the various calorimeters rapidly. It was supposed that TSS was useful as an evaluation method for the hazards of fire and explosion of the new chemical reactions and so on. (author)

  7. Assessment of the hazard to the public from anti-static brushes containing polonium-210 in the form of ceramic microspheres

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Wilkins, B.T.; Wrixon, A.D.

    1975-04-01

    Anti-static brushes containing polonium-210 in the form of ceramic microspheres have been tested and evaluated with regard to their availability to the general public. After summarising existing test information, results are given of routine leakage tests and special tests intended to simulate severe but credible abuse and accidents with these devices. It is found that the low levels of removable contamination and the possible loss of complete microspheres, although in principle undesirable, do not present a significant hazard. The containment integrity of ceramic microspheres under severe conditions (impact and fire) has been found unsatisfactory and it is considered possible that ICRP dose limits could be approached or even exceeded under these severe but credible abuse, accident or disposal conditions. The results of comparative tests with nonradioactive methods for static elimination did not demonstrate any adequate justification for the use of a radioactive material. The potential exposure from Staticmaster Brushes is therefore considered an unnecessary hazard to members of the public. (author)

  8. Estimation of the acute inhalation hazards of chemicals based on route-to-route and local endpoint extrapolation: Experience from Bulk Maritime Transport

    NARCIS (Netherlands)

    Höfer, T.; James, D.; Syversen, T.; Bowmer, T.

    2011-01-01

    Data on acute lethal inhalation toxicity from animal studies are commonly required for assessing the hazards to human health of volatile, gaseous and dusty chemicals or their mixtures. The International Maritime Organisation (IMO) made the provision of acute inhalation toxicity data a mandatory

  9. Notification: FY 2017 Update of Proposed Key Management Challenges and Internal Control Weaknesses Confronting the U.S. Chemical Safety and Hazard Investigation Board

    Science.gov (United States)

    Jan 5, 2017. The EPA OIG is beginning work to update for fiscal year 2017 its list of proposed key management challenges and internal control weaknesses confronting the U.S. Chemical Safety and Hazard Investigation Board (CSB).

  10. Facility effluent monitoring plan for the 324 Facility

    International Nuclear Information System (INIS)

    1994-11-01

    The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements

  11. More About Hazard-Response Robot For Combustible Atmospheres

    Science.gov (United States)

    Stone, Henry W.; Ohm, Timothy R.

    1995-01-01

    Report presents additional information about design and capabilities of mobile hazard-response robot called "Hazbot III." Designed to operate safely in combustible and/or toxic atmosphere. Includes cameras and chemical sensors helping human technicians determine location and nature of hazard so human emergency team can decide how to eliminate hazard without approaching themselves.

  12. Assessing potential health hazards from radiation generated at the tailings management facilities of the Prydniprovsky chemical plant

    International Nuclear Information System (INIS)

    Kovalenko, G.; Durasova, N.

    2015-01-01

    The study has involved the assessment of the tailings management facilities operated at the Prydniprovsky Chemical Plant. The authors have estimated individual and collective exposure doses that may be caused by the emissions of radon, radon decay products and radioactive dust, for each human settlement located within the area of impact of the tailings management facilities. These tailings management facilities have been ranked to describe their relative hazard based on their estimated contribution to the collective exposure dose levels and associated risks

  13. Legacy material work-off project

    International Nuclear Information System (INIS)

    Sloan, T.J.; Baker, D.H. IV

    1999-01-01

    Los Alamos National Laboratory (LANL) and its subcontractors recently completed a nine-month legacy material clean-up effort. Legacy materials were defined as chemicals, hazardous, non-hazardous, and both hazardous and radioactive (mixed), that no longer served a programmatic use and had no identified individual owner within the Laboratory. Once personnel identified the legacy materials, the items were transferred to Solid Waste Operation's (EM-SWO) control. Upon completing this process, the responsible division-level manager was required to certify that all non-radioactive hazardous and non-hazardous materials and acceptable mixed legacy materials had been identified and transferred to EM-SWO for proper handling or disposal. The major expense in this project was the cost of actual chemical and radiological analysis. This expense was the result of items not having an identified individual owner. The major benefit of this project is that LANL is now in an excellent position to implement its Integrated Safety Management (ISM) Plan, which requires the implementation of safe work practices, including requirements for removing unused items when vacating workspaces. Effective implementation of ISM will go a long way toward ensuring that legacy materials are no longer an issue at the Laboratory

  14. Experience with local lymph node assay performance standards using standard radioactivity and nonradioactive cell count measurements.

    Science.gov (United States)

    Basketter, David; Kolle, Susanne N; Schrage, Arnhild; Honarvar, Naveed; Gamer, Armin O; van Ravenzwaay, Bennard; Landsiedel, Robert

    2012-08-01

    The local lymph node assay (LLNA) is the preferred test for identification of skin-sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. To facilitate acceptance of nonradioactive variants, validation authorities have published harmonized minimum performance standards (PS) that the alternative endpoint assay must meet. In the present work, these standards were applied to a variant of the LLNA based on lymph node cell counts (LNCC) run in parallel as a control with the standard LLNA with radioactivity measurements, with threshold concentrations (EC3) being determined for the sensitizers. Of the 22 PS chemicals tested in this study, 21 yielded the same results from standard radioactivity and cell count measurements; only 2-mercaptobenzothiazole was positive by LLNA but negative by LNCC. Of the 16 PS positives, 15 were positive by LLNA and 14 by LNCC; methylmethacrylate was not identified as sensitizer by either of the measurements. Two of the six PS negatives tested negative in our study by both LLNA and LNCC. Of the four PS negatives which were positive in our study, chlorobenzene and methyl salicylate were tested at higher concentrations than the published PS, whereas the corresponding concentrations resulted in consistent negative results. Methylmethacrylate and nickel chloride tested positive within the concentration range used for the published PS. The results indicate cell counts and radioactive measurements are in good accordance within the same LLNA using the 22 PS test substances. Comparisons with the published PS results may, however, require balanced analysis rather than a simple checklist approach. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Occupational health hazards in mining: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, A.M. [Alcoa World Alumina Australia, Perth, WA (Australia)

    2004-08-01

    This review article outlines the physical, chemical, biological, ergonomic and psychosocial occupational health hazards of mining and associated metallurgical processes. Mining remains an important industrial sector in many parts of the world and although substantial progress has been made in the control of occupational health hazards, there remains room for further risk reduction. This applies particularly to traumatic injury hazards, ergonomic hazards and noise. Vigilance is also required to ensure exposures to coal dust and crystalline silica remain effectively controlled.

  16. Building 894 hazards assessment document

    International Nuclear Information System (INIS)

    Banda, Z.; Williams, M.

    1996-07-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 894. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which 9 chemicals were kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 130 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal 130 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  17. Chemical health risk assessment for hazardous and mixed waste management units at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-09-01

    The Lawrence Livermore National Laboratory (LLNL) operates three Hazardous Waste Management Facilities with 24 associated waste management units for the treatment and storage of hazardous and mixed wastes. These wastes are generated by research programs and support operations. The storage and treatment units are presently operated under interim status in accordance with the requirements of the US Envirorunental Protection Agency (US EPA) and the Department of Toxic Substances Control (DTSC), a division of the California Envirorunental Protection Agency (Cal/EPA). As required by the California Hazardous Waste Control Act and the Resource Conservation and Recovery Act (RCRA), LLNL ha s applied for a Part B permit to continue operating the storage and waste treatment facilities. As part of this permitting process, LLNL is required to conduct a health risk assessment (HRA) to examine the potential health impacts to the surrounding community from continued storage and treatment of hazardous and mixed wastes. analysis document presents the results of this risk assessment. An analysis of maximum credible chemical accidents is also included in Section 7.0. This HRA was prepared in accordance with procedures set forth by the California Air Pollution Control Officers Association (CAPCOA) ''Air Toxics Assessment Manual,'' CAPCOA guidelines for preparing risk assessments under the Air Toxic ''Hot Spots'' Act (AB 2588) and requirements of the US EPA. By following these procedures, this risk assessment presents a conservative analysis of a hypothetical Maximally Exposed Individual (MEI) using many worst-case assumptions that will not apply to an actual individual. As such, the risk estimates presented should be regarded as a worst-case estimate of any actual risk that may be present

  18. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond

  19. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  20. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  1. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    Science.gov (United States)

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  2. Risk assessment and ranking methodologies for hazardous chemical defense waste: a state-of-the-art review and evaluation. Task 1 report

    International Nuclear Information System (INIS)

    Chu, M.S.Y.; Rodricks, J.V.; St Hilaire, C.; Bras, R.L.

    1986-06-01

    This report summarizes the work performed under Task 1 of the Risk Assessment Evaluation Task under the Hazardous Chemical Defense Waste Management Program of the Department of Energy (DOE). The objective of Task 1 was to identify, review, and evaluate the state-of-the-art tools and techniques available for ranking and evaluating disposal facilities. These tools were evaluated for their applicability to DOE's mixed hazardous chemical and radioactive waste sites. Various ranking methodologies were reviewed and three were evaluated in detail. Areas that were found to be deficient in each ranking methodology were presented in the report. Recommendations were given for the development of an improved ranking methodology for use on DOE's sites. A literature review was then performed on the various components of a risk assessment methodology. They include source term evaluation, geosphere transport models, exposure pathways models, dose effects models, and sensitivity/uncertainty techniques. A number of recommendations have been made in the report based on the review and evaluation for the development of a comprehensive risk assessment methodology in evaluating mixed waste disposal sites

  3. Physical and toxic properties of hazardous chemicals regularly stored and transported in the vicinity of nuclear installations

    International Nuclear Information System (INIS)

    1976-03-01

    This report gives a compilation of data based on information assembled by the US Nuclear Regulatory Commission and completed by the Safety and Reliability Directorate of the UK AEA, the Dutch Reactor Safety Commission, the French Atomic Energy Commission, and the CSNI Secretariat. Data sheets for a large number of hazardous chemicals are presented (from acetaldehyde to xylene), giving details of their physical and toxic properties such as: molecular weight, boiling point, vapor density, heat of vaporization, toxic concentration in air, flammability limits, toxic effects, vapor pressure data, etc.

  4. Numerical Simulations as Tool to Predict Chemical and Radiological Hazardous Diffusion in Case of Nonconventional Events

    Directory of Open Access Journals (Sweden)

    J.-F. Ciparisse

    2016-01-01

    Full Text Available CFD (Computational Fluid Dynamics simulations are widely used nowadays to predict the behaviour of fluids in pure research and in industrial applications. This approach makes it possible to get quantitatively meaningful results, often in good agreement with the experimental ones. The aim of this paper is to show how CFD calculations can help to understand the time evolution of two possible CBRNe (Chemical-Biological-Radiological-Nuclear-explosive events: (1 hazardous dust mobilization due to the interaction between a jet of air and a metallic powder in case of a LOVA (Loss Of Vacuum Accidents that is one of the possible accidents that can occur in experimental nuclear fusion plants; (2 toxic gas release in atmosphere. The scenario analysed in the paper has consequences similar to those expected in case of a release of dangerous substances (chemical or radioactive in enclosed or open environment during nonconventional events (like accidents or man-made or natural disasters.

  5. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is 'What can we use as replacements for hazardous solvents?'You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product's constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace

  6. 1998 Tier two emergency and hazardous chemical inventory - emergency planning and community right-to-know act section 312

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    1999-01-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S, Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington

  7. Systems approach to chemical spill response information needs

    Energy Technology Data Exchange (ETDEWEB)

    Parnarouskis, M.C.; Flessner, M.F.; Potts, R.G.

    1980-01-01

    The Chemical Hazards Response Information System (CHRIS) has been specifically designed to meet the emergency needs of US Coast Guard field personnel, currently providing them with information on 900 hazardous chemicals, with methods of predicting hazards resulting from accidental discharges, and with procedures for selecting and implementing response to accident discharges. The major components of CHRIS and the computerized hazard assessment models within the Hazard Assessment Computer System are described in detail.

  8. Evaluation of non-radioactive endpoints of ex vivo local lymph node assay-BrdU to investigate select contact sensitizers.

    Science.gov (United States)

    Ulker, Ozge Cemiloglu; Ates, Ilker; Atak, Aysegul; Karakaya, Asuman

    2013-01-01

    The present study sought to verify the utility of the non-radioactive endpoints LLNA BrdU (5-bromo-2'-deoxyuridine) ex vivo incorporation and cytokine release using auricular lymph node cells isolated from BALB/c mice topically treated with a strong (formaldehyde or p-phenylene-diamine [PPD]), moderate sensitizer (cinnamal), or weak sensitizer (eugenol). Stimulation index (SI) and EC₃ values were calculated for each agent. Based on the results of ex vivo LLNA-BrdU assays, EC₃ values were calculated to be 0.29, 0.09, 1.91, and 16.60% for formaldehyde, PPD, cinnamal, and eugenol, respectively. These results were in good agreement with data from previous standard radioactive LLNA. Cytokine analyses indicated T(H)1 and T(H)2 cytokine involvement in the regulation of murine contact allergy and these could be utilized as endpoints in assessments of contact allergy in mice. In conclusion, the current study provided evidence that the non-radioactive endpoint LLNA BrdU ex vivo incorporation could be of use as a viable alternative approach to assess the skin sensitization potential of test compound with respect to improving animal welfare. This is of particular importance in the case of any laboratory where it might be difficult to handle and/or readily employ radioisotopes. Further studies will be required to confirm--across test agents--the reproducibility as well as the limits of utility of this new ex vivo BrdU method.

  9. Exposure assessment of chemical hazards in pork meat, liver, and kidney, and health impact implication in Hung Yen and Nghe An provinces, Vietnam.

    Science.gov (United States)

    Tuyet-Hanh, Tran Thi; Sinh, Dang Xuan; Phuc, Pham Duc; Ngan, Tran Thi; Van Tuat, Chu; Grace, Delia; Unger, Fred; Nguyen-Viet, Hung

    2017-02-01

    This study assesses the risk of exposure to hazardous chemical residues in pork meat, liver, and kidney collected at wet markets in Nghe An and Hung Yen provinces and discusses health impact implication. 514 pig feed, kidney, liver, and pork samples were pooled and qualitatively and quantitatively analyzed for tetracyclines, fluoroquinolones, sulphonamide, chloramphenicol, β-agonists, and heavy metals. We compare the results with current regulations on chemical residues and discuss health implications. Legal antibiotics were found in feed. Tetracycline and fluoroquinolones were not present in pork, but 11% samples were positive with sulfamethazine above maximum residue limits (MRL); 11% of packaged feed and 4% of pork pooled samples were positive for chloramphenicol, a banned substance; two feed, two liver, and one pork samples were positive for β-agonists but did not exceed current MRL; 28% of pooled samples had lead, but all were below MRL; and all samples were negative for cadmium and arsenic. Thus, the health risks due to chemical hazards in pork in Hung Yen and Nghe An seemed not as serious as what were recently communicated to the public on the mass media. There is potential exposure to sulphonamide, chloramphenicol, and β-agonists from pork. Risk communication needs to focus on banned chemicals, while informing the public about the minimal risks associated with heavy metals.

  10. Hazard and operability study of Heavy Water Plant, Manuguru

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S K; Khilnaney, V K [Heavy Water Board, Department of Atomic Energy, Mumbai (India)

    1994-06-01

    The chemical process industry faces the tough challenge of achieving design productivity while maintaining high standards of safety. This task is particularly difficult than handling hazardous chemicals. Hazard and operability study (HazOp) is a technique which involves systematic and thorough study by a multidisciplinary team. This technique provides a means to analyse the design and modes of operations of a plant systematically so as to identify the potential occurrence of hazardous events and operational problems. HazOp is based on the premise that a hazard is not realised if the process is operated within its design intent. This paper gives an overall view of the HazOp study carried out at Heavy Water Plant, Manuguru. Some selected recommendations from this study are highlighted. (author). 2 refs., 5 figs.

  11. Sampling and characterization of mixed wastes at the U.S. Department of Energy Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Stakebake, J.L.

    1995-01-01

    The Rocky Flats Environmental Technology Site is a government-owned, contractor-operated facility that is part of the US Department of Energy (DOE) complex. This plant was originally designed and built as a manufacturing facility for the production of nuclear weapons components. Currently, efforts are focused on the treatment and disposal of residues and wastes that were products of these production activities. Federal regulations prohibit the land disposal of untreated radioactive hazardous waste in the same manner as non-radioactive or non-hazardous wastes. A strategy has been developed for achieving compliance with Federal regulations through a process of characterization and treatment. This paper describes the strategy and the methodology used for characterizing radioactive and chemically hazardous wastes. Characterization of four waste forms (fluid-bed incinerator ash, uranium oxide, solidified sludge, and combustibles) is discussed and the results available are presented

  12. Sea-dumped chemical weapons: environmental risk, occupational hazard.

    Science.gov (United States)

    Greenberg, M I; Sexton, K J; Vearrier, D

    2016-01-01

    Chemical weapons dumped into the ocean for disposal in the twentieth century pose a continuing environmental and human health risk. In this review we discuss locations, quantity, and types of sea-dumped chemical weapons, related environmental concerns, and human encounters with sea-dumped chemical weapons. We utilized the Ovid (http://ovidsp.tx.ovid.com) and PubMed (http://www.pubmed.org) search engines to perform MEDLINE searches for the terms 'sea-dumped chemical weapons', 'chemical warfare agents', and 'chemical munitions'. The searches returned 5863 articles. Irrelevant and non-English articles were excluded. A review of the references for these articles yielded additional relevant sources, with a total of 64 peer-reviewed articles cited in this paper. History and geography of chemical weapons dumping at sea: Hundreds of thousands of tons of chemical munitions were disposed off at sea following World War II. European, Russian, Japanese, and United States coasts are the areas most affected worldwide. Several areas in the Baltic and North Seas suffered concentrated large levels of dumping, and these appear to be the world's most studied chemical warfare agent marine dumping areas. Chemical warfare agents: Sulfur mustard, Lewisite, and the nerve agents appear to be the chemical warfare agents most frequently disposed off at sea. Multiple other type of agents including organoarsenicals, blood agents, choking agents, and lacrimators were dumped at sea, although in lesser volumes. Environmental concerns: Numerous geohydrologic variables contribute to the rate of release of chemical agents from their original casings, leading to difficult and inexact modeling of risk of release into seawater. Sulfur mustard and the organoarsenicals are the most environmentally persistent dumped chemical agents. Sulfur mustard in particular has a propensity to form a solid or semi-solid lump with a polymer coating of breakdown products, and can persist in this state on the ocean floor

  13. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  14. The Neutron Personal Dosimetry Service of the Centre for Radiation, Chemical and Environmental Hazards, PHE-UK

    International Nuclear Information System (INIS)

    Campo Blanco, X.

    2015-01-01

    The Centre for Radiation, Chemical and Environmental Hazards (CRCEH), that belongs to Public Health England (PHE), hosts the official Neutron Personal Dosimetry Service of the United Kingdom. They use etched-track detectors, made of a material called PADC (poly-allyl diglycol carbonate), to determinate de neutron personal dose. A two weeks visit has been made to this center, in order to learn about the facilities, the methods employed and the legislative framework of the Neutron Personal Dosimetry Service. In this work the main results of this visits are shown, which are interesting for the future development of an official neutron personal dosimetry service in Spain.

  15. Ultra-violet radiation - hazard in workplaces? (part I)

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2003-01-01

    Not many workers are aware that apart from chemicals, physical agents, noise and machines which are known to be hazardous in workplaces, there exist another source of hazard which is equally important to be recognised and respected, that is hazard due to ultrviolet radiation (UV). This article presents some basics information on UV hazard and various protective measures that could be taken so that any workplace where UV source are present can be ensured safe for general public to enter and for workers to work in. (Author)

  16. Runaway chemical reaction exposes community to highly toxic chemicals

    International Nuclear Information System (INIS)

    Kaszniak, Mark; Vorderbrueggen, John

    2008-01-01

    The U.S. Chemical Safety and Hazard Investigation Board (CSB) conducted a comprehensive investigation of a runaway chemical reaction at MFG Chemical (MFG) in Dalton, Georgia on April 12, 2004 that resulted in the uncontrolled release of a large quantity of highly toxic and flammable allyl alcohol and allyl chloride into the community. Five people were hospitalized and 154 people required decontamination and treatment for exposure to the chemicals. This included police officers attempting to evacuate the community and ambulance personnel who responded to 911 calls from residents exposed to the chemicals. This paper presents the findings of the CSB report (U.S. Chemical Safety and Hazard Investigation Board (CSB), Investigation Report: Toxic Chemical Vapor Cloud Release, Report No. 2004-09-I-GA, Washington DC, April 2006) including a discussion on tolling practices; scale-up of batch reaction processes; Process Safety Management (PSM) and Risk Management Plan (RMP) implementation; emergency planning by the company, county and the city; and emergency response and mitigation actions taken during the incident. The reactive chemical testing and atmospheric dispersion modeling conducted by CSB after the incident and recommendations adopted by the Board are also discussed

  17. Chemical Hygiene and Safety Plan

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  18. Introduction to the Chemical Management System

    International Nuclear Information System (INIS)

    Sawyer, J.G.

    1993-01-01

    The CMS, a Laboratory-wide electronic chemical inventory tracking system, will assist PNL by establishing comprehensive, integrated, Laboratory-wide databases supported by consistent and standardized procedures for chemical inventory management. It will provide PNL with the information needed to meet its current chemical management responsibilities and regulatory requirements. Its objectives are to provide an inventory of all chemicals being held at PNL facilities, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNL staff and managers with hazardous-chemical information for better inventory management. It is composed of 5 modules: chemical purchasing; chemical inventory; chemical names, properties, and hazardous groups; reporting; and system manager

  19. Hazard Management Dealt by Safety Professionals in Colleges: The Impact of Individual Factors

    Directory of Open Access Journals (Sweden)

    Tsung-Chih Wu

    2016-12-01

    Full Text Available Identifying, evaluating, and controlling workplace hazards are important functions of safety professionals (SPs. The purpose of this study was to investigate the content and frequency of hazard management dealt by safety professionals in colleges. The authors also explored the effects of organizational factors/individual factors on SPs’ perception of frequency of hazard management. The researchers conducted survey research to achieve the objective of this study. The researchers mailed questionnaires to 200 SPs in colleges after simple random sampling, then received a total of 144 valid responses (response rate = 72%. Exploratory factor analysis indicated that the hazard management scale (HMS extracted five factors, including physical hazards, biological hazards, social and psychological hazards, ergonomic hazards, and chemical hazards. Moreover, the top 10 hazards that the survey results identified that safety professionals were most likely to deal with (in order of most to least frequent were: organic solvents, illumination, other chemicals, machinery and equipment, fire and explosion, electricity, noise, specific chemicals, human error, and lifting/carrying. Finally, the results of one-way multivariate analysis of variance (MANOVA indicated there were four individual factors that impacted the perceived frequency of hazard management which were of statistical and practical significance: job tenure in the college of employment, type of certification, gender, and overall job tenure. SPs within colleges and industries can now discuss plans revolving around these five areas instead of having to deal with all of the separate hazards.

  20. 75 FR 44920 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2010-07-30

    ... State Registry of Inactive Hazardous Waste Disposal Sites as a ``Class 2 Inactive Hazardous Waste Site..., Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Natural resources, Oil... and Hazardous Substances Pollution Contingency Plan; National Priorities List: Deletion of the SMS...

  1. Ultra-violet radiation: hazard in workplaces? (part II)

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2003-01-01

    Not many workers are aware that apart from chemicals, physical agents, noise and machines which are known to be hazardous in workplaces, there exist another source of hazard which is equally important to be recognised and respected, that is hazard due to ultrviolet radiation (UV). This is the continuation of part I, which was discussed in the later issue. In this part, hazard of ultraviolet radiation were briefly discused i.e. effects on the skin and the eyes. Other subjects discussed are exposure limits, how to assess the radiation, protection against ultraviolet radiation

  2. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  3. Reproductive hazards in the workplace: what the practitioner needs to know about chemical exposures.

    Science.gov (United States)

    Paul, M; Himmelstein, J

    1988-06-01

    A growing body of scientific evidence implicates occupational chemical exposures in the etiology of human adverse reproductive outcomes. Most reproductive toxins that have been investigated in sufficient detail have been shown to exert multiple effects on and through both men and women. In the face of growing public awareness, it is essential that clinicians develop a knowledgeable and effective approach to patient concerns about reproductive hazards in the workplace. Of vital importance is the accurate characterization of exposure at the worksite. Intervention strategies for worrisome situations include amelioration of worksite exposure or, as a last resort, temporary, compensated job modification or transfer. The clinician can obtain assistance in addressing the problem from several resources, including local regulatory agencies and occupational health clinics. Widespread involvement of knowledgeable health professionals can have a dramatic impact on improving this important contemporary public health problem.

  4. Nonradiological chemical pathway analysis and identification of chemicals of concern for environmental monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Cooper, A.T.; Castleton, K.J.

    1995-11-01

    Pacific Northwest's Surface Environmental Surveillance Project (SESP) is an ongoing effort tot design, review, and conducted monitoring on and off the Hanford site. Chemicals of concern that were selected are listed. Using modeled exposure pathways, the offsite cancer incidence and hazard quotient were calculated and a retrospective pathway analysis performed to estimate what onsite concentrations would be required in the soil for each chemical of concern and other detected chemicals that would be required to obtain an estimated offsite human-health risk of 1.0E-06 cancer incidence or 1.0 hazard quotient. This analysis indicates that current nonradiological chemical contamination occurring on the site does not pose a significant offsite human-health risk; the highest cancer incidence to the offsite maximally exposed individual was from arsenic (1.76E-10); the highest hazard quotient was chromium(VI) (1.48E-04). The most sensitive pathways of exposure were surfacewater and aquatic food consumption. Combined total offsite excess cancer incidence was 2.09E-10 and estimated hazard quotient was 2.40E-04. Of the 17 identified chemicals of concern, the SESP does not currently (routinely) monitor arsenic, benzo(a)pyrene, bis(2- ethylhexyl)phthalate (BEHP), and chrysene. Only 3 of the chemicals of concern (arsenic, BEHP, chloroform) could actually occur in onsite soil at concern high enough to cause a 1.0E-06 excess cancer incidence or a 1.0 hazard index for a given offsite exposure pathway. During the retrospective analysis, 20 other chemicals were also evaluated; only vinyl chloride and thallium could reach targeted offsite risk values

  5. Chemical Safety Vulnerability Working Group report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

  6. Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms

  7. Knowledge acquisition on hazards in chemical and process industry

    Energy Technology Data Exchange (ETDEWEB)

    Vojnovic, D; Kozuh, M [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The knowledge acquisition for probabilistic risk assessment and operational safety improvements are described. The procedure HazOp (Hazard and Operability Study) are used for hazard identification. The acquainted knowledge is condensed in the form of cause-consequence matrix which is very convenient for plant logic model start point definition. At the end, the possibility for HazOp performance support by use of Artificial Intelligence approach is considered. (author) [Slovenian] V clanku se obravnava zbiranje znanja za potrebe verjetnostne ocene tveganja in izboljsanja obratovalne varnosti. Opisan je postopek za razpoznavanje nevarnosti po metodi HazOp. Zbrano znanje je predstavljeno v obliki vzrocno posledicne matrike, kar je primerna oblika za nadaljno uporabo pri logicnem modeliranju objekta. Ravno tako je obravnavana moznost uporabe diagnosticnih metod (umetna inteligenca) pri HazOp analizi. [author].

  8. Hanford 1999 Tier 2 Emergency and Hazardous Chemical Inventory Emergency Planning and Community Right-to-Know Act Section 312

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2000-01-01

    The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S. Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington

  9. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  10. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information

  11. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  12. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  13. Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  14. Apparatus for sampling hazardous media

    International Nuclear Information System (INIS)

    Gardner, J.F.; Showalter, T.W.

    1984-01-01

    An apparatus for sampling a hazardous medium, such as radioactive or chemical waste, selectively collects a predetermined quantity of the medium in a recess of an end-over-end rotatable valving member. This collected quantity is deposited in a receiving receptacle located in a cavity while the receiving receptacle is in a sealed relationship with a recess to prevent dusting of the sampled media outside the receiving receptacle. The receiving receptacle is removably fitted within a vehicle body which is, in turn, slidably movable upon a track within a transport tube. The receiving receptacle is transported in the vehicle body from its sample receiving position within a container for the hazardous medium to a sample retrieval position outside the medium container. The receiving receptacle may then be removed from the vehicle body, capped and taken to a laboratory for chemical analysis. (author)

  15. Evaluation of a chemical risk assessment method of South Korea for chemicals classified as carcinogenic, mutagenic or reprotoxic (CMR).

    Science.gov (United States)

    Kim, Min-Uk; Byeon, Sang-Hoon

    2017-12-12

    Chemicals were used in various fields by the development of industry and science and technology. The Chemical Hazard Risk Management (CHARM) was developed to assess the risk of chemicals in South Korea. In this study, we were to evaluate the CHARM model developed for the effective management of workplace chemicals. We used 59 carcinogenic, mutagenic or reprotoxic (CMR) materials, which are both the work environment measurement result and the usage information among the manufacturer data. The CHARM model determines the risk to human health using the exposure level (based on working environment measurements or a combination of the quantity used and chemical physical properties (e.g., fugacity and volatility)), hazard (using occupational exposure limit (OEL) or Risk phrases (R-phrases)/Hazard statements (H-statements) from the Material Safety Data Sheet (MSDS)). The risk level was lower when using the results of the work environment measurement than when applying the chemical quantity and physical properties in the exposure level evaluation method. It was evaluated as grade 4 for the CMR material in the hazard class determination. The risk assessment method by R-phrases was evaluated more conservatively than the risk assessment method by OEL. And the risk assessment method by H-statements was evaluated more conservatively than the risk assessment method by R-phrases. The CHARM model was gradually conservatively assessed as it proceeded in the next step without quantitative information for individual workplaces. The CHARM is expected to help identify the risk if the hazards and exposure levels of chemicals were identified in individual workplaces. For CMR substances, although CHARM is highly evaluated for hazards, the risk is assessed to be low if exposure levels are assessed low. When evaluating the risk of highly hazardous chemicals such as CMR substances, we believe the model should be adapted to be more conservative and classify these as higher risk. This work is

  16. Surveillance of Washington OSHA exposure data to identify uncharacterized or emerging occupational health hazards.

    Science.gov (United States)

    Lofgren, Don J; Reeb-Whitaker, Carolyn K; Adams, Darrin

    2010-07-01

    Chemical substance exposure data from the Washington State Occupational Safety and Health Administration (OSHA) program were reviewed to determine if inspections conducted as a result of a report of a hazard from a complainant or referent may alert the agency to uncharacterized or emerging health hazards. Exposure and other electronically stored data from 6890 health inspection reports conducted between April 2003 and August 2008 were extracted from agency records. A total of 515 (7%) inspections with one or more personal airborne chemical substance samples were identified for further study. Inspections by report of a hazard and by targeting were compared for the following: number of inspections, number and percentage of inspections with workers exposed to substances above an agency's permissible exposure limit, types of industries inspected, and number and type of chemical substances assessed. Report of a hazard inspections documented work sites with worker overexposure at the same rate as agency targeted inspections (approximately 35% of the time), suggesting that complainants and referents are a credible pool of observers capable of directing the agency to airborne chemical substance hazards. Report of a hazard inspections were associated with significantly broader distribution of industries as well as a greater variety of chemical substance exposures than were targeted inspections. Narrative text that described business type and processes inspected was more useful than NAICS codes alone and critical in identifying processes and industries that may be associated with new hazards. Finally, previously identified emerging hazards were found among the report of a hazard data. These findings indicate that surveillance of OSHA inspection data can be a valid tool to identify uncharacterized and emerging health hazards. Additional research is needed to develop criteria for objective review and prioritization of the data for intervention. Federal OSHA and other state

  17. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1B. Control technologies. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents discussions of control technologies used in the industry and the costs of those technologies

  18. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1997-01-01

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na 2 O, 9 wt% CaO, 7.2 wt% Li 2 O and 8.1 wt% Fe 2 O 3 . This glass melted at 1,150 C and represented a two fold volume reduction

  19. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  20. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  1. Identification and assessment of hazardous compounds in drinking water.

    Science.gov (United States)

    Fawell, J K; Fielding, M

    1985-12-01

    The identification of organic chemicals in drinking water and their assessment in terms of potential hazardous effects are two very different but closely associated tasks. In relation to both continuous low-level background contamination and specific, often high-level, contamination due to pollution incidents, the identification of contaminants is a pre-requisite to evaluation of significant hazards. Even in the case of the rapidly developing short-term bio-assays which are applied to water to indicate a potential genotoxic hazard (for example Ames tests), identification of the active chemicals is becoming a major factor in the further assessment of the response. Techniques for the identification of low concentrations of organic chemicals in drinking water have developed remarkably since the early 1970s and methods based upon gas chromatography-mass spectrometry (GC-MS) have revolutionised qualitative analysis of water. Such techniques are limited to "volatile" chemicals and these usually constitute a small fraction of the total organic material in water. However, in recent years there have been promising developments in techniques for "non-volatile" chemicals in water. Such techniques include combined high-performance liquid chromatography-mass spectrometry (HPLC-MS) and a variety of MS methods, involving, for example, field desorption, fast atom bombardment and thermospray ionisation techniques. In the paper identification techniques in general are reviewed and likely future developments outlined. The assessment of hazards associated with chemicals identified in drinking and related waters usually centres upon toxicology - an applied science which involves numerous disciplines. The paper examines the toxicological information needed, the quality and deployment of such information and discusses future research needs. Application of short-term bio-assays to drinking water is a developing area and one which is closely involved with, and to some extent dependent on

  2. A conceptual chemical solidification/stabilization system to remediate radioactive raffinate sludge

    International Nuclear Information System (INIS)

    Carpenter, D.J.; Ansted, J.P.; Foldyna, J.T.

    1994-01-01

    Past operations at the U.S. Department of Energy's (DOE) Weldon Spring, Missouri, Superfund Site included the manufacture of nitroaromatic-based munitions and the production of uranium and thorium metal from ore concentrates. These operations generated a large quantity of diverse contaminated waste media including raffinate sludge, soil, sediment, and building debris. These various waste media are contaminated with varying amounts of radionuclides nitroaromatics, metals, metalloids, non-metals, polychlorinated biphenyls (PCBs) and asbestos. The volumes and diversity of contaminants and waste media pose significant challenges in identifying applicable remedial technologies, particularly for the excavation and treatment of the water-rich raffinate sludge. This paper presents the results of comprehensive efforts to develop a conceptual chemical solidification/stabilization (CSS) system to treat a variety of waste media. The emphasis of this paper is the treatment of a water-rich refractory raffinate sludge and site contaminated soils both radioactive and nonradioactive. The conceptual system design includes raffinate sludge excavation, dewatering, and CSS processing (reagent selection and formulation, reagent and waste storage and metering, and product mixing). Many innovations were incorporated into the design, producing a system that can process the various waste types. Additionally, the radioactive and hazardous constituents are sufficiently immobilized to allow the secured disposal in a waste cell of the treated product. The conceptual CSS system can also produce a variety of treated product types, ranging from a monolithic form to a compactible soil-like medium. The advantages of this system flexibility are also presented

  3. Quantitative structure-activity relationships for predicting potential ecological hazard of organic chemicals for use in regulatory risk assessments.

    Science.gov (United States)

    Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop

    2003-08-01

    The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.

  4. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for proposed standards. Volume 1A. National impacts assessment. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    A draft rule for the regulation of emissions of organic hazardous air pollutants (HAP's) from chemical processes of the synthetic organic chemical manufacturing industry (SOCMI) is being proposed under the authority of Sections 112, 114, 116, and 301 of the Clean Air Act, as amended in 1990. The volume of the Background Information Document presents the results of the national impacts assessment for the proposed rule

  5. Chemical alternatives assessment: the case of flame retardants.

    Science.gov (United States)

    Howard, Gregory J

    2014-12-01

    Decisions on chemical substitution are made rapidly and by many stakeholders; these decisions may have a direct impact on consumer exposures, and, when a hazard exists, to consumer risks. Flame retardants (FRs) represent particular challenges, including very high production volumes, designed-in persistence, and often direct consumer exposure. Newer FR products, as with other industrial chemicals, typically lack data on hazard and exposure, and in many cases even basic information on structure and use in products is unknown. Chemical alternatives assessment (CAA) provides a hazard-focused approach to distinguishing between possible substitutions; variations on this process are used by several government and numerous corporate entities. By grouping chemicals according to functional use, some information on exposure potential can be inferred, allowing for decisions based on those hazard properties that are most distinguishing. This approach can help prevent the "regrettable substitution" of one chemical with another of equal, or even higher, risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Conversion of three mixed-waste streams

    International Nuclear Information System (INIS)

    Harmer, D.E.; Porter, D.L.; Conley, C.W.

    1990-01-01

    At the present time, commercial mixed waste (containing both radioactive and hazardous components) is not handled by any disposal site in this country. Thus, a generator of such material is faced with the prospect of separating or altering the nature of the waste components. A chemical or physical separation may be possible. However, if separation fails there remains the opportunity of chemically transforming the hazardous ingredients to non-hazardous substances, allowing disposal at an existing radioactive burial site. Finally, chemical or physical stabilization can be used as a tool to achieve an acceptable waste form lacking the characteristics of mixed waste. A practical application of these principles has been made in the case of certain mixed waste streams at Aerojet Ordnance Tennessee. Three different streams were involved: (1) lead and lead oxide contaminated with uranium, (2) mixed chloride salts including barium chloride, contaminated with uranium, and (3) bricks impregnated with the barium salt mixture. This paper summarizes the approach of this mixed-waste problem, the laboratory solutions found, and the intended field remediations to be followed. Mixture (1), above, was successfully converted to a vitreous insoluble form. Mixture (2) was separated into radioactive and non-radioactive streams, and the hazardous characteristics of the latter altered chemically. Mixture (3) was treated to an extraction process, after which the extractant could be treated by the methods of Mixture (2). Field application of these methods is scheduled in the near future

  7. Hazardous waste minimization report for CY 1986

    International Nuclear Information System (INIS)

    Kendrick, C.M.

    1990-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs

  8. Aiding alternatives assessment with an uncertainty-tolerant hazard scoring method.

    Science.gov (United States)

    Faludi, Jeremy; Hoang, Tina; Gorman, Patrick; Mulvihill, Martin

    2016-11-01

    This research developed a single-score system to simplify and clarify decision-making in chemical alternatives assessment, accounting for uncertainty. Today, assessing alternatives to hazardous constituent chemicals is a difficult task-rather than comparing alternatives by a single definitive score, many independent toxicological variables must be considered at once, and data gaps are rampant. Thus, most hazard assessments are only comprehensible to toxicologists, but business leaders and politicians need simple scores to make decisions. In addition, they must balance hazard against other considerations, such as product functionality, and they must be aware of the high degrees of uncertainty in chemical hazard data. This research proposes a transparent, reproducible method to translate eighteen hazard endpoints into a simple numeric score with quantified uncertainty, alongside a similar product functionality score, to aid decisions between alternative products. The scoring method uses Clean Production Action's GreenScreen as a guide, but with a different method of score aggregation. It provides finer differentiation between scores than GreenScreen's four-point scale, and it displays uncertainty quantitatively in the final score. Displaying uncertainty also illustrates which alternatives are early in product development versus well-defined commercial products. This paper tested the proposed assessment method through a case study in the building industry, assessing alternatives to spray polyurethane foam insulation containing methylene diphenyl diisocyanate (MDI). The new hazard scoring method successfully identified trade-offs between different alternatives, showing finer resolution than GreenScreen Benchmarking. Sensitivity analysis showed that different weighting schemes in hazard scores had almost no effect on alternatives ranking, compared to uncertainty from data gaps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter.

    Science.gov (United States)

    Kaserzon, Sarit L; Heffernan, Amy L; Thompson, Kristie; Mueller, Jochen F; Gomez Ramos, Maria Jose

    2017-09-01

    Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL -1 , and 46% at 0.1 ng mL -1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL -1 , respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl - perfluorooctanesulfonic acid), at 0.8 ng mL -1 . The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants

  10. Status Report on Phase Identification in Hanford Tank Sludges

    International Nuclear Information System (INIS)

    Rapko, B.M.; Lumetta, G.J.

    2000-01-01

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges

  11. Chemical Safety Vulnerability Working Group report. Volume 2

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site

  12. Chemical Safety Vulnerability Working Group report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 2 consists of seven appendices containing the following: Tasking memorandums; Project plan for the CSV Review; Field verification guide for the CSV Review; Field verification report, Lawrence Livermore National Lab.; Field verification report, Oak Ridge Reservation; Field verification report, Savannah River Site; and the Field verification report, Hanford Site.

  13. Lessons learned from joint working group report on assessment and management of cancer risks from radiological and chemical hazards

    International Nuclear Information System (INIS)

    Myers, D.K.

    1997-01-01

    Regulation of radiological hazards to humans is greatly simplified by the existence of the International Commission on Radiological Protection (ICRP). The average RBE values or radiation weighting factors recommended by the ICRP are based on non-human data. The ICRP has also indicated that 'the standard of environmental control needed to protect man to the degree currently thought desirable will ensure that other species are not put at risk.' This statement appears to be supported by technical publications from other organizations. Two published objections by AECB staff to the scientific technical background of the ICRP statement do not offer any good reason to reject this ICRP statement. A brief summary is given of the joint working group report on the topic indicated in the title. It is noted that regulators of cancer-causing chemicals have in general paid less attention to natural sources than have the regulators of radiological hazards. Most non-human species are exposed to about 1 millisievert (mSv) equivalent dose of radiation per year from natural sources. Caribou and organisms living underground are noted as examples where radiation exposures from natural sources are considerably higher. The natural biota is in general remarkably resistant, both in the laboratory and in field studies, to the effects of high doses of radiation. A recent review by the International Atomic Agency concluded that dose rates below the equivalent of 400 mSv per year are unlikely to after the survival of non-human species. It is recommended that caution and common sense be applied in any future research on radiological protection of non-human species in the environment in Canada. Many of the proposed U.S. regulations to control chemical and radiation in the environment are not cost-effective. It is to be hoped that efforts to protect non-human species from potential radiological hazards in Canada do not slide into a similar kind of irrational quagmire. (author)

  14. The expected environmental consequences and hazards of laser-fusion electric generating stations

    International Nuclear Information System (INIS)

    Devaney, J.J.; Pendergrass, J.H.

    The operation of an expected early form of a laser-fusion electric power plant is described and the hazards and the environmental effects of such a station are estimated. Possible environmental impacts and hazards to mankind can occur from nuclear excursions or explosions, nuclear weapon proliferation, loss of coolant accident (LOCA), tritium releases, chemical fires and accompanying releases of radioactivity or chemicals, induced radioactivity releases (other than tritium), radioactive waste disposal, lasers, normal electrical generation and steam plant effects, external intrusions, natural disasters, land use, resource and transportation use, thermal pollution, and air and water pollution. We find the principle environmental effects to be those of a medium size chemical plant. Electric, magnetic, steam, and radioactive hazards are of a lower order. Indeed in the event of extraordinary success in getting high temperatures and densities so that more difficult nuclear species can be reacted, such as protons with boron-11, there will be no radioactivity at all and also enormously lower hazardous chemical inventories. In our plant designs, for any fusion fuels, nuclear explosions (or even excursions beyond design limits) are not possible. (author)

  15. Current Chemical Risk Management Activities

    Science.gov (United States)

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  16. Chemical toxicity approach for emergency response

    International Nuclear Information System (INIS)

    Bauer, T.

    2009-01-01

    In the event of an airborne release of chemical agent or toxic industrial chemical by accidental or intentional means, emergency responders must have a reasonable estimate of the location and size of the resulting hazard area. Emergency responders are responsible for warning persons downwind of the hazard to evacuate or shelter-in-place and must know where to look for casualties after the hazard has passed or dissipated. Given the same source characterization, modern hazard assessment models provide comparable concentration versus location and time estimates. Even urban hazard assessment models often provide similar predictions. There is a major shortcoming, though, in applying model output to estimating human toxicity effects. There exist a variety of toxicity values for non-lethal effects ranging from short-term to occupational to lifetime exposures. For health and safety purposes, these estimates are all safe-sided in converting animal data to human effects and in addressing the most sensitive subset of the population. In addition, these values are usually based on an assumed 1 hour exposure duration at constant concentration and do not reflect either a passing clouds concentration profile or duration. Emergency responders need expected value toxicity parameters rather than the existing safe-sided ones. This presentation will specify the types of toxicity values needed to provide appropriate chemical hazard estimates to emergency responders and will demonstrate how dramatically their use changes the hazard area.(author)

  17. Seveso II directive in prevention and mitigation of consequences of chemical terrorism, safety management systems in hazardous installations

    International Nuclear Information System (INIS)

    Klicek, M.

    2009-01-01

    Mayor accidents caused by hazardous substances are great threat to public. The consequences are often very severe with great number of injured people or even deaths and a great material damage. Statistic data shows that the main cause of accidents in hazardous installations is 'human factor', including the possibility of terrorist attack, or classic military operations. In order to ensure effective chemical safety, the actions should be taken by industry, public authorities, communities and other stake holders to prevent industrial accidents. Safety should be an integral part of the business activities of an enterprise, and all hazardous installations should strive to reach the ultimate goal of zero incidents. Safety management systems (SMS) should include appropriate technology and processes, as well as establishing an effective organisational structure. To mitigate consequences of accidents, emergency planning, land-use planning and risk communication is necessary. Adequate response in the event of accident should limit adverse consequences to health, environment and property. Follow-up actions are needed to learn from the accidents and other unexpected events, in order to reduce future incidents. In this paper the author will discus the implementing of SEVESO II directive in obtaining two main goals: major accident prevention and mitigation of consequences for men and environment in case of possible terrorist actions or military activities. Some Croatian experiences in implementing of UNEP APELL Programme, and its connection with SEVESO II directive will be shown.(author)

  18. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    International Nuclear Information System (INIS)

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-01-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form

  19. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    Science.gov (United States)

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  20. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Science.gov (United States)

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act have been...

  1. HANFORD CHEMICAL VAPORS WORKER CONCERNS and EXPOSURE EVALUATION

    International Nuclear Information System (INIS)

    ANDERSON, T.J.

    2006-01-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors

  2. Evaluating chemical toxicity of surface disposal of LILW-SL in Belgium

    International Nuclear Information System (INIS)

    Mallants, D.; Wang, L.; Weetjens, E.; Cool, W.

    2008-01-01

    ONDRAF/NIRAS is developing and evaluating a surface disposal concept for low and intermediate level short-lived radioactive waste (LILW-SL) at Dessel (Belgium)). In support of ONDRAF/NIRAS's assignment, SCK/CEN carried out long-term performance assessment calculations for the inorganic non-radioactive components that are present in LILW-SL. This paper summarizes the results obtained from calculations that were done for a heavily engineered surface disposal facility at the nuclear zone of Mol/Dessel. The calculations address the migration of chemo-toxic elements from the disposed waste to groundwater. Screening calculations were performed first to decide which non-radioactive components could potentially increase concentrations in groundwater to levels above the groundwater standards. On the basis of very conservative calculations, only 6 out of 41 chemical elements could not be classified as having a negligible impact on man and environment. For each of these six elements (B, Be, Cd, Pb, Sb, and Zn), the source term was characterized in terms of its chemical form (i.e., metal, oxide, or salt), and a macroscopic transport model built that would capture the small-scale dissolution processes relevant to element release from a cementitious waste container. Furthermore, reliable transport parameters in support of the convection dispersion-retardation (CDR) transport calculations were determined. This included derivation of (1) solubility for a cementitious near field environment based on thermodynamic equilibrium calculations with The Geo-chemist's Workbench, and (2) distribution coefficients based on a compilation of literature values. Scoping calculations illustrated the effects of transport parameter uncertainty on the rates at which inorganic components in LILW-SL leach to groundwater. (authors)

  3. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.

    Science.gov (United States)

    2010-10-01

    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with both...

  4. Safety in the Chemical Laboratory: Certifications for Professional Hazardous Materials and Waste Management.

    Science.gov (United States)

    Fischer, Kenneth E.

    1988-01-01

    Discusses the need for determining a curriculum to provide qualified hazardous waste personnel. Describes the needed role of colleges and universities and current hazardous materials certification requirements. Lists requirements for 18 professional certifications. (MVL)

  5. [Occupational hazards and bladder cancer].

    Science.gov (United States)

    Nizamova, R S

    1991-01-01

    Occupational exposure to health hazards was studied in 258 industrial workers who had developed cancer of the bladder against 454 matched controls. All the test subjects and controls were residents of the Tambov Province centers of chemical industry. Statistical significance (relative risk-4.7) was established for exposure to aromatic amines. For those contacting with aniline dyes the relative risk (RR) made up 2.4. The risk to develop bladder cancer in powder shops (RR-3.2) was attributed to the hazards of dyes and diphenylamine. In leather-shoe and textile industry the exposure to dyes was not safe (RR-6.1), neither was it to chemicals, oil products, pesticides, overheating (RR-3.2, 1.6, 3.2 and 2.9, respectively). It is stated that in line with a significant risk to develop bladder cancer at exposure to aromatic amines there exist a number of occupational factors contributing to this risk.

  6. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu [Department of Radiology, University of Minnesota Medical School, MMC 292, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Park, Chang W. [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-08-26

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  7. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    International Nuclear Information System (INIS)

    Aravalli, Rajagopal N.; Park, Chang W.; Steer, Clifford J.

    2016-01-01

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  8. Occupational hazards to health of port workers.

    Science.gov (United States)

    Wang, Yukun; Zhan, Shuifen; Liu, Yan; Li, Yan

    2017-12-01

    The aim of this article is to reduce the risk of occupational hazards and improve safety conditions by enhancing hazard knowledge and identification as well as improving safety behavior for freight port enterprises. In the article, occupational hazards to health and their prevention measures of freight port enterprises have been summarized through a lot of occupational health evaluation work, experience and understanding. Workers of freight port enterprises confront an equally wide variety of chemical, physical and psychological hazards in production technology, production environment and the course of labor. Such health hazards have been identified, the risks evaluated, the dangers to health notified and effective prevention measures which should be put in place to ensure the health of the port workers summarized. There is still a long way to go for the freight port enterprises to prevent and control the occupational hazards. Except for occupational hazards and their prevention measures, other factors that influence the health of port workers should also be paid attention to, such as age, work history, gender, contraindication and even the occurrence and development rules of occupational hazards in current production conditions.

  9. 76 FR 56362 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Science.gov (United States)

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental... processing the deletion notice. The online Federal Document Management System (FDMS) did not include required...

  10. Health effects of occupational exposure to hazardous chemicals: a comparative assessment with notes on ionizing radiation. Executive summary. Vol. 1

    International Nuclear Information System (INIS)

    Zanetos, M.A.; Warling, J.C.; Marsh, G.M.

    1983-09-01

    This three-part report provides quantitative estimates of the risk of cancer and other diseases among persons exposed to hazardous substances in the workplace. The risk estimates presented are based on a comprehensive review of recent epidemiologic studies. Primary emphasis was placed on studies of workers exposed to hazardous chemicals under conditions typical of a given industry over a working lifetime. Despite finding over 100 chemicals associated with increased incidence of disease, convincing dose-response trends existed for only a few. Although there were notable exceptions (arsenic, asbestos, PAH's, etc.), it was generally impossible to estimate risk-per-unit of dose in a manner analogous to calculations which exist for radiation exposure. The principal reason for this is the lack of adequate environmental monitoring data for the specific chemicals, locations, and time periods needed to estimate individual cumulative doses. In addition to analyzing risk in terms of increased incidence of specific diseases, we also examined life expectancy and years of life lost due to cancer in four selected occupational groups via a life table model which allowed for competing risks. The resulting estimates indicated that the overall life expectancy of these groups was generally greater than that of the general population but that the workers suffered greater loss of life expectancy (LLE) due to cancer than their counterparts in the general population. Published estimates of LLE due to radiation induced cancer indicate that at doses of less than or equal to 0.5 rem/y, radiation workers are projected to suffer less LLE than any of the four non-nuclear cohorts examined. At 5 rem/y (the MPD) or higher, LLE may be greater than one or more of the cohorts examined. This is Volume I of a three volume series. 12 references

  11. Test plan for Digface Chemical and Radiation Assay System

    International Nuclear Information System (INIS)

    Akers, D.W.

    1993-07-01

    The Digface Chemical and Radiation Assay System (CRAS) Project will develop a sensor using Prompt Gamma Neutron Activation Analysis (PGNAA) that can detect the present of hazardous chemicals and radioactive materials. The CRAS is being designed for in situ assay of closed drums and contaminated soils for gamma-ray emitting radionuclides and hazardous elements. The CRAS is based upon the use of 252 Cf PGNAA with a germanium gamma-ray spectrometer as the analyzer. Tasks being performed include determining detection limits for a number of hazardous chemicals and assessing matrix and transmission effects through soil. Initial analyses suggest that the technique is applicable to a number of hazardous materials such as trichloroethane and carbon tetrachloride

  12. 76 FR 56294 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Science.gov (United States)

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties... error in processing the direct- final rule. The online Federal Document Management System (FDMS) did not...

  13. EFSA BIOHAZ Panel (EFSA Panel on Biologicial Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (solipeds)

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    2013-01-01

    A risk ranking process identified Trichinella spp. as the most relevant biological hazard in the context of meat inspection of domestic solipeds. Without a full and reliable soliped traceability system, it is considered that either testing all slaughtered solipeds for Trichinella spp., or inactiv......A risk ranking process identified Trichinella spp. as the most relevant biological hazard in the context of meat inspection of domestic solipeds. Without a full and reliable soliped traceability system, it is considered that either testing all slaughtered solipeds for Trichinella spp...... for chemical hazards should be more flexible and based on the risk of occurrence, taking into account Food Chain Information (FCI), covering the specific on-farm environmental conditions and individual animal treatments, and the ranking of chemical substances, which should be regularly updated and include new...

  14. Potential hazards in smoke-flavored fish

    Science.gov (United States)

    Lin, Hong; Jiang, Jie; Li, Donghua

    2008-08-01

    Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[ a]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.

  15. Chemical Safety Vulnerability Working Group report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports.

  16. Chemical Safety Vulnerability Working Group report. Volume 3

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 3 consists of eleven appendices containing the following: Field verification reports for Idaho National Engineering Lab., Rocky Flats Plant, Brookhaven National Lab., Los Alamos National Lab., and Sandia National Laboratories (NM); Mini-visits to small DOE sites; Working Group meeting, June 7--8, 1994; Commendable practices; Related chemical safety initiatives at DOE; Regulatory framework and industry initiatives related to chemical safety; and Chemical inventory data from field self-evaluation reports

  17. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  18. Health risk assessment of chemical pollutants in a petrochemical complex

    Directory of Open Access Journals (Sweden)

    F Golbabaie

    2012-12-01

    Full Text Available   Background and Aims: workers in petrochemical industries are exposed to various contaminants and are facing to serious hazards, therefore a comprehensive risk assessment program for identification of hazardous chemicals that affect human health and also determination of hazardous tasks and processes is necessary.     Methods : This descriptive cross-sectional study was conducted in three stages. First stage consisted of identifying hazardous chemicals and determination of chemicals risk ratio, the second stage included the evaluation of worker's exposure to hazardous chemicals, and the third stage was estimating the relative risk of blood cancer caused by exposure to benzene through epidemiological studies.     Results: With regard to risk assessment method, 40 chemicals were identified in this Petrochemical Company. Among them, Benzene introduced as the most hazardous chemical. The results of the second stage showed that site man workers in noon shift work and in aromatic site with mean exposure 4.29 ppm had the highest exposure to benzene. The results of estimated leukemia relative risk stage in benzene exposure, the highest relative risk in workers related to site man workers in aromatic units with cumulative benzene exposure of 4.149 ppm. Years that obtained the relative risk of 2.3. The statistical test results showed that the relationship between worker's exposure to benzene and their job was significant(p<0/001     Conclusion : This study showed that benzene with a risk ratio of 4.5 -5 have 5th rank in risk levels and this indicates that preventative actions regarding to this hazardous and carcinogenic chemical must be started as soon as possible.

  19. Waste processing options

    International Nuclear Information System (INIS)

    Turney, J.; Miller, A.; Leventhal, L.; Naughton, M.

    1985-01-01

    Decontamination of components, facilities and sites is becoming an increasingly significant source of low-level waste. Another source, of potentially greater magnitude, is the decommissioning of nuclear reactor facilities. According to DOE, there are about 15 operating reactors that will be candidates for decommissioning by the end of the century. In addition, there are reactors such as Humboldt Bay, Dresden 1, and Indian Point, Unit 1, which have been shut down prior to their design life. Chemical decontamination of components and systems is a frequently used technique in controlling nuclear plant radiation exposure, and is especially useful during decommissioning. However, many of the solutions used pose a chemical or biological hazard, in addition to being radioactively contaminated. These hazards, if not ameliorated, may prohibit their disposal. Recent regulations, such as 10CFR Part 61(2), are focusing more attention on the non-radioactive aspects of radioactive waste. 10CFR Part 61 and the existing burial site licenses prohibit burial of waste which is chemically reactive, explosive under ambient conditions, produces toxic gases, vapors or fumes, or is pyrophoric. Additionally, the Barnwell license restricts organic chemicals which may affect the migration of radionuclides from the burial site. The NRC is studying additional restrictions on a class of these chemicals called chelating agents

  20. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.

    Science.gov (United States)

    Kavlock, Robert; Dix, David

    2010-02-01

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly

  1. Hazardous-environment problems: Mobile robots to the rescue

    International Nuclear Information System (INIS)

    Meieran, H.B.

    1992-01-01

    This paper presents a rationale for employing a spectrum of similar mobile robots to conduct appropriate common missions for the following five hazardous-environment issues: (1) dismantlement of nuclear weapons; (2) environmental restoration and waste management of US Department of Energy weapons sites; (3) operations in nuclear power plants and other facilities; (4) waste chemical site remediation and cleanup activities; and (5) assistance in handling toxic chemical/radiation accidents. Mobile robots have been developed for several hazardous-environment industries, the most visible ones being construction/excavation/tunneling, explosive ordnance/bomb disposal (EOD), fire-fighting, military operations, mining, nuclear, and security. A summary of the range of functions that mobile robots are currently capable of conducting is presented

  2. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  3. Prioritization of the Oral (Ingestive) Hazard of Industrial Chemicals

    Science.gov (United States)

    2011-10-28

    or Respiration - respiratory obstruction VCVN1* "Vrednie chemichescie veshestva. Neorganicheskie soedinenia elementov I-IV groopp" (Hazardous...section Lungs, Thorax, or Respiration - respiratory depression Gastrointestinal - changes in structure or function of esophagus MJAUAJ Medical Journal...impaired Nutritional and Gross Metabolic - metabolic alkalosis JTCTDW Journal of Toxicology, Clinical Toxicology. 33 Sodium chloride #(T3) 7647-14-5 LD50

  4. Workplace Hazards Faced by Nursing Assistants in the United States: A Focused Literature Review.

    Science.gov (United States)

    Walton, AnnMarie Lee; Rogers, Bonnie

    2017-05-19

    Nursing assistants (NAs) make up a large share of the healthcare provider workforce and their numbers are expected to grow. NAs are predominantly women who earn a low wage and report financial, work, and family demands. Working as a NA is hazardous; this manuscript specifically examines the biological/infectious, chemical, enviromechanical, physical and psychosocial hazards that appear in the literature to date. A focused search strategy was used to review literature about hazards that fell into each of the five aforementioned domains. While some hazards that were documented were clear, such as exposure to influenza because of close contact with patients (biological/infectious), or exposure to hazardous drugs (chemical), literature was limited. The majority of the literature we reviewed fell into the domain of psychosocial hazards and centered on stress from workplace organization issues (such as mandatory overtime, lack of managerial support, and feeling rushed). More research is needed to understand which hazards NAs identify as most concerning and tailored interventions are needed for risk mitigation.

  5. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  6. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  7. 77 FR 17573 - Hazard Communication

    Science.gov (United States)

    2012-03-26

    ... far as possible, safe and healthful working conditions for all working men and women. Section 3(8) of the OSH Act (29 U.S.C. 652(8)) empowers the Secretary of Labor to promulgate standards that are... final rule and in this preamble. All employers with hazardous chemicals in their workplaces are required...

  8. The Study of Implement of HCS Program at Hazardous Chemicals Knowledge and Safety performance in Tehran refinery, s laboratory unit

    Directory of Open Access Journals (Sweden)

    N. Hassanzadeh-Rangi

    2008-10-01

    Full Text Available Background and aims   The HCS standard includes listing of chemicals, labeling of chemical  containers, preparation of material safety data sheets, writing plan and employee training  programs. The aim of this study was to determine the influence of implemented program to enhance the knowledge and safety performance level of employees.   Methods   The knowledge level and unsafe act ratio were measured using both questionnaire  and behavior checklist (with safety sampling method before and after enforcing this interface.   Results   In this study, the mean and standard deviation of the knowledge level of employees  related to chemical safety before enforcing the interface was 46% and 14%. However, after  enforcing the interface, mean and standard deviation was 88% and 12%. The paired-t-test result   in this parameter was significant (p-value <0.0001. The mean and standard deviation of  knowledge level of employees related to warning labels before to enforcing the interface was 29%  and 22%. After enforcing the interface, mean and standard deviation was 80% and 16%. The paired-t-test result in this parameter was significant (p-value <0.0001. The mean and standard  deviation of the knowledge level of employees related to hazard communication methods before enforcing the interface was 25% and 11%. After enforcing the interface, mean and standard deviation was 79% and 16%. The paired-t-test result in this parameter was significant (p-value   <0.001.   Conclusion   The obtained result revealed that enhancement of the knowledge related to chemical safety, hazard communication methods and warning labels was significant. Statistical paired-t-test and control chart methods was used to comparison between unsafe act ratio before  and after enforcing the interface. The mean and standard deviation of unsafe act ratio before implementation of HCS program was 23.6% and 5.49%. However, mean and standard deviation of unsafe act ratio

  9. Recommendations on chemicals management policy and legislation in the framework of the Egyptian-German twinning project on hazardous substances and waste management.

    Science.gov (United States)

    Wagner, Burkhard O; Aziz, Elham Refaat Abdel; Schwetje, Anja; Shouk, Fatma Abou; Koch-Jugl, Juliane; Braedt, Michael; Choudhury, Keya; Weber, Roland

    2013-04-01

    The sustainable management of chemicals and their associated wastes-especially legacy stockpiles-is always challenging. Developing countries face particular difficulties as they often have insufficient treatment and disposal capacity, have limited resources and many lack an appropriate and effective regulatory framework. This paper describes the objectives and the approach of the Egyptian-German Twinning Project under the European Neighbourhood Policy to improve the strategy of managing hazardous substances in the Egyptian Environmental Affairs Agency (EEAA) between November 2008 and May 2011. It also provides an introduction to the Republic of Egypt's legal and administrative system regarding chemical controls. Subsequently, options for a new chemical management strategy consistent with the recommendations of the United Nations Chemicals Conventions are proposed. The Egyptian legal and administrative system is discussed in relation to the United Nations' recommendations and current European Union legislation for the sound management of chemicals. We also discuss a strategy for the EEAA to use the existing Egyptian legal system to implement the United Nations' Globally Harmonized System of Classification and Labelling of Chemicals, the Stockholm Convention and other proposed regulatory frameworks. The analysis, the results, and the recommendations presented may be useful for other developing countries in a comparable position to Egypt aspiring to update their legislation and administration to the international standards of sound management of chemicals.

  10. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  11. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. Brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling; Empfehlungen fuer die Probenahme zur Gefahrenabwehr im Bevoelkerungsschutz. Zur Analytik von chemischen, biologischen und radioaktiven Kontaminationen. Kurzanleitung fuer die CBRN-Probenahme

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Udo; Biederbick, Walter; Derakshani, Nahid (and others)

    2010-07-01

    The recommendation for sampling for prevention of hazards in civil defense is describing the analytics of chemical, biological and radioactive contaminations and includes detail information on the sampling, protocol preparation and documentation procedures. The volume includes a separate brief instruction for the CBRN (chemical, biological, radioactive, nuclear) sampling.

  12. Hemijski udesi i procena rizika / Chemical accidents and hazard assessment

    Directory of Open Access Journals (Sweden)

    Rade Biočanin

    2004-09-01

    Full Text Available Brojni su udesi vezani za transport i upotrebu hemijskih materija. Ova činjenica je važna i zbog toga što se naša zemlja nalazi na raskrsnici značajnih svetskih komunikacija kojima se ovakvi tereti prevoze. Veliki broj vrsta hemijskih materija može znatno da naruši životnu sredinu za duži period. Ovaj rad, kroz različite parametre, nastoji da prouči takvu mogućnost i ukaže na načine za prevenciju sličnih događaja i zaštitu stanovništva u miru i tokom ratnih dejstava. Ostvarenje projekta jedinstvenog sistema ABHO daje mogućnost da se, korišćenjem savremene opreme za komunikaciju i efikasnih jedinica za brzo reagovanje u realnom vremenu, uspešno obavi monitoring opasnosti, uzbunjivanje, zaštita i dekontaminacija. / There is a growing number of accidents involving hazardous chemical substances during transportation. Serbia and Montenegro are at the crossroads of numerous important European transport links where a lot of such transports pass through. A great number of such substances can considerably damage environment for a very long period of time. This paper studies such events applying different parameters; it tries to point at successful prevention and protection from this threat at peace, as well as during war operations. The realization of the universal and united system of the NBCD of the Army of Serbia and Montenegro, together with modern communication equipment and very effective mobile units, enables on - time reaction and successful monitoring, alarming, protection and decontamination.

  13. Safety evaluation of a conceptual fuel recycle complex

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1980-01-01

    A conceptual design integration study for an integrated Fuel Recycle Complex (FRC) has been completed. A safety evaluation of the radiation shielding, fire precautions, handling of nonradioactive hazardous materials, criticality hazards, operating errors, and the influence of natural phenomena on the FRC shows that all federal regulations are met or exceeded

  14. Acute Chemical Incidents With Injured First Responders, 2002-2012.

    Science.gov (United States)

    Melnikova, Natalia; Wu, Jennifer; Yang, Alice; Orr, Maureen

    2018-04-01

    IntroductionFirst responders, including firefighters, police officers, emergency medical services, and company emergency response team members, have dangerous jobs that can bring them in contact with hazardous chemicals among other dangers. Limited information is available on responder injuries that occur during hazardous chemical incidents. We analyzed 2002-2012 data on acute chemical incidents with injured responders from 2 Agency for Toxic Substances and Disease Registry chemical incident surveillance programs. To learn more about such injuries, we performed descriptive analysis and looked for trends. The percentage of responders among all injured people in chemical incidents has not changed over the years. Firefighters were the most frequently injured group of responders, followed by police officers. Respiratory system problems were the most often reported injury, and the respiratory irritants, ammonia, methamphetamine-related chemicals, and carbon monoxide were the chemicals more often associated with injuries. Most of the incidents with responder injuries were caused by human error or equipment failure. Firefighters wore personal protective equipment (PPE) most frequently and police officers did so rarely. Police officers' injuries were mostly associated with exposure to ammonia and methamphetamine-related chemicals. Most responders did not receive basic awareness-level hazardous material training. All responders should have at least basic awareness-level hazardous material training to recognize and avoid exposure. Research on improving firefighter PPE should continue. (Disaster Med Public Health Preparedness. 2018;12:211-221).

  15. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  16. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  17. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  18. Overview of Food Safety Hazards in the European Dairy Supply Chain

    NARCIS (Netherlands)

    Asselt, Van E.D.; Fels, van der Ine; Marvin, H.J.P.; Bokhorst-van De Veen, Van H.; Nierop Groot, M.

    2017-01-01

    Monitoring of dairy products should preferably focus on the most relevant food safety hazards in the dairy supply chain. For this purpose, the possible presence of microbiological, chemical, and physical hazards as well as trends in the dairy supply chain that may affect their presence were

  19. Risk assessment of chemicals in foundries: The International Chemical Toolkit pilot-project

    International Nuclear Information System (INIS)

    Ribeiro, Marcela G.; Filho, Walter R.P.

    2006-01-01

    In Brazil, problems regarding protection from hazardous substances in small-sized enterprises are similar to those observed in many other countries. Looking for a simple tool to assess and control such exposures, FUNDACENTRO has started in 2005 a pilot-project to implement the International Chemical Control Toolkit. During the series of visits to foundries, it was observed that although many changes have occurred in foundry technology, occupational exposures to silica dust and metal fumes continue to occur, due to a lack of perception of occupational exposure in the work environment. After introducing the Chemical Toolkit concept to the foundry work group, it was possible to show that the activities undertaken to improve the management of chemicals, according to its concept, will support companies in fulfilling government legislations related to chemical management, occupational health and safety, and environmental impact. In the following meetings, the foundry work group and FUNDACENTRO research team will identify 'inadequate work situations'. Based on the Chemical Toolkit, improvement measures will be proposed. Afterwards, a survey will verify the efficency of those measures in the control of hazards and consequently on the management of chemicals. This step is now in course

  20. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Science.gov (United States)

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  1. Field selection of chemical protective clothing and respiratory protection

    International Nuclear Information System (INIS)

    Pinette, S.; Dodgen, C.; Morley, M.

    1991-01-01

    Safety professionals who must choose appropriate personal protective equipment for hazardous substance response or hazardous waste sites require useable information about the effectiveness of the various products available. Each hazardous waste operation involves a unique combination of chemical hazards requiring a unique combination of protective apparel. A chemical protective suit or respirator must be chosen for each site and each operation on the site. No single protective suit is effective against all chemical hazards. No single respirator is the best choice in every situation. Various sources of information on the effectiveness of protective clothing products will be discussed. Site-specific permeation testing of the proposed protective clothing options will also be discussed. It is both possible and practical to obtain specific information about the degree of protection afforded by a particular suit against a particular chemical mixture. It is also important to know how long the suit will last. Choosing adequate respiratory protection is a complex process. Respirator cartridge performance depends on various environmental factors as well as upon the combination and concentration of chemicals in the air. Once characterization of the air at a site has been accomplished, it may be appropriate to select an alternative to airline respirators and SCBAs. Respirator cartridges can be tested against specific chemical mixtures using worse case environmental factors. The results can be used to predict both the effectiveness and duration of protection afforded by respirator cartridges which can reduce costs and worker fatigue

  2. Reducing hazardous cleaning product use: a collaborative effort.

    Science.gov (United States)

    Pechter, Elise; Azaroff, Lenore S; López, Isabel; Goldstein-Gelb, Marcy

    2009-01-01

    Workplace hazards affecting vulnerable populations of low-wage and immigrant workers present a special challenge to the practice of occupational health. Unions, Coalition for Occupational Safety and Health (COSH) groups, and other organizations have developed worker-led approaches to promoting safety. Public health practitioners can provide support for these efforts. This article describes a successful multiyear project led by immigrant cleaning workers with their union, the Service Employees International Union (SEIU) Local 615, and with support from the Massachusetts COSH (MassCOSH) to address exposure to hazardous chemicals. After the union had identified key issues and built a strategy, the union and MassCOSH invited staff from the Massachusetts Department of Public Health's Occupational Health Surveillance Program (OHSP) to provide technical information about health effects and preventive measures. Results included eliminating the most hazardous chemicals, reducing the number of products used, banning mixing products, and improving safety training. OHSP's history of public health practice regarding cleaning products enabled staff to respond promptly. MassCOSH's staff expertise and commitment to immigrant workers allowed it to play a vital role.

  3. Incineration of hazardous waste: A critical review update

    International Nuclear Information System (INIS)

    Dempsey, C.R.; Oppelt, E.T.

    1993-01-01

    Over the last 15 years, concern over improper disposal practices of the past has manifested itself in the passage of a series of federal and state-level hazardous waste cleanup and control statutes of unprecedented scope. The more traditional and lowest-cost methods of direct landfilling, storage in surface impoundments and deep-well injection are being replaced in large measure by waste minimization at the source of generation, waste reuse, physical/chemical/biological treatment, incineration and chemical stabilization/solidification methods. Of all of the 'permanent' treatment technologies, properly designed incineration systems are capable of the highest overall degree of destruction and control for the broadest range of hazardous waste streams. Substantial design and operation experience exists in this area and a wide variety of commercial systems are available. Consequently, significant growth is anticipated in the use of incineration and other thermal destruction methods. The objective of this review is to examine the current state of knowledge regarding hazardous waste incineration in an effort to put these technological and environmental issues into perspective

  4. Characterization of vitrified soil produced by in situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1984-01-01

    Radioactive or other hazardous wastes buried at waste disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline-phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and the crystalline phases is similar to that of Pyrex glass

  5. Characterization of vitrified soil produced by in-situ vitrification

    International Nuclear Information System (INIS)

    Timmerman, C.L.; Lokken, R.O.

    1983-01-01

    Radioactive or other hazardous wastes buried at waste-disposal sites may require further stabilization to secure the isolation of these wastes from the environment. One method of waste stabilization being developed is in-situ vitrification. This process involves the in-place melting of buried wastes and the surrounding soil to produce a glass and crystalline waste form. Engineering-scale and pilot-scale demonstrations of this concept with soil contaminated with nonradioactive, hazardous species (Cs, Sr, Ru, Pb, Cd, etc.) were performed. These demonstrations provided information on species migration, crystalline phase formation, and waste form durability. In addition to the nonradioactive tests, a crucible-scale melt of soil spiked with radioactive uranium, plutonium, and cesium was leach tested. The results show that hazardous waste components are retained in the product. The durability of the waste form in both the vitreous and crystalline phases is similar to that of pyrex glass

  6. Workplace Hazards Faced by Nursing Assistants in the United States: A Focused Literature Review

    Science.gov (United States)

    Walton, AnnMarie Lee; Rogers, Bonnie

    2017-01-01

    Nursing assistants (NAs) make up a large share of the healthcare provider workforce and their numbers are expected to grow. NAs are predominantly women who earn a low wage and report financial, work, and family demands. Working as a NA is hazardous; this manuscript specifically examines the biological/infectious, chemical, enviromechanical, physical and psychosocial hazards that appear in the literature to date. A focused search strategy was used to review literature about hazards that fell into each of the five aforementioned domains. While some hazards that were documented were clear, such as exposure to influenza because of close contact with patients (biological/infectious), or exposure to hazardous drugs (chemical), literature was limited. The majority of the literature we reviewed fell into the domain of psychosocial hazards and centered on stress from workplace organization issues (such as mandatory overtime, lack of managerial support, and feeling rushed). More research is needed to understand which hazards NAs identify as most concerning and tailored interventions are needed for risk mitigation. PMID:28534859

  7. Workplace Hazards Faced by Nursing Assistants in the United States: A Focused Literature Review

    Directory of Open Access Journals (Sweden)

    AnnMarie Lee Walton

    2017-05-01

    Full Text Available Nursing assistants (NAs make up a large share of the healthcare provider workforce and their numbers are expected to grow. NAs are predominantly women who earn a low wage and report financial, work, and family demands. Working as a NA is hazardous; this manuscript specifically examines the biological/infectious, chemical, enviromechanical, physical and psychosocial hazards that appear in the literature to date. A focused search strategy was used to review literature about hazards that fell into each of the five aforementioned domains. While some hazards that were documented were clear, such as exposure to influenza because of close contact with patients (biological/infectious, or exposure to hazardous drugs (chemical, literature was limited. The majority of the literature we reviewed fell into the domain of psychosocial hazards and centered on stress from workplace organization issues (such as mandatory overtime, lack of managerial support, and feeling rushed. More research is needed to understand which hazards NAs identify as most concerning and tailored interventions are needed for risk mitigation.

  8. Chemiprobe, a nonradioactive system for labeling nucleic acid. Principles and applications.

    Science.gov (United States)

    Nur, I; Reinhartz, A; Hyman, H C; Razin, S; Herzberg, M

    1989-01-01

    The Chemiprobe Kit provides a complete system for nonradioactive labeling of DNA probes and their detection in hybridization studies. The system is highly sensitive, permitting the detection of 0.2-0.4 pg DNA which allows detection of a single gene sequence in 0.5-1 microgram of bacterial DNA or in 3-5 micrograms of mammalian DNA. In this paper the authors show that the rRNA genes of M. capricolum can be detected by using only 50 ng/ml of sulfonated probe cloned from another mycoplasma, M. pneumoniae. The Chemiprobe system has been successfully used in the detection of the single copy human gene for glucocerobrosidase from total embryonic DNA by hybridization to a specific sulfonated cDNA. 5 x 10(4) M. pneumoniae cells can be detected either free or mixed with sputum using a standard dot blot technique: mycoplasma cells were lysed by a mucolytic agent, denaturated by NaOH, immobilized on a nylon membrane filter, and then hybridized with pPN4, a plasmid DNA probe specific for M. pneumoniae. The resulting hybrids were then detected by the standard Chemiprobe procedure. A new kit based on the Chemiprobe system has been designed especially for the detection of mycoplasmas in tissue culture. This kit has been tested on 70 random samples collected from tissue culture fluids from 11 different sources. Of these, 42 were found to be contaminated by the Chemiprobe procedure, whereas 41 were found to be contaminated by classical microbiological methods. No false negatives were found.

  9. Recommendations for sampling for prevention of hazards in civil defense. On analytics of chemical, biological and radioactive contaminations. 2. ed.; Empfehlungen fuer die Probenahme zur Gefahrenabwehr im Bevoelkerungsschutz. Zur Analytik von chemischen, biologischen und radioaktiven Kontaminationen

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Udo; Derakshani, Nahid; Drobig, Matthias; Koenig, Mario; Mentfewitz, Joachim; Prast, Hartmut; Uelpenich, Gerhard; Vidmayer, Marc; Wilbert, Stefan; Wolf, Manfred

    2016-07-01

    The recommendations for sampling for prevention of hazards in civil defense (analytics of chemical, biological and radioactive contaminations) cover the following topics: Requirements for sampling, description of the materials (chemical, biological and radioactive contaminated materials), decontamination, sample transport and protocol documents.

  10. Identification of suspected hazardous chemical contaminants in recycled pastry packaging.

    Science.gov (United States)

    Ahmadkhaniha, Reza; Rastkari, Noushin

    2017-01-01

    The safe use of recycled paper and cardboard material for food packaging applications is     an important area of investigation. Therefore, the aim of this study was to determine which hazardous chemi- cal pollutants were found in paper and cardboard samples used for pastry packaging, and to measure the migration of pollutants over time into the pastries. In this study, the presence of some organic pollutants in common confectionery packaging, and the effects of storage time and type of pastry on pollutant migration, were investigated. The results of the study indicate that harmful compounds such as benzophenone, pentachlorophenol, bis(2-ethylhexyl) phthalate and dibutyl phthalate are present at high concentrations in most recycled boxes used for pastry packaging. Since the migration of some of the hazardous compounds from the packaging materials into the pastries under normal conditions was indicated, it is recommended that the procedure for preparing pastry packaging materials should be reconsidered and improved.

  11. 77 FR 10450 - Designation of Hazardous Substances; Designation, Reportable Quantities, and Notification

    Science.gov (United States)

    2012-02-22

    ... in 40 CFR Part 302 Environmental protection, Air pollution control, Chemicals, Hazardous substances...; Notification Requirements; Reportable Quantity Adjustments. Discharges of mixtures and solutions are subject to these regulations only where a component hazardous substance of the mixture or solution is discharged in...

  12. Hazardous properties of paint residues from the furniture industry.

    Science.gov (United States)

    Vaajasaari, Kati; Kulovaara, Maaret; Joutti, Anneli; Schultz, Eija; Soljamo, Kari

    2004-01-30

    The objective of this study was to screen nine excess paint residues for environmental hazard and to evaluate their disposability in a non-hazardous or hazardous-waste landfill. These residues were produced in the process of spray-painting furniture. Residues were classified according to their leaching and ecotoxicological properties. Leaching properties were determined with the European standard SFS-EN 12457-2 leaching-test. The toxicity of the leaching-test eluates was measured with plant-, bacteria- and enzyme-inhibition bioassays. Total organic carbon, formaldehyde and solvent concentrations in the solid wastes and in the leaching-test eluates were analysed. It seemed likely that leached formaldehyde caused very high acute toxicity in leaching-test eluates of the dry-booth residues. This hypothesis was based on the fact that the formaldehyde concentrations in the leaching-test eluates of the dry-booth residues were 62-75 times higher than the EC50 value reported in the literature for formaldehyde. The results of the water-curtain booth residues showed that the samples with the highest TOC and aromatic solvent concentrations were also the most toxic. The studied excess paint residues were complex organic mixtures and contained large amounts of compounds not identifiable from chemical data. Therefore, the evaluation of the hazard based solely on available chemical data is unlikely to be sufficient, as evidenced by our study. Our results show that harmful compounds remain in the solid waste and the toxicity results of their leaching-test eluates show that toxicity may leach from residues in contact with water at landfill sites. They also confirm the benefit of combining chemical and ecotoxicological assays in assessing the potential environmental hazard of complex organic mixtures found in wastes. Copyright 2003 Elsevier B.V.

  13. Review of occupational hazards associated with aquaculture.

    Science.gov (United States)

    Myers, Melvin L

    2010-10-01

    Aquaculture is an emerging sector that is associated with most of the same hazards that are present in agriculture generally, but many fish farming tasks entail added danger, including working around water and working at night. Comprehensive studies of these hazards have not been conducted, and substantial uncertainty exists as to the extent of these hazards. The question addressed in this investigation was, "What is known about potential hazardous occupational exposures to aquatic plant and animal farmers?" In this review, causes of death included drowning, electrocution, crushing-related injury, hydrogen sulfide poisoning, and fatal head injury. Nonfatal injuries were associated with slips, trips, and falls; machines; strains and sprains; chemicals; and fires. Risk factors included cranes (tip over and power line contact), tractors and sprayer-equipped all-terrain vehicles (overturn), heavy loads (lifting), high-pressure sprayers, slippery surfaces, rotting waste (hydrogen sulfide production), eroding levees (overturn hazard), storm-related rushing water, diving conditions (bends and drowning), nighttime conditions, working alone, lack of training, lack of or failure to use personal flotation devices, and all-terrain vehicle speeding. Other hazards included punctures or cuts from fish teeth or spines, needlesticks, exposure to low temperatures, and bacterial and parasitic infections .

  14. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals)

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    for the farm-to-chilled carcass continuum using a risk-based approach was proposed. Key elements of the system are risk-categorisation of slaughter animals for high-priority biological hazards based on improved food chain information, as well as risk-categorisation of slaughterhouses according......A risk ranking process identified Salmonella spp. and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as current high-priority biological hazards for meat inspection of bovine animals. As these hazards are not detected by traditional meat inspection, a meat safety assurance system...... to their capability to control those hazards. Omission of palpation and incision during post-mortem inspection for animals subjected to routine slaughter may decrease spreading and cross-contamination with the high-priority biological hazards. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls...

  15. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  17. Example process hazard analysis of a Department of Energy water chlorination process

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  18. Review of hazards to female reproductive health in veterinary practice.

    Science.gov (United States)

    Scheftel, Joni M; Elchos, Brigid L; Rubin, Carol S; Decker, John A

    2017-04-15

    OBJECTIVE To review publications that address female reproductive health hazards in veterinary practice, summarize best practices to mitigate reproductive risks, and identify current knowledge gaps. DESIGN Systematized review. SAMPLE English-language articles describing chemical, biological, and physical hazards present in the veterinary workplace and associations with adverse reproductive outcomes or recommendations for minimizing risks to female reproductive health. PROCEDURES Searches of the CAB abstracts database were performed in July 2012 and in May 2015 with the following search terms: veterinarians AND occupational hazards and vets.id AND occupational hazards.sh. Searches of the PubMed database were conducted in November 2012 and in May 2015 with the following medical subject heading terms: occupational exposure AND veterinarians; anesthetics, inhalation/adverse effects AND veterinarians; risk factors AND pregnancy AND veterinarians; pregnancy outcome AND veterinarians; and animal technicians AND occupational exposure. Two additional PubMed searches were completed in January 2016 with the terms disinfectants/toxicity AND female AND fertility/drug effects and veterinarians/psychology AND stress, psychological. No date limits were applied to searches. RESULTS 4 sources supporting demographic trends in veterinary medicine and 118 resources reporting potential hazards to female reproductive health were identified. Reported hazards included exposure to anesthetic gases, radiation, antineoplastic drugs, and reproductive hormones; physically demanding work; prolonged standing; and zoonoses. CONCLUSIONS AND CLINICAL RELEVANCE Demographic information suggested that an increasing number of women of reproductive age will be exposed to chemical, biological, and physical hazards in veterinary practice. Information on reproductive health hazards and minimizing risk, with emphasis on developing a safety-focused work culture for all personnel, should be discussed starting

  19. Hazardous industrial gases identified using a novel polymer/MWNT composite resistance sensor array

    International Nuclear Information System (INIS)

    Yuana, C.L.; Chang, C.P.; Song, Y.

    2011-01-01

    Highlights: → In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. → This work developed polymer-functionalized MWNT sensor plat forms for the detection of vapors from chemical agents at different temperatures. → Applied PCA to determine the performance of as-fabricated films for exposure to three chemical agents. - Abstract: Hazardous industrial chemical gases pose a significant threat to the environment and human life. Therefore, there is an urgent need to develop a reliable sensor for identifying these hazardous gases. In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. Conductive carbon nanotubes were then mixed with six different polymers with different chemical adsorption properties to produce a composite thin film for the fabrication of a chemical sensor array. This array was then utilized to identify three hazardous gases at different temperatures. Experimental results for six polymers for chemical gases, such as tetrahydrofuran (THF), chloroform (CHCl 3 ) and methanol (MeOH) at different temperatures, indicate that the variation in sensitivity resistance increased when the sensing temperature increased. The poly(ethylene adipate)/MWNT sensing film had high sensitivity, excellent selectivity, and good reproducibility in detecting all chemical agent vapors. Additionally, this study utilized a bar chart and statistical methods in principal component analysis to identify gases with the polymer/MWNT sensor.

  20. Food contamination with environmentally hazardous chemical substances. Kontamination von Lebensmitteln mit Umweltchemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Petz, M [Wuppertal Univ. (Gesamthochschule) (Germany, F.R.). Fachbereich 9 - Naturwissenschaften 2 - Chemie - Biologie

    1990-01-01

    The author explains the difference between residues and contaminants in food. Of the contaminants, the heavy metals lead, cadmium and mercury are discussed at length, e.g. their pathway through the food chain and their accumulation in plants, animals, and humans etc. PCB in food and in mother's milk are gone into, as are the consequences of this contamination. Finally, dibenzofuranes and dibenzodioxins are mentioned, again with a view to the contamination of mother's milk. The health hazards from contaminated food is related to the health hazards of malnutrition and overeating. (MG).

  1. Advanced Materials Laboratory hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  2. Undisclosed chemicals--implications for risk assessment: a case study from the mining industry.

    Science.gov (United States)

    Singh, Khareen; Oates, Christopher; Plant, Jane; Voulvoulis, Nikolaos

    2014-07-01

    Many of the chemicals used in industry can be hazardous to human health and the environment, and some formulations can have undisclosed ingredients and hazards, increasing the uncertainty of the risks posed by their use. The need for a better understanding of the extent of undisclosed information in chemicals arose from collecting data on the hazards and exposures of chemicals used in typical mining operations (copper, platinum and coal). Four main categories of undisclosed chemicals were defined (incomplete disclosure; chemicals with unspecific identities; relative quantities of ingredients not stated; and trade secret ingredients) by reviewing material safety data sheet (MSDS) omissions in previous studies. A significant number of chemicals (20% of 957 different chemicals) across the three sites had a range of undisclosed information, with majority of the chemicals (39%) having unspecific identities. The majority of undisclosed information was found in commercially available motor oils followed by cleaning products and mechanical maintenance products, as opposed to reagents critical to the main mining processes. All three types of chemicals had trade secrets, unspecific chemical identities and incomplete disclosures. These types of undisclosed information pose a hindrance to a full understanding of the hazards, which is made worse when combined with additional MSDS omissions such as acute toxicity endpoints (LD50) and/or acute aquatic toxicity endpoints (LC50), as well as inadequate hazard classifications of ingredients. The communication of the hazard information in the MSDSs varied according to the chemical type, the manufacturer and the regulations governing the MSDSs. Undisclosed information can undermine occupational health protection, compromise the safety of workers in industry, hinder risk assessment procedures and cause uncertainty about future health. It comes down to the duty of care that industries have towards their employees. With a wide range of

  3. Six Strategies for Chemical Waste Minimization in Laboratories.

    Science.gov (United States)

    Matteson, Gary C.; Hadley, Cheri R.

    1991-01-01

    Guidelines are offered to research administrators for reducing the volume of hazardous laboratory waste. Suggestions include a chemical location inventory, a chemical reuse facility, progressive contracts with chemical suppliers, internal or external chemical recycling mechanisms, a "chemical conservation" campaign, and laboratory fees for…

  4. Toward Hazardless Waste: A Guide for Safe Use and Disposal of Hazardous Household Products.

    Science.gov (United States)

    Toteff, Sally; Zehner, Cheri

    This guide is designed to help individuals make responsible decisions about safe use and disposal of household products. It consists of eight sections dealing with: (1) hazardous chemicals in the home, how hazaradous products become hazardous waste, and whether a hazardous waste problem exists in Puget Sound; (2) which household wastes are…

  5. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  6. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  7. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  8. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  9. Center for Integrated Nanotechnologies (CINT) Chemical Release Modeling Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Stirrup, Timothy Scott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-20

    This evaluation documents the methodology and results of chemical release modeling for operations at Building 518, Center for Integrated Nanotechnologies (CINT) Core Facility. This evaluation is intended to supplement an update to the CINT [Standalone] Hazards Analysis (SHA). This evaluation also updates the original [Design] Hazards Analysis (DHA) completed in 2003 during the design and construction of the facility; since the original DHA, additional toxic materials have been evaluated and modeled to confirm the continued low hazard classification of the CINT facility and operations. This evaluation addresses the potential catastrophic release of the current inventory of toxic chemicals at Building 518 based on a standard query in the Chemical Information System (CIS).

  10. Hazard analysis and critical control point (HACCP) for an ultrasound food processing operation.

    Science.gov (United States)

    Chemat, Farid; Hoarau, Nicolas

    2004-05-01

    Emerging technologies, such as ultrasound (US), used for food and drink production often cause hazards for product safety. Classical quality control methods are inadequate to control these hazards. Hazard analysis of critical control points (HACCP) is the most secure and cost-effective method for controlling possible product contamination or cross-contamination, due to physical or chemical hazard during production. The following case study on the application of HACCP to an US food-processing operation demonstrates how the hazards at the critical control points of the process are effectively controlled through the implementation of HACCP.

  11. Hazardous waste systems analysis at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Urioste, J.

    1997-01-01

    Los Alamos National Laboratory produces routine and non-routine hazardous waste as a by-product of mission operations. Hazardous waste commonly generated at the Laboratory includes many types of laboratory research chemicals, solvents, acids, bases, carcinogens, compressed gases, metals, and other solid waste contaminated with hazardous waste. The Los Alamos National Laboratory Environmental Stewardship Office has established a Hazardous Waste Minimization Coordinator to specifically focus on routine and non-routine RCRA, TSCA, and other administratively controlled wastes. In this process, the Waste Minimization Coordinator has developed and implemented a systems approach to define waste streams, estimate waste management costs and develop plans to implement avoidance practices, and develop projects to reduce or eliminate the waste streams at the Laboratory. The paper describes this systems approach

  12. Food contamination with environmentally hazardous chemical substances. Kontamination von Lebensmitteln mit Umweltchemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Petz, M. (Wuppertal Univ. (Gesamthochschule) (Germany, F.R.). Fachbereich 9 - Naturwissenschaften 2 - Chemie - Biologie)

    1990-01-01

    The author explains the difference between residues and contaminants in food. Of the contaminants, the heavy metals lead, cadmium and mercury are discussed at length, e.g. their pathway through the food chain and their accumulation in plants, animals, and humans etc. PCB in food and in mother's milk are gone into, as are the consequences of this contamination. Finally, dibenzofuranes and dibenzodioxins are mentioned, again with a view to the contamination of mother's milk. The health hazards from contaminated food is related to the health hazards of malnutrition and overeating. (MG).

  13. Symposium on the transportation of hazardous goods

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, D; Canniff, W; Coleman, R J; Ellison, T D; Estrin, D

    1980-06-11

    A symposium on the transportation of hazardous goods sponsored by the University of Toronto, the Canadian Society for Chemical Engineering, and Oyez Ltd. (Toronto May 1980), in view of a 11/10/79 explosion at Mississauga, Ont., following derailment of a Canadian Pacific Railways train carrying chlorine gas, covers comments by D. MacKay (Univ. Toronto), on the importance of quantifying the probability of an accident in transporting such hazardous materials as LPG's, chlorine, and corrosive acids, and of formulating contingency plans to reduce the probability or mitigate the effects; by W. Canniff of the Canadian Chemical Producers Association, on that group's Transportation Emergency Assistance Plan, which relies on the shipper of the chemical involved in an accident to provide advice and assistance; by R.J. Coleman (San Clemente, Calif., Fire Dep.), on coordination of efforts between firefighting and other emergency-handling groups to avoid confusion; by T.D. Ellison (Transp. Can.), on proposed Canadian legislation on the transport of dangerous goods, which would adopt, among others, a product classification system now used for international sea transport and a new system of labeling packages; and by D. Estrin, on the limitations of this proposed legislation.

  14. EFFECTS OF EXPOSURE TO HAZARDOUS SUBSTANCES IN POTTERY AND CERAMIC WORKERS

    OpenAIRE

    BASARAN, Nursen; ANLAR, Hatice Gul; BACANLI, Merve; SHUBAIR, Mohammed; BAL, Ceylan; TUTKUN, Engin; YILMAZ, Hinc

    2018-01-01

    During the last decade, the production and hence, the amount andthe types of exposure of hazardous chemicals have been increased in theoccupationally exposed workers. Most of these chemicals have deterious effectsin the living systems. The level of chemical exposure in the occupationalsettings and the biomonitoring of workers and also establishing the regulatoryendpoints are very important. The exposures of chemicals in the workplaces havebeen associated with the increase in allergy, organ an...

  15. WHO collaboration in hazardous waste management in the Western Pacific Region

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hisashi [Western Pacific Regional Environmental Health Centre, Kuala Lumpur (Malaysia)

    1996-12-31

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects of WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.

  16. Technological options for management of hazardous wastes from US Department of Energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  17. Technological options for management of hazardous wastes from US Department of Energy facilities

    International Nuclear Information System (INIS)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables

  18. Regulation of chemical safety at fuel cycle facilities by the United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Ramsey, Kevin M.

    2013-01-01

    When the U.S. Nuclear Regulatory Commission (NRC) was established in 1975, its regulations were based on radiation dose limits. Chemical hazards rarely influenced NRC regulations. After the Three Mile Island reactor accident in 1979, the NRC staff was directed to address emergency planning at non-reactor facilities. Several fuel cycle facilities were ordered to submit emergency plans consistent with reactor emergency plans because no other guidance was available. NRC published a notice that it was writing regulations to codify the requirements in the Orders and upgrade the emergency plans to address all hazards, including chemical hazards. The legal authority of NRC to regulate chemical safety was questioned. In 1986, an overfilled uranium hexafluoride cylinder ruptured and killed a worker. The NRC staff was directed to address emergency planning for hazardous chemicals in its regulations. The final rule included a requirement for fuel cycle facilities to certify compliance with legislation requiring local authorities to establish emergency plans for hazardous chemicals. As with emergency planning, NRC's authority to regulate chemical safety during routine operations was limited. NRC established memoranda of understanding (MOUs) with other regulatory agencies to encourage exchange of information between the agencies regarding occupational hazards. In 2000, NRC published new, performance-based, regulations for fuel cycle facilities. The new regulations required an integrated safety analysis (ISA) which used quantitative standards to assess chemical exposures. Some unique chemical exposure cases were addressed while implementing the new regulations. In addition, some gaps remain in the regulation of hazardous chemicals at fuel cycle facilities. The status of ongoing efforts to improve regulation of chemical safety at fuel cycle facilities is discussed. (authors)

  19. National toxicology program chemical nomination and selection process

    Energy Technology Data Exchange (ETDEWEB)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  20. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  1. Assessment and management of chemical exposure in the Mohs laboratory.

    Science.gov (United States)

    Gunson, Todd H; Smith, Harvey R; Vinciullo, Carl

    2011-01-01

    The correct handling, storage, and disposal of chemicals used in the processing of tissue for Mohs micrographic surgery are essential. To identify the chemicals involved in the preparation of Mohs frozen sections and assess the associated occupational health risks. To quantify exposure levels of hazardous chemicals and ensure that they are minimized. A risk assessment form was completed for each chemical. Atmospheric sampling was performed at our previous laboratory for formaldehyde and volatile organic compounds. These data were used in the design of our new facility, where testing was repeated. Twenty-five chemicals were identified. Ten were classified as hazardous substances, 10 were flammable, six had specific disposal requirements, four were potential carcinogens, and three were potential teratogens. Formaldehyde readings at our previous laboratory were up to eight times the national exposure standard. Testing at the new laboratory produced levels well below the exposure standards. Chemical exposure within the Mohs laboratory can present a significant occupational hazard. Acutely toxic and potentially carcinogenic formaldehyde was found at high levels in a relatively standard laboratory configuration. A laboratory can be designed with a combination of physical environment and operational protocols that minimizes hazards and creates a safe working environment. © 2010 by the American Society for Dermatologic Surgery, Inc.

  2. Radioactive clearance discharge of effluent from nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Liu Xinhua; Xu Chunyan

    2013-01-01

    On the basis of the basic concepts of radiation safety management system exemption, exclusion and clearance, we expound that the general industrial gaseous and liquid effluent discharges are exempted or excluded, gaseous and liquid effluent discharged from nuclear and radiation facilities are clearance, and non-radioactive. The main purpose of this paper is to clarify the concepts, reach a consensus that the gaseous and liquid effluent discharged from nuclear and radiation facilities are non-radioactive and have no hazard to human health and natural environment. (authors)

  3. Theoretical-probability evaluation of the fire hazard of coal accumulations

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, F F

    1978-01-01

    An evaluation is suggested for the fire hazard of coal accumulations, based on determining the probability of an endogenic fire. This probability is computed by using the statistical characteristics of the temperature distribution of spontaneous heating in large accumulations, and the criteria of Gluzberg's fire hazard that is determined by the coal's physico-chemical properties, oxygen concentration, and the size of the accumulations. 4 references.

  4. A comparison of mandatory and voluntary approaches to the implementation of Globally Harmonized System of Classification and Labelling of Chemicals (GHS) in the management of hazardous chemicals.

    Science.gov (United States)

    Ta, Goh Choo; Mokhtar, Mazlin Bin; Peterson, Peter John; Yahaya, Nadzri Bin

    2011-01-01

    The European Union (EU) and the World Health Organization (WHO) have applied different approaches to facilitate the implementation of the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The EU applied the mandatory approach by gazetting the EU Regulation 1272/2008 incorporating GHS elements on classification, labelling and packaging of substances and mixtures in 2008; whereas the WHO utilized a voluntary approach by incorporating GHS elements in the WHO guidelines entitled 'WHO Recommended Classification of Pesticides by Hazard' in 2009. We report on an analysis of both the mandatory and voluntary approaches practised by the EU and the WHO respectively, with close reference to the GHS 'purple book'. Our findings indicate that the mandatory approach practiced by the EU covers all the GHS elements referred to in the second revised edition of the GHS 'purple book'. Hence we can conclude that the EU has implemented the GHS particularly for industrial chemicals. On the other hand, the WHO guidelines published in 2009 should be revised to address concerns raised in this paper. In addition, both mandatory and voluntary approaches should be carefully examined because the classification results may be different.

  5. Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.

    Science.gov (United States)

    Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan

    2018-06-19

    The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  7. 29 CFR 1910.119 - Process safety management of highly hazardous chemicals.

    Science.gov (United States)

    2010-07-01

    ... B to this section); (B) Process chemistry; (C) Maximum intended inventory; (D) Safe upper and lower... with process chemistry information including runaway reaction and over pressure hazards if applicable... American Society of Mechanical Engineers, American Petroleum Institute, American National Standards...

  8. Essential Principles for Reform of Chemicals Management Legislation

    Science.gov (United States)

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  9. Health and safety information program for hazardous materials

    International Nuclear Information System (INIS)

    O'Brien, M.P.; Fallon, N.J.; Kuehner, A.V.

    1979-01-01

    The system is used as a management tool in several safety and health programs. It is used to: trace the use of hazardous materials and to determine monitoring needs; inform the occupational physician of the potential health problems associated with materials ordered by a given individual; inform the fire and rescue group of hazardous materials in a given building; provide waste disposal recommendations to the hazardous waste management group; assist the hazardous materials shipping coordinator in identifying materials which are regulated by the Department of Transportation; and guide management decisions in the area of recognizing and rectifying unsafe conditions. The information system has been expanded from a manual effort to provide a brief description of health hazards of chemicals used at the lab to a computerized health and safety information system which serves the needs of all personnel who may encounter the material in the course of their work. The system has been designed to provide information needed to control the potential problems associated with a hazardous material up to the time that it is consumed in a given operation or is sent to the waste disposal facility

  10. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  11. 75 FR 34405 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Science.gov (United States)

    2010-06-17

    ..., Colorado. RMA was established in 1942 by the U.S. Army to manufacture chemical warfare agents and... liquids and decontamination waters (1995). OU 26: Chemical Process-Related Activities IRA--Decontamination... Ordnance/Explosives and Recovered Chemical Warfare Materiel Hazards at the Rocky Mountain Arsenal...

  12. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    International Nuclear Information System (INIS)

    Pivovarov, A.; Kravchenko, A.; Kublanovsky, V.

    2009-01-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  13. Aqueous media treatment and decontamination of hazardous chemical and biological substances by contact plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pivovarov, A; Kravchenko, A [Ukrainian State University of Chemical Engineering, Dnepropetrovsk (Ukraine); Kublanovsky, V [V. I. Vernadsky Institute of General and Inorganic Chemistry of National Academy of Science, Kiev (Ukraine)

    2009-07-01

    Usage of non-equilibrium contact plasma for processes of decontamination and neutralization in conditions of manifestation of chemical, biological and radiation terrorism takes on special significance due to portability of equipment and its mobility in places where toxic liquid media hazardous for people's health are located. Processes of decontamination of aqueous media, seminated with pathogenic microorganisms and viruses, treatment of water containing toxic heavy metals, cyanides, surface-active substances, and heavy radioactive elements, are investigated. Examples of activation processes in infected water and toxic aqueous solutions present convincing evidence of the way, how new quality technological approach for achievement of high enough degree of the said media treatment is used in each specific case. Among new properties of water activated as a result of action of non-equilibrium contact plasma, it is necessary to mention presence of cluster structure, confirmed by well-known spectral and physical-chemical methods, presence of peroxide compounds, active particles and radicals. Anti-microbial activity which is displayed under action of plasma in aqueous media (chemically pure water, drinking water, aqueous solutions of sodium chloride, potassium iodide, as well as other inorganic compounds) towards wide range of pathogenic and conventionally pathogenic microorganisms allows use them as reliable, accessible and low-cost preparations for increasing the degree of safety of food products. Combination of such processes with known methods of filtration and ultra-filtration gives an efficient and available complex capable of withstanding any threats, which may arise for population and living organisms. Present-day level of machine-building, electrical engineering, and electronics allows predict creation of industrial plasma installations, adapted to conditions of various terrorist threats, with minimized power consumption and optimized technological parameters

  14. Chemical carcinogenesis and chemoprevention: Scientific priority ...

    African Journals Online (AJOL)

    Occupational cancers are now a serious concern in industrializing developing countries where exposure levels to hazardous chemicals considerably exceed regulatory limits established in industrialized countries. The association between increasing use of chemicals and associated disorders and chemoprevention or ...

  15. Environmental profiles on chemicals (EPC): A substitution tool i.a. used in the textile industry

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, John; Laursen, Søren E.

    2002-01-01

    When dealing with cleaner technology and product development within industries using a lot of different chemicals, substitution is essential. In many cases substitution of hazardous chemicals with less hazardous ones will diminish the environmental impact from the industry in question. But among...... many different chemicals it can be difficult to prioritize and evaluate areas for substitution. The EPC-tool was thus developed and it has been used successfully within the Danish printing industry and the Polish textile industry. The EPC tool combines key emission and key consumption figures...... with hazard assessments of the chemicals used in production and thus creates an environmental profile of the industry, process or product in question. The preceding EPCs are used for pointing out hazardous chemicals used in relatively high quantities and therefore candidates for substitution. The EPCs created...

  16. Occupational skin hazards and prevalence of occupational skin diseases in shoe manufacturing workers in Indonesia.

    Science.gov (United States)

    Febriana, Sri Awalia; Soebono, Hardyanto; Coenraads, Pieter-Jan

    2014-02-01

    Shoe manufacturing workers are exposed daily to an extensive range of potential physical and chemical occupational hazards. Shoe manufacturing in Indonesia is one of the industrial sectors that has shown sustained growth amongst the newly industrialized countries (NICs). In this study, we investigated the possible potential exposure of the workers to physical and occupational hazards and determined the prevalence of occupational skin diseases at a shoe manufacturing factory in Indonesia. A cross-sectional study on the observation of the working process and an inventory and risk assessment of exposure to the chemicals used. Classification of chemicals as potential sensitizers/irritants and qualitative assessments of these chemicals were done. Workers were examined and interviewed using the Nordic Occupational Skin Questionnaire-2002/LONG. The risk of Occupational skin diseases (OSD) at the shoe factory was mainly related to the exposure of the workers' skin to potential physical and chemical hazards in hot and humid environmental conditions. From a total of 514 workers, 8.5 % reported current OSD and 4.8 % reported a history of OSD. Occupational skin diseases were diagnosed in 29 % of the workers by dermatologists and 7.6 % had an occupational contact dermatitis (OCD). Of the 39 workers with contact dermatitis, 33 consented to being patch tested, 14 (3 %) workers showed a positive results and considered as having an occupational allergic contact dermatitis (OACD) and 25 (4.9 %) had an occupational irritant contact dermatitis (OICD). We observed a repeated and prolonged exposure of the workers to numerous physical and chemical skin hazards at this factory.

  17. Population-Based in Vitro Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study

    Science.gov (United States)

    Abdo, Nour; Xia, Menghang; Brown, Chad C.; Kosyk, Oksana; Huang, Ruili; Sakamuru, Srilatha; Zhou, Yi-Hui; Jack, John R.; Gallins, Paul; Xia, Kai; Li, Yun; Chiu, Weihsueh A.; Motsinger-Reif, Alison A.; Austin, Christopher P.; Tice, Raymond R.

    2015-01-01

    Background: Understanding of human variation in toxicity to environmental chemicals remains limited, so human health risk assessments still largely rely on a generic 10-fold factor (10½ each for toxicokinetics and toxicodynamics) to account for sensitive individuals or subpopulations. Objectives: We tested a hypothesis that population-wide in vitro cytotoxicity screening can rapidly inform both the magnitude of and molecular causes for interindividual toxicodynamic variability. Methods: We used 1,086 lymphoblastoid cell lines from the 1000 Genomes Project, representing nine populations from five continents, to assess variation in cytotoxic response to 179 chemicals. Analysis included assessments of population variation and heritability, and genome-wide association mapping, with attention to phenotypic relevance to human exposures. Results: For about half the tested compounds, cytotoxic response in the 1% most “sensitive” individual occurred at concentrations within a factor of 10½ (i.e., approximately 3) of that in the median individual; however, for some compounds, this factor was > 10. Genetic mapping suggested important roles for variation in membrane and transmembrane genes, with a number of chemicals showing association with SNP rs13120371 in the solute carrier SLC7A11, previously implicated in chemoresistance. Conclusions: This experimental approach fills critical gaps unaddressed by recent large-scale toxicity testing programs, providing quantitative, experimentally based estimates of human toxicodynamic variability, and also testable hypotheses about mechanisms contributing to interindividual variation. Citation: Abdo N, Xia M, Brown CC, Kosyk O, Huang R, Sakamuru S, Zhou YH, Jack JR, Gallins P, Xia K, Li Y, Chiu WA, Motsinger-Reif AA, Austin CP, Tice RR, Rusyn I, Wright FA. 2015. Population-based in vitro hazard and concentration–response assessment of chemicals: the 1000 Genomes high-throughput screening study. Environ Health Perspect 123:458

  18. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  19. Hazardous Solvent Substitution Data System tutorial

    International Nuclear Information System (INIS)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC reg-sign to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications

  20. 40 CFR 156.78 - Precautionary statements for physical or chemical hazards.

    Science.gov (United States)

    2010-07-01

    ... Hazards” warning statement. The graphic symbol must be no smaller than twice the size of the first... (CONTINUED) PESTICIDE PROGRAMS LABELING REQUIREMENTS FOR PESTICIDES AND DEVICES Human Hazard and...) A total release fogger is defined as a pesticide product in a pressurized container designed to...

  1. A systematic assessment of the state of hazardous waste clean-up technologies

    International Nuclear Information System (INIS)

    Berg, M.T.; Reed, B.E.; Gabr, M.

    1993-07-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ''Decontamination Systems Information and Research Programs.'' Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming

  2. Chemical Safety Alert: Safe Storage and Handling of Swimming Pool Chemicals

    Science.gov (United States)

    Hazards of pool water treatment and maintenance chemicals (e.g., chlorine), and the protective measures pool owners should take to prevent fires, toxic vapor releases, and injuries. Triggered by improper wetting, mixing, or self-reactivity over time.

  3. Regulatory Requirements to Combat Illicit Trafficking of Hazardous Materials

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Zakaria, Kh.M.

    2011-01-01

    Since more than a decade illicit Trafficking of hazardous ( CBRNE), materials ( chemical, biological, radiological, nuclear and explosive ) has been identified as a key threat in national, regional, inter regional and international strategies. An Effective response to hazardous materials (CBRNE) risk and threat were realized to require a very high level of cooperation and coordination between various governments and their responsible organizations and authorities of regional and international partner. While improper policy of actions may easily be exploited by non- state members to (CBRNE) trafficking which may lead to develop weapon of mass destruction (WMD). Such strategy are of paramount important between all levels of the states and among regional agreements through comprehensive tailored assistance packages (e.g. export control, illicit trafficking of hazardous materials, redirection of scientist, emergency planning, crisis response safety and security culture. Capacity building, action plans and instruments for stability are necessary actions for efficient combating against illicit trafficking of hazardous materials. Regarding the needs of assessment phase, assistance must be based on data collection, analysis and prioritization of implanting the regulatory controls. Several activities have to be conducted to reduce CBRNE threat. The one- by- one approach, covering either nuclear and radioactive or chemical or biological materials has to be implanted on the country basis performance to mitigate CBRNE hazardous risk. On several consequent phases of intervention dealing with CBRNE risk mitigation the country has to establish a network of local, regional and international capabilities. Such network is setting up the mechanism for the country needs identifications, the guidelines for data collection, for data platform maintenance and update, the data assessment and the competent and operative organizations. This network will be to strengthen the long - term

  4. Robotics and artificial intelligence for hazardous environments

    International Nuclear Information System (INIS)

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics

  5. Fundamental problems on immiscibility, crystallization, and chemical interaction between stainless steel 304 and glasses for radioactivewaste glasses

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Yokoyama, Hayaichi

    1982-01-01

    Immiscibility and crystallization, and chemical interaction with stainless steel, SUS 304, which is designed as a canister material, were investigated on non-radioactive glasses with simulated waste of 26.4 wt%. Although glasses whose initial color was black changed to yellow or yellow-brown by heat-treatment at 600 0 C, the change of color was hardly observed by the treatment at 850 0 C. Molybdenum oxide and molybdate were detected in all heat-treated glasses. It was deduced that the compounds were existing as meta-stable particle corresponding to immiscibility particle at 600 0 C and as stable crystallized particle at 850 0 C. The chemical interaction occurred at the interface between glasses and SUS 304, whose surface was attacked by boundary corrosion proceeding to uniform corrosion with increasing temperature and time. Chromium oxide layer was mainly formed in the region suffered chemical interaction. It was deduced that the chemical interaction was moderated due to the formation of protective layer, which mainly consisted of nickel oxide, at the same time as the formation of Cr 2 O 3 layer. (author)

  6. MEANS OF CHEMICAL RECONNAISSANCE AND CONTROL IN THE FIGHT AGAINST CBRN TERRORISM

    Directory of Open Access Journals (Sweden)

    Dušan VIČAR

    2013-01-01

    Full Text Available The chemical, biological, radiological and nuclear terrorism (CBRN terrorism is a special form of terrorism known for its extraordinary efficiency as superterrorism or ultra-terrorism. Detection and identification of the presence of hazardous chemical toxic substances is very difficult and can be achieved only by using advanced detection and monitoring instruments and devices that are currently only in the equipment of units of the Fire and Rescue Service of the Czech Republic and some units of the chemical troops of the Czech Army. Instigators of chemical terrorism count on the surprise factor, as well as on the difficulty and great delay in detecting the presence of hazardous chemical toxic substances. Therefore, for early warning of the population and minimization of consequences of a terrorist attack with the use of hazardous chemicals, the ability of early detection and subsequent identification is very important.

  7. Methodology for national risk analysis and prioritization of toxic industrial chemicals.

    Science.gov (United States)

    Taxell, Piia; Engström, Kerstin; Tuovila, Juha; Söderström, Martin; Kiljunen, Harri; Vanninen, Paula; Santonen, Tiina

    2013-01-01

    The identification of chemicals that pose the greatest threat to human health from incidental releases is a cornerstone in public health preparedness for chemical threats. The present study developed and applied a methodology for the risk analysis and prioritization of industrial chemicals to identify the most significant chemicals that pose a threat to public health in Finland. The prioritization criteria included acute and chronic health hazards, physicochemical and environmental hazards, national production and use quantities, the physicochemical properties of the substances, and the history of substance-related incidents. The presented methodology enabled a systematic review and prioritization of industrial chemicals for the purpose of national public health preparedness for chemical incidents.

  8. Sustainable hazardous substances management in the supply chain

    NARCIS (Netherlands)

    Veenvliet, H.; Valk, van der W.; Weele, van A.J.; Esposito, E.

    2012-01-01

    Being compliant to legal hazardous substances regulations is difficult for multinational companies that have a global network of suppliers. The presence of these chemicals has to be monitored throughout the supply chain often even up until the raw materials suppliers. Companies have also to deal

  9. Chemical hygiene plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan was written to administer and monitor safety measures and chemical hygiene principles in the TAC Uranium Mill Tailing Remedial Action Project sample preparation facility in Albuquerque, New Mexico. It applies to toxic and/or hazardous materials to radioactive materials

  10. Fluorescent X-ray computed tomography using synchrotron radiation for imaging nonradioactive tracer materials

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Masahiro; Yuasa, Tetsuya; Uchida, Akira; Akatsuka, Takao [Yamagata Univ., Yonezawa (Japan). Electrical and Information of Engineering; Takeda, Tohoru; Hyodo, Kazuyuki; Itai, Yuji

    1997-09-01

    We describe a system of fluorescent X-ray computed tomography using synchrotron radiation (SR-FXCT) to image nonradioactive contrast materials. The system operates on the basis of computed tomography (CT) scanned by the pencil beam. In the previous experiment, we have imaged an acrylic cylindrical phantom with cross-shaped channel, filled with a diluted iodine-based tracer material of 200 {mu}g/ml. This research is aimed to improve image quality, to select the optimum energy of the incident X-ray, to confirm quantitative evaluation of the image, and to demonstrate FXCT image for living body. First, we simulated output energy profile by the Monte Carlo simulation and confirmed to predetermine the incident X-ray energy at 37 keV, in order to separate the fluorescent photons from background scattering components. Next, the imaging experiment was performed by using conventional CT algorithm under the optimum parameter at the Tristan Accumulation Ring, KEK, Japan. An acrylic phantom containing five paraxial channels of 5 and 4 mm in diameter, could be imaged; where each channel was respectively filled with diluted iodine-based contrast materials of 50, 100, 200 and 500 {mu}g/ml. From the reconstructed image, we confirmed quantitativity in the FXCT image. Finally, a rat`s brain was imaged in vitro by FXCT and monochromatic transmission CT. The comparison between these results showed that the iodine-rich region in the FXCT image corresponded with that in the monochromatic transmission CT image. (author)

  11. Household hazardous waste in municipal landfills: contaminants in leachate

    International Nuclear Information System (INIS)

    Slack, R.J.; Gronow, J.R.; Voulvoulis, N.

    2005-01-01

    Household hazardous waste (HHW) includes waste from a number of household products such as paint, garden pesticides, pharmaceuticals, photographic chemicals, certain detergents, personal care products, fluorescent tubes, waste oil, heavy metal-containing batteries, wood treated with dangerous substances, waste electronic and electrical equipment and discarded CFC-containing equipment. Data on the amounts of HHW discarded are very limited and are hampered by insufficient definitions of what constitutes HHW. Consequently, the risks associated with the disposal of HHW to landfill have not been fully elucidated. This work has focused on the assessment of data concerning the presence of hazardous chemicals in leachates as evidence of the disposal of HHW in municipal landfills. Evidence is sought from a number of sources on the occurrence in landfill leachates of hazardous components (heavy metals and xenobiotic organic compounds [XOC]) from household products and the possible disposal-to-emissions pathways occurring within landfills. This review demonstrates that a broad range of xenobiotic compounds occurring in leachate can be linked to HHW but further work is required to assess whether such compounds pose a risk to the environment and human health as a result of leakage/seepage or through treatment and discharge

  12. Assessment of pneumoconiosis hazards associated with mining operations in coal mines. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Menyailo, N I; Petul' ko, S N

    1984-07-01

    Methods are discussed for evaluating hazards of pneumoconiosis in underground coal mines. Pneumoconiosis hazards are decisively influenced by: content of respirable dusts in mine air at a working place, dust composition, temperature and time of a miner's contact with dusts. The following classification of pneumoconiosis hazards is used in the USSR: low hazards when a miner is endangered by pneumoconiosis after 20 years or more, medium hazards when pneumoconiosis may occur after 10 to 20 years, high pneumoconiosis hazards when a miner is endangered by pneumoconiosis after less than 10 years of contact with dusts. High air temperature in deep coal mines increases pneumoconiosis hazards: when temperature exceeds 26 C a temperature increase of 1 C causes a 10% increase in dust chemical activity. Safety standards which describe the maximum permissible dust level in coal mine air in the USSR, the FRG, France and Poland are compared.

  13. Use of Putative Adverse Outcome Pathways for Chemical Hazard Identification

    Science.gov (United States)

    The Adverse Outcome Pathway (AOP) framework provides a knowledge infrastructure for evaluating health effects of environmental chemicals. In this work we are examining proof-of-concept issues in the development and prospective application of AOPs in chemical safety. Key outputs i...

  14. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  15. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  16. The Scientific Management of Hazardous Wastes

    Science.gov (United States)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  17. Hazards of chemical weapons release during war: new perspectives.

    Science.gov (United States)

    Reutter, S

    1999-01-01

    The two major threat classes of chemical weapons are mustard gas and the nerve agents, and this has not changed in over 50 years. Both types are commonly called gases, but they are actually liquids that are not remarkably volatile. These agents were designed specifically to harm people by any route of exposure and to be effective at low doses. Mustard gas was used in World War I, and the nerve agents were developed shortly before, during, and after World War II. Our perception of the potency of chemical weapons has changed, as well as our concern over potential effects of prolonged exposures to low doses and potential target populations that include women and children. Many of the toxicologic studies and human toxicity estimates for both mustard and nerve agents were designed for the purpose of quickly developing maximal casualties in the least sensitive male soldier. The "toxicity" of the chemical weapons has not changed, but our perception of "toxicity" has. PMID:10585902

  18. Chemical Hygiene Plan for Onsite Measurement and Sample Shipping Facility Activities

    International Nuclear Information System (INIS)

    Price, W.H.

    1998-01-01

    This chemical hygiene plan presents the requirements established to ensure the protection of employee health while performing work in mobile laboratories, the sample shipping facility, and at the onsite radiological counting facility. This document presents the measures to be taken to promote safe work practices and to minimize worker exposure to hazardous chemicals. Specific hazardous chemicals present in the mobile laboratories, the sample shipping facility, and in the radiological counting facility are presented in Appendices A through G

  19. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  20. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  1. 78 FR 33894 - Proposed Information Collection (Open Burn Pit Registry Airborne Hazard Self-Assessment...

    Science.gov (United States)

    2013-06-05

    ... chemicals and fumes caused by open burn pits. DATES: Written comments and recommendations on the proposed... to ``OMB Control No. 2900-NEW, Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire.... Title: Open Burn Pit Registry Airborne Hazard Self-Assessment Questionnaire, VA Form 10-10066. OMB...

  2. Effects of toxic chemicals on the reproductive system. Council on Scientific Affairs.

    Science.gov (United States)

    1985-06-21

    In an effort to make physicians more aware of the hazards of the workplace to pregnant workers, the Council on Scientific Affairs' Advisory Panel on Reproductive Hazards in the Workplace prepared this third and final report reviewing the effects of chemical exposure. A total of 120 chemicals were considered for reviews based on an estimation of their imminent hazard, ie, widespread use and/or inherent toxicity. Following a brief introduction, which sets out general principles, clinical applications, and aids to the recognition of a human teratogen, the report presents reviews and opinions for three representative chemicals. Information concerning the remaining 117 compounds is available upon request.

  3. New set of Chemical Safety rules

    CERN Multimedia

    HSE Unit

    2011-01-01

    A new set of four Safety Rules was issued on 28 March 2011: Safety Regulation SR-C ver. 2, Chemical Agents (en); General Safety Instruction GSI-C1, Prevention and Protection Measures (en); General Safety Instruction GSI-C2, Explosive Atmospheres (en); General Safety Instruction GSI-C3, Monitoring of Exposure to Hazardous Chemical Agents in Workplace Atmospheres (en). These documents form part of the CERN Safety Rules and are issued in application of the “Staff Rules and Regulations” and of document SAPOCO 42. These documents set out the minimum requirements for the protection of persons from risks to their occupational safety and health arising, or likely to arise, from the effects of hazardous chemical agents that are present in the workplace or used in any CERN activity. Simultaneously, the HSE Unit has published seven Safety Guidelines and six Safety Forms. These documents are available from the dedicated Web page “Chemical, Cryogenic and Biological Safety&...

  4. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Lunu, Shyam; Kumar, Hemant; Joshi, Pankaj Kumar; Songara, Venkteshwer

    2012-01-01

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  5. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.

    NARCIS (Netherlands)

    Chen, Guangchao; Peijnenburg, Willie; Xiao, Yinlong; Vijver, Martina G

    2017-01-01

    As listed by the European Chemicals Agency, the three elements in evaluating the hazards of engineered nanomaterials (ENMs) include the integration and evaluation of toxicity data, categorization and labeling of ENMs, and derivation of hazard threshold levels for human health and the environment.

  6. Modern concepts of treatment and prevention of chemical injuries.

    Science.gov (United States)

    Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B; Werner, Charles L; Gubler, K Dean

    2005-01-01

    Chemical injuries are commonly encountered following exposure to acids and alkali, including hydrofluoric acid, formic acid, anhydrous ammonia, cement, and phenol. Other specific agents that cause chemical burns include white phosphorus, elemental metals, nitrates, hydrocarbons, and tar. Even though there are more than 65,000 chemicals available on the market, and an estimated 60,000 new chemicals produced each year, the potential deleterious effects of these chemicals on humans are still unknown. The Superfund Amendments and Reauthorization Act contains extensive provisions for emergency planning and the rights of communities to know about toxic chemical releases. Since 1990, the Agency for Toxic Substances and Disease Registry (ATSDR) has maintained an active, state-based Hazardous Substances Emergency Events Surveillance (HSEES) system to describe the public health consequences risked by access to hazardous chemicals. Most chemical agents damage the skin by producing a chemical reaction rather than hyperthermic injury. Although some chemicals produce considerable heat as a result of an exothermic reaction when they come in contact with water, their ability to produce direct chemical changes on the skin accounts for the most skin injury. Specific chemical changes depend on the agent, including acids, alkalis, corrosives, oxidizing and reducing agents, desiccants, vesicants, and protoplasmic poisons. The concentration of toxic agent and duration of its contact primarily determine degree of skin destruction. Hazardous materials (hazmats) are substances that may injure life and damage the environment if improperly handled. HAZMAT accidents are particularly dangerous for responding personnel, who are in danger from the moment of arrival on the scene until containment of the accident. Consequently, the Superfund Amendment and Reauthorization Act mandates community preparedness for dealing with hazmat accidents. Paramedics and members of the hazmat response team

  7. Management response plan for the Chemical Safety Vulnerability Working Group report. Volume 1

    International Nuclear Information System (INIS)

    1994-09-01

    The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 146 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains a discussion of the chemical safety improvements planned or already underway at DOE sites to correct facility or site-specific vulnerabilities. The main part of the report is a discussion of each of the programmatic deficiencies; a description of the tasks to be accomplished; the specific actions to be taken; and the organizational responsibilities for implementation

  8. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  9. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.; Chang, Y.S.

    1996-12-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II) and presents the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  10. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  11. Evaluating the Effects of Chemicals on Nervous System Development

    Science.gov (United States)

    There are thousands of chemicals that lack data on their potential effects on neurodevelopment. EPA is developing New Approach Methods to evaluate these chemicals for developmental neurotoxicity hazard.

  12. Controlled air incineration of hazardous chemical waste at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stretz, L.A.; Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Vavruska, J.S.

    1982-01-01

    An incineration system, originally demonstrated as a transuranic (TRU) waste volume-reduction process, is described. The production-scale controlled air incinerator using commercially available equipment and technology was modified for solid radioactive waste service. The same incinerator and offgas treatment system has been modified further for use in evaluating the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood. Results of a PCP-treated wood incineration test show a PCP destruction efficiency of greater than 99.99% in the primary chamber for the operating conditions investigated. Conditions and results for this test are described

  13. Fate and monitoring of hazardous substances in temporary rivers

    NARCIS (Netherlands)

    Ademollo, N.; Capri, S.; Froebrich, J.; Patrolecco, L.; Polesello, S.; Puddu, A.; Rusconi, M.; Valsecchi, S.

    2011-01-01

    Under climate-change conditions, temporary rivers will be the dominant surface-water bodies of the Mediterranean region. In order to manage this kind of water body appropriately, it is necessary to understand the chemical and ecological processes that involve hazardous substances in these

  14. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  15. Occupational hazards and illnesses of Filipino women workers in export processing zones.

    Science.gov (United States)

    Lu, Jinky Leilanie

    2008-01-01

    This was a baseline study on occupational exposure and health problems among women workers in export processing zones. Physical, chemical, and ergonomic hazards were evaluated and measured through workplace ambient monitoring, survey questionnaires, and interviews with 500 respondents in 24 companies (most were female at 88.8%). The top 5 hazards were ergonomic hazards (72.2%), heat (66.6%), overwork (66.6%), poor ventilation (54.8%), and chemical exposure (50.8%). The most common illnesses were gastrointestinal problems (57.4%), backache (56%), headache (53.2%), and fatigue/weakness (53.2%). Logistic regression showed an association between certain work-related factors and occupational illnesses, and psychosocial problems. Highly significant associations were hearing loss with years spent in the company (p=.005) and gender (p=.006), headache and dizziness with poor ventilation (p=.000), backache with prolonged work (p=.003). These results will have implications for policy and program formulation for women workers' concerns and issues in export zones.

  16. An evaluation of three representative multimedia models used to support cleanup decision-making at hazardous, mixed, and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.

    1996-01-01

    The decision process involved in cleaning sites contaminated with hazardous, mixed, and radioactive materials is supported often by results obtained from computer models. These results provide limits within which a decision-maker can judge the importance of individual transport and fate processes, and the likely outcome of alternative cleanup strategies. The transport of hazardous materials may occur predominately through one particular pathway but, more often, actual or potential transport must be evaluated across several pathways and media. Multimedia models are designed to simulate the transport of contaminants from a source to a receptor through more than one environmental pathway. Three such multimedia models are reviewed here: MEPAS, MMSOILS, and PRESTO-EPA-CPG. The reviews are based on documentation provided with the software, on published reviews, on personal interviews with the model developers, and on model summaries extracted from computer databases and expert systems. The three models are reviewed within the context of specific media components: air, surface water, ground water, and food chain. Additional sections evaluate the way that these three models calculate human exposure and dose and how they report uncertainty. Special emphasis is placed on how each model handles radionuclide transport within specific media. For the purpose of simulating the transport, fate and effects of radioactive contaminants through more than one pathway, both MEPAS and PRESTO-EPA-CPG are adequate for screening studies; MMSOILS only handles nonradioactive substances and must be modified before it can be used in these same applications. Of the three models, MEPAS is the most versatile, especially if the user needs to model the transport, fate, and effects of hazardous and radioactive contaminants. 44 refs., 2 tabs

  17. Evaluation for leaded and unleaded Gasoline as Hazardous Waste

    International Nuclear Information System (INIS)

    Abou El Naga, H.H.

    1999-01-01

    With the phase out of alkyl lead compounds as necessary additives for gasoline in order to raise its octane number , the alternative is to reformulate gasoline to have nearly same octane number but with other chemical structures. Such reformulated gasoline (RFG) is found to contain higher aromatics, benzene, iso paraffins, in comparison to leaded gasoline. Additionally, this reformulated gasoline can also contain oxygenated additives. Accordingly, this paper is aiming at evaluation of emitted hazardous chemical compounds from car engines at fuel combustion. Role of chemical structures for reformulated gasoline in emission of volatile organic compounds (VOC) and poisoning materials are considered

  18. 78 FR 48029 - Improving Chemical Facility Safety and Security

    Science.gov (United States)

    2013-08-07

    ... Improving Chemical Facility Safety and Security By the authority vested in me as President by the... at reducing the safety risks and security risks associated with hazardous chemicals. However... to further improve chemical facility safety and security in coordination with owners and operators...

  19. Inventory of the chemicals and the exposure of the workers' skin to these at two leather factories in Indonesia

    NARCIS (Netherlands)

    Febriana, Sri Awalia; Jungbauer, Frank; Soebono, Hardyanto; Coenraads, Pieter-Jan

    Tannery workers are exposed to hazardous chemicals. Tannery work is outsourced to newly industrialized countries (NICs) where attention into occupational health hazards is limited. In this study, we investigated the skin exposure to hazardous chemicals in tannery workers and determined the

  20. Risk assessment for the transportation of hazardous waste and hazardous waste components of low-level mixed waste and transuranic waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Lazaro, M.A.; Policastro, A.J.; Hartmann, H.M.

    1995-04-01

    This report, a supplement to Appendix E (Transportation Risk) of the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS), provides additional information supporting the accident data for chemical risk assessment and health risk methodology described in that appendix (Part II), as well as providing the uncertainty analysis and on-site risk calculations. This report focuses on hazardous material truck accident rates, release probabilities, and release quantities; provides the toxicological values derived for each hazardous chemical assessed in the WM PEIS and further details on the derivation of health criteria; describes the method used in the transportation risk assessments to address potential additivity of health effects from simultaneous exposure to several chemicals and the method used to address transportation risks for maximally exposed individuals; presents an expanded discussion of the uncertainty associated with transportation risk calculations; and includes the results of the on-site transportation risk analysis. In addition, two addenda are provided to detail the risk assessments conducted for the hazardous components of low-level mixed waste (Addendum I) and transuranic waste (Addendum II)

  1. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

    Science.gov (United States)

    Rochman, Chelsea M.; Hoh, Eunha; Kurobe, Tomofumi; Teh, Swee J.

    2013-01-01

    Plastic debris litters aquatic habitats globally, the majority of which is microscopic (plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants. PMID:24263561

  2. 40 CFR Table 2 to Subpart Jj of... - List of Volatile Hazardous Air Pollutants

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false List of Volatile Hazardous Air Pollutants 2 Table 2 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... JJ, Table 2 Table 2 to Subpart JJ of Part 63—List of Volatile Hazardous Air Pollutants Chemical name...

  3. Taking into account chemical safety for French basic nuclear installations

    International Nuclear Information System (INIS)

    Tabard, Laurence; Conte, Dorothee

    2013-01-01

    Among nuclear installations, some fuel cycle facilities present a high level of chemical hazards. In France, the TSN law of the 13 June 2006 requires taking into account all the risks generated by a basic nuclear installation (BNI). But, as most of the implementing regulatory texts are under development at this time, part of the previous regulation settled down in the 1990's is still applying: the order of the 31 December 1999 concerning technical regulation in order to prevent and to limit hazards generated by nuclear facilities; the decree of the 4 May 1995 and the order of the 26 November 1999 that deal with BNI discharges. Moreover, some parts of BNI or of nuclear sites can be submitted to the general regulation concerning chemical hazards, which is part of the environment code. As a result, even if the TSN law and its implementing decree Nr 2007-1557 of the 2 November 2007 settle clearly that safety of BNI is not only radiological, but must take into account chemical hazards, the latter aspects are still under development. Moreover the application of the existing regulation, even if complex, has helped to assess chemical risks inside BNI and nuclear sites. (authors)

  4. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    Brunel, G.; Gauchon, J.P.; Kervegant, Y.; Josso, F.

    1991-01-01

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  5. Safety (management and technology). Safety of chemical materials; Anzen (manejimento to tekunoroji). Kagaku busshitsu no anzensei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T. [Hosei Univ., Tokyo (Japan). Faculty of Engineering

    1994-08-05

    In chemical materials there exist hazardous materials causing health damages, environmental pollution, fires and explosions. The hazard analysis has been noted as a means for preventing accidents due to chemical materials. This means leads to an effective method of recognizing hazard, evaluating the risk, and lowering the degree of hazard to an allowable level. This paper describes a hazard analysis of autoreactive materials, out of chemical materials causing fires and explosions, which may react by theirselves and cause accidents. In particular, an example is introduced in which this hazard analysis method is adapted to an experimental production of the next generation gas generating agent for automobile collision safety air-bags. In this manufacturing process, in kneading and granulating processes where lots of materials are handled, materials are used in a moistened state, thus countermeasures for preventing occurrence of combustion and explosion being taken. 5 refs., 2 figs., 4 tabs.

  6. [Information content of immunologic parameters in the evaluation of the effects of hazardous substances].

    Science.gov (United States)

    Litovskaia, A V; Sadovskiĭ, V V; Vifleemskiĭ, A B

    1995-01-01

    Clinical and immunologic examination including 1 and 2 level tests covered 429 staffers of chemical enterprises and 1122 of those engaged into microbiological synthesis of proteins, both the groups exposed to some irritating gases and isocyanates. Using calculation of Kulbak's criterion, the studies selected informative parameters to diagnose immune disturbances caused by occupational hazards. For integral evaluation of immune state, the authors applied general immunologic parameter, meanings of which can serve as criteria for early diagnosis of various immune disorders and for definition of risk groups among industrial workers exposed to occupational biologic and chemical hazards.

  7. Chemical Accident Prevention: Site Security

    Science.gov (United States)

    This chemical safety alert assists facilities that routinely handle extremely hazardous substances, along with SERCs, LEPCs, and emergency responders, in their efforts to reduce criminally caused releases and vulnerability to terrorist activity.

  8. Options for the destruction of chemical weapons and management of the associated risks.

    Science.gov (United States)

    Manley, Ron G

    2006-09-01

    The destruction of chemical weapons is a hazardous operation. The degree of hazard posed, however, is not uniform and is dependent on the specific chemical agent and the configuration of the weapon or bulk storage vessel in which it is contained. For example, a highly volatile nerve agent in an explosively configured munition, such as a rocket, poses a very different hazard from that of a bulk storage container of viscous mustard gas. Equally the handling of recovered, often highly corroded, World War (WW)I or WWII chemical munitions will pose a very different hazard from that associated with dealing with modern chemical weapons stored under the appropriate conditions. Over the years, a number of technologies have been developed for the destruction of chemical weapons. Each has its advantages and disadvantages. None of them provide a universal solution to the problem. When assessing options for the destruction of these weapons and the management of the associated risks, therefore, it is important to give due consideration and weight to these differences. To ensure that the destruction technology selected takes due account of them and that the resulting overall risk assessment accurately reflects the actual risks involved.

  9. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters

  10. Transparency of chemical risk assessment data under REACH.

    Science.gov (United States)

    Ingre-Khans, Ellen; Ågerstrand, Marlene; Beronius, Anna; Rudén, Christina

    2016-12-08

    The REACH regulation requires EU manufacturers and importers of substances to register information on the hazard and risk of their substances with the European Chemicals Agency (ECHA). Risk management of the substances is based on the provided information. It is known that conclusions on hazard and risk are influenced by expert judgements as well as potential conflict of interests. Thus, it is important that hazard and risk assessments are transparent and can be evaluated by a third party. The aim of this study is to scrutinize the transparency, i.e. the accessibility and comprehensibility, of information on substances registered under REACH. Data on repeated dose toxicity and hazard assessment conclusions were extracted for 60 substances from the REACH registration database available on the ECHA website. The data were compiled in a database for systematically evaluating the transparency of information related to the conclusions on hazard or risk. In addition, chemical safety reports (CSR) were requested from ECHA for five substances. The transparency of information on the hazard and risk of substances was found to be limited for several reasons. First, certain information was removed due to confidentiality and certain fields were not published because they could contain confidential information although the information had not been claimed confidential. Also, the extent to which registrants reported information varied, and the presentation of some data and certain terminology required further clarification. In addition, the data source for the majority of the key and supporting studies could not be identified due to confidentiality. Since registrants are only required to summarise studies, it cannot be verified whether all relevant information from non-public industry reports have been reported. Lastly, certain information related to the hazard and risk assessment were only reported in the CSR which is only available upon request; a time-consuming and work

  11. A methodology for ranking and hazard identification of xenobiotic organic compounds in urban stormwater

    DEFF Research Database (Denmark)

    Baun, Anders; Eriksson, Eva; Ledin, Anna

    2006-01-01

    The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICHmethod is illustrated as a funnel fitted with different filters...... in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals...... with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks....

  12. Comprehension of hazard communication: effects of pictograms on safety data sheets and labels.

    Science.gov (United States)

    Boelhouwer, Eric; Davis, Jerry; Franco-Watkins, Ana; Dorris, Nathan; Lungu, Claudiu

    2013-09-01

    The United Nations has proposed the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals to make hazard communication more uniform and to improve comprehension. Two experiments were conducted to test whether the addition of hazard and precautionary pictograms to safety data sheets and product labels would improve the transfer of information to users compared to safety data sheets and product labels containing text only. Additionally, naïve users, workers, and experts were tested to determine any potential differences among users. The effect of adding pictograms to safety data sheets and labels was statistically significant for some conditions, but was not significant across all conditions. One benefit of the addition of pictograms was that the time to respond to the survey questions decreased when the pictograms were present for both the SDS and the labels. GHS format SDS and labels do provide benefits to users, but the system will need further enhancements and modifications to continue to improve the effectiveness of hazard communication. The final rule to modify the HCS to include the Globally Harmonized System (GHS) for the Classification and Labelling of Chemicals announced by OSHA (2012b) will change the information content of every chemical SDS and label used in commerce. This study suggests that the inclusion of GHS hazard pictograms and precautionary pictograms to SDS and labels may benefit the user. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome.

    Science.gov (United States)

    Tomassoni, Anthony J; French, Robert N E; Walter, Frank G

    2015-02-01

    Toxidromes aid emergency care providers in the context of the patient presenting with suspected poisoning, unexplained altered mental status, unknown hazardous materials or chemical weapons exposure, or the unknown overdose. The ability to capture an adequate chemical exposure history and to recognize toxidromes may reduce dependence on laboratory tests, speed time to delivery of specific antidote therapy, and improve selection of supportive care practices tailored to the etiologic agent. This article highlights elements of the exposure history and presents selected toxidromes that may be caused by toxic industrial chemicals and chemical weapons. Specific antidotes for toxidromes and points regarding their use, and special supportive measures, are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Toxic chemical risk acceptance criteria

    International Nuclear Information System (INIS)

    Craig, D.K.; Davis, J.; Lee, L.; Lein, P.; Omberg, S.

    1992-01-01

    This paper presents recommendations of a subcommittee of the Westinghouse M ampersand 0 Nuclear Facility Safety Committee concerning toxic chemical risk acceptance criteria. Two sets of criteria have been developed, one for use in the hazard classification of facilities, and the second for use in comparing risks in DOE non-reactor nuclear facility Safety Analysis Reports. The Emergency Response Planning Guideline (ERPG) values are intended to provide estimates of concentration ranges for specific chemicals above which exposure would be expected to lead to adverse heath effects of increasing severity for ERPG-1, -2, and -3s. The subcommittee recommends that criteria for hazard class or risk range be based on ERPGs for all chemicals. Probability-based Incremental Cancer Risk (ICR) criteria are recommended for additional analyses of risks from all known or suspected human carcinogens. Criteria are given for both on-site and off-site exposure. The subcommittee also recommends that the 5-minute peak concentration be compared with the relevant criterion with no adjustment for exposure time. Since ERPGs are available for only a limited number of chemicals, the subcommittee has developed a proposed hierarchy of concentration limit parameters for the different criteria

  15. The Hazard Analysis and Critical Control Points (HACCP) generic model for the production of Thai fermented pork sausage (Nham).

    Science.gov (United States)

    Paukatong, K V; Kunawasen, S

    2001-01-01

    Nham is a traditional Thai fermented pork sausage. The major ingredients of Nham are ground pork meat and shredded pork rind. Nham has been reported to be contaminated with Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. Therefore, it is a potential cause of foodborne diseases for consumers. A Hazard Analysis and Critical Control Points (HACCP) generic model has been developed for the Nham process. Nham processing plants were observed and a generic flow diagram of Nham processes was constructed. Hazard analysis was then conducted. Other than microbial hazards, the pathogens previously found in Nham, sodium nitrite and metal were identified as chemical and physical hazards in this product, respectively. Four steps in the Nham process have been identified as critical control points. These steps are the weighing of the nitrite compound, stuffing, fermentation, and labeling. The chemical hazard of nitrite must be controlled during the weighing step. The critical limit of nitrite levels in the Nham mixture has been set at 100-200 ppm. This level is high enough to control Clostridium botulinum but does not cause chemical hazards to the consumer. The physical hazard from metal clips could be prevented by visual inspection of every Nham product during stuffing. The microbiological hazard in Nham could be reduced in the fermentation process. The critical limit of the pH of Nham was set at lower than 4.6. Since this product is not cooked during processing, finally, educating the consumer, by providing information on the label such as "safe if cooked before consumption", could be an alternative way to prevent the microbiological hazards of this product.

  16. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    REACTIVITY OF DUAL-USE DECONTAMINANTS WITH CHEMICAL WARFARE AGENTS ECBC-TR-1384... Decontaminants with Chemical Warfare Agents 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Willis, Matthew P...extraction) of chemical warfare agents from materials. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent Liquid-phase

  17. Potential biological hazard of importance for HACCP plans in fresh fish processing

    Directory of Open Access Journals (Sweden)

    Baltić Milan Ž.

    2009-01-01

    Full Text Available The Hazard Analysis and Critical Control Point (HACCP system is scientifically based and focused on problem prevention in order to assure the produced food products are safe to consume. Prerequisite programs such as GMP (Good Manufacturing Practices, GHP (Good Hygienic Practices are an essential foundation for the development and implementation of successful HACCP plans. One of the preliminary tasks in the development of HACCP plan is to conduct a hazard analysis. The process of conducting a hazard analysis involves two stages. The first is hazard identification and the second stage is the HACCP team decision which potential hazards must be addressed in the HACCP plan. By definition, the HACCP concept covers all types of potential food safety hazards: biological, chemical and physical, whether they are naturally occurring in the food, contributed by the environment or generated by a mistake in the manufacturing process. In raw fish processing, potential significant biological hazards which are reasonably likely to cause illness of humans are parasites (Trematodae, Nematodae, Cestodae, bacteria (Salmonella, E. coli, Vibrio parahemolyticus, Vibrio vulnificus, Listeria monocytogenes, Clostridium botulinum, Staphyloccocus aureus, viruses (Norwalk virus, Entero virusesi, Hepatitis A, Rotovirus and bio-toxins. Upon completion of hazard analysis, any measure(s that are used to control the hazard(s should be described.

  18. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed

  19. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: vasconv@cdtn.br; reissc@cdtn.br; aclc@cdtn.br; Jordao, Elizabete [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica]. E-mail: bete@feq.unicamp.br

    2008-07-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  20. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da; Jordao, Elizabete

    2008-01-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost