WorldWideScience

Sample records for nonradioactive dangerous waste

  1. 616 Nonradioactive Dangerous Waste Storage Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this storage unit, including the Part A included with this document, is provided at the beginning of the Part A Section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings. The 616 Nonradioactive Dangerous Waste Storage Facility Dangerous Waste Permit Application (Revision 0) was submitted to the Washington State Department of Ecology and the US Environmental Protection Agency on July 31, 1989. Revision 1, addressing Washington State Department of Ecology review comments made on Revision 0 dated November 21, 1989, and March 23, 1990, was submitted on June 22, 1990. This submittal, Revision 2, addresses Washington State Department of Ecology review comments made on Revision 1, dated June 22, 1990, August 30, 1990, December 18, 1990, and July 8, 1991

  2. Nonradioactive Dangerous Waste Landfill supplemental information to the Hanford Facility Contingency Plan (DOE/RL-93-75)

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-05-01

    This document is a unit-specific contingency plan for the Nonradioactive Dangerous Waste Landfill and is intended to be used as a supplement to DOE/RL-93-75, 'Hanford Facility Contingency Plan.' This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of the Washington Administrative Code, Chapter 173-303 for certain Resource, Conservation and Recovery Act of 1976 waste management units. The Nonradioactive Dangerous Waste Landfill (located approximately 3.5 miles southeast of the 200 East Area at the Hanford Site) was used for disposal of nonradioactive dangerous waste from January 1975 to May 1985. Currently, there are no dangerous waste streams disposed in the Nonradioactive Dangerous Waste Landfill. Dangerous waste management activities are no longer required at the landfill. The landfill does not present a significant hazard to adjacent units, personnel, or the environment. It is unlikely that incidents presenting hazards to public health or the environment would occur at the Nonradioactive Dangerous Waste Landfill

  3. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1994-04-01

    This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification

  4. 2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    Wilczek, T.A.; Laws, J.R.; Izatt, R.D.

    1992-01-01

    This closure plan describes the activities for final closure of the 2727-S Nonradioactive Dangerous Waste Storage (NRDWS) Facility at the Hanford Site. The 2727-S NRDWS Facility provided container storage for nonradioactive dangerous and extremely hazardous wastes generated in the research and development laboratories, process operations, and maintenance and transportation functions throughout the Hanford Site. Storage operations began at the 2727-S NRDWS Facility March 14, 1983, and continued until December 30, 1986, when the last shipment of materials from the facility took place. These storage operations have been moved to the new 616 NRDWS Facility, which is an interim status unit located between the 200 East and 200 West Areas of the Hanford Site

  5. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    International Nuclear Information System (INIS)

    Lindberg, J.S.; Hartman, M.J.

    1999-01-01

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters

  6. Nonradioactive Dangerous Waste Landfill sampling and analysis plan and data quality objectives process summary report

    International Nuclear Information System (INIS)

    Smith, R.C.

    1997-08-01

    This sampling and analysis plan defines the sampling and analytical activities and associated procedures that will be used to support the Nonradioactive Dangerous Waste Landfill soil-gas investigation. This SAP consists of three sections: this introduction, the field sampling plan, and the quality assurance project plan. The field sampling plan defines the sampling and analytical methodologies to be performed

  7. 616 Nonradioactive Dangerous Waste Storage Facility -- Essential/support drawing list. Revision 2

    International Nuclear Information System (INIS)

    Busching, K.R.

    1994-01-01

    This document identifies the essential and supporting engineering drawings for the 616 Nonradioactive Dangerous Waste Storage Facility. The purpose of the documents is to describe the criteria used to identify and the plan for updating and maintaining their accuracy. Drawings are designated as essential if they relate to safety systems, environmental monitoring systems, effluents, and facility HVAC, electrical, and plumbing systems. Support drawings are those which are frequently used or describe a greater level of detail for equipment, components, or systems shown on essential drawings. A listing of drawings identified as essential or support is provided in Table A

  8. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  9. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 2

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  10. Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2, Chapter 3.0, Waste characteristics supplemental information; Volume 3

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains supplemental information concerning waste characteristics for numerous nonradioactive waste materials. Uniform hazardous waste manifests are included for routine as well as nonroutine waste streams. The manifests contain the following information: waste disposal analysis; general instructions; waste destination; and transportation representatives

  11. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  12. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  13. Proposal of threshold levels for the definition of non-radioactive wastes

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    With increasing amounts of radioactive wastes along with the advances of nuclear power generation and radioactive material utilizations, the needs for management cost reduction and resource saving have arisen. Under the situation, the threshold levels for the definition of non-radioactive solid wastes are required. The problem has been studied by an ad hoc committee in Nuclear Safety Research Association, by the request of the Science and Technology Agency. The matters described are the procedures of deriving the threshold levels, the feasibility studies of the management of waste threshold-level with several enterprises, and future subjects of study. The threshold levels are grouped in two, i.e. the unconditional level and the conditional level. According to the unconditional threshold level, solid wastes are separated definitely into radioactive and non-radioactive ones. According to the conditional threshold level, under certain conditions, some radioactive solid wastes according to the unconditional level are regarded as non-radioactive ones. (J.P.N.)

  14. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  15. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types

  16. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Price, S.M.

    1997-04-30

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  17. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  18. Non-radioactive waste management in a Nuclear Energy Research Institution

    International Nuclear Information System (INIS)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F.

    2013-01-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  19. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  20. PFP dangerous waste training plan

    International Nuclear Information System (INIS)

    Khojandi, J.

    1996-01-01

    This document establishes the minimum training requirements for the Plutonium Finishing Plant (PFP) personnel who are responsible for management of dangerous waste. The training plan outlines training requirements for handling of solid dangerous waste during generator accumulation and liquid dangerous waste during treatment and storage operations. The implementation of this training plan will ensure the PFP facility compliance with the training plan requirements of Dangerous Waste Regulation. Chapter 173-303-330. Washington Administrative Code (WAC). The requirements for such compliance is described in Section 11.0 of WHC-CM-7-5 Environmental Compliance Manual

  1. Can the same principles be used for the management of radioactive and non-radioactive waste?

    International Nuclear Information System (INIS)

    Bengtsson, Gunnar.

    1989-01-01

    Non-radioactive waste has a much more complex composition than radioactive waste and appears in much larger quantities. The two types of waste have, however, some properties in common when it comes to their longterm impact on health and the environment. The occurrence in both of substances that may exist for generations and may cause cancer provides one example. Both types of waste also always occur together. It is therefore proposed that the same basic principles could be applied for the management of radioactive and non-radioactive waste. By doing so one may increase the efficiency of policy development, research and practical management. This is particurlarly importand for the very costly restoration of old disposal sites which have earlier been poorly managed. (author)

  2. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  3. A simple method for the verification of clearance levels for non-radioactive solid waste

    International Nuclear Information System (INIS)

    Holland, B.

    1997-01-01

    ANSTO's radiopharmaceutical production laboratories generate 25 m 3 of solid waste per month. Most of this waste is not radioactive. Up until recently the non-radioactive waste was cleared from the controlled area and stored for 10 halflives prior to disposal as normal solid refuse. To eliminate the storage and ''double handling'' of the large quantities of non-radioactive waste a simple clearance method was devised to allow direct disposal. This paper describes how clearance levels were determined. Here the term ''clearance level'' is used as a general term for the release of material regardless of whether it was previously subject to regulatory control. This contrasts with the IAEA definition of a clearance level and highlights a potential problem with the implementation of exemption levels to keep material out of regulatory control and the use of clearance levels to allow removal of materials from regulatory control. Several common hand held contamination monitors were tested to determine their limits of detection and ability to meet these clearance levels. The clearance method includes waste segregation and size limitation features to ensure the waste is monitored in a consistent manner, compatible with the limits of detection. The clearance levels achieved were subsequently found to be compatible with some of the unconditional clearance levels in IAEA-TECDOC-855 and the measurement method also meets the required features of that document. The ANSTO non-radioactive waste clearance system has been in operation for more than 12 months and has proved simple and effective to operate. Approximately 12m 3 of the solid waste is now been treated directly as normal solid refuse. This paper describes the ANSTO clearance system, the contamination monitor tests and details practical problems associated with the direct monitoring of solid waste, including averaging of the activity in the package. The paper also briefly highlights the potential problem with the use of

  4. Emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes - would geological disposal be an appropriate solution for some of these wastes

    International Nuclear Information System (INIS)

    Rein, K. von

    1994-01-01

    This work deals with the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. After some generalities on the pollution of natural environment and the legislations taken by the swedish government the author tries to answer to the question : would geological disposal be an appropriate solution for the non-radioactive hazardous wastes? Then is given the general discussion of the last three articles concerning the background to current environmental policies and their implementation and more particularly the evolution and current thoughts about environmental policies, the managing hazardous activities and substances and the emerging concepts and requirements for the long-term management of non-radioactive hazardous wastes. Comments and questions concerning the similarity or otherwise between the present position of radioactive waste disposal and the background to current environmental policies are indicated. (O.L.)

  5. The Y-12 Plant No Rad-Added Program for off-site shipment of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    Cooper, K.H.; Mattie, B.K.; Williams, J.L.; Jacobs, D.G.; Roberts, K.A.

    1994-01-01

    On May 17, 1991, the US Department of Energy (DOE) issued a directive for DOE operations to cease off-site shipments of non-radioactive hazardous waste pending further clarification and approvals. A DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste was issued in November 1991. In response to these directives, the Waste Management Division of Oak Ridge Y-12 Plant, with assistance from Roy F. Weston, Inc., has developed a No Rad-Added Program to provide small programmatic guidance and a set of procedures, approved by DOE, which will permit hazardous waste to be shipped from the Y-12 Plant to commercial treatment, storage, or disposal facilities after ensuring and certifying that hazardous waste has no radioactivity added as a result of DOE operations. There are serious legal and financial consequences of shipping waste containing radioactivity to an off-site facility not licensed to receive radioactive materials. Therefore, this program is designed with well-defined responsibilities and stringent documentation requirements

  6. Waste analysis plan for 222-S dangerous and mixed waste storage area

    International Nuclear Information System (INIS)

    Warwick, G.J.

    1994-01-01

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility

  7. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas

  8. 224-T Transuranic Waste Storage and Assay Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-01-01

    Westinghouse Hanford Company is a major contractor to the US Department of Energy Richland Field Office and serves as cooperator of the 224-T Transuranic Waste Storage and Assay Facility, the storage unit addressed in this permit application. At the time of submission of this portion of the Hanford Facility. Dangerous Waste Permit Application covering the 224-T Transuranic Waste Storage and Assay Facility, many issues identified in comments to the draft Hanford Facility Dangerous Waste Permit remain unresolved. This permit application reflects the positions taken by the US Department of Energy, Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application (Revision 0) consists of both a Part A and Part B permit application. An explanation of the Part A revisions associated with this unit, including the Part A revision currently in effect, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987). The 224-T Transuranic Waste Storage and Assay Facility Dangerous Waste Permit Application contains information current as of March 1, 1992

  9. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  10. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  11. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  12. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  13. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  14. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  15. Decree 2211: Standards to control the generation and handling of dangerous wastes

    International Nuclear Information System (INIS)

    1992-01-01

    This Decree has for object to establish the conditions under which should be carried out the activities of generation and handling of dangerous waste, in order to prevent damages to health and to the atmosphere. It includes: definitions; a list of sources of waste; a list of constituent of dangerous waste; the characteristics of danger; a lists of maximum permissible concentrations in leachates, handling of dangerous waste, criterion for transport, monitoring form, storage areas, treatment and final disposition, storage, elimination, incineration, recycling, reuse and recovery, installation and operation of security backfilling, book of waste record, control of activities, obligations in charge of those who manage dangerous waste, and trans border movements of dangerous waste [es

  16. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  17. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  18. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  19. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  20. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  1. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  2. Recovery of nonradioactive palladium and rhodium from high-level radioactive wastes

    International Nuclear Information System (INIS)

    McDuffie, H.F.

    1979-01-01

    A possible method for recovering significant quantities of nonradioactive palladium from fission-product wastes requires essentially complete separation of the fission-product (radioactive) palladium from fission-product ruthenium. After the decay of 106 Ru via 106 Rh to 106 Pd, this nonradioactive palladium is recovered for normal commercial use. The U.S. production of palladium has never been above 1000 kg per year vs consumption of about 46,000 kg per year. Most of the supply comes from Russia and South Africa. It has been estimated that a 400-GW(e) nuclear reactor economy will make available 2000 kg per year of 106 Ru at reactor fuel discharge. A substantial increase might be achieved if plutonium were recycled as fissionable material because of the higher yields of the 106 chain from plutonium. A literature search has uncovered support for three promising approaches to the required separation of palladium from ruthenium: (1) recrystallization from solution in bismuth or in zinc; (2) selective precipitation of a titanium--ruthenium intermetallic compound from bismuth, followed by precipitation of a zinc--palladium intermetallic compound; and (3) dissolution in molten magnesium followed by partitioning between molten magnesium and a molten uranium-5 wt % chromium eutectic at a temperature above 870 0 C. Liquid-liquid extraction appears to be the most promising method from a technological point of view, although intermetallic compound formation is much more interesting chemically. Recovery of some nonradioactive 103 Rh may be possible by liquid-liquid extraction of the fuel before the decay of the 39.8-d 103 Ru has gone substantially to completion. Demonstration of the practicality of these separations will contribute a positive factor to the evaluation of resumption in the United States of nuclear fuel reprocessing and plutonium recycle in light-water-moderated reactors

  3. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  4. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  5. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  6. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  7. Hanford Waste Vitrification Plant Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Facility currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. This Vitrification Plant Dangerous Waste Permit Application, Revision 2, consists of both a Part A and a Part B permit application. An explanation of the Part A revisions, including Revision 4 submitted with this application, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B Checklist prepared by the Washington State Department of Ecology (Ecology 1987)

  8. Low-Level Burial Grounds Dangerous Waste Permit Application

    International Nuclear Information System (INIS)

    1989-01-01

    The single dangerous waste permit identification number issued to the Hanford Site by the US Environmental Protection Agency and the Washington State Department of Ecology is US Environmental Protection Agency/State Identification Number WA 7890008967. This identification number encompasses a number of waste management units within the Hanford Site. Westinghouse Hanford Company is a major contractor to the US Department of Energy-Richland Operations Office and serves as co-operator of the Low-Level Burial Grounds, the waste management unit addressed by this permit application. The Low-Level Burial Grounds Dangerous Waste Permit Application consists of both a Part A and a Part B Permit Application. The original Part A, submitted in November 1985, identified landfills, retrievable storage units, and reserved areas. An explanation of subsequent Part A revisions is provided at the beginning of the Part A section. Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology

  9. River Protection Project (RPP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  10. River Protection Project (RPP) Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    2000-01-01

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E

  11. Hanford facility dangerous waste permit application, general information portion. Revision 3

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1997-01-01

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy's contractors are identified as ''co-operators'' and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ''operator'' elsewhere in the application is not meant to conflict with the contractors' designation as co-operators but rather is based on the contractors' contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  12. Hanford facility dangerous waste permit application, general information portion. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which

  13. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    International Nuclear Information System (INIS)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment

  14. Liquid effluent retention facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix to the Liquid Effluent Retention Facility Dangerous Waste Permit Application contains pumps, piping, leak detection systems, geomembranes, leachate collection systems, earthworks and floating cover systems

  15. Nonradioactive demonstration of the Alpha D and D Pilot Facility

    International Nuclear Information System (INIS)

    Wobser, J.K.

    1983-01-01

    The Alpha-Contained Decontamination and Disassembly (AD and D) pilot facility was designed to demonstrate the process flowsheet under conditions typical to those expected in a production facility. To achieve this, nonradioactive waste items similar to those in retrievable storage at the Savannah River Plant burial ground (e.g. gloveboxes), were chemically sprayed and size reduced. During process runs, parameters such as feed rate, oxide removal, etching rate, and secondary waste generation were determined. The exhaust system was monitored during operation to ensure that exhaust from the facility was sufficiently filtered before release to the atmosphere. The strategy for decontamination techniques required development during the nonradioactive testing period. Under investigation during process runs were both once-through and recirculating washes, and their correlation to oxide removal and etching rates on the stainless steel feed items. Wash products of the decontamination process were analyzed for concentration of Ni, Cr, Fe, Mn, and Si, major components of stainless steel. Size reduction techniques were also developed during the nonradioactive testing period. An array of conventional power and pneumatic tools were tested and evaluated. Plasma arc torch operating parameters; standoff distance, ampere setting, and cutting angle were determined

  16. Hanford facility dangerous waste permit application, general information portion

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report)

  17. 242-A evaporator dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    The 242-A Evaporator is a waste management unit within the Hanford Facility that consists of process vessels and support systems for heating, evaporating, and condensing double-shell tank (DST) waste generated by Hanford Site operations. Operation of the 242-A Evaporator serves to reduce the volume of waste solutions within the DSTs that do not self-boil, while separating inorganic and radionuclide constituents from organic constituents. This operation reduces the number of underground DSTs required for waste storage and also makes the mixed waste more suitable for future treatment and disposal (i.e., grouting and vitrification). The 242-A Evaporator receives mixed-waste streams from the DSTs that contain organic and inorganic constituents and radionuclides. The waste is a dangerous waste (DW) because of corrosivity, reactivity, and toxicity characteristics, and is an extremely hazardous waste (EHW) as a result of toxicity (state criteria only), carcinogenicity, and persistence under the state mixture rule. The waste also contains spent nonhalogenated solvents

  18. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  19. The choice of locations for disposal of dangerous (radioactive) waste

    International Nuclear Information System (INIS)

    Hisschemoller, M.; Midden, C.J.H.; Stallen, P.J.; Rijksuniversiteit Leiden; Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, The Hague)

    1985-11-01

    In this report a managerial and psychological analysis, based on literature study and case analysis, is presented of various policy strategies which are or can be followed by governments in decisions about disposal of dangerous waste. Special attention is given to radioactive waste. (Auth.)

  20. B Plant Complex generator dangerous waste storage areas inspection plan: Revision 1

    International Nuclear Information System (INIS)

    Beam, T.G.

    1994-01-01

    This document contains the inspection plan for the <90 day dangerous/mixed waste storage areas and satellite accumulation areas at B Plant Complex. This inspection plan is designed to comply with all applicable federal, state and US Department of Energy-Richland Operations Office training requirements. In particular, the requirements of WAC 173-303 ''Dangerous Waste Regulations'' are met by this inspection plan. This inspection plan is designed to provide B Plant Complex with the records and documentation showing that the waste storage and handling program is in compliance with applicable regulations. The plan also includes the requirements for becoming a qualified inspector of waste storage areas and the responsibilities of various individuals and groups at B Plant Complex

  1. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  2. Treatment and disposal techniques of dangerous municipal solid wastes

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes the qualitative and quantitative features of the different types of dangerous municipal solid wastes, according to Italian law. In the second part the impact on environment and man health is presented. This impact should be minimized by suitable controlled disposal techniques, which differ from other municipal waste treatments. Finally, the paper deals with the most appropriate systems for treatment and disposal of such kind of waste. Particularly, some research activities in the field of metal recovery from used batteries, sponsored by ENEA, and carrying out by private companies, are described. (author)

  3. Radiant-heat spray-calcination process for the solid fixation of radioactive waste. Part 1, Non-radioactive pilot unit

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Johnson, B.M. Jr.

    1960-11-14

    The fixation of radioactive waste in a stable solid media by means of calcination of these aqueous solutions has been the subject of considerable-effort throughout the U. S. Atomic Energy Commission and by atomic energy organizations in other countries. Several methods of doing this on a continuous or semi-continuous basis have been devised, and a fev have been demonstrated to be feasible for the handling of non-radioactive, or low-activity, simulated wastes. Notable among methods currently under development are: (a) batch-operated pot calcination of waste generated from reprocessing stainless steel clad fuel elements (Darex process) and Purex waste, (b) combination rotary kiln and ball mill calcination of aluminum nitrate (TBP-25 and Redox process), and (c) fluidized bed calcination of TBP-25 and Purex wastes. Although a considerable amount of engineering experience has been obtained on the calcination of dissolved salts in a fluidized bed, and the other methods have been the subjects of a great deal of study, none of them have been developed to-the extent which would rule out the desirability of further investigation of other possible methods of calcination.

  4. Low-level burial grounds dangerous waste permit application design documents

    International Nuclear Information System (INIS)

    1990-08-01

    This document serves a supplement to the already existing ''Low-Level Burial Ground Dangerous Waste Permit Application Design Documents.'' This paper contains information regarding drawings, construction specifications, and liner/leachate compatibility test plans

  5. Hanford Facility dangerous waste permit application, general information

    International Nuclear Information System (INIS)

    1993-05-01

    The current Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, number DOE/RL-91-28) and a treatment, storage, and/or disposal Unit-Specific Portion, which includes documentation for individual TSD units (e.g., document numbers DOE/RL-89-03 and DOE/RL-90-01). Both portions consist of a Part A division and a Part B division. The Part B division consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. Documentation contained in the General Information Portion (i.e., this document, number DOE/RL-91-28) is broader in nature and applies to all treatment, storage, and/or disposal units for which final status is sought. Because of its broad nature, the Part A division of the General Information Portion references the Hanford Facility Dangerous Waste Part A Permit Application (document number DOE/RL-88-21), a compilation of all Part A documentation for the Hanford Facility

  6. Radioactive acid digestion test unit nonradioactive startup operations

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Crippen, M.D.; Divine, J.R.

    1978-05-01

    The Radioactive Acid Digestion Test Unit (RADTU) will process 5 kg/hour of combustible solid waste and is designed to handle almost all solid combustible waste found in plutonium processing with plutonium contamination levels up to scrap. The RADTU is designed with special safety features to safely contain high masses of fissile materials and to safely handle unusual materials and reactive chemicals which may find their way into the waste. Nonradioactive operating experience to date has been very satisfactory. RADTU has been operated for extended runs on both a 24-hour per day basis as well as on a one shift per day basis. Some minor operating problems have been encountered as expected in a shakedown operation. In general, solutions to these have been readily found. 12 figures

  7. Separation of non-hazardous, non-radioactive components from ICPP calcine via chlorination

    International Nuclear Information System (INIS)

    Nelson, L.O.

    1995-05-01

    A pyrochemical treatment method for separating non-radioactive from radioactive components in solid granular waste accumulated at the Idaho Chemical Processing Plant was investigated. The goal of this study was to obtain kinetic and chemical separation data on the reaction products of the chlorination of the solid waste, known as calcine. Thermodynamic equilibrium calculations were completed to verify that a separation of radioactive and non-radioactive calcine components was possible. Bench-scale chlorination experiments were completed subsequently in a variety of reactor configurations including: a fixed-bed reactor (reactive gases flowed around and not through the particle bed), a packed/fluidized-bed reactor, and a packed-bed reactor (reactive gases flowed through the particle bed). Chemical analysis of the reaction products generated during the chlorination experiments verified the predictions made by the equilibrium calculations. An empirical first-order kinetic rate expression was developed for each of the reactor configurations. 20 refs., 16 figs., 21 tabs

  8. Dangerous wastes management in Cuba. Current situation and perspectives

    International Nuclear Information System (INIS)

    Alvarez Rossell, Silvia

    2005-01-01

    The appropriate handling of the dangerous waste has become a topic of high priority for all the countries and especially for those developing one that in general, they lack solid technical infrastructure, suitable technologies and human resources properly qualified to carry out this work without causing negative impacts on the environment. For these countries, this matter represents a true challenge, requiring you to have financial resources to create capacities and to acquire technologies, that which reality should be made with the support of the developed countries, but that up to now it doesn't stop to be a commitments without in the practice it is materialized in an effective way. The collaboration and the cooperation among the countries in development are also an useful road that should be increased. This work seeks to expose as Cuba it has faced this challenge, presenting the carried out actions, the confronted difficulties and the future actions that will be attacked so that the handling of dangerous waste doesn't constitute an environmental problem to solve

  9. Development of an immobilisation technique by cementation for non-radioactive simulated liquid waste, from Mo-99 production process

    International Nuclear Information System (INIS)

    Arva, E A; Marabini, S G; Varani, J L

    2012-01-01

    The Argentine Atomic Energy Commission (CNEA) is the responsible for developing a management nuclear waste disposal programme. This programme contemplates the strictly environmental safe and efficient management of the radioactive waste from different sources. Since 1985, CNEA has been producing commercially Mo-99 for medical use. In this process two types of liquid waste are produced. One of them has high alkaline (NaOH 3,5M) and aluminate contents. Since Mo-99 production started, such liquid waste was stored in specially designed containers during production, and after a decay period in smaller containers in interim storage conditions. As this waste is still a liquid, development of an immobilisation technique is required. Immobilisation of radioactive liquid waste by cementation is a frequently used technique, and will be studied in the present work using Mo-99 non-radioactive simulated liquid waste. In this second stage, a full scale (200 liters drum) cementation test using simulated non radioactive waste was carried out. Such test included: using the BEBA 201 mixing machine - the same that will be used with real waste in the future for 'tuning up' the process, construction of a specially designed temperature sensor for measuring the maximum temperature value (five different positions, four inside the drum and one outside) and the time elapsed after all components mixing. Finally, standard specimens (IRAM 1622) were made for mechanical resistance tests after cement setting at 28 days. The results show values of temperature not above 40 o C with the maximum at 12 hours before component mixing and compression strength of 14 MPa. Such values are compatible for a waste immobilisation process by cementation (author)

  10. Management and hazardous waste characterization in Central for Isotop and Radiation Application based on potential dangers

    International Nuclear Information System (INIS)

    Niken Hayudanti Anggarini; Megi Stefanus; Prihatiningsih

    2014-01-01

    Separating and storing hazardous waste have been done based on the physical, chemical, and based on potential dangers due to safety hazardous waste temporary storage warehouse. From the results of data collection in 2014 found that the most dominant hazardous waste is organic liquid waste which reaches 61 %, followed by inorganic liquid waste 33 % while organic solid waste and inorganic solid waste has a small portion. When viewed from potential danger, flammable liquid waste has the greatest volume percentage it is 47 % and is followed by a corrosive liquid waste 26 %, while the liquid waste that has not been identified is quite large, which is 9 %. From the highest hazard potential data, hazardous waste storage warehouse is required to have good air circulation and waste storage shelf protected from direct solar heat. Cooperation of lab workers and researchers are also indispensable in providing identification of each waste generated to facilitate the subsequent waste management. (author)

  11. Influence of non-radioactive payload parameters on radioactive shipping packages

    International Nuclear Information System (INIS)

    Drez, P.E.; Murthy, D.V.S.; Temus, C.J.; Quinn, G.J.; Ozaki, C.

    1989-01-01

    The transport of radioactive waste materials in radioactive material (RAM) packages involves two components: the packaging used for transportation, and the waste which forms the payload. The payload is usually comprised of non-radioactive materials contaminated with radionuclides. The non-radionuclide payload characteristics can often be a controlling factor in determining the restrictions imposed on the certification of the package. This paper describes these package/payload interactions and the limiting parameters for the Transuranic Package Transporter-II (TRUPACT-II), designed for the transportation of Contact Handled Transuranic (CH-TRU) waste. The parameters discussed include the physical and chemical form of the payload, the configuration of the waste, and resulting gas generation and gas release phenomena. Brief descriptions of the TRUPACT-II package and its payload are presented initially

  12. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  13. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  14. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-01-01

    Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford's blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a ''tie back'' between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for total constituents and durability tested as a granular waste form. A subset of the granular material was stabilized in a clay based geopolymer matrix at 42% and 65% FBSR loadings and durability tested as a monolith waste form. The 65 wt% FBSR loaded monolith made with clay (radioactive) was more durable than the 67-68 wt% FBSR loaded monoliths made from fly ash (non-radioactive) based on short term PCT testing. Long term, 90 to 107

  16. Solid waste programs Fiscal Year 1995 multi-year program plan/fiscal year work plan WBS 1.2.1

    International Nuclear Information System (INIS)

    McCarthy, M.M.

    1994-09-01

    The Hanford Mission Plan, Volume 1, Site Guidance identifies the need for the Solid Waste Program to treat, store, and dispose of a wide variety of solid material types consisting of multiple radioactive and hazardous waste classes. This includes future Hanford Site activities which will generate new wastes that must be handled as cleanup activities are completed. Solid wastes are typically categorized as transuranic waste, low level waste, low level mixed waste, and hazardous waste. To meet this need the Solid Waste Program has defined its mission as the following - receive, store, treat, decontaminate, and dispose of solid radioactive and nonradioactive dangerous wastes in a safe, cost effective and environmentally compliant manner. This workbook contains the program overview, program baselines and fiscal year work plan for the Solid Waste Program

  17. The application of dangerous goods regulations to the transport of radioactive wastes

    International Nuclear Information System (INIS)

    Blenkin, J.J.; Darby, W.P.; Heywood, J.D.; Wikinson, H.L.; Carrington, C.K.; Murray, M.A.

    1998-01-01

    Some radioactive materials to be transported, including certain radioactive wastes, contain materials that qualify as dangerous goods as defined by the United Nations Recommendations on the Transport of Dangerous Goods (United Nations 1997). The regulations governing the transport of radioactive and dangerous goods in the UK are largely based on the IAEA Regulations for the Safe Transport of Radioactive Material (IAEA 1990) and the UN Recommendations (United Nations 1993). Additional legislation will also apply including the Carriage of Dangerous Goods by Road (Driver Training) Regulations 1996 (UK 1996). The IAEA Transport Regulations are clear that where radioactive materials have other dangerous properties the requirements of other relevant transport regulations for dangerous goods must also be met. They require that consignments are appropriately segregated from other dangerous goods, in accordance with relevant legislation, and that dangerous properties such as explosiveness, flammability etc. are taken into account in packing, labelling, marking, placarding, storage and transport. In practice, however, it requires a clear understanding of the relationship between the IAEA Transport Regulations and other dangerous goods legislation in order to avoid a number of problems in the approval of package design. This paper discusses the regulations applying to the transport of dangerous goods and explores practical problems associated with implementing them. It highlights a number of opportunities for developing the regulations, to make them easier to apply to radioactive materials that also have other potentially dangerous properties. (authors)

  18. Non-radioactive stand-in for radioactive contamination. I. Non-radioactive tests

    International Nuclear Information System (INIS)

    Rohe, M.J.; Rankin, W.N.; Postles, R.L.

    1985-01-01

    Candidate non-radioactive materials for use as a stand-in for radioactive contamination during application of a high-pressure, hot water decontamination were identified and evaluated. A stand-in for radioactive contamination is needed to evaluate the decontaminability of replacement canyon cranes at the manufacturers location where actual radioactive contamination cannot be used. This evaluation was conducted using high-pressure, hot-water at 420 psi, 190 0 F, and 20 gal/min through a 1/8-in.-diam nozzle, the decontamination technique preferred by SRP Separations Department for this application. A non-radioactive stand-in for radioactive contamination was desired that would be removed by direct blast stream contact but would remain intact on surfaces where direct contact does not occur. This memorandum describes identification of candidate non-radioactive stand-in materials and evaluation of these materials in screening tests and tests with high-pressure, hot-water blasting. The following non-radioactive materials were tested: carpenter's line chalk; typing correction fluid; dye penetrant developer; latex paint with attapulyite added; unaltered latex paint; gold enamel; layout fluid; and black enamel. Results show that blue layout fluid and gold enamel have similar adherence that is within the range expected for actual radioactive contamination. White latex paint has less adherence than expected for actual radioactive contamination. The film was removed at a rate of 2 . Black enamel has more adherence than expected from actual radioactive contamination. In these tests ASTM No. 2B surfaces were harder to clean than either ASTM No. 1 or electropolished surfaces which had similar cleaning properties. A 90 0 blast angle was more effective than a 45 0 blast angle. In these tests there was no discernible effect of blast distance between 1 and 3 ft

  19. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  20. Status of the WAND (Waste Assay for Nonradioactive Disposal) project as of July 1997

    International Nuclear Information System (INIS)

    Arnone, G.J.; Foster, L.A.; Foxx, C.L.; Hagan, R.C.; Martin, E.R.; Myers, S.C.; Parker, J.L.

    1998-03-01

    The WAND (Waste Assay for Nonradioactive Disposal) system can scan thought-to-be-clean, low-density waste (mostly paper and plastics) to determine whether the levels of any contaminant radioactivity are low enough to justify their disposal in normal public landfills or similar facilities. Such a screening would allow probably at least half of the large volume of low-density waste now buried at high cost in LANL's Rad Waste Landfill (Area G at Technical Area 54) to be disposed of elsewhere at a much lower cost. The WAND System consists of a well-shielded bank of six 5-in.-diam. phoswich scintillation detectors; a mechanical conveyor system that carries a 12-in.-wide layer of either shredded material or packets of paper sheets beneath the bank of detectors; the electronics needed to process the outputs of the detectors; and a small computer to control the whole system and to perform the data analysis. WAND system minimum detectable activities (MDAs) for point sources range from ∼20 dps for 241 Am to approximately 10 times that value for 239 Pu, with most other nuclides of interest being between those values, depending upon the emission probabilities of the radiations emitted (usually gamma rays and/or x-rays). The system can also detect beta particles that have energies ≥100 keV, but it is not easy to define an MDA based on beta radiation detection because of the greater absorption of beta particles relative to photons in low Z-materials. The only radioactive nuclides not detectable by the WAND system are pure alpha emitters and very-low-energy beta emitters. At this time, operating procedures and quality assurance procedures are in place and training materials are available to operators. The system is ready to perform useful work; however, it would be both possible and desirable to upgrade the electronic components and the analysis algorithms

  1. Hanford facility dangerous waste permit application, 242-A evaporator

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the 242-A Evaporator (this document, DOE/RL-90-42)

  2. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ''a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...''. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State's Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste

  3. Waste dumps in local communities in developing countries and hidden danger to health.

    Science.gov (United States)

    Anetor, Gloria O

    2016-07-01

    The rapid industrialisation and urbanisation fuelled by a fast-growing population has led to the generation of a huge amount of waste in most communities in developing countries. The hidden disorders and health dangers in waste dumps are often ignored. The waste generated in local communities is usually of a mixed type consisting of domestic waste and waste from small-scale industrial activities. Among these wastes are toxic metals, lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), halogenated organic compounds, plastics, remnants of paints that are themselves mixtures of hazardous substances, hydrocarbons and petroleum product-contaminated devices. Therefore, there is the urgent need to create an awareness of the harmful health effect of toxic wastes in developing countries, especially Nigeria. This is a review aimed at creating awareness on the hidden dangers of waste dumps to health in local communities in developing countries. Many publications in standard outlets use the following keywords: cancer, chemical toxicity, modern environmental health hazards, waste management and waste speciation in PubMed, ISI, Toxbase environmental digest, related base journals, and some standard textbooks, as well as the observation of the researcher between 1959 and 2014. Studies revealed the preponderance of toxic chemicals such as Pb, Cd, As and Hg in dump sites that have the risk of entering food chain and groundwater supplies, and these can give rise to endemic malnutrition and may also increase susceptibility to mutagenic substances, thereby increasing the incidence of cancer in developing countries. Industrialisation and urbanisation have brought about a change in the waste that is generated in contemporary communities in developing countries. Therefore, there is the need to embrace speciation and sound management of waste, probably including bioremediation. The populations in the local communities need regulatory agencies who are health educators as positive change

  4. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  5. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  6. Hanford Facility Dangerous Waste Permit Application, 222-S Laboratory Complex

    International Nuclear Information System (INIS)

    WILLIAMS, J.F.

    2000-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the 222-S Laboratory Complex (this document, DOE/RL-91-27). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the 222-S Laboratory Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this 222-S Laboratory Complex permit application documentation is current as of August 2000

  7. Hanford facility dangerous waste permit application, PUREX storage tunnels

    International Nuclear Information System (INIS)

    Price, S.M.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997

  8. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  10. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    VOLKMAN, D.D.

    1999-01-01

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  11. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  12. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  13. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  14. Disposal of toxic waste to Kualiti Alam

    International Nuclear Information System (INIS)

    Wilfred Paulus; Nik Marzukee; Syed Abd Malik

    2005-01-01

    The mandate to manage radioactive waste in this country was given to the Radioactive Waste Management Centre, MINT as the only agency allowed to handle the waste. However, wastes which are produced at MINT also include the non-radioactive toxic waste. The service to dispose off this non-radioactive toxic waste has been given to Kualiti Alam, the only company licensed to carry out such activity. Up to now, MINT's Radioactive Waste Management Centre has delivered 3 consignments of such waste to the company. This paper will detail out several aspects of managing the waste from the aspects of contract, delivering procedure, legislation, cost and austerity steps which should be taken by MINT's staff. (Author)

  15. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements

  16. Waste management

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2010-01-01

    In this chapter formation of wastes and basic concepts of non-radioactive waste management are explained. This chapter consists of the following parts: People in Peril; Self-regulation of nature as a guide for minimizing and recycling waste; The current waste management situation in the Slovak Republic; Categorization and determination of the type of waste in legislative of Slovakia; Strategic directions waste management in the Slovak Republic.

  17. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  18. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  19. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements

  20. Zeolite Vitrification Demonstration Program nonradioactive-process operations summary

    International Nuclear Information System (INIS)

    Bryan, G.H.; Knox, C.A.; Goles, R.G.; Ethridge, L.J.; Siemens, D.H.

    1982-09-01

    The Submerged Demineralizer System is a process developed to decontaminate high-activity level water at Three Mile Island by sorbing the activity (primarily Cs and Sr) onto beds of zeolite. Pacific Northwest Laboratory's Zeolite Vitrification Demonstration Program has the responsibility of demonstrating the full-scale vitrification of this zeolite material. The first phase of this program has been to develop a glass formulation and demonstrate the vitrification process with the use of nonradioactive materials. During this phase, four full-scale nonradioactive demonstration runs were completed. The same zeolite mixture being used in the SDS system was loaded with nonradioactive isotopes of Cs and Sr, dried, blended with glass-forming chemicals and fed to a canister in an in-can melter furnace. During each run, the gaseous effluents were sampled. After each run, glass samples were removed and analyzed

  1. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes

  2. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  3. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  4. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  5. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  6. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  7. Sensitive non-radioactive detection of HIV-1

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Nielsen, C; Hansen, J E

    1992-01-01

    This report describes the use of the polymerase chain reaction (PCR) for the non-radioactive detection of HIV-1 proviral genomic sequences in HIV-1 infected cells. We have developed a sensitive assay, using three different sets of nested primers and our results show that this method is superior...... to standard PCR for the detection of HIV-1 DNA. The assay described features the use of a simple and inexpensive sample preparation technique and a non-radioactive hybridization procedure for confirmation of results. To test the suitability of the assay for clinical purposes, we tested cell samples from 76...

  8. Forming of information support for estimate of potential danger of storage points of the decontamination wastes

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryannyj, G.Z.; Golikova, N.B.

    2002-01-01

    By now 92 storage points of the decontamination wastes that formed in result of decontamination of settlements after the Chernobyl accident is registered on the territory of Belarus. The most of theirs were placed in the unfavorable for storage of radioactive wastes places. It was examine the forming of information support for estimate of potential danger of the storage points of decontamination wastes that base on results of investigations of objects, field and laboratory investigations, theoretical researches, using of literary information about features of radionuclides migration through engineering and natural barriers to water-bearing horizon is examination

  9. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  10. Plutonium Finishing Plant Treatment and Storage Unit Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    2000-01-01

    The training program for personnel performing waste management duties pertaining to the Plutonium Finishing Plant (PFP) Treatment and Storage Unit is governed by the general requirements established in the Plutonium Finishing Plant Dangerous Waste Training Plan (PFP DWTP). The PFP Treatment and Storage Unit DWTP presented below incorporates all of the components of the PFP DWTP by reference. The discussion presented in this document identifies aspects of the training program specific to the PFP Treatment and Storage Unit. The training program includes specifications for personnel instruction through both classroom and on-the-job training. Training is developed specific to waste management duties. Hanford Facility personnel directly involved with the PFP Treatment and Storage Unit will receive training to container management practices, spill response, and emergency response. These will include, for example, training in the cementation process and training pertaining to applicable elements of WAC 173-303-330(1)(d). Applicable elements from WAC 173-303-330(1)(d) for the PFP Treatment and Storage Unit include: procedures for inspecting, repairing, and replacing facility emergency and monitoring equipment; communications and alarm systems; response to fires or explosions; and shutdown of operations

  11. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond

  12. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  13. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1999-01-01

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC)

  14. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation

  15. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  16. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1995-01-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  17. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive

  18. Special waste disposal in Austria - cost benefit analysis

    International Nuclear Information System (INIS)

    Kuntscher, H.

    1983-01-01

    The present situation of special waste disposal in Austria is summarized for radioactive and nonradioactive wastes. A cost benefit analysis for regulary collection, transport and disposal of industrial wastes, especially chemical wastes is given and the cost burden for the industry is calculated. (A.N.)

  19. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    International Nuclear Information System (INIS)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  20. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  1. Low-level burial grounds dangerous waste permit application

    International Nuclear Information System (INIS)

    1990-07-01

    This document is submitted to request an exemption for Trench 94 from dangerous waste landfill liner and leachate collection and removal system (hereinafter referred to as liner/leachate system) requirements. This exemption request is based on an evaluation which demonstrates that burial in Trench 94 of cathodically protected submarine reactor compartments (SRC), which contain lead and polychlorinated biphenyls (PCB) as hazardous constituents, is as effective as disposal in a landfill having a liner/leachate system. This demonstration also considers the effectiveness of burial in Trench 94 in terms of preventing long-term migration of contaminants to groundwater or surface water. Modeling results indicate that release of contaminants to the groundwater or surface water will not occur until after long periods of time and that even after reaching the groundwater, contaminants will not be in excess of current regulatory limits, such as drinking water standards. Chapter 1.0 provides introductory information concerning this request, including the scope of the exemption request and relevant background information. The five subsequent chapters provide information needed to support the exemption request. Chapter 2.0 discusses the regulatory basis for the exemption request and presents performance objectives related to regulatory requirements. Chapter 3.0 provides a description of the site and its operation. Chapter 4.0 describes the wastes subject to this exemption request Chapter 5.0 discusses the performance of the disposal site with respect to performance objectives. Finally, Chapter 6.0 presents the actual request for exemption from requirements for a liner/leachate system. 30 refs., 13 figs., 6 tabs

  2. Guidelines for the disposal of dangerous and toxic wastes so as to minimize or prevent environmental and water pollution

    CSIR Research Space (South Africa)

    Rudd, RT

    1978-01-01

    Full Text Available Modern society is producing ever increasing quantities of dangerous and/or toxic wastes, which require safe and effective disposal if they are not to pose a threat to our water supplies or the environment in general....

  3. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  4. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  5. Talc-silicon glass-ceramic waste forms for immobilization of high- level calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    Talc-silicon glass-ceramic waste forms are being evaluated as candidates for immobilization of the high level calcined waste stored onsite at the Idaho Chemical Processing Plant. These glass-ceramic waste forms were prepared by hot isostatically pressing a mixture of simulated nonradioactive high level calcined waste, talc, silicon and aluminum metal additives. The waste forms were characterized for density, chemical durability, and glass and crystalline phase compositions. The results indicate improved density and chemical durability as the silicon content is increased

  6. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  7. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information

  8. Characterization of Class A low-level radioactive waste 1986--1990

    International Nuclear Information System (INIS)

    Dehmel, J.C.; Loomis, D.; Mauro, J.; Kaplan, M.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen ampersand Associates, Inc. (SC ampersand A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG ampersand G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information

  9. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  10. Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R.E.

    2001-07-26

    The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

  11. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  12. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  13. Regulatory inspection practices for radioactive and non-radioactive waste management facilities

    International Nuclear Information System (INIS)

    Roy, Amitava

    2017-01-01

    Management of nuclear waste plays an important role in the nuclear energy programme of the country. India has adopted the Closed Fuel Cycle option, where the spent nuclear fuel is treated as a material of resource and the nuclear waste is wealth. Closed fuel cycle aims at recovery and recycle of valuable nuclear materials in to reactors as fuel and also separation of useful radio isotopes for the use in health care, agriculture and industry. India has taken a lead role in the waste management activities and has reached a level of maturity over a period of more than forty decades. The nuclear waste management primarily comprises of waste characterization, segregation, conditioning, treatment, immobilization of radionuclides in stable and solid matrices and interim retrievable storage of conditioned solid waste under surveillance. The waste generated in a nuclear facility is in the form of liquid and solid, and it's classification depends on the content of radioactivity. The liquid waste is characterized as Low level (LLW), Intermediate level (ILW) and High Level (HLW). The LLW is relatively large in volume and much lesser radioactive. The LLW is subjected to chemical precipitation using various chemicals based on the radionuclides present, followed by filtration, settling, ion exchange and cement fixation. The conditioning and treatment processes of ILW uses ion exchange, alkali hydrolysis for spent solvent, phase separation and immobilization in cement matrix. The High Level Waste (HLW), generated during spent fuel reprocessing and containing more than 99 percent of the total radioactivity is first subjected to volume reduction/concentration by evaporation and then vitrified in a meIter using borosilicate glass. Presently, Joule Heated Ceramic Meter is used in India for Vitrification process. Vitrified waste products (VWP) are stored for interim period in a multibarrier, air cooled facility under surveillance

  14. Radioactive Demonstration Of Final Mineralized Waste Forms For Hanford Waste Treatment Plant Secondary Waste By Fluidized Bed Steam Reforming Using The Bench Scale Reformer Platform

    International Nuclear Information System (INIS)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-01-01

    . The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of 125/129 I and 99 Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  15. The calculation and estimation of wastes generated by decommissioning of nuclear facilities. Tokai works and Ningyo-toge Environmental Engineering Center

    International Nuclear Information System (INIS)

    Ayame, Y.; Tanabe, T.; Takahashi, K.; Takeda, S.

    2001-07-01

    This investigation was conducted as a part of planning the low-level radioactive waste management program (LLW management program). The aim of this investigation was contributed to compile the radioactive waste database of JNC's LLW management program. All nuclear facilities of the Tokai works and Ningyo-toge Environmental Engineering Center were investigated in this work. The wastes generated by the decommissioning of each nuclear facility were classified into radioactive waste and others (exempt waste and non-radioactive waste), and the amount of the wastes was estimated. The estimated amounts of radioactive wastes generated by decommissioning of the nuclear facilities are as follows. (1) Tokai works: The amount of waste generated by decommissioning of nuclear facilities of the Tokai works is about 1,079,100 ton. The amount of radioactive waste is about 15,400 ton. The amount of exempt waste and non-radioactive waste is about 1,063,700 ton. (2) Ningyo-toge Environmental Engineering Center: The amount of waste generated by decommissioning of nuclear facilities of Ningyo-toge Environmental Engineering Center is about 112,500 ton. The amount of radioactive waste is about 7,800 ton. The amount of exempt waste and non-radioactive waste is about 104,700 ton. (author)

  16. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Juan C., E-mail: jc.mora@ciemat.es [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain); Baeza, Antonio [LARUEX, Dpt. Applied Physics, Faculty of Veterinary Science, University of Extremadura, Avda. Universidad, s/n, 10071 Cáceres (Spain); Robles, Beatriz [Unit for Radiation Protection of the Public and the Environment (PRPYMA), CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain); Sanz, Javier [Energy Engineering Department, Power Engineering, Nuclear Area, ETSII, UNED (Spain)

    2016-06-05

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  17. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills

    International Nuclear Information System (INIS)

    Mora, Juan C.; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-01-01

    Highlights: • Before 2010 NORM waste is managed as non-radioactive, disposed in landfills. • After 2010 radiological impact of the management of NORM wastes must be assessed. • Quantities that can be disposed in hazardous or non-hazardous landfills are given. • Uncertainty analysis is included to provide consistency to the calculations. - Abstract: Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  18. Characterization and vitrification of Hanford radioactive high level wastes

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-01-01

    Radioactive Neutralized Current Acid Waste (NCAW) samples from the Hanford waste tanks have been chemically, radiochemically and physically characterized. The wastes were processed according to the Hanford Waste vitrification Plant (HWVP) flowsheet, and characterized after each process step. The waste glasses were sectioned and leach tested. Chemical, radiochemical and physical properties of the waste will be presented and compared to nonradioactive simulant data and the HWVP reference composition and properties

  19. Lessons to be learned from radioactive waste disposal practices for non-radioactive hazardous waste management

    International Nuclear Information System (INIS)

    Merz, E.R.

    1991-01-01

    The criteria to be set up for any kind of hazardous waste disposal must always be put in perspective: 1. what are the waste characteristics? 2. what time period for safe isolation is of interest? 3. which geological disposal alternatives exist? Different approaches may be used in the short- and long-term perspective. In either case, a general procedure is recommended which involves concentrating, containing and isolating the source of toxicity, both radioactive and chemotoxic substances, as far as practicable. Waste characterization of either chemotoxic or radioactive wastes should be performed applying comparable scientifically based principles. The important question which arises is whether their hazard potential can be quantified on the basis of dose comparison regarding the morbidity effects of radiation and of chemical pollutants. Good control over the consequences of hazardous waste disposal requires threat detailed criteria for tolerable contamination of radioactive as well as chemical pollutants should be established, and that compliance with these criteria can be demonstrated. As yet, there are no well developed principles for assessing the detriment from most types of genotoxic waste other than radioactive material. The time horizon discussed for both categories of waste for their proof of safe isolation differs by a factor of about one hundred. (au)

  20. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Preter, Peter De; Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An

    2007-01-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  1. Post-test evaluations of Waste Isolation Pilot Plant - Savannah River simulated defense HLW canisters and waste form

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Harbour, J.R.; Ferrara, D.M.

    1993-01-01

    Eighteen nonradioactive defense high-level waste (DHLW) canisters were emplaced in and subjected to accelerated overtest thermal conditions for about three years at the bedded salt Waste Isolation Pilot Plant (WIPP) facility. Post-test laboratory corrosion results of several stainless steel 304L waste canisters, cast steel overpacks, and associated instruments ranged from negligible to moderate. We found appreciable surface corrosion and corrosion products on the cast steel overpacks. Pieces of both 304L and 316 stainless steel test apparatus underwent extensive stress-corrosion cracking failure and nonuniform attack. One of the retrieved test packages contained nonradioactive glass waste form from the Savannah River Site. We conducted post-test analyses of this glass to determine the degree of resultant glass fracturing, and whether any respirable fines were present. Linear glass fracture density ranged from about 1 to 8 fractures intersecting every 5 cm (2 inch) segment along a diameter line of the canister cross-section. Glass fines between 1 and 10 microns in diameter were detected, but were not quantified

  2. Operation of a pilot incinerator for solid waste

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.

    1979-01-01

    A laboratory-scale incinerator (0.5 kg waste/hr) was built and operated for more than 18 months as part of a program to adapt and confirm technology for incineration of Savannah River Plant solid wastes, which are contaminated with about 0.3 Ci/kg of alpha-emitting transuranium (TRU) nuclides (Slide 1). About 4000 packages of simulated nonradioactive wastes were burned, including HEPA (high-efficiency particulate air) filters, resins, and other types of solid combustible waste from plutonium finishing operations. Throughputs of more than 3 kg/hr for periods up to 4 hours were demonstrated. The incinerator was oerated at temperatures above 750 0 C for more than 7700 hours during a period of 12 months, for an overall availability of 88%. The incinerator was shut down three times during the year: once to replace the primary combustion chamber electrical heater, and twice to replace oxidized electrical connectors to the secondary chamber heaters. Practical experience with this pilot facility provided the design basis for the full-size (5 kg waste/hr) nonradioactive test incinerator, which began operation in March 1979

  3. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  4. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  5. Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs

    International Nuclear Information System (INIS)

    Hale, S.L.; Alker, K.J.; Kloner, R.A.

    1988-01-01

    Measurement of regional myocardial blood flow (RMBF) is crucial in experimental studies of myocardial ischemia and reperfusion in dogs. The standard measurement technique uses radioactive microspheres; however, not all institutions are able to dispose of radioactive waste and therefore cannot make use of this method. We tested a new, nonradioactive microsphere, labeled with colors instead of nuclides. Simultaneous blood flow measurements with two nuclide-labeled and two colored microspheres were performed after coronary occlusion in dogs. Both techniques show a within-method correlation of r greater than 0.98. Duplicate variability for paired RMBF values in 80 samples was 8.7 +/- 0.1% when computed with radioactive microspheres and 13.2 +/- 1.8% when computed with colored microspheres. There was a good correlation in the measurement of RMBF between the radioactive- and colored-microsphere methods (r = 0.98). The best-fitting linear regression line was expressed by the formula: Colored-microsphere RMBF = 1.11 (radioactive-microsphere RMBF)-0.02. When measured by colored microspheres, RMBF was approximately 8% higher than when computed with radioactive microspheres for blood flow values of 0-2 ml/min/g. When blood flow was increased pharmacologically to levels of 2-7.5 ml/min/g, colored microspheres yielded blood flow values 39% higher than the values computed by radioactive microspheres. We conclude that the nonradioactive, colored-microsphere method correlates with the radioactive technique, but at high flows, it yields values greater than those obtained with radioactive microspheres

  6. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  7. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  8. Task 3 - Pyrolysis of plastic waste. Semi-annual report, April 1- September 30, 1997

    International Nuclear Information System (INIS)

    Ness, R.O.; Aulich, T.R.

    1997-09-01

    The Energy and Environmental Research Center is developing a technology for the thermal decomposition of high-organic-content, radionuclide-contaminated mixed wastes and spent (radioactive) ion-exchange resins from the nuclear power industry that will enable the separation and concentration of radionuclides as dry particulate solids and the generation of nonradioactive condensable and noncondensable gas products. Successful application of the technology will enable a significant volume reduction of radioactive waste and the production of an inexpensively disposable nonradioactive organic product. The project objective is to develop and demonstrate the commercial viability of a continuous thermal decomposition process that can fulfill the following requirements: separate radionuclides from radioactive waste streams containing a variety of types and levels of polymers, chlorinated species, and other organics, including rubber, oils, resins, and cellulosic-based materials; concentrate radionuclides in a homogeneous, dry particulate product that can be recovered, handled, and disposed of efficiently and safely; separate and recover any chlorine present (as PVC, chlorinated solvents, or inorganic chlorine) in the contaminated mixed-waste stream; and yield a nonradioactive, low-chlorine-content, condensable organic product that can be economically disposed. Progress is described

  9. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  10. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  11. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    Science.gov (United States)

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  12. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  13. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    International Nuclear Information System (INIS)

    Pinson, P.A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs

  14. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification

  15. Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

  16. Volume reduction of reactor wastes by spray drying

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; McKenzie, D.E.

    1983-01-01

    Three simulated low-level reactor wastes were dried using a spray dryer-baghouse system. The three aqueous feedstocks were sodium sulfate waste characteristic of a BWR, boric acid waste characteristic of a PWR, and a waste mixture of ion exchange resins and filter aid. These slurries were spiked with nonradioactive iron, cobalt, and manganese (representing corrosion products) and nonradioactive cesium and iodine (representing fission products). The throughput for the 2.1-m-diameter spray dryer and baghouse system was 160-180 kg/h, which is comparable to the requirements for a full-scale commercial installation. A free-flowing, dry product was produced in all of the tests. The volume reduction factor ranged from 2.5 to 5.8; the baghouse decontamination factor was typically in the range of 10 3 to 10 4 . Using an overall system decontamination factor of 10 6 , the activity of the off-gas was calculated to be one to two orders of magnitude less than the nuclide release limit of the major active species, Cs-137

  17. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis [National Security Technologies, LLC, Las Vegas, NV (United States)

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  18. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  19. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  20. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-01-01

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at ∼40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations

  1. Wastes - Issue 2014. Key figures

    International Nuclear Information System (INIS)

    Haeusler, Laurence; Moro-Goubely, Anne-Gaelle; Berthoin, Guillaume; Mathery, Christian; Galio, Pierre; Heyberger-Paroisse, Agnes

    2014-06-01

    This publication proposes numerous tables and graphs of data and indicators (and of their evolution) regarding wastes. It addresses waste prevention and production in France (concerned materials, waste production, waste origins, actions and measures for waste prevention, re-use), waste collection (for domestic, industrial wastes, cross-border exchanges, nuclear reactors), waste processing (of dangerous and non dangerous wastes), valorisation processes (sorting, recycling, composting, methanization), waste-based energy production, economy and costs of the waste management activity, and environmental impacts (atmospheric emissions, impact of recycling)

  2. Characterization of Class A low-level radioactive waste 1986--1990. Volume 3: Main report -- Part B

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 to 7 contain Appendices A to P with supporting information.

  3. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  4. Law 16.867 International Agreement approve the Basilea amendment about the control of the transborder movement of the dangerous wastes and elimination

    International Nuclear Information System (INIS)

    1997-01-01

    Approve you the Amendment to the Agreement of Basile on the Control of the Transborder Movements of the Dangerous Waste and their Elimination, adopted by the Conference of the Parts, in their Third Meeting, taken place in Geneva-Switzerland - of the 18 at the 22 of September of 1995 [es

  5. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  6. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  7. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  8. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  9. Waste minimization/pollution prevention study of high-priority waste streams

    International Nuclear Information System (INIS)

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M ampersand C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division's pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M ampersand C staff members empowered by the Division Director to study specific waste streams

  10. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    International Nuclear Information System (INIS)

    Albert, R.

    1992-01-01

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification

  11. Improvement of the IRIS Process for Incineration of Various Radioactive Waste Compositions

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J. P.

    2003-01-01

    Incineration represents a promising weight and volume reduction technique for alpha-contaminated organic waste. Following several years of laboratory research initiated in 1983 on a nonradioactive prototype unit at the CEA's Rhone Valley (Marcoule) Research Center, an innovative process, IRIS, has been developed to meet the need for processing nuclear glove box waste containing large amounts of chlorine. In March 1999, the first highly chlorinated alpha-contaminated waste was incinerated in the industrial facility based on the IRIS process at the CEA's Valduc Center. The nonradioactive prototype at Marcoule and the radioactive facility at Valduc demonstrated that the process is highly effective with a continuously fed rotating tubular kiln and with a very effective control of corrosion by pyrolytic decomposition of the waste initially at 550 C. The ash quality meets specification requirements (< 1% carbon, < 1% chlorine) and the volume and weight reduction factors are sufficient (around 30). The offgas treatment system exhibits very high operating efficiency complying with gaseous emission standards

  12. Surface facilities for geological deep repositories - Measures against dangers during construction and operation

    International Nuclear Information System (INIS)

    2013-09-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the measures that are to be taken to address the dangers encountered during the construction and operation of deep geological repositories for nuclear wastes. Firstly, the operation of such repositories during the emplacement of nuclear wastes is discussed and examples of possible repositories for fuel rods and highly-radioactive waste are presented. Various emission-protection issues and safety measures to be taken during construction of such repositories are looked at as is the protection of ground water. Safety considerations during the operational phase are discussed, including inclusion methods used for the wastes and radiation protection. The handling of radioactive wastes, the recognition of dangers and measures to be taken to counteract them are discussed. Various possible accidents are looked at

  13. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    International Nuclear Information System (INIS)

    Wasan, Darsh T.; Nikolov, Alex D.; Lamber, D.P.; Calloway, T. Bond; Stone, M.E.

    2005-01-01

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays

  14. On policies to regulate long-term risks from hazardous waste disposal sites under both intergenerational equity and intragenerational equity

    Science.gov (United States)

    Shu, Zhongbin

    In recent years, it has been recognized that there is a need for a general philosophic policy to guide the regulation of societal activities that involve long-term and very long-term risks. Theses societal activities not only include the disposal of high-level radioactive wastes and global warming, but also include the disposal of non-radioactive carcinogens that never decay, such as arsenic, nickel, etc. In the past, attention has been focused on nuclear wastes. However, there has been international recognition that large quantities of non-radioactive wastes are being disposed of with little consideration of their long-term risks. The objectives of this dissertation are to present the significant long-term risks posed by non-radioactive carcinogens through case studies; develop the conceptual decision framework for setting the long-term risk policy; and illustrate that certain factors, such as discount rate, can significantly influence the results of long-term risk analysis. Therefore, the proposed decision-making framework can be used to systematically study the important policy questions on long-term risk regulations, and then subsequently help the decision-maker to make informed decisions. Regulatory disparities between high-level radioactive wastes and non-radioactive wastes are summarized. Long-term risk is rarely a consideration in the regulation of disposal of non-radioactive hazardous chemicals; and when it is, the matter has been handled in a somewhat perfunctory manner. Case studies of long-term risks are conducted for five Superfund sites that are contaminated with one or more non-radioactive carcinogens. Under the same assumptions used for the disposal of high-level radioactive wastes, future subsistence farmers would be exposed to significant individual risks, in some cases with lifetime fatality risk equal to unity. The important policy questions on long-term risk regulation are identified, and the conceptual decision-making framework to regulate

  15. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  16. Viscosity and electrical conductivity of glass melts as a function of waste composition

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Wiley, J.R.

    1979-01-01

    Radioactive waste at the Savannah River Plant contains high concentrations of nonradioactive compounds of iron and aluminum. Simulated waste compositions containing varying ratios of iron to aluminum were added to glass melts to determine the effect on the melt properties. Waste containing high-aluminum increased the melt viscosity, but waste containing high-iron reduced the melt viscosity. Aluminum and iron both reduced the melt conductivity

  17. Characterization of low level mixed waste at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Hepworth, E.; Montoya, A.; Holizer, B.

    1995-01-01

    The characterization program was conducted to maintain regulatory compliance and support ongoing waste treatment and disposal activities. The characterization team conducted a characterization review of wastes stored at the Laboratory that contain both a low-level radioactive and a hazardous component. The team addressed only those wastes generated before January 1993. The wastes reviewed, referred to as legacy wastes, had been generated before the implementation of comprehensive waste acceptance documentation procedures. The review was performed to verify existing RCRA code assignments and was required as part of the Federal Facility Compliance Agreement (FFCA). The review entailed identifying all legacy LLMW items in storage, collecting existing documentation, contacting and interviewing generators, and reviewing code assignments based upon information from knowledge of process (KOP) as allowed by RCRA. The team identified 7,546 legacy waste items in the current inventory, and determined that 4,200 required further RCRA characterization and documentation. KOP characterization was successful for accurately assigning RCRA codes for all but 117 of the 4,200 items within the scope of work. As a result of KOP interviews, 714 waste items were determined to be non-hazardous, while 276 were determined to be non-radioactive. Other wastes were stored as suspect radioactive. Many of the suspect radioactive wastes were certified by the generators as non-radioactive and will eventually be removed

  18. Nuclear waste - a fresh perspective

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1996-01-01

    Rather than looking at the nuclear waste problem in isolation, it should be viewed in the broader context of how society disposes of all of its wastes. A comparison of radioactive and non-radioactive wastes shows, contrary to popular perception, that the properties of these two waste types are actually very similar. However, the methods of regulation and management of the two waste types are very different. It is time that these differences were reconciled - both the nuclear and the non-nuclear waste industries have a lot to gain. There are three main categories of (non-nuclear) waste: municipal wastes, hazardous wastes, and industrial wastes. Rather than treating each of these waste types in separate, isolated compartments, there should be an integration of the principles and regulations involved in their management. The non-nuclear waste industry has much to learn from the nuclear approach

  19. Vitrification process testing for reference HWVP waste

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.; Goles, R.W.; Nakaoka, R.K.; Kruger, O.L.

    1991-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flow-sheet is being developed to assure the plant will achieve plant production requirements and the glass product will meet all waste form requirements for final geologic disposal. The first Hanford waste to be processed by the HWVP will be a neutralized waste resulting from PUREX fuel reprocessing operations. Testing is being conducted using representative nonradioactive simulants to obtain process and product data required to support design, environmental, and qualification activities. Plant/process criteria, testing requirements and approach, and results to date will be presented

  20. Incorporation of Savannah River Plant radioactive waste into concrete

    International Nuclear Information System (INIS)

    Stone, J.A.

    1975-01-01

    Results are reported of a laboratory-scale experimental program at the Savannah River Laboratory to gain information on the fixation of high-level radioactive wastes in concrete. Two concrete formulations, a High-Alumina Cement and a Portland Pozzalanic cement, were selected on the bases of leachability and compressive strength for the fixation of non-radioactive simulated wastes. Therefore, these two cements were selected for current studies for the fixation of actual Savannah River Plant high-level wastes. (U.S.)

  1. WIPP waste package testing on simulated DHLW: emplacement

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1984-01-01

    Several series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests. These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs. These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplace under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced under accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass. 9 refs., 1 fig

  2. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan

    International Nuclear Information System (INIS)

    1993-12-01

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites

  3. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  4. Waste management bibliography 1979-1981

    International Nuclear Information System (INIS)

    Oakley, D.T.

    1981-10-01

    The Los Alamos National Laboratory is conducting a variety of research and development to ensure the safety of storing and treating all types of radioactive wastes. These activities include the assay and sorting of waste, the interaction of waste with the earth, and the treatment of waste to reduce the volume and mobility of radionuclides in waste. The practical lessons learned from safely storing waste at Los Alamos since the mid-1940s are an ingredient in determining the direction of our research. National waste management programs are structured according to categories of waste, for example, high level, low level, mill tailings, and transuranic. In this bibliography publications are listed since 1979 according to the following disciplines to show the relevance of work to more than one category of waste: summary and overview; material science; environmental studies; geochemistry and geology; waste assay; soil/waste interactions shallow land burial; volume reduction and technology development; and nonradioactive wastes

  5. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  6. Requirements on radioactive waste for disposal (waste acceptance requirements as of February 2017). Konrad repository; Anforderungen an endzulagernde radioaktive Abfaelle (Endlagerungsbedingungen, Stand: Februar 2017). Endlager Konrad

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, Karin; Moeller, Kai (eds.)

    2017-02-10

    The Bundesamt fuer Strahlenschutz (BfS - Federal Office for Radiation Protection) has established waste acceptance requirements for the Konrad repository. These requirements were developed on the basis of the results of a site-specific safety assessment. They include general requirements on waste packages and specific requirements on waste forms and packagings as well as limitations for activities of individual radionuclides and limitations to masses of non-radioactive harmful substances. Requirements on documentation and delivery of waste packages were additionally included.

  7. Nuclear waste

    International Nuclear Information System (INIS)

    1989-01-01

    This paper reviews the Department of Energy's management of underground single-shell waste storage tanks at its Hanford, Washington, site. The tanks contain highly radioactive and nonradioactive hazardous liquid and solid wastes from nuclear materials production. Hundreds of thousands of gallons of these wastes have leaked, contaminating the soil, and a small amount of leaked waste has reached the groundwater. DOE does not collect sufficient data to adequately trace the migration of the leaks through the soil, and studies predicting the eventual environmental impact of tank leaks do not provide convincing support for DOE's conclusion that the impact will be low or nonexistent. DOE can do more to minimize the environmental risks associated with leaks. To reduce the environmental impact of past leaks, DOE may be able to install better ground covering over the tanks to reduce the volume of precipitation that drains through the soil and carries contaminants toward groundwater

  8. Waste management as provided for by the atomic energy law and the waste legislation

    International Nuclear Information System (INIS)

    Muehlenweg, U.; Brasser, T.

    1991-01-01

    Radioactive waste management is subject to the Atomic Energy Act, whereas non-radioactive waste management is provided for by the waste legislation. This two-partite applicability of laws in the field of waste management originates from the treaties establishing the European Communities. The founder members of the European Community in 1957 concluded the Euratom Treaty for the purpose of creating a European framework for the peaceful uses of atomic energy. Based on this treaty, the European Community has been passing a number of directives and regulations aimed at providing protection of workers from the harmful effects of ionizing radiation. EC law does not define any implementing provisions relating to the management of radioactive waste for instance, which is a task remaining within the competence of the national governments. (orig.) [de

  9. 202-S Hexone Facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the 202-S Hexone Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. The 202-S Hexone Facility is not used to process radioactive or nonradioactive hazardous material. Radioactive, dangerous waste material is contained in two underground storage tanks, 276-S-141 and 276-S-142. These tanks do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the 202-S Hexone Facility

  10. Non-radioactive verification test of ZRF25 radioactive combustible solid waste incinerator

    International Nuclear Information System (INIS)

    Wang Peiyi; Li Xiaohai; Yang Liguo

    2013-01-01

    This paper mainly introduces the construction and test run of ZRF25 radioactive combustible solid waste incinerator, by a series of simulating waste tests, such as 24 h test, 72 h test, 168 h test, making a conclusion that the incinerator runs reliably. In addition, all of the indexes (such as treatment capacity, volume reduction coefficient, clinker ignition loss of incineration ash) meet the requirements of contract and pollution discharging standards. (authors)

  11. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  12. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1997-01-01

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible

  13. Processing and solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Kelley, J.A.

    1981-01-01

    The entire flowsheet for processing and solidification of Savannah River Plant (SRP) high-level wastes has been demonstrated. A new small-scale integrated pilot plant is operating with actual radioactive wastes, and large-scale equipment is being demonstrated with nonradioactive simulated wastes. Design of a full-scale waste solidification plant is in progress. Plant construction is expected to begin in 1983, and startup is anticipated in 1988. The plant will poduce about 500 cans of glass per year with each can containing about 1.5 tons of glass

  14. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  15. Comparative overview of dangers, protective measures and risks for the final disposal of radioactive wastes. Vergleichende Uebersicht der Gefahren, Schutzmassnahmen und Risiken einer Endlagerung radioaktiver Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The purpose of this report is to present an overview of the anticipated risks of geological disposal of radioactive wastes and to compare these to 'conventional' risks, which voluntarily or involuntarily are associated with human activities and have accompanied mankind for long times. Radioactive wastes which result from the generation of electricity by commercial nuclear reactors as well as those originating from research, industrial and medical applications necessitate prolonged isolation from the biosphere to their long-lived, although decaying, toxicity. Chapter 2 of this report contains a survey of the nature and extent of the potential hazard of radioactive waste, drawing attention to the fact that the toxicity of radionuclides is comparable to that of nonradioactive chemical compounds. The possibility of adverse effects on the public cannot be ruled out for either kind of waste. Current plans aim at the safe and effective disposal of radioactive wastes in deep and stable geological formations which should serve as hosts for engineered final repositories. For a final repository to be suitable, the site chosen should be free from circulating groundwater or the free movement of the groundwater must be strongly restricted. In order to prevent radioactive substances migrating away from the final repository in which they have been placed, it is planned to utilise natural and man-made barriers which function largely independently from each other. Thorough knowledge of the properties of man-made barriers, is as important as knowledge of the natural barriers, which are determined by the geology and hydrogeology of the site of the final repository. This principle of protection is known as a 'multiple-barrier concept' and is considered capable of providing safe disposal of radioactive wastes.

  16. Overcoming negative tendencies concerning public attitude to potentially dangerous technologies

    International Nuclear Information System (INIS)

    Barinov, A.; Shmelev, S.

    1995-01-01

    The Moscow Scientific industrial Association RADON is an enterprise with potentially dangerous technology. RADON fulfils the collection, transportation, treatment and disposal of radioactive waste from Moscow region. The inhabitants of this region consider it, and that is true, to be essentially dangerous. We understood, that it is necessary to change the situation and give the public the true information about RADON's activity. For this purpose 4 years ago we developed a new Department, the Department or External Relations

  17. Mixed incineration of RAIW and liquid scintillator waste after storage for decay

    International Nuclear Information System (INIS)

    Naba, K.; Nakazato, K.; Kataoka, K.

    1993-01-01

    Most medical radioactive waste is combustible after radioactive decay. Moreover mixed incineration of LLW with biomedical radioactive waste will lessen radiation exposure to the public. This paper describes the total system flowsheet for the processing of liquid scintillator wastes and radioimmunoassay tube wastes containing iodine 125 (after a two-year storage for decay). The process was tested with a 60 kg/hr capacity incinerator from 1987 to 1991; this has been upgraded to a 150 kg/hr incinerator which is used for nonradioactive biomedical waste incineration as well

  18. Sodium waste technology: A summary report

    International Nuclear Information System (INIS)

    Abrams, C.S.; Witbeck, L.C.

    1987-01-01

    The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds

  19. Joule-heated glass-furnace system for the incineration of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.; Doty, J.W.; Kramer, D.P.

    1982-01-01

    For the past 1-1/2 years, Mound has been preparing and evaluating a commercially available joule-heated glass furnace unit, coupled with a wet scrubbing system. The purpose of the glass furnace evaluation is to advance and document incinerator technology for such combustibles as solids, resins, and sludges, and to develop a stable waste form for subsequent disposal. Four (4) waste nonradioactive types were selected to determine the combustion efficiency of the furnace unit: (1) dry solid waste composed of paper, plastics, rubber, and cloth, (2) ion exchange resin of both the anionic and cationic type, (3) filter sludge composed of diatomaceous earth, organic cellulosic filter aid, and powdered ion exchange resin, and (4) cartridge filters having glass and plastic filter surfaces and nonmetallic cores. When completed, the combustion efficiency experiments for the proposed nonradioactive waste-types revealed the ability of the furnace to easily incinerate waste at feedrates of up to 150 lb/hr. During the course of the experiments, combustibles in the offgas remained consistently low, suggesting excellent combustion efficiency. Furthermore, ash produced by the combustion process was effectively incorporated into the melt by convective currents in the glass. Future work on the glass furnace incinerator will include spiking the waste to determine radioisotope behavior in the furnace

  20. Bibliography of PNL publications in management of radioactive wastes, subject-indexed (alphabetically) and listed chronologically (latest issues first)

    International Nuclear Information System (INIS)

    Powell, J.A.

    1976-07-01

    The citations are arranged under: actinides, alpha particles, americium, beta particles, calcination, cements, ceramics, cesium, containers, decontamination, evaporation, fluidized bed, glass, ground release, high-level wastes, incinerators, liquid wastes, marine disposal, melting, nonradioactive waste disposal, Pu, radiation doses, radiation protection, disposal, processing, radionuclide migration, Ru, safety, separation processes, soils, solidification, solid wastes, stack disposal, temperature, thermal conductivity, transmutation, tritium, underground disposal, U, volatility, and waste disposal/management/processing/storage/transportation

  1. Radioactive and non-radioactive polychlorinated biphenyl (PCB) management at Hanford

    International Nuclear Information System (INIS)

    Leonard, W.W.; Gretzinger, R.F.; Cox, G.R.

    1986-01-01

    Conformance to all state and federal regulations is the goal of Rockwell in the management of both radioactive and non-radioactive PCB's at Hanford. A continuing effort is being made to locate, remove, and properly dispose of all PCB's. As improved methods of management are developed, consideration will be given to them for their adaptation into the Hanford Site PCB Management Plan

  2. Hydrothermal processing of transuranic contaminated combustible waste

    International Nuclear Information System (INIS)

    Buelow, S.J.; Worl, L.; Harradine, D.; Padilla, D.; McInroy, R.

    2001-01-01

    Experiments at Los Alamos National Laboratory have demonstrated the usefulness of hydrothermal processing for the disposal of a wide variety of transuranic contaminated combustible wastes. This paper provides an overview of the implementation and performance of hydrothermal treatment for concentrated salt solutions, explosives, propellants, organic solvents, halogenated solvents, and laboratory trash, such as paper and plastics. Reaction conditions vary from near ambient temperatures and pressure to over 1000degC and 100 MPa pressure. Studies involving both radioactive and non-radioactive waste simulants are discussed. (author)

  3. Large-scale continuous process to vitrify nuclear defense waste: operating experience with nonradioactive waste

    International Nuclear Information System (INIS)

    Cosper, M.B.; Randall, C.T.; Traverso, G.M.

    1982-01-01

    The developmental program underway at SRL has demonstrated the vitrification process proposed for the sludge processing facility of the DWPF on a large scale. DWPF design criteria for production rate, equipment lifetime, and operability have all been met. The expected authorization and construction of the DWPF will result in the safe and permanent immobilization of a major quantity of existing high level waste. 11 figures, 4 tables

  4. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  5. Quality checking of radioactive and hazardous waste

    International Nuclear Information System (INIS)

    Billington, D.M.; Burgoyne, S.M.J.; Dale, C.J.

    1992-01-01

    This report describes the work of the HMIP Waste Quality Checking Laboratory (WQCL) for the period September 1989 -August 1991. The WQCL has conducted research and development of procedures for the receipt, sampling and analysis of low level solid radioactive waste (LLW), intermediate level radioactive waste (ILW) and hazardous chemical waste (HW). Operational facilities have been commissioned for quality checking both LLW and HW. Waste quality checking has been completed on LLW packages seized from the UK waste disposal route by HMIP Inspectors. Packages have ranged in size from the 200 litre steel drum to half-height ISO freight container. Development work was continued on methods of sample extraction and radio-chemical analysis for cement encapsulated ILW in the form of magnox, graphite and stainless steel. This work was undertaken on non-radioactive simulants. (author)

  6. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  7. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations

  8. Hanford Site annual dangerous waste report, calendar year 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This report is a compilation of data on the disposition of hazardous wastes generated on the Hanford Reservation. This information is on EPA requirement every two years. Wastes include: tank simulant waste; alkaline batteries; lead-based paints; organic solvents; light bulbs containing lead and/or mercury; monitoring well drilling wastes; soils contaminated with trace metals, halogenated organics, or other pollutants; Ni-Cd batteries; pesticides; waste oils and greases; wastes from the cleanup of fuel/gasoline spills; filters; metals; and other

  9. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  10. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    The long-term performance of the grout disposal system for Phosphate/Sulfate Waste (PSW) was analyzed. PSW is a low-level liquid generated by activities associated with N Reactor operations. The waste will be mixed with dry solids and permanently disposed of as a cementitious grout in sub-surface concrete vaults at Hanford's 200-East Area. Two categories of scenarios were analyzed that could cause humans to be exposed to radionuclides and chemicals from the grouted waste: contaminated groundwater and direct intrusion. In the groundwater scenario, contaminants are released from the buried grout monoliths, then eventually transported via the groundwater to the Columbia River. As modeled, the contaminants are assumed to leach out of the monoliths at a constant rate over a 10,000-year period. The other category of exposure involves intruders who inadvertently contact the waste directly, either by drilling, excavating, or gardening. Long-term impacts that could result from disposal of PSW grout were expressed in terms of incremental increases of (1) chemical concentrations in the groundwater and surface waters, and (2) radiation doses. None of the calculated impacts exceeded the corresponding regulatory limits set by Washington State, Department of Energy, or the Nuclear Regulatory Commission

  11. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  12. Overview of Savannah River Plant waste management operations

    International Nuclear Information System (INIS)

    Haywood, J.E.; Killian, T.H.

    1987-01-01

    The Du Pont Savannah River Plant (SRP) Waste Management Program is committed to the safe handling, storage, and disposal of wastes that result from the production of special nuclear materials for the US Department of Energy (US DOE). High-level radioactive liquid waste is stored in underground carbon steel tanks with double containment, and the volume is reduced by evaporation. An effluent treatment facility is being constructed to treat low-level liquid hazardous and radioactive waste. Solid low-level waste operations have been improved through the use of engineered low-level trenches, and transuranic waste handling procedures were modified in 1974 to meet new DOE criteria requiring 20-year retrievable storage. An improved disposal technique, Greater Confinement Disposal, is being demonstrated for intermediate-level waste. Nonradioactive hazardous waste is stored on site in RCRA interim status storage buildings. 5 figs

  13. Societal response to wastes in the 20. century

    International Nuclear Information System (INIS)

    Petts, J.; Gerrard, S.

    1996-01-01

    The generation and management of wastes has become one of the most pressing problems facing modern society. Though often depicted as a problem of a technical and environmental management nature, many aspects of the issue can be framed is sociological terms. This paper attempts to track the path of social perceptions of, and response to, wastes in western democracies from the turn of the century until the present day, and concludes by offering some ideas as to how perceptions and the consequent demands for information and involvement in decision-making on waste management may develop as we move into the 21. century. The focus of the paper is non-radioactive wastes, however, there is considerable overlap and commonalty with social responses to nuclear wastes. (authors)

  14. Remediation of Hanford tank waste using magnetic separation

    International Nuclear Information System (INIS)

    Worl, L.A.; Avens, L.R.; de Aguero, K.J.; Coyne Prenger, F.; Stewart, W.F.; Hill, D.D.

    1992-01-01

    Large volumes of high-level radioactive waste are stored at the Department of Energy's Hanford site. Magnetic separation, a physical separation, process, can be used to segregate actinides and certain fission products from the waste. High gradient magnetic separation (HGMS) tests have been performed successfully using a simulated, nonradioactive underground storage tank (UST) waste. Variations in HGMS test parameters included separator matrix material, magnetic field strength, slurry surfactant, and slurry solids loading. Cerium was added to the simulated tank waste to act as a uranium surrogate. Results show that over 77% of the uranium surrogate can be captured and concentrated from the original bulk with a simple procedure. The results of these tests and the feasibility of magnetic separation for pretreatment of UST waste are discussed

  15. Engineering-scale vitrification of commercial high-level waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Bjorklund, W.J.; Hanson, M.S.; Knowlton, D.E.

    1980-04-01

    To date, technology for immobilizing commercial high-level waste (HLW) has been extensively developed, and two major demonstration projects have been completed, the Waste Solidification Engineering Prototypes (WSEP) Program and the Nuclear Waste Vitrification Project (NWVP). The feasibility of radioactive waste solidification was demonstrated in the WSEP program between 1966 and 1970 (McElroy et al. 1972) using simulated power-reactor waste composed of nonradioactive chemicals and HLW from spent, Hanford reactor fuel. Thirty-three engineering-scale canisters of solidified HLW were produced during the operations. In early 79, the NWVP demonstrated the vitrification of HLW from the processing of actual commercial nuclear fuel. This program consisted of two parts, (1) waste preparation and (2) vitrification by spray calcination and in-can melting. This report presents results from the NWVP

  16. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  17. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of Photobacter phosphoreum (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs

  18. Radioactive Demonstrations Of Fluidized Bed Steam Reforming As A Supplementary Treatment For Hanford's Low Activity Waste And Secondary Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-01-01

    , fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  19. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  20. Practice and assessment of sea dumping of radioactive wastes

    International Nuclear Information System (INIS)

    Templeton, W.L.; Bewers, J.M.

    1985-08-01

    This paper discusses the practice and assessment of the ocean dumping of low-level radioactive wastes. It describes the international and multilateral regulatory framework, the sources, composition, packaging and rate of dumping and, in particular, the recent radiological assessment of the only operational disposal site in the northeast Atlantic. The paper concludes with a discussion of future ocean disposal practices for radioactive wastes, and the application of the approach to the dumping of non-radioactive contaminants in the ocean. 39 refs., 1 fig., 4 tabs

  1. Denitration of Savannah River Plant waste streams

    International Nuclear Information System (INIS)

    Orebaugh, E.G.

    1976-07-01

    Partial denitration of waste streams from Savannah River Plant separations processes was shown to significantly reduce the quantity of waste solids to be stored as an alkaline salt cake. The chemical processes involved in the denitration of nonradioactive simulated waste solutions were studied. Chemical and instrumental analytical techniques were used to define both the equilibrium concentrations and the variation of reactants and products in the denitration reaction. Mechanisms were proposed that account for the complicated chemical reactions observed in the simulated waste solutions. Metal nitrates can be denitrated by reaction with formic acid only by the release of nitric acid from hydrolysis or formate complexation of metal cations. However, eventual radiolysis of formate salts or complexes results in the formation of biocarbonate and makes complexation-denitration a nonproductive means of reducing waste solids. Nevertheless, destruction of nitrate associated with free acid and easily hydrolyzable cations such as iron, mercury, and zirconium can result in greater than 30 percent reduction in waste solids from five SRP waste streams

  2. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1997-01-01

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na 2 O, 9 wt% CaO, 7.2 wt% Li 2 O and 8.1 wt% Fe 2 O 3 . This glass melted at 1,150 C and represented a two fold volume reduction

  3. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  4. Spanish solid wastes legislation; Legislacion espanola de Residuos Solidos

    Energy Technology Data Exchange (ETDEWEB)

    Castrillon Pelaez, L.; Maranon Maison, E.; Rodriguez Iglesias

    2001-07-01

    A review is made of the regulations in the field of solid wastes with the aim of providing a useful working tool for those entities that generate or manage some type of waste. The coming into force of the current Spanish Wastes Law establishes common regulations for all wastes, substituting all previous Municipal Waste and Toxic and Dangerous Waste Laws. For reasons of greater practical applicability, we have preferred in this paper to classify wastes on the basis of their characteristics. The regulations are thus presented in a series of sections: municipal waste, dangerous wastes, sewage plant sludge, cattle waste and specific risk materials, highlighting in each case those areas of the regulations that are of greater interest for the producers and managers of solid wastes. (Author)

  5. The Control of Pollution (Special Waste) Regulations 1980 SI 1980 No. 1709

    International Nuclear Information System (INIS)

    1980-01-01

    These Regulations give effect to certain provisions of Community Legislation in Council Directive No. 78/319/EEC concerned with toxic and dangerous waste which will be special waste. Regulation 3 deals with radioactive waste which will be special waste if it has dangerous properties other than radioactivity. Precautions against radioactivity are dealt with under the Radioactive Substances Act 1960. (NEA) [fr

  6. Headaches - danger signs

    Science.gov (United States)

    Migraine headache - danger signs; Tension headache - danger signs; Cluster headache - danger signs; Vascular headache - danger signs ... and other head pain. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  7. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    Science.gov (United States)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  8. The status of radioactive waste management: needs for reassessment

    International Nuclear Information System (INIS)

    Eisenbud, M.

    1981-01-01

    Three systems of radioactive waste management, land burial of wastes from biomedical laboratories, storage in mined cavities, and use of the oceans, are discussed briefly for the purpose of illustrating the need for re-examination of the basic approaches being taken at the present time. It is concluded that most of the low level wastes from biomedical institutions need not be shipped to burial grounds, but can be incinerated on site subject only to restrictions determined by the nonradioactive characteristics of the wastes. With respect to storage of high level wastes, it is suggested that studies of the mobilization rates of natural ore bodies may provide the best way of modeling the behavior of selected waste forms over long periods of time. The oceans, particularly the deep ocean sediments, should be more thoroughly investigated as a possible disposal option. (author)

  9. Waste volume reduction by acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Divine, J.R.

    1975-06-01

    Acid digestion is a process being developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington, to reduce the volume of alpha-contaminated combustible waste by converting it into a non-combustible residue. Typical waste materials such as polyvinylchloride (PVC), polyethylene, paper and other cellulosic materials, ion exchange resin, all types of rubber, etc., are digested in hot (230 0 C--270 0 C) concentrated sulfuric acid containing nitric acid oxidant to form inert residues generally having less than four percent of their original volume and less than twenty-five percent of their original mass. The process is currently being tested using non-radioactive waste in an Acid Digestion Test Unit (ADTU) with all glass equipment. Engineering tests to date have shown acid digestion to be a potentially attractive method for treating combustible waste materials. Based on results of the engineering tests, an acid digestion pilot unit capable of treating radioactive wastes is being designed and constructed. Design capacity of the pilot unit for radioactive waste will be 100 kg of waste per day. (U.S.)

  10. MIxed Waste Integrated Program (MWIP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE's mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel

  11. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  12. Organic analyses of an actual and simulated mixed waste. Hanford's organic complexant waste revisited

    International Nuclear Information System (INIS)

    Toste, A.P.; Osborn, B.C.; Polach, K.J.; Lechner-Fish, T.J.

    1995-01-01

    Reanalysis of the organics in a mixed waste, an organic complexant waste, from the U.S. Department of Energy's Hanford Site, has yielded an 80.4% accounting of the waste's total organic content. In addition to several complexing and chelating agents (citrate, EDTA, HEDTA and NTA), 38 chelator/complexor fragments have been identified, compared to only 11 in the original analysis, all presumably formed via organic degradation. Moreover, a mis identification, methanetricarboxylic acid, has been re-identified as the chelator fragment N-(methylamine)imino-diacetic acid (MAIDA). A nonradioactive simulant of the actual waste, containing the parent organics (citrate, EDTA, HEDTA and NTA), was formulated and stored in the dark at ambient temperature for 90 days. Twenty chelator and complexor fragments were identified in the simulant, along with several carboxylic acids, confirming that myriad chelator and complexor fragments are formed via degradation of the parent organics. Moreover, their abundance in the simulant (60.9% of the organics identified) argues that the harsh chemistries of mixed wastes like Hanford's organic degradation, even in the absence of radiation. (author). 26 refs., 2 tabs

  13. Predicting transport requirements for radioactive-waste slurries

    International Nuclear Information System (INIS)

    Motyka, T.; Randall, C.T.

    1983-01-01

    A method for predicting the transport requirements of radioactive waste slurries was developed. This method involved preparing nonradioactive sludge slurries chemically similar to the actual high-level waste. The rheological and settling characteristics of these synthetic waste slurries were measured and found to compare favorably with data on actual defense waste slurries. Pressure drop versus flow rate data obtained fom a 2-in. slurry test loop confirmed the Bingham plastic behavior of the slurry observed during viscometry measurements. The pipeline tests, however, yielded friction factors 30 percent lower than those predicted from viscometry data. Differences between the sets of data were attributed to inherent problems in interpreting accurate yield-stress values of slurry suspensions with Couette-type viscometers. Equivalent lengths of fittings were also determined and found to be less than that of water at a specified flow rate

  14. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    International Nuclear Information System (INIS)

    1994-02-01

    This report is DOE's first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992

  15. Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

  16. Electrical service and controls for Joule heating of a defense waste experimental glass melter

    International Nuclear Information System (INIS)

    Erickson, C.J.; Haideri, A.Q.

    1983-01-01

    Vitrification of radioactive liquid waste in a glass matrix is a leading candidate for long-term storage of high-level waste. This paper describes the electrical service and control system for an experimental electrically heated, nonradioactive glass melter installed at Savannah River Laboratory. Data accumulated, and design/operating experience acquired in operating this melter, are being used to design a modified melter to be installed in a processing area for use with radioactive materials

  17. Alternative waste management concept for medium and low level wastes by in-situ solidification

    International Nuclear Information System (INIS)

    Kraemer, R.

    1982-01-01

    Since 1976, a German R and D project has been carried out to find an alternative concept for the treatment and disposal of MLW and LLW arising mainly in the planned German reprocessing plant and other nuclear facilities (LWR, fuel fabrication, R and D establishments). The main feature of this concept is an in-situ solidification of preconditioned waste granules in large salt caverns located in the deep geological underground, thus avoiding such non-radioactive ballast as lost concrete shielding and container material. (orig./RW)

  18. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    International Nuclear Information System (INIS)

    Brown, M.J.; P'Pool, R.K.; Thomas, S.P.

    1990-05-01

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs

  19. Response to 'Decades of delay in nuclear waste disposal - a failure to communicate'

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2014-01-01

    In a recent opinion piece on the delay of nuclear waste disposal, Mr. H. Tammemagi asserts that it is important for a nuclear community to include in the Canadian public discourse the presence of natural radiation, comparisons between radioactive and non-radioactive wastes, and nuclear medicine. It is to the first two that I respond to, with the view that the lessons learnt from Japan have merit for addressing the issues in the Canadian context. (author)

  20. Beta-gamma contaminated solid waste incinerator facility

    International Nuclear Information System (INIS)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft 3 per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage

  1. Alpha spectrum profiling of plutonium in leached simulated high-level radioactive waste-glass

    International Nuclear Information System (INIS)

    Diamond, H.; Friedman, A.M.

    1981-01-01

    Low-geometry X-ray spectra from /sup 239/Pu and /sup 237/Np, incorporated into simulated high-level radioactive waste-glass, were transformed into depth distributions for these elements. Changes in the depth profiles were observed for a series of static leachings in 75/degree/C water. Radiochemical assay of the leach solutions revealed that little neptunium or plutonium was leached, and that the amount leached was independent of leaching time. The depth profiles of the leached specimens showed that there was selective leaching of nonradioactive components of the glass, concentrating the remaining neptunium and plutonium in a broad zone near (but not at) the glass surface. Eventual redeposition of nonradioactive material onto the glass surface inhibited further leaching

  2. Principles for disposal of radioactive and chemical hazardous wastes

    International Nuclear Information System (INIS)

    Merz, E. R.

    1991-01-01

    The double hazard of mixed wastes is characterized by several criteria: radioactivity on the one hand, and chemical toxicity, flammability, corrosiveness as well as chemical reactivity on the other hand. Chemotoxic waste normally has a much more complex composition than radioactive waste and appears in much larger quantities. However, the two types of waste have some properties in common when it comes to their long-term impact on health and the environment. In order to minimize the risk associated with mixed waste management, the material assigned for ultimate disposal should be thoroughly detoxified, inertized, or mineralized prior to conditioning and packaging. Good control over the environmental consequence of waste disposal requires that detailed criteria for tolerable contamination should be established, and that compliance with these criteria can be demonstrated. For radioactive waste, there has been an extensive international development of criteria to protect human health. For non-radioactive waste, derived criteria exist only for a limited number of substances

  3. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  4. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  5. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management

    International Nuclear Information System (INIS)

    Jones, C.; Pers, K.

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation

  6. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  7. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  8. Electronic wastes

    Science.gov (United States)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  9. Contesting danger

    DEFF Research Database (Denmark)

    Heathershaw, John; Megoran, Nick

    2011-01-01

    and subsequent considerations of the region in terms of the war on terror. It considers several examples of this discourse of danger including the popular US TV drama about presidential politics, The West Wing, the policy texts of ‘Washingtonian security analysis’ and accounts of danger, insecurity and urban...... of danger is contested within the region. The example of urban violence in Osh, Kyrgyzstan and Jalalabad, Afghanistan in 2010 demonstrates how opportunities to mitigate conflict may have been lost due to the distortions of this discourse of danger. It concludes by raising the challenge to policy...

  10. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  11. Regulations for the disposal of radioactive waste in the Konrad repository - 59105

    International Nuclear Information System (INIS)

    Jung, Hagen G.; Bandt, Gabriele

    2012-01-01

    In Germany low / medium level waste, which is classified here as radioactive waste with negligible heat generation, will be disposed of in the Konrad underground repository. The construction and the operation of this nuclear facility required authorization by different fields of law, i.e., by nuclear law, mining law and water law. Whereas the nuclear law considers solely radiological aspects, the relevant permit issued according to the water law considers the impact of radioactive as well as non-radioactive harmful substances. The Federal Office for Radiation Protection (BfS) as operator of the repository and permit holder has (a) to record the disposed of radioactive and non-radioactive harmful substances and (b) to balance them. To meet these requirements BfS has developed a concept, which led to a site specific solution. Threshold values were defined for recording and for balancing the harmful substances. It had to be verified that by disposal of radioactive waste packages according to these values an adverse effect on the near-surface groundwater can be excluded. The Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency (NLWKN) as the responsible water law regulatory authority approved the operator's concept as appropriate to comply with the requirements of the Water Law Permit. Nonetheless, collateral clauses were imposed to assure this. (authors)

  12. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    International Nuclear Information System (INIS)

    KAMBERG, L.D.

    2000-01-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary

  13. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  14. [Nationwide survey on radioactive waste management related to positron emission tomography in Japan].

    Science.gov (United States)

    Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji

    2009-12-20

    A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.

  15. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  16. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  17. Waste Encapsulation and Storage Facility (WESF) Waste Analysis Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document waste analysis activities associated with the Waste Encapsulation and Storage Facility (WESF) to comply with Washington Administrative Code (WAC) 173-303-300(1), (2), (3), (4), (5), and (6). WESF is an interim status other storage-miscellaneous storage unit. WESF stores mixed waste consisting of radioactive cesium and strontium salts. WESF is located in the 200 East Area on the Hanford Facility. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  18. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  19. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  20. Plutonium finishing plant dangerous waste training plan

    International Nuclear Information System (INIS)

    ENTROP, G.E.

    1999-01-01

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas

  1. DEVELOPMENT OF A KINETIC MODEL OF BOEHMITE DISSOLUTION IN CAUSTIC SOLUTIONS APPLIED TO OPTIMIZE HANFORD WASTE PROCESSING

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    Boehmite (e.g., aluminum oxyhydroxide) is a major non-radioactive component in Hanford and Savannah River nuclear tank waste sludge. Boehmite dissolution from sludge using caustic at elevated temperatures is being planned at Hanford to minimize the mass of material disposed of as high-level waste (HLW) during operation of the Waste Treatment Plant (WTP). To more thoroughly understand the chemistry of this dissolution process, we have developed an empirical kinetic model for aluminate production due to boehmite dissolution. Application of this model to Hanford tank wastes would allow predictability and optimization of the caustic leaching of aluminum solids, potentially yielding significant improvements to overall processing time, disposal cost, and schedule. This report presents an empirical kinetic model that can be used to estimate the aluminate production from the leaching of boehmite in Hanford waste as a function of the following parameters: (1) hydroxide concentration; (2) temperature; (3) specific surface area of boehmite; (4) initial soluble aluminate plus gibbsite present in waste; (5) concentration of boehmite in the waste; and (6) (pre-fit) Arrhenius kinetic parameters. The model was fit to laboratory, non-radioactive (e.g. 'simulant boehmite') leaching results, providing best-fit values of the Arrhenius A-factor, A, and apparent activation energy, E A , of A = 5.0 x 10 12 hour -1 and E A = 90 kJ/mole. These parameters were then used to predict boehmite leaching behavior observed in previously reported actual waste leaching studies. Acceptable aluminate versus leaching time profiles were predicted for waste leaching data from both Hanford and Savannah River site studies.

  2. Central Waste Complex (CWC) Waste Analysis Plan

    International Nuclear Information System (INIS)

    ELLEFSON, M.D.

    2000-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly

  3. A bioethical perspective on risk assessment models for managing toxic wastes, radioactive or non-radioactive

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1982-01-01

    In the interest of developing an adequate and consistent bioethical perspective for reflecting on the ethical issues raised by toxic wastes, this brief paper focuses on the question of whether or not public opposition to past and proposed methods for waste management has been induced as much by technical incompetance as by deficiencies in using risk models for bioethical problem definitions

  4. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marra, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1991-10-01

    Waste waters have been generated as result of operations conducted at the Hanford Facility for over 40 years. These waste waters were previously discharged to cribs, ponds, or ditches. Examples of such waste waters include steam condensates and cooling waters that have not been in contact with dangerous or mixed waste and process condensates that may have been in contact with dangerous or mixed waste. Many measures have been taken to reduce the amount of contamination being discharged in these effluents. However, some of these waste waters still require additional treatment before release to the environment. Systems are being designed and built to treat these waste waters along with any future waste waters resulting from remediation activities on the Hanford Facility

  7. Investigation about the ecotown-enterprise for establishing recycling system of non-radioactive waste arising from power plant decommissioning

    International Nuclear Information System (INIS)

    Hironaga, Michihiko; Nishiuchi, Tatsuo; Ozaki, Yukio; Yamamoto, Kimio

    2004-01-01

    About 95% of demolition wastes generated by decommissioning nuclear power plants are below the clearance level, i.e., the wastes can be dealt with as industrial wastes. On that case, rational processing, disposal, and reuse are expectable. However, even if the demolition waste is below a clearance level, it seems to be difficult to be immediately accepted in general society with the demolition wastes. Therefore, it is important to establish the technology for an effective recycle system of demolition wastes, and to reuse demolition wastes as much as possible, resulting in recognition of the value by the society. On the other hand, as for recycling of industrial waste, the recycling enterprise is promoted in the domestic self-governing body in response to the 'eco-town enterprise' which is recommended by the government. This report investigates the system and subjects of a 'eco-town enterprise' for recycling demolition wastes. (author)

  8. Low-Level Burial Grounds Dangerous Waste Permit Application design documents

    International Nuclear Information System (INIS)

    1990-01-01

    This document presents the Functional Design Criteria for trenches to be constructed to receive solid radioactive mixed waste (RMW) from on and offsite generators. The new RMW disposal facilities are considered modifications to or lateral expansion of the existing low-level waste burial grounds. The new facilities upgrade the existing disposal practice for RMW to the minimum technology requirements of the Resource Conservation and Recovery Act. The proposed locations for the two facilities are: 218-E-10 for drag-off-waste packages and, 218-W-4C for non drag-off waste packages

  9. Organic destruction to enhance the separation of strontium in radioactive wastes

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Elmore, M.R.; Orth, R.J.; Jones, E.O.; Zacher, A.H.; Hart, T.R.; Neuenschwander, G.G.; Poshusta, J.C.

    1994-01-01

    A low-temperature (300 C to 375 C) hydrothermal organic destruction process is being evaluated to help facilitate the removal of complexed radioactive species from bulk liquid components in hanford tank waste. The work focuses on hydrothermal processing to destroy organic compounds that contribute to waste safety issues and organic complexants that promote the solubility of radioactive constituents such as 90 Sr and 241 Am. For the studies discussed here, testing was conducted using a nonradioactive Hanford tank waste simulant. The relative destruction rates of a variety of organic compounds known to be present in Hanford tank waste were evaluated. In addition, the tendency for these organic compounds to complex strontium and the effect of hydrothermal treatment on strontium removal were investigated

  10. Organic destruction to enhance the separation of strontium in radioactive wastes

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Elmore, M.R.; Orth, R.J.; Jones, E.O.; Zacher, A.H.; Hart, T.R.; Neuenschwander, G.G.; Poshusta, J.C.

    1994-10-01

    A low-temperature (300 C to 375 C) hydrothermal organic destruction process is being evaluated to help facilitate the removal of complexed radioactive species from bulk liquid components in Hanford tank waste. The work focuses on hydrothermal processing to destroy organic compounds that contribute to waste safety issues and organic complexants that promote the solubility of radioactive constituents such as 9O Sr and 241 Am. For the studies discussed here, testing was conducted using a nonradioactive Hanford tank waste simulant. The relative destruction rates of a variety of organic compounds known to be present in Hanford tank waste were evaluated. In addition, the tendency for these organic compounds to complex strontium and the effect of hydrothermal treatment on strontium removal were investigated

  11. Effects of non-radioactive material around radioactive material on PET image quality

    International Nuclear Information System (INIS)

    Toshimitsu, Shinya; Yamane, Azusa; Hirokawa, Yutaka; Kangai, Yoshiharu

    2015-01-01

    Subcutaneous fat is a non-radioactive material surrounding the radioactive material. We developed a phantom, and examined the effect of subcutaneous fat on PET image quality. We created a cylindrical non-radioactive mimic of subcutaneous fat, placed it around a cylindrical phantom in up to three layers with each layer having a thickness of 20 mm to reproduce the obesity caused by subcutaneous fat. In the cylindrical phantom, hot spheres and cold spheres were arranged. The radioactivity concentration ratio between the hot spheres and B.G. was 4:1. The radioactivity concentration of B.G. was changed as follows : 1.33, 2.65, 4.00, and 5.30 kBq/mL. 3D-PET image were collected during 10 minutes. When the thickness of the mimicked subcutaneous fat increased from 0 mm to 60 mm, noise equivalent count decreased by 58.9-60.9% at each radioactivity concentration. On the other hand, the percentage of background variability increased 2.2-5.2 times. Mimic subcutaneous fat did not decrease the percentage contrast of the hot spheres, and did not affect the cold spheres. Subcutaneous fat decreases the noise equivalent count and increases the percentage of background variability, which degrades PET image quality. (author)

  12. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  13. Response to 'Decades of delay in nuclear waste disposal - a failure to communicate'

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S. [McMaster Univ., Hamilton, Ontario (Canada)

    2014-09-15

    In a recent opinion piece on the delay of nuclear waste disposal, Mr. H. Tammemagi asserts that it is important for a nuclear community to include in the Canadian public discourse the presence of natural radiation, comparisons between radioactive and non-radioactive wastes, and nuclear medicine. It is to the first two that I respond to, with the view that the lessons learnt from Japan have merit for addressing the issues in the Canadian context. (author)

  14. Immobilization of hazardous and radioactive waste into glass structures

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1997-01-01

    As a result of more than three decades of international research, glass has emerged as the material of choice for immobilization of a wide range of potentially hazardous radioactive and non-radioactive materials. The ability of glass structures to incorporate and then immobilize many different elements into durable, high integrity, waste glass products is a direct function of the unique random network structure of the glassy state. Every major country involved with long-term management of high-level radioactive waste (HLW) has either selected or is considering glass as the matrix of choice for immobilizing and ultimately, disposing of the potentially hazardous, high-level radioactive material. There are many reasons why glass is preferred. Among the most important considerations are the ability of glass structures to accommodate and immobilize the many different types of radionuclides present in HLW, and to produce a product that not only has excellent technical properties, but also possesses good processing features. Good processability allows the glass to be fabricated with relative ease even under difficult remote-handling conditions necessary for vitrification of highly radioactive material. The single most important property of the waste glass produced is its ability to retain hazardous species within the glass structure and this is reflected by its excellent chemical durability and corrosion resistance to a wide range of environmental conditions. In addition to immobilization of HLW glass matrices are also being considered for isolation of many other types of hazardous materials, both radioactive as well as nonradioactive. This includes vitrification of various actinides resulting from clean-up operations and the legacy of the cold war, as well as possible immobilization of weapons grade plutonium resulting from disarmament activities. Other types of wastes being considered for immobilization into glasses include transuranic wastes, mixed wastes, contaminated

  15. Hanford facility dangerous waste permit application, low-level burial grounds

    International Nuclear Information System (INIS)

    Engelmann, R.H.

    1997-01-01

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, 'operating' treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20)

  16. Hanford facility dangerous waste permit application, low-level burial grounds

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, R.H.

    1997-08-12

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  17. Retrieval of buried waste using conventional equipment

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1994-01-01

    A field test was conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive test pit 841 m 3 in volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, vessels, vaults, pipes, and beams were also placed in the pit. These materials were intended to simulate the type of waste found in existing TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were also observed

  18. Stabilization of Savannah River National Laboratory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    International Nuclear Information System (INIS)

    Jantzen, C

    2004-01-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for ∼50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R and D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant

  19. Quality of Life at Work: A study conducted in an organization of waste collection not dangerous

    Directory of Open Access Journals (Sweden)

    Grasiele Cabral Pereira

    2018-04-01

    Full Text Available Incluir o resumo em inglês. This article aims to elaborate a diagnosis of a not dangerous waste collection organization, that seeks to analyze which factors determine the quality of life of the employees of the organization. Nadler and Lawler (1983 affirm that Quality of Life at Work is a way of thinking about individuals, work and the company itself. This research is characterized as exploratory, descriptive and quantitative with the use of statistics and application of a questionnaire aiming to identify the Quality of Life at Work of this specific company. The questionnaire applied was created through the interpretation and analysis of the eight dimensions of QWL presented by Walton (1973. As for the population, an intentional sample was used, comprising the employees of the administrative sector. As for the analysis carried out from the graphs, it was verified that the organization provides a good quality of life to its employees, since just a small percentages of respondents did not agree in part or did not agree with some of the affirmative questions obtained.

  20. The underground diposal of hazardous wastes - necessity, possibilities and limitations

    International Nuclear Information System (INIS)

    Herrmann, A.G.; Brumsack, H.J.; Heinrichs, H.

    1985-01-01

    The natural geochemical cycles of many elements in the atmosphere, hydrosphere, and pedosphere have been changed during the past decades by anthropogenic activities. To put a stop to this development, a drastic reduction of the uncontrolled dispersal of potentially hazardous substances into our environment is necessary, compelling the need for the safe disposal of radioactive and nonradioactive hazardous wastes far away from the biosphere. The amount of potentially hazardous waste produced annually in West Germany is larger by a factor of at least 20 than the volume of hazardous material for which suitable underground disposal sites are planned and available at present. (orig.)

  1. The nuclear waste in France

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    French people are expecting from authorities that it become possible to recycle the radioactive wastes in order to make them disappear or to transform them in ordinary wastes without radioactivity, and in waiting for this time we can be organised to monitor these waste in order to react without delay if for any reason they become dangerous. (N.C.)

  2. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Brent; Olson, Arlin; Mason, J. Bradley; Ryan, Kevin [THOR Treatment Technologies, LLC - 106 Newberry St. SW, Aiken, SC 29801 (United States); Jantzen, Carol; Crawford, Charles [Savannah River Nuclear Solutions (SRNL), LLC, Aiken, SC 29808 (United States)

    2012-07-01

    Hanford currently has 212,000 m{sup 3} (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THOR{sup R} fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  3. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    The PUREX Storage Tunnels are a mixed waste storage unit consisting of two underground railroad tunnels: Tunnel Number 1 designated 218-E-14 and Tunnel Number 2 designated 218-E-15. The two tunnels are connected by rail to the PUREX Plant and combine to provide storage space for 48 railroad cars (railcars). The PUREX Storage Tunnels provide a long-term storage location for equipment removed from the PUREX Plant. Transfers into the PUREX Storage Tunnels are made on an as-needed basis. Radioactively contaminated equipment is loaded on railcars and remotely transferred by rail into the PUREX Storage Tunnels. Railcars act as both a transport means and a storage platform for equipment placed into the tunnels. This report consists of part A and part B. Part A reports on amounts and locations of the mixed water. Part B permit application consists of the following: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report

  4. Low-level radioactive waste in the northeast: revised waste volume projections

    International Nuclear Information System (INIS)

    1984-06-01

    The volume of low-level radioactive waste generated in the eleven Northeast states has undergone significant change since the inital 1982 analysis and projection. These revised projections incorporate improved data reporting and evidence of sharp declines in certain categories of waste. Volumes in the 1982-1983 period reflect waste shipped for disposal as reported by disposal site operators. Projected waste volumes represent waste intended for disposal. The recent dramatic changes in source reduction and waste management practices underscore the need for annual review of waste volume projections. The volume of waste shipped for off-site disposal has declined approximately 12% in two years, from an average 1,092,500 ft 3 annually in 1979 to 1981 to an average annual 956,500 ft 3 in 1982 to 1983; reactor waste disposal volumes declined by about 39,000 ft 3 or 7% during this period. Non-reactor waste volumes shipped for disposal declined by over 70,000 ft 3 or 15% during this period. The data suggest that generators increased their use of such management practices as source reduction, compaction, or, for carbon-14 and tritium, temporary storage followed by disposal as non-radioactive waste under the NRC de minimus standard effective March 1981. Using the Technical Subcommittee projection methodology, the volume of low-level waste produced annually in the eleven states, individually and collectively, is expected to increase through the year 2000, but at a significantly lower rate of increase than initially projected. By the year 2000, the Northeast is projected to generate 1,137,600 ft 3 of waste annually, an increase of about 20% over 1982 to 1983 average volume

  5. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  6. Issues related to the USEPA probabilistic standard for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Okrent, D.

    1993-01-01

    This paper asks whether some of the fundamental bases for the 1985 USEPA standard on disposal of high level radioactive wastes (40 CFR Part 191) warrant re-examination. Similar questions also apply to the bases for the radioactive waste disposal requirements proposed by most other countries. It is suggested that the issue of intergenerational equity has been dealt with from too narrow a perspective. Not only should radioactive and nonradioactive hazardous waste disposal be regulated from a consistent philosophic basis, but the regulation of waste disposal itself should be embedded in the broader issues of intergenerational conservation of options, conservation of quality, and conservation of access. (author). 25 refs

  7. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  8. Waste form development for a DC arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Bloomer, P.E.; Chantaraprachoom, N.; Gong, M.; Lamar, D.A.

    1996-09-01

    A laboratory crucible study was conducted to develop waste forms to treat nonradioactive simulated {sup 238}Pu heterogeneous debris waste from Savannah River, metal waste from the Idaho National Engineering Laboratory (INEL), and nominal waste also from INEL using DC arc melting. The preliminary results showed that the different waste form compositions had vastly different responses for each processing effect. The reducing condition of DC arc melting had no significant effects on the durability of some waste forms while it decreased the waste form durability from 300 to 700% for other waste forms, which resulted in the failure of some TCLP tests. The right formulations of waste can benefit from devitrification and showed an increase in durability by 40%. Some formulations showed no devitrification effects while others decreased durability by 200%. Increased waste loading also affected waste form behavior, decreasing durability for one waste, increasing durability by 240% for another, and showing no effect for the third waste. All of these responses to the processing and composition variations were dictated by the fundamental glass chemistry and can be adjusted to achieve maximal waste loading, acceptable durability, and desired processing characteristics if each waste formulation is designed for the result according to the glass chemistry.

  9. Process for recovering xenon from radioactive gaseous wastes

    International Nuclear Information System (INIS)

    Kishimoto, Tsuneo.

    1980-01-01

    Purpose: To recover pure xenon economically and efficiently by amply removing radioactive krypton mixed in xenon without changing the rectifying capacity of an xenon rectifying system itself. Method: Xe containing radioactive Kr(Kr-85) is rectified to reduce the concentration of radioactive Kr. Thereafter, non-radioactive Kr or Ar is added to Xe and further the rectification is carried out. The raw material Xe from the Xe adsorption system of, for example, a radioactive gaseous waste disposal system is cooled to about 100 0 C by a heat-exchanger and thereafter supplied to a rectifying tower to carry out normal rectification of Xe thereby to reduce the concentration of Kr contained in Xe at the tower bottom to the rectification limit concentration. Then, non-radioactive Kr is supplied via a precooler to the tower bottom to continue the rectification, thus the Xe fractions at the tower bottom, in which the concentration of radioactive Kr is reduced, being compressed and recovered. (Kamimura, M.)

  10. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  11. The state-of-the-art report on management of the decommissioning waste generated from nuclear facilities

    International Nuclear Information System (INIS)

    Kang, Il Sik; Lee, K. M.; Chung, K. H.; Kim, T. K.; Kim, K. J.

    1998-03-01

    As a result of this research on management methodologies of decommissioning waste from nuclear facilities, the state of the art of decommissioning status, plan, and management field on decommissioning waste in foreign countries as well as in Korea is evaluated. Radioactive waste for final disposal according to reusing non-radioactive waste by clear guideline on classification criteria of decommissioning waste by clear guideline on classification criteria of decommissioning waste will be reduced and metal through melting decontamination may be reused. Also, the relevant regulations on acceptance criteria of disposal site for decommissioning waste should be introduced to manage decommissioning waste effectively. It is necessary that large transport containers which satisfy relevant regulations should be designed and manufactured to transport of large waste. (author). 49 refs., 24 tabs., 30 figs

  12. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    International Nuclear Information System (INIS)

    Slaybaugh, R.R.

    1997-08-01

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project

  13. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, J. [Savannah River National Laboratory, Aiken, SC (United States); Marra, J. [Savannah River National Laboratory, Aiken, SC (United States)

    2014-10-02

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing.

  14. SRNL CRP progress report [Development of Melt Processed Ceramics for Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Amoroso, J.; Marra, J.

    2014-01-01

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear fuel. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multiphase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing

  15. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  16. Quantity assessment of waste in the dismantlement of liquid waste treatment plant and its actual state

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Mitsuhashi, Ishi; Matsumoto, Tetsuo; Morishima, Kayoko; Tanzawa, Tomio

    2016-01-01

    From the progress of decommissioning project work of Tokyo City University Atomic Energy Research Institute, this paper reports the comparison between the actual amount of the waste generated during dismantlement work at liquid waste treatment facilities and the assessment quantity before starting the dismantlement. The quantity assessment was made on the basis of the installation license application, design specifications, drawings, records, history of use, site investigation results, etc. Since this quantity assessment did not take into account the dismantling contents of reservoir concrete, the assessed quantity of non-radioactive waste (NR waste) did not match the sum of actual NR waste. However, if an actually generated quantity of concrete of radioactive waste was added to the quantity assessment as NR waste, the quantity of actually generated NR waste and that of assessed NR waste were nearly consistent, which verified the validity of this assessment. This method is considered to be able to be utilized in the future quantity assessment of decommissioning work and the like. On the other hand, it was found that the number of drums that were actually stored tended to increase more than the estimated number of drum conversion. In old buildings, it is necessary to take into account the generation of waste other than radioactive materials in the quantity assessment stage and dismantlement stage. (A.O.)

  17. Steel corrosion in radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, E.; Weier, Dennis R.

    2004-01-01

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author) [es

  18. Safety analysis of the Chernobyl accident origin decontamination waste burials in Belarus

    International Nuclear Information System (INIS)

    Skurat, V.V.; Shiryaeva, N.M.; Myshkina, N.K.; Gvozdev, A.A.; Serebryanyj, G.Z.; Golikova, N.B.

    2002-01-01

    Potential dangerous of the decontamination waste burials was estimated by means of the generalized multicompartmental model. Characteristics of 24 the most large and unfavorable decontamination waste burials are shown and an estimate of their safety is given. The burial effect zones were determined (100-300 m). A reliability of the forecasting estimate of potential dangerous radioactive contamination of ground waters near the burials was checked on example of the Dudichi decontamination waste burial

  19. Long term stability of yttria-stabilized zirconia waste forms. Stability for secular change of partitioned TRU waste composition by disintegration

    International Nuclear Information System (INIS)

    Kuramoto, Ken-ichi; Banba, Tsunetaka; Mitamura, Hisayoshi; Sakai, Etsuro; Uno, Masayoshi; Kinoshita, H.; Yamanaka, Shinsuke

    1999-01-01

    In this study, the stability of YSZ waste forms for secular change of partitioned TRU waste composition by disintegration, one of important terms in long-term stability, is the special concern. Designed amount of waste and YSZ powder were mixed and sintered. These TRU waste forms were submitted to tests of phase stability, chemical durability, mechanical property and compactness. The results were compared with those of another YSZ waste forms, non-radioactive Ce and/or Nd doped YSZ samples, and glass and Synroc waste forms. Experimental results show following: (1) Phase stability of (Np+Am)-, (Np+U)-, and (Np+U+Bi)-doped YSZ waste forms could be maintained of that of the initial Np+Am-doped YSZ waste form permanently even when the composition of partitioned TRU waste were changed by disintegration. (2) Secular change also accelerated volume increase of YSZ waste forms as well as alpha-decay damage. (3) Hv, E and K IC of (Np+U)- and (Np+U+Bi)-doped YSZ waste forms were independent of the secular change of the partitioned TRU waste composition by disintegration. (4) Mechanical properties of YSZ waste forms were more than those of a glass and Synroc waste forms. (5) Compactness of YSZ waste forms was good as waste forms for the partitioned TRU wastes. (J.P.N.)

  20. Filtration of Oak Ridge National Laboratory simulated liquid low-level waste

    International Nuclear Information System (INIS)

    Fowler, V.L.; Hewitt, J.D.

    1989-08-01

    A method for disposal of Oak Ridge National Laboratory's (ORNL's) liquid low-level radioactive waste (LLLW) is being developed in which the material will be solidified in cement and stored in an aboveground engineered storage facility. The acceptability of the final waste form rests in part on the presence or absence of transuranic isotopes. Filtration methods to remove transuranic isotopes from the bulk liquid stored in the Melton Valley Storage Tanks (MVST) were investigated in this study. Initial batch studies using waste from MVST indicate that >99.9% of the transuranic isotopes can be removed from the bulk liquid by simple filtration. Bench-scale studies with a nonradioactive surrogate waste indicate that >99.5% of the suspended solids can be removed from the bulk liquid via inertial crossflow filtration. 4 refs., 3 figs., 11 tabs

  1. Full-scale retrieval of simulated buried transuranic waste

    International Nuclear Information System (INIS)

    Valentich, D.J.

    1993-09-01

    This report describes the results of a field test conducted to determine the effectiveness of using conventional type construction equipment for the retrieval of buried transuranic (TRU) waste. A cold (nonhazardous and nonradioactive) test pit (1,100 yd 3 volume) was constructed with boxes and drums filled with simulated waste materials, such as metal, plastic, wood, concrete, and sludge. Large objects, including truck beds, tanks, vaults, pipes, and beams, were also placed in the pit. These materials were intended to simulate the type of wastes found in TRU buried waste pits and trenches. A series of commercially available equipment items, such as excavators and tracked loaders outfitted with different end effectors, were used to remove the simulated waste. Work was performed from both the abovegrade and belowgrade positions. During the demonstration, a number of observations, measurements, and analyses were performed to determine which equipment was the most effective in removing the waste. The retrieval rates for the various excavation techniques were recorded. The inherent dust control capabilities of the excavation methods used were observed. The feasibility of teleoperating reading equipment was also addressed

  2. Delisting efforts for mixed radioactive and chemically hazardous waste at the Oak Ridge Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Goodpasture, S.T.

    1987-01-01

    Presently, there are four hazardous wastes at the Oak Ridge Gaseous Diffusion Plant that are candidates for the delisting from the Resource Conservation and Recovery Act (RCRA) hazardous waste regulations. These candidates are the sludges from K-1407-B and C ponds, Central Neutralization Facility sludges, mixed sludges from Y-12 and the ash generated by the RCRA/Toxic Substances Control Act (TSCA) Incinerator. All of these hazardous wastes contain radioactive constituents as well as hazardous constituents. The delisting will be based upon the nonradioactive constituents. Whether the delisting petition is granted or not, the wastes will be handled according to the Department of Energy guidelines for radioactive wastes. The presentation discusses the methodologies for delisting these wastes and the rationale behind the processes

  3. Cellulose-containing Waste and Bituminized Salts

    International Nuclear Information System (INIS)

    Valcke, E.

    2005-01-01

    In Belgium, Medium-Level radioactive Waste (MLW) would be eventually disposed off in an underground repository in a geological formation such as the Boom Clay, which is studied as a reference host rock formation. MLW contains large quantities of non-radioactive chemicals that are released upon contact with pore water. It could be the case, for instance, for plutonium bearing cellulosic waste - such as paper tissues used to clean alpha glove boxes - issued from nuclear fuel fabrication (Belgonucleaire). At high pH, as in a disposal gallery backfilled with cement, the chemical degradation of cellulose will generate water-soluble products that may form strong complexes with actinides such as Am, Pu, Np, and U. This could lower the sorption of these elements onto the clay minerals, and hence increase their migration through the clay barrier. Another chemical perturbation could occur from the 3000 m 3 of so-called Eurobitum bituminised MLW, with precipitation sludges from the chemical treatment of spent nuclear fuel, and containing about 750 tons of NaNO 3 . The presence of NaNO 3 in this waste will give rise to several processes susceptible to affect the safety of the disposal system. Amongst others, it is necessary to verify that the swelling pressure of bitumen on the gallery wall and the osmotic pressure within the near-field are not too high to induce a fissuration of the host rock, leading to the formation of preferential migration pathways. The major objective of our work is to obtain a broad understanding of the different processes induced by the release of non-radioactive chemicals in the clay formation, to assess the chemical compatibility of different MLW forms with the clay

  4. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford facilities: Progress Report for the Period April 1 to June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-09-01

    This report describes the progress of 13 Hanford ground-water monitoring projects for the period April 1 to June 30, 1989. These projects are for the 300 area process trenches (300 area), 183-H solar evaporation basins (100-H area), 200 areas low-level burial grounds, nonradioactive dangerous waste landfill (southeast of the 200 areas), 1301-N liquid waste disposal facility (100-N area), 1324-N surface impoundment and 1324-NA percolation pond (100-N area), 1325-N liquid waste disposal facility (100-N area), 216-A-10 crib (200-east area), 216-A-29 ditch (200-east area), 216-A-36B crib (200-east area), 216-B-36B crib (200-east area), 216-B-3 pond (east of the 200-east area), 2101-M pond (200-east area), grout treatment facility (200-east area).

  5. Keep away from danger: Dangerous objects in dynamic and static situations

    Directory of Open Access Journals (Sweden)

    Filomena eAnelli

    2013-07-01

    Full Text Available Behavioral and neuroscience studies have shown that objects observation evokes specific affordances (i.e., action possibilities and motor responses. Recent findings provide evidence that even dangerous objects can modulate the motor system evoking aversive affordances. This sounds intriguing since so far the majority of behavioral, brain imaging, and transcranial magnetic stimulation studies with painful and dangerous stimuli strictly concerned the domain of pain, excepted for evidence suggesting sensitivity to objects’ affordances when neutral objects are located in participants’ peripersonal space. This study investigates whether the observation of a neutral or dangerous object in a static or dynamic situation differently influences motor responses, and the time-course of the dangerous objects’ processing. In three experiments we manipulated: object dangerousness (neutral vs. dangerous; object category (artifact vs. natural; manual response typology (press vs. release a key; object presentation (Experiment 1: dynamic, Experiments 2 and 3: static; object movement direction (Experiment 1: away vs. toward the participant or size (Experiments 2 and 3: big vs. normal vs. small. The task required participants to decide whether the object was an artifact or a natural object, by pressing or releasing one key. Results showed a facilitation for neutral over dangerous objects in the static situation, probably due to an affordance effect. Instead, in the dynamic condition responses were modulated by the object movement direction, with a dynamic affordance effect of neutral objects and an escape-avoidance effect of dangerous objects (neutral objects were processed faster when they moved toward-approached the participant, whereas dangerous objects were processed faster when they moved away from the participant. Moreover, static stimuli influenced the manual response typology. These data indicate the emergence of dynamic affordance and escaping

  6. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Sweeney, B.J.

    1987-04-01

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by the Radiochemical Inspectorate. This report presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. (author)

  7. The future of very low level radioactive wastes in question

    International Nuclear Information System (INIS)

    Vignes, Emmanuelle

    2016-01-01

    After having recalled that nuclear plants produce various radioactive wastes, that the Cigeo project is the proposed solution to store these radioactive wastes, this article more particularly addresses the issue of very low level radioactive wastes which are now the main matter of concern for the IRSN as their quantity is expected to increase during the years to come (notably in relationship with nuclear reactor lifetime extension), and as present storage capacities will soon be saturated. The author first outlines that these wastes are not very dangerous but very cumbersome. Among these so-defined 'very low level' wastes, 30 to 50 per cent could be considered as harmless, but are now processed as dangerous wastes through costly processes. Various possibilities are then envisaged such as a diversification of storage options

  8. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  9. Nuclear techniques and the disposal of non-radioactive solid wastes

    International Nuclear Information System (INIS)

    Landsberger, S.; Buchholz, B.

    1993-01-01

    One of the most vital and persistent public health challenges facing local, state, and national governments is the disposal of solid waste produced from industrial, utility, and municipal sources. There is a growing interest in the monitoring, control, and safe disposal of the chemical constituents arising from these sources. For instance, it is now well known that the release of by products from coal-fired power plants - namely airborne particulates, bottom ash, and fly ash - can have adverse effects on air and water quality. It is therefore important that reliable chemical analytical techniques are readily available to assess the impact of widespread disposal practices of organic and inorganic chemicals. The use of nuclear and nuclear-related analytical techniques - such as neutron activation analysis, energy dispersive x-ray fluorescence and particle induced X-ray emission - have become widespread in major areas of science and technology. These methods and techniques have important applications in such work since they can be used for both the determination of specific individual pollutants (e.g. toxic heavy metals) and multi-elemental analyses for source identification and apportionment purposes. Other nuclear techniques, such as isotope tracers, have also had wide acceptance in characterizing diffusion patterns for metals in soil and aqueous environments and water pollution flows. 1 graph., 1 tab

  10. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1995-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX plant, as well as waste received from other on-site sources

  11. PUREX storage tunnels waste analysis plan

    International Nuclear Information System (INIS)

    Haas, C.R.

    1996-01-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  12. A nonradioactive assay for poly(a)-specific ribonuclease activity by methylene blue colorimetry.

    Science.gov (United States)

    Cheng, Yuan; Liu, Wei-Feng; Yan, Yong-Bin; Zhou, Hai-Meng

    2006-01-01

    A simple nonradioactive assay, which was based on the specific shift of the absorbance maximum of methylene blue induced by its intercalation into poly(A) molecules, was developed for poly(A)-specific ribonuclease (PARN). A good linear relationship was found between the absorbance at 662 nm and the poly(A) concentration. The assay conditions, including the concentration of methylene blue, the incubation temperature and time, and the poly(A) concentration were evaluated and optimized.

  13. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  14. Determination of a radioactive waste classification system

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for /sup 239/Pu or mixed transuranic waste is 1.0 ..mu..Ci/cm/sup 3/ of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10/sup 8/ per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity.

  15. Determination of a radioactive waste classification system

    International Nuclear Information System (INIS)

    Cohen, J.J.; King, W.C.

    1978-03-01

    Several classification systems for radioactive wastes are reviewed and a system is developed that provides guidance on disposition of the waste. The system has three classes: high-level waste (HLW), which requires complete isolation from the biosphere for extended time periods; low-level waste (LLW), which requires containment for shorter periods; and innocuous waste (essentially nonradioactive), which may be disposed of by conventional means. The LLW/innocuous waste interface was not defined in this study. Reasonably conservative analytical scenarios were used to calculate that HLW/LLW interface level which would ensure compliance with the radiological exposure guidelines of 0.5 rem/y maximum exposure for a few isolated individuals and 0.005 rem/y for large population groups. The recommended HLW/LLW interface level for 239 Pu or mixed transuranic waste is 1.0 μCi/cm 3 of waste. Levels for other radionuclides are based upon a risk equivalent to this level. A cost-benefit analysis in accordance with as low as reasonably achievable (ALARA) and National Environmental Protection Act (NEPA) guidance indicates that further reduction of this HLW/LLL interface level would entail marginal costs greater than $10 8 per man-rem of dose avoided. The environmental effects considered were limited to those involving human exposure to radioactivity

  16. Solidification of ash from incineration of low-level radioactive waste

    International Nuclear Information System (INIS)

    Roberson, W.A.; Albenesius, E.L.; Becker, G.W.

    1983-01-01

    The safe disposal of both high-level and low-level radioactive waste is a problem of increasing national attention. A full-scale incineration and solidification process to dispose of suspect-level and low-level beta-gamma contaminated combustible waste is being demonstrated at the Savannah River Plant (SRP) and Savannah River Laboratory (SRL). The stabilized wasteform generated by the process will meet or exceed all future anticipated requirements for improved disposal of low-level waste. The incineration process has been evaluated at SRL using nonradioactive wastes, and is presently being started up in SRP to process suspect-level radioactive wastes. A cement solidification process for incineration products is currently being evaluated by SRL, and will be included with the incineration process in SRP during the winter of 1984. The GEM alumnus author conducted research in a related disposal solidification program during the GEM-sponsored summer internship, and upon completion of the Masters program, received full-time responsibility for developing the incineration products solidification process

  17. Report on R and D work on radioactive waste management and dumping of chemical-toxic wastes sponsored by the BMFT in the second half of 1991

    International Nuclear Information System (INIS)

    1992-05-01

    On behalf of the Federal Minister of Research and Technology, the Kernforschungszentrum Karlsruhe has undertaken the projekt management of the R and D programme sector of waste management, subdivided into the programmes decommissioning and nuclear fuel cycle, and ultimate disposal of dangerous wastes. Ultimate disposal of dangerous wastes is understood to be the ultimate disposal of radioactive wastes and the dumping of chemical-toxic wastes. The progress report documents its programme sector of waste management. Its main part contains the formalized interim reports (as of 31.12.1991) on all projects attended by the manager of the waste management project, arranged according to promotion marks (letter C in the promotion mark stands for chemical-toxic, E for ultimate disposal, S for decommisioning, W for reprocessing, and U - for historical reasons - for university project). (orig./BBR) [de

  18. Final remediation of the provisional storage near Zavratec. Separation of waste, decontamination and radiological measurements

    International Nuclear Information System (INIS)

    Stepisnik, M.; Zeleznik, N.; Mele, I.

    2000-01-01

    This paper presents remedial activities in Zavratec during winter 1999 - 2000. The difficult and slow process of separation radioactive from non-radioactive waste is explained, and the measuring techniques and equipment for separation are presented. The measurements of storage contamination and its decontamination, involving different practical problems, are described in detail. As a result, the initial volume of the waste was reduced to 50%, in spite of the extended decontamination works. The waste has been relocated to the Brinje storage facility. Measurements inside and outside the Zavratec facility after decontamination showed that no radioactivity higher than the natural background was present. The facility was released for unrestricted use. (author)

  19. Product consistency leach tests of Savannah River Site radioactive waste glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Bates, J.K.

    1990-01-01

    The product consistency test (PCT) is a glass leach test developed at the Savannah River Site (SRS) to confirm the durability of radioactive nuclear waste glasses that will be produced in the Defense Waste Processing Facility. The PCT is a seven day, crushed glass leach test in deionized water at 90C. Final leachates are filtered and acidified prior to analysis. To demonstrate the reproducibility of the PCT when performed remotely, SRS and Argonne National Laboratory have performed the PCT on samples of two radioactive glasses. The tests were also performed to compare the releases of the radionuclides with the major nonradioactive glass components and to determine if radiation from the glass was affecting the results of the PCT. The test was performed in triplicate at each laboratory. For the major soluble elements, B, Li, Na, and Si, in the glass, each investigator obtained relative precisions in the range 2-5% in the triplicate tests. This range indicates good precision for the PCT when performed remotely with master slave manipulators in a shielded cell environment. When the results of the two laboratories were compared to each other, the agreement was within 20%. Normalized concentrations for the nonradioactive and radioactive elements in the PCT leachates measured at both facilities indicated that the radionuclides were released from the glass slower than the major soluble elements in the glass. For both laboratories, the normalized releases for both glasses were in the general order Li ∼ B ∼ Na > Si > Cs - 137 > Sb - 125 < Sr - 90. The normalized releases for the major soluble elements and the final pH values in the tests with radioactive glass are consistent with those for nonradioactive glasses with similar compositions. This indicates that there was no significant effect of radiation on the results of the PCT

  20. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially...

  1. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    LUKE, S.N.

    1999-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  2. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  3. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  4. Development of threshold guidance: National Low-Level Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    1986-09-01

    The current study has been conducted to provide DOE with a technical basis for the development of threshold guidance. The objective of the study was to develop the necessary background information and recommendations to assist the DOE in implementing the threshold limit concept for the disposal of DOE wastes at DOE facilities. The nature of low-level radioactive waste (LLW) varies greatly in both form and radionuclide content. While some low-level waste streams can contain substantial quantities of radioactive constituents, a potentially significant fraction of low-level waste is contaminated either very slightly or not at all. There is a strong likelihood that managing wastes with extremely low levels of radioactivity as nonradioactive waste would pose no significant safety problems and could result in substantial cost savings relative to its handling as LLW. Since all materials, including waste products, contain some radioactivity, it is necessary to distinguish between those wastes that would require disposal as LLW and those that have sufficiently low levels of radiological content to be managed according to their nonradiological properties. 131 refs., 9 figs., 24 tabs

  5. Sampling and analysis validates acceptable knowledge on LANL transuranic, heterogeneous, debris waste, or ''Cutting the Gordian knot that binds WIPP''

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.; Triay, I.R.; Souza, L.A.

    1999-01-01

    Through sampling and toxicity characteristic leaching procedure (TCLP) analyses, LANL and the DOE validated that a LANL transuranic (TRU) waste (TA-55-43, Lot No. 01) was not a Resource Recovery and Conservation Act (RCRA) hazardous waste. This paper describes the sampling and analysis project as well as the statistical assessment of the analytical results. The analyses were conducted according to the requirements and procedures in the sampling and analysis plan approved by the New Mexico Environmental Department. The plan used a statistical approach that was consistent with the stratified, random sampling requirements of SW-846. LANL adhered to the plan during sampling and chemical analysis of randomly selected items of the five major types of materials in this heterogeneous, radioactive, debris waste. To generate portions of the plan, LANL analyzed a number of non-radioactive items that were representative of the mix of items present in the waste stream. Data from these cold surrogates were used to generate means and variances needed to optimize the design. Based on statistical arguments alone, only two samples from the entire waste stream were deemed necessary, however a decision was made to analyze at least two samples of each of the five major waste types. To obtain these samples, nine TRU waste drums were opened. Sixty-six radioactively contaminated and four non-radioactive grab samples were collected. Portions of the samples were composited for chemical analyses. In addition, a radioactively contaminated sample of rust-colored powder of interest to the New Mexico Environment Department (NMED) was collected and qualitatively identified as rust

  6. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    International Nuclear Information System (INIS)

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy's (DOE's) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H 2 and NH 3 during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H 2 and NH 3 . Both laboratory-scale and pilot-scale studies at SRTC have documented the H 2 and NH 3 generation phenomenal Because H 2 and NH 3 may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H 2 generation rate and the NH 3 generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste

  7. The mythology of waste disposal

    International Nuclear Information System (INIS)

    Beckhofer.

    1981-10-01

    This paper, while making a parallel between the mythology of the dangers of alcohol when the United States adopted a constitutional amendment prohibiting intoxicating liquor and public attitudes towards the dangers of nuclear waste burial, outlines the reason for these attitudes. Poor information of the public, from the start, on such dangers, the trauma of the atomic bomb and certain court decisions on nuclear activities which were in fact repealed by the Supreme Court. The paper also stresses the difficulty of dealing with this problem on a rational basis despite proven technical knowledge and successful experiments. (NEA) [fr

  8. Deep injection disposal of liquid radioactive waste in Russia

    International Nuclear Information System (INIS)

    Foley, M.G.; Ballou, L.; Rybal'chenko, A.I.; Pimenov, M.K.; Kostin, P.P.

    1998-01-01

    Originally published in Russian, Deep Injection Disposal is the most comprehensive account available in the West of the Soviet and Russian practice of disposing of radioactive wastes into deep geological formations. It tells the story of the first 40 years of work in the former Soviet Union to devise, test, and execute a program to dispose by deep injection millions of cubic meters of liquid radioactive wastes from nuclear materials processing. The book explains decisions involving safety aspects, research results, and practical experience gained during the creation and operation of disposal systems. Deep Injection Disposal will be useful for studying other problems worldwide involving the economic use of space beneath the earth's surface. The material in the book is presented with an eye toward other possible applications. Because liquid radioactive wastes are so toxic and the decisions made are so vital, information in this book will be of great interest to those involved in the disposal of nonradioactive waste

  9. Behavior of nuclides at plasma melting of TRU wastes

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Adachi, Kazuo

    2001-01-01

    Arc plasma heating technique can easily be formed at super high temperature, and can carry out stable heating without any effect of physical and chemical properties of the wastes. By focussing to these characteristics, this technique was experimentally investigated on behavior of TRU nuclides when applying TRU wastes forming from reprocessing process of used fuels to melting treatment by using a mimic non-radioactive nuclide. At first, according to mechanism determining the behavior of TRU nuclides, an element (mimic nuclide) to estimate the behavior was selected. And then, to zircaloy with high melting point or steel can simulated to metal and noncombustible wastes and fly ash, the mimic nuclide was added, prior to melting by using the arc plasma heating technique. As a result, on a case of either melting sample, it was elucidated that the nuclides hardly moved into their dusts. Then, the technique seems to be applicable for melting treatment of the TRU wastes. (G.K.)

  10. An investigation report on the status of very low level radioactive waste management in China

    International Nuclear Information System (INIS)

    Sun Donghui

    2008-01-01

    This report briefly introduces the result of investigation on the study of Very Low Level Waste (VLLW) management and the engineering details of landfill facilities for slightly contaminated waste produced during past few decades in China. Since it has been recognized by IAEA and some countries, that VLLW can be disposed in the landfill for hazardous waste, industrial waste or garbage from cities, standards involved with the non-radioactive solid waste disposal were collected and the brief information in situ for some landfill projects, just like in Beijing and Shanghai, are also given in this report. In the end, some questions and points of view are raised, on which I wish to discuss with you. These points could be very important, when we want to develop the standard for VLLW management. (authors)

  11. Californium-252 neutron activation analysis of high-level processed nuclear tank waste

    International Nuclear Information System (INIS)

    Troyer, G.L.; Purcell, M.A.

    2000-01-01

    The basis for production assessment of the vitrification of Hanford nuclear fuel reprocessing wastes will be high-precision measurements of the elemental sodium content. However, the chemical analysis of both radioactive and nonradioactive components in nuclear waste can be challenged by high radiation dose rates. The dose rates compromise many analytical techniques as well as pose personnel dosimetry risks. In many cases, reduction of dose rates through dilution compromises the precision and sensitivity for certain key components. The use of neutron activation analysis (NAA) provides a method of analysis that avoids the need for dilutions or extensive sample preparation. These waste materials also contain trace quantities of fissionable isotopes, which, through neutron activation, can be estimated by delayed neutron counting of fissioned fragments

  12. Status Report on Phase Identification in Hanford Tank Sludges

    International Nuclear Information System (INIS)

    Rapko, B.M.; Lumetta, G.J.

    2000-01-01

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges

  13. Concentration of a sodium nitrate-based waste with a wiped film evaporation

    International Nuclear Information System (INIS)

    Farr, L.L.; Boring, M.D.; Fowler, V.L.; Hewitt, J.D.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) currently has an inventory of 500,000 gallons of sodium nitrate-based radioactive liquid waste which is currently stored in the Melton Valley Storage Tanks (MVST). This waste needs to be treated and one option being considered is concentration of the wastes using evaporation. Testing is underway to determine whether a Wiped Film Evaporator (WFE) can be used to concentrate these wastes in an economical and reliable manner. The capability of the evaporator to process a non-radioactive simulant of the MVST wastes over a range of operating conditions is being studied. The equipment has to be checked for reliability, potential corrosion problems, and the effects of the waste on the efficiency of heat transfer due to scaling. Physical and chemical characteristics of the product and distillate are being investigated. Heat transfer coefficients and volume reductions are being determined under different operating conditions. Decontamination factors are being calculated to determine the necessity for further treatment of the distillate and off-gas

  14. Determination of transmutation effects in crystalline waste forms. 1997 annual progress report

    International Nuclear Information System (INIS)

    Buck, E.C.; Fortner, J.A.; Hess, N.J.; Strachan, D.M.

    1997-01-01

    'A team from two national laboratories is studying transmutation effects in crystalline waste forms. Analyses are being done with 18 year old samples of 137 Cs-bearing pollucite (CsAlSi 2 O 6 267 0.5 H 2 O) obtained from a French company. These samples are unique in that the pollucite was made with various amounts of 137 Cs, which was then sealed in welded stainless- steel capsules to be used as tumor irradiation sources. Over the past 18 years, the 137 Cs has been decaying to stable Ba in the capsules, i.e., in the absence of atmospheric effects. This material serves as an analogue to a crystalline waste form in which such a transmutation occurs to possibly disrupt the integrity of the original waste form. Work this year consisted of determining the construction of the capsule and state of the pollucite in the absence of details about these components from the French company. The authors have opened one capsule containing nonradioactive pollucite. The information on the construction of the stainless-steel capsule is useful for the work that the authors are preparing to do on capsules containing radioactive pollucite. Microscopic characterization of the nonradioactive pollucite revealed that there are at least two compounds in addition to pollucite: a Cs-silicate and a Cs-aluminosilicate (CsAlSiO 4 ). These findings may complicate the interpretation of the planned experiments using X-ray absorption spectroscopy. Electron energy loss spectroscopy and energy dispersive X-ray spectroscopy (fluorescence) have been used to characterize the nonradioactive pollucite. They have investigated the stability of the nonradioactive pollucite to β radiation damage by use of 200 keV electrons in a transmission electron microscope. The samples were found to become amorphous in less than 10 minutes with loss of Cs. This is equivalent to many more years of β radiation damage than under normal decay of the 137 Cs. In fact, the dose was equivalent to several thousand years of normal

  15. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    Energy Technology Data Exchange (ETDEWEB)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  16. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    International Nuclear Information System (INIS)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-01-01

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations

  17. Valuation of contamination of Am-241 by smear test and characterization of waste by scintillation liquid medium

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Gabriella Souza [Pontificia Universidade Catolica de Goias (PUC-GO), Goiania, GO (Brazil). Dept. Matematica, Fisica, Quimica e Engenharia de Alimentos; Santos, Eliane Eugenia dos; Mingote, Raquel Maia; Barbosa, Rugles Cesar, E-mail: esantos@cnen.gov.b, E-mail: mingote@cnen.gov.b, E-mail: rbarbosa@cnen.gov.b [Centro Regional de Ciencias Nucleares do Centro Oeste (CRCN-CO/CNEN-GO), Abadia de Goias, GO (Brazil). Lab. de Radioprotecao

    2011-07-01

    The radioactive lightning rods Interim storage facility receives Midwest Regional Center for Nuclear Science - CRCN-CO, and contains the majority of devices called radioactive lightning rods, and so is our main study object with an interest in be adapt of Interim storage facility (ID) Radiation Protection requirements and management of radioactive waste. The radioactive lightning rods are devices that contain Americium 241 that fall under the categorization of radioactive sources (IAEA-TECDOC-1191) in category 4 (same device category of the static Eliminator type). The handling, transportation, maintenance, segregation and disposal of accessories and devices emitting ionizing radiation in which involve procedures require: special types of packaged, storage techniques, cleaning/hygiene and inventoried and equipment for Radiation Protection. Cleaning and hygiene as well as the disposition criterion of accessories makes it necessary for the introduction of safe cleanup criterion and more specific that the criterion for exemption. The radioactive lightning rods have brackets that represent physical danger in shipping and handling as well as liabilities of contamination as well as in the case of being contaminated, agents in the transfer of contaminants (Am-241) it is necessary to adopt analysis methodologies and procedures and criterion for the management of radioactive and nonradioactive materials. (author)

  18. Valuation of contamination of Am-241 by smear test and characterization of waste by scintillation liquid medium

    International Nuclear Information System (INIS)

    Cardoso, Gabriella Souza; Santos, Eliane Eugenia dos; Mingote, Raquel Maia; Barbosa, Rugles Cesar

    2011-01-01

    The radioactive lightning rods Interim storage facility receives Midwest Regional Center for Nuclear Science - CRCN-CO, and contains the majority of devices called radioactive lightning rods, and so is our main study object with an interest in be adapt of Interim storage facility (ID) Radiation Protection requirements and management of radioactive waste. The radioactive lightning rods are devices that contain Americium 241 that fall under the categorization of radioactive sources (IAEA-TECDOC-1191) in category 4 (same device category of the static Eliminator type). The handling, transportation, maintenance, segregation and disposal of accessories and devices emitting ionizing radiation in which involve procedures require: special types of packaged, storage techniques, cleaning/hygiene and inventoried and equipment for Radiation Protection. Cleaning and hygiene as well as the disposition criterion of accessories makes it necessary for the introduction of safe cleanup criterion and more specific that the criterion for exemption. The radioactive lightning rods have brackets that represent physical danger in shipping and handling as well as liabilities of contamination as well as in the case of being contaminated, agents in the transfer of contaminants (Am-241) it is necessary to adopt analysis methodologies and procedures and criterion for the management of radioactive and nonradioactive materials. (author)

  19. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  20. Low-level radioactive wastes. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them. 18 references

  1. Remote automated material handling of radioactive waste containers

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site's suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling

  2. Process innovations to minimize waste volumes at Savannah River

    International Nuclear Information System (INIS)

    Doherty, J.P.

    1986-01-01

    In 1983 approximately 1.6 x 10 3 m 3 (427,000 gallons) of radioactive salt solution were decontaminated in a full-scale demonstration. The cesium decontamination factor (DF) was in excess of 4 x 10 4 vs. a goal of 1 x 10 4 . Data from this test were combined with pilot data and used to design the permanent facilities currently under construction. Startup of the Salt Decontamination Process is scheduled for 1987 and will decontaminate 2 x 10 4 m 3 (5.2 million gallons) of radioactive salt solution and generate 2 x 10 3 m 3 (520,000 gallons) of concentrated and washed precipitate per year. The Defense Waste Processing Facility (DWPF) will begin processing this concentrate in the Precipitate Hydrolysis Process starting in 1989. Laboratory data using simulated salt solution and nonradioactive cesium are being used to design this process. A 1/5-scale pilot plant is under construction and will be used to gain large-scale operating experience using nonradioactive simulants. This pilot plant is scheduled to startup in early 1987. The incentives to reduce the volume of waste that must be treated are self-evident. At Savannah River process development innovations to minimize the DWPF feed volumes have directly improved the economics of the process. The integrity of the final borosilicate glass water form has not been compromised by these developments. Many of the unit operations are familiar to chemical engineers and were put to use in a unique environment. As a result, tax dollars have been saved, and the objective of safely disposing of the nation's high-level defense waste has moved forward

  3. Ultrastructural localization of human papilloma virus by nonradioactive in situ hybridization on tissue of human cervical intraepithelial neoplasia

    DEFF Research Database (Denmark)

    Multhaupt, H A; Rafferty, P A; Warhol, M J

    1992-01-01

    BACKGROUND: A nonradioactive in situ hybridization was developed to localize human papilloma virus (HPV) at the ultrastructural level. EXPERIMENTAL DESIGN: Cervical biopsies from human uterine cervices clinically suspicious of condyloma were embedded in Lowicryl K4M at low temperature...

  4. Lessons from radioactive waste disposal applied to other pollutants

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1983-01-01

    In order to manage scientifically the quantities and kinds of waste disposal in coastal waters and open oceans, one needs to assess the environment's capacity to assimilate these materials. This knowledge may help us avoid an unacceptable biological impact on components of the ecosystem and on humans who harvest its resources. One approach available is the one that has been demonstrated to be applicable for the management of the disposal of radioactive wastes in the ocean. New generic and site-specific methodologies can establish relationships between discharge or release rates and associated radiation doses. The International Commission on Radiological Protection (ICRP) has developed guidelines and recommendations that govern acceptable amounts of radiation that people can be exposed to. The ICRP recommendations on justification and optimization can be integrated into an overall management philosophy in order to quantify alternative waste disposal options. These methodologies, which were developed for the control of radioactive wastes, should be applied directly to public health protection from nonradioactive wastes such as metals and organochlorine pesticides

  5. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  7. Special waste-form lysimeters: Arid

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.

    1987-08-01

    The release of contaminant from solidified low-level waste forms is being studied in a field lysimeter facility at the Hanford Site in southeastern Washington State. Duplicate samples of five different waste forms have been buried in 10 lysimeters since March 1984. Waste-form samples represent three different waste streams and four solidification agents (masonry cement, Portland III cement, Dow polymer /sup (a)/, and bitumen). Most precipitation at the Hanford Site arrives as winter snow; this contributes to a strong seasonal pattern in water storage and drainage observed in the lysimeters. The result is an annual range in the volumetric soil water content from 11% in late winter to 7% in the late summer and early fall, as well as annual changes in pore water velocities from approximately 1 cm/wk in early spring to less than 0.05 cm/wk in early fall. Measurable quantities of tritium and cobalt-60 are being collected in lysimeter drainage water. Approximately 30% of the original tritium inventory has been leached from two lysimeters originally containing tritium. Cobalt-60 is present in all waste forms; it is being collected in the leachate from five lysimeters. The total amount released varies, but in each case it is less than 0.1% of the original cobalt inventory of the waste sample. Nonradioactive constituents contained in the waste form, such as sodium, boron, and sulfate, are also being leached

  8. AECL's mixed waste management program

    International Nuclear Information System (INIS)

    Peori, R.; Hulley, V.

    2006-01-01

    Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)

  9. State-of-the-art dry active waste processing facility

    International Nuclear Information System (INIS)

    Hillmer, T.; Ingalsbe, H.; Alcorn, G.; Anderson, K.; Dahlen, D.

    1989-01-01

    Palo Verde Nuclear Generating Station (PVNGS) is operated by Arizona Public Service for a consortium of seven owners. The site consists of three identical single unit power plants. Each unit is a Combustion Engineering Series 80 pressurized water reactor (PWR) rated at 1270 Megawatts electric. The site is located 100 kilometers west of Phoenix, Arizona in the arid southwest desert region of the United States of America. Since the start up of Unit One in 1985, Palo Verde has aggressively pursued waste volume reduction. This includes a dry active waste (DAW) segregation program that locates and separates nonradioactive and reusable materials that have been mixed with the radioactive DAW. The DAW program is described in further detail in the paper

  10. Criteria for long-term hazard assessment of chemotoxic and radiotoxic waste disposal

    International Nuclear Information System (INIS)

    Merz, E.R.

    1988-01-01

    Present-day human activities generate chemotoxic as well as radiotoxic wastes. They must likewise be considered as extremely hazardous. If wastes are composed simultaneously of both kinds, as may occur in nuclear facility operations or nuclear medical applications, the material is called mixed waste. Whereas radioactive waste management and disposal have received considerable attention in the past, less care has been devoted to chemotoxic wastes. Also, mixed wastes may pose problems diverging from singly composed materials. The disposal of mixed wastes is not sufficiently well regulated in the Federal Republic of Germany. Currently, non-radioactive hazardous wastes are mostly disposed of by shallow land burial. Much more rigorous safety precautions are applied with regard to radioactive wastes. According to the orders of the German Federal Government, their disposal is only permitted in continental underground repositories. These repository requirements for radioactive waste disposal should be superior to the near-surface disposal facilities. At present, federal and state legislation do not permit hazardous chemical and radioactive wastes to be deposited simultaneously. It is doubtful whether this instruction is always suitable and also justified. This paper presents a modified strategy

  11. X-ray spectrometric determination of glass content of melts incorporating radioactive waste: a feasibility study

    International Nuclear Information System (INIS)

    Slates, R.V.

    1978-09-01

    X-ray fluorescence spectrometry was evaluated for the determination of glass content and homogeneity of glass incorporating high-level radioactive waste. Accuracy and precision were determined for analyses of Al 2 O 3 , SiO 2 , CaO, TiO 2 , MnO, Fe 2 O 3 , and NiO in specimens of known composition. These specimens were prepared by fusing powdered glass with nonradioactive synthetic waste. Matrix effects of sodium on these analyses were specifically evaluated. X-ray fluorescence spectrometry was shown to be applicable to the proposed determinations by comparing the known glass contents of 14 glass waste compositions with those calculated from experimentally determined concentrations of SiO or TiO 2

  12. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  13. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    International Nuclear Information System (INIS)

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was a result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release

  14. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    Carranza, Ricardo M.; Giordano, Celia M.; Saenz, Eduardo

    2005-01-01

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates ( -1 ) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author) [es

  15. Waste processing options

    International Nuclear Information System (INIS)

    Turney, J.; Miller, A.; Leventhal, L.; Naughton, M.

    1985-01-01

    Decontamination of components, facilities and sites is becoming an increasingly significant source of low-level waste. Another source, of potentially greater magnitude, is the decommissioning of nuclear reactor facilities. According to DOE, there are about 15 operating reactors that will be candidates for decommissioning by the end of the century. In addition, there are reactors such as Humboldt Bay, Dresden 1, and Indian Point, Unit 1, which have been shut down prior to their design life. Chemical decontamination of components and systems is a frequently used technique in controlling nuclear plant radiation exposure, and is especially useful during decommissioning. However, many of the solutions used pose a chemical or biological hazard, in addition to being radioactively contaminated. These hazards, if not ameliorated, may prohibit their disposal. Recent regulations, such as 10CFR Part 61(2), are focusing more attention on the non-radioactive aspects of radioactive waste. 10CFR Part 61 and the existing burial site licenses prohibit burial of waste which is chemically reactive, explosive under ambient conditions, produces toxic gases, vapors or fumes, or is pyrophoric. Additionally, the Barnwell license restricts organic chemicals which may affect the migration of radionuclides from the burial site. The NRC is studying additional restrictions on a class of these chemicals called chelating agents

  16. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes

  17. Ultrastructural localisation of intramuscular expression of BDNF mRNA by silver-gold intensified non-radioactive in situ hybridisation

    NARCIS (Netherlands)

    Liem, RSB; Brouwer, N; Copray, JCVM

    2001-01-01

    A non-radioactive in situ hybridisation method is described for the detection of low intramuscular levels of brain-derived neurotrophic factor (BDNF) mRNA at the electron microscope level. Application of high-grade silver-gold intensification of the diaminobenzidine end product of in situ

  18. Low-level radioactive wastes. AMA Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Under a federal law, each state by January 1, 1993, must provide for safe disposal of its low-level radioactive wastes. Most of the wastes are from using nuclear power to produce electricity, but 25% to 30% are from medical diagnosis, therapy, and research. Exposures to radioactivity from the wastes are much smaller than those from natural sources, and federal standards limit public exposure. Currently operating disposal facilities are in Beatty, Nev, Barnwell, SC, and Richland, Wash. National policy encourages the development of regional facilities. Planning a regional facility, selecting a site, and building, monitoring, and closing the facility will be a complex project lasting decades that involves legislation, public participation, local and state governments, financing, quality control, and surveillance. The facilities will utilize geological factors, structural designs, packaging, and other approaches to isolate the wastes. Those providing medical care can reduce wastes by storing them until they are less radioactive, substituting nonradioactive compounds, reducing volumes, and incinerating. Physicians have an important role in informing and advising the public and public officials about risks involved with the wastes and about effective methods of dealing with them

  19. PUREX Storage Tunnels waste analysis plan. Revision 1

    International Nuclear Information System (INIS)

    Stephenson, M.J.

    1995-11-01

    Washington Administrative Code 173-303-300 requires that a facility develop and follow a written waste analysis plan which describes the procedures that will be followed to ensure that its dangerous waste is managed properly. This document covers the activities at the PUREX Storage Tunnels used to characterize and designate waste that is generated within the PUREX Plant, as well as waste received from other on-site sources

  20. In situ testing of titanium and mild steel nuclear waste containers at the WIPP site

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-01-01

    An overview of the Waste Isolation Pilot Plant (WIPP) in situ tests on the corrosion of titanium and mild steel for high level waste containers is presented. The tests at Sandia have moved out of the laboratory into a test underground facility in order to evaluate the performance of the waste package material. The tests are being performed under both near-reference and accelerated salt repository conditions. Some containers are filled with high level waste glass (non-radioactive); others contain electric heaters. Backfill material is either bentonite/sand or crushed salt. In other tests metals and glasses are exposed directly to brine. The tests are designed to study the corrosion and metallurgy of the canister and overpack materials; the feasibility and performance of backfill materials; and near-field effects such as brine migration

  1. Removal of Aerosol Particles Generated from Vitrification Process for High-Level Liquid Wastes

    OpenAIRE

    加藤 功

    1990-01-01

    The vitrification technology has been developed for the high-level liquid waste (HLLW) from reprocessing nuclear spent fuel in PNC. The removal performance of the aerosol particles generated from the melting process was studied in a nonradioactive full-scale mock-up test facility (MTF). The off-gas treatment system consists of submerged bed scrubber (SBS), venturi scrubber, NOx absorber, high efficiency mist eliminater (HEME). Deoomtamination factors (DFs) were derived from the mass ratio of ...

  2. Volumetric determination of hydroxide, aluminate, and carbonate in alkaline solutions of nuclear waste

    International Nuclear Information System (INIS)

    Baumann, E.W.

    1975-06-01

    An integrated procedure was developed for determining OH - , Al(OH) 4 - , and CO 3 2- in alkaline nuclear waste. The free alkali, the hydroxide released when Al(OH) 3 is complexed with oxalate, and the precipitated BaCO 3 were determined by acidimetric titration. With a 50-μl sample, the relative standard deviations were 1 to 2 percent for nonradioactive test solutions and 2 to 5 percent for radioactive process solutions. (U.S.)

  3. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  4. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  5. Nuclear waste: Department of Energy's Transuranic Waste Disposal Plan needs revision

    International Nuclear Information System (INIS)

    1986-01-01

    Transuranic waste consists of discarded tools, rags, machinery, paper, sheet metal, and glass containing man-made radioactive elements that can be dangerous if inhaled, ingested, or absorbed into the body through an open wound. GAO found that the Defense Waste Management Plan does not provide the Congress with complete inventory and cost data or details on environmental and safety issues related to the permanent disposal of TRU waste; the Plan's $2.8 billion costs are understated by at least $300 million. Further, it does not include costs for disposing of buried waste, contaminated soil, and TRU waste that may not be accepted at the Waste Isolation Pilot Plant. Lastly, the Plan provides no details on the environmental and safety issues related to the permanent disposal of TRU waste, nor does it discuss the types of or timing for environmental analyses needed before WIPP starts operating

  6. Management of Conventional Wastes (Non Radioactive) in Spanish Landfills

    International Nuclear Information System (INIS)

    Carreras, N.; Pena, J. M.; Ramos, J. L.; Millan, R.

    2011-01-01

    This report is the result of a collaboration agreement between CIEMAT and ENRESA. The goal of the report is to analyze the existing legislation on solid conventional waste, according to the European Community, the Spanish State and its Autonomous Communities, focusing on the latest regulation applicable to the final management in controlled landfills. In addition, information about the legal frame, production, composition and characteristics of conventional waste (i.e. urban, inert, dangerous industrial and non dangerous industrial) is given. Also, the final management that is carried out nowadays in Spain for each of the waste is analyzed and evaluated. Finally, the fulfilment of the in force regulation by the different types of Spanish controlled landfills is evaluated. (Author) 52 refs.

  7. Investigation of radioactive contamination at non-radioactive drains of the Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Koide, Hiroaki; Imanaka, Tetsuji; Ebisawa, Toru; Kawano, Shinji; Kobayashi, Keiji.

    1982-05-01

    In April, 1981, it was disclosed that a drainage area at the Tsuruga Nuclear Power Station was so much contaminated with radioactivites. Although Ministry of International Trade and Industry (MITI) officially provided an explanation of a process that resulted in the contamination, many problems remain unsolved on account of insufficient and limited investigations. The authors collected mud samples from contaminated manholes and examined radioactivities in them through the measurement of #betta#- and #betta#-spectra. Chemical separation of the samples was carried out in order to obtain precise concentration of radioactive cesium. Results are as follows: i) the concentration of radioactivities does not show monotonous decrease along the stream line but an anomalous peak at downstream manholes, ii) at the manhole specified No. 6 located rather downstream, 137 Cs concentration is significantly high and the composition of radioactive nuclides is quite different from that in the other manholes, and iii) additional radioactive contamination was observed in other manholes of non-radioactive drains which would not be influenced by the accident explained by MITI. Our present work has provided much more data than by MITI and made it clear that the overall data cnnot be consistent with the simple MITI explanation; a single radioactive release accident caused the disclosed contamination. It is concluded that non-radioactive water drains at the Tsuruga Nuclear Power Station had been under continual contamination. (author)

  8. Classification of phosphogypsum as a waste material from the aspect of environmental protection

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2004-01-01

    Full Text Available Phosphogypsum is primarily classified as a heavy waste. The classification of phosphogypsum as dangerous waste may be only maintained under the condition that phosphates with the highest content of radio nuclides are used in the production of H3PO4 by the so called "wet procedure" (Morocco, Florida, which, due to the great quantity of present radio nuclides, causes considerable environmental pollution by radon. The classification of phosphogypsum as a separate category of radioactive waste may be conditionally accepted, because phosphogypsum is not a radioactive waste. All the instructions about the collection, documentation and storage of phosphogypsum so far on disposal sites, and possible transport, also due to non-existing legal recommendations must comply with the classification of phosphogypsum as dangerous waste.

  9. The German Final Repository Konrad for Low and Intermediate Level Waste with Negligible Heat Generation - Water Law Issues

    International Nuclear Information System (INIS)

    Boetsch, W.; Grundler, D.; Kugel, K.; Brennecke, P.; Steyer, S.

    2009-01-01

    A survey on the conceptual realization of the requirements due to water law aspects within the license the KONRAD repository for radioactive waste with negligible heat generation in Germany is given [1]. The regulatory decision for the implementation and operation of the repository KONRAD includes, among other things, water law issues. In particular, the KONRAD license includes waste requirements concerning non-radioactive hazardous material (waste package constituents) which have to be considered producing KONRAD waste packages. The intended philosophy of waste acceptance and waste package quality assurance measures to be considered by the KONRAD site operator as well as by the waste producer will be presented. It will demonstrate the selected procedure of the waste declaration and acceptance and describe the structure and logic of tools and aids to comply with the legal requirements of the license and its collateral clause issued under water law. (authors)

  10. Overview of the solid radioactive waste management programme for Cernavoda NPP

    International Nuclear Information System (INIS)

    Raducea, D.

    2001-01-01

    The wastes generated from nuclear power plants have a very large diversity, and can be grouped into non-radioactive and radioactive wastes. These two types are manipulated completely different ways from each other. Among radioactive wastes, solid radioactive wastes are important, because of their diversity, their method of treatment and of their volume compared to the others types. The strategy for their treatment and characterisation has a dynamic character and allows modification after the identification of new solutions at the international level, or after the production of new waste types. The Radioactive Waste Management concept for Cernavoda NPP established the general approach required for the collection, handling, conditioning and storage of radioactive wastes, while maintaining acceptable levels of safety for workers, members of the public and the environment. The radioactive waste management programme has the following major characteristics: plant operation at all times ensures that radioactive wastes are minimised; procedures are established to ensure that radiation doses to operating staff and members of the public are in accordance with ALARA and contamination from collection, transportation and storage of wastes are eliminated; all staff is trained and qualified to carry out their responsibilities. This presentation does not address the management of spent fuel, contaminated heavy water and the disposal of the solid radioactive wastes.(author)

  11. Program of Hanford high-level waste retrieval task: a narrative description

    International Nuclear Information System (INIS)

    Wallskog, H.A.

    1976-12-01

    The objective of this task is to develop and demonstrate the equipment and methods for the retrieval of high-level radioactive wastes from underground storage tanks at Hanford. The approach will be to continue with engineering studies and the conceptual design in progress and follow on with the engineering design, construction, testing and demonstration of a Prototype Retrieval System. This system will consist of a large, mobile platform providing the support and control of an articulated arm used to remotely position waste recovery/removal tools. Other major components include the equipment needed to bring the material up to the platform for packaging and subsequent transport to a processing facility, and the television viewing and lighting subsystem. This prototype system will be functionally complete and will contain items such as a control center, tool change and maintenance/repair capability, etc. The program includes a complete non-radioactive demonstration of the system in a mock waste tank as well as a radioactive demonstration involving one or more waste tanks

  12. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  13. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M.L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-08-11

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  14. Test Summary Report Vitrification Demonstration of an Optimized Hanford C-106/AY-102 Waste-Glass Formulation

    International Nuclear Information System (INIS)

    Goles, Ronald W.; Buchmiller, William C.; Hymas, Charles R.; MacIsaac, Brett D.

    2002-01-01

    In order to further the goal of optimizing Hanford?s HLW borosilicate flowsheet, a glass formulation effort was launched to develop an advanced high-capacity waste form exhibiting acceptable leach and crystal formation characteristics. A simulated C-106/AY-102 waste envelop inclusive of LAW pretreatment products was chosen as the subject of these nonradioactive optimization efforts. To evaluate this optimized borosilicate waste formulation under continuous dynamic vitrification conditions, a research-scale Joule-heated ceramic melter was used to demonstrate the advanced waste form?s flowsheet. The main objectives of this melter test was to evaluate (1) the processing characteristics of the newly formulated C-106/AY-102 surrogate melter-feed stream, (2) the effectiveness of sucrose as a glass-oxidation-state modifier, and (3) the impact of this reductant upon processing rates

  15. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminants of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).

  16. Nuclear waste management technical support in the developmnt of nuclear waste form criteria for the NRC. Task 5. National waste package program

    International Nuclear Information System (INIS)

    Davis, M.S.

    1982-02-01

    This report assesses the need for a centrally organized waste package effort and whether the present national program meets those needs. It is the conclusion of the BNL staff that while the DOE has in principle organized a national effort to develop high-integrity waste packages for geologic disposal of high level waste, the effort has not yet produced data to demonstrate that a waste package will comply with NRC's criteria. The BNL staff feels, however, that such a package is achievable either by development of high integrity components which by themselves could comply with 1000-year containment or by the development of new waste package designs that could comply with both the containment and the controlled release criteria in the 10CFR 60 performance objectives. In terms of waste forms, high-integrity components such as pyrolytic carbon coated waste and radioactive glass coated with non-radioactive glass offer higher potential than normal borosilicate waste glass. The existing container research program has yet to produce the data base on which to assess the potential of a container material to contain the waste for 1000 years. However, there may be the potential, based on Swedish calculations and work done on titanium in the DOE program, that Ti or its alloys may satisfy this criterion. Existing data on natural backfills will not be acceptable as the sole source for satisfying containment and the long-term release rate criteria. However, a synthetic zeolite system is an example of a backfill with a potential to satisfy both criteria. In this particular case, it is the BNL staff's opinion that existing technology and data for this system indicate that major development programs may not be required to qualify this material for licensing applications. The most likely means available for satisfying 10 CFR 60 with a single package component is through the performance of a discrete backfill

  17. In-situ thermoelectric stabilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brouns, R.A.; Timmerman, C.L.

    1982-02-01

    A new process for stabilizing buried radioactive wastes without exhumation is being developed by Pacific Northwest Laboratory (PNL). The process, known as in situ vitrification, converts waste and contaminated soil to a durable glass and crystalline material by passing an electric current between electrodes placed in the ground. Joule heating created by the flowing current has generated temperatures over 1700 0 C which cause the soil to melt and dissolve or encapsulate the wastes. Engineering-scale tests conducted in the laboratory have melted approximately 45 kgs (30 liters) of soil at a time by this technique. Encouraging results from these engineering-scale tests led to the design and construction of a pilot-scale field test unit which has solidified approximately 9000 kg of simulated contaminated soil per test. Test results and evaluations to date have been very promising. No detectable migration of hazardous species into uncontaminated soil has been found, and volatilization during melting has been very low. Leach studies have found the vitrified soil to be a highly durable waste form similar to pyrex glass. Electrical power costs to solidify a disposal site have been calculated at less than $70 per cubic meter ($2/ft 3 ) of waste. Future activities include both radioactive and nonradioactive pilot and large-scale tests

  18. Development of Simulants to Support Mixing Tests for High Level Waste and Low Activity Waste

    International Nuclear Information System (INIS)

    EIBLING, RUSSELLE.

    2004-01-01

    The objectives of this study were to develop two different types of simulants to support vendor agitator design studies and mixing studies. The initial simulant development task was to develop rheologically-bounding physical simulants and the final portion was to develop a nominal chemical simulant which is designed to match, as closely as possible, the actual sludge from a tank. The physical simulants to be developed included a lower and upper rheologically bounded: pretreated low activity waste (LAW) physical simulant; LAW melter feed physical simulant; pretreated high level waste (HLW) physical simulant; HLW melter feed physical simulant. The nominal chemical simulant, hereafter referred to as the HLW Precipitated Hydroxide simulant, is designed to represent the chemical/physical composition of the actual washed and leached sludge sample. The objective was to produce a simulant which matches not only the chemical composition but also the physical properties of the actual waste sample. The HLW Precipitated Hydroxide simulant could then be used for mixing tests to validate mixing, homogeneity and representative sampling and transferring issues. The HLW Precipitated Hydroxide simulant may also be used for integrated nonradioactive testing of the WTP prior to radioactive operation

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 23. Environmental effluent analyses

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/23, ''Environmental Effluent Analysis,'' is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-36, which supplements the ''Contribution to Drat Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations,'' Y/OWI/TM-44. The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This volume discusses the releases to the environment of radioactive and non-radioactive materials that arise during facility construction and waste handling operations, as well as releases that could occur in the event of an operational accident. The results of the analyses are presented along with a detailed description of the analytical methodologies employed

  20. The nuclear waste primer: A handbook for citizens

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A sourcebook of facts about the production of nuclear waste and radioactive materials, this volume looks at the debate over safe storage, transportation, and disposal of hazardous radioactive materials. Addressing such concerns as the dangers of nuclear waste, protecting the public, and affecting the decision-making process at all levels of government, this book explores the issues central to the handling and disposal of nuclear waste

  1. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    1992-07-01

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  2. The waste isolation pilot plant: A new regulatory environment

    International Nuclear Information System (INIS)

    Frei, M.W.; Schneider, S.P.; Saris, E.C.; Austin, P.W.

    1993-01-01

    The US Department of Energy (DOE) is ready to embark on a multiyear test program, using radioactive waste, at the Waste Isolation Pilot Plant (WIPP). The WIPP is a deep geologic repository, constructed in ancient salt beds in southeastern New Mexico. It was authorized by Congress in 1979 as a research and development facility to demonstrate safe disposal of the nation's defense transuranic (TRU) waste. Nonradioactive testing in the repository has been under way for several years. The DOE is now ready to begin underground experiments at WIPP with small amounts of TRU waste. Radioactive waste testing in an actual repository environment will reduce uncertainties associated with predictions of long-term repository performance. However, the authority for DOE to begin this new phase of the test program no longer resides within the department. The WIPP is now subject to a new level of regulatory oversight by the Environmental Protection Agency (EPA) and other federal agencies, as set forth by Public Law 102-579, the WIPP Land Withdrawal Act, signed by the President on October 30, 1992. This paper discusses the act's new regulatory requirements for WIPP

  3. FTIR fiber optic methods for the analysis of Hanford Site waste

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Cash, R.J.; Dodd, D.A.

    1995-06-01

    Sampling and chemical characterization of mixed high-level waste stored in underground tanks at the Hanford Site is currently in progress. Waste tank safety concerns have provided impetus to analyze this waste. A major safety issue is the possibility of significant concentrations of fuel (ferrocyanide and/or organic compounds) in contact with oxidizers (nitrates and nitrites). It is postulated that under dry conditions and elevated temperatures, ferrocyanide- and/or organic-bearing wastes could undergo rapid exothermic reactions. To maintain the tanks in a safe condition, data are needed on the moisture and fuel concentrations in the waste. Because of the highly radioactive nature of the waste, non-radioactive waste simulants mimicking actual waste are used to provide an initial basis for identifying realistic waste tank safety concerns. Emphasis has been placed on the use of new or existing Fourier transform infrared (FTIR)-based systems with potential for field or tank deployment to perform in situ remote waste characterization. Near-infrared diffuse reflectance and mid-infrared attenuated total reflectance fiber optic probes coupled to a Bio-Rad FTS 60A spectrometry system have been evaluated. The near-infrared diffuse reflectance fiber probe system has also been used for preliminary screening of the moisture content and chemical composition of actual Hanford Site waste tank waste core samples. The attributes of this method for analyzing actual radioactive waste are discussed

  4. Dumping and illegal transport of hazardous waste, danger of modern society.

    Science.gov (United States)

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovicić, Nives

    2014-06-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement to prevent these activities may vary from region to region, country to country, but together affect the ability of law enforcement authorities to ensure that international shipments of hazardous waste comply with national laws and maritime regulations. This paper will overview the legislation governing these issues, and to analyze the barriers to their implementation, but also try to answer the question of why and how this type of waste traded. Paper is an overview of how Croatia is prepared to join the European Union in this area and indicates the importance and necessity of the cooperation of all of society, and international organizations in the fight with the new trend of environmental crime.

  5. Development and testing of prototype alpha waste incinerator off-gas systems

    International Nuclear Information System (INIS)

    Freed, E.J.; Becker, G.W.

    1982-01-01

    A test program is in progress at Savannah River Laboratory (SRL) to confirm and develop incinerator design technology for an SRP production Alpha Waste Incinerator (AWI) to be built in the mid-1980's. The Incinerator Components Test Facility (ICTF) is a full-scale (5 kg/h), electrically heated, controlled-air prototype incinerator built to burn nonradioactive solid waste. The incinerator has been operating successfully at SRL since March 1979 and has met or exceeded all design criteria. During the first 1-1/2 years of operation, liquid scrubbers were used to remove particulates and hydrochloric acid from the incinerator exhaust gases. A dry off-gas system is currently being tested to provide data to Savannah River Plant's proposed AWI

  6. Rethinking the Hanford Tank Waste Program

    International Nuclear Information System (INIS)

    Parker, F. L.; Clark, D. E.; Morcos, N.

    2002-01-01

    The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms

  7. Nonradioactive Air Emissions Notice of Construction use of a portable exhauster on 241-A-101 tank during salt well pumping and other routine activities

    International Nuclear Information System (INIS)

    Hays, C.B.

    1996-01-01

    The 241-A-101 tank, a 22.9 meter 3,785,400 liter capacity SST, was constructed from the fourth generation of tank designs, which were capable of holding boiling or self-concentrating waste. Construction features a reinforced concrete shell, dome, and base with a mild steel liner covering the bottom and sidewalls. The tank has a flat bottom with a usable waste depth of approximately 9.4 meters. The tank was put into service in 1956 to store plutonium-uranium extraction (PUREX) high-level waste and organic wash waste. The waste was allowed to self-concentrate up until 1968. Tank sluicing was performed in 1969 and again in 1976 to reduce the amount of strontium and cesium, the two isotopes found to be the main heat generating sources in the tank. In 1978, the tank was reassigned for saltcake storage. The tank was taken out of service in November 1980 and partially isolated in 1982. Salt well pumping is a method used to interim stabilize SSTS. Interim stabilization is commenced once all the liquid above the solids has been removed (primary stabilization). Interim stabilization removes the gravity drainable liquid and the interstitial liquid between the solids from the SST and transfers the liquid to a double-shell tank (DST) or to a staging double-contained receiver tank (DCRT), which is subsequently transferred to a DST. Pumping is accomplished at very low flow rates, 15.1 liters per minute or less. Normally, salt well pumping is performed without the need of an exhauster. However, recent safety evaluations concluded that a minimum exhaust flow rate of 7.1 cubic meters per minute would be required to enhance the safety of the tank. Therefore, active ventilation will be part of this process for the 241-A-101 tank. This document details the Nonradioactive Air Emissions Notice of Construction for the use of a portable exhauster on Tank 241-A-101 during salt well pumping and other routine activities

  8. Optimization of concrete composition in radioactive waste management

    International Nuclear Information System (INIS)

    Plecas, I.; Peric, A.

    1995-01-01

    Low and intermediate level waste represents 95% of the total wastes that is conditioned into special concrete containers. Since these containers are to protect radioactive waste safely for about 300 years, the selection and precise control of physical and mechanical characteristics of materials is very important. After volume reduction and valuable components recovery, waste materials have to be conditioned for transport, storage and disposal. Conditioning is the waste management step in which radioactive wastes are immobilized and packed. The immobilization processes involve conversation of the wastes to solid forms that reduce the potential for migration or dispersion of radionuclides from the wastes by natural processes during storage, transport and disposal. The immobilization processes involve the use of various matrices of nonradioactive materials, such as concrete, to fix the wastes as monoliths, usually directly in the waste containers used for subsequent handling. In this paper an optimization of concrete container composition, used for storing radioactive waste from nuclear power plants, is presented. Optimization was performed on the composition of the concrete that is used in the container production. In experiments, the authors tried to obtain the best mechanical characteristics of the concrete, varying the weight percentage of the granulate due to its diameter, water-to-cement ratios and type of the cements that were used in preparing the concrete container formulation. Concrete containers, that were optimized in the manner described in this paper, will be in used for the radioactive waste materials final disposal, using the concept of the engineer trench system facilities

  9. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  10. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes

  11. Problems with military nuclear waste

    International Nuclear Information System (INIS)

    Lawless, W.F.

    1985-01-01

    Spent fuel elements contain the largest amount of radioactivity, but commercial spent fuel is not presently being reprocessed in the US, so the wastes are left contained within spent fuel assemblies and are not immediately accessible to the environment. By reprocessing military spent fuel to separate plutonium and unspent uranium from the highly radioactive and high-heat fission product waste, known as high-level waste (99.5% fission products and about 0.5% plutonium and uranium), nuclear weapons manufacture produces more dangerous radioactive wastes than do current commercial processes. The Department of Energy standards should be subject to an environmental impact study. 27 references

  12. Approach to defining de minimis, intermediate, and other classes of radioactive waste

    International Nuclear Information System (INIS)

    Cohen, J.J.; Smith, C.F.

    1986-01-01

    This study has developed a framework within which the complete spectrum of radioactive wastes can be defined. An approach has been developed that reflects both concerns in the framework of a radioactive waste classification system. In this approach, the class of any radioactive waste stream is dependent on its degree of radioactivity and its persistence. To be consistent with conventional systems, four waste classes are defined. In increasing order of concern due to radioactivity and/or duration, these are: 1. De Minimis Wastes: This waste has such a low content of radioactive material that it can be considered essentially nonradioactive and managed according to its nonradiological characteristics. 2. Low-Level Waste (LLW): Maximum concentrations for wastes considered to be in this class are prescribed in 10CFR61 as wastes that can be disposed of by shallow land burial methods. 3. Intermediate Level Waste (ILW): This category defines a class of waste whose content exceeds class C (10CFR61) levels, yet does not pose a sufficient hazard to justify management as a high-level waste (i.e., permanent isolation by deep geologic disposal). 4. High-Level Waste: HLW poses the most serious management problem and requires the most restrictive disposal methods. It is defined in NWPA as waste derived from the reprocessing of nuclear fuel and/or as highly radioactive wastes that require permanent isolation

  13. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  14. The role of performance assessment in the evaluation of remedial action alternatives for the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rood, A.S.; Case, M.J.

    1988-01-01

    The Idaho National Engineering Laboratory (INEL) is operated by the Department of Energy (DOE) and is involved in nuclear research and development. The Radioactive Waste Management Complex (RWMC) at the INEL serves as a disposal facility for low level radioactive wastes generated onsite. Transuranic (TRU) wastes received from other DOE sites are currently stored at the RWMC, but were buried at the facility from 1952 until 1970. Recent findings of the Subsurface Investigations Program have determined that migration of TRU nuclides and hazardous materials from the RWMC has occurred. The primary source of organics in the buried TRU waste was generated by the Rocky Flats Plant. The INEL has proposed an aggressive four-year action plan for buried TRU waste. As a part of this plan, a task has been identified to evaluate existing remedial technologies for preventing further contaminant migration or removing the source of TRU radionuclides and nonradioactive hazardous material from the RWMC. A systems approach is being applied to evaluate, compare and recommend technologies or combinations of technologies. One criterion used in the evaluation is the net risk reduction afforded by each proposed remedial action. The method used to develop the criterion relies on models to assess the potential pathways and scenarios for the migration of radioactive and nonradioactive materials and the subsequent exposure of individuals to those materials. This paper describes the approach used to assess the performance of various remedial actions and the results obtained to date

  15. Durability, mechanical, and thermal properties of experimental glass-ceramic forms for immobilizing ICPP high level waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1990-01-01

    The high-level liquid waste generated at the Idaho Chemical Processing Plant (ICPP) is routinely solidified into granular calcined high-level waste (HLW) and stored onsite. Research is being conducted at the ICPP on methods of immobilizing the HLW, including developing a durable glass-ceramic form which has the potential to significantly reduce the final waste volume by up to 60% compared to a glass form. Simulated, pilot plant, non-radioactive, calcines similar to the composition of the calcined HLW and glass forming additives are used to produce experimental glass-ceramic forms. The objective of the research reported in this paper is to study the impact of ground calcine particle size on durability and mechanical and thermal properties of experimental glass-ceramic forms

  16. Conversion of three mixed-waste streams

    International Nuclear Information System (INIS)

    Harmer, D.E.; Porter, D.L.; Conley, C.W.

    1990-01-01

    At the present time, commercial mixed waste (containing both radioactive and hazardous components) is not handled by any disposal site in this country. Thus, a generator of such material is faced with the prospect of separating or altering the nature of the waste components. A chemical or physical separation may be possible. However, if separation fails there remains the opportunity of chemically transforming the hazardous ingredients to non-hazardous substances, allowing disposal at an existing radioactive burial site. Finally, chemical or physical stabilization can be used as a tool to achieve an acceptable waste form lacking the characteristics of mixed waste. A practical application of these principles has been made in the case of certain mixed waste streams at Aerojet Ordnance Tennessee. Three different streams were involved: (1) lead and lead oxide contaminated with uranium, (2) mixed chloride salts including barium chloride, contaminated with uranium, and (3) bricks impregnated with the barium salt mixture. This paper summarizes the approach of this mixed-waste problem, the laboratory solutions found, and the intended field remediations to be followed. Mixture (1), above, was successfully converted to a vitreous insoluble form. Mixture (2) was separated into radioactive and non-radioactive streams, and the hazardous characteristics of the latter altered chemically. Mixture (3) was treated to an extraction process, after which the extractant could be treated by the methods of Mixture (2). Field application of these methods is scheduled in the near future

  17. Sampling and characterization of mixed wastes at the U.S. Department of Energy Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Stakebake, J.L.

    1995-01-01

    The Rocky Flats Environmental Technology Site is a government-owned, contractor-operated facility that is part of the US Department of Energy (DOE) complex. This plant was originally designed and built as a manufacturing facility for the production of nuclear weapons components. Currently, efforts are focused on the treatment and disposal of residues and wastes that were products of these production activities. Federal regulations prohibit the land disposal of untreated radioactive hazardous waste in the same manner as non-radioactive or non-hazardous wastes. A strategy has been developed for achieving compliance with Federal regulations through a process of characterization and treatment. This paper describes the strategy and the methodology used for characterizing radioactive and chemically hazardous wastes. Characterization of four waste forms (fluid-bed incinerator ash, uranium oxide, solidified sludge, and combustibles) is discussed and the results available are presented

  18. Managing nuclear wastes: an overview of the issues

    International Nuclear Information System (INIS)

    Cummings, R.G.; Utton, A.E.

    1981-01-01

    The issues involving nuclear waste management are reviewed. The author points out the need for a critical overview of research priorities concerning nuclear waste management (NWM), and he discusses the uncertainties surrounding the scope of the problem (i.e., the controversy concerning the extent of dangers to public health and safety associated with the transport and storage of nuclear wastes). This article, intended as a introdution to the other nuclear waste management papers in the journal, also briefly discusses the papers

  19. Feasibility of using biological degradation for the on-site treatment of mixed wastes

    International Nuclear Information System (INIS)

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-01-01

    This research was conducted to investigate the feasibility of applying microbial biodegradation as a treatment technology for wastes containing radioactive elements and organic solvents (mixed wastes). In this study, we focused our efforts on the treatment of wastes generated by biomedical research as the result of purifying tritium labeled compounds by high-performance liquid chromatography (HPLC). These wastes are typically 80 percent water with 20 percent acetonitrile or methanol or a mixture of both. The objective was to determine the potential of using biodegradation to treat the solvent component of tritiated mixed waste to a concentration below the land disposal restriction standard (1mg/L for acetonitrile). Once the standard is reached, the remaining radioactive waste is no longer classified as a mixed waste and it can then be solidified and placed in a secure landfill. This investigation focused on treating a 10 percent acetonitrile solution, which was used as a non-radioactive surrogate for HPLC waste, in a bioreactor. The results indicated that the biodegradation process could treat this solution down to less than 1 mg/L to meet the land disposal restriction standard

  20. Characterization of the solid radioactive waste from Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Lautaru, V.; Bujoreanu, D.

    2005-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from each other. For a CANDU type reactor, the occurrence of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  1. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  2. Waste production and regional growth of marine activities an econometric model.

    Science.gov (United States)

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Engineered barrier development for a nuclear waste repository in basalt

    International Nuclear Information System (INIS)

    Smith, M.J.

    1980-05-01

    The BWIP Engineered Barrier Program has been developed to provide an integrated approach to the development of site-specific Engineered Barrier assemblages for a repository located in basalt. The goal of this program is to specify engineered and natural barriers which will ensure that nuclear and non-radioactive hazardous materials emplaced in a repository in basalt do not exceed acceptable rates of release to the biosphere. A wide range of analytical and experimental activities related to the basalt repository environment, waste package environment, waste/barrier/rock interactions, and barrier performance assessment provide the basis for selection of systems capable of meeting licensing requirements. Work has concentrated on specifying and testing natural and man-made materials which can be used to plug boreholes in basalt and which can be used as multiple barriers to surround nuclear waste forms and containers. The Engineered Barriers Program is divided into two major activities: multiple barrier studies and borehole plugging. 8 figures, 4 tables

  4. Dumping and Illegal Transport of Hazardous Waste, Danger of Modern Society

    OpenAIRE

    Obradović, Mario; Kalambura, Sanja; Smolec, Danijel; Jovičić, Nives

    2014-01-01

    Increasing the production of hazardous waste during the past few years and stricter legislation in the area of​ permanent disposal and transportation costs were significantly elevated above activities. This creates a new, highly lucrative gray market which opens the way for the criminalization. Of great importance is the identification of illegal trafficking of hazardous waste since it can have a significant impact on human health and environmental pollution. Barriers to effective engagement ...

  5. Resource Management Plan for the US Department of Energy Oak Ridge Reservation. Volume 15, Appendix P: waste management

    International Nuclear Information System (INIS)

    Kelly, B.A.

    1984-07-01

    Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operations at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables

  6. Progress report on safety research of high-level waste management for the period April 1986 to March 1987

    International Nuclear Information System (INIS)

    Nakamura, Haruto; Tashiro, Shingo

    1987-08-01

    Researches on high-level waste management at the High Level Waste Management Laboratory and the Waste Safety Testing Facility Operation Division of the Japan Atomic Energy Research Institute in the fiscal year of 1986 are reviewed in the report. Topics in the three sections are as follows: 1) Non-radioactive research has been continued on Synroc irradiation and modellings of waste form leaching. 2) Research results are described in the section of Safety Evaluation for Geological Disposal on engineered barriers, field tests, safety assessment models, migration, natural analogue, seabed disposal and conceptual design of a repository. 3) Adsorption behaviour of plutonium on leach-containers and migration of leached cesium in a rock column are described in the section of Safety Examination of Vitrified Forms in the Hot Cells of WASTEF. (author)

  7. Nuclear waste glass melter: an update of technical progress

    International Nuclear Information System (INIS)

    Brouns, R.A.; Hanson, M.S.

    1984-08-01

    The direct slurry-fed ceramic-lined melter is currently the reference US process for treating defense and civilian high-level liquid waste. Extensive nonradioactive pilot-scale testing at Pacific Northwest Laboratory (PNL) and Savannah River Laboratory has proven the process, defined operating parameters, and identified successful equipment design concepts. Programs at PNL continue to support several of the planned US vitrification plants through preparation of equipment designs and flowsheet testing. Current emphasis is on remotization of equipment, radioactive verification testing, and resolution of remaining technical issues. Development of this technology, technical status, and planned development activities are discussed. 9 references, 4 figures

  8. Quality assurance program for environmental assessment of Savannah River Plant waste sites: Environmental information document

    International Nuclear Information System (INIS)

    Looney, B.B.; King, C.M.; Stephenson, D.E.

    1987-03-01

    Forty-eight locations were identified that received a variety of radioactive and nonradioactive constituents during the past 35 years including surface impoundments and shallow land burial facilities. Detailed environmental assessments of existing waste disposal areas, as well as new waste disposal techniques and disposition of tritiated water, were completed to air in an evaluation of the low level, mixed and hazardous waste management activities. These assessments result in estimation of risk, or residual risk, posed by each disposal area to various receptors as a function of waste management alternative. For example, at existing waste sites, the closure actions evaluated were waste removal and closure, no waste removal and closure, and no action; several pathways/receptors were considered, including groundwater to river, groundwater to well, atmospheric transport, occupational exposure, direct exposure, and contamination followed by ingestion of crops and meat. Modeling of chemical transport in a variety of media was an integral part of the assessment process. The quality of the models used and the application of these models were assured by an explicit quality assurance program

  9. Non-combustible waste vitrification with plasma torch melter.

    Science.gov (United States)

    Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M

    2001-05-01

    Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.

  10. Ecological problems of oil wastes

    International Nuclear Information System (INIS)

    Mohsun, R.

    2004-01-01

    Full text : Pollution of the environment with different wastes is one the main problems in the world. So that is why this article is devoted to consideration of questions, related to oil and its industry. During oil production (extraction, transportation, refining) different wastes (homogeneous and solid wastes) are taken out from a place of production to the environment and after this environment undergoes the pollution because of these wastes. These wastes contain first of all harmful for environment radioactive elements, then different groups of metals, non-metals and other combinations. All these forms technical pollution zones and can cause serious danger for health of people. So taking into consideration all mentioned above we must make all efforts in order to prevent such accidents

  11. The Clinical Prediction of Dangerousness.

    Science.gov (United States)

    1985-05-01

    8217 8 ings. Szasz (1963) has argued persuasively that clinical predictions of future dangerous behavior are unfairly focused on the mentally ill...Persons labeled paranoid, Szasz states, are readily commitable, while highly dangerous drunken drivers are not. Indeed, dangerousness such as that...Psychology, 31, 492-494. Szasz , T. (1963). Law, liberty and psychiatry. New York: Macmillan. Taft, R. (1955). The ability to judge people. Psychological

  12. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    International Nuclear Information System (INIS)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ''near-reference'' with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed

  13. Waste Certification Program Plan for UT-Battelle, LLC at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Beierschmitt, K.J.; Downer, K.M.; Hoke, P.B.

    2000-01-01

    This document defines the waste certification program (WCP) developed and implemented by UT-Battelle, LLC (UT-Battelle) at Oak Ridge National Laboratory (ORNL). The WCP applies to all UT-Battelle personnel, it's subcontractors, guests, and visitors that do work at ORNL. This program does not include wastes generated by other U.S. Department of Energy (DOE) prime contractors, their employees, or their subcontractors working on this site except by special arrangement. The document describes the program structure, logic, and methodology for certification of UT-Battelle wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized, that adequate information is provided to enable correct U.S. Department of Transportation (DOT) classification, and that the programmatic certification requirements and the Waste Acceptance Criteria (WAC) for receiving organizations/facilities are met. The program meets the waste certification requirements outlined in DO E Order 435.1, ''Radioactive Waste Management,'' in the DOE Performance Objective for Certification of Non-Radioactive Hazardous Waste (DOE, February 1995), and ensures that 40 Code of Federal Regulations (CFR) documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls (PCBs)) waste. Program activities are conducted according to ORNL directives and guidance.

  14. Waste management in a sustainable society

    International Nuclear Information System (INIS)

    Ascari, Sergio; Milan, Univ. ''Bocconi''

    1997-01-01

    This paper summarises the environmental economics debate about sustainable management of solid wastes. Sustainable levels of solid waste generation, recycling and disposal cannot be set by general criteria, but priorities are better defined locally. Preferable solutions are mostly determined by market forces once economic instruments are introduced in order to compel agents to incorporate environmental costs and benefits into their decisions. Greater care should be devoted to dangerous wastes, where schemes may be devised to subsidize not only recovery and recycling but environmentally safe disposal as well; these may be financed by raw materials levies

  15. Nuclear waste and hazardous waste in the public perception

    International Nuclear Information System (INIS)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael

    2015-01-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  16. Nuclear waste and hazardous waste in the public perception

    Energy Technology Data Exchange (ETDEWEB)

    Kruetli, Pius; Seidl, Roman; Stauffacher, Michael [ETH Zurich (Switzerland). Inst. for Environmental Decisions

    2015-07-01

    The disposal of nuclear waste has gained attention of the public for decades. Accordingly, nuclear waste has been a prominent issue in natural, engineer and social science for many years. Although bearing risks for todays and future generations hazardous waste in contrast is much less an issue of public concern. In 2011, we conducted a postal survey among Swiss Germans (N = 3.082) to learn more about, how nuclear waste is perceived against hazardous waste. We created a questionnaire with two versions, nuclear waste and hazardous waste, respectively. Each version included an identical part with well-known explanatory factors for risk perception on each of the waste types separately and additional questions directly comparing the two waste types. Results show that basically both waste types are perceived similarly in terms of risk/benefit, emotion, trust, knowledge and responsibility. However, in the direct comparison of the two waste types a complete different pattern can be observed: Respondents perceive nuclear waste as more long-living, more dangerous, less controllable and it, furthermore, creates more negative emotions. On the other hand, respondents feel more responsible for hazardous waste and indicate to have more knowledge about this waste type. Moreover, nuclear waste is perceived as more carefully managed. We conclude that mechanisms driving risk perception are similar for both waste types but an overarching negative image of nuclear waste prevails. We propose that hazardous waste should be given more attention in the public as well as in science which may have implications on further management strategies of hazardous waste.

  17. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1997-03-01

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility

  18. Contribution to Radioactive Waste Management in Croatia

    International Nuclear Information System (INIS)

    Hudec, M.; Frgic, L.; Sunjerga, S.

    2002-01-01

    The problem of dangerous waste disposal in Croatia is not more only technical problem; it grew over to political one of the first degree. Nobody likes to have the repository in own courtyard. Some five hundred institutions and factories produce in Croatia low, intermediate or high level radioactive waste. Till now all the dangerous waste is keeping in basements of the institute Rudjer Boskovic in Zagreb, just one kilometre form the city centre. This temporary solution is working fore some fifty years, but cannot be conserved forever. In the paper are presented some of the solutions for radioactive waste deposition, known from the references. The deep, impermeable layers in Panonian area have conserved petroleum and gas under pressure of more hundred bars for few dozens millions of years. Therefore, we propose the underground deposition of radioactive waste in deep boreholes. The liquid waste can be injected in deep isolated layers. In USA and Russia, for many years such solutions are realised. In USA exist special regulations for this kind of waste management. In the paper is described the procedure of designing, execution and verification of deposition in Russia. In northern part of Croatia exist thousand boreholes with known geological data. The boreholes were executed for investigation and exploitation of oil and gas fields. This data can make good use to define safe deep layers capable to be used for repositories of liquid waste. For the high level radioactive waste we propose the deep boreholes of greater diameter, filled with containers. One borehole with 50 cm diameter and 1000 m deep can be safe deposition for c/a 50 m3 of solid high level radioactive waste. Croatia has not big quantity of waste and some boreholes can satisfy all the quantities of waste in Croatia. This is not the cheapest solution, but it can satisfy the strongest conditions of safety. (author)

  19. CO{sub 2} laser-aided waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Costes, J R; Guiberteau, P [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement; Caminat, P; Bournot, P

    1994-12-31

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg{sup -h-1} using a 7 kW CO{sub 2} laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs.

  20. Plasma Hearth Process vitrification of DOE low-level mixed waste

    International Nuclear Information System (INIS)

    Gillins, R.L.; Geimer, R.M.

    1995-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development Mixed Waste Focus Area. The PHP is recognized as one of the more promising solutions to DOE's mixed waste treatment needs, with potential application in the treatment of a wide variety of DOE mixed wastes. The PHP is a high temperature vitrification process using a plasma arc torch in a stationary, refractory lined chamber that destroys organics and stabilizes the residuals in a nonleaching, vitrified waste form. This technology will be equally applicable to low-level mixed wastes generated by nuclear utilities. The final waste form will be volume reduced to the maximum extent practical, because all organics will have been destroyed and the inorganics will be in a high-density, low void-space form and little or no volume-increasing glass makers will have been added. Low volume and high integrity waste forms result in low disposal costs. This project is structured to ensure that the plasma technology can be successfully employed in radioactive service. The PHP technology will be developed into a production system through a sequence of tests on several test units, both non-radioactive and radioactive. As the final step, a prototype PHP system will be constructed for full-scale radioactive waste treatment demonstration

  1. Security of Radioactive Waste

    International Nuclear Information System (INIS)

    Goldammer, W.

    2003-01-01

    Measures to achieve radioactive waste security are discussed. Categorization of waste in order to implement adequate and consistent security measures based on potential consequences is made. The measures include appropriate treatment/storage/disposal of waste to minimize the potential and consequences of malicious acts; management of waste only within an authorised, regulated, legal framework; management of the security of personnel and information; measures to minimize the acquisition of radioactive waste by those with malicious intent. The specific measures are: deter unauthorized access to the waste; detect any such attempt or any loss or theft of waste; delay unauthorized access; provide timely response to counter any attempt to gain unauthorised access; measures to minimize acts of sabotage; efforts to recover any lost or stolen waste; mitigation and emergency plans in case of release of radioactivity. An approach to develop guidance, starting with the categorisation of sources and identification of dangerous sources, is presented. Dosimetric criteria for internal and external irradiation are set. Different exposure scenarios are considered. Waste categories and security categories based on the IAEA INFCIRC/225/Rev.4 are presented

  2. 1997 Hanford site report on land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  3. 1997 Hanford site report on land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1997-01-01

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones

  4. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mccloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lepry, William C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rodriguez, Carmen P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Windisch, Charles F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rieck, Bennett T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lang, Jesse B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olszta, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pierce, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  5. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  6. Beyond low-level activity: On a 'non-radioactive' gas mantle

    International Nuclear Information System (INIS)

    Poljanc, Karin; Steinhauser, Georg; Sterba, Johannes H.; Buchtela, Karl; Bichler, Max

    2007-01-01

    Gas mantles for camping gas lanterns sometimes contain thorium compounds. During the last years, the use of thorium-free gas mantles has become more and more popular due to the avoidance of a radioactive heavy metal. We investigated a gas mantle type that is declared to be 'non-radioactive' and that can be bought in Austria at the moment. Methods used were Instrumental Neutron Activation Analysis (INAA), γ-spectroscopy, and Liquid Scintillation Counting (LSC). We found massive thorium contents of up to 259 mg per gas mantle. Leaching experiments showed that only 0.4% of the Th but approximately 90% of the decay products of 232 Th can be leached under conditions simulating sucking and chewing with human saliva. In this paper, the investigation of these gas mantles including the consideration of the environmental hazard caused by disposed mantles and the health hazard for unsuspecting consumers is presented and legal consequences are discussed for this fraud

  7. Waste analysis plan for T Plant Complex

    International Nuclear Information System (INIS)

    Williams, J.F.

    1996-01-01

    Washington Administration Code 173-303-300 requires that a waste analysis plan (WAP) be provided by a treatment, storage, and/or disposal (TSD) unit to confirm their knowledge about a dangerous and/or mixed waste to ensure that the waste is managed properly. The specific objectives of the WAP are as follows: Ensure safe management of waste during treatment and storage; Ensure that waste generated during operational activities is properly designated in accordance with regulatory requirements; Provide chemical and physical analysis of representative samples of the waste stored for characterization and/or verification before the waste is transferred to another TSD unit; Ensure compliance with land disposal restriction (LDR) requirements for treated waste; and Provide basis for work plans that describes waste analysis for development of new treatment technologies

  8. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  9. Evaporation studies on Oak Ridge National Laboratory liquid low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, V.L. [PAI Corp., Oak Ridge, TN (United States); Perona, J.J. [Oak Ridge National Lab., TN (United States)

    1993-03-01

    Evaporation studies were performed with Melton Valley storage tank liquid low-level radioactive waste concentrate and with surrogates (nonradioactive) to determine the feasibility of a proposed out-of-tank-evaporation project. Bench-scale tests indicated that volume reductions ranging from 30 to 55% could be attained. Vendor-site tests were conducted (with surrogate waste forms) using a bench-scale single-stage, low-pressure (subatmospheric), low-temperature (120 to 173{degree}F) evaporator similar to units in operation at several nuclear facilities. Vendor tests were successful; a 30% volume reduction was attained with no crystallization of solids and no foaming, as would be expected from a high pH solution. No fouling of the heat exchanger surfaces occurred during these tests. It is projected that 52,000 to 120,000 gal of water could be evaporated from the supernate stored in the Melton and Bethel Valley liquid low-level radioactive waste (LLLW) storage tanks with this type of evaporator.

  10. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, John M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-29

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter, so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.

  11. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  12. Definition and preparation of glassy matrices by innovating processes to confine radioactive wastes and industrial toxic materials

    International Nuclear Information System (INIS)

    Moncouyoux, J.P.

    1995-01-01

    The confinement by vitrification of high-level radioactive wastes is studied in the CEA for fifteen years. These studies have lead to the preparation of glassy matrices by innovating processes. These processes can be applied to non-radioactive toxic materials treatment too. In this work are more particularly described the glassy matrix long-dated behaviour and the different vitrification processes used (by direct induction in cold crucible, by transferred arc plasma). (O.L.). 1 tab

  13. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B. (Atomic Energy Authority, Hot Lab. Center, Cairo (Egypt))

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs.

  14. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    International Nuclear Information System (INIS)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B.

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs

  15. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form

  16. Characterization of the solid radioactive waste From Cernavoda NPP

    International Nuclear Information System (INIS)

    Iordache, M.; Laotaru, V.

    2005-01-01

    Full text: During the operation of a nuclear plant significant quantities of radioactive waste result that have a very large diversity. At Cernavoda NPP large amounts of wastes are either non-radioactive wastes or radioactive wastes, each of these being managed completely different from which other. For a CANDU type reactor, the appearance of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products from materials composing the technological systems; - activated products in process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination operations. The most important types of solid wastes that are obtained and then handled, processed (if necessary) and temporarily stored are: solid low-level radioactive wastes (classified as compactible and non-compactible), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, from decontamination and maintenance operations. Radioactive gas wastes occur subsequently to the fission process inside the fuel elements as well as due to the neutron activation of process fluids in the reactor systems. As result of plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed toward the ventilation stack in a controlled manner so that environmental release of radioactive materials with concentrations exceeding the maximum permissible level could not occur. (authors)

  17. Earthquakes: no danger for deep underground nuclear waste repositories

    International Nuclear Information System (INIS)

    2010-03-01

    On the Earth, the continental plates are steadily moving. Principally at the plate boundaries such shifts produce stresses which are released in form of earthquakes. The highest the built-up energy, the more violent will be the shaking. Earthquakes accompany mankind from very ancient times on and they disturb the population. Till now nobody is able to predict where and when they will take place. But on the Earth there are regions where, due to their geological situation, the occurrence of earthquakes is more probable than elsewhere. The impact of a very strong earthquake on the structures at the Earth surface depends on several factors. Besides the ground structure, the density of buildings, construction style and materials used play an important role. Construction-related technical measures can improve the safety of buildings and, together with a correct behaviour of the people concerned, save many lives. Earthquakes are well known in Switzerland. Here, the stresses are due to the collision of the African and European continental plates that created the Alps. The impact of earthquake is more limited in the underground than at the Earth surface. There is no danger for deep underground repositories

  18. Remediation and production of low-sludge high-level waste glasses

    International Nuclear Information System (INIS)

    Ramsey, W.G.; Brown, K.G.; Beam, D.C.

    1994-01-01

    High-level radioactive sludge will constitute 24-28 oxide weight percent of the high-level waste glass produced at the Savannah River Site. A recent melter campaign using non-radioactive, simulated feed was performed with a sludge content considerably lower than 24 percent. The resulting glass was processed and shown to have acceptable durability. However, the durability was lower than predicted by the durability algorithm. Additional melter runs were performed to demonstrate that low sludge feed could be remediated by simply adding sludge oxides. The Product Composition Control System, a computer code developed to predict the proper feed composition for production of high-level waste glass, was utilized to determine the necessary chemical additions. The methodology used to calculate the needed feed additives, the effects of sludge oxides on glass production, and the resulting glass durability are discussed

  19. Radioactive waste management

    International Nuclear Information System (INIS)

    Blomek, D.

    1980-01-01

    The prospects of nuclear power development in the USA up to 2000 and the problems of the fuel cycle high-level radioactive waste processing and storage are considered. The problems of liquid and solidified radioactive waste transportation and their disposal in salt deposits and other geologic formations are discussed. It is pointed out that the main part of the high-level radioactive wastes are produced at spent fuel reprocessing plants in the form of complex aqueous mixtures. These mixtures contain the decay products of about 35 isotopes which are the nuclear fuel fission products, about 18 actinides and their daughter products as well as corrosion products of fuel cans and structural materials and chemical reagents added in the process of fuel reprocessing. The high-level radioactive waste management includes the liquid waste cooling which is necessary for the short and middle living isotope decay, separation of some most dangerous components from the waste mixture, waste solidification, their storage and disposal. The conclusion is drawn that the seccessful solution of the high-level radioactive waste management problem will permit to solve the problem of the fuel cycle radioactive waste management as a whole. The salt deposits, shales and clays are the most suitable for radioactive waste disposal [ru

  20. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management; Radioaktivt avfall fraan icke tillstaandsbunden verksamhet (RAKET) - identifiering av aktuellt avfall, sammanstaellning av relevanta regler och principer, foerslag paa system foer omhaendertagande

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.; Pers, K. [Kemakta Konsult AB, Stockholm (Sweden)

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation.

  1. Negativity Bias in Dangerous Drivers.

    Directory of Open Access Journals (Sweden)

    Jing Chai

    Full Text Available The behavioral and cognitive characteristics of dangerous drivers differ significantly from those of safe drivers. However, differences in emotional information processing have seldom been investigated. Previous studies have revealed that drivers with higher anger/anxiety trait scores are more likely to be involved in crashes and that individuals with higher anger traits exhibit stronger negativity biases when processing emotions compared with control groups. However, researchers have not explored the relationship between emotional information processing and driving behavior. In this study, we examined the emotional information processing differences between dangerous drivers and safe drivers. Thirty-eight non-professional drivers were divided into two groups according to the penalty points that they had accrued for traffic violations: 15 drivers with 6 or more points were included in the dangerous driver group, and 23 drivers with 3 or fewer points were included in the safe driver group. The emotional Stroop task was used to measure negativity biases, and both behavioral and electroencephalograph data were recorded. The behavioral results revealed stronger negativity biases in the dangerous drivers than in the safe drivers. The bias score was correlated with self-reported dangerous driving behavior. Drivers with strong negativity biases reported having been involved in mores crashes compared with the less-biased drivers. The event-related potentials (ERPs revealed that the dangerous drivers exhibited reduced P3 components when responding to negative stimuli, suggesting decreased inhibitory control of information that is task-irrelevant but emotionally salient. The influence of negativity bias provides one possible explanation of the effects of individual differences on dangerous driving behavior and traffic crashes.

  2. Influence of waste solid on nuclide dispersal

    International Nuclear Information System (INIS)

    Seitz, M.G.; Steindler, M.J.

    1981-01-01

    The method most often considered for permanent disposal of radioactive waste is to incorporate the waste into a solid, which is then placed in a geologic formation. The solid is made of waste and nonradioactive additives, with the formulation selected to produce a durable solid that will minimize the potential for dispersal of the radionuclides. Leach rates of radionuclides incorporated in the solid waste indicate the quantity of radioactivity available for dispersal at any time; but leach rates of stable constituents can be just as important to radionuclide dispersal by groundwater. The constituents of the solid will perturb the chemical character of the groundwater and, thereby, profoundly affect the interaction of radionuclides with the geologic medium. An explicit example of how the solid waste can affect radionuclide dispersal is illustrated by the results of experiments that measure cesium adsorption in the presence of rubidium. The experiments were performed with granulated oolitic limestone that absorbed cesium from groundwater solutions to which various concentrations of stable rubidium chloride had been added. The results are expressed as partition coefficients. Large coefficients indicate strong adsorption by the rock and, hence, slow migration. The partition coefficient for cesium decreases as the rubidium concentration in solution is increased. Because the coeficient for cesium depends on the amount of rubidium in solution, it will depend on the leach rate of rubidium from the solid. Rubidium has no radionuclides of concern for long-term isolation of nuclear waste, so its leach rate from a waste solid is rarely ever reported

  3. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program

  4. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  5. The political challenges of nuclear waste

    International Nuclear Information System (INIS)

    Andren, Mats; Strandberg, Urban

    2005-01-01

    This anthology is made up of nine essays on the nuclear waste issue, both its political, social and technical aspects, with the aim to create a platform for debate and planning of research. The contributions are titled: 'From clean energy to dangerous waste - the regulatory management of nuclear power in the Swedish welfare society. An economic-historic review , 'The course of the high-level waste into the national political arena', 'The technical principles behind the Swedish repository for spent fuels', 'Waste, legitimacy and local citizenship', 'Nuclear issues in societal planning', 'Usefulness or riddance - transmutation or just disposal?', 'National nuclear fuel policy in an European Union?', 'Conclusion - the challenges of the nuclear waste issue', 'Final words - about the need for critical debate and multi-disciplinary research'

  6. Radioactive wastes. The management of nuclear wastes. Waste workshop, first half-year - Year 2013-2014

    International Nuclear Information System (INIS)

    Esteoulle, Lucie; Rozwadowski, Elodie; Duverger, Clara

    2014-01-01

    The first part of this report first presents radioactive wastes with their definition, and their classification (radioactivity level, radioactive half-life). It addresses the issue of waste storage by presenting the different types of storage used since the 1950's (offshore storage, surface warehousing, storage in deep geological layer), and by discussing the multi-barrier approach used for storage safety. The authors then present the French strategy which is defined in the PNGMDR to develop new management modes on the long term, to improve existing management modes, and to take important events which occurred between 2010 and 2012 into account. They also briefly present the Cigeo project (industrial centre of geological storage), and evoke controversies related to the decision to locate this project in Bure (existence of geological cracks and defects, stability and tightness of the clay layer, geothermal potential of the region, economic cost). The second part proposes an overview of the issue of nuclear waste management. The author recalls the definition of a radioactive waste, indicates the origins of these wastes and their classification. She proposes a history of the radioactive waste: discovery of radioactivity, military industrialisation and awareness of the dangerousness of radioactive wastes, nuclear wastes and recent incidents (West Valley, La Hague, Windscale). An overview of policies of nuclear waste management is given: immersion of radioactive wastes, major accidental releases, solutions on the short term and on the medium term

  7. Treatment and final conditioning of solid radioactive wastes

    International Nuclear Information System (INIS)

    Cerre, J.

    1960-01-01

    The storage of solid radioactive wastes on a site is so cumbersome and dangerous that we have developed a method of treatment and conditioning by means of which the volume of waste is considerably reduced and very long-lasting shielding can be provided. This paper describes the techniques adopted at Saclay, where the wastes are sheared, compressed and enveloped in concrete of variable thickness. The main part of the report is devoted to a description of the corresponding remote handling installation. (author) [fr

  8. Identification of the non-pertechnetate species in Hanford waste tanks, Tc(I) carbonyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-10-16

    Immobilization of the high-level nuclear waste stored at the Hanford Reservation has been complicated by the presence of soluble, lower-valent technetium species. Previous work by Schroeder and Blanchard has shown that these species cannot be removed by ion-exchange and are difficult to oxidize. The Tc-K edge XANES spectra of the species in Tanks SY-101 and SY-103 were reported by Blanchard, but they could not be assigned to any known technetium complex. We report that the XANES spectra are most likely those of Tc(I) carbonyl species, especially fac-Tc(CO){sub 3}(gluconate){sup 2-}. This is further supported by EXAFS and {sup 99}Tc-NMR studies in nonradioactive simulants of these tank wastes.

  9. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes. Final Report

    International Nuclear Information System (INIS)

    Wasan, Darsh T.

    2007-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  10. Operation of a prototype high-level alpha solid waste incinerator

    International Nuclear Information System (INIS)

    Hootman, H.E.; Trapp, D.J.; Warren, J.H.; Dworjanyn, L.O.

    1979-01-01

    A full-scale (5 kg waste/hour) controlled-air incinerator is presently being tested as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible wastes that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm and 252 Cf. Automatic feed preparation and incinerator operation and control have been incorporated into the design to simulate the future plant design which will minimize operator radiation exposure. Over 250 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr for periods up to 6 hours. Safety and reliability were major design objectives. Upon completion of an initial experimental phase to determine process sensitivity and flexibility, the facility will be used to develop bases for the production unit's safety analysis report, technical standards, and operating procedures. An ultimate use of the experimental unit will be the testing of actual production unit components and the training of Savannah River Plant operating personnel

  11. 46 CFR 5.35 - Conviction for a dangerous drug law violation, use of, or addiction to the use of dangerous drugs.

    Science.gov (United States)

    2010-10-01

    ..., or addiction to the use of dangerous drugs. 5.35 Section 5.35 Shipping COAST GUARD, DEPARTMENT OF... Definitions § 5.35 Conviction for a dangerous drug law violation, use of, or addiction to the use of dangerous... complaint will allege conviction for a dangerous drug law violation or use of dangerous drugs or addiction...

  12. Industrial and urban wastes in relation to Cadmium pollution

    International Nuclear Information System (INIS)

    Varavipour, M.; Akhondi, M.

    2002-01-01

    Disposal of urban, agricultural and industrial wastes is becoming a major problem in recent times. Ocean dumping, land fill applications and incineration are being considered as unsuitable. so application to agricultural lands is being increasingly used for this purpose. Application of wastes to soils can be beneficial in providing plant nutrients and organic matter. But, it also leads to harmful effects like introduction of heavy metals, toxic organics, danger of ground water pollution, etc. Cadmium buildup in soil and absorption into plants and then entering into food chain due to these wastes is of concern because of its higher mobility than most other heavy metals. Although discontinuation of sewage sludge disposal on crop land would stop further soil contamination, potential danger from metal accumulation by crops grown after termination of the practice is still a concern. Trace metals are relatively immobile in soil. Therefore, depending on biological and chemical equilibria established following terminal sludge application, sludge-borne Cd might change in plant availability with time

  13. Analysis of dangerous components in radioactive waste: choice of the method for processing

    International Nuclear Information System (INIS)

    Ozhovan, M.

    2004-01-01

    The migration and redistribution of elements in the environment leading to excess abundance of certain elements can be capable of producing adverse effects on an individual under appropriate conditions. The radiotoxicity is assessed for high level activity wastes. The relative toxicity index of high-level waste is given. The dependence of the ingestion hazards from SRS for different nuclides and fission products on the storage time is presented. The relative toxicity index for PWR spent fuel decreases with time and at ∼ 480,000 years is becoming the same as of the natural uranium ore. If the nuclear fuel is reprocessed and plutonium recycled, after ∼ 2000 years the toxicity of the waste becomes less than the toxicity of natural uranium. The real (residual) radiotoxicity and the index of real radiotoxicity are discussed. Russian experience in radioactive waste classification is presented

  14. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  15. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  16. Secondary Waste Form Development and Optimization—Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  17. The Effectiveness of Mendong Plant (Fimbrystilis Globulosa) as a Phytoremediator of Soil Contaminated with Chromium of Industrial Waste

    OpenAIRE

    Ferina, Pungky; Rosariastuti, Retno; Supriyadi, S

    2017-01-01

    The textile industry produces sideline output in the form of dangerous waste. The textile industrial waste containing heavy metal, one of which is Chromium (Cr).  Chromium is very dangerous metal for environment, especially chromium hexavalent that has properties of soluble, carcinogenic, and toxic. The pollution of chromium in soil is a problem that the action to be taken with the technology of bioremediation. Phytoremediation of soil contaminated with chromium using Mendong plant (Fimbrysti...

  18. Separation of technetium from nuclear waste stream simulants. Final report

    International Nuclear Information System (INIS)

    Strauss, S.H.

    1995-01-01

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering 99 TcO 4 - from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO 4 - ), a stable (non-radioactive) chemical surrogate for 99 TcO 4 - . Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO 4 - and TcO 4 -

  19. The Plasma Hearth Process demonstration project for mixed waste treatment

    International Nuclear Information System (INIS)

    Geimer, R.; Dwight, C.; McClellan, G.

    1994-01-01

    The Plasma Hearth Process (PHP) demonstration project is one of the key technology projects in the Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Integrated Program (MWIP). Testing to date has yielded encouraging results in displaying potential applications for the PHP technology. Early tests have shown that a wide range of waste materials can be readily processed in the PHP and converted to a vitreous product. Waste materials can be treated in their original container as received at the treatment facility, without pretreatment. The vitreous product, when cooled, exhibits excellent performance in leach resistance, consistently exceeding the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP) requirements. Performance of the Demonstration System during test operations has been shown to meet emission requirements. An accelerated development phase, being conducted at both bench- and pilot-scale on both nonradioactive and radioactive materials, will confirm the viability of the process. It is anticipated that, as a result of this accelerated technology development and demonstration phase, the PHP will be ready for a final field-level demonstration within three years

  20. Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report

    International Nuclear Information System (INIS)

    Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

    1981-06-01

    The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented

  1. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  2. Estimation of Waste Quantities Using DeCAT-Pro

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Taesik; Jung, Hyejin; Oh, Jaeyoung; Kim, Younggook [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The D and D (Dismantling and Decontamination) is scheduled to get started in June 2022 elapsing five years of cooling spent fuels down. The final site status is postulated as Brown Field and tentative DCGL of less than 0.1 mSv per year to evaluate waste quantities in a conservative manner. The decommissioning strategy was determined the immediate decommissioning whose whole period would be taken for approximately 15 years; pre-decommissioning for two years, spent fuel cool-down for five years, D and D for six years, site remediation for two years. The assumption to dismantle the underground facilities including SSCs is to one meter beneath the ground level and the other facilities remain intact. In addition, non-radioactive concrete wastes would be used to landfill gaps of the remaining facilities. Although there are many assumptions we applied, the methodologies developed and the data produced by this research will play a meaningful role as a good starting point for the Kori-1 decommissioning after its shutdown to logically and reasonably estimate the waste quantity. However it is clear that tenacious efforts should be taken to successfully perform the decommissioning project.

  3. Westinghouse Hanford Company effluent releases and solid waste management report for 1987: 200/600/1100 Areas

    International Nuclear Information System (INIS)

    Coony, F.M.; Howe, D.B.; Voigt, L.J.

    1988-05-01

    The purpose of this report is to fulfill the reporting requirements of US Department of Energy (DOE) Order 5484.1, Environmental Protection, Safety, and Health Protection Information Reporting Requirements. Quantities of airborne and liquid wastes discharged by Westinghouse Hanford Company (Westinghouse Hanford) in the 200 Areas, 600 Area, and 1100 Area in 1987 are presented in this report. Also, quantities of solid wastes stored and buried by Westinghouse Hanford in the 200 Areas are presented in this report. The report is also intended to demonstrate compliance with Westinghouse Hanford administrative control limit (ACL) values for radioactive constituents and with applicable guidelines and standards for nonradioactive constituents. The summary of airborne release data, liquid discharge data, and solid waste management data for calendar year (CY) 1987 and CY 1986 are presented in Table ES-1. Data values for 1986 are cited in Table ES-1 to show differences in releases and waste quantities between 1986 and 1987. 19 refs., 3 figs., 19 tabs

  4. Leaching behavior of a simulated bituminized radioactive waste form under deep geological conditions

    International Nuclear Information System (INIS)

    Nakayama, Shinichi; Iida, Yoshihisa; Nagano, Tetsushi; Akimoto, Toshiyuki

    2003-01-01

    The leaching behavior of a simulated bituminized waste form was studied to acquire data for the performance assessment of the geologic disposal of bituminized radioactive waste. Laboratory-scale leaching tests were performed for radioactive and non-radioactive waste specimens simulating bituminized waste of a French reprocessing company, COGEMA. The simulated waste was contacted with deionized water, an alkaline solution (0.03-mol/l KOH), and a saline solution (0.5-mol/l KCl) under atmospheric and anoxic conditions. The concentrations of Na, Ba, Cs, Sr, Np, Pu, NO 3 , SO 4 and I in the leachates were determined. Swelling of the bituminized waste progressed in deionized water and KOH. The release of the soluble components, Na and Cs, was enhanced by the swelling, and considered to be diffusion-controlled in the swelled layers of the specimens. The release of sparingly soluble components such as Ba and Np was solubility-limited in addition to the progression of leaching. Neptunium, a redox-sensitive element, showed a distinct difference in release between anoxic and atmospheric conditions. The elemental release from the bituminized waste specimens leached in the KCl was very low, which is likely due to the suppression of swelling of the specimens at high ionic strength. (author)

  5. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    International Nuclear Information System (INIS)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale

  6. Incineration of radioactive wastes containing only C-14 and H-3

    International Nuclear Information System (INIS)

    Garcia, Corazon M.

    1992-01-01

    C-14 and H-3 arc popularly used in chemical and biological research institutions in the Philippines. Most of the solid radioactive wastes generated by these institutions consist of combustible materials such as paper and accumulated environmental samples. Liquid wastes usually contain organic substances. The method proposed for managing C-14 and H-3 wastes is incineration which is expected to provide an acceptable means of disposal for C-14 and H-3 and their hazardous organic constituent. In the incineration process) the radioactively contaminated waste will be mixed with non-radioactive combustible wastes to lower the activity concentration and to improve the efficiency of combustion which will be carried out in a locally fabricated drum incinerator. The calculations presented determines the concentration limit for the incinerable wastes and the restriction on specific activity of the particles of the incinerable wastes containing C-14 or H-3 on the basis of the accepted air concentration and on the annual dose limit for an average radiation worker in the country. In the calculations for C-14, considerations were taken on the exposure received from the deposition of radioactive particles in the lungs containing unoxidized carbon. Calculations for H-3, however, is based on the assumption that the concentration of the radionuclide in the body water is the same as that in the environment. (author)

  7. Decomposition for the analysis of radionuclides in solidified cement radioactive waste

    International Nuclear Information System (INIS)

    Lee, Jeong Jin; Pyo, Hyung Yeal; Jee, Kwang Yung; Jeon, Jong Seon

    2004-01-01

    Spent ion exchange resins make solid radioactive wastes when mixed with cement as solidifying material that was widely used in securing human environment from radionuclides for at least hundreds years. The cumulative increase of low and medium level radioactive wastes results in capacity problem of temporary storage in some NPPs (Nuclear Power Plants) of Korea around 2008. Radioactive wastes are scheduled to be disposed in a permanent disposal facility in accordance with the Korean Radioactive Wastes Management Program. It is mandatory to identify kinds and concentration of radionuclides immobilized for transporting them from temporary storage in NPPs to disposal facility. Accordingly, the effective sample decomposition prior to radiochemical separation is prerequisite to obtain the analytical data about radionuclides in cement waste forms. The closed-vessel microwave digestion technology among several sample preparation methods is taken into account to decompose cement waste forms. In this study, SRM 1880a (Portland cement) which is known for its certified values was used to optimize decomposition condition of cement waste forms containing nonradioactive ion exchange resins from NPP. With such variables as reagents, time, and power, the variation of the transparency and the color of the solution after closed-vessel microwave digestion can be examine. SRM 1880a is decomposed by suggested digestion procedure and the recoveries of constituents were investigated by ICP-AES and AAS

  8. Demonstration of a remotely operated TRU waste size-reduction and material handling process

    International Nuclear Information System (INIS)

    Stewart, J.A. III; Schuler, T.F.; Ward, C.R.

    1986-01-01

    Noncombustible Pu-238 and Pu-239 waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the site. As part of the long-term plan to process the stored waste and current waste for permanent disposal, a remote size-reduction and material handling process is being tested at Savannah River Laboratory to provide design support for the plant TRU Waste Facility scheduled to be completed in 1993. The process consists of a large, low-speed shredder and material handling system, a remote worktable, a bagless transfer system, and a robotically controlled manipulator, or Telerobot. Initial testing of the shredder and material handling system and a cycle test of the bagless transfer system were completed. Initial Telerobot run-in and system evaluation was completed. User software was evaluated and modified to support complete menu-driven operation. Telerobot prototype size-reduction tooling was designed and successfully tested. Complete nonradioactive testing of the equipment is scheduled to be completed in 1987

  9. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  10. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    Davison, S.

    1989-01-01

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by HMIP (Radioactive Substances). This paper presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. The results of the analysis of the Radioactive Substances (Smoke Detectors) Exemption Order 1980 is included. The paper also describes the implementation of the methodology on a microcomputer. (author)

  11. Strategy and field implementation for determining a dangerous waste mixture in Washington State

    International Nuclear Information System (INIS)

    Cowan, Steve; Foster, Rick; Wright, Jamie

    1992-01-01

    Under the Resource Conservation and Recovery Act (RCRA), states rather than the Environmental Protection Agency (EPA) maybe authorized to implement RCRA regulations. Under RCRA, environmental regulations implemented by an authorized state must be at least as stringent as those contained in RCRA. Compared to RCRA, the corresponding regulations of the State of Washington regarding the determination of characteristic wastes are more stringent and complex. This paper discusses the complexities of the regulations and presents a strategy for successfully managing diverse waste streams. This strategy was used during the cleanup of contaminated areas and equipment at the Albany Research Center (ARC) in Albany, Oregon, which processed uranium and thorium for the Manhattan Engineer District and the Atomic Energy Commission during the early days of the nation's atomic energy program. Wastes from the cleanup of ARC were shipped to the Department of Energy (DOE) Hanford Reservation. Because the DOE Hanford Reservation is located in Washington, this paper should be of interest to DOE waste generators. (author)

  12. Characterisation of radioactive waste at Cernavoda NPP Unit 1 during normal operation

    International Nuclear Information System (INIS)

    Iordache, M.; Bujoreanu, L.; Popescu, I. V.

    2008-01-01

    During the operation of a nuclear plant significant quantities of radioactive waste results that have a very large diversity. At Cernavoda NPP the important waste categories are non-radioactive wastes and radioactive wastes, which are manipulated completely different from which other. For a CANDU type reactor, the production of radioactive wastes is due to contamination with the following types of radioactive substances: - fission products resulting from nuclear fuel burning; - activated products of materials which form part of the technological systems; - activated products of process fluids. Radioactive wastes can be in solid, liquid or gas form. At Cernavoda NPP the solid wastes represent about 70% of the waste volume which is produced during plant operation and as a consequence of maintenance and decontamination activities. The most important types of solid wastes that are obtained and then handled, processed (if required) and temporarily stored are: solid low level radioactive wastes (classified as compact and non-compact), solid medium radioactive wastes, spent resins, used filters and filter cartridges. The liquid radioactive waste class includes organic liquids (used oil, scintillator liquids and used solvents) and aqueous wastes resulting from process system operating, decontamination and maintenance operations. Radioactive gas wastes occur subsequent to the fission process inside the fuel elements as well as due to the process fluids neutron activation in the reactor systems. As result of the plant operation, iodine, noble gases, tritium and radioactive particles occur and are passed to the ventilation stack in a controlled manner so that an exceeding of the maximum permissible concentrations of radioactive material to the environment should not occur. (authors)

  13. Microwave technology for waste management applications: Treatment of discarded electronic circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G. [Westinghouse Savannah River Technology Center, Aiken, SC (United States); Clark, D.E.; Schulz, R.L. [Univ. of Florida, Gainesville, FL (United States)

    1997-01-01

    Significant quantities of hazardous wastes are generated from a multitude of processes and products in today`s society. This waste inventory is not only very large and diverse, but is also growing at an alarming rate. In order to minimize the dangers presented by constituents in these wastes, microwave technologies are being investigated to render harmless the hazardous components and ultimately, to minimize their impact to individuals and the surrounding environment.

  14. Glassceramics obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Cimdins, R.; Rozenstrauha, I.; Berzina, L. [Riga Technical University, Faculty of Chemical Technology, Biomaterials R and D Laboratory, 14/24 Azenes St., LV-1048 Riga (Latvia); Bossert, J.; Buecker, M. [Technisches Institut Materialwissenschaft, Friedrich-Schiller Universitaet, Loebdegraben 32, 07743 Jena (Germany)

    2000-06-01

    Large areas of Latvia are contaminated with industrial waste: metallurgical slag, fly-ash, etching refuse, peat, and coal ash as well as glass waste which often contain dangerous substances. From the environmental point of view this waste should be neutralised. As this waste also contains valuable chemical compounds, it can be considered as a raw material for the generation of new materials. One method of utilisation is to produce recycled materials - street plates, decorative tiles, or floor tiles. Dense sintered glassceramics with a water uptake of 0.34-3.23 wt.%, a final density of 2.93-3.05 g/cm{sup 3}, and a bending strength of 80-96 MPa have been created from industrial waste. The mast chemically durable glassceramics contained clay additions. Thus, the material containing only waste had a durability (mass loss) of 3.02% in 0.1 N HCl, while the composition containing 30% clay addition had a durability of 0.2% in 0.1 N HCl.

  15. Application of Molecular Techniques to Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site

    International Nuclear Information System (INIS)

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rDNA clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both the clone library and PhyloChip results revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more unique Operational Taxonomic Units (OTUs), and therefore more relative diversity, than the clone libraries. Calculated diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for cellulose degradation. Overall, these results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.

  16. Detection of adenovirus in nasopharyngeal specimens by radioactive and nonradioactive DNA probes

    International Nuclear Information System (INIS)

    Hyypiae, T.

    1985-01-01

    The presence of adenovirus DNA in clinical specimens was analyzed by nucleic acid hybridization assays by both radioactive and enzymatic detection systems. The sensitivity of the hybridization tests was in the range of 10 to 100 pg of homologous adenovirus DNA. Minimal background was noticed with unrelated viral and nonviral DNA. Twenty-four nasopharyngeal mucus aspirate specimens, collected from children with acute respiratory infection, were assayed in the hybridization tests and also by an enzyme immunoassay for adenovirus hexon antigen which was used as a reference test. Sixteen specimens positive by the enzyme immunoassay also were positive in the two nucleic acid hybridization tests, and the remaining eight specimens were negative in all of the tests. The results indicate that nucleid acid hybridization tests with both radioactive and nonradioactive probes can be used for diagnosis of microbial infections

  17. Development of in-can melting process and equipment, 1979 and 1980

    International Nuclear Information System (INIS)

    Petkus, L.L.; Larson, D.E.; Bjorklund, W.J.; Holton, L.K.

    1981-09-01

    Nonradioactive process testing continued with the in-can melter as part of an investigation into the applicability of this vitrification process to various calcined high-level and incinerator ash radioactive wastes. The investigation in this report concentrated on how waste composition and canister fins affect in-can melter capacity and how waste composition affects glass quality. Process performance proved to be generally satisfactory. Pilot-scale in-can melter runs were performed with synthetic, nonradioactive, high-level wastes to produce eight canisters of glass. The synthetic wastes processed included high-level wastes from Savannah River, West Valley, and ICPP, as well as transuranic ash waste. Full-scale in-can melter runs using nonradioactive materials were also conducted, producing ten canisters of glass. Of the ten canisters, nine contained Savannah River Plant glass and one canister contained glass from synthetic zirconia calcine waste from the ICPP. 11.4 tons of glass was produced in test runs. In the full-scale in-can melter furnace, the baffles separating the six heating zones were removed because of baffle warping. A remotely operated section connecting the spray calciner to the canister was tested. Some problems were encountered with calcine plugging

  18. Determination of acceptable risk criteria for nuclear waste management

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1977-01-01

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey

  19. Determination of acceptable risk criteria for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J.J.

    1977-10-21

    The initial phase of the work performed during FY 1977 consisted of performing a ''scoping'' study to define issues, determine an optimal methodology for their resolution, and compile a data base for acceptable risk criteria development. The issues, spanning technical, psychological, and ethical dimensions, were categorized in seven major areas: (1) unplanned or accidental events, (2) present vs future risks, (3) institutional controls and retrievability, (4) dose-response mechanism and uncertainty, (5) spatial distribution of exposed populations, (6) different types of nuclear wastes, and (7) public perception. The optimum methodology for developing ARC was determined to be multi-attribute decision analysis encompassing numerous specific techniques for choosing, from among several alternatives, the optimal course of action when the alternatives are constrained to meet specified attributes. The data base developed during the study comprises existing regulations and guidelines, maximum permissible dose, natural geologic hazards, nonradioactive hazardous waste practices, bioethical perspectives, and data from an opinion survey.

  20. The radioactive wastes management; Le dossier: les dechets nucleaires et leur gestion

    Energy Technology Data Exchange (ETDEWEB)

    Rigny, P. [Actualite Chimique, 75 - Paris (France); Bonin, B. [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France); Gras, J.M. [Electricite de France (EDF-RD), Recherche et Developpement, 78 - Chatou (France)

    2010-11-15

    The different types of radioactive waste are presented in this paper in the frame of the official categories which take into account their dangerousness and the lifetimes of their radioactivity. It is indicated how the less dangerous of them are handled in France. The ways of protecting the environment from the more dangerous ones (high activity and long lifetimes) are object of studies. Scientific questions, in the field of chemistry and physical chemistry, related to the implementation of deep underground repository facilities with full respect of nuclear safety are presented. (authors)

  1. The relationship of dangerous driving with traffic offenses: A study on an adapted measure of dangerous driving.

    Science.gov (United States)

    Iliescu, Dragoş; Sârbescu, Paul

    2013-03-01

    Using data from three different samples and more than 1000 participants, the current study examines differences in dangerous driving in terms of age, gender, professional driving, as well as the relationship of dangerous driving with behavioral indicators (mileage) and criteria (traffic offenses). The study uses an adapted (Romanian) version of the Dula Dangerous Driving Index (DDDI, Dula and Ballard, 2003) and also reports data on the psychometric characteristics of this measure. Findings suggest that the Romanian version of the DDDI has sound psychometric properties. Dangerous driving is higher in males and occasional drivers, is not correlated with mileage and is significantly related with speeding as a traffic offense, both self-reported and objectively measured. The utility of predictive models including dangerous driving is not very large: logistic regression models have a significant fit to the data, but their misclassification rate (especially in terms of sensitivity) is unacceptable high. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  3. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  4. Dangerous animals capture and maintain attention in humans.

    Science.gov (United States)

    Yorzinski, Jessica L; Penkunas, Michael J; Platt, Michael L; Coss, Richard G

    2014-05-28

    Predation is a major source of natural selection on primates and may have shaped attentional processes that allow primates to rapidly detect dangerous animals. Because ancestral humans were subjected to predation, a process that continues at very low frequencies, we examined the visual processes by which men and women detect dangerous animals (snakes and lions). We recorded the eye movements of participants as they detected images of a dangerous animal (target) among arrays of nondangerous animals (distractors) as well as detected images of a nondangerous animal (target) among arrays of dangerous animals (distractors). We found that participants were quicker to locate targets when the targets were dangerous animals compared with nondangerous animals, even when spatial frequency and luminance were controlled. The participants were slower to locate nondangerous targets because they spent more time looking at dangerous distractors, a process known as delayed disengagement, and looked at a larger number of dangerous distractors. These results indicate that dangerous animals capture and maintain attention in humans, suggesting that historical predation has shaped some facets of visual orienting and its underlying neural architecture in modern humans.

  5. Waste management safety

    International Nuclear Information System (INIS)

    Boehm, H.

    1983-01-01

    All studies carried out by competent authors of the safety of a waste management concept on the basis of reprocessing of the spent fuel elements and storage in the deep underground of the radioactive waste show that only a minor technical risk is involved in this step. This also holds true when evaluating the accidents which have occurred in waste management facilities. To explain the risk, first the completely different safety aspects of nuclear power plants, reprocessing plants and repositories are outlined together with the safety related characteristics of these plants. Also this comparison indicates that the risk of waste management facilities is considerably lower than the, already very small, risk of nuclear power plants. For the final storage of waste from reprocessing and for the direct storage of fuel elements, the results of safety analyses show that the radiological exposure following an accident with radioactivity releases, even under conservative assumptions, is considerably below the natural radiation exposure. The very small danger to the environment arising from waste management by reprocessing clearly indicates that aspects of technical safety alone will hardly be a major criterion for the decision in favor of one or the other waste management approach. (orig.) [de

  6. Differentiated collection of wastes - Component of an integrated system

    Energy Technology Data Exchange (ETDEWEB)

    Butta, R

    1989-04-01

    Effective measures to contrast enviromental pollution are seen as complementary to the control over materials and energy; a correct planning of urban and industrial waste disposal operations ensures that, where practicable, waste materials are recovered and recycled. It is necessary to activate a serious strategy even before waste materials are produced. With reference to a timely selection of waste materials, this article makes a fundamental distinction between those portions that offer immediate opportunities of recycling, provided that disposal is carried out to satisfactory standards, and other portions that may be dangerously polluting, unless they are carefully processed.

  7. The plutonium danger

    International Nuclear Information System (INIS)

    Ruiter, W. de

    1983-01-01

    Nobody can ignore the fact that plutonium is potentially very dangerous and the greatest danger concerning it lies in the spreading of nuclear weapons via nuclear energy programmes. The following seven different attitudes towards this problem are presented and discussed: 1) There is no connection between peaceful and military applications; 2) The problem cannot be prevented; 3) A technical solution must be found; 4) plutonium must be totally inaccessible to countries involved in acquiring nuclear weapons; 5) The use of plutonium for energy production should only occur in one multinational centre; 6) Dogmas in the nuclear industry must be enfeebled; 7) All developments in this area should stop. (C.F.)

  8. Ascorbic acid: Nonradioactive extracellular space marker in canine heart

    International Nuclear Information System (INIS)

    Reil, G.H.; Frombach, R.; Kownatzki, R.; Quante, W.; Lichtlen, P.R.

    1987-01-01

    The distribution pattern of ascorbic acid and L-[ 14 C]ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers [ 3 H]-inulin, [ 3 H]sucrose, and Na 82 Br. A new polarographic techniques was developed for analogue registration of ascorbic acid concentration in coronary venous blood. The kinetic data of the markers were studied in an open-chest canine heart preparation during a constant tracer infusion of up to 9 min. Distribution volumes were calculated based on the mean transit time method of Zierler. The distribution volume of ascorbic acid as well as of L-[ 14 C]ascorbic acid in myocardial tissue agreed closely with those of [ 3 H]inulin and [ 3 H]sucrose as well as 82 Br. The obtained kinetic data confirmed that ascorbic acid exhibits the physicochemical properties of an extracellular space marker, though this compound was shown to leak slowly into myocardial cells. Favorable attributes of this indicator are its low molecular weight, high diffusibility in interstitial fluid, low binding affinity to macromolecules, and high transcapillary as well as low transplasmalemmal penetration rate. Therefore, this nonradioactive marker can be applied in a safe and simple fashion, and without untoward side effects in experimental animals as well as in patients

  9. Regulatory supervision of industrial waste containing very low activities of man-made radionuclides at SevRAO facility

    International Nuclear Information System (INIS)

    Sneve, Malgorzata K.; Kochetkov, Oleg; Monastyrskaya, Svetlana; Barchukov, Valerie; Romanov, Vladimir

    2008-01-01

    Full text: Large amounts of waste and materials with very low activity level are generated during operation and especially during decommissioning of nuclear facilities. Selection of the optimum economic and ecologically safe management option of such material is complicated by its specific features: very low level radiation exposure to individuals but rather large initial amounts of waste. On the one hand, it is a poor use of limited resources to em place such low activity waste into expensive facilities for radioactive waste storage and disposal if the radiological impact would be very small even for a much less expensive option; on the other hand, there is some apprehension regarding safety both about its disposal to landfills for conventional (non-radioactive) waste disposal, and about its limited or unlimited re-use or re-cycling. To regulate such waste management, a special waste category is introduced - very low level waste (VLLW). This category includes waste containing radionuclides with specific activity levels, which are higher than clearance levels, but do not need high containment and isolation. This paper discusses experience of regulatory development for VLLW control during remediation of radiation hazardous facilities in northwest Russia. The work has promoted identification of some challenges, whose solution has affected the waste management strategy at the sites. One of the main problems resolved was the selection of criteria according to which waste is allocated to the VLLW category. These is turn were partly determined by the radiological criteria chosen for protection of the public during this waste disposal. Elaboration of safe VLLW management strategy depends upon a source of waste generation and of its radiological composition. The VLLW management strategy at an operating enterprise, e.g. a nuclear power plant is rather different from the strategy implemented at the plant under decommissioning, or at storage facilities for the legacy waste

  10. Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    International Nuclear Information System (INIS)

    Bilbao, Jose I.; Martino, Alba de; Luis, Esther de; Diaz-Dorronsoro, Lourdes; Alonso-Burgos, Alberto; Martinez de la Cuesta, Antonio; Sangro, Bruno; Garcia de Jalon, Jose A.

    2009-01-01

    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10-30 microspheres (15-30 μm in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and

  11. Radioactive wastes: a reason to go against nuclear?

    International Nuclear Information System (INIS)

    Dupont, Jean-Francois

    2013-01-01

    In this note, the author aims at explaining the nature of the risk related to radioactive wastes, how these wastes are managed, and precautions which are taken for them not to be ever dangerous for mankind or for the environment. He discusses the safety aspects of separation of wastes from the biosphere, describes how radioactive wastes are separated from the biosphere, compares with the case of special wastes. Then he discusses and denies the various objections which are made regarding wastes and their management, i.e.: it is not acceptable nor ethical to pass on toxic wastes to several generations, there is no solution to the problem of radioactive wastes, the solution is bad or its reliability is not certain, the waste issue has been neglected from the start by people who do not care of humanist or ethical issues, people are afraid of deep geological storage

  12. Dangerous Animals Capture and Maintain Attention in Humans

    Directory of Open Access Journals (Sweden)

    Jessica L. Yorzinski

    2014-07-01

    Full Text Available Predation is a major source of natural selection on primates and may have shaped attentional processes that allow primates to rapidly detect dangerous animals. Because ancestral humans were subjected to predation, a process that continues at very low frequencies, we examined the visual processes by which men and women detect dangerous animals (snakes and lions. We recorded the eye movements of participants as they detected images of a dangerous animal (target among arrays of nondangerous animals (distractors as well as detected images of a nondangerous animal (target among arrays of dangerous animals (distractors. We found that participants were quicker to locate targets when the targets were dangerous animals compared with nondangerous animals, even when spatial frequency and luminance were controlled. The participants were slower to locate nondangerous targets because they spent more time looking at dangerous distractors, a process known as delayed disengagement, and looked at a larger number of dangerous distractors. These results indicate that dangerous animals capture and maintain attention in humans, suggesting that historical predation has shaped some facets of visual orienting and its underlying neural architecture in modern humans.

  13. Standard practice for analysis of aqueous leachates from nuclear waste materials using inductively coupled plasma-atomic emission spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice is applicable to the determination of low concentration and trace elements in aqueous leachate solutions produced by the leaching of nuclear waste materials, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). 1.2 The nuclear waste material may be a simulated (non-radioactive) solid waste form or an actual solid radioactive waste material. 1.3 The leachate may be deionized water or any natural or simulated leachate solution containing less than 1 % total dissolved solids. 1.4 This practice should be used by analysts experienced in the use of ICP-AES, the interpretation of spectral and non-spectral interferences, and procedures for their correction. 1.5 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-AES instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices...

  14. Plasma Mass Filters For Nuclear Waste Reprocessing

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  15. The wastes of nuclear fission; Les dechets de la fission nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Doubre, H. [Paris-11 Univ., Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, IN2P3/CNRS, 91 - Orsay (France)

    2005-07-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  16. A generic risk assessment from unrestricted releases for RI waste

    International Nuclear Information System (INIS)

    Won-Jae Park; Sang-hoon Park

    1993-01-01

    It has long been recognized in the nuclear industries and the regulatory body that exemption from the regulatory control for a given practice or source of radioactive materials, which is very low radiation exposure situation where the level of risk to any of the public would be considered as trivial, may be beneficial and practical. Therefore, it is necessary to establish the exempt levels of radioactive wastes for unconditional disposal, incineration, recycle and reuse of slightly contaminated materials. In Korea, from its announcement of the Enforcement Regulation of Atomic Energy Act, the Article 97 (Exemption from Permanent Disposal) for very low-level waste disposal in January 1990, the KINS (Korea Institute of Nuclear Safety) have made their efforts to establish a de minimis level (a level of radioactivity in waste that is sufficiently low that the waste can be disposed of as ordinary, non-radioactive trash) for short-lived radioisotopes commonly used in medical, research institutes and industrial applications and to study the possibility for unrestricted deregulation of those radioisotopes. As one of preliminary works to predict environmental radiological impacts from uncontrolled and unrestricted release of RI waste, an average effective dose to any ordinary individual and a collective dose for total population in Korea was estimated, based on conservative assumptions and Korean specific environment data, by an equilibrium biosphere models with a generic probabilistic risk approach

  17. Radioactive waste disposal and constitution

    International Nuclear Information System (INIS)

    Stober, R.

    1983-01-01

    The radioactive waste disposal has many dimensions with regard to the constitutional law. The central problem is the corret delimitation between adequate governmental precautions against risks and or the permitted risk which the state can impose on the citizen, and the illegal danger which nobody has to accept. The solution requires to consider all aspects which are relevant to the constitutional law. Therefore, the following analysis deals not only with the constitutional risks and the risks of the nuclear energy, but also with the liberal, overall-economic, social, legal, and democratic aspects of radioactive waste disposal. (HSCH) [de

  18. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    International Nuclear Information System (INIS)

    TEDESCHI AR

    2008-01-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process

  19. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  20. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities