WorldWideScience

Sample records for nonprotein thiols npsh

  1. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity.

    Science.gov (United States)

    Nassar, Mohannad; Hiraishi, Noriko; Shimokawa, Hitoyata; Tamura, Yukihiko; Otsuki, Masayuki; Kasugai, Shohei; Ohya, Keiichi; Tagami, Junji

    2014-03-01

    Phosphoric acid (PA) etching used in etch-and-rinse adhesives is known to activate host-derived dentinal matrix-metalloproteinases (MMPs) and increase dentinal permeability. These two phenomena will result, respectively; in degradation of dentine-adhesive bond and leaching of some monomers especially 2-hydroxyethyl methacrylate (HEMA) into the pulp that would negatively affect the viability of pulpal cells. This study is the first to investigate the inhibitory effect of non-protein thiols (NPSH); namely reduced glutathione (GSH) and N-acetylcysteine (NAC) on dentinal MMPs and compare their effects on HEMA cytotoxicity. Dentine powder was prepared from human teeth, demineralized with 1% PA and then treated with 2% GSH, 2% NAC or 2% chlorhexidine (CHX). Zymographic analysis of extracted proteins was performed. To evaluate the effect of GSH, NAC and CHX on HEMA cytotoxicity, solutions of these compounds were prepared with or without HEMA and rat pulpal cells were treated with the tested solutions for (6 and 24h). Cells viability was measured by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cytotoxicity data were analysed by one-way ANOVA and Tukey post hoc tests (pcytotoxicity inhibition. NPSH were effective to inhibit dentinal MMPs and HEMA cytotoxicity. The tested properties of NPSH provide promising clinical use of these agents which would enhance dentine-bond durability and decrease post-operative sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties.

    Science.gov (United States)

    Sun, Jianyun; Cui, Jin; Luo, Chunling; Gao, Lu; Chen, Yahua; Shen, Zhenguo

    2013-02-01

    To study possible cadmium (Cd) resistance mechanisms in cabbage (Brassica oleracea L.), several parameters of metal uptake, distribution, and complexation were compared between two varieties Chunfeng [CF (Cd-tolerant)] and Lvfeng [LF (Cd-sensitive)]. Results showed that CF contained significantly lower Cd concentrations in leaves and higher Cd concentrations in roots than LF. Approximately 70 to 74 % and 66 to 68 % of Cd taken up by LF and CF, respectively, was transported to shoots. More Cd was bound to the cell walls of leaves, stems, and roots in CF than in LF. The higher capacity of CF to limit Cd uptake into shoots could be explained by immobilization of Cd in root cell walls. Compared with control groups, Cd treatment also significantly increased concentrations of nonprotein thiols, phytochelatins (PCs), and citric acid in the leaves and roots of the two varieties; the increases were more pronounced in CF than in LF. Taken together, the results suggest that the greater Cd resistance in CF than in LF may be attributable to the greater capacity of CF to limit Cd uptake into shoots and complex Cd in cell walls and metal binding ligands, such as PCs and citric acid. However, the contributions of PCs and citric acid to Cd detoxification might be smaller than those in cell walls.

  3. Changes in protein and nonprotein thiol contents in bladder, kidney and liver of mice by the pesticide sodium-o-phenylphenol and their possible role in cellular toxicity.

    Science.gov (United States)

    Narayan, S; Roy, D

    1992-02-01

    Acute treatment of mice with Na-o-phenylphenol or phenylbenzoquinone, an electrophilic metabolite of o-phenylphenol, resulted in differential depletion of contents of protein and nonprotein thiols in bladder, kidney and liver. Maximum decrease in the levels of protein and nonprotein reduced thiols was observed in bladder (by both agents) and was followed by kidney (by both agents) and liver (phenylbenzoquinone only). The reason for this differential changes in reduced thiol contents remains to be understood. The content of protein and nonprotein disulfides was higher in bladder of mice treated with Na-o-phenylphenol compared to that observed in untreated mice bladder. Phenyl 2,5'-p-benzoquinone mediated in vivo depletion of nonprotein and protein thiols suggests that Na-o-phenylphenol treatment may decrease in vivo thiols via the formation of phenylbenzoquinone. Increased disulfide formation is considered to represent an index of oxidative stress produced by chemical. Increases in the level of protein and nonprotein disulfides in bladder suggest as observed in this study that administration of Na-o-phenylphenol to mice produced oxidative stress in bladder. Products of redox cycling of xenobiotics are known to cause cellular toxicity via altering the homeostasis of thiol status. Therefore, it is concluded that decreases in protein thiol contents either via alkylation and/or oxidation of sulfhydryl groups of proteins and increases in disulfide contents presumably by products of redox cycling of Na-o-phenylphenol may play a role in Na-o-phenylphenol-induced cellular toxicity.

  4. Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids.

    Science.gov (United States)

    Gao, Lu; Peng, Kejian; Xia, Yan; Wang, Guiping; Niu, Liyuan; Lian, Chunlan; Shen, Zhenguo

    2013-01-01

    Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g(-1) dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn.

  5. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    Science.gov (United States)

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance.

  6. HPLC analysis of nonprotein thiols in planktonic diatoms: Pool size, redox state and response to copper and cadmium exposure

    NARCIS (Netherlands)

    Rijstenbil, J.W.; Wijnholds, J.A.

    1996-01-01

    A sensitive method was developed to analyze low molecular weight thiols involved in metal homeostasis and detoxification in phytoplankton. The aims of this study were to (1) separate and measure all relevant thiols in a single HPLC run; (2) measure redox states of the thiols and (3) identify specifi

  7. Effects of cadmium, zinc and nitrogen status on nonprotein thiols in the macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (Greece, N Aegean Sea)

    NARCIS (Netherlands)

    Malea, P.; Rijstenbil, J.W.; Haritonidis, S.

    2006-01-01

    Enteromorpha prolifera (Scheldt Estuary) and E. linza (Thermaikos Gulf) were incubated at three salinities with 100 and 200 µg L-1Cd and Zn. The objective was to measure effects of Cd, Zn and nitrogen (N) status on the pools of metal-binding non-protein thiols: glutathione and phytochelatins, (?-glu

  8. Inlet Cover Treatment to Enhance Zero NPSH Inducer Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Zero net positive suction head (NPSH)-capable hydrogen pump inducers are a critical component needed to lower the cost and increase the effectiveness of Nuclear...

  9. Cd胁迫下马蔺根和叶中非蛋白巯基肽含量的变化%The change of non-protein thiol content in roots and leaves of Iris lactea var. chinensis under Cd stress

    Institute of Scientific and Technical Information of China (English)

    原海燕; 黄钢; 佟海英; 黄苏珍

    2013-01-01

    The effects of cadmium (Cd) stress and exogenous GSH (Glutathione) and BSO [L-buthione (S, R) sulfoximine] application on dry biomass, Cd content and the contents of NPT (total non-protein thiol), GSH and other non-protein thiol [PC (phytochelatin), Cys (cystic), etc.] in roots and leaves of Iris lactea var. chinensis were studied by hydroponic culture method. The results showed that the massive accumulation of Cd significantly inhibited the growth of root in Iris lactea var. chinensis, but aboveground Cd content and dry biomass of root of Iris lactea var. chinensis increased in degrees when adding 100 mg·L-1 GSH (PC synthetic substrate) and BSO (PC synthesis inhibitor) to the same Cd solution. The detection results of non-protein thiol peptide content in roots and leaves showed that the GSH and BSO application had no significant impact on NPT content in Iris lactea var. chinensis under Cd stress, but a certain impact on the distribution of NPT, GSH and other non-protein thiol compounds in shoots and roots. The NPT content in the shoot of Iris lactea var. chinensis increased under adding GSH in Cd solution, while NPT content in the root increased when adding BSO to Cd solution. The exogenous GSH application promoted the synthesis of GSH and increased by 13.1% in shoot of Iris lactea var. chinensis, also increased the contents of other non-protein thiol compounds. However, exogenous BSO application inhibited the synthesis of GSH and decreased by 7.1%, also decreased the contents of other non-protein thiol compounds. The GSH contents in roots increased significantly and mainly located in root of Iris lactea var. chinensis when GSH and BSO application to the Cd solution. Furthermore, the root GSH contents were about 3.4 times higher than which in the shoot of Iris lactea var. chinensis when adding 100 mg·L-1 BSO in Cd solution, but the contents of other non-protein thiol compounds in shoots and roots decreased in the same time. Therefore, through a comprehensive

  10. Effects of Exogenous Glutathione on Pb Accumulation and Non-protein Thiol Content in Iris Lactea var.chinensis Under Pb Stress%Pb胁迫下外源GSH对马蔺体内Pb积累和非蛋白巯基化合物含量的影响

    Institute of Scientific and Technical Information of China (English)

    原海燕; 郭智; 佟海英; 黄苏珍

    2013-01-01

    采用溶液培养研究Pb胁迫以及Pb胁迫下添加外源谷胱甘肽(GSH)和丁胱亚磺酰胺(BSO)对马蔺根和叶干质量、Pb含量以及非蛋白巯基总肽(NPT)、谷胱甘肽(GSH)和其他非蛋白巯基化合物(植物螯合肽(PC)、半胱氨酸(Cys))含量的影响.结果表明,300 mg/L高浓度Pb胁迫下马蔺根系内Pb的大量积累显著抑制马蔺根系的生长,但同浓度Pb胁迫下添加100 mg/L GSH后马蔺体内Pb含量和干质量均不同程度增加,尤其是地上部,地上部干质量比300 mg/L单独Pb胁迫下马蔺根系干质量增加20.5%,接近于对照水平.而300 mg/L的Pb胁迫下添加100 mg/L BSO(GSH和PC合成抑制剂)后马蔺根系和地上部干质量均不同程度下降,根系降幅较大.根和叶中非蛋白巯基化合物含量检测显示,与单独Pb胁迫相比,Pb胁迫下添加GSH后马蔺根系和地上部NPT、GSH和其他非蛋白巯基化合物含量均呈增加的趋势;而Pb胁迫下添加BSO后除马蔺地上部其他非蛋白巯基化合物含量略有增加外,马蔺根系和地上部NPT、GSH和其他非蛋白巯基化合物含量较单一Pb胁迫下均出现不同程度下降,尤其根系内GSH含量降幅最大.综合分析Pb胁迫下添加外源GSH和BSO后马蔺干质量、Pb含量以及不同非蛋白巯基化合物含量的变化及关系,表明Pb胁迫下添加BSO后马蔺生物量的下降可能与非蛋白巯基化合物合成受抑尤其是GSH的合成降低有关.因此,Pb胁迫下GSH在马蔺Pb吸收转运和解毒中具有更重要的作用.%The effects of lead(Pb) stress and adding exogenous glutathione(GSH) and L-buthione(S,R)sulfoximine(BSO) on dry biomass,Pb content and the contents of total non-protein thiol(NPT),GSH and other non-protein thiol such as phytochelatin(PC) and cysteine(Cys) in roots and leaves of Iris lactea var.chinensis were studied by hydroponic culture.The results showed that the massive accumulation of Pb significantly inhibited the growth of root in

  11. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  12. Effects of Cd-spiking Treatment on Cd Accumulation, Subcellular Distribution and Content of Nonprotein Thiols in Rice%外加镉对水稻镉吸收、亚细胞分布及非蛋白巯基含量的影响

    Institute of Scientific and Technical Information of China (English)

    史静; 潘根兴

    2015-01-01

    staple crops, rice (Oryza sativa L.) is the particular food crop with high Cd uptake and accumulation in grains. There had been much evidences of differences in Cd accumulation in plants and plant tolerance to between rice species and genotypes. Meanwhile, Cd tolerance and low Cd accumulation in grains may be used as a strategy for low Cd rice production. However, the mechanisms involved in Cd tolerance and grain accumulation has been not clearly demonstrated. Studying cadmium absorption characteristics under different rice varieties with Cd contaminated soil, the detoxification mechanism of PCs (mainly Non-protein thiol) and from micro level explore the distribution of cadmium subcellular. Its has huge significance to understand the resistance mechanism of Cd in different rice genotypes. In an effort to understand the biological process of Cd bioaccumulation, a pot experiments with subcelluar fractionation were carried out to investigate the subcelluar distribution of Cd in roots and leaves of rice. Two rice cultivars, Zhongzheyou-1, a high grain Cd accumulation cultivar, and J196, a low Cd accumulating cultivar, were grown in red soils. The experiment was conducted to study the effect of Cd-spiking treatment on Cd content, nonprotein thiols (NPT) production and its subcellular distribution in rice. The results showed that Cd stress had significant inhibitory effects on NPT overproduction. The Cd uptake of rice was affected by the Cd-spiking treatment and the genotypes. Furthermore, the Cd content was enhanced with increasing Cd supply, coinciding with the enhancement of NPT level in root. Compared the two varieties, when soil without Cd. The ratio of J196 aboveground Cd content/root Cd content is higher than Zhong-Zhe Optimal number 1;when the soil Cd content was 5 mg·kg-1, the amount of root A transform Cd to aboveground is far more than C, respectively 25.7% and 7.4%; but when the soil Cd content was 25 mg·kg-1, there was no significant difference between the two

  13. Retrotransposons and non-protein coding RNAs

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2009-01-01

    does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review...

  14. Neutron-gamma irradiation and protein thiols: development of a protein thiol evaluation micro-method and application to irradiated baboons; Irradiation neutron-gamma et groupements thiols proteiques: developpement d`une micromethode d`evaluation des thiols proteiques et application au babouin irradie

    Energy Technology Data Exchange (ETDEWEB)

    Chancerelle, Y.; Lafond, J.L.; Della-Maura, L.; Faure, P.; Mathieu, J.; Costa, P.; Mestries, J.C.; Kergonou, J.F.

    1994-12-31

    The essential non-protein sulfhydryl compound implicated in cellular radioprotection is glutathione. Protein thiols seem to be also involved in this protection and might be scavengers for free radical injury. We developed an analytical procedure for protein thiols measurement and we applied this method in neutron-gamma irradiated baboons. Our results demonstrated the reliability and sensitivity of the procedure. They also a drastic decrease of in vivo protein thiols after irradiation. (author). 5 refs.

  15. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.

    Science.gov (United States)

    Summa, Domenico; Spiga, Ottavia; Bernini, Andrea; Venditti, Vincenzo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Niccolai, Neri; Di Simplicio, Paolo

    2007-11-01

    Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSHAlb-SS-R+XSH) or dethiolation (Alb-SS-X+XSHAlb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.

  16. A Central Role for Thiols in Plant Tolerance to Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Lyuben Zagorchev

    2013-04-01

    Full Text Available Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.

  17. Non-protein amino acids in peptide design

    Indian Academy of Sciences (India)

    S Aravinda; N Shamala; Rituparna S Roy; P Balaram

    2003-10-01

    An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the use -aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments and DPro-Xxx segments for nucleating of -hairpin structures. - and -amino acid residues have been used to expand the range of designed polypeptide structures.

  18. Effects of simultaneous expression of heterologous genes involved in phytochelatin biosynthesis on thiol content and cadmium accumulation in tobacco plants.

    Science.gov (United States)

    Wawrzynski, Adam; Kopera, Edyta; Wawrzynska, Anna; Kaminska, Jolanta; Bal, Wojciech; Sirko, Agnieszka

    2006-01-01

    Transgenic tobacco (Nicotiana tabacum cv. LA Burley 21) lines expressing three genes encoding enzymes thought to be critical for the efficient production of phytochelatins, (i) serine acetyltransferase (EC 2.3.1.30) involved in the production of O-acetylserine, the cysteine precursor, (ii) gamma-glutamylcysteine synthetase (EC 6.3.2.2) involved in the production of gamma-glutamylcysteine, the precursor of glutathione, and (iii) phytochelatin synthase (EC 2.3.2.15), were obtained and analysed for non-protein thiol content and cadmium accumulation. After a 3 week exposure to 15 microM CdCl2, plants expressing transgenes (either separately or in combination) had increased cadmium concentration in roots but not in shoots compared with the wild type. Nearly all transgenic lines analysed had more non-protein thiols than the wild type. The greatest effects (about 8-fold elevation of thiols) were found in one of the lines simultaneously expressing the three transgenes. Despite the fact that a multi-transgene strategy described in this work resulted in a strong increase in the levels of several classes of non-protein thiols in transgenic plants, other factors appeared to restrict cadmium accumulation in shoots.

  19. Thiol biochemistry of prokaryotes

    Science.gov (United States)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  20. Protein and non-protein sulfhydryls and disulfides in gastric mucosa and liver after gastrotoxic chemicals and sucralfate: Possible new targets of pharmacologic agents

    Institute of Scientific and Technical Information of China (English)

    Lajos Nagy; Miki Nagata; Sandor Szabo

    2007-01-01

    AIM: To investigate the role of major non-protein and protein sulfhydryls and disulfides in chemically induced gastric hemorrhagic mucosal lesions (HML) and the mechanism of gastroprotective effect of sucralfate.METHODS: Rats were given 1 mL of 75% ethanol, 25%NaCl, 0.6 mol/L HCI, 0.2 mol/L NaOH or 1% ammonia solutions intragastrically (i.g.) and sacrificed 1, 3, 6 or 12 min later. Total (reduced and oxidized) glutathione (GSH + GSSG), glutathione disulfide (GSSG), protein free sulfhydryls (PSH), protein-glutathione mixed disulfides (PSSG) and protein cystine disulfides (PSSP) were measured in gastric mucosa and liver.RESULTS: Reduced glutathione (GSH) was depleted in the gastric mucosa after ethanol, HCI or NaCl exposure,while oxidized glutathione (GSSG) concentrations increased, except by HCI and NaOH exposure. Decreased levels of PSH after exposure to ethanol were observed,NaCl or NaOH while the total protein disulfides were increased. Ratios of reduced to oxidized glutathione or sulfhydrils to disulfides were decreased by all chemicals.No changes in thiol homeostasis were detected in the liver after i.g. abbreviation should be spelled out the first time here administration of ethanol. Sucralfate increased the concentrations of GSH and PSH and prevented the ethanol-induced changes in gastric mucosal thiol concentrations.CONCLUSION: Our modified methods are now suitable for direct measurements of major protein and nonprotein thiols/disulfides in the gastric mucosa or liver.A common element in the pathogenesis of chemically induced HML and in the mechanism of gastroprotective drugs seems to be the decreased ratios of reduced and oxidized glutathione as well as protein sulfhydryls and disulfides.

  1. Click-EM for imaging metabolically tagged nonprotein biomolecules.

    Science.gov (United States)

    Ngo, John T; Adams, Stephen R; Deerinck, Thomas J; Boassa, Daniela; Rodriguez-Rivera, Frances; Palida, Sakina F; Bertozzi, Carolyn R; Ellisman, Mark H; Tsien, Roger Y

    2016-06-01

    EM has long been the main technique for imaging cell structures with nanometer resolution but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce click-EM, a labeling technique for correlative light microscopy and EM imaging of nonprotein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal 'click chemistry' ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of click-EM in imaging metabolically tagged DNA, RNA and lipids in cultured cells and neurons and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes.

  2. Osmolality of preterm formulas supplemented with nonprotein energy supplements.

    Science.gov (United States)

    Pereira-da-Silva, L; Dias, M Pitta-Grós; Virella, D; Moreira, A C; Serelha, M

    2008-02-01

    Addition of energy supplements to preterm formulas is an optional strategy to increase the energy intake in infants requiring fluid restriction, in conditions like bronchopulmonary dysplasia. This strategy may lead to an undesirable increase in osmolality of feeds, the maximum recommended safe limit being 400 mOsm/kg. The aim of the study was to measure the changes in osmolality of several commercialized preterm formulas after addition of glucose polymers and medium-chain triglycerides. Osmolality was measured by the freezing point depression method. Six powdered formulas with concentrations of 14 g/100 ml and 16 g/100 ml, and five ready-to-feed liquid formulas were analyzed. All formulas, were supplemented with 10% (low supplementation) or 20% (high supplementation) of additional calories, respectively, in the form of glucose polymers and medium chain triglycerides, maintaining a 1:1 glucose:lipid calorie ratio. Inter-analysis and intra-analysis coefficients of variation of the measurements were always supplemented formulas varied between 268.5 and 315.3 mOsm/kg, increasing by 3-5% in low supplemented formulas, and by 6-10% in high supplemented formulas. None of the formulas analyzed exceeded 352.8 mOsm/kg. The supplementation of preterm formulas with nonprotein energy supplements with up to 20% additional calories did not exceed the maximum recommended osmolality for neonatal feedings.

  3. Electroanalysis of Plant Thiols

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-06-01

    Full Text Available Due to unique physico-chemical properties of –SH moiety thiols comprise widegroup of biologically important compounds. A review devoted to biological functions ofglutathione and phytochelatins with literature survey of methods used to analysis of thesecompounds and their interactions with cadmium(II ions and Murashige-Skoog medium ispresented. For these purposes electrochemical techniques are used. Moreover, we revealedthe effect of three different cadmium concentrations (0, 10 and 100 μM on cadmiumuptake and thiols content in maize plants during 192 hours long experiments usingdifferential pulse anodic stripping voltammetry to detect cadmium(II ions and highperformance liquid chromatography with electrochemical detection to determineglutathione. Cadmium concentration determined in tissues of the plants cultivated innutrient solution containing 10 μM Cd was very low up to 96 hours long exposition andthen the concentration of Cd markedly increased. On the contrary, the addition of 100 μMCd caused an immediate sharp increase in all maize plant parts to 96 hours Cd expositionbut subsequently the Cd concentration increased more slowly. A high performance liquidchromatography with electrochemical detection was used for glutathione determination intreated maize plants after 96 and 192 hours of treatment. The highest total content of glutathione per one plant was 6 μg (96 h, 10 μM Cd in comparison with non-treated plant (control where glutathione content was 1.5 μg. It can be concluded that electrochemical techniques have proved to be useful to analyse plant thiols.

  4. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium: subcellular distribution, chemical forms and thiol pools.

    Science.gov (United States)

    Weng, Bosen; Xie, Xiangyu; Weiss, Dominik J; Liu, Jingchun; Lu, Haoliang; Yan, Chongling

    2012-11-01

    In order to explore the detoxification mechanisms adopted by mangrove under cadmium (Cd) stress, we investigated the subcellular distribution and chemical forms of Cd, in addition to the change of the thiol pools in Kandelia obovata (S., L.) Yong, which were cultivated in sandy culture medium treated with sequential Cd solution. We found that Cd addition caused a proportional increase of Cd in the organs of K. obovata. The investigation of subcellular distribution verified that most of the Cd was localized in the cell wall, and the lowest was in the membrane. Results showed sodium chloride and acetic acid extractable Cd fractions were dominant. The contents of non-protein thiol compounds, Glutathione and phytochelatins in K. obovata were enhanced by the increasing strength of Cd treatment. Therefore, K. obovata can be defined as Cd tolerant plant, which base on cell wall compartmentalization, as well as protein and organic acids combination.

  5. Iron-induced oxidative stress in a macrophyte: a chemometric approach.

    Science.gov (United States)

    Sinha, Sarita; Basant, Ankita; Malik, Amrita; Singh, Kunwar P

    2009-02-01

    Iron-induced oxidative stress in plants of Bacopa monnieri L., a macrophyte with medicinal value, was investigated using the chemometric approach. Cluster analysis (CA) rendered two distinct clusters of roots and shoots. Discriminant analysis (DA) identified discriminating variables (NP-SH and APX) between the root and shoot tissues. Principal component analysis (PCA) results suggested that protein, superoxide dismutase (SOD), ascorbic acid, proline, and Fe uptake are dominant in root tissues, whereas malondialdehyde (MDA), guaiacol peroxidase (POD), cysteine, and non-protein thiol (NP-SH) in shoot of the stress plant. Discriminant partial-least squares (DPLS) results further confirmed that SOD and ascorbic acid contents dominated in root tissues, while NP-SH, cysteine, POD, ascorbate peroxidase (APX), and MDA in shoot. MDA and NP-SH were identified as most pronounced variables in plant during the highest exposure time. The chemometric approach allowed for the interpretation of the induced biochemical changes in plant tissues exposed to iron.

  6. Crude Protein and Non-protein Nitrogen Content in Dairy Cow Milk

    Directory of Open Access Journals (Sweden)

    Ruska Diana

    2014-12-01

    Full Text Available Milk composition is of prime economic importance for farmers. Milk total proteins are composed of casein, whey proteins and non-protein nitrogen. The objective of this work was to establish milk crude protein, non-protein nitrogen (NPN and urea content in dairy cow milk produced in different farms in Latvia. Cow milk samples (n=30 were collected in September 2012 from four different farms breeding diverse cow breeds. Average crude protein, casein and urea content in milk varied significantly among farms. NPN content in cow milk varies among farms - from 0.194% to 0.232%. Average crude protein and casein content was significantly higher (p<0.05 for Latvia Brown breed cows, while NPN content did not differ significantly among breeds. Regression between NPN and urea content in milk was R² = 0.458. Correlation between NPN and urea content was significant (r = 0.677. This study allowed establishing that crude protein and NPN content in milk varied significantly (p<0.05 in farms with differing dairy cow housing and feeding technologies

  7. [Simultaneous determination of four common nonprotein nitrogen substances in urine by high performance liquid chromatography].

    Science.gov (United States)

    Ma, Yuhua; Huang, Dongqun; Zhang, Rui; Xu, Shiru; Feng, Shun

    2013-11-01

    A high performance liquid chromatographic (HPLC) method was proposed to simultaneously determine four common nonprotein nitrogen substances, including creatine (Cr), creatinine (Cn), uric acid (Ua) and pseudouridine (Pu) in urine. After proteins being removed by acetone precipitation method, freeze drying and redissolving, the urine samples were analyzed by HPLC. Chromatographic separation was performed on a Waters RP18 Column (150 mm x 4.60 mm, 3.5 microm) in gradient elution mode using 10.0 mmol/L KH2PO4 solution (pH 4.78) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The samples were detected at 220 nm. Rapid separation was achieved within 7 min. Under the optimized conditions, good linearities of four common nonprotein nitrogen substances were obtained in the range of 0.1-250 mg/L. The detection limits were 9.31 (Cr), 26.19 (Cn), 4.70 (Ua), an 6.30 (Pu) microg/L and the recoveries were in the range of 81%-111% with the relative standar deviations of 0.23%-2.78% (n = 3). The results demonstrate that this method is simple, rapid and accurate with good reproducibility, and can provide early diagnosis and preliminary judgment for type 2 diabetes mellitus (T2DM) patients with renal damage.

  8. Identification of β-phenylalanine as a non-protein amino acid in cultivated rice, Oryza sativa.

    Science.gov (United States)

    Yokoo, Takayuki; Takata, Ryo; Yan, Jian; Matsumoto, Fuka; Teraishi, Masayoshi; Okumoto, Yutaka; Jander, Georg; Mori, Naoki

    2015-01-01

    Non-protein amino acids, often analogs of the standard 20 protein amino acids, have been discovered in many plant species. Recent research with cultivated rice (Oryza sativa) identified (3R)-β-tyrosine, as well as a tyrosine amino mutase that synthesizes (3R)-β-tyrosine from the protein amino acid (2S)-α-tyrosine. Gas chromatography-mass spectrometry (GC-MS) assays and comparison to an authentic standard showed that β-phenylalanine is also a relatively abundant non-protein amino acid in rice leaves and that its biosynthesis occurs independently from that of β-tyrosine.

  9. Thiol/disulfide homeostasis in asphalt workers.

    Science.gov (United States)

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric

    2016-09-02

    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  10. PENGARUH FRAKSI NONPROTEIN KACANG KOMAK (Lablab purpureus (L. Sweet TERHADAP KADAR GLUKOSA DARAH DAN MALONALDEHIDA TIKUS DIABETES [Effect of Nonprotein Fraction of Hyacinth Bean (Lablab purpureus (L. Sweet Diet on Glucose and Malonaldehyde Serum of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Erma Rohmawati

    2010-06-01

    Full Text Available The hypoglycemic response to Lablab nonprotein fraction (NPK was evaluated in alloxan-induced diabetic rats. The objectives of this research were to evaluate the effect of Lablab nonprotein fraction diet on the blood glucose concentration and the lipid peroxide level of alloxan-induced diabetic rats. Two months old male Sprague Dawley rats were divided into 4 groups, each group contained of 5 rats. Three groups were diabetic rats induced by alloxan injection (110 mg/kg of body weight by intra-pheritonial injection while one group was a control,normal rat. The experiment groups were (1 normal (group I, (2 diabetic (group II, (3 diabetic+cholesteol 0.5% (control group, group III, and (4 diabetic+cholesterol 0.5% + lablab NPK (group IV. The concentration of rat’s blood glucose were periodically measured during diet intervenion (day 0,14,27, and 42. The Lipid peroxide was evaluated as the concentration of malonaldehyde (MDA both in serum and liver of the rats by Thiobarbituric Acid Reactivity Test methode. The result demonstrated that after 42 days of intervention, the Lablab nonprotein diet decreased the blood glucose concentrations from 444.00 + 143.00 mg/dl to 310.50 +111.40 mg/dl (30%, while control group has decreased the blood glucose concentration from 458.00 +164.99 mg/dl to 455.33 + 81.95 mg/dl (0.6%. Lablab nonprotein diet significantly (P<0.05 reduced the concentration of blood glucose as compared to the control group. However, Lablab nonprotein fraction diet did not give a significant diferrence on the level of serum MDA and liver MDA as compared to the control group.

  11. Comparison of methods for determination of testosterone and non-protein bound testosterone in men with alcoholic liver disease

    DEFF Research Database (Denmark)

    Gluud, C; Bennett, Patrick

    1986-01-01

    The serum concentrations of testosterone and of non-protein bound testosterone were determined in 28 men with alcoholic liver disease having normal to decreased serum albumin concentrations and normal to raised SHBG concentrations. Serum testosterone concentrations determined with two radioimmuno...

  12. 100% thiol-functionalized ethylene PMOs prepared by "thiol acid-ene" chemistry.

    Science.gov (United States)

    Esquivel, Dolores; van den Berg, Otto; Romero-Salguero, Francisco J; Du Prez, Filip; Van der Voort, Pascal

    2013-03-21

    A novel thiol functionalized bis-silane PMO precursor was synthesized by highly efficient thiol acid-ene chemistry between the double bonds of 1,2-(E)-bis(triethoxysilyl)ethene and thioacetic acid. After aminolysis the self-assembly process of the formed SH-precursor with Pluronic P123 under acidic conditions yields the first 100% thiol-PMO material with good structural ordering.

  13. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion...... to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented...... for the involvement of sulfenyl chlorides (RSCl) in the formation of these radicals, and studies with an authentic sulfenyl chloride have demonstrated that this compound readily decomposes in thermal-, metal-ion- or light-catalysed reactions to give thiyl radicals. The formation of thiyl radicals on oxidation...

  14. Nucleophilic Addition of Thiols to Deoxynivalenol.

    Science.gov (United States)

    Stanic, Ana; Uhlig, Silvio; Solhaug, Anita; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2015-09-02

    Conjugation of deoxynivalenol (DON) with sulfur compounds is recognized as a significant reaction pathway, and putative DON-glutathione (DON-GSH) conjugates have been reported in planta. To understand and control the reaction of trichothecenes with biologically important thiols, we studied the reaction of DON, T-2 tetraol, and de-epoxy-DON with a range of model thiols. Reaction conditions were optimized for DON with 2-mercaptoethanol. Major reaction products were identified using HRMS and NMR spectroscopy. The results indicate that thiols react reversibly with the double bond (Michael addition) and irreversibly with the epoxide group in trichothecenes. These reactions occurred at different rates, and multiple isomers were produced including diconjugated forms. LC-MS analyses indicated that glutathione and cysteine reacted with DON in a similar manner to the model thiols. In contrast to DON, none of the tested mercaptoethanol adducts displayed toxicity in human monocytes or induced pro-inflammatory cytokines in human macrophages.

  15. Evolution of thiol protective systems in prokaryotes

    Science.gov (United States)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  16. Osmolality of elemental and semi-elemental formulas supplemented with nonprotein energy supplements.

    Science.gov (United States)

    Pereira-da-Silva, L; Pitta-Grós Dias, M; Virella, D; Serelha, M

    2008-12-01

    Elemental and semi-elemental formulas are used to feed infants with short bowel syndrome, who may not be able to tolerate feeds of more than 310 mOsm kg(-1). The present study aimed to measure the osmolality of elemental and semi-elemental formulas at different concentrations, with and without the addition of nonprotein energy supplements. The osmolality of one elemental and three semi-elemental formulas was measured by the freezing point depression method at concentrations of 10, 12, 14 and 16 g per 100 mL, with and without 10% or 20% of additional calories, in the form of glucose polymers and medium chain triglycerides. Inter-analysis and intra-analysis coefficients of variation of the measurements were less than 3.9%. The mean osmolalities of formulas reconstituted up to 12 g per 100 mL did not exceed 305.3 mOsm kg(-1), even with added energy supplements. The mean osmolalities of formulas at 14 and 16 g per 100 mL, with or without added energy supplements varied between 205.8 and 421.6 mOsm kg(-1). A comprehensive list of elemental and semi-elemental formulas at different concentrations, enriched or not with calories, is made available. This will enable professionals to customize feeds with the optimum composition, without exceeding the osmolality suggested for infants with short bowel syndrome.

  17. Influence of dietary carnitine in growing sheep fed diets containing non-protein nitrogen.

    Science.gov (United States)

    Chapa, A M.; Fernandez, J M.; White, T W.; Bunting, L D.; Gentry, L R.; Lovejoy, J C.; Owen, K Q.

    2001-04-01

    The influence of supplemental L-carnitine was investigated in growing sheep fed rations containing non-protein nitrogen (NPN). The experiment was conducted as a randomized block design with a 2x2 factorial arrangement of treatments. Lambs (77.4kg BW, n=24) were fed a total mixed ration (12.1-13.6% CP) with two levels of L-carnitine (0 or 250ppm) and two levels of NPN (urea contributing 0 or 50% of total dietary N) for a 50-day period. Jugular blood samples were collected at 0, 1, and 3h post-feeding, and ruminal fluid samples were collected at 1h post-feeding, during days 1, 8, 29, and 50 of the experiment. Average daily gain (121 versus 214g) was lower (P0.10) from the control group. Plasma urea N levels in both OULT 1 and OULT 2 were lower (P<0.0001) in the NPN and NPN with L-carnitine groups compared with the control and L-carnitine groups. In the present experiment, production and plasma criteria were affected by NPN incorporation in the diets. Production criteria were not affected by inclusion of L-carnitine in the diet, however, L-carnitine reduced experimentally induced hyperammonemia by day 50 of the trial.

  18. Naming 'junk': Human non-protein coding RNA (ncRNA gene nomenclature

    Directory of Open Access Journals (Sweden)

    Wright Mathew W

    2011-01-01

    Full Text Available Abstract Previously, the majority of the human genome was thought to be 'junk' DNA with no functional purpose. Over the past decade, the field of RNA research has rapidly expanded, with a concomitant increase in the number of non-protein coding RNA (ncRNA genes identified in this 'junk'. Many of the encoded ncRNAs have already been shown to be essential for a variety of vital functions, and this wealth of annotated human ncRNAs requires standardised naming in order to aid effective communication. The HUGO Gene Nomenclature Committee (HGNC is the only organisation authorised to assign standardised nomenclature to human genes. Of the 30,000 approved gene symbols currently listed in the HGNC database (http://www.genenames.org/search, the majority represent protein-coding genes; however, they also include pseudogenes, phenotypic loci and some genomic features. In recent years the list has also increased to include almost 3,000 named human ncRNA genes. HGNC is actively engaging with the RNA research community in order to provide unique symbols and names for each sequence that encodes an ncRNA. Most of the classical small ncRNA genes have now been provided with a unique nomenclature, and work on naming the long (> 200 nucleotides non-coding RNAs (lncRNAs is ongoing.

  19. Thiol-based redox switches in prokaryotes.

    Science.gov (United States)

    Hillion, Melanie; Antelmann, Haike

    2015-05-01

    Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.

  20. Contribution of exopeptidases to formation of nonprotein nitrogen during ensiling of alfalfa.

    Science.gov (United States)

    Tao, L; Zhou, H; Guo, X S; Long, R J; Zhu, Y; Cheng, W

    2011-08-01

    The experiment was conducted to investigate the exopeptidase classes in alfalfa (Medicago sativa L.) leaves, and to determine their contribution to the formation of nonprotein nitrogen (NPN) components during ensiling. Six classes of inhibitors that included bestatin (aminopeptidase inhibitor), potato carboxypeptidase inhibitor (PCI, carboxypeptidase inhibitor), 1,10-phenanthroline (dipeptidase inhibitor), diprotin A (dipeptidyl-peptidase inhibitor), butabindide (tripeptidyl-peptidase inhibitor), and dipeptide Phe-Arg (peptidyl-dipeptidase inhibitor) were used. To determine the contribution of each exopeptidase to the formation of NPN products, aqueous extracts of fresh alfalfa were fermented to imitate the proteolytic process of ensiled alfalfa and to ensure that each class of exopeptidase inhibitor would have immediate contact with the proteases in the alfalfa extract. Five classes of exopeptidases; namely, aminopeptidase, carboxypeptidase, dipeptidase, dipeptidyl-peptidase, and tripeptidyl-peptidase, were shown to be present in alfalfa leaves, each playing a different role in alfalfa protein degradation. Aminopeptidase, carboxypeptidase, and dipeptidase were the main exopeptidases contributing to the formation of NH(3)-N. Among the 5 exopeptidases, tripeptidyl-peptidase appeared to be the principal exopeptidase in hydrolyzing forage protein into peptides, whereas carboxypeptidase and dipeptidase appeared to be more important in contributing to the formation of amino acid-N. Dipeptidyl-peptidase and tripeptidyl-peptidase did not play a role in the formation of NH(3)-N or amino acid-N. Dipeptidase, carboxypeptidase, and tripeptidyl-peptidase were the principal exopeptidases for hydrolyzing forage protein into NPN during ensilage, and treatment with a mixture of the 5 inhibitors reduced the total NPN concentration in the fermented alfalfa extract to about 45% of that in the control after 21 d of fermentation. Copyright © 2011 American Dairy Science Association

  1. Knockdown of BACE1-AS Nonprotein-Coding Transcript Modulates Beta-Amyloid-Related Hippocampal Neurogenesis

    Directory of Open Access Journals (Sweden)

    Farzaneh Modarresi

    2011-01-01

    Full Text Available Background. Alzheimer's disease (AD is a devastating neurological disorder and the main cause of dementia in the elderly population worldwide. Adult neurogenesis appears to be upregulated very early in AD pathogenesis in response to some specific aggregates of beta-amyloid (Aβ peptides, exhausting the neuronal stem cell pools in the brain. Previously, we characterized a conserved nonprotein-coding antisense transcript for β-secretase-1 (BACE1, a critical enzyme in AD pathophysiology. We showed that the BACE1-antisense transcript (BACE1-AS is markedly upregulated in brain samples from AD patients and promotes the stability of the (sense BACE1 transcript. In the current paper, we examine the relationship between BACE1, BACE1-AS, adult neurogenesis markers, and amyloid plaque formation in amyloid precursor protein (APP transgenic mice (Tg-19959 of various ages. Results. Consistent with previous publications in other APP overexpressing mouse models, we found adult neurogenesis markers to be noticeably upregulated in Tg-19959 mice very early in the development of the disease. Knockdown of either one of BACE1 or BACE1-AS transcripts by continuous infusion of locked nucleic acid- (LNA- modified siRNAs into the third ventricle over the period of two weeks caused concordant downregulation of both transcripts in Tg-19959 mice. Downregulation of BACE1 mRNA was followed by reduction of BACE1 protein and insoluble Aβ. Modulation of BACE1 and BACE1-AS transcripts also altered oligomeric Aβ aggregation pattern, which was in turn associated with an increase in neurogenesis markers at the RNA and protein level. Conclusion. We found alterations in the RNA and protein concentrations of several adult neurogenesis markers, as well as non-protein-coding BACE1-AS transcripts, in parallel with the course of β-amyloid synthesis and aggregation in the brain of Tg15999 mice. In addition, by knocking down BACE1 or BACE1-AS (thereby reducing Aβ production and plaque

  2. Total Thiols: Biomedical Importance And Their Alteration In Various Disorders

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2009-09-01

    Full Text Available Thiols are the organic compounds that contain a sulphydryl group. Among all the antioxidants that are available in the body, thiols constitute the major portion of the total body antioxidants and they play a significant role in defense against reactive oxygen species. Total thiols composed of both intracellular and extracellular thiols either in the free form as oxidized or reduced glutathione, or thiols bound to proteins. Among the thiols that are bound to proteins, albumin makes the major portion of the protein bound thiols, which binds to sufhydryl group at its cysteine-34 portion. Apart from their role in defense against free radicals, thiols share significant role in detoxification, signal transduction, apoptosis and various other functions at molecular level. The thiol status in the body can be assessed easily by determining the serum levels of thiols. Decreased levels of thiols has been noted in various medical disorders including chronic renal failure and other disorders related to kidney, cardiovascular disorders, stroke and other neurological disorders, diabetes mellitus, alcoholic cirrhosis and various other disorders. Therapy using thiols has been under investigation for certain disorders.

  3. Fabrication and bonding of thiol-ene-based microfluidic devices

    DEFF Research Database (Denmark)

    Sikanen, Tiina M; Lafleur, Josiane P.; Moilanen, Maria-Elisa

    2013-01-01

    In this work, the bonding strength of microchips fabricated by thiol-ene free-radical polymerization was characterized in detail by varying the monomeric thiol/allyl composition from the stoichiometric ratio (1:1) up to 100% excess of thiol (2:1) or allyl (1:2) functional groups. Four different t...

  4. Distribution and abundance of organic thiols

    Science.gov (United States)

    Fahey, R.

    1985-01-01

    The role of glutathione (GSH) in protecting against the toxicity of oxygen and oxygen by products is well established for all eukaryotes studied except Entamoeba histolytica which lacks mitochrondria, chloroplasts, and microtubules. The GSH is not universal among prokaryotes. Entamoeba histolytica does not produce GSH or key enzymes of GSH metabolism. A general method of thiol analysis based upon fluorescent labeling with monobromobimane and HPLC separation of the resulting thiol derivatives was developed to determine the occurrence of GSH and other low molecular weight thiols in bacteria. Glutathione is the major thiol in cyanobacteria and in most bacteria closely related to the purple photosynthetic bacteria, but GSH was not found in archaebacteria, green bacteria, or GRAM positive bacteria. It suggested that glutathione metabolism was incorporated into eukaryotes at the time that mitochondria and chloroplasts were acquired by endosymbiosis. In Gram positive aerobes, coenzyme A occurs at millimolar levels and CoA disulfide reductases are identified. The CoA, rather than glutathione, may function in the oxygen detoxification processes of these organisms.

  5. Chiral thiols. Synthesis and enantiomeric excess determination

    NARCIS (Netherlands)

    Strijtveen, Bernardus Wilhelmus Maria

    1987-01-01

    Chiral thiols are a class of chira compounds, which is gaining mone and nore attention the last decenniun. Especially α-mercaptocarboxylic acids are frequently found as a structunal unit in (biologically) important products. As a consequence, many synthetic analoga or derivatives of these natural pr

  6. A Search for Interstellar Monohydric Thiols

    Science.gov (United States)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Sivaraman, Bhalamurugan; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2017-02-01

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  7. Pathways of peroxynitrite oxidation of thiol groups.

    Science.gov (United States)

    Quijano, C; Alvarez, B; Gatti, R M; Augusto, O; Radi, R

    1997-02-15

    Peroxynitrite mediates the oxidation of the thiol group of both cysteine and glutathione. This process is associated with oxygen consumption. At acidic pH and a cysteine/peroxynitrite molar ratio of < or = 1.2, there was a single fast phase of oxygen consumption, which increased with increasing concentrations of both cysteine and oxygen. At higher molar ratios the profile of oxygen consumption became biphasic, with a fast phase (phase I) that decreased with increasing cysteine concentration, followed by a slow phase (phase II) whose rate of oxygen consumption increased with increasing cysteine concentration. Oxygen consumption in phase I was inhibited by desferrioxamine and 5,5-dimethyl-1-pyrroline N-oxide, but not by mannitol; superoxide dismutase also inhibited oxygen consumption in phase I, while catalase added during phase II decreased the rate of oxygen consumption. For both cysteine and glutathione, oxygen consumption in phase I was maximal at neutral to acidic pH: in contrast, total thiol oxidation was maximal at alkaline pH. EPR spin-trapping studies using N-tert-butyl-alpha-phenylnitrone indicated that the yield of thiyl radical adducts had a pH profile comparable with that found for oxygen consumption. The apparent second-order rate constants for the reactions of peroxynitrite with cysteine and glutathione were 1290 +/- 30 M-1.S-1 and 281 +/- 6 M-1.S-1 respectively at pH 5.75 and 37 degrees C. These results are consistent with two different pathways participating in the reaction of peroxynitrite with low-molecular-mass thiols: (a) the reaction of the peroxynitrite anion with the protonated thiol group, in a second-order process likely to involve a two-electron oxidation, and (b) the reaction of peroxynitrous acid, or a secondary species derived from it, with the thiolate in a one-electron transfer process that yields thiyl radicals capable of initiating an oxygen-dependent radical chain reaction.

  8. Detection of thiol modifications by hydrogen sulfide.

    Science.gov (United States)

    Williams, E; Pead, S; Whiteman, M; Wood, M E; Wilson, I D; Ladomery, M R; Teklic, T; Lisjak, M; Hancock, J T

    2015-01-01

    Hydrogen sulfide (H2S) is an important gasotransmitter in both animals and plants. Many physiological events, including responses to stress, have been suggested to involve H2S, at least in part. On the other hand, numerous responses have been reported following treatment with H2S, including changes in the levels of antioxidants and the activities of transcription factors. Therefore, it is important to understand and unravel the events that are taking place downstream of H2S in signaling pathways. H2S is known to interact with other reactive signaling molecules such as reactive oxygen species (ROS) and nitric oxide (NO). One of the mechanisms by which ROS and NO have effects in a cell is the modification of thiol groups on proteins, by oxidation or S-nitrosylation, respectively. Recently, it has been reported that H2S can also modify thiols. Here we report a method for the determination of thiol modifications on proteins following the treatment with biological samples with H2S donors. Here, the nematode Caenorhabditis elegans is used as a model system but this method can be used for samples from other animals or plants.

  9. The effects of high-load strength training with protein- or nonprotein-containing nutritional supplementation in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    . The effects were surprisingly not associated with muscle hypertrophy, and the results did not reveal any additional benefit of combining the training with protein intake. The positive results in muscle strength and physical performance have clinically relevant implications in the treatment of patients......OBJECTIVE: The aim of this study was to investigate the effects of high-load strength training and protein intake in patients undergoing dialysis with a focus on muscle strength, physical performance, and muscle morphology. DESIGN: This was a randomized controlled study conducted in three dialysis...... or a nonprotein drink after every training session. MAIN OUTCOME MEASURE: Muscle strength and power were tested using the good strength equipment and the leg extensor power rig. Physical performance and function were assessed using a chair stand test and the Short Form 36 questionnaire. Muscle fiber type size...

  10. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  11. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.).

    Science.gov (United States)

    Kumar, Amit; Singh, Rana Pratap; Singh, Pradyumna Kumar; Awasthi, Surabhi; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2014-09-01

    Arsenic (As) contamination of rice is a major problem for South-East Asia. In the present study, the effect of selenium (Se) on rice (Oryza sativa L.) plants exposed to As was studied in hydroponic culture. Arsenic accumulation, plant growth, thiolic ligands and antioxidative enzyme activities were assayed after single (As and Se) and simultaneous supplementations (As + Se). The results indicated that the presence of Se (25 µM) decreased As accumulation by threefold in roots and twofold in shoots as compared to single As (25 µM) exposed plants. Arsenic induced oxidative stress in roots and shoots was significantly ameliorated by Se supplementation. The observed positive response was found associated with the increased activities of ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GPx; EC 1.11.1.9) and induced levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) in As + Se exposed plants as compared to single As treatment. Selenium supplementation modulated the thiol metabolism enzymes viz., γ-glutamylcysteine synthetase (γ-ECS; EC 6.3.2.2), glutathione-S-transferase (GST; EC 2.5.1.18) and phytochelatin synthase (PCS; EC 2.3.2.15). Gene expression analysis of several metalloid responsive genes (LOX, SOD and MATE) showed upregulation during As stress, however, significant downregulation during As + Se exposure as compared to single As treatment. Gene expressions of enzymes of antioxidant and GSH and PC biosynthetic systems, such as APX, CAT, GPx, γ-ECS and PCS were found to be significantly positively correlated with their enzyme activities. The findings suggested that Se supplementation could be an effective strategy to reduce As accumulation and toxicity in rice plants.

  12. Differential effect of gamma-radiation-induced heme oxygenase-1 activity in female and male C57BL/6 mice.

    Science.gov (United States)

    Han, Youngsoo; Platonov, Alexander; Akhalaia, Medea; Yun, Yeon-Sook; Song, Jie-Young

    2005-08-01

    Ionizing radiation produces reactive oxygen species, which exert diverse biological effects on cells and animals. We investigated alterations of heme oxygenase (HO) and non-protein thiols (NPSH), which are known as two major anti-oxidant enzymes, in female and male C57BL/6 mice in the lung, liver, and brain after whole-body gamma-irradiation with 10 Gy (1-7 days) as well as in the lung after whole-thorax gamma-irradiation (WTI) with 12.5 Gy (1-26 weeks). Most significant alteration of HO activity was observed in the liver, which elevated 250% in males. NPSH level in female liver was increased on the 5th-7th days but decreased in males on the 3rd day. In the lung, the elevation of HO activity in both sexes and the pattern of NPSH change were similar to that of the liver. On the other hand, the increase of HO activity on the 16th week and the decrease of NPSH level on the 2nd week were observed only in male lung after WTI. This study shows that the liver is the most sensitive tissue to gamma-irradiation-induced alterations of HO activity in both female and male mice. In addition, there exists significant differential effect of gamma-irradiation on anti-oxidant system in female and male mice.

  13. Antibodies with thiol-S-transferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Fan, E.; Oei, Yoko; Sweet, E.; Uno, Tetsuo; Schultz, P.G. [Univ. of California, Berkeley, CA (United States)

    1996-06-12

    A major detoxification pathway used by aerobic organisms involves the conjugation of the tripeptide glutathione (GSH) to the electrophilic center of toxic substances. This reaction is catalyzed by a class of enzymes referred to as the glutathione S-transferases (GST) (EC 2.5.1.18). These enzymes activate the cysteine thiol group of GSH for nucleophilic addition to a variety of substrates, including aryl halides, {alpha}{beta}-unsaturated aldehydes and ketones, and epoxides. Despite the availability of X-ray crystal structures, the mechanism whereby glutathione transferases catalyze these addition reactions remains unclear. In order to gain a greater understanding of this important biological transformation, as well as to generate new detoxification catalysts, we have asked whether antibodies can be generated that catalyze similar nucleophilic addition reactions. Our initial efforts focused on the addition reaction of thiol nucleophiles to the nitro-substituted styrene derivative 1. The ratio of k{sub cat}/K{sub m} reported for the reaction of the isozyme 4-4` of rat liver GST with the good substance, 1-chloro-2,4-dinitrobenzene, is approximately 10{sup 4} M{sup -1} s{sup -1} compared to a calculated pseudo-first-order rate constant for the uncatalyzed reaction of approximately 3 x 10{sup -2} s{sup -1} (60 mM GSH, pH = 80). These comparisons suggest that with further improvements in hapten design, catalytic antibodies may prove a good source of detoxification catalysts. 19 refs., 1 fig.

  14. Photoinduced formation of thiols in human hair.

    Science.gov (United States)

    Fedorkova, M V; Brandt, N N; Chikishev, A Yu; Smolina, N V; Balabushevich, N G; Gusev, S A; Lipatova, V A; Botchey, V M; Dobretsov, G E; Mikhalchik, E V

    2016-11-01

    Raman, scanning electron, and optical microscopy of hair and spectrophotometry of soluble hair proteins are used to study the effect of UV-vis radiation on white hair. The samples of a healthy subject are irradiated using a mercury lamp and compared with non-irradiated (control) hair. The cuticle damage with partial exfoliation is revealed with the aid of SEM and optical microscopy of semifine sections. Gel filtration chromatography shows that the molecular weight of soluble proteins ranges from 5 to 7kDa. Absorption spectroscopy proves an increase in amount of thiols in a heavier fraction of the soluble proteins of irradiated samples under study. Raman data indicate a decrease in the amount of SS and CS bonds in cystines and an increase in the amount of SH bonds due to irradiation. Such changes are more pronounced in peripheral regions of hair. Conformational changes of hair keratins presumably related to the cleavage of disulfide bonds, follow from variations in amide I and low-frequency Raman bands. An increase in the content of thiols in proteins revealed by both photometric data on soluble proteins and Raman microspectroscopy of hair cuts can be used to develop a protocol of the analysis of photoinduced hair modification. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    Science.gov (United States)

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  16. Colorimetric and fluorescent detection of biological thiols in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Yin-Hui Li; Jin-Feng Yang; Chang-Hui Liu; Ji-Shan Li; Rong-Hua Yang

    2013-01-01

    A new colorimetric and fluorescent probe,2-(2,4-dinitrostyryl)-1,3,3-trimethyl-3H-indolium iodide (DTI),for selective and sensitive detection of biological thiols is reported.In aqueous solution at physiological pH 7.4,biological thiols react with DTI via Michael addition to give the brownish red adduct concomitant with fluorescence emission decrease.

  17. Biologically important thiols in various vegetables and fruits.

    Science.gov (United States)

    Demirkol, Omca; Adams, Craig; Ercal, Nuran

    2004-12-29

    Biological thiols are important antioxidants, and recent studies showed that their contents vary depending on the groups of foodstuffs. Therefore, we investigated the levels of some biological thiols in various vegetables and fruits by using a sensitive high-performance liquid chromatography (HPLC) technique. Biological thiols measured in some vegetables and fruits include glutathione (L-glutamyl-L-cysteinly glycine, GSH), N-acetylcysteine (NAC), captopril [CAP (C9H15NO3S)], homocysteine (HCYS), cysteine (CYS), and gamma-glutamyl cysteine (GGC). Our results show that biological thiol contents are between 3-349 nM/g wet weight in vegetables and 4-136 nM/g wet weight in fruits. CAP is only found in asparagus (28 nM/g wet weight). Furthermore, none of the biological thiols analyzed were found in cabbages, red grapes, blackberries, apples, and peaches. Therefore, various vegetables and fruits differ significantly in their thiol contents. Oxidation of these important thiols may occur and result in the production of toxic byproducts, if they are exposed to radiation and ozone treatment for sterilization purposes. Further studies should be performed to monitor the levels of these biological thiols.

  18. Serum paraoxonase activity and protein thiols in patients with hyperlipidemia

    Institute of Scientific and Technical Information of China (English)

    Mungli Prakash; Jeevan K Shetty; Sudeshna Tripathy; Pannuri Vikram; Manish Verma

    2009-01-01

    Objective: In the present study we evaluated the paraoxonase activity and protein thiols level in south Indian population with newly diagnosed hyperlipidemia. Methods: The study was conducted on 55 newly diagnosed hyperlipidemic pa-tients and 57 healthy controls. Serum paraoxonase activity and protein thiols were estimated by spectrophotometeric method and lipid profile by enzymatic kinetic assay method. Results: Serum paraoxonase activity, protein thiols and high density lipoprotein levels were low and total cholesterol, triglycerides and low density lipoprutein levels were high in patients with hyperlipidemia compared to healthy controls ( P < 0.01 ). Serum paranxonase activity correlated positively with protein thiols and high density lipoprotein (P<0.01). Conclusion: Decreased paraoxonase activity and protein thiols were found in patients with hyperlipi-demia. This may indicate the susceptibility of this population to accelerated atherogenesis and protein oxidation.

  19. Efficient Functionalization of Oxide-Free Silicon(111) Surfaces: Thiol-yne versus Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Bhairamadgi, N.S.; Gangarapu, S.; Caipa Campos, M.A.; Paulusse, J.M.J.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol–ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbon

  20. Occurrence of non-protein low molecular weight cardiotoxin in Indian King Cobra (Ophiophagus hannah) Cantor 1836, venom.

    Science.gov (United States)

    Saha, Archita; Gomes, Aparna; Giri, B; Chakravarty, A K; Biswas, A K; Dasgupta, S C; Gomes, A

    2006-04-01

    Pathophysiology due to snakebite is a combined effect of various actions of the complex venom constituents. Importance of protein toxins in snake envenomation is well known. The present investigation reports the existence of nonprotein/nonpetide low molecular weight toxin in Indian King Cobra venom, which plays an important role in envenomation consequences in experimental animal models. A group of non-peptidic toxins (OH-NPT1) was isolated from Indian King Cobra Ophiophagus hannah by thin layer chromatography and silica gel column chromatography. UV, IR, NMR and (ESI) TOF-MS studies characterized the OH-NPT1 as a mixture of aliphatic acids having molecular weights 256, 326 and 340Da. The minimum lethal dose of OH-NPT1 was found to be 2.5 microg/20g (iv) and 4microg/20g (ip) in male albino mice. The cardiotoxic property of OH-NPT1 was established through studies on isolated guinea pig heart and auricle preparations, ECG studies in albino rat and estimation of LDH1/LDH and CPK-MB/CPK ratio in Swiss albino mice. Commercial antiserum failed to neutralize the lethality and cardiotoxicity of the toxin. However, calcium and magnesium effectively neutralized the lethal action.

  1. Molecular Detection of Methicillin-Resistant Staphylococcus aureus by Non-Protein Coding RNA-Mediated Monoplex Polymerase Chain Reaction

    Science.gov (United States)

    Soo Yean, Cheryl Yeap; Selva Raju, Kishanraj; Xavier, Rathinam; Subramaniam, Sreeramanan; Gopinath, Subash C. B.; Chinni, Suresh V.

    2016-01-01

    Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50–200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays. PMID:27367909

  2. Alternative preparation of inclusion bodies excludes interfering non-protein contaminants and improves the yield of recombinant proinsulin.

    Science.gov (United States)

    Mackin, Robert B

    2014-01-01

    The goal of simple, high-yield expression and purification of recombinant human proinsulin has proven to be a considerable challenge. First, proinsulin forms inclusion bodies during bacterial expression. While this phenomenon can be exploited as a capture step, conventionally prepared inclusion bodies contain significant amounts of non-protein contaminants that interfere with subsequent chromatographic purification. Second, the proinsulin molecules within the inclusion bodies are incorrectly folded, and likely cross-linked to one another, making it difficult to quantify the amount of expressed proinsulin. Third, proinsulin is an intermediate between the initial product of ribosomal translation (preproinsulin) and the final product secreted by pancreatic beta cells (insulin). Therefore, to be efficiently produced in bacteria, it must be produced as an N-terminally extended fusion protein, which has to be converted to authentic proinsulin during the purification scheme. To address all three of these problems, while simultaneously streamlining the procedure and increasing the yield of recombinant proinsulin, we have made three substantive modifications to our previous method for producing proinsulin:.•Conditions for the preparation of inclusion bodies have been altered so contaminants that interfere with semi-preparative reversed-phase chromatography are excluded while the proinsulin fusion protein is retained at high yield.•Aliquots are taken following important steps in the procedure and the quantity of proinsulin-related polypeptide in the sample is compared to the amount present prior to that step.•Final purification is performed using a silica-based reversed-phase matrix in place of a polystyrene-divinylbenzene-based matrix.

  3. Thiol/disulphide homeostasis as a novel indicator of oxidative stress in sudden sensorineural hearing loss.

    Science.gov (United States)

    Dinc, M E; Ulusoy, S; Is, A; Ayan, N N; Avincsal, M O; Bicer, C; Erel, O

    2016-05-01

    To investigate a novel oxidative stress marker, thiol/disulphide literature homeostasis, in patients with idiopathic sudden sensorineural hearing loss, and to compare the results with healthy controls for the first time. Thirty-two patients with idiopathic sudden sensorineural hearing loss and 30 healthy individuals were included in the study. Serum native thiol, total thiol and disulphide levels were measured, and disulphide/native thiol and disulphide/total thiol ratios were determined in all subjects. Serum native thiol and total thiol levels were significantly lower in patients with sudden sensorineural hearing loss compared with controls (p sudden sensorineural hearing loss in those patients.

  4. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Shreedhar Bhata; Uday Maitra

    2008-11-01

    A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  5. Data on the catalytic mechanism of thiol peroxidase mimics

    Directory of Open Access Journals (Sweden)

    B. Zadehvakili

    2016-09-01

    Full Text Available We have recently reported SAR data describing the pharmacological activity of a series of phenyl alkyl selenides and tellurides which catalyse the oxidation of thiols by hydrogen peroxide (H2O2, “The design of redox active thiol peroxidase mimics: dihydrolipoic acid recognition correlates with cytotoxicity and prooxidant action” B. Zadehvakili, S.M. McNeill, J.P. Fawcett, G.I. Giles (2016 [1]. This thiol peroxidase (TPx activity is potentially useful for a number of therapeutic applications, as it can alter the outcome of oxidative stress related pathologies and modify redox signalling. This article presents data describing the molecular changes that occur to a TPx mimic upon exposure to H2O2, and then the thiol mercaptoethanol, as characterised by UV–vis spectroscopy and HPLC retention time.

  6. Fast and Highly Efficient Solid State Oxidation of Thiols

    Directory of Open Access Journals (Sweden)

    Nasrin Haghighat

    2007-03-01

    Full Text Available A fast and efficient solid state method for the chemoselective room temperature oxidative coupling of thiols to afford their corresponding disulfides using inexpensive and readily available moist sodiumperiodate as the reagent is described. The reaction was applicable to a variety of thiols giving high yields after short reaction times. Comparison of yield/time ratios of this method with some of those reported in the literature shows the superiority of this reagent over others under these conditions.

  7. Thiol oxidation by nitrosative stress: Cellular localization in human spermatozoa.

    Science.gov (United States)

    Cabrillana, María E; Uribe, Pamela; Villegas, Juana V; Álvarez, Juan; Sánchez, Raúl; Fornés, Miguel W

    2016-10-01

    Peroxynitrite is a highly reactive nitrogen species and when it is generated at high levels it causes nitrosative stress, an important cause of impaired sperm function. High levels of peroxynitrite have been shown to correlate with decreased semen quality in infertile men. Thiol groups in sperm are mainly found in enzymes, antioxidant molecules, and structural proteins in the axoneme. Peroxynitrite primarily reacts with thiol groups of cysteine-containing proteins. Although it is well known that peroxynitrite oxidizes sulfhydryl groups in sperm, the subcellular localization of this oxidation remains unknown. The main objective of this study was to establish the subcellular localization of peroxynitrite-induced nitrosative stress in thiol groups and its relation to sperm motility in human spermatozoa. For this purpose, spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a compound which generates peroxynitrite. In order to detect peroxynitrite and reduced thiol groups, the fluorescent probes, dihydrorhodamine 123 and monobromobimane (mBBr), were used respectively. Sperm viability was analyzed by propidium iodide staining. Peroxynitrite generation and thiol redox state were monitored by confocal microscopy whereas sperm viability was evaluated by flow cytometry. Sperm motility was analyzed by CASA using the ISAS(®) system. The results showed that exposure of human spermatozoa to peroxynitrite results in increased thiol oxidation which is mainly localized in the sperm head and principal piece regions. Thiol oxidation was associated with motility loss. The high susceptibility of thiol groups to peroxynitrite-induced oxidation could explain, at least in part, the negative effect of reactive nitrogen species on sperm motility. DHR: dihydrorhodamine 123; mBBr: monobromobimane ONOO(-): peroxynitrite RNS: reactive nitrogen species RFI: relative fluorescence intensity SIN-1: 3-morpholinosydnonimine CASA: Computer-Aided Sperm Analysis

  8. Evaluation of thiol-disulphide homeostasis in radiation workers.

    Science.gov (United States)

    Koc, Ural; Tan, Sinan; Ertem, Ahmet Goktug; Gumus, Mehmet; Ozbek, Betul; Erel, Ozcan

    2017-07-01

    To evaluate thiol-disulphide homeostasis - a novel, easily calculated, readily available, and relatively cheap oxidative stress marker - in radiation workers and compare the results with healthy controls. A total of 108 participants were enrolled in the study including 63 hospital workers occupationally exposed to ionizing radiation in the units of interventional radiology, interventional cardiology and nuclear medicine. A control group consisted of 45 individuals staff in the same hospital. Serum thiol-disulphide homeostasis measurement was investigated via the spectrophotometric method newly described by Erel and Neşelioğlu. The mean serum native thiol levels of radiation workers (528.96 ± 86.42 μmol/l) was significantly lower than control subjects (561.05 ± 104.83 μmol/l) (p = .045). The mean serum total thiol levels of radiation workers (547.70 ± 91.50 μmol/l) was lower than control subjects (580.36 ± 112.24 μmol/l). Nevertheless, there was no significant difference between total thiol of exposed workers and controls. The results show that long-term low dose ionizing radiation may lead to oxidative stress and have side-effects in antioxidant thiol groups. We may suggest supporting radiation workers by safe antioxidant nutritional formulations and following up via both physical dosimetry and biodosimetric methods.

  9. Protein Thiols as an Indication of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-06-01

    Full Text Available Thiol is an organic compound that contain sulphhydryl group that have a critical role in preventing any involvement of oxidative stress in the cell. These defensive functions are generally considered to be carried out by the low molecular weight thiol glutathione and by cysteine residues in the active sites of proteins such as thioredoxin and peroxiredoxin. In addition, there are thiols exposed on protein surfaces that are not directly involved with protein function, although they can interact with the intracellular environment.The process of protection of the cell against an oxidative damage occur by thiol and cystein residue that has a low molecular weight. These residue are present in the active sites of a protein like, peroxiredoxin and thioredoxin. Apart from intracellular antioxidant defense mechanism by protein thiol, there are presence of thiol in outer surface of protein that are not involved with the function of protein, even though they can interact with intracellular part of the cell. [Archives Medical Review Journal 2014; 23(3.000: 443-456

  10. Investigation of thiol-disulphide balance in patients with acute urticaria and chronic spontaneous urticaria.

    Science.gov (United States)

    Akbas, Ayse; Kilinc, Fadime; Sener, Sertac; Aktaş, Akın; Baran, Pervin; Ergin, Merve

    2017-09-01

    Thiol-disulphide balance plays a major role in health and diseases. This balance may be disrupted by various diseases. We aimed to determine status of the effect of thiol-disulphide balance in urticaria. We aimed to investigate the thiol-disulphide balance in patients with acute urticaria (AUP) and chronic spontaneous urticaria (CSU). Study included 53 AUP and 47 healthy controls plus 57 patients with chronic spontaneous urticaria (CSUP) and 57 healthy controls. Levels of native thiols, disulphides and total thiols were evaluated in plasma using a new and automated spectrophotometric method. Ratios of disulphides/total thiols, disulphides/native thiols and native thiols/total thiols were calculated. For AU, there was no statistical difference compared to control group in levels of native thiols, disulphides and total thiols. For CSU, however, there was an increase in levels of native thiols, disulphides and total thiols and the ratio of thiol/disulphide in favour of disulphide. Thiol-disulphide balance was not affected by AU but shifted towards to disulphide in CSU indicating the presence of oxidative stress (OS).

  11. Efficient functionalization of oxide-free silicon(111) surfaces: thiol-yne versus thiol-ene click chemistry.

    Science.gov (United States)

    Bhairamadgi, Nagendra S; Gangarapu, Satesh; Caipa Campos, Mabel A; Paulusse, Jos M J; van Rijn, Cees J M; Zuilhof, Han

    2013-04-09

    Thiol-yne click (TYC) chemistry was utilized as a copper-free click reaction for the modification of alkyne-terminated monolayers on oxide-free Si(111) surfaces, and the results were compared with the analogous thiol-ene click (TEC) chemistry. A wide range of thiols such as 9-fluorenylmethoxy-carbonyl cysteine, thio-β-d-glucose tetraacetate, thioacetic acid, thioglycerol, thioglycolic acid, and 1H,1H,2H,2H-perfluorodecanethiol was immobilized using TYC under photochemical conditions, and all modified surfaces were characterized by static water contact angle measurements, X-ray photoelectron spectroscopy (including a simulation thereof by density functional calculations), and infrared absorption reflection spectroscopy. Surface-bound TYC proceeds with an efficiency of up to 1.5 thiols per alkyne group. This high surface coverage proceeds without oxidizing the Si surface. TYC yielded consistently higher surface coverages than TEC, due to double addition of thiols to alkyne-terminated monolayers. This also allows for the sequential and highly efficient attachment of two different thiols onto an alkyne-terminated monolayer.

  12. Cattle experimentally infected by Anaplasma marginale: Influence of splenectomy on disease pathogenesis, oxidative profile, and antioxidant status.

    Science.gov (United States)

    Doyle, Rovaina L; França, Raqueli T; Oliveira, Camila B; Rezer, João F P; Klafke, Guilherme M; Martins, João R; Santos, Andrea P; do Nascimento, Naíla C; Mesick, Joanne B; Lopes, Sonia T A; Leal, Daniela B R; Da Silva, Aleksandro S; Andrade, Cinthia M

    2016-06-01

    Bovine anaplasmosis is caused by the obligate intraerythrocytic bacteria Anaplasma marginale. These bacteria are transmitted by tick species such as Rhipicephalus (Boophilus) microplus, blood-sucking insects, and fomites (needles, clippers, and other blood contaminated equipment). During the acute phase of infection, animals may develop fever, anemia, jaundice, and hepatosplenomegaly. The aims of this study are to quantify the bacteremia by quantitative PCR in eight naïve calves experimentally infected by A. marginale [splenectomized (n = 4), and intact/non-splenectomized (n = 4)], and to correlate these findings with markers of oxidative stress on days 0, 8, 15, 21 and 23 post-infection. Complete blood counts (CBC) were performed in both groups. Lipid peroxidation was estimated by quantifying thiobarbituric acid reactive substances (TBARS); and non-enzymatic antioxidants were assessed by erythrocyte content of non-protein thiols (NPSH). There were no significant differences in complete blood counts (CBC) between the two groups. However, both groups had a slight decrease on packet cell volume (PCV), erythrocytes and hemoglobin concentration, as well as an increase in total leukocyte counts due to elevated lymphocytes when comparing pre and post-infection with A. marginale. Progressive increase on TBARS levels and concomitant decrease on NPSH content were observed in all animals, without significant differences between splenectomized and intact animals. A positive correlation between bacteremia and TBARS, and a negative correlation between bacteremia and NPSH were observed in both groups with higher correlation for NPSH in splenectomized animals. A negative correlation between TBARS and NPSH levels was observed in both groups indicating lipid peroxidation without a non-enzymatic antioxidant response. The results of experimental infection by A. marginale in cattle showed that bacteremia has an impact on lipid peroxidation regardless of the splenectomy.

  13. Designed Chemical Intervention with Thiols for Prophylactic Contraception.

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    Full Text Available Unlike somatic cells, sperm have several-fold more available-thiols that are susceptible to redox-active agents. The present study explains the mechanism behind the instant sperm-immobilizing and trichomonacidal activities of pyrrolidinium pyrrolidine-1-carbodithioate (PPC, a novel thiol agent rationally created for prophylactic contraception by minor chemical modifications of some known thiol drugs. PPC, and its three derivatives (with potential active-site blocked by alkylation, were synthesized and evaluated against live human sperm and metronidazole-susceptible and resistant Trichomonas vaginalis, in vitro. Sperm hexokinase activity was evaluated by coupled enzyme assay. PPC irreversibly immobilized 100% human sperm in ∼30 seconds and totally eliminated Trichomonas vaginalis more efficiently than nonoxynol-9 and metronidazole. It significantly inhibited (P<0.001 thiol-sensitive sperm hexokinase. However, the molecule completely lost all its biological activities once its thiol group was blocked by alkylation. PPC was subsequently formulated into a mucoadhesive vaginal film using GRaS excipients and evaluated for spermicidal and microbicidal activities (in vitro, and contraceptive efficacy in rabbits. PPC remained fully active in quick-dissolving, mucoadhesive vaginal-film formulation, and these PPC-films significantly reduced pregnancy and fertility rates in rabbits. The films released ∼90% of PPC in simulated vaginal fluid (pH 4.2 at 37°C in 5 minutes, in vitro. We have thus discovered a common target (reactive thiols on chiefly-anaerobic, redox-sensitive cells like sperm and Trichomonas, which is susceptible to designed chemical interference for prophylactic contraception. The active thiol in PPC inactivates sperm and Trichomonas via interference with crucial sulfhydryl-disulfide based reactions, e.g. hexokinase activation in human sperm. In comparison to non-specific surfactant action of OTC spermicide nonoxynol-9, the action of

  14. The impact of thiol peroxidases on redox regulation.

    Science.gov (United States)

    Flohé, Leopold

    2016-01-01

    The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 10(5)-10(8) M(-1) s(-1), thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.

  15. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Lafleur, Josiane P.; Jensen, Thomas Glasdam;

    2013-01-01

    . The reactive functional groups present at the surface of the thiol-ene polymer are subsequently used for the rapid, one step, site-specific functionalization of the waveguide with biological recognition molecules. It was found that while the bulk properties and chemical surface properties of thiol......-ene waveguides were fabricated from 40% excess thiol thiol-ene to ensure the presence of thiol functional groups at the surface of the waveguide. Biotin alkyne was photografted at specific locations using a photomask, directly at the interface between the microfluidic channel and the thiol-ene waveguide prior...

  16. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism.

    Science.gov (United States)

    Kumar, Amit; Dixit, Garima; Singh, Amit Pal; Dwivedi, Sanjay; Srivastava, Sudhakar; Mishra, Kumkum; Tripathi, Rudra Deo

    2016-11-01

    Arsenic (As) is a toxic element with the potential to cause health effects in humans. Besides rice is a source of both amino acids (AAs) and mineral nutrients, it is undesired source of As for billions of people consuming rice as the staple food. Selenium (Se) is an essential metalloid, which can regulate As toxicity by strengthening antioxidant potential. The present study was designed to investigate As(III) stress mitigating effect of Se(VI) in rice. The level of As, thiolic ligands and AAs was analyzed in rice seedlings after exposure to As(III)/Se(VI) alone and As(III)+Se(VI) treatments. Selenate supplementation (As(III) 25μM+Se(VI) 25μM) decreased total As accumulation in both root and shoot (179 & 144%) as compared to As(III) alone treatment. The As(III)+Se(VI) treatment also induced the levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) as compared to As(III) alone treatment and also modulated the activity of enzymes of thiol metabolism. The content of amino acids (AAs) was significantly altered with Se(VI) supplementation. Importantly, essential amino acids (EAAs) were enhanced in As(III)+Se(VI) treatment as compared to As(III) alone treatment. In contrast, stress related non-essential amino acids (NEAAs) like GABA, Glu, Gly, Pro and Cys showed enhanced levels in As(III) alone treatment. In conclusion, rice supplemented with Se(VI) tolerated As toxicity with reduced As accumulation and increased the nutrition quality by increasing EAAs.

  17. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice.

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Singh, Pradyumna Kumar; Kumar, Smita; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Norton, Gareth John; Dhankher, Om Parkash; Tripathi, Rudra Deo

    2015-11-15

    Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5mM), normal sulfur (3.5mM) and high sulfur (5.0mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain.

  18. Highly tailorable thiol-ene based emulsion-templated monoliths

    DEFF Research Database (Denmark)

    Lafleur, J. P.; Kutter, J. P.

    2014-01-01

    The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off-stoichiometr......The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off......-stoichiometry thiolene chemistry. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single step. Variations in the monomer stoichiometric ratios and/or amount of porogen used allow for the creation of extremely varied polymer morphologies, from foam-like materials to dense networks...

  19. Suspended hybrid films assembled from thiol-capped gold nanoparticles.

    Science.gov (United States)

    Zhang, Yu Xin; Huang, Ming; Hao, Xiao Dong; Dong, Meng; Li, Xin Lu; Huang, Jia Mu

    2012-01-01

    In this work, we explored the formation processes of suspended hybrid thin films of thiol-capped Au nanoparticles (AuNPs) inside metal oxide tubular structures. We found that a balance between in-film interactions of the AuNPs and boundary interactions with metal oxides is a key in making these special organic-inorganic thin films. The hybrid films process many processing advantages and flexibilities, such as controllable film thickness, interfacial shape and inter-AuNPs distance, tuning of particle sizes, thiol population, chain lengths, and other new properties by introducing functional groups to thiol chains. Among their many unique features, the assembly-disassembly property may be useful for future on-off or store-release applications.

  20. Cysteine-functional polymers via thiol-ene conjugation.

    Science.gov (United States)

    Kuhlmann, Matthias; Reimann, Oliver; Hackenberger, Christian P R; Groll, Jürgen

    2015-03-01

    A thiofunctional thiazolidine is introduced as a new low-molar-mass building block for the introduction of cysteine residues via a thiol-ene reaction. Allyl-functional polyglycidol (PG) is used as a model polymer to demonstrate polymer-analogue functionalization through reaction with the unsaturated side-chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox-insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine-functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three-step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol-ene coupling and the robust quantification assay, broadens the toolbox for thiol-ene chemistry and offers a generic and straightforward approach to cysteine-functional materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. General and practical formation of thiocyanates from thiols.

    Science.gov (United States)

    Frei, Reto; Courant, Thibaut; Wodrich, Matthew D; Waser, Jerome

    2015-02-02

    A new method for the cyanation of thiols and disulfides using cyanobenziodoxol(on)e hypervalent iodine reagents is described. Both aliphatic and aromatic thiocyanates can be accessed in good yields in a few minutes at room temperature starting from a broad range of thiols with high chemioselectivity. The complete conversion of disulfides to thiocyanates was also possible. Preliminary computational studies indicated a low energy concerted transition state for the cyanation of the thiolate anion or radical. The developed thiocyanate synthesis has broad potential for various applications in synthetic chemistry, chemical biology and materials science.

  2. 5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-Furan-2yl-4H [1,2,4] triazole-3-thiol and Their Thiol-Thione Tautomerism

    Directory of Open Access Journals (Sweden)

    A. Cansız

    2005-02-01

    Full Text Available 5-Furan-2-yl[1,3,4]oxadiazole-2-thiol (Ia and 5-furan-2-yl-4H-[1,2,4]-triazole-3-thiol (Ib were synthesized from furan-2-carboxylic acid hydrazide. Mannich basesand methyl derivatives were then prepared. The structures of the synthesized compoundswere confirmed by elemental analyses, IR and 1H-NMR spectra. Their thiol-thione tautomericequilibrium is described.

  3. A fluorescent probe which allows highly specific thiol labeling at low pH

    DEFF Research Database (Denmark)

    Nielsen, Jonas W.; Jensen, Kristine Steen; Hansen, Rosa E.

    2012-01-01

    and properties of a thiol-specific reagent, fluorescent cyclic activated disulfide (FCAD), which includes the fluorescein moiety as fluorophore and utilizes a variation of thiol-disulfide exchange chemistry. The leaving-group character of FCAD makes it reactive at pH 3, allowing modification at low pH, limiting...... thiol-disulfide exchange. Different applications are demonstrated including picomolar thiol detection, determination of redox potentials, and in-gel detection of labeled proteins....

  4. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...

  5. Preparation of Novel Hydrolyzing Urethane Modified Thiol-Ene Networks

    Directory of Open Access Journals (Sweden)

    Bridget S. Confait

    2011-10-01

    Full Text Available Novel tetra-functional hydrolyzing monomers were prepared from the reaction of TEOS and select alkene-containing alcohols, ethylene glycol vinyl ether or 2-allyloxy ethanol, and combined with trimethylolpropane tris(3-mercaptopropionate (tri-thiol in a thiol-ene “click” polymerization reaction to produce clear, colorless thiol-ene networks using both radiation and thermal-cure techniques. These networks were characterized for various mechanical characteristics, and found to posses Tg’s (DSC, hardness, tack, and thermal stability (TGA consistent with their molecular structures. A new ene-modified urethane oligomer was prepared based on the aliphatic polyisocyanate Desmodur® N 3600 and added to the thiol-ene hydrolyzable network series in increasing amounts, creating a phase-segregated material having two Tg’s. An increase in water absorption in the ene-modified urethane formulations leading to a simultaneous increase in the rate of hydrolysis was supported by TGA data, film hardness measurements, and an NMR study of closely related networks. This phenomenon was attributed to the additional hydrogen bonding elements and polar functionality brought to the film with the addition of the urethane segment. SEM was utilized for visual analysis of topographical changes in the film’s surface upon hydrolysis and provides support for surface-driven erosion. Coatings prepared in this study are intended for use as hydrolyzing networks for marine coatings to protect against ship fouling.

  6. Thiol reactive nitroimidazoles: radiosensitization studies in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Stratford, I.J.; Adams, G.E.; Hardy, C.; Hoe, S.; O' Neill, P.; Sheldon, P.W. (Medical Research Council, Harwell (UK). Radiobiological Research Unit)

    1984-12-01

    Using Chinese hamster V79 cells in vitro a study was made of the radiosensitizing properties of 4- or 5-nitroimidazoles substituted in the 2,5 or 4 position with various halo, sulphur ether, sulphonamide, sulphonate, ether or nitro groups. Values of E/sub 7//sup 1/ (the one-electron reduction potential measured versus the normal hydrogen electrode at pH7) vary in the range -178 to -565 mV. All the compounds, with one exception, are more efficient radiosensitizers than would be predicted from redox potentials, and the factor Csub(1.6)/Csub(1.6), by which a compound is more efficient has been calculated. The second-order rate constants, k/sub 2/, for reaction of these nitroimidazoles with glutathione and/or dithiothreitol tended to increase with increasing redox potential. However, there is no clear trend between k/sub 2/ and Csub(1.6)/Csub(1.6). The concentration required to cause a 50% depletion of intracellular glutathione was determined for selected compounds, as was the ability of glutathione-S-transferase to catalyse reaction with thiols. These observations suggested the relative thiol reactivity measured under chemically controlled conditions does not necessarily indicate thiol reactivity intracellularly. Studies using MT tumour in mice showed that high levels of radiosensitization seen in vitro could not be duplicated in vivo (attributed to thiol reactivity).

  7. Are free radicals involved in thiol-based redox signaling?

    Science.gov (United States)

    Winterbourn, Christine C

    2015-03-01

    Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field.

  8. Determination of Neurotoxin b-ODAP and Non-protein Amino Acids in Lathyrus Sativus by High-Performance Liquid Chromatography with Precolumn Derivatization with 6-Amino quinolyl-N-hydroxysuccinimidyl Carbamate (AQC)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method was developed for the quantitative determination of the neurotoxic non-protein amino acid, 3-N-oxalyl-L-2,3-diaminopropionic acid (b -ODAP), its nontoxic a -isomer and other non-protein amino acids in the plant samples of Lathyrus sativus after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) by reversed-phase high-performance liquid chromatography (HPLC). 2-Amino butyric acid (ABA) was used as an internal standard. The RP HPLC detection limit for both isomers is 1.8 ng with good response linearity. The results are compared with a colorimetric method.

  9. Influence of the microenvironment of thiol groups in low molecular mass thiols and serum albumin on the reaction with methylglyoxal.

    Science.gov (United States)

    Aćimović, Jelena M; Stanimirović, Bojana D; Todorović, Nina; Jovanović, Vesna B; Mandić, Ljuba M

    2010-10-06

    Methylglyoxal (MG), a reactive alpha-oxoaldehyde that is produced in higher quantities in diabetes, uremia, oxidative stress, aging and inflammation, reacts with the thiol groups (in addition to the amino and guanidino groups) of proteins. This causes protein modification, formation of advanced glycated end products (AGEs) and cross-linking. Low molecular mass thiols can be used as competitive targets for MG, preventing the reactions mentioned above. Therefore, this paper investigated how the microenvironment of the thiol group in low molecular mass thiols (cysteine, N-acetylcysteine (NAcCys), carboxymethylcysteine (CMC) and glutathione (GSH)) and human serum albumin (HSA) affected the thiol reaction with MG. The SH group reaction course was monitored by (1)H-NMR spectroscopy and spectrophotometric quantification. Changes in the HSA molecules were monitored by SDS-PAGE. The microenvironment of the SH group had a major effect on its reactivity and on the product yield. The reactivity of SH groups decreased in the order Cys>GSH>NAcCys. CMC did not react. The percentages of the reacted SH groups in the equilibrium state were almost equal, regardless of the ratio of thiol compound/MG (1:1, 1:2, 1:5): 38.1 + or - 0.9%; 38.2 + or - 0.7% and 39.0 + or - 0.8% for Cys; 26.5 + or - 0.6%; 26.6 + or - 2.6% and 27.4 + or - 2.5% for GSH; 10.8 + or - 0.9%; and 11.2 + or - 0.7% and 12.2 + or - 0.9% for NAcCys, respectively. Our results explain why substances containing alpha-amino-beta-mercapto-ethane as a pharmacophore are successful scavengers of MG. In equilibrium, HSA SH reacted in high percentages both with an insufficient amount and with an excess of MG (55% and 65%, respectively). An analysis of the hydrophobicity of the microenvironment of the SH group on the HSA surface showed that it could contribute to high levels of SH modification, leading to an increase in the scavenging activity of the albumin thiol.

  10. HPLC Determination of the Major Non-protein Amino Acids and Common Biogenic Amines in Lathyrus sativus Using a Novel Extraction Method

    Institute of Scientific and Technical Information of China (English)

    Ze Yi YAN; Cheng Jin JIAO; Feng Min LI; Yong Min LIANG; Zhi Xiao LI

    2005-01-01

    An assay is presented for simultaneously determining 5 biogenic amines and the major non-protein amino acids: the toxin β-N-oxalyl-L-α,β-diaminopropanoic acid (β-ODAP), its isomer α-ODAP and homoarginine in Lathyrus sativus extracts using the HPLC system after derivatization with para-nitrobenzyloxycarbonyl chloride (PNZ-C1). However, it is more worthy of noting that this paper also describes a new extraction method using 0.2 mol/L HC1O4. The new method has some advantages: shorter extraction-time, simultaneous extraction of free amino acids and polyamines, better inhibiting the isomerization of β-ODAP to α-ODAP, and so on.

  11. Thiol/disulfide homeostasis as a novel indicator of oxidative stress in children with simple febrile seizures.

    Science.gov (United States)

    Elmas, Bahri; Erel, Özcan; Ersavaş, Dilek; Yürümez, Yusuf

    2017-08-14

    Simple febrile seizures are generally benign, but during the seizure, elevated levels of glutamate and high levels of oxygen use due to the high metabolic brain activity result in oxidative stress. However, the relationship between febrile seizures and oxidative stress remains unclear. In this study, we investigated thiol/disulfide homeostasis as a new oxidative stress parameter in patients with simple febrile seizures. This study was performed between February 2016 and May 2016 at the Pediatric Emergency Unit. The study population consisted of 40 patients with a diagnosis of simple febrile seizure and 30 control participants aged 8-59 months. Total thiol, native thiol and disulfide levels, disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol ratios were used as thiol/disulfide homeostasis parameters and were quantified in patient and control groups. Furthermore, correlations with seizure duration were investigated. In the patient group, native and total thiol levels and native thiol/total thiol ratios were low, and disulfide levels, disulfide/native thiol, and disulfide/total thiol ratios were significantly higher than in the control group. Negative correlations were observed between seizure duration, total and native thiol levels, and native thiol/total thiol ratio, whereas positive correlations were observed between seizure duration and disulfide/native thiol and disulfide/total thiol ratio. The sensitivities of both disulfide/native thiol and disulfide/total thiol ratios were high for simple febrile seizures. Simple febrile seizures may cause impairment in favor of disulfide bonds in thiol/disulfide homeostasis. Overall, these changes may contribute to neuronal cell damage after simple febrile seizures.

  12. Radical Scavenging Efficacy of Thiol Capped Silver Nanoparticles

    Indian Academy of Sciences (India)

    Kumudini Chandraker; Sandeep Kumar Vaishanav; Rekha Nagwanshi; Manmohan L Satnami

    2015-12-01

    Radical scavenging efficacy of L-cysteine (L-Cys), glutathione (GSH) and thioctic acid (TA) in the presence of silver nanoparticles (AgNPs) were determined by 1,1-diphenyl 2-picryl hydrazil (DPPH), nitric oxide (NO) and hydroxyl (OH) radicals as spectrophotometric assay. The hydrogen peroxide (H2O2) scavenging efficacy has been determined by titration method. Ascorbic acid has been used as standard for all radical scavenging efficacies. In general, antioxidant activity decreases in the presence of AgNPs. The covalent interactions of thiols (-SH) were found to be a key factor for the decreases in scavenging activity. The effect of thiol concentrations has been discussed. The size and shape of the nanoparticles and AgNP-SR interactions have been characterized through Transmission Electron Microscopy (TEM) and Fourier Transform Infrared (FTIR) spectroscopy, respectively.

  13. Dynamic Cyclic Thiodepsipeptide Libraries from Thiol-Thioester Exchange

    Science.gov (United States)

    2010-04-01

    the reaction dynamics are discussed. Cyclic peptides have been described as “privileged structures” for drug design because so many natural and...inhibitors, which hold promise for treatment of cancer.4 As drug scaffolds, cyclic peptides are advantageous because they mimic native protein structure...but instead an influence of chirality on the accessibility of the thioester or thiol. We also investigated the effect of positively charged amino

  14. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  15. Selenocysteine in thiol/disulfide-like exchange reactions.

    Science.gov (United States)

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  16. Differential stress induced by thiol adsorption on facetted nanocrystals.

    Science.gov (United States)

    Watari, Moyu; McKendry, Rachel A; Vögtli, Manuel; Aeppli, Gabriel; Soh, Yeong-Ah; Shi, Xiaowen; Xiong, Gang; Huang, Xiaojing; Harder, Ross; Robinson, Ian K

    2011-09-25

    Polycrystalline gold films coated with thiol-based self-assembled monolayers (SAM) form the basis of a wide range of nanomechanical sensor platforms. The detection of adsorbates with such devices relies on the transmission of mechanical forces, which is mediated by chemically derived stress at the organic-inorganic interface. Here, we show that the structure of a single 300-nm-diameter facetted gold nanocrystal, measured with coherent X-ray diffraction, changes profoundly after the adsorption of one of the simplest SAM-forming organic molecules. On self-assembly of propane thiol, the crystal's flat facets contract radially inwards relative to its spherical regions. Finite-element modelling indicates that this geometry change requires large stresses that are comparable to those observed in cantilever measurements. The large magnitude and slow kinetics of the contraction can be explained by an intermixed gold-sulphur layer that has recently been identified crystallographically. Our results illustrate the importance of crystal edges and grain boundaries in interface chemistry and have broad implications for the application of thiol-based SAMs, ranging from nanomechanical sensors to coating technologies.

  17. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  18. Occurrence of polyfunctional thiols in fresh lager beers.

    Science.gov (United States)

    Vermeulen, C; Lejeune, I; Tran, T T H; Collin, S

    2006-07-12

    Polyfunctional thiols are known to have a strong impact on the overall aroma of many fermented foods. Surprisingly, very little data is available on their occurrence in beer. A specific extraction with p-hydroxymercuribenzoic acid was performed on four different fresh light-protected lager beers. gas chromatography-olfactometry, gas chromatography-mass spectrometry, and gas chromatography-pulsed-flame photometer detector analyses of the extracts revealed the presence of more than 10 polyfunctional thiols. All of them were absent from wort, suggesting a key role of the H(2)S excreted by yeasts. 3-Methyl-2-buten-1-thiol, 2-mercapto-3-methylbutanol, 3-mercapto-3-methylbutanol seem to be created from hop allylic alcohols via four different mechanisms: nucleophilic substitution, addition-elimination, and radical anti-Markovnikov or electrophilic Markovnikov additions. 1,4 Addition of hydrogen sulfide to wort alpha,beta-unsaturated aldehydes or ketones may explain the synthesis of 1-mercapto-3-pentanol, 3-mercaptohexanol, and 4-mercapto-4-methyl-2-pentanone through fermentation. Finally, 2-mercaptoethanol, 3-mercaptopropanol, and their corresponding acetates may derive from Ehrlich degradation of sulfur amino acids, while 2-methyl-3-furanthiol should be logically issued from Maillard reactions.

  19. Isoquinoline-mediated S-vinylation and N-vinylation of benzo[d]oxazole-2-thiol and benzo[d]thiazole-2-thiol

    Institute of Scientific and Technical Information of China (English)

    Issa Yavari; Samira Nasiri-Gheidari; Anvar Mirzaei

    2012-01-01

    An effective route to S-vinylated andN-vinylated benzo[d]oxazole-2(3H)-thiones and benzo[d]thiazole-2(3H)-thionesis described via reaction ofacetylenic esters and benzo[d] oxazole-2-thiol and benzo [d]thiazole-2-thiol in the presence of 15 mol% of isoquinoline.

  20. Thermal and Mechanical Properties of Sequential and Simultaneous Thiol-Ene-Isocyanate Networks

    Science.gov (United States)

    McNair, Olivia; Brent, Davis; Savin, Daniel

    2011-03-01

    Ternary networks containing having stoichiometrically balanced thiol /(ene+isocyanate) ranging from 0 to 20 mol% isocyanate were synthesized via sequential or simultaneous thiol/ene and thiol/isocyanate click reactions. The effects of cross-link density were studied using three thiols, GDMP (difunctional), 3T (trifunctional) and 4T (tetrafunctional) respectively. TEA catalyzes the isocyanate-thiol coupling and chain extension, while the photoinitiator DMPA initiates a radical thiol-ene crosslinking process. Real-time FTIR was used to study kinetics of both light and dark reactions utilizing thiol, ene and isocyanate peaks which appear independently. It was found that difunctional thiols and isocyanates reacted initially, forming chain extended prepolymers end-capped with thiol functionalities. Upon UV irradiation, thiol functionalized prepolymers reacted with TTT, a trifunctional ene, forming networks containing incorporated thiourethane linkages. Initial DSC results indicated higher Tgs for higher cross-linked networks; however, isocyanate content has significant effects on each system. Films were also be thermally characterized via DMA and mechanical properties measured using MTS.

  1. Oxidative Profile and δ-Aminolevulinate Dehydratase Activity in Healthy Pregnant Women with Iron Supplementation.

    Science.gov (United States)

    De Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-05-03

    An oxidative burst occurs during pregnancy due to the large consumption of oxygen in the tissues and an increase in metabolic demands in response to maternal physiological changes and fetal growth. This study aimed to determine the oxidative profile and activity of δ-aminolevulinate dehydratase (δ-ALA-D) in pregnant women who received iron supplementation. Oxidative stress parameters were evaluated in 25 pregnant women with iron supplementation, 25 pregnant women without supplementation and 25 non-pregnant women. The following oxidative stress parameters were evaluated: thiobarbituric acid reactive substances (TBARS), protein thiol groups (P-SH), non-protein thiol levels (NP-SH), vitamin C levels, catalase and δ-ALA-D activity. Markers of oxidative stress and cell damage, such as TBARS in plasma were significantly higher in pregnant women without supplementation. Levels of P-SH, NP-SH and δ-ALA-D activity were significantly lower in pregnant women without supplementation compared to non-pregnant and pregnant women with supplementation, while vitamin C levels were significantly lower in pregnant women without supplementation when compared to non-pregnant women. The increase in the generation of oxidative species and decrease of antioxidants suggest the loss of physiological oxidative balance during normal pregnancy, which was not observed in pregnant women with iron supplementation, suggesting a protective effect of iron against oxidative damage.

  2. Biochemical defense strategies in sterilized seedlings of Nymphoides peltatum adapted to lead stress.

    Science.gov (United States)

    Qiao, Xuqiang; Shi, Guoxin; Yang, Xiaoke; Zheng, Zhenzhen; Xu, Xiaoying; Yang, Haiyan

    2014-01-01

    In order to study potential antioxidant defense mechanisms, the effects of increasing concentrations of lead (Pb) on polyamines (PAs), various thiols, vitamins C and E, and proline contents in sterilized seedlings of Nymphoides peltata (S.G. mel.) Kuntze were investigated after 5 days of exposure. The levels of total putrescine (Put), spermidine (Spd), and spermine (Spm) decreased significantly, while the ratio of (Spd + Spm)/Put first increased but then declined as the concentration of Pb increased. The trends for free, perchloric acid soluble-conjugated (PS-conjugated), and perchloric acid insoluble-bound (PIS-bound) PAs were similar to the trend seen for total PAs. Moreover, reduced glutathione (GSH), nonprotein thiols (NP-SH), phytochelatins (PCs), and vitamin C were induced at high Pb concentrations. No significant change was observed in vitamin E. An initial decline in proline content was followed by an increase as the Pb concentration rose. The reduced level of Put and elevated contents of GSH, NP-SH, PCs, vitamin C, and proline were found to be associated with antioxidant efficiency, which supports the hypothesis that they could play a significant role in the adaptation mechanisms of N. peltatum under Pb stress.

  3. Diphenyl diselenide, a simple organoselenium compound, decreases methylmercury-induced cerebral, hepatic and renal oxidative stress and mercury deposition in adult mice.

    Science.gov (United States)

    de Freitas, Andressa Sausen; Funck, Vinícius Rafael; Rotta, Mariana dos Santos; Bohrer, Denise; Mörschbächer, Vanessa; Puntel, Robson Luís; Nogueira, Cristina Wayne; Farina, Marcelo; Aschner, Michael; Rocha, João Batista Teixeira

    2009-04-06

    Oxidative stress has been pointed out as an important molecular mechanism in methylmercury (MeHg) intoxication. At low doses, diphenyl diselenide ((PhSe)2), a structurally simple organoselenium compound, has been shown to possess antioxidant and neuroprotective properties. Here we have examined the possible in vivo protective effect of diphenyl diselenide against the potential pro-oxidative effects of MeHg in mouse liver, kidney, cerebrum and cerebellum. The effects of MeHg exposure (2 mg/(kg day) of methylmercury chloride 10 ml/kg, p.o.), as well as the possible antagonist effect of diphenyl diselenide (1 and 0.4 mg/(kg day); s.c.) on body weight gain and on hepatic, cerebellar, cerebral and renal levels of thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), ascorbic acid content, mercury concentrations and activities of antioxidant enzymes (glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD)) were evaluated after 35 days of treatment. MeHg caused an increase in TBARS and decreased NPSH levels in all tissues. MeHg also induced a decrease in hepatic ascorbic acid content and in renal GPx and CAT activities. Diphenyl diselenide (1 mg/kg) conferred protection against MeHg-induced hepatic and renal lipid peroxidation and at both doses prevented the reduction in hepatic NPSH levels. Diphenyl diselenide also conferred a partial protection against MeHg-induced oxidative stress (TBARS and NPSH) in liver and cerebellum. Of particular importance, diphenyl diselenide decreased the deposition of Hg in cerebrum, cerebellum, kidney and liver. The present results indicate that diphenyl diselenide can protect against some toxic effects of MeHg in mice. This protection may be related to its antioxidant properties and its ability to reduce Hg body burden. We posit that formation of a selenol intermediate, which possesses high nucleophilicity and high affinity for MeHg, accounts for the ability of diphenyl diselenide to ameliorate Me

  4. Thiol switches in redox regulation of chloroplasts: balancing redox state, metabolism and oxidative stress.

    Science.gov (United States)

    Dietz, Karl-Josef; Hell, Rüdiger

    2015-05-01

    In photosynthesizing chloroplasts, rapidly changing energy input, intermediate generation of strong reductants as well as oxidants and multiple participating physicochemical processes and pathways, call for efficient regulation. Coupling redox information to protein function via thiol modifications offers a powerful mechanism to activate, down-regulate and coordinate interdependent processes. Efficient thiol switching of target proteins involves the thiol-disulfide redox regulatory network, which is highly elaborated in chloroplasts. This review addresses the features of this network. Its conditional function depends on specificity of reduction and oxidation reactions and pathways, thiol redox buffering, but also formation of heterogeneous milieus by microdomains, metabolite gradients and macromolecular assemblies. One major player is glutathione. Its synthesis and function is under feedback redox control. The number of thiol-controlled processes and involved thiol switched proteins is steadily increasing, e.g., in tetrapyrrole biosynthesis, plastid transcription and plastid translation. Thus chloroplasts utilize an intricate and versatile redox regulatory network for intraorganellar and retrograde communication.

  5. Appel-reagent-mediated transformation of glycosyl hemiacetal derivatives into thioglycosides and glycosyl thiols

    Directory of Open Access Journals (Sweden)

    Tamashree Ghosh

    2013-05-01

    Full Text Available A series of glycosyl hemiacetal derivatives have been transformed into thioglycosides and glycosyl thiols in a one-pot two-step reaction sequence mediated by Appel reagent (carbon tetrabromide and triphenylphosphine. 1,2-trans-Thioglycosides and β-glycosyl thiol derivatives were stereoselectively formed by the reaction of the in situ generated glycosyl bromides with thiols and sodium carbonotrithioate. The reaction conditions are reasonably simple and yields were very good.

  6. Methods for the determination and quantification of the reactive thiol proteome

    OpenAIRE

    Hill, Bradford G.; Reily, Colin; Oh, Joo-Yeun; Johnson, Michelle S.; Landar, Aimee

    2009-01-01

    Protein thiol modifications occur under both physiological and pathological conditions and have been shown to contribute to changes in protein structure, function, and redox signaling. The majority of protein thiol modifications occur on cysteine residues that have a low pKa; these nucleophilic proteins comprise the “reactive thiol proteome.” The most reactive members of this proteome are typically low abundance proteins. Therefore, sensitive and quantitative methods are needed to detect and ...

  7. Multi-chamber and multi-layer thiol-ene microchip for cell culture

    DEFF Research Database (Denmark)

    Tan, H. Y.; Hemmingsen, Mette; Lafleur, Josiane P.

    2014-01-01

    We present a multi-layer and multi-chamber microfluidic chip fabricated using two different thiol-ene mixtures. Sandwiched between the thiol-ene chip layers is a commercially available membrane whose morphology has been altered with coatings of thiol-ene mixtures. Experiments have been conducted ...... with the microchip and shown that the fabricated microchip is suitable for long term cell culture....

  8. Quantification of protein-derived thiols during atmosphere-controlled brewing in laboratory scale

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Andersen, Preben; Mauch, Alexander

    2016-01-01

    An atmosphere-controlled brewing system was built to study thiol oxidation during brewing in laboratory scale under conditions with limited oxygen exposure. Quantification of free and total thiols and protein showed that thiols were lost during wort boiling possibly owing to protein precipitation...... was more pronounced at longer incubation times. However, the reduction of the pool of oxidized thiols by sulfite was inefficient for sulfite concentrations typically found in beer, and the reaction was found to be relatively slow compared with reduction by tris(carboxyethyl)phosphine....

  9. Distributions of dissolved and particulate biogenic thiols in the subartic Pacific Ocean

    Science.gov (United States)

    Dupont, Christopher L.; Moffett, James. W.; Bidigare, Robert R.; Ahner, Beth A.

    2006-12-01

    Dissolved and particulate concentrations of the biogenic thiols cysteine (Cys), arginine-cysteine (Arg-Cys), glutamine-cysteine (Gln-Cys), γ-glutamate-cysteine ( γ-Glu-Cys) and glutathione (GSH) were measured in the subartic Pacific Ocean in the summer of 2003 using high performance liquid chromatography (HPLC) with precolumn derivatization as reported in previous work. In this study, a preconcentration protocol for the derivatized thiols was utilized to extend detection limits of dissolved thiols to picomolar levels. The measured concentrations of particulate and dissolved thiols were uncoupled, with distinctive depth profiles and large differences in the particulate to dissolved ratios between individual compounds. Glutathione was the most abundant particulate thiol whereas the most abundant dissolved thiol was γ-Glu-Cys, with concentrations as high as 15 nM. Given the relatively small pool of intracellular γ-Glu-Cys and the very low dissolved concentrations of GSH, we hypothesize that glutathione released from cells is rapidly converted to the potentially degradation resistant γ-Glu-Cys outside the cell. The relatively high concentrations of other dissolved thiols compared to particulate concentrations implies both biological exudation and slow degradation rates. Some thiols appear to vary with changes in nutrient availability but this effect is difficult to decouple from changes in community structure inferred from pigment analyses. Dissolved thiol concentrations also exceed typical metal concentrations in the subartic Pacific, supporting previous arguments that they may be important in metal speciation.

  10. Chemical interaction between polyphenols and a cysteinyl thiol under radical oxidation conditions.

    Science.gov (United States)

    Fujimoto, Aya; Masuda, Toshiya

    2012-05-23

    Chemical interaction between polyphenols and thiols was investigated under radical oxidation conditions using a model cysteinyl thiol derivative, N-benzoylcysteine methyl ester. The radical oxidation was carried out with a stoichiometric amount of 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the decreases in the amounts of polyphenols and the thiol were measured by HPLC analysis. Cross-coupling products between various polyphenols and the thiol were examined by LC-MS in reactions that showed decreases in both the polyphenols and the thiol. The LC-MS results indicated that three phenolic acid esters (methyl caffeate, methyl dihydrocaffeate, and methyl protocatechuate) and six flavonoids (kaempferol, myricetin, luteolin, morin, taxifolin, and catechin) gave corresponding thiol adducts, whereas three polyphenols (methyl ferulate, methyl sinapate, and quercetin) gave only dimers or simple oxidation products without thiol substituents. Thiol adducts of the structurally related compounds methyl caffeate and methyl dihydrocaffeate were isolated, and their chemical structures were determined by NMR analysis. The mechanism for the thiol addition was discussed on the basis of the structures of the products.

  11. Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications.

    Science.gov (United States)

    Yang, Yutao; Huo, Fangjun; Yin, Caixia; Zheng, Anmin; Chao, Jianbin; Li, Yingqi; Nie, Zongxiu; Martínez-Máñez, Ramón; Liu, Diansheng

    2013-09-15

    The synthesis and characterization of a coumarin-chromene (8, 9-dihydro-2H-cyclopenta[b]pyrano[2,3-f]chromene-2,10(7aH)-dione) (1) derivative and its use for thiol chemosensing in water was reported. Experimental details showed 1 acts as a probe for the detection of thiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), whereas amino acids which do not contain thiols induced no changes in UV-vis spectra and fluorescence emission properties of 1. A possible detection mechanism is a nucleophilic attack of thiols to the α,β-unsaturated ketone in 1 that resulted in a fluorescent coumarin derivative. Further studies showed that 1-thiol derivatives can be applied to the design of regenerative chemodosimeters for Cu(2+), Hg(2+) and Cd(2+) in water based on M(n+)-promoted desulfurization and recovery of 1. Furthermore, the optical properties of the probe and its Cys-addition product were theoretically studied. The ability of probe 1 to detect thiols in living cells (HepG2 cells) via an enhancement of the fluorescence was proved. Moreover, the applicability of 1 for the direct determination of biorelevant thiols in a complex matrix such as human plasma was also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available BACKGROUND: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. METHODS: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years]. RESULTS: REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. CONCLUSIONS: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  13. Electrodeposition of gold templated by patterned thiol monolayers

    Energy Technology Data Exchange (ETDEWEB)

    She, Zhe [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Di Falco, Andrea [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom); Hähner, Georg [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Buck, Manfred, E-mail: mb45@st-andrews.ac.uk [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom)

    2016-06-15

    Graphical abstract: - Highlights: • First demonstration of electrodeposition/lift-off of gold using thiol monolayers. • Microelectrode structures with large length to width ratio were generated. • Performance of two different patterning techniques was investigated. • Conditions for achieving good contrast in the electrodeposition were established. - Abstract: The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4′-methyl-biphenyl-4-yl)-propane thiol (CH{sub 3}-C{sub 6}H{sub 4}-C{sub 6}H{sub 4}-(CH{sub 2}){sub 3}-SH, MBP3) and octadecane thiol (CH{sub 3}(CH{sub 2}){sub 17}SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm{sup 2} results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  14. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    Directory of Open Access Journals (Sweden)

    Peng Huiru

    2011-04-01

    Full Text Available Abstract Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

  15. Identification and functional analysis of acute myeloid leukemia susceptibility associated single nucleotide polymorphisms at non-protein coding regions of RUNX1.

    Science.gov (United States)

    Xu, Xin; Ren, Xiuyu; Wang, Haiying; Zhao, Yao; Yi, Zhengjun; Wang, Kaifeng; Zhang, Shizhuang; Wang, Lin; Samuelson, David J; Hu, Zhenbo

    2016-01-01

    Little is known about the susceptibility to acute myeloid leukemia. We aim to search non-protein coding regions of key hematopoiesis transcription factors for genetic variations associated with acute myeloid leukemia susceptibility. We genotyped SNPs of RUNX1 P1 promoter, P2 promoter, +23 enhancer, intron 5.2 enhancer, PU.1 promoter, CEBPA promoter, and CEBPE promoter from acute myeloid leukemia patients and healthy controls. Rs2249650 and rs2268276 at RUNX1 intron 5.2 enhancer were found to be associated with acute myeloid leukemia susceptibility. Artificial reporters containing different rs2249650 and rs2268276 alleles showed differential activities in the K562 cell line, a human immortalized myeloid leukemia line. Rs2249650 contributes to reporter activities more than rs2268276. Gel shift assay is consistent with the luciferase assay. Supershift assay indicated that one potential binding protein was PU.1. To sum up, rs2268276 and especially rs2249650 may be qualified as new acute myeloid leukemia susceptibility-associated SNPs.

  16. A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status.

    Science.gov (United States)

    Newton, Gerald L; Ta, Philong; Fahey, Robert C

    2005-11-01

    Mycobacteria and other actinomycetes do not produce glutathione but make mycothiol (MSH; AcCys-GlcN-Ins) that has functions similar to those of glutathione and is essential for growth of Mycobacterium tuberculosis. Mycothiol synthase (MshD) catalyzes N acetylation of Cys-GlcN-Ins to produce MSH in Mycobacterium smegmatis mc2155, and Cys-GlcN-Ins is maintained at a low level. The mycothiol synthase mutant, the mshD::Tn5 mutant, produces high levels of Cys-GlcN-Ins along with two novel thiols, N-formyl-Cys-GlcN-Ins and N-succinyl-Cys-GlcN-Ins, and a small amount of MSH. The nonenzymatic reaction of acyl-coenzyme A (CoA) with Cys-GlcN-Ins to produce acyl-Cys-GlcN-Ins is a facile reaction under physiologic conditions, with succinyl-CoA being an order of magnitude more reactive than acetyl-CoA. The uncatalyzed reaction rates are adequate to account for the observed production of N-succinyl-Cys-GlcN-Ins and MSH under physiologic conditions. It was shown that the N-acyl-Cys-GlcN-Ins compounds are maintained in a substantially reduced state in the mutant but that Cys-GlcN-Ins exists in disulfide forms at 5 to 40% at different stages of growth. MSH was able to facilitate reduction of N-succinyl-Cys-GlcN-Ins disulfide through thiol-disulfide exchange, but N-formyl-Cys-GlcN-Ins was ineffective. The oxidized state of Cys-GlcN-Ins in cells appears to result from a high susceptibility to autoxidation and a low capacity of the cell to reduce its disulfide forms. The mutant exhibited no enhanced sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, or cumene hydroperoxide relative to the parent strain, suggesting that the most abundant thiol, N-formyl-Cys-GlcN-Ins, functions as a substitute for MSH.

  17. The protonation state of thiols in self-assembled monolayers on roughened Ag/Au surfaces and nanoparticles.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Chattopadhyay, Samir; Dey, Abhishek

    2015-10-14

    The protonation state of thiols in self-assembled monolayers (SAMs) on Ag and Au surfaces and nanoparticles (NPs) has been an issue of contestation. It has been recently demonstrated that deuterating the thiol proton produces ostentatious changes in the Raman spectra of thiols and can be used to detect the presence of the thiol functional group. Surface enhanced Raman spectroscopy (SERS) of H/D substituted aliphatic thiols on Ag surfaces clearly shows the presence of S-H vibration between 2150-2200 cm(-1) which shifts by 400 cm(-1) upon deuteration and a simultaneous >20 cm(-1) shift in the C-S vibration of thiol deuteration. Large shifts (>15 cm(-1)) in the C-S vibration are also observed for alkyl thiol SAMs on Au surfaces. Alternatively, neither the S-H vibration nor the H/D isotope effect on the C-S vibration is observed for alkyl thiol SAMs on Ag/Au NPs. XPS data on Ag/Au surfaces bearing aliphatic thiol SAMs show the presence of both protonated and deprotonated thiols while on Ag/Au NPs only deprotonated thiols are detected. These data suggest that aliphatic thiol SAMs on Au/Ag surfaces are partially protonated whereas they are totally deprotonated on Au/Ag NPs. Aromatic PhSH SAMs on Ag/Au surfaces and Ag/Au NPs do not show these vibrations or H/D shifts as well indicating that the thiols are deprotonated at these interfaces.

  18. A capillary electrophoresis-tandem mass spectrometry methodology for the determination of non-protein amino acids in vegetable oils as novel markers for the detection of adulterations in olive oils.

    OpenAIRE

    Crego Navazo, Antonio Luis; Sánchez Hernández, Laura; Marina Alegre, María Luisa

    2011-01-01

    Accepted, revised and published in "Journal of Cromatography A", 2001, 1218 (30), pp. 4944-4951. DOI: 10.1016/j.chroma.2011.01.045 A new analytical methodology based on capillary electrophoresis–mass spectrometry (CE–MS2) is presented in this work, enabling the identification and determination of six non-protein amino acids (ornithine, β-alanine, GABA, alloisoleucine, citrulline and pyroglutamic acid) in vegetable oils. This methodology is based on a previous derivatization with butanol...

  19. Impairment of thiol-disulfide homeostasis in preeclampsia.

    Science.gov (United States)

    Korkmaz, Vakkas; Kurdoglu, Zehra; Alisik, Murat; Cetin, Orkun; Korkmaz, Hilal; Surer, Hatice; Erel, Ozcan

    2016-12-01

    To investigate the effects of severity of preeclampsia on thiol-disulfide homeostasis (TDH). A total of 108 participants were divided into three groups: Group 1 was composed of pregnant women with no obstetric complications, Group 2 included pregnant women with mild preeclampsia, and Group 3 consisted of pregnant women with severe preeclampsia. TDH parameters were determined, and comparisons of clinical and routine laboratory test findings were made in all groups. The serum native thiol level was 347.9 ± 27.4 in the control group, 237.2 ± 44.2 in the mild preeclampsia group, and 227.9 ± 53.1 in the severe preeclampsia group (p preeclampsia group, and 248.3 ± 57.4 in the severe preeclampsia group (p preeclampsia group, and 10.2 ± 4.8 in the severe preeclampsia group (p = 0.001). A significant correlation between impairment in degree of TDH and severity of preeclampsia was observed. TDH was impaired in women with preeclampsia, and this impairment increased with disease severity. Therefore, impaired TDH may have a role in the etiopathogenesis of the disease.

  20. Electrodeposition of gold templated by patterned thiol monolayers

    Science.gov (United States)

    She, Zhe; Di Falco, Andrea; Hähner, Georg; Buck, Manfred

    2016-06-01

    The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4‧-methyl-biphenyl-4-yl)-propane thiol (CH3-C6H4-C6H4-(CH2)3-SH, MBP3) and octadecane thiol (CH3(CH2)17SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm2 results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  1. Purification and characterization of a pineapple crown leaf thiol protease.

    Science.gov (United States)

    Singh, L Rupachandra; Devi, Th Premila; Devi, S Kunjeshwori

    2004-02-01

    A thiol protease was isolated and purified from the crown leaf of pineapple, Ananas comosus (L.) Merr. cv. Queen, by an immunoaffinity procedure. After the purification to electrophoretic homogeneity, the enzyme was characterized with respect to some of its physico-chemical and kinetic properties. The molecular weight of the protease (22.4-22.9 kDa), Km (97 microM) and kcat (8.8 s(-1)) for its esterolytic cleavage of the synthetic protease substrate N(alpha)-CBZ-L-lysine p-nitrophenyl ester, the concentration of its thiol activator L-cysteine required for half maximal activation A0.5 (9.9 microM), optimum pH (6.5) for its proteolytic action on azocasein, T(1/2) (60 degrees C) for inactivation by heating the enzyme (35.5 microg protein/mL) in citrate buffer pH 6.0 for 15 min, and SH-group content (0.98 mol/mol enzyme) were determined. Most of these physicochemical and kinetic properties were found to be similar to those of the already well-characterized stem bromelain (EC 3.4.22.32). Thus, the immunoaffinity purified crown leaf protease appeared to be closely related to stem bromelain.

  2. Novel Thiol-Ene Hybrid Coating for Metal Protection

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2016-04-01

    Full Text Available A novel hybrid anticorrosion coating with dual network of inorganic (Si–O–Si and organic bonds (C–S–C was prepared on metal through an in situ sol-gel and thiol-ene click reaction. This novel interfacial thin film coating incorporates (3-mercaptopropyl trimethoxysilane (MPTS and 1,4-di(vinylimidazolium butane bisbromide based polymerizable ionic liquid (PIL to form a thiol-ene based photo-polymerized film, which on subsequent sol-gel reaction forms a thin hybrid interfacial layer on metal surface. On top of this PIL hybrid film, a self-assembled nanophase particle (SNAP coating was employed to prepare a multilayer thin film coating for better corrosion protection and barrier performance. The novel PIL hybrid film was characterised for structure and properties using Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The corrosion protection performance of the multilayer coating was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results reveal that this novel double layer coating on metal offers excellent protection against corrosion and has remarkably improved the barrier effect of the coating.

  3. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes

    Science.gov (United States)

    Kim, Min-Sik; Dufour, Yann S.; Yoo, Ji Sun; Cho, Yoo-Bok; Park, Joo-Hong; Nam, Gi-Baeg; Kim, Hae Min; Lee, Kang-Lok; Donohue, Timothy J.; Roe, Jung-Hye

    2015-01-01

    Summary Numerous thiol-reactive compounds cause oxidative stress where cells counteract by activation of survival strategies regulated by thiol-based sensors. In Streptomyces coelicolor, a model actinomycete, a sigma/antisigma pair SigR/RsrA controls the response to thiol-oxidative stress. To unravel its full physiological functions, chromatin immuno-precipitation combined with sequence and transcript analyses were employed to identify 108 SigR target genes in S. coelicolor and to predict orthologous regulons across actinomycetes. In addition to reported genes for thiol homeostasis, protein degradation and ribosome modulation, 64 additional operons were identified suggesting new functions of this global regulator. We demonstrate that SigR maintains the level and activity of the housekeeping sigma factor HrdB during thiol-oxidative stress, a novel strategy for stress responses. We also found that SigR defends cells against UV and thiol-reactive damages, in which repair UvrA takes a part. Using a refined SigR-binding sequence model, SigR orthologues and their targets were predicted in 42 actinomycetes. This revealed a conserved core set of SigR targets to function for thiol homeostasis, protein quality control, possible modulation of transcription and translation, flavin-mediated redox reactions, and Fe-S delivery. The composition of the SigR regulon reveals a robust conserved physiological mechanism to deal with thiol-oxidative stress from bacteria to human. PMID:22651816

  4. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    Directory of Open Access Journals (Sweden)

    Aslı Neslihan Avan

    2016-08-01

    Full Text Available Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET-based total antioxidant capacity (TAC assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC, and ferric reducing antioxidant power (FRAP, were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol and (phenol + protein mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II compounds were added to stabilize the thiol components in the form of Hg(II-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols mixtures.

  5. Isothiazolones; thiol-reactive inhibitors of cysteine protease cathepsin B and histone acetyltransferase PCAF

    NARCIS (Netherlands)

    Wisastra, Rosalina; Ghizzoni, Massimo; Maarsingh, Harm; Minnaard, Adriaan J.; Haisma, Hidde J.; Dekker, Frank J.

    2011-01-01

    Isothiazolones and 5-chloroisothiazolones react chemoselectively with thiols by cleavage of the weak nitrogen-sulfur bond to form disulfides. They show selectivity for inhibition of the thiol-dependent cysteine protease cathepsin B and the histone acetyltransferase p300/CBP associated factor (PCAF)

  6. A method for site-specific labeling of multiple protein thiols

    NARCIS (Netherlands)

    Kuiper, Johanna M.; Pluta, Radek; Huibers, Wim H. C.; Fusetti, Fabrizia; Geertsma, Eric R.; Poolman, Bert

    We present a generic method for the site-specific and differential labeling of multiple cysteine residues in one protein. Phenyl arsenic oxide has been employed as a protecting group of two closely spaced thiols, allowing first labeling of a single thiol. Subsequently, the protecting group is

  7. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam;

    2012-01-01

    ” and “ene” monomers present in the microfluidic chip bulk material provides a simple and efficient way of tuning the chip’s surface chemistry. Here, thiol-ene chips displaying an excess of functional thiol groups at their surfaces are functionalized with biotin and streptavidin in a controlled fashion using...

  8. EFFECTS OF ATMOSPHERIC H2S ON THIOL COMPOSITION OF CROP PLANTS

    NARCIS (Netherlands)

    BUWALDA, F; DE KOK, LJ; Stulen, I.

    1993-01-01

    Exposure of crop plants to H2S resulted in an increase in thiol level and a change in the composition of the thiol pool. Non-leguminous species accumulated cysteine and glutathione in the light, whereas in the dark, substantial amounts of gamma-glutamyl-cysteine were also detected. In leguminous spe

  9. Surfactant-free coating of thiols on gold nanoparticles using sonochemistry: a study of competing processes.

    Science.gov (United States)

    Pallipurath, Anuradha; Nicoletti, Olivia; Skelton, Jonathan M; Mahajan, Sumeet; Midgley, Paul A; Elliott, Stephen R

    2014-09-01

    A method for the surfactant-free coating of gold nanoparticles with thiols using sonochemistry is presented. The gold nanoparticles were prepared by a modified Zsigmondy method, affording good control over the particle-size distribution, and the thiol coating was performed by the sonication of a biphasic system consisting of a nanoparticle suspension in water and thiols in toluene. The effects of two important reaction parameters on the particle morphology, viz. sonication time and thiol concentration, were investigated in detail using transmission electron microscopy. The effect of the thiol chain length was also studied. We show that the morphology of the coated particles is determined through a competition between two opposing effects: particle fusion, due to the sonication conditions, and digestive ripening, due to the action of the thiols. Additionally, we illustrate the utility of our technique for various applications, including surface-enhanced Raman scattering from bound molecules, and further functionalization using a thiol-exchange reaction. Our technique paves the way for an efficient synthesis of thiol-coated AuNPs of different shapes and sizes, suitable for a range of diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. ENANTIOMERICALLY PURE BETA-AMINO SULFIDES AND BETA-AMINO THIOLS FROM EPHEDRINE

    NARCIS (Netherlands)

    POELERT, MA; HOF, RP; PEPER, NCMW; KELLOGG, RM

    1994-01-01

    Ephedrine and pseudoephedrine are converted by means of a Mitsunobu reaction to respectively trans- and cis-aziridines, which can be ring-opened at the benzylic center with inversion of configuration by thiols and thiol acids. The trans-aziridine from ephedrine reacts also with H2S in acetone under

  11. Serum Protein Thiol Levels in Patients with Hospital-Acquired Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jing Qian

    2015-12-01

    Full Text Available Background/Aims: This study aimed to examine antioxidants in patients with acute kidney injury (AKI and determine whether serum protein thiol levels are associated with all-cause 90-day mortality in patients with hospital-acquired AKI. Methods: According to the RIFLE criteria, 160 patients with hospital-acquired AKI were enrolled in our prospective cohort study. As controls, 72 critically ill patients without AKI and 72 age and sex-matched healthy subjects were also recruited. Serum protein thiol levels were analyzed in relation to all-cause mortality of patients with AKI. Results: Serum protein thiol levels in AKI patients were lower than those in healthy people (p=0.010. Protein thiol levels showed a weak but significant positive correlation with serum albumin levels. The 90-day overall mortality rate was higher in AKI patients with high serum protein thiol levels than in those with low levels (p=0.032 by log rank test. In multivariate analysis (Cox regression, serum protein thiol levels (p=0.031 were independently associated with 90-day overall mortality after adjustment for age, sex, sepsis, and the Acute Physiology and Chronic Health Evaluation II score. Conclusions: Patients with hospital-acquired AKI have remarkably low serum protein thiol levels. Elevated protein thiol levels are associated with 90-day overall mortality in hospital-acquired AKI.

  12. Resonance Light-Scattering Spectroscopy Study on Interaction between Gold Colloid and Thiol Containing Pharmaceutical

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-ling; Cai Ru-xiu; Yuan Hong

    2003-01-01

    In this paper, we used resonance light-scattering (RLS) spectroscopy to study the interaction between thiol-containing pharmaceutical and gold colloid. And for the first time, we proposed that this highly sensitive, gold colloid-based assay using RLS technique may have potential application in detecting thiol-containing substances.

  13. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    Science.gov (United States)

    Avan, Aslı Neslihan; Demirci Çekiç, Sema; Uzunboy, Seda; Apak, Reşat

    2016-01-01

    Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II) compounds were added to stabilize the thiol components in the form of Hg(II)-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols) mixtures. PMID:27529232

  14. The first peripherally masked thiol dendrimers: a facile and highly efficient functionalization strategy of polyester dendrimers via one-pot xanthate deprotection/thiol-acrylate Michael addition reactions.

    Science.gov (United States)

    Auty, Sam E R; Andrén, Oliver; Malkoch, Michael; Rannard, Steven P

    2014-06-25

    Introducing multiple reactive functional groups at the periphery of dendrimer materials presents considerable challenges if the functionality is able to self-react. An efficient and facile approach to introducing masked thiols at the surface of polyester dendrimers is presented. One-pot, deprotection/thiol-acrylate Michael addition from the xanthate-functional dendritic substrates (generation zero to two) has been achieved for the first time, with high efficiency demonstrated using three acrylates of varying chemistry and avoiding disulfide formation.

  15. Nonprotein nitrogen is absorbed from the large intestine and increases nitrogen balance in growing pigs fed a valine-limiting diet.

    Science.gov (United States)

    Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M

    2014-05-01

    Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.

  16. Ester-free Thiol-ene Dental Restoratives – Part A: Resin Development

    Science.gov (United States)

    Podgórski, Maciej; Becka, Eftalda; Claudino, Mauro; Flores, Alexander; Shah, Parag K.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2015-01-01

    Objectives To detail the development of ester-free thiol-ene dental resins with enhanced mechanical performance, limited potential for water uptake/leachables/degradation and low polymerization shrinkage stress. Methods Thiol-terminated oligomers were prepared via a thiol-Michael reaction and a bulky tetra-allyl monomer containing urethane linkages was synthesized. The experimental oligomers and/or monomers were photopolymerized using visible light activation. Several thiol-ene formulations were investigated and their performance ranked by comparisons of the thermo-mechanical properties, polymerization shrinkage stress, water sorption/solubility, and reactivity with respect to a control comprising a conventional BisGMA/TEGDMA dental resin. Results The ester-free thiol-ene formulations had significantly lower viscosities, water sorption and solubility than the BisGMA/TEGDMA control. Depending on the resin, the limiting functional conversions were equivalent to or greater than that of BisGMA/TEGDMA. At comparable conversions, lower shrinkage stress values were achieved by the thiol-ene systems. The polymerization shrinkage stress was dramatically reduced when the tetra-allyl monomer was used as the ene in ester-free thiol-ene mixtures. Although exhibiting lower Young’s modulus, flexural strength, and glass transition temperatures, the toughness values associated with thiol-ene resins were greater than that of the BisGMA/TEGDMA control. In addition, the thiol-ene polymerization resulted in highly uniform polymer networks as indicated by the narrow tan delta peak widths. Significance Employing the developed thiol-ene resins in dental composites will reduce shrinkage stress and moisture absorption and form tougher materials. Furthermore, their low viscosities are expected to enable higher loadings of functionalized micro/nano-scale filler particles relevant for practical dental systems. PMID:26360013

  17. Effects of treatment with the anti-parasitic drug diminazene aceturate on antioxidant enzymes in rat liver and kidney.

    Science.gov (United States)

    Baldissera, Matheus D; Gonçalves, Ricardo A; Sagrillo, Michele R; Grando, Thirssa H; Ritter, Camila S; Grotto, Fabielly S; Brum, Gerson F; da Luz, Sônia C A; Silveira, Sergio O; Fausto, Viviane P; Boligon, Aline A; Vaucher, Rodrigo A; Stefani, Lenita M; da Silva, Aleksandro S; Souza, Carine F; Monteiro, Silvia G

    2016-04-01

    Diminazene aceturate (DA) is the active component of some trypanocidal drugs used for the treatment of animals infected with trypanosomosis and babesiosis. Residues of DA may cause hepatotoxic and nephrotoxic effects. Therefore, the purpose of this study was to investigate the occurrence of oxidative stress, i.e., changes in the antioxidant defense system of rats treated with a single dose of 3.5 mg kg(-1) of DA. All treatments were intramuscularly administered, and evaluations were performed on days 7 and 21 post-treatment (PT). Liver and kidney samples were collected and evaluated by histopathology and oxidative stress parameters (thiobarbituric acid-reactive species, catalase, superoxide dismutase, carbonyl, non-protein thiols, and reduced glutathione). Finally, blood was collected to determine seric DA concentration. Superoxide dismutase (SOD) and catalase (CAT) activities in liver and kidney of rats were dramatically inhibited (p  0.05). Both non-protein thiols (NPSH) and glutathione (GSH) levels in liver and kidney decreased (p kidney tissues on 21 days PT. Histopathology revealed vacuolar degeneration in liver and kidney samples on day 21 PT. Our findings indicate that DA could cause oxidative damage to liver and kidney of rats.

  18. Bacillithiol: a key protective thiol in Staphylococcus aureus.

    Science.gov (United States)

    Perera, Varahenage R; Newton, Gerald L; Pogliano, Kit

    2015-01-01

    Bacillithiol is a low-molecular-weight thiol analogous to glutathione and is found in several Firmicutes, including Staphylococcus aureus. Since its discovery in 2009, bacillithiol has been a topic of interest because it has been found to contribute to resistance during oxidative stress and detoxification of electrophiles, such as the antibiotic fosfomycin, in S. aureus. The rapid increase in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to available therapeutic agents is a great health concern, and many research efforts are focused on identifying new drugs and targets to combat this organism. This review describes the discovery of bacillithiol, studies that have elucidated the physiological roles of this molecule in S. aureus and other Bacilli, and the contribution of bacillithiol to S. aureus fitness during pathogenesis. Additionally, the bacillithiol biosynthesis pathway is evaluated as a novel drug target that can be utilized in combination with existing therapies to treat S. aureus infections.

  19. Loss of Thiol Repair Systems in Human Cataractous Lenses

    Science.gov (United States)

    Wei, Min; Xing, Kui-Yi; Fan, Yin-Chuan; Libondi, Teodosio; Lou, Marjorie F.

    2015-01-01

    Purpose. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses. Methods. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme activities of TTase, glutathione reductase (GR), Trx, and thioredoxin reductase (TR). Cortical and nuclear cataractous lenses (8 of each) with visual acuity better than HM were each dissected into cortical and nuclear portions for measurement of glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity. Clear lenses (in humans 49–71 years of age) were used as control. Results. Compared with control, all cataractous lenses lost more than 80% GSH and 70% GR; TR and Trx activity; and 40% to 70% TTase activity, corroborated with the loss in visual acuity. Among cataracts with R and CF visual acuity, cortical cataract lost more cortical G3PD activity (18% of control) than that of nuclear cataract (50% of control), whereas GSH depletion and TTase inactivation were similar in both cataracts. Conclusions. Thiol repair systems were damaged in all types of cataracts. Cortical and nuclear cataracts showed differential G3PD inactivation in the cortex, implying those 2 type of cataracts might be formed through different mechanisms. PMID:25537203

  20. Disulfide-Linked Dinitroxides for Monitoring Cellular Thiol Redox Status through Electron Paramagnetic Resonance Spectroscopy.

    Science.gov (United States)

    Legenzov, Eric A; Sims, Stephen J; Dirda, Nathaniel D A; Rosen, Gerald M; Kao, Joseph P Y

    2015-12-01

    Intracellular thiol-disulfide redox balance is crucial to cell health, and may be a key determinant of a cancer's response to chemotherapy and radiation therapy. The ability to assess intracellular thiol-disulfide balance may thus be useful not only in predicting responsiveness of cancers to therapy, but in assessing predisposition to disease. Assays of thiols in biology have relied on colorimetry or fluorimetry, both of which require UV-visible photons, which do not penetrate the body. Low-frequency electron paramagnetic resonance imaging (EPRI) is an emerging magnetic imaging technique that uses radio waves, which penetrate the body well. Therefore, in combination with tailored imaging agents, EPRI affords the opportunity to image physiology within the body. In this study, we have prepared water-soluble and membrane-permeant disulfide-linked dinitroxides, at natural isotopic abundance, and with D,(15)N-substitution. Thiols such as glutathione cleave the disulfides, with simple bimolecular kinetics, to yield the monomeric nitroxide species, with distinctive changes in the EPR spectrum. Using the D,(15)N-substituted disulfide-dinitroxide and EPR spectroscopy, we have obtained quantitative estimates of accessible intracellular thiol in cultured human lymphocytes. Our estimates are in good agreement with published measurements. This suggests that in vivo EPRI of thiol-disulfide balance is feasible. Finally, we discuss the constraints on the design of probe molecules that would be useful for in vivo EPRI of thiol redox status.

  1. Studies of Aqueous U(IV) Complexation under Thiol-rich Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wansik; Cho, Hyeryun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Organic thiol compounds and hydrogen sulfide (H{sub 2}S) are electron donors and metabolic products of sulfate reducing bacteria. In addition, they are among redox potential (Eh) determinants of groundwater systems due to their redox characteristics. The low values of acid dissociation constants for .SH (pK{sub a}, 7-9) compared to those of aliphatic or phenolic .OH, impart greater anionic and metal-binding properties to the molecules. Recently, we demonstrated that a thiol compound (i. e., thiosalicylate) enhances the solubility of U(VI) at higher pH levels (< ∼9). In this study, to have a better knowledge of the behaviors of U(IV) species under anaerobic conditions, the U(IV)-OH complex formation in the presence of thiol was examined using UV-Vis spectrophotometry and TRLFS (time-resolved laser-induced fluorescence spectroscopy). A TRLFS-based U(IV) quantification methodology developed earlier was applied to examine the effects of thiol species on the dissolution behaviors. Based on UV-Vis absorption monitoring, the presence of thiol does not result in a significant changes in the low-pH hydrolysis behaviors of U(IV). However, the concentration of U(IV) dissolved in bulk phase of aqueous solutions increased with the increase of thiol concentration. The formation of soluble thiol complexes or the stabilization of UO{sub 2} nanoparticles may explain the observed solubility increase.

  2. Thiol compounds from a free-living pathogenic opportunistic amoeba, Acanthamoeba polyphaga.

    Science.gov (United States)

    Ondarza, Raúl N; Iturbe, Angélica; Hernández, Eva; Hurtado, Gerardo

    2002-12-01

    New bimane-reacting compounds from perchloric acid extracts have been detected by HPLC from Acanthamoeba polyphaga. The main compounds detected are cysteine, glutathione and other novel thiol compounds. All of these compounds must be thiols, since they disappear or decrease substantially when treated by N -ethylmaleimide prior to acetonitrile/bimane derivatization. Cysteine and glutathione increase in quantity when dithiothreitol reduction is applied to the fresh extract. This means that they are likely to be present in their oxidized and reduced form and indicates the possible presence of a corresponding thiol/disulphide enzymic system. There are other compounds that have a different behaviour, since although they can react with bimane, they do not disappear if treated previously by N -ethylmaleimide. This shows that they are not thiols but can react with bimane. The main thiol compounds found to be present, in both the parasite and the host lymphocyte cells, were cysteine and glutathione. We were unable to detect ovothiol A in Acanthamoeba but instead we found another thiol compound that could be structurally related to trypanothione. The new thiol compounds unique to this parasite and not present in lymphocytes will permit the study of disulphide-reducing enzymes as potential drug targets.

  3. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium.

    Science.gov (United States)

    Talevi, Riccardo; Zagami, Maria; Castaldo, Marianna; Gualtieri, Roberto

    2007-04-01

    Sperm that adhere to the fallopian tube epithelium are of superior quality and adhesion extends their fertile life. It has been postulated that periovulatory signals, as yet undefined, promote sperm release. In the in vitro studies described here, we examined the effects of several antioxidants, reportedly present within oviductal fluid, on the modulation of sperm-oviduct adhesion in bovine species. Results showed that 1) the cell-permeant thiols (penicillamine, beta mercaptoethanol, cysteine, and dithiotreitol), as well as the nonpermeant thiol, reduced glutathione, cause adhering spermatozoa to release from the epithelium; 2) thiol action is exerted on spermatozoa; and 3) oxidized glutathione, as well as the non-thiol antioxidants (dimethylthiourea, trolox, superoxide dismutase, and catalase) have no effect. Sperm surface sulfhydryls labeled with iodoacetamide fluorescein showed that spermatozoa devoid of sulfhydryls on the head surface adhered to the fallopian epithelium in vitro, whereas thiol-induced release increased the exposure of sulfhydryls on the sperm head surface. Finally, analysis of capacitation status demonstrated that uncapacitated spermatozoa adhered to the oviduct, and that thiol-induced release of spermatozoa was accompanied by capacitation. In conclusion, thiol-reducing agents in the oviductal fluid may modulate the redox status of sperm surface proteins, leading to the release of spermatozoa selected and stored through adhesion to the fallopian tube epithelium in the bovine species.

  4. Beer thiol-containing compounds and redox stability: kinetic study of 1-hydroxyethyl radical scavenging ability.

    Science.gov (United States)

    de Almeida, Natália E C; Lund, Marianne N; Andersen, Mogens L; Cardoso, Daniel R

    2013-10-02

    The 1-hydroxyethyl radical is a central intermediate in oxidative reactions occurring in beer. The reactivity of thiol-containing compounds toward 1-hydroxyethyl radical was evaluated in beer model solutions using a competitive kinetic approach, employing the spin-trap 4-POBN as a probe and by using electron paramagnetic resonance to detect the generated 1-hydroxyethyl/4-POBN spin adduct. Thiol-containing compounds were highly reactive toward the 1-hydroxyethyl radical with apparent second-order rate constants close to the diffusion limit in water and ranging from 0.5 × 10⁹ L mol⁻¹ s⁻¹ for the His-Cys-Lys-Phe-Trp-Trp peptide to 6.1 × 10⁹ L mol⁻¹ s⁻¹ for the reduced lipid transfer protein 1 (LTP1) isolated from beer. The reactions gave rise to a moderate kinetic isotope effect (k(H)/k(D) = 2.3) suggesting that reduction of the 1-hydroxyethyl radical by thiol-containing compounds takes place by hydrogen atom abstraction from the RSH group rather than electron transfer. The content of reduced thiols in different beers was determined using a previously established method based on ThioGlo-1 as the thiol derivatization reagent and detection of the derivatized thiols by reverse-phase liquid chromatography coupled to a fluorescence detector. The total level of thiol in beer (oxidized and reduced) was determined after a reduction step employing 3,3',3″-phosphanetriyltripropanoic acid (TCEP) as the disulfide reductant. A good correlation among total protein and total thiol content in different beers was observed. The results suggest a similar ratio between reduced thiols and disulfides in all of the tested beers, which indicates a similar redox state.

  5. Visible-Light-Mediated Thiol-Ene Reactions through Organic Photoredox Catalysis.

    Science.gov (United States)

    Zhao, Gaoyuan; Kaur, Sarbjeet; Wang, Ting

    2017-06-16

    Synthetically useful radical thiol-ene reactions can be initiated by visible-light irradiation in the presence of an organic photocatalyst, 9-mesityl-10-methylacridinum tetrafluoroborate. The key thiyl radical intermediates are generated upon quenching of the photoexcited catalyst with a variety of thiols. The success of this method requires only the use of near-stoichiometric levels of alkene coupling partners. Using these highly efficient metal-free conditions, thiol-ene reactions between carbohydrates and peptides can be accomplished in excellent yields.

  6. Strategies for creating antifouling surfaces using selfassembled poly(ethylene glycol) thiol molecules

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    conditions for the reversible, initial attachment of microbial cells. This effect can be obtained by grafting hydrophilic polymeric chains onto surfaces and thereby provide a steric barrier between the substrate surface and the microbial cell. Poly (ethylene glycol) (PEG) is one of the most widely used....... The work focuses on novel strategies to self assemble PEG thiol monolayers with high graft density. One of the strategies investigated involved backfilling a self assembled layer of 2000 Da PEG thiol with shorter oligo (ethylene glycol) (OEG) thiol molecules to form a mixed monolayer. Detailed quantitative...

  7. Quinoline-2-thiol Derivatives as Fluorescent Sensors for Metals, pH and HNO

    Directory of Open Access Journals (Sweden)

    Naphtali A. O’Connor

    2014-06-01

    Full Text Available A tautomeric equilibrium exists for quinoline-2-thiol and quinoline-2(1H-thione. Quantum mechanical calculations predict the thione is the major tautomer and this is confirmed by the absorption spectra. The utility of quinolone-2-thiol/quinoline-2(1H-thione as a chromophore for developing fluorescent sensors is explored. No fluorescence is observed when excited at absorption maxima, however a fluorescence increase is observed when exposed to HNO, a molecule of import as a cardiovascular therapeutic. Alkylated quinoline-2-thiol derivatives are found to be fluorescent and show a reduction in fluorescence when exposed to metals and changes in pH.

  8. Readout fidelity of coaxial holographic digital data page recording in nanoparticle-(thiol-ene) polymer composites

    Science.gov (United States)

    Nagaya, Kohta; Hata, Eiji; Tomita, Yasuo

    2016-09-01

    We report on an experimental investigation of nanoparticle-concentration and thiol-to-ene stoichiometric ratio dependences of symbol error rates (SERs) and signal-to-noise ratios (SNRs) of digital data pages recorded at a wavelength of 532 nm in thiol-ene based nanoparticle-polymer composite (NPC) films by using a coaxial holographic digital data storage method. We show that SERs and SNRs at the optimized material condition can be lower than 1 × 10-4 and higher than 10, respectively, without error correction coding. These results show the usefulness of thiol-ene based NPCs as coaxial holographic data storage media.

  9. The effect of a cross-bridging thiol reagent on the catecholamine fluxes of adrenal medulla vesicles

    Science.gov (United States)

    Hasselbach, W.; Taugner, G.

    1970-01-01

    The thiol groups of the vesicular protein of bovine adrenal medulla were allowed to react with the bifunctional thiol reagent bis-(N-maleimidomethyl) ether and with the monofunctional thiol reagent N-ethylmaleimide, and the ATP-dependent and -independent catecholamine fluxes of the modified preparations were studied. 1. During the initial phase of the reaction bis-(N-maleimidomethyl) ether blocks twice as many thiol groups as does N-ethylmaleimide at equimolar concentrations. 2. Labelling of the bis-(N-maleimidomethyl) ether–protein compound with [14C]-cysteine shows that 70–80% of the blocked thiol groups are interconnected by the bifunctional thiol reagent. 3. At a low extent of reaction (1.5mol of thiol groups/106g of protein) the catecholamine efflux is diminished. If more than 2mol of thiol groups/106g of protein are blocked, the efflux is enhanced whichever thiol reagent is applied. 4. If 2–4mol of thiol groups/106g of protein are blocked the inhibition of the catecholamine influx increases linearly with the proportion of the thiol groups blocked. 5. ATP protects the catecholamine influx and the adenosine triphosphatase activity against bis-(N-maleimidomethyl) ether poisoning somewhat less effectively than against N-ethylmaleimide poisoning. PMID:4249860

  10. Preparation and Preliminary Dielectric Characterization of Structured C60-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction

    Directory of Open Access Journals (Sweden)

    Hanaa M. Ahmed

    2015-11-01

    Full Text Available Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60 polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, and thermal gravimetric analysis (TGA. The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.

  11. Preparation and Preliminary Dielectric Characterization of Structured C60-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction.

    Science.gov (United States)

    Ahmed, Hanaa M; Windham, Amber D; Al-Ejji, Maryam M; Al-Qahtani, Noora H; Hassan, Mohammad K; Mauritz, Kenneth A; Buchanan, Randy K; Buchanan, J Paige

    2015-11-18

    Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60) polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene) networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal gravimetric analysis (TGA). The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.

  12. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds

    Directory of Open Access Journals (Sweden)

    Ana Lima

    2017-02-01

    Full Text Available The search for anticancer MMP-9 inhibitors (MMPIs in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as well. The present work aimed at comparing the MMPI potential of protein fractions (P and non-protein fractions (NP isolated from soybean seeds, before and after soaking and cooking, mimicking dietary exposures. Reverse and substrate zymography, as well as a fluoregenic DQ gelatin assay were used to evaluate MMP-9 activities. Colon cancer cell migration and proliferation was also tested in HT29 cells. Regarding MMP-9 inhibition, proteins in soy presented IC50 values 100 times lower than non-protein extracts, and remained active after cooking, suggesting that proteins may be more effective MMP-9 inhibitors than non-protein compounds. Using the determined IC50 concentrations, NP fractions were able to induce higher inhibitions of HT29 cell migration and proliferation, but not through MMP-9 inhibition, whilst protein fractions were shown to specifically inhibit MMP-9 activity. Overall, our results show that protein fractions in soybeans might have a higher role in soy-related cancer prevention as MMPIs than previously expected. Being nontoxic and active at lower concentrations, the discovery of these heat-resistant specific MMPI proteins in soy can be of significant importance for cancer preventive diets, particularly considering the increasing use of soy proteins in food products and the controversy around isoflavones amongst consumers.

  13. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds.

    Science.gov (United States)

    Lima, Ana; Oliveira, Jennifer; Saúde, Filipe; Mota, Joana; Ferreira, Ricardo Boavida

    2017-02-27

    The search for anticancer MMP-9 inhibitors (MMPIs) in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as well. The present work aimed at comparing the MMPI potential of protein fractions (P) and non-protein fractions (NP) isolated from soybean seeds, before and after soaking and cooking, mimicking dietary exposures. Reverse and substrate zymography, as well as a fluoregenic DQ gelatin assay were used to evaluate MMP-9 activities. Colon cancer cell migration and proliferation was also tested in HT29 cells. Regarding MMP-9 inhibition, proteins in soy presented IC50 values 100 times lower than non-protein extracts, and remained active after cooking, suggesting that proteins may be more effective MMP-9 inhibitors than non-protein compounds. Using the determined IC50 concentrations, NP fractions were able to induce higher inhibitions of HT29 cell migration and proliferation, but not through MMP-9 inhibition, whilst protein fractions were shown to specifically inhibit MMP-9 activity. Overall, our results show that protein fractions in soybeans might have a higher role in soy-related cancer prevention as MMPIs than previously expected. Being nontoxic and active at lower concentrations, the discovery of these heat-resistant specific MMPI proteins in soy can be of significant importance for cancer preventive diets, particularly considering the increasing use of soy proteins in food products and the controversy around isoflavones amongst consumers.

  14. Atmospheric reactivity of alcohols, thiols and fluoroalcohols with chlorine atoms

    Science.gov (United States)

    Garzon Ruiz, Andres

    Alcohols, thiols and fluoroalcohols are volatile organic compounds (VOCs) which are emitted to the atmosphere from both natural (vegetation, oceans, volcanoes, etc.) and anthropogenic sources (fuels, solvents, wastewater, incinerators, refrigerants, etc.). These pollutants can be eliminated from the troposphere by deposition on the terrestrial surface, direct photolysis or reaction with different tropospheric oxidants. Reactions of VOCs with tropospheric oxidants are involved in the well-known atmospheric phenomenon of photochemical smog or the production of tropospheric ozone. The oxidation of these VOCs in the troposphere is mainly initiated by reaction with OH radicals during the daytime and with NO radicals at night. However, in recent years, the oxidation by chlorine atoms (Cl) has gained great importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments. In general, Cl atoms are much more reactive species than OH and NO; radicals and therefore low concentrations of Cl may compete with OH and NO3 in hydrocarbon oxidation processes. The main source of tropospheric Cl atoms is believed to be the photolysis of chlorine-containing molecules generated by heterogeneous reactions of sea salt aerosols. It has also been proposed that Cl atoms, produced in the photolysis of Cl2 emitted from industrial processes, may enhance hydrocarbon oxidation rates and ozone production in urban environments. In this work, a kinetic, theoretical and mechanistic study of the reaction of several alcohols, thiols, and fluoroalcohols with Cl atoms has been carried out. Pulsed laser photolysis-fluorescence resonance (PLP-RF) technique was used for the kinetic study as a function of temperature and pressure. An environmental chamber-Fourier transform infrared (FTIR) system was also employed in the kinetic studies. Tropospheric lifetimes of these pollutants were estimated using obtained kinetic

  15. Acid Catalyzed Condensation of Phenylethanal Enol or Thiol Enol Ether to 2-Phenylnaphthalene

    Institute of Scientific and Technical Information of China (English)

    CHANG, Yu-An

    2007-01-01

    Treatment of enol ether or thiol enol ether of phenylethanals with sulfuric or polyphosphoric acid in toluene or xylene gave 2-phenylnaphthalene in good yield. More importantly, a one-pot reaction has been developed.

  16. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  17. Flavin-catalyzed aerobic oxidation of sulfides and thiols with formic acid/triethylamine.

    Science.gov (United States)

    Murahashi, Shun-Ichi; Zhang, Dazhi; Iida, Hiroki; Miyawaki, Toshio; Uenaka, Masaaki; Murano, Kenji; Meguro, Kanji

    2014-09-14

    An efficient and practical catalytic method for the aerobic oxidative transformation of sulfides into sulfoxides, and thiols into disulfides with formic acid/TEA in the presence of a new, readily available, and stable flavin catalyst 5d is described.

  18. XAFS study on thiol etching of diphosphine-stabilized gold nanoclusters

    Science.gov (United States)

    Bao, Jie; Yang, Lina; Huang, Ting; Sun, Zhihu; Yao, Tao; Jiang, Yong; Wei, Shiqiang

    2017-08-01

    Thiol-etching triphenylphosphine (PPh3)-protected Au nanoclusters has been widely used to synthesize thiolated Au nanoclusters, while few studies have been reported on the thiol-etching reaction starting from diphosphine-protected Au clusters. Here the thiol-etching reaction in chloroform (CHCl3) for 1,5-Bis(diphenylphosphino) pentane (L5) protected Au11 nanoclusters is presented, and synchrotron radiation X-ray absorption fine structure, UV-vis absorption and mass spectra are combined to identify the reaction products. It is revealed that a gold(I)-thiolate complex Au2L5(RS) is produced, contrary to the case of thiol-etching PPh3-protected Au clusters where formation of thermodynamically stable Au25 or Au11 clusters is achieved.

  19. Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry.

    Science.gov (United States)

    Quick, Alexander S; Fischer, Joachim; Richter, Benjamin; Pauloehrl, Thomas; Trouillet, Vanessa; Wegener, Martin; Barner-Kowollik, Christopher

    2013-02-25

    Three-dimensional microstructures are fabricated employing the direct laser writing process and radical thiol-ene polymerization. The resin system consists of a two-photon photoinitiator and multifunctional thiols and olefins. Woodpile photonic crystals with 22 layers and a rod distance of 2 μm are fabricated. The structures are characterized via scanning electron microscopy and focused ion beam milling. The thiol-ene polymerization during fabrication is verified via infrared spectroscopy. The structures are grafted in a subsequent thiol-Michael addition reaction with different functional maleimides. The success of the grafting reaction is evaluated via laser scanning microscopy and X-ray photoelectron spectroscopy. The grafting density is calculated to be close to 200 molecules μm(-2) .

  20. Controlling Topological Entanglement in Engineered Protein Hydrogels with a Variety of Thiol Coupling Chemistries

    Directory of Open Access Journals (Sweden)

    Shengchang eTang

    2014-05-01

    Full Text Available Topological entanglements between polymer chains are achieved in associating protein hydrogels through the synthesis of high molecular weight proteins via chain extension using a variety of thiol coupling chemistries, including disulfide formation, thiol-maleimide, thiol-bromomaleimide and thiol-ene. Coupling of cysteines via disulfide formation results in the most pronounced entanglement effect in hydrogels, while other chemistries provide versatile means of changing the extent of entanglement, achieving faster chain extension, and providing a facile method of controlling the network hierarchy and incorporating stimuli responsivities. The addition of trifunctional coupling agents causes incomplete crosslinking and introduces branching architecture to the protein molecules. The high-frequency plateau modulus and the entanglement plateau modulus can be tuned by changing the ratio of difunctional chain extender to the trifunctional branching unit. Therefore, these chain extension reactions show promise in delicately controlling the relaxation and mechanical properties of engineered protein hydrogels in ways that complement their design through genetic engineering.

  1. Novel pyrazoline-based fluorescent probe for detecting thiols and its application in cells

    Science.gov (United States)

    Zhang, Rong-Rong; Zhang, Jin-Feng; Wang, Sheng-Qing; Cheng, Yan-Long; Miao, Jun-Ying; Zhao, Bao-Xiang

    2015-02-01

    A new compound, N-(4-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl)phenyl)-acrylamide (probe L), was designed and synthesized as a highly sensitive and selective fluorescent probe for recognizing and detecting thiol from other amino acids. On being mixed with thiol in buffered DMSO:HEPES = 1:1 solution at pH 7.4, the probe exhibited the blue emission at 474 nm. This probe is very sensitive and displayed a linear fluorescence off-on response to thiol. The fluorescence emission of the probe is pH independent in the physiological pH range. Living cell imaging of HeLa cells confirmed its cell permeability and its ability to selectively detect thiol in cells. The structure of the probe was characterized by IR, NMR and HRMS spectroscopy analysis.

  2. Spatial and temporal biomarkers responses of Astyanax jacuhiensis (Cope, 1894(Characiformes: Characidae from the middle rio Uruguai, Brazil

    Directory of Open Access Journals (Sweden)

    Vania Lucia Loro

    Full Text Available Due to intense agricultural activity in the rio Uruguai (South Brazil, there is the potential for aquatic contamination by agrochemicals. In this region, there are many reservoirs to meet the water demand for rice fields, forming lentic environments. In line with this information, the aim of this study was to show a comparative analysis of some biomarkers, such as lipid peroxidation (TBARS, gluthatione S-transferase (GST, non-protein thiols (NPSH, amino acids (AA and piscine micronucleus tests (MNE in Astyanax jacuhiensis from lentic and lotic environments in the middle rio Uruguai region, comparing warm and cold seasons. Eight pesticides were found in water samples, with propoxur having the highest concentration found in both environments and seasons. Fish from the warm season showed higher levels of biochemical biomarkers, and fish from the cold season showed higher levels of MNE and AA. TBARS and AA presented higher levels in fish from the river, while GST, NPSH, MNE and AA presented higher levels in fish from dams. These environments have different characteristics in terms of redox potential, aeration, sedimentation, trophic structure, agrochemicals input and others, which may affect the physiological and biochemical responses of fish in against adverse situations.

  3. Effect of progesterone on phosphamidon-induced impairment of memory and oxidative stress in rats.

    Science.gov (United States)

    Sharma, Amit K; Bhattacharya, Swapan K; Khanna, Naresh; Tripathi, Ashok K; Arora, Tarun; Mehta, Ashish K; Mehta, Kapil D; Joshi, Vikas

    2011-10-01

    Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.

  4. Methyl Jasmonate and Salicylic Acid Induced Oxidative Stress and Accumulation of Phenolics in Panax ginseng Bioreactor Root Suspension Cultures

    Directory of Open Access Journals (Sweden)

    Kee-Yoeup Paek

    2007-03-01

    Full Text Available To investigate the enzyme variations responsible for the synthesis of phenolics, 40 day-old adventitious roots of Panax ginseng were treated with 200 μM methyl jasmonate (MJ or salicylic acid (SA in a 5 L bioreactor suspension culture (working volume 4 L. Both treatments caused an increase in the carbonyl and hydrogen peroxide (H2O2 contents, although the levels were lower in SA treated roots. Total phenolic, flavonoid, ascorbic acid, non-protein thiol (NPSH and cysteine contents and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical reducing activity were increased by MJ and SA. Fresh weight (FW and dry weight (DW decreased significantly after 9 days of exposure to SA and MJ. The highest total phenolics (62%, DPPH activity (40%, flavonoids (88%, ascorbic acid (55%, NPSH (33%, and cysteine (62% contents compared to control were obtained after 9 days in SA treated roots. The activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, substrate specific peroxidases (caffeic acid peroxidase, quercetin peroxidase and ferulic acid peroxidase were higher in MJ treated roots than the SA treated ones. Increased shikimate dehydrogenase, chlorogenic acid peroxidase and β-glucosidase activities and proline content were observed in SA treated roots than in MJ ones. Cinnamyl alcohol dehydrogenase activity remained unaffected by both MJ and SA. These results strongly indicate that MJ and SA induce the accumulation of phenolic compounds in ginseng root by altering the phenolic synthesis enzymes.

  5. Differential effects of organic and inorganic selenium compounds on adenosine deaminase activity and scavenger capacity in cerebral cortex slices of young rats.

    Science.gov (United States)

    Bitencourt, P E R; Bellé, L P; Bonfanti, G; Cargnelutti, L O; de Bona, K S; Silva, P S; Abdalla, F H; Zanette, R A; Guerra, R B; Funchal, C; Moretto, M B

    2013-09-01

    Selenium (Se) has anti-inflammatory and antioxidant properties and is necessary for the development and normal function of the central nervous system. This study was aimed to compare the in vitro effects of 3-methyl-1-phenyl-2-(phenylseleno)oct-2-en-1-one (C21H2HOSe; organoselenium) and sodium selenate (inorganic Se) on adenosine deaminase (ADA) activity, cell viability, lipid peroxidation, scavenger of nitric oxide (NO) and nonprotein thiols (NP-SH) content in the cerebral cortex slices of the young rats. A decrease in ADA activity was observed when the slices were exposed to organoselenium at the concentrations of 1, 10 and 30 µM. The same compound showed higher scavenger capacity of NO than the inorganic compound. Inorganic Se was able to protect against sodium nitroprusside-induced oxidative damage and increased the NP-SH content. Both the compounds displayed distinctive antioxidant capacities and were not cytotoxic for the cerebral cortex slices in the conditions tested. These findings are likely to be related to immunomodulatory and antioxidant properties of this compound.

  6. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione.

    Science.gov (United States)

    Gupta, D K; Huang, H G; Yang, X E; Razafindrabe, B H N; Inouhe, M

    2010-05-15

    Two ecotypes of S. alfredii [Pb accumulating (AE) and Pb non-accumulating (NAE)] differing in their ability in accumulating Pb were exposed to different Pb levels to evaluate the effects on plant length, photosynthetic pigments, antioxidant enzymes (SOD and APX), cysteine, non-protein thiols (NP-SH), phytochelatins (PCs) and glutathione (GSH) vis-à-vis Pb accumulation. Both ecotypes showed significant Pb accumulation in roots, however only the AE showed significant Pb accumulation in shoots. We found that both AE and NAE of S. alfredii-induced biosynthesis of GSH rather than phytochelatins in their tissue upon addition of even high Pb levels (200 microM). Root and shoot length were mostly affected in both ecotypes after addition of higher Pb concentrations and on longer durations, however photosynthetic pigments did not alter upon addition of any Pb treatment. Both superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities of AE were higher than NAE. The levels of cysteine and NP-SH were also higher in AE than in NAE. Hence, the characteristic Pb accumulation of ecotypes differed presumably in relation to their capacity for detoxification of Pb. These results suggest that enzymatic and non-enzymatic antioxidants play a key role in the detoxification of Pb-induced toxic effects in Sedum alfredii. This plant can be used as an indicator species for Pb contamination.

  7. Comparative study on effects of dietary with diphenyl diselenide on oxidative stress in carp (Cyprinus carpio) and silver catfish (Rhamdia sp.) exposed to herbicide clomazone.

    Science.gov (United States)

    Menezes, Charlene; Leitemperger, Jossiele; Toni, Cândida; Santi, Adriana; Lópes, Thais; Barbosa, Nilda Berenice Vargas; Neto, João Radünz; Loro, Vania Lucia

    2013-09-01

    The study investigated the capacity of diphenyl diselenide [(PhSe)2] (3.0mg/kg), on reduce the oxidative damage in liver, gills and muscle of carp and silver catfish exposed to clomazone (192h). Silver catfish exposed to clomazone showed increased thiobarbituric acid-reactive substance (TBARS) in liver and muscle and protein carbonyl in liver and gills. Furthermore, clomazone in silver catfish decrease non-protein thiols (NPSH) in liver and gills and glutathione peroxidase and ascorbic acid in liver. (PhSe)2 reversed the effects caused by clomazone in silver catfish, preventing increases in TBARS and protein carbonyl. Moreover, NPSH and ascorbic acid were increased by values near control. The results suggest that (PhSe)2 attenuated the oxidative damage induced by clomazone in silver catfish. The clomazone no caused an apparent situation of oxidative stress in carp, showing that this species is more resistant to this toxicant. Altogether, the containing (PhSe)2 diet helps fish to increase antioxidants defenses.

  8. Effect of piracetam and vitamin E on phosphamidon-induced impairment of memory and oxidative stress in rats.

    Science.gov (United States)

    Kosta, Prabhat; Mehta, Ashish K; Sharma, Amit K; Khanna, Naresh; Mediratta, Pramod K; Mundhada, Dharmendra R; Suke, Sanvidhan

    2013-01-01

    Organophosphate pesticides, such as phosphamidon (PHOS), have been shown to adversely affect memory and induce oxidative stress after both acute and chronic exposure. The present study was therefore designed to investigate the effects of piracetam (PIR) and vitamin E on PHOS-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of malondialdehyde (MDA) and nonprotein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and a prolongation of TL in the PHOS (1.74 mg/kg/day per oral; p.o.)-treated group at weeks 6 and 8, as compared to the control group. Administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) for 2 weeks antagonized the effect of PHOS on SDL as well as TL. PHOS per se produced a significant increase in brain MDA levels and a decrease in brain NP-SH levels, whereas administration of PIR (600 mg/kg/day p.o.) or vitamin E (125 mg/kg/day p.o.) attenuated these effects. Thus, the results of the study showed that both PIR and vitamin E attenuated the cognitive dysfunction and oxidative stress induced by PHOS in the rat brain.

  9. The role of the thiol group in protein modification with methylglyoxal

    Directory of Open Access Journals (Sweden)

    JELENA M. AĆIMOVIĆ

    2009-08-01

    Full Text Available Methylglyoxal is a highly reactive α-oxoaldehyde with elevated production in hyperglycemia. It reacts with nucleophilic Lys and Arg side-chains and N-terminal amino groups causing protein modification. In the present study, the importance of the reaction of the Cys thiol group with methylglyoxal in protein modification, the competitiveness of this reaction with those of amino and guanidine groups, the time course of these reactions and their role and contribution to protein cross-linking were investigated. Human and bovine serum albumins were used as model systems. It was found that despite the very low levels of thiol groups on the surface of the examined protein molecules (approx. 80 times lower than those of amino and guanidino groups, a very high percentage of it reacts (25–85 %. The amount of reacted thiol groups and the rate of the reaction, the time for the reaction to reach equilibrium, the formation of a stable product and the contribution of thiol groups to protein cross-linking depend on the methylglyoxal concentration. The product formed in the reaction of thiol and an insufficient quantity of methylglyoxal (compared to the concentrations of the groups accessible for modification participates to a significant extent (4 % to protein cross-linking. Metformin applied in equimolar concentration with methylglyoxal prevents its reaction with amino and guanidino groups but, however, not with thiol groups.

  10. Direct observation of pentacene-thiol interaction using x-ray spectroscopy

    Science.gov (United States)

    Jia, Zhang; Lee, Vincent; Floreano, Luca; Verdini, Alberto; Cossaro, Albano; Morgante, Alberto; Kymissis, Ioannis

    2010-03-01

    There has been an intense interest in the surface modification of the source-drain electrodes for organic field effect transistors (OFETs) to improve their performance. A number of thiol based self assembled monolayers demonstrated improvements to the contact resistance and channel performance. Morphological improvements at the contacts, a change in the effective work function, and charge transfer between the thiols and the semiconductor have all been credited with the observed performance improvements. Using in-situ semiconductor deposition together with x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure, we are able to directly probe two technologically relevant OFET stacks. This work directly measures the interaction between pentacene and two thiols which have been associated to contact improvement: an electroneutral thiol (1-hexadecanethiol) and an electronegative thiol (pentafluorobenzenethiol). Based on our results we observe no chemical interaction between pentacene and the thiol. The electrical improvements to transistor performance, based on these systems, can be attributed to work function shifts of the contacts and morphological improvements of the organic semiconductor.

  11. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  12. Revisiting the reactions of superoxide with glutathione and other thiols.

    Science.gov (United States)

    Winterbourn, Christine C

    2016-04-01

    The reaction between GSH and superoxide has long been of interest in the free radical biology. Early studies were confusing, as some reports suggested that the reaction could be a major pathway for superoxide removal whereas others questioned whether it happened at all. Further research by several investigators, including Helmut Sies, was required to clarify this complex reaction. We now know that superoxide does react with GSH, but the reaction is relatively slow and occurs mostly by a chain reaction that consumes oxygen and regenerates superoxide. Most of the GSH is converted to GSSG, with a small amount of sulfonic acid. As shown by Sies and colleagues, singlet oxygen is a by-product. Although removal of superoxide by GSH may be a minor pathway, GSH and superoxide have a strong physiological connection. GSH is an efficient free radical scavenger, and when it does so, thiyl radicals are generated. These further react to generate superoxide. Therefore, radical scavenging by GSH and other thiols is a source of superoxide and hydrogen peroxide, and to be an antioxidant pathway, there must be efficient removal of these species.

  13. Thiol passivation of MWIR type II superlattice photodetectors

    Science.gov (United States)

    Salihoglu, O.; Muti, A.; Aydinli, A.

    2013-06-01

    Poor passivation on photodetectors can result in catastrophic failure of the device. Abrupt termination of mesa side walls during pixel definition generates dangling bonds that lead to inversion layers and surface traps leading to surface leakage currents that short circuit diode action. Good passivation, therefore, is critical in the fabrication of high performance devices. Silicondioxide has been the main stay of passivation for commercial photodetectors, deposited at high temperatures and high RF powers using plasma deposition techniques. In photodetectors based on III-V compounds, sulphur passivation has been shown to replace oxygen and saturate the dangling bonds. Despite its effectiveness, it degrades over time. More effort is required to create passivation layers which eliminate surface leakage current. In this work, we propose the use of sulphur based octadecanethiol (ODT), CH3(CH2)17SH, as a passivation layer for the InAs/GaSb superlattice photodetectors that acts as a self assembled monolayer (SAM). ODT SAMs consist of a chain of 18 carbon atoms with a sulphur atom at its head. ODT Thiol coating is a simple process that consist of dipping the sample into the solution for a prescribed time. Excellent electrical performance of diodes tested confirm the effectiveness of the sulphur head stabilized by the intermolecular interaction due to van der Walls forces between the long chains of ODT SAM which results in highly stable ultrathin hydrocarbon layers without long term degradation.

  14. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    Science.gov (United States)

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress.

  15. Processing and targeting of the thiol protease, aleurain

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.C.

    1989-01-01

    We have identified a cDNA clone from barley aleurone mRNA that encodes a protein with unusual homologies: the C-terminal portion, about 270 amino acids, is 65% identical to the mammalian thiol protease, cathepsin H. This degree of sequence conservation indicates that the enzyme must have some specific function in both plants and mammals that cannot tolerate further divergence. The N-terminal 1/3 of the protein, about 140 amino acids, has no detectable homologies to other known protein sequences; its function is unknown. In aleurone tissue, the mRNA level is increased by gibberellic acid and decreased by abscisic acid, but is expressed apparently constitutively at high levels in leaf and root tissues. The amino acid sequence and cathepsin H homology suggest that the protein will be both secreted into the endoplasmic reticulum and glycosylated. Using our cDNA clone in a bacterial expression system, we have made a fusion protein containing the protease domain of aleurain, and have used it to raise specific antisera in rabbits. These antibodies identify a 32 kd protein in extracts of aleurone layers that is induced with GA treatment but not secreted; a similarly sized protein is specifically identified in extracts of leaf tissue. Experiments are underway to characterize the pattern of expression in different tissues, to identify the subcellular locations of the protein, to characterize processing of the precursor to the 32 kd mature form, and to purify the enzyme from barley. 2 figs.

  16. (Processing and targeting of the thiol protease aleurain)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.C.

    1990-01-01

    Our goal for work during the past two years under this Grant was to characterize the barley thiol protease, aleurain, to determine if it is secreted or retained intracellularly in aleurone cells, and to begin to elucidate structural features that might control targeting of the protein to its final destination. We have shown that aleurain is synthesized as a proenzyme with two N-linked oligosaccharide chains, one high mannose-type and one complex-type. Aleurain undergoes processing to mature form by removal of an Nterminal prosegment, and is retained intracellularly; it cannot be detected among proteins secreted from aleurone cells. Treatment of aleurone cells with tunicamycin to prevent glycosylation of aleurain does not prevent processing of the unglycosylated form. The N-terminal portion of aleurain's prosegment is homologous to the comparable region in two yeast vacuolar proteases, where that region is known to contain the signal necessary for targeting the proteases to the vacuole. 18 refs., 7 figs.

  17. Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers

    Directory of Open Access Journals (Sweden)

    Johannes Stadler

    2011-08-01

    Full Text Available Full spectroscopic imaging by means of tip-enhanced Raman spectroscopy (TERS was used to measure the distribution of two isomeric thiols (2-mercaptopyridine (2-PySH and 4-mercaptopyridine (4-PySH in a self-assembled monolayer (SAM on a gold surface. From a patterned sample created by microcontact printing, an image with full spectral information in every pixel was acquired. The spectroscopic data is in good agreement with the expected molecular distribution on the sample surface due to the microcontact printing process. Using specific marker bands at 1000 cm−1 for 2-PySH and 1100 cm−1 for 4-PySH, both isomers could be localized on the surface and semi-quantitative information was deduced from the band intensities. Even though nanometer size resolution information was not required, the large signal enhancement of TERS was employed here to detect a monolayer coverage of weakly scattering analytes that were not detectable with normal Raman spectroscopy, emphasizing the usefulness of TERS.

  18. Oligomerization of Indole Derivatives with Incorporation of Thiols

    Directory of Open Access Journals (Sweden)

    Jarl E.S. Wikberg

    2008-08-01

    Full Text Available Abstract: Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl-1-(2-mercaptoethylthioethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl ethane-1,1-diyl]bis(1H-indole-5-carboxylic acid of the indole derivatives was also observed. Reaction of a mixture of indole and indole-5-carboxylic acid with 2-phenylethanethiol proceeded in a regioselective way, affording 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H-indole-5-carboxylic acid. An additional product of this reaction was 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-2,3-dihydro-1H,1'H-2,3'-biindole-5'-carboxylic acid, which upon standing in DMSO-d6 solution gave 3-[2-(2-aminophenyl-1-(phenethylthioethyl]-1H,1'H-2,3'-biindole-5'-carboxylic acid. Structures of all compounds were elucidated by NMR, and a mechanism for their formation was suggested.

  19. Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53(Al) frameworks

    Science.gov (United States)

    Cheng, Xinquan; Liu, Min; Zhang, Anfeng; Hu, Shen; Song, Chunshan; Zhang, Guoliang; Guo, Xinwen

    2015-05-01

    A postsynthetic modification method was used to prepare thiol-functionalized metal-organic frameworks (MOFs) by the amidation of mercaptoacetic acid with the amine group, which is present in the frameworks of NH2-MIL-53(Al). By doing this, the thiol group has been successfully grafted on the MOF, which perfectly combined the highly developed pore structures of the MOF with the strong coordination ability of the thiol group. The resulting thiol-functionalized MIL-53(Al) showed a significantly high adsorption capacity for heavy metal ions like Ag+ (182.8 mg g-1). Even more importantly, these grafted thiol groups can be used as anchoring groups for stabilizing metal nanoparticles (NPs) with controllable sizes. Taking silver as an example, monodispersed Ag NPs encapsulated in the cages of MIL-53(Al) have been prepared by using a two-step procedure. In addition, the particle size of the Ag NPs was adjustable to some extent by controlling the initial loading amount. The average size of the smallest Ag NPs is 3.9 +/- 0.9 nm, which is hard to obtain for Ag NPs because of their strong tendency to aggregate.A postsynthetic modification method was used to prepare thiol-functionalized metal-organic frameworks (MOFs) by the amidation of mercaptoacetic acid with the amine group, which is present in the frameworks of NH2-MIL-53(Al). By doing this, the thiol group has been successfully grafted on the MOF, which perfectly combined the highly developed pore structures of the MOF with the strong coordination ability of the thiol group. The resulting thiol-functionalized MIL-53(Al) showed a significantly high adsorption capacity for heavy metal ions like Ag+ (182.8 mg g-1). Even more importantly, these grafted thiol groups can be used as anchoring groups for stabilizing metal nanoparticles (NPs) with controllable sizes. Taking silver as an example, monodispersed Ag NPs encapsulated in the cages of MIL-53(Al) have been prepared by using a two-step procedure. In addition, the particle

  20. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    Science.gov (United States)

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  1. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    Science.gov (United States)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension

  2. Uptake of mercury by thiol-grafted chitosan gel beads.

    Science.gov (United States)

    Merrifield, John D; Davids, William G; MacRae, Jean D; Amirbahman, Aria

    2004-07-01

    This study describes the synthesis and characterization of thiol-grafted chitosan beads for use as mercury (Hg) adsorbents. Chitosan flakes were dissolved and formed into spherical beads using a phase inversion technique, then crosslinked to improve their porosity and chemical stability. Cysteine was grafted onto the beads in order to improve the adsorption affinity of Hg to the beads. The beads possessed an average diameter of 3.2 mm, porosity of 0.9, specific surface area of approximately 100 m2/g, average pore size of approximately 120 angstroms, and specific gravity of 2.0. Equilibrium and kinetic uptake experiments were conducted to study the uptake of Hg by the beads. The adsorption capacity was approximately 8.0 mmol-Hg/g-dry beads at pH 7, and decreased with decreasing pH. Hg adsorption kinetics was modeled as radial pore diffusion into a spherical bead with nonlinear adsorption. Use of the nonlinear Freundlich isotherm in the diffusion equation allowed modeling of the uptake kinetics with a single tortuosity factor of 1.5 +/- 0.3 as the fitting parameter for all initial Hg concentrations, chitosan loadings, and agitation rates. At agitation rates of 50 and 75 rpm, where uptake rate was reduced significantly due to the boundary layer effect, the mass transfer coefficient at the outside boundary was also used as a fitting parameter to model the kinetic data. At agitation rates higher than 150 rpm, pore diffusion was the rate-limiting step. The beads exhibited a high initial uptake rate followed by a slower uptake rate suggesting pore diffusion as the rate-determining step especially at high agitation rates. Higher uptake rates observed in this study compared to those in a previous study of chitosan-based crab shells indicate that dissolution and gel formation increase the porosity and pore accessibility of chitosan.

  3. Infection free titanium alloys by stabile thiol based nanocoating.

    Science.gov (United States)

    Cökeliler, Dilek; Göktaş, Hilal; Tosun, Pinar Deniz; Mutlu, Selma

    2010-04-01

    As biomedical materials, titanium and titanium alloys (Ti-6Al-4V) are superior to many materials in terms of mechanical properties and biocompatibility. However, they are still not sufficient for prolonged clinical use because the biocompatibility of these materials must be improved. In this study, the prevention of the attachment of test microorganism on the Ti alloy surfaces by thiol (-SH) and hydroxyl (-OH) functional group containing monomer in plasma based electron beam generator was reported in order to prepare anti-fouling surfaces. The precursor, 11-mercaptoundecanoic acid is used as plasma source to create nano-film with 30-60 nm approximately. The surface chemistry and topology of uncoated and coated samples are characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Atomic Force Microscopy (AFM). Static contact angle measurements are performed to state the change of surface hydrophilicity. All coated samples are tested in-vitro environment with Staphylococcus epidermidis that is chosen as the test bacteria strain in view of its significance for the pathogenesis of medical-device-related infections. This test is repeated after certain period of times and samples are waited in dynamic fluid media in order to investigate the stability of nano-coating. Plasma polymerized 11-mercaptoundecanoic acid film (PP MUA) with 42 +/- 4 nm is found alternative, stabile and simple method to create bacterial anti-fouling surfaces. The static contact angle of the coated surface is 34 +/- 80 whereas the uncoated surface is 57 +/- 50. For the coated surface, the presence of C-OH and C==O groups in infrared spectra defining the PP MUA is achieved by the plasma polymerization. The attachment of the model microorganism on the biomaterial surface prepared by PP MUA is reduced 85.3% if compared to unmodified control surface.

  4. The effects of diphenyl diselenide on oxidative stress biomarkers in Cyprinus carpio exposed to herbicide quinclorac (Facet®).

    Science.gov (United States)

    Cavalheiro de Menezes, Charlene; Leitemperger, Jossiele; Santi, Adriana; Lópes, Thais; Veiverberg, Cátia Aline; Peixoto, Sandra; Bohrer Adaime, Martha; Zanella, Renato; Vargas Barbosa, Nilda Berenice; Loro, Vania Lucia

    2012-07-01

    The occurrence of pollutants in the aquatic environment can produce severe toxic effects on non-target organisms, including fish. These sources of contamination are numerous and include herbicides, which represent a large group of toxic chemicals. Quinclorac, an herbicide widely applied in agriculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The aim of this study was to assess if dietary diphenyl diselenide (PhSe)₂ has a protective effect in tissues of fish species Cyprinus carpio exposed to the quinclorac herbicide. The fish were fed with either a standard or a diet containing 3.0 mg/Kg of diphenyl diselenide for 60 d. After were exposed to 1 mg/L of Facet® (quinclorac commercial formulation) for 192 h. At the end of the experimental period, parameters as thiobarbituric acid-reactive substance levels (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid in the liver, gills, brain and muscle were evaluated in Cyprinus carpio. In fish exposed to quinclorac and feeding with standard diet TBARS levels increased in liver and gills. However, SOD activity decreases in liver whereas no alterations were observed in catalase activity in this tissue. Quinclorac also decrease GST activity in liver and brain, NPSH in brain and muscle and ascorbic acid in muscle. Concerning protein carbonyl exposed to herbicide the fish did not show any alterations. The diphenyl diselenide supplemented diet reversed these effects, preventing increases in TBARS levels in liver and gills. GST activity was recovered to control values in liver. NPSH levels in brain and muscle increased remain near to control values. These results indicated that dietary diphenyl diselenide protects tissues against quinclorac induced oxidative stress ameliorating the antioxidant properties. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica juncea L.).

    Science.gov (United States)

    Seth, C S; Misra, V; Chauhan, L K S

    2012-01-01

    Plants of Indian mustard (Brassica juncea L.) were exposed to different concentrations (15, 30, 60, 120 microM) of (Cd, Cr, Cu, Pb) for 28 and 56 d for accumulation and detoxification studies. Metal accumulation in roots and shoots were analyzed and it was observed that roots accumulated a significant amount of Cd (1980 microg g(-1) dry weight), Cr (1540 microg g(-1) dry weight), Cu (1995 microg g(-1) dry weight), and Pb (2040 microg g(-1) dry weight) after 56 d of exposure, though in shoot this was 1110, 618, 795, and 409 microg g(-1) dry weight of Cd, Cr, Cu, and Pb, respectively. In order to assess detoxification mechanisms, non-protein thiols (NP-SH), glutathione (GSH) and phytochelatins (PCs) were analyzed in plants. An increase in the quantity of NP-SH (9.55), GSH (8.30), and PCs (1.25) micromol g(-1) FW were found at 15 microM of Cd, however, a gradual decline in quantity was observed from 15 microM of Cd onwards, after 56 d of exposure. For genotoxicity in plants, cytogenetic end-points such as mitotic index (MI), micronucleus formation (MN), mitotic aberrations (MA) and chromosome aberrations (CA) were examined in root meristem cells of B. juncea. Exposure of Cd revealed a significant (P < 0.05) inhibition of MI, induction of MA, CA, and MN in the root tips for 24 h. However, cells examined at 24 h post-exposure showed concentration-wise recovery in all the endpoints. The data revealed that Indian mustard could be used as a potential accumulator of Cd, Cr, Cu, and Pb due to a good tolerance mechanisms provided by combined/concerted action of NP-SH, GSH, and PCs. Also, exposure of Cd can cause genotoxic effects in B. juncea L. through chromosomal mutations, MA, and MN formation.

  6. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods.

    Science.gov (United States)

    Güngör, Nilay; Ozyürek, Mustafa; Güçlü, Kubilay; Cekiç, Sema Demirci; Apak, Reşat

    2011-02-15

    Thiol-type compounds are an important class of strong antioxidants and main determinants of total antioxidant capacity (TAC) of cellular homogenates. The TAC of thiol mixtures and the corresponding TEAC (trolox equivalent antioxidant capacity) values of individual thiols were determined by the CUPRAC (CUPric Reducing Antioxidant Capacity) method, and the results were compared with those found by reference assays for method validation. Synthetic mixtures of thiols were prepared, and the expected and found TAC values (in mM trolox (TR) equivalents) of these mixtures showed a good agreement. The technique of standard additions was performed for thiol mixtures and human serum, and the absorbance results confirmed that apparent chemical deviations from Beer's law were absent in the system. The CUPRAC results were compared with those of reference methods, namely 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)/persulphate and Ferric Reducing Antioxidant Power (FRAP). As being a most important thiol (-SH) peptide at in vivo conditions, glutathione (GSH) showed a TEAC value of 0.57 in the CUPRAC method, as opposed to the corresponding value (1.51) in the ABTS/persulphate method. The ABTS/persulphate result was not in accordance with the reversible 1-e oxidation of GSH to the corresponding disulfide that is expected to occur under physiological conditions. FRAP did not give consistent results, and even at relatively high concentrations of GSH, the TEAC(FRAP) value was only 0.07. The thiol-type antioxidant-bearing pharmaceuticals of Brunac eye drop, Trom and Mentopin effervescent tablets containing N-acetyl-L-cysteine (NAC) were assayed with HPLC for comparison, and the obtained results for NAC were in accordance with those found with CUPRAC.

  7. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  8. Evaluation of Thiol Raman Activities and pKa Values Using Internally Referenced Raman-Based pH Titration.

    Science.gov (United States)

    Suwandaratne, Nuwanthi; Hu, Juan; Siriwardana, Kumudu; Gadogbe, Manuel; Zhang, Dongmao

    2016-04-05

    Thiols, including organothiol and thiol-containing biomolecules, are among the most important classes of chemicals that are used broadly in organic synthesis, biological chemistry, and nanosciences. Thiol pKa values are key indicators of thiol reactivity and functionality. Reported herein is an internally referenced Raman-based pH titration method that enables reliable quantification of thiol pKa values for both mono- and dithiols in water. The degree of thiol ionization is monitored directly using the peak intensity of the S-H stretching feature in the 2600 cm(-1) region relative to an internal reference peak as a function of the titration solution's pH. The thiol pKa values and Raman activity relative to its internal reference were then determined by curve fitting the experimental data with equations derived on the basis of the Henderson-Hasselbalch equation. Using this Raman titration method, we determined for the first time the first and second thiol pKa values for 1,2-benzenedithiol in water. This Raman-based method is convenient to implement, and its underlying theory is easy to follow. It should therefore have broad application for thiol pKa determinations and verification.

  9. Thiol-yne adsorbates for stable, low-density, self-assembled monolayers on gold.

    Science.gov (United States)

    Stevens, Christopher A; Safazadeh, Leila; Berron, Brad J

    2014-03-04

    We present a novel approach toward carboxylate-terminated, low-density monolayers on gold, which provides exceptional adsorbate stability and conformational freedom of interfacial functional groups. Adsorbates are synthesized through the thiol-yne addition of two thiol-containing head groups to an alkyne-containing tail group. The resulting monolayers have two distinct phases: a highly crystalline head phase adjacent to the gold substrate, and a reduced density tail phase, which is in contact with the environment. The ellipsometric thickness of 27 Å is consistent with the proposed structure, where a densely packed decanedithiol monolayer is capped with an 11 carbon long, second layer at 50% lateral chain density. The Fourier transform infrared peak at 1710 cm(-1) supports the presence of the carbonyl group. Further, the peaks associated with asymmetric and symmetric methylene stretching are shifted toward higher wavenumbers compared to those of well-packed self-assembled monolayers (SAMs), which shows a lower average crystallinity of the thiol-yne monolayers compared to a typical monolayer. Contact angle measurements indicate an intermediate surface energy for the thiol-yne monolayer surface, owing to the contribution of exposed methylene functionality at the surface in addition to the carbonyl terminal group. The conformational freedom at the surface was demonstrated through remodeling the thiol-yne surface under an applied potential. Changes in the receding contact angle in response to an external potential support the capacity for reorientation of the surface presenting groups. Despite the low packing at the solution interface, thiol-yne monolayers are resistant to water and ion transport (R(f) ~ 10(5)), supporting the presence of a densely structured layer at the gold surface. Further, the electrochemical stability of the thiol-yne adsorbates exceeded that of well-packed SAMs, requiring a more reductive potential to desorb the thiol-yne monolayers from the

  10. Nebulized and oral thiol derivatives for pulmonary disease in cystic fibrosis.

    Science.gov (United States)

    Tam, Julian; Nash, Edward F; Ratjen, Felix; Tullis, Elizabeth; Stephenson, Anne

    2013-07-12

    Cystic fibrosis is an inherited condition resulting in thickened, sticky respiratory secretions. Respiratory failure, due to recurrent pulmonary infection and inflammation, is the most common cause of mortality. Muco-active therapies (e.g. dornase alfa and nebulized hypertonic saline) may decrease sputum viscosity, increase airway clearance of sputum, reduce infection and inflammation and improve lung function. Thiol derivatives, either oral or nebulized, have shown benefit in other respiratory diseases. Their mode of action is likely to differ according to the route of administration. There are several thiol derivatives, and it is unclear which of these may be beneficial in cystic fibrosis. To evaluate the efficacy and safety of nebulized and oral thiol derivatives in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, comprising references identified from comprehensive electronic database searches, hand searches of relevant journals, abstract books and conference proceedings.Most recent search: 13 June 2013.We also conducted a PubMed search on 26 February 2013 for relevant published articles. Randomized and quasi-randomized controlled trials comparing nebulized or oral thiol derivatives to placebo or another thiol derivative in people with cystic fibrosis. The authors independently assessed trials for inclusion, analysed risk of bias and extracted data. Searches identified 23 trials; nine trials (255 participants) are included, of these seven trials are more than 10 years old. Three trials of nebulized thiol derivatives were identified (one compared 20% N-acetylcysteine to 2% N-acetylcysteine; another compared sodium-2-mercaptoethane sulphonate to 7% hypertonic saline; and another compared glutathione to 4% hypertonic saline). Although generally well-tolerated with no significant adverse effects, there was no evidence of significant clinical benefit in our primary outcomes in participants receiving

  11. Thiol groups controls on arsenite binding by organic matter: new experimental and modeling evidence.

    Science.gov (United States)

    Catrouillet, Charlotte; Davranche, Mélanie; Dia, Aline; Bouhnik-Le Coz, Martine; Pédrot, Mathieu; Marsac, Rémi; Gruau, Gérard

    2015-12-15

    Although it has been suggested that several mechanisms can describe the direct binding of As(III) to organic matter (OM), more recently, the thiol functional group of humic acid (HA) was shown to be an important potential binding site for As(III). Isotherm experiments on As(III) sorption to HAs, that have either been grafted with thiol or not, were thus conducted to investigate the preferential As(III) binding sites. There was a low level of binding of As(III) to HA, which was strongly dependent on the abundance of the thiols. Experimental datasets were used to develop a new model (the modified PHREEQC-Model VI), which defines HA as a group of discrete carboxylic, phenolic and thiol sites. Protonation/deprotonation constants were determined for each group of sites (pKA=4.28±0.03; ΔpKA=2.13±0.10; pKB=7.11±0.26; ΔpKB=3.52±0.49; pKS=5.82±0.052; ΔpKS=6.12±0.12 for the carboxylic, phenolic and thiols sites, respectively) from HAs that were either grafted with thiol or not. The pKS value corresponds to that of single thiol-containing organic ligands. Two binding models were tested: the Mono model, which considered that As(III) is bound to the HA thiol site as monodentate complexes, and the Tri model, which considered that As(III) is bound as tridentate complexes. A simulation of the available literature datasets was used to validate the Mono model, with logKMS=2.91±0.04, i.e. the monodentate hypothesis. This study highlighted the importance of thiol groups in OM reactivity and, notably, determined the As(III) concentration bound to OM (considering that Fe is lacking or at least negligible) and was used to develop a model that is able to determine the As(III) concentrations bound to OM.

  12. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  13. Selective Adsorption of Thiols Using Gold Nanoparticles Supported on Metal Oxides.

    Science.gov (United States)

    Sui, Ruohong; Lesage, Kevin L; Carefoot, Sarah K; Fürstenhaupt, Tobias; Rose, Chelsea J; Marriott, Robert A

    2016-09-13

    Selective capture of thiols from a synthetic hydrogen sulfide containing mixture using supported nanogold materials has been explored for the potential removal of thiols from sour gas production fluids. In this research, TiO2-, Al2O3-, SiO2-, and ZnO-supported gold nanoparticles have been studied for their usage as regeneratable adsorbents to capture CH3SH, C2H5SH, and i-C3H7SH. Au/TiO2 and Au/Al2O3 showed promising properties for removing the thiols efficiently from a gas-phase mixture; however, Au/Al2O3 did catalyze some undesirable side reactions, e.g., carbonyl sulfide formation. It was found that a mild temperature of T = 200 °C was sufficient for regeneration of either Au/TiO2 or Au/Al2O3 adsorbent. The metal oxide mesopores played an important role for accommodating gold particles and chemisorption of the thiols, where smaller pore sizes were found to inhibit the agglomeration/growth of gold particles. The nature of thiol adsorption and the impact of multiple adsorption-desorption cycles on the adsorbents have been studied using electron microscopy, XPS, XRD, GC, and physi/chemiadsorption analyses.

  14. Low-molecular-mass thiol compounds from a free-living highly pathogenic amoeba, Naegleria fowleri.

    Science.gov (United States)

    Ondarza, Raúl N; Iturbe, Angélica; Hernández, Eva; Hurtado, Gerardo

    2003-04-01

    Acid extracts labelled with the fluorescent reagent monobromobimane and separated by HPLC have enabled the detection of low-molecular-mass thiol compounds in Naegleria fowleri for the first time. The amounts detected are expressed in nmol/1 x 10(6) trophozoites cultivated at various stages of growth in the appropriate culture medium. N. fowleri is a highly pathogenic free-living amoeba, in which we found important thiol compounds, some of them in their reduced and oxidized forms. Unlike cysteine and glutathione, a number of these are not represented in normal human lymphocytes. Some of these thiol compounds from Naegleria must have their respective disulphide reductases, although the presence of thiol-disulphide exchange reactions must be considered. Ovothiol A, with antioxidant properties, is an example of a compound that is kept reduced by trypanothione in trypanosomatids, although no disulphide reductase for ovothiol A has yet been discovered. In our case we were unable to detect this biothiol in Naegleria. The presence of thiol compounds that seem to be particular to this pathogen and which are not present in human lymphocytes opens the possibility of searching for disulphide-reducing enzymes that can serve as drug targets.

  15. Superoxide dismutase and media dependence of far-UV radiation resistance in thiol-treated cells

    Energy Technology Data Exchange (ETDEWEB)

    Claycamp, H.G.; McCormick, M.L.; DeRose, C.M.; Elwell, J.H.; Oberley, L.W. (Iowa Univ., Iowa City, IA (USA). Radiation Research Lab.)

    1990-09-01

    Pretreatment of wild-type Escherichia coli K12 cells with dithiothreitol (DTT) induces far-UV radiation resistance after the thiol is removed (Claycamp 1988). The present study shows that a 1 h treatment of cells with DTT in minimal medium followed by a 0.5 h incubation in buffer (37{sup 0}C) results in a dose reduction factor (DRF) calculated at F{sub 37} of 1.81. When the thio pretreatment was in rich medium, sensitization occurs with DRF = 0.729. This could be reversed to protection by inhibiting extracellular thiol oxidation in rich medium with the chelator, DETAPAC, such that thiol oxidation rate was equivalent to that of DTT in minimal medium. Both thiol-induced resistance and sensitization produced changes predominantly in the shoulders of survival curves. For either protection or sensitization, at least one form of endogenous superoxide dismutase (SOD) was required. These results suggest that different targets are involved in thiol-induced UV protection and sensitization: DNA and extracellular targets (e.g. the membrane), respectively. (author).

  16. Thiol-disulfide exchange in peptides derived from human growth hormone.

    Science.gov (United States)

    Chandrasekhar, Saradha; Epling, Daniel E; Sophocleous, Andreas M; Topp, Elizabeth M

    2014-04-01

    Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange.

  17. Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers

    Science.gov (United States)

    Xia, Zhiyong; Baird, Lance; Zimmerman, Natasha; Yeager, Matthew

    2017-09-01

    In this study, we developed a cost effective method of using thiol functionalized γ-aluminum oxide hydroxide (γ-AlOOH) filters for removing three key heavy metals from water: mercury, lead, and cadmium under non-concomitant conditions. Compared to non-thiol treated γ-AlOOH filters, the introduction of thiol functional groups greatly improved the heavy metal removal efficiency under both static and dynamic filtration conditions. The adsorption kinetics of thiol functionalized γ-AlOOH were investigated using the Lagergren first order and pseudo-second order kinetics models; whereas the isothermal adsorption behavior of these membranes was revealed through the Langmuir and Freundlich models. Heavy metal concentration was quantified by Inductively Coupled Plasma-Mass Spectroscopy, and the thiol level on γ-AlOOH surface was measured by a colorimetric assay using Ellman's reagent. X-ray photoelectron spectroscopy was used to further address the surface sulfur state on the membranes after heavy metal exposure. Mechanisms for heavy metal adsorption were also discussed.

  18. Pore surface engineering in a zirconium metal–organic framework via thiol-ene reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Bo; Hu, Guiping; Zhou, Tailin; Wang, Cheng, E-mail: chengwang@whu.edu.cn

    2015-03-15

    A porous olefin-functionalized Zr(IV)-based metal–organic framework, denoted as UiO-68-allyl, has been constructed. Our results clearly demonstrated that the surface of UiO-68-allyl could be decorated with organic molecule (ethanethiol) via thiol-ene reaction. More importantly, the crystallinity of the framework were maintained during the post-synthetic modification process. However, the microporosity of the framework is retained but the surface area decreased, due to the grafting of ethylthio groups into the pores. From our studies, we can conclude that the strategy of post-synthetic modification of UiO-68-allyl via thiol-ene reaction may be general. Furthermore, we may anchor other desired functional group onto the pore walls in Zr-MOFs via thiol-ene reaction, enabling more potential applications. - graphical abstract: In this manuscript, we reported the post-synthetic modification of an olefin-functionalized Zr(IV)-based metal–organic framework via thiol-ene reaction. - Highlights: • A porous olefin-functionalized Zr(IV)-based metal–organic framework has been constructed. • The surface of olefin-functionalized Zr-MOF could be decorated with organic molecules via thiol-ene reaction. • The crystallinity and permanent porosity of the framework were maintained during the post-synthetic modification process.

  19. Quantification of protein thiols using ThioGlo 1 fluorescent derivatives and HPLC separation.

    Science.gov (United States)

    Hoff, Signe; Larsen, Flemming H; Andersen, Mogens L; Lund, Marianne N

    2013-04-07

    A method for quantification of total soluble protein-derived thiols in beer was developed based on the formation of fluorescent adducts with the maleimide compound ThioGlo 1. The problem of interference from fluorescent adducts of sulfite and ThioGlo 1 was solved by HPLC separation of the adducts followed by fluorescence detection. Using standard addition of GSH, a detection limit of 0.028 μM thiols was achieved. The application and validation of the method was demonstrated for beers with different color intensities, and the application range is in principle for any biological system containing thiols. However, the quantification of cysteine was complicated by a lower fluorescence response of its ThioGlo 1 adducts. Based on the studies of the responses of a series of cysteine-derived thiols and (1)H NMR studies of the structures of ThioGlo 1 adducts with GSH and cysteine, it was concluded that thiols with a neighboring free amino group yield ThioGlo 1 adducts with a reduced fluorescence intensity.

  20. Self-Healing Photocurable Epoxy/thiol-ene Systems Using an Aromatic Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Ricardo Acosta Ortiz

    2016-01-01

    Full Text Available A rapid and efficient method to obtain self-healing epoxy resins is discussed. This method is based on the use of a thiol-disulfide oligomer obtained by partial oxidation of a multifunctional thiol using a hypervalent iodine (III compound as oxidant. The oligomer was characterized by Fourier transform infrared spectroscopy (FTIR, Raman and nuclear magnetic resonance spectroscopies, and gel permeation chromatography (GPC. The oligomer was a joint component of the thiol-ene system along with a tetra-allyl-functionalized curing agent. The kinetics of the photopolymerization of diglycidylether of bisphenol A (DGEBA revealed that conversions of the epoxy groups as high as 80% were achieved in only 15 minutes by increasing the concentration of the thiol-ene system in the formulation. The disulfide bonds introduced in the copolymer using the thiol-disulfide oligomer allowed the repairing of the test specimens in as little as 10 minutes when the specimens were heated at 80°C or for 500 minutes at room temperature. The analysis of the mechanical properties using dynamic mechanical analysis (DMA showed that the specimens displayed a healing efficiency up to 111% compared with the unhealed specimens, depending on the amount of polythioethers present in the copolymer.

  1. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene.

    Science.gov (United States)

    Zhang, Zhida; Feng, Shengyu; Zhang, Jie

    2016-02-01

    A combination of a thiol-Michael addition reaction and a free radical mediated thiol-ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol-ene click reactions leads to a design of a new monomer containing both electron-deficient carbon-carbon double bonds and unconjugated carbon-carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon-carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol-ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  2. Detection of biological thiols based on a colorimetric method

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuan XU; Yang-yang SUN; Yu-juan ZHANG; Chen-he LU; Jin-feng MIAO‡

    2016-01-01

    Biological thiols (biothiols), an important kind of functional biomolecules, such as cysteine (Cys) and glutathione (GSH), play vital roles in maintaining the stability of the intracellular environment. In past decades, studies have demonstrated that metabolic disorder of biothiols is related to many serious disease processes and wil lead to extreme damage in human and numerous animals. We carried out a series of experiments to detect biothiols in bi-osamples, including bovine plasma and cel lysates of seven different cel lines based on a simple colorimetric method. In a typical test, the color of the test solution could gradualy change from blue to colorless after the addition of biothiols. Based on the color change displayed, experimental results reveal that the percentage of biothiols in the embryonic fibroblast cell line is significantly higher than those in the other six cell lines, which provides the basis for the following biothiols-related study.%中文概要题目:生物巯化物的可视化检测目的:通过简单可靠的可视化检测方法评估牛血清及各细胞系中生物巯化物的含量。创新点:基于银纳米颗粒形成的比色变化过程对牛血清及细胞中生物巯化物进行了检测。方法:将6组不同的细胞系培养后进行裂解,其裂解产物分别与3,3',5,5'-四甲基联苯胺(TMB)和硝酸银(AgNO3)的混合液室温孵育后,用紫外可见分光光度计测量细胞中生物巯化物的含量。结论:通过不同细胞系中生物巯化物含量的比对,证实胚胎成纤维细胞中生物巯化物的含量明显高于其他细胞。

  3. Hybrid thiol-ene network nanocomposites based on multi(meth)acrylate POSS.

    Science.gov (United States)

    Li, Liguo; Liang, Rendong; Li, Yajie; Liu, Hongzhi; Feng, Shengyu

    2013-09-15

    First, multi(meth)acrylate functionalized POSS monomers were synthesized in this paper. Secondly, FTIR was used to evaluate the homopolymerization behaviors of multi(meth)acrylate POSS and their copolymerization behaviors in the thiol-ene reactions with octa(3-mercaptopropyl) POSS in the presence of photoinitiator. Results showed that the photopolymerization rate of multimethacrylate POSS was faster than that of multiacrylate POSS. The FTIR results also showed that the copolymerizations were dominant in the thiol-ene reactions with octa(3-mercaptopropyl) POSS, different from traditional (meth)acrylate-thiol system, in which homopolymerizations were predominant. Finally, the resulted hybrid networks based on POSS were characterized by XRD, FE-SEM, DSC, and TGA. The characterization results showed that hybrid networks based on POSS were homogeneous and exhibited high thermal stability.

  4. Influence of volatile thiols in the development of blackcurrant aroma in red wine.

    Science.gov (United States)

    Rigou, Peggy; Triay, Aurélie; Razungles, Alain

    2014-01-01

    A strong blackcurrant aroma was recently perceived in some red wines originating from the same appellation. Varietal thiols such as 4-mercapto-4-methyl-2-pentanone (4MMP), 3-(mercapto)hexyl acetate (3MHA) and 3-mercapto-1-hexanol (3MH) are compounds potentially responsible for the development of this aroma. In order to demonstrate the correlation between thiols concentrations in red wines and blackcurrant aroma intensity, a multiple variable analysis was realised with thiols concentrations obtained by chemical analysis and blackcurrant aroma intensities obtained by descriptive sensory analysis. The 4MMP concentration was very well correlated to the blackcurrant aroma, and 3MHA and 3MH present at high concentrations act as enhancers of the perception of this aroma. This correlation was further supported after performing a sensory comparison by classification test. The different factors that could impact on the development of blackcurrant aroma in red wine were discussed.

  5. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Science.gov (United States)

    Hakamada, Masataka; Kato, Naoki; Mabuchi, Mamoru

    2016-11-01

    The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  6. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Thorsen, Michael

    2008-01-01

    might relate to bypass for abnormal septum-associated protein sorting. The broad resistance toward oxidants (DPS, diamide and H(2)O(2)) of the Deltacts1 strain links cell wall function to the resistance to oxidative stress and suggests the existence of targets that are common for these oxidants.......Thiol oxidants are expected to have multiple effects in living cells. Hence, mutations giving resistance to such agents are likely to reveal important targets and/or mechanisms influencing the cellular capacity to withstand thiol oxidation. A screen for mutants resistant to the thiol......-specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post...

  7. Thiolated pyrimidine nucleotides may interfere thiol groups concentrated at lipid rafts of HIV-1 infected cells.

    Science.gov (United States)

    Kanizsai, Szilvia; Ongrádi, Joseph; Aradi, János; Nagy, Károly

    2014-12-01

    Upon HIV infection, cells become activated and cell surface thiols are present in increased number. Earlier we demonstrated in vitro anti-HIV effect of thiolated pyrimidine nucleotide UD29, which interferes thiol function. To further analyse the redox processes required for HIV-1 entry and infection, toxicity assays were performed using HIV-1 infected monolayer HeLaCD4-LTR/ β-gal cells and suspension H9 T cells treated with several thiolated nucleotide derivatives of UD29. Selective cytotoxicity of thiolated pyrimidines on HIV-1 infected cells were observed. Results indicate that thiolated pyrimidine derivates may interfere with -SH (thiol) groups concentrated in lipid rafts of cell membrane and interacts HIV-1 infected (activated) cells resulting in a selective cytotoxicity of HIV-1 infected cells, and reducing HIV-1 entry.

  8. Strategies for creating antifouling surfaces using selfassembled poly(ethylene glycol) thiol molecules

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    conditions for the reversible, initial attachment of microbial cells. This effect can be obtained by grafting hydrophilic polymeric chains onto surfaces and thereby provide a steric barrier between the substrate surface and the microbial cell. Poly (ethylene glycol) (PEG) is one of the most widely used....... The work focuses on novel strategies to self assemble PEG thiol monolayers with high graft density. One of the strategies investigated involved backfilling a self assembled layer of 2000 Da PEG thiol with shorter oligo (ethylene glycol) (OEG) thiol molecules to form a mixed monolayer. Detailed quantitative......Microorganisms are one of the most important parts of our ecosystem influencing the sustenance of human society. The beneficial microbes are of high relevance to food industry, development of antibiotics and processing of many raw materials. Mankind has indeed benefitted a lot from large number...

  9. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  10. Serum paraoxonase activity, total thiols levels, and oxidative status in patients with acute brucellosis.

    Science.gov (United States)

    Esen, Ramazan; Aslan, Mehmet; Kucukoglu, Mehmet Emin; Cıkman, Aytekin; Yakan, Umit; Sunnetcioglu, Mahmut; Selek, Sahbettin

    2015-06-01

    It is well known that paraoxonase-1 (PON1) activity may decrease during the course of infection and inflammation. The aim of this study was to investigate serum PON1 activity, oxidative status, and thiols levels in patients with acute brucellosis. In addition, we investigated the PON1 phenotype in patients with acute brucellosis. Thirty patients with acute brucellosis and 35 healthy controls were enrolled. Serum paraoxonase and arylesterase activities, thiols levels, lipid hydroperoxide levels, total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) were determined. Serum basal and salt-stimulated paraoxonase-arylesterase activities, TAC levels and thiols levels were significantly lower in patients with acute brucellosis than controls (for all, p brucellosis. These results indicate that lower PON1 activity is associated with oxidant-antioxidant imbalance.

  11. Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex Koenig) in response to cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Legorreta, Teresa [Departamento de Recursos del Mar, CINVESTAV-IPN, Unidad Merida, Apdo. Postal 73-Cordemex, Merida, Yucatan 97310 (Mexico); Mendoza-Cozatl, David; Moreno-Sanchez, Rafael [Departamento de Bioquimica, Instituto Nacional de Cardiologia, Mexico D.F. 14080 (Mexico); Gold-Bouchot, Gerardo [Departamento de Recursos del Mar, CINVESTAV-IPN, Unidad Merida, Apdo. Postal 73-Cordemex, Merida, Yucatan 97310 (Mexico)], E-mail: gold@mda.cinvestav.mx

    2008-01-20

    Trace metal accumulation and thiol compounds synthesis as induced by cadmium exposure was studied in the seagrass Thalassia testudinum. Shoots were exposed for 24, 48, 96 and 144 h to several CdCl{sub 2} concentrations (0, 30, 50 and 70 {mu}M). Levels of cadmium, cysteine, glutathione (GSH), {gamma}-glutamylcysteine ({gamma}-EC), and phytochelatin-like peptides were determined in green blades, live sheaths and root/rhizomes tissues. Metal accumulation was dependent on Cd concentration and type of tissue, with green blades showing the highest content followed by live sheaths and root/rhizomes. All tissues experienced an increase in thiol-containing compounds as a response to cadmium exposure. Live sheaths showed the highest levels of cysteine, GSH and {gamma}-EC. This is the first report of induction of thiol peptides, presumably phytochelatins, by a trace metal in a sea grass species.

  12. Enhancement in the Glass Transition Temperature in Latent Thiol-Epoxy Click Cured Thermosets

    Directory of Open Access Journals (Sweden)

    Dailyn Guzmán

    2015-04-01

    Full Text Available Tri and tetrafunctional thiol were used as curing agent for diglycidyl ether of bisphenol A (DGEBA catalyzed by a commercially available amine precursor, LC-80. Triglycidyl isocianurate (TGIC was added in different proportions to the mixture to increase rigidity and glass transition temperature (Tg. The cooperative effect of increasing functionality of thiol and the presence of TGIC in the formulation leads to an increased Tg without affecting thermal stability. The kinetics of the curing of mixtures was studied by calorimetry under isothermal and non-isothermal conditions. The latent characteristics of the formulations containing amine precursors were investigated by rheometry and calorimetry. The increase in the functionality of the thiol produces a slight decrease in the storage lifetime of the mixture. The materials obtained with tetrathiol as curing agent showed the highest values of Young’s modulus and Tg.

  13. Janus Gold Nanoparticles from Nanodroplets of Alkyl Thiols: A Molecular Dynamics Study.

    Science.gov (United States)

    Bhandary, Debdip; Valechi, Vasumathi; Cordeiro, Maria Natália D S; Singh, Jayant K

    2017-03-28

    Janus particles provide an asymmetry in structure, which can impart diverse functionalities leading to immense importance in various applications, ranging from targeted delivery to interfacial phenomena, including catalysis, electronics, and optics. In this work, we present results of a molecular dynamics study of the growth mechanism of coating on gold nanoparticles (AuNPs) from droplets of n-alkyl thiols with different chain lengths (C5 and C11) and terminal groups (CH3 and COOH). The effect of chain lengths and functional groups on the formation of a monolayer of alkyl thiols on AuNPs is investigated. A two-step mechanism, initiated by the binding of the droplet to the nanoparticle surface with a time constant on the order of ∼1 ns, followed by the diffusion-driven growth with a larger time constant (on the order of 100 ns), is shown to capture the growth dynamics of the monolayer. It is observed that the time required for complete wetting increases with an increase in the chain length. Moreover, the monolayer formation is slowed down in the presence of carboxyl groups because of strong hydrogen bonding. The kinetics of the n-alkyl thiols coating on the nanoparticles is found to be independent of the droplet size but carboxyl-terminated thiols spread more with increasing droplet size. Furthermore, different time constants for different chains and functional groups yield Janus coating when two droplets of alkyl thiols with different terminal groups are allowed to form monolayers on the nanoparticle. The Janus balance (β) for different combinations of alkyl thiols and nanoparticle sizes varies in the range of 0.42-0.71.

  14. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination?

    KAUST Repository

    Souza, Amaury De Melo

    2014-01-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  15. Production of Thiol Species From An Exponential Growth Diatom Under Copper Exposure

    Science.gov (United States)

    Tang, D.; Shafer, M. M.; Karner, D. A.; Armstrong, D. E.; Schauer, J.

    2003-12-01

    The intracellar induction of phytochelatins is a well documented response of eukaryotic microorganisms to aqueous metal exposure. The extracellular release of thiolic compounds from algal species has been observed; and in some cases, this release can contribute a significant fraction of the uncharacterized metal-complexing ligands. Glutathione (GSH) or cysteine is among the detectable thiols excreted. A quantitative assessment of the excretion of thiols from algae cells into growth media is needed to assess the significance of biogenic-thiols as a source of strong ligands in natural waters and as a "forgotten" route in sulfur biogeochemical cycle. Unbuffered growth media (e.g., without adding complexing ligand such as EDTA) have only rarely been used to study the possible release of metal-complexing ligands from algal species, and the ligand titration techniques used varied considerably. The majority of culture studies have applied metal-buffered media. A direct comparison of released ligands under buffered and unbuffered conditions is lacking, partially due to the inherent difficulties of the titration methods applied. Using HPLC with fluorescence detection of thiol-monobromobimane derivatives, we were able to follow the dynamic change of GSH released in both media types during algal growth: (1) the cell quotas for thiols and pigments varied (mostly decreases) with growth time. Therefore, pigment-normalized cellular thiol concentrations were more or less conservative. (2) GSH was released into both the EDTA-buffered and -unbuffered growth media at similar concentrations. (3) at similar available Cu concentrations, EDTA possibly enhanced, rather than hindered, the release of GSH.

  16. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  17. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. [significance in molecular evolution

    Science.gov (United States)

    Weber, A. L.

    1983-01-01

    The rate of lactate formation from glyceraldehyde, catalyzed by N-acetyl-cysteine at ambient temperature in aqueous sodium phosphate (pH 7.0), is more rapid at higher sodium phosphate concentrations and remains essentially the same in the presence and absence of oxygen. The dramatic increase in the rate of glycerate formation that is brought about by this thiol, N-acetylcysteine, is accompanied by commensurate decreases in the rates of glycolate and formate production. It is suggested that the thiol-dependent formation of lactate and glycerate occurs by way of their respective thioesters. Attention is given to the significance of these reactions in the context of molecular evolution.

  18. Characterization of self-assembled monolayers of porphyrins bearing multiple-thiol and photoelectric response

    Institute of Scientific and Technical Information of China (English)

    Jian Dong Yang; Xiao Quan Lu

    2012-01-01

    Self-assembled monolayers (SAMs) of thiol-derivatized porphyrin molecules on Au substrate have attracted extensively interest for use in sensing,optoelectronic devices and molecular electronics.In this paper,tetra-[p-(3-mercaptopropyloxy)-phenyl]-porphyrin was synthesized and self-assembled with thiol on Au substrate for porphyrin SAMs (PPS4).The electrochemical results demonstrated that PPS4 could form excellent SAMs on gold surface.Self-assembled nanojunctions of PPS4 were fabricated by using gold nanogap electrodes (gap width:ca.100 nm).With the light on/off,the nanojunctions showed current high/low as nanometer scaled photo switch.

  19. Endothelium-dependent vasorelaxation in inhibited by in vivo depletion of vascular thiol levels

    DEFF Research Database (Denmark)

    Laursen, J B; Boesgaard, S; Trautner, S;

    2001-01-01

    Thiols like glutathione may serve as reducing cofactors in the production of nitric oxide (NO) and protect NO from inactivation by radical oxygen species. Depletion of thiol compounds reduces NO-mediated vascular effects in vitro and in vivo. The mechanisms underlying these actions are not clear......, but may involve decreased synthesis of NO and/or increased degradation of NO. This study investigates the effect of glutathione depletion on the response to NO-mediated vasodilation induced by acetylcholine (Ach, 10 micrograms/kg), endothelial NO synthase (eNOS) activity and potential markers of vascular...

  20. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  1. Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors

    DEFF Research Database (Denmark)

    Lafleur, Josiane P; Senkbeil, Silja; Novotny, Jakub;

    2015-01-01

    electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro...

  2. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-c...

  3. Functionalization of embedded thiol-ene waveguides for evanescent wave-induced fluorescence detection in a microfluidic device

    DEFF Research Database (Denmark)

    Feidenhans, Nikolaj A.; Jensen, Thomas Glasdam; Lafleur, Josiane P.;

    2013-01-01

    We demonstrate the use of functional surface groups inherently present on off-stoichiometric thiol-ene polymers, for site-specific immobilization of biomolecules and detection by evanescent wave-induced fluorescence. An optofluidic chip featuring an embedded thiol-ene waveguide was selectively fu...

  4. Methylphosphonic Dichloride as Reagent for the Determination of the Enantiomeric Excess of Chiral Thiols. Scope and Limitations

    NARCIS (Netherlands)

    Strijtveen, Bert; Kellogg, Richard M.; Feringa, Bernard

    1987-01-01

    Methylphosphonic dichloride, CH3P(=O)Cl2, reacts cleanly and quantitatively with thiols to form dialkylthiophosphonates, CH3P(=O)(SR)2. From the ratio of the integrations of the 31P absorptions in the NMR spectra, the enantiomeric excesses of the thiols can be obtained for the cases that R is chiral

  5. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    Science.gov (United States)

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  6. Preparation of a novel carboxyl stationary phase by "thiol-ene" click chemistry for hydrophilic interaction chromatography.

    Science.gov (United States)

    Peng, Xi-Tian; Liu, Tao; Ji, Shu-Xian; Feng, Yu-Qi

    2013-08-01

    A novel carboxyl-bonded silica stationary phase was prepared by "thiol-ene" click chemistry. The resultant Thiol-Click-COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol-Click-COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol-Click-COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol-Click-COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water-soluble vitamins was achieved.

  7. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    Science.gov (United States)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  8. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    Regulation of intracellular thiol-disulfide redox status is an essential part of cellular homeostasis. This involves the regulation of both oxidative and reductive pathways, production of oxidant scavengers and, importantly, the ability of cells to respond to changes in the redox environment...

  9. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    Science.gov (United States)

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  10. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

    KAUST Repository

    Wu, Kunlin

    2013-01-01

    The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.

  11. Solvent effects in adsorption of alkyl thiols on gold structures: A molecular simulation study

    NARCIS (Netherlands)

    Pool, R.; Schapotschnikow, P.Z.; Vlugt, T.J.H.

    2007-01-01

    We carried out Monte Carlo simulations of gold nanocrystals (NCs) and (111) slabs covered with alkyl thiols, with and without explicit solvent (n-hexane), at T ) 300 K. Adsorption isotherms for propane- and octanethiol showed a phase behavior measured previously in experiments. Comparison of the ads

  12. Thimerosal Exposure and the Role of Sulfation Chemistry and Thiol Availability in Autism

    Directory of Open Access Journals (Sweden)

    Mark R. Geier

    2013-08-01

    Full Text Available Autism spectrum disorder (ASD is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH reserve capacity, resulting in a compromised oxidation/reduction (redox and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM and other mercury (Hg compounds. TM is an organomercurial compound (49.55% Hg by weight that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.

  13. Two-Dimensional Structure of Disulfides and Thiols on Gold(111)

    NARCIS (Netherlands)

    Nelles, Gabriele; Schönherr, Holger; Jaschke, Manfred; Wolf, Heiko; Schaub, Matthias; Kuther, Jörg; Tremel, Wolfgang; Bamberg, Ernst; Ringsdorf, Helmut; Butt, Hans-Jürgen

    1998-01-01

    In order to find factors which determine the two-dimensional structure of self-assembled monolayers (SAMs), several classes of thiols and disulfides on gold (111) have been investigated by atomic force microscopy (AFM). SAMs were formed from a series of symmetrical and asymmetrical diethylalkanoate

  14. Roll-to-plate fabrication of microfluidic devices with rheology-modified thiol-ene resins

    DEFF Research Database (Denmark)

    Senkbeil, Silja; Aho, Johanna; Yde, Leif

    2016-01-01

    In this paper, the replication possibilities of microfluidic channels by UV-roll-to-plate fabrication were investigated and a study of rheology-modified thiol-ene for the application in such a UV-roll-to-plate setup was conducted. The system allows the manufacture of channels with aspect ratios...

  15. Thiol-ene click chemistry: computational and kinetic analysis of the influence of alkene functionality.

    Science.gov (United States)

    Northrop, Brian H; Coffey, Roderick N

    2012-08-22

    The influence of alkene functionality on the energetics and kinetics of radical initiated thiol-ene click chemistry has been studied computationally at the CBS-QB3 level. Relative energetics (ΔH°, ΔH(++), ΔG°, ΔG(++)) have been determined for all stationary points along the step-growth mechanism of thiol-ene reactions between methyl mercaptan and a series of 12 alkenes: propene, methyl vinyl ether, methyl allyl ether, norbornene, acrylonitrile, methyl acrylate, butadiene, methyl(vinyl)silanediamine, methyl crotonate, dimethyl fumarate, styrene, and maleimide. Electronic structure calculations reveal the underlying factors that control activation barriers for propagation and chain-transfer processes of the step-growth mechanism. Results are further extended to predict rate constants for forward and reverse propagation and chain-transfer steps (k(P), k(-P), k(CT), k(-CT)) and used to model overall reaction kinetics. A relationship between alkene structure and reactivity in thiol-ene reactions is derived from the results of kinetic modeling and can be directly related to the relative energetics of stationary points obtained from electronic structure calculations. The results predict the order of reactivity of alkenes and have broad implications for the use and applications of thiol-ene click chemistry.

  16. Sytematic Study of the Adsorption of Thiol Molecules on Noble-Metal Nanoparticles

    Science.gov (United States)

    Barron, H.; Hidalgo, F.; Fernandez-Seivane, L.; Noguez, C.; Lopez-Lozano, X.

    2012-03-01

    The study of the interaction between nanoparticles and different types of ligands has been intensively investigated in the last years due to the potential contribution of their properties to the nanotechnology device design. These properties have opened new research fields like plasmonics, with interesting applications in optics, electronics, biophysics, medicine, pharmacology and materials science. Self-assembly monolayers have been thoroughly studied at experimental and theoretical level on extended (111) gold and silver surfaces. However, nanoparticle and molecule properties after the adsorption are still not well understood due to the different factors involved in this process such as the adsorption sites, size and element type of the nanoparticle. In this work we have performed a systematic study of the adsorption of methyl-thiol molecules on Au55 and Ag55 clusters through density functional theory calculations with the SIESTA code. Different adsorption modes of the methyl-thiol molecule on Au55 and Ag55 were considered. In general, for both type of nanoparticles, the methyl-thiol molecule prefers to be adsorbed on the Bridge sites. These results provide valuable information of the structural and electronic properties of methyl-thiol passivated Au and Ag nanoparticles.

  17. Synthesis of Novel Fluorescence reagents and Their Application in Determination of Thiol Compounds

    Institute of Scientific and Technical Information of China (English)

    LIANG Shu-Cai; WANG Hong; ZHANG Hua-Shan; HU Xian-Ming

    2003-01-01

    @@ The identification and determination of thiol compounds is essential both for the clinical diagnosis and the con trol of diseases because alteration of their concentrations in biological systems are somehow responsive for some diseases such as myocardial infarction, diabetes, peripheral vascular and so on. [1

  18. MERCURY(II) ADSORPTION FROM WASTEWATERS USING A THIOL FUNCTIONAL ADSORBENT

    Science.gov (United States)

    The removal of mercury(II) from wastewaters (coal-fired utility plant scrubber solutions) using a thiol functional organoceramic composite (SOL-AD-IV) is investigated. A simulant is employed as a surrogate to demonstrate the removal of mercury from real waste solutions. Equilibri...

  19. Differential Labeling of Free and Disulfide-Bound Thiol Functions in Proteins

    NARCIS (Netherlands)

    Seiwert, Bettina; Hayen, Heiko; Karst, Uwe

    2008-01-01

    A method for the simultaneous determination of the number of free cysteine groups and disulfide-bound cysteine groups in proteins has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. Liquid chromatography/electrochem

  20. Self-assembled monolayers on gold of ferrocene-terminated thiols and hydroxyalkanethiols

    NARCIS (Netherlands)

    Auletta, T.; van Veggel, F.C.J.M.; Reinhoudt, David

    2002-01-01

    this paper, a study on the adsorption of mixed self-assembled monolayers (SAMs) for two different combinations of thiols (Fc(CH2)6SH/HO(CH2)2SH and Fc(CH2)16SH/HO(CH2)11SH (Fc = ferrocene)) is presented, to obtain surfaces with single isolated ferrocenylalkanethiols embedded in shorter

  1. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III

    Science.gov (United States)

    Beaudoin, Jessica N.; Ponnuraj, Nagendraprabhu; DiLiberto, Stephen J.; Hanafin, William P.; Kenis, Paul J. A.; Gaskins, H. Rex

    2015-01-01

    Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration. PMID:25994788

  2. Association of bilirubin and protein thiols in relation to copper and ceruloplasmin in hyperbilirubinemic patients

    Institute of Scientific and Technical Information of China (English)

    Mungli Prakash; Jeevan K Shetty; Roshan D'Souza; Suhasa Upadhya; Vijay Kumar

    2009-01-01

    Objective:Bilirubin is a double edged sword in biological system,acting as a toxic molecule and cytoprotecrant.Unconjugated bilirubin is proved to show antioxidant activity in vitro and in vivo.In the current work we tried to know the relationship between both conjugated and unconjugated bilirubin with copper and protein thiols in patients with hyperbilirnbinemia.Methods:Study was conducted on 56 hyperbilirubinemic cases and 56 healthy controls.Serum copper,ceruloplasmin,protein thiols,total bilirubin,conjugated and unconjugated bilirubin,unconjugated bilimbin/albumin ratio,total protein,albumin,AST,ALT and ALP were estimated.Results:There was significant increase in serum copper,total bilirubin,conjugated and unconjugated bilimbin.uriconjugated bilirubin/albumin ratio,AST,ALT,and ALP,and decrease in serum ceruloplasmin,protein thiols,total protein,and albumin in hyperbilimbinemic cases when compared to healthy controls.Conjugated bilimbin correlated positively with liver enzymes AST and ALP,and negatively with protein thials,total protein and albumin.Unconjugated bilirubin correlated positively with ALT.Protein thiols correlated negatively with copper and positively with ceruloplasmin,and also correlated negativelv with liver enzymes like AST,ALT and ALP,and positively with total protein and albumin.Conclusion:Combination of elevated levels of trace elements like copper and availability of reducing agent like bilimbin may prove deleterious by generating free radicals.

  3. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice.

  4. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols.

    Science.gov (United States)

    Bailly, Sabine; Jerkovic, Vesna; Marchand-Brynaert, Jacqueline; Collin, Sonia

    2006-09-20

    The aim of the present work was to investigate Sauternes wine aromas. In all wine extracts, polyfunctional thiols were revealed to have a huge impact. A very strong bacon-petroleum odor emerged at RI = 845 from a CP-Sil5-CB column. Two thiols proved to participate in this perception: 3-methyl-3-sulfanylbutanal and 2-methylfuran-3-thiol. A strong synergetic effect was evidenced between the two compounds. The former, never mentioned before in wines, and not found in the musts of this study, is most probably synthesized during fermentation. 3-Methylbut-2-ene-1-thiol, 3-sulfanylpropyl acetate, 3-sulfanylhexan-1-ol, and 3-sulfanylheptanal also contribute to the global aromas of Sauternes wines. Among other key odorants, the presence of a varietal aroma (alpha-terpineol), sotolon, fermentation alcohols (3-methylbutan-1-ol and 2-phenylethanol) and esters (ethyl butyrate, ethyl hexanoate, and ethyl isovalerate), carbonyls (trans-non-2-enal and beta-damascenone), and wood flavors (guaiacol, vanillin, eugenol, beta-methyl-gamma-octalactone, and Furaneol) is worth stressing.

  5. Development of ionic gels using thiol-based monomers in ionic liquid

    Science.gov (United States)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  6. A New Pyrene-Spacer-Maleimide Dyad for Sensing Molecules with One or Two Thiol Groups

    Institute of Scientific and Technical Information of China (English)

    WANG,Zhuo; ZHANG,De-Qing; ZHU,Dao-Ben

    2006-01-01

    A new pyrene-spacer-maleimide dyad 1 was used to selectively detect cysteine in the presence of other amino acids, and sequentially react with dithiols to generate the molecule with two pyrene units showing typical excimer fluorescence. Accordingly, dyad 1 was able to differentiate molecules with one or two thiol groups.

  7. An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins.

    Science.gov (United States)

    Fan, Teresa W M; Lane, Andrew N; Higashi, Richard M

    2004-01-01

    Thiol-rich peptides such as phytochelatins (PCs) and metallothioneins (MTs) are important cellular chelating agents which function in metal detoxification and/or homeostasis. The variations in molecular sizes and lack of chromophores of these peptides make their analysis difficult. This paper reports an electrophoresis-based method for a broad screen of thiol-rich peptides and proteins. The method uses the thiol-selective fluorescent tag, monobromobimane, coupled with Tricine--sodium dodecyl sulphate--urea polyacrylamide gel electrophoresis for a sensitive determination of both PCs and MTs. Results for PCs were confirmed by two-dimensional NMR and HPLC-tandem MS analyses. Sample throughput is substantially improved over chromatography-based methods through parallel sample analysis in 1 h of electrophoretic separation. The method is versatile in that peptides ranging from glutathione to large proteins can be analysed by simple modification(s) of the extraction and electrophoretic conditions, and the nature of the method supports serendipitous detection of unexpected or novel thiol metabolites.

  8. Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Tiziana Parasassi

    2010-01-01

    Full Text Available The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  9. Thiol-Ene Based Polymer Waveguides Fabricated By Uv-Assisted Soft Lithography For Optofluidic Applications

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Jensen, Thomas Glasdam; Kutter, Jörg Peter

    2011-01-01

    In this paper, a thiol-ene based polymer waveguide, defined by UV-assisted soft lithography, is designed, fabricated and characterized. Waveguides are formed by filling microfluidic channels with a high refractive index liquid mixture of ‘thiol’ and ‘ene’ monomers (e.g., trimethylolpropane tris(3...

  10. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells.

    Science.gov (United States)

    Kim, Seung Cheol; Choi, Boyun; Kwon, Youngjoo

    2017-01-01

    The inhibitory potential of sulforaphane against cancer has been suggested for different types of cancer, including ovarian cancer. We examined whether this effect is mediated by mitogen-activated protein kinase (MAPK) and reactive oxygen species (ROS), important signaling molecules related to cell survival and proliferation, in ovarian cancer cells. Sulforaphane at a concentration of 10 μM effectively inhibited the growth of cancer cells. Use of specific inhibitors revealed that activation of MAPK pathways by sulforaphane is unlikely to mediate sulforaphane-induced growth inhibition. Sulforaphane did not generate significant levels of intracellular ROS. Pretreatment with thiol reducers, but not ROS scavengers, prevented sulforaphane-induced growth inhibition. Furthermore, diamide, a thiol-oxidizing agent, enhanced both growth inhibition and cell death induced by sulforaphane, suggesting that the effect of sulforaphane on cell growth may be related to oxidation of protein thiols or change in cellular redox status. Our data indicate that supplementation with thiol-reducing agents should be avoided when sulforaphane is used to treat cancer.

  11. Synthesis and Microstructural Investigations of Organometallic Pd(II Thiol-Gold Nanoparticles Hybrids

    Directory of Open Access Journals (Sweden)

    Cervellino Antonio

    2008-01-01

    Full Text Available Abstract In this work the synthesis and characterization of gold nanoparticles functionalized by a novel thiol-organometallic complex containing Pd(II centers is presented. Pd(II thiol,trans, trans-[dithiolate-dibis(tributylphosphinedipalladium(II-4,4′-diethynylbiphenyl] was synthesized and linked to Au nanoparticles by the chemical reduction of a metal salt precursor. The new hybrid made of organometallic Pd(II thiol-gold nanoparticles, shows through a single S bridge a direct link between Pd(II and Au nanoparticles. The size-control of the Au nanoparticles (diameter range 2–10 nm was achieved by choosing the suitable AuCl4 −/thiol molar ratio. The size, strain, shape, and crystalline structure of these functionalized nanoparticles were determined by a full-pattern X-ray powder diffraction analysis, high-resolution TEM, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy measurements of the hybrid system show emission peaks at 418 and 440 nm. The hybrid was exposed to gaseous NO x with the aim to evaluate the suitability for applications in sensor devices; XPS measurements permitted to ascertain and investigate the hybrid –gas interaction.

  12. Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Spegel, Christer F; Kostesha, Natalie

    2008-01-01

    An impedance spectroscopic study of the interaction between thiol-modified Au electrodes and Saccharomyces cerevisiae of strain EBY44 revealed that the cells formed an integral part of the interface, modulating the capacitive properties until a complete monolayer was obtained, whereas the charge ...

  13. Influence cadmium ions on the synthesis of thiol compounds for flax

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-12-01

    Full Text Available Evaluation of the effectiveness of phytoremediation technologies isvery difficult. One way to quickly and inexpensively identifyphytoremediation potential of plants is found easily detectablemarker. In our study, we examined the content of thiol compoundsin plants, of Flax effects of various concentrations of cadmium ions.

  14. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  15. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  16. Piezo dispensed microarray of multivalent chelating thiols for dissecting complex protein-protein interactions.

    Science.gov (United States)

    Klenkar, Goran; Valiokas, Ramûnas; Lundström, Ingemar; Tinazli, Ali; Tampé, Robert; Piehler, Jacob; Liedberg, Bo

    2006-06-01

    The fabrication of a novel biochip, designed for dissection of multiprotein complex formation, is reported. An array of metal chelators has been produced by piezo dispensing of a bis-nitrilotriacetic acid (bis-NTA) thiol on evaporated gold thin films, prestructured with a microcontact printed grid of eicosanethiols. The bis-NTA thiol is mixed in various proportions with an inert, tri(ethylene glycol) hexadecane thiol, and the thickness and morphological homogeneity of the dispensed layers are characterized by imaging ellipsometry before and after back-filling with the same inert thiol and subsequent rinsing. It is found that the dispensed areas display a monotonic increase in thickness with increasing molar fraction of bis-NTA in the dispensing solution, and they are consistently a few Angströms thicker than those prepared at the same molar fraction by solution self-assembly under equilibrium-like conditions. The bulkiness of the bis-NTA tail group and the short period of time available for chemisorption and in-plane organization of the dispensed thiols are most likely responsible for the observed difference in thickness. Moreover, the functional properties of this biochip are demonstrated by studying multiple protein-protein interactions using imaging surface plasmon resonance. The subunits of the type I interferon receptor are immobilized as a composition array determined by the surface concentration of bis-NTA in the array elements. Ligand dissociation kinetics depends on the receptor surface concentration, which is ascribed to the formation of a ternary complex by simultaneous interaction of the ligand with the two receptor subunits. Thus, multiplexed monitoring of binding phenomena at various compositions (receptor densities) offers a powerful tool to dissect protein-protein interactions.

  17. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Amrit Kaur Bansal

    2009-01-01

    Full Text Available Aims: In this study, the effects of 0.1 mM Mn 2+ on thiol components (total thiols [TSH], glutathione reduced [GSH], glutathione oxidized [GSSG] and redox ratio [GSH/ GSSG] have been determined in human spermatozoa. Settings and Design: The subjects of the study were healthy males having more than 75% motility and 80 x 10 6 sperms/mL. Materials and Methods: Fresh semen was suspended in phosphate-buffered saline (PBS (pH 7.2 and this suspension was divided into eight equal fractions. All fractions, control (containing PBS and experimental (treated/untreated with [ferrous ascorbate, FeAA - 200 FeSO 4 μM, 1000 μM ascorbic acid, nicotine (0.5 mM and FeAA + nicotine], supplemented/unsupplemented with Mn 2+ [0.1 mM], were incubated for 2 h at 378C. These fractions were assessed for determining the thiol components. Statistical Analysis: The data were statistically analyzed by Students " t" test. Results and Conclusions: Ferrous ascorbate, nicotine and ferrous ascorbate + nicotine induced oxidative stress and decreased GSH and redox ratio (GSH/GSSG ratio but increased the TSH and GSSG levels. Mn 2+ supplementation improved TSH, GSH and redox ratio (GSH/GSSG but decreased the GSSG level under normal and oxidative stress conditions. Thiol groups serve as defense mechanisms of sperm cells to fight against oxidative stress induced by stress inducers such as ferrous ascorbate, nicotine and their combination (ferrous ascorbate + nicotine. In addition, Mn 2+ supplementation maintains the thiol level by reducing oxidative stress.

  18. Aerobic nitric oxide-induced thiol nitrosation in the presence and absence of magnesium cations.

    Science.gov (United States)

    Kolesnik, Bernd; Heine, Christian L; Schmidt, Renate; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2014-11-01

    Although different routes for the S-nitrosation of cysteinyl residues have been proposed, the main in vivo pathway is unknown. We recently demonstrated that direct (as opposed to autoxidation-mediated) aerobic nitrosation of glutathione is surprisingly efficient, especially in the presence of Mg(2+). In the present study we investigated this reaction in greater detail. From the rates of NO decay and the yields of nitrosoglutathione (GSNO) we estimated values for the apparent rate constants of 8.9 ± 0.4 and 0.55 ± 0.06 M(-1)s(-1) in the presence and absence of Mg(2+). The maximum yield of GSNO was close to 100% in the presence of Mg(2+) but only about half as high in its absence. From this observation we conclude that, in the absence of Mg(2+), nitrosation starts by formation of a complex between NO and O2, which then reacts with the thiol. Omission of superoxide dismutase (SOD) reduced by half the GSNO yield in the absence of Mg(2+), demonstrating O2(-) formation. The reaction in the presence of Mg(2+) seems to involve formation of a Mg(2+)•glutathione (GSH) complex. SOD did not affect Mg(2+)-stimulated nitrosation, suggesting that no O2(-) is formed in that reaction. Replacing GSH with other thiols revealed that reaction rates increased with the pKa of the thiol, suggesting that the nucleophilicity of the thiol is crucial for the reaction, but that the thiol need not be deprotonated. We propose that in cells Mg(2+)-stimulated NO/O2-induced nitrosothiol formation may be a physiologically relevant reaction.

  19. Synthesis of hyperbranched polypeptide and PEO block copolymer by consecutive thiol-yne chemistry.

    Science.gov (United States)

    Chang, Xiao; Dong, Chang-Ming

    2013-09-09

    Hyperbranched poly(ε-benzyloxycarbonyl-L-lysine) (HPlys) with multiple alkyne peripheries was synthesized through the click polycondensation of an AB2 type Plys macromonomer with α-thiol and ω-alkyne terminal groups (thiol is the A unit, and each π bond in alkyne is the B unit), and the resulting HPlys was further conjugated with thiol-termined poly(ethylene oxide) (PEO) to generate HPlys-b-PEO block copolymer by consecutive thiol-yne chemistry. Their molecular structures and physical properties were characterized in detail by FT-IR, (1)H NMR, gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. HPlys and HPlys-b-PEO mainly assumed an α-helix conformation similar to the linear precursors, while the liquid crystalline phase transition of Plys segment disappeared within HPlys and HPlys-b-PEO. HPlys-b-PEO self-assembled into nearly spherical micelles in aqueous solution, while it gave a 5-fold lower critical aggregation concentration (8.9 × 10(-3) mg/mL) than a linear counterpart (4.5 × 10(-2) mg/mL), demonstrating a dendritic topology effect. Compared with a linear counterpart, HPlys-b-PEO gave a higher drug-loading capacity and efficiency for the anticancer drug doxorubicin (DOX) and a slower drug-release rate with an improved burst-release profile, enabling them useful for drug delivery systems. Importantly, this work provides a versatile strategy for the synthesis of hyperbranched polypeptides and related block copolymers by utilizing thiol-yne chemistry.

  20. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    Science.gov (United States)

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  1. The assessment of amisulpride effects in vitro on plasma thiol groups

    Directory of Open Access Journals (Sweden)

    Anna Dietrich-Muszalska

    2012-12-01

    Full Text Available Clinical studies indicate that amisulpride – the second generation antipsychotic – does not cause any increase in plasma lipid peroxidation. We do not know in what way this medicinal drug affects the activity of the key enzymes of antioxidative protection and low-molecular antioxidants, including the plasma thiol groups. The study was aimed at establishing the effects of amisulpride, in doses recommended for treatment of acute episode of schizophrenia, on free thiols in human plasma under in vitro conditions and lipid peroxidation measured by the level of TBARS. Material and methods: Blood for the study was collected from 10 healthy male volunteers (aged 24-26 years for ACD solution. Active substance of amisulpride was dissolved in 0.01% dimethyl sulfoxide to the final concentrations (278 ng/ml and 578 ng/ml and incubated with plasma for 24 hours at 37°C. Control samples were performed for each experiment. The free thiols level was measured using the Ellman method, whereas the levels of thiobarbituric acid-reactive substances by spectrophotometric method (acc. to Rice-Evans, 1991. The results were analysed using the paired Student t-test (StatSoft Inc., Statistica v. 6.0. Results: Amisulpride after 24 hours’ incubation with plasma, as compared to control samples (without drug, caused an increase in the level of free thiols in plasma – statistically significant for concentration 578 ng/ml (p<0.03. At this concentration after 24 hours’ incubation with plasma the drug caused also a significant decrease in lipid peroxidation (p<0.003. Conclusions: Amisulpride in concentration 578 ng/ml, corresponding to doses used for treatment of acute episode of schizophrenia, induces antioxidative effects, causing a significant decrease in plasma lipid peroxidation and increasing the concentration of free thiols in plasma.

  2. Thiol-disulfide redox equilibria of glutathione metaboloma compounds investigated by tandem mass spectrometry.

    Science.gov (United States)

    Rubino, Federico M; Pitton, Marco; Caneva, Enrico; Pappini, Marco; Colombi, Antonio

    2008-12-01

    The thiol group of cysteine plays a pivotal role in structural and functional biology. We use mass spectrometry to study glutathione-related homo- and heterodimeric disulfides, aiming at understanding the factors affecting the redox potentials of different disulfide/thiol pairs. Several electrospray ionization (ESI)-protonated disulfides of cysteamine, cysteine, penicillamine, N-acetylcysteine, N-acetylpenicillamine, gammaGluCySH, HSCyGly, and glutathione were analyzed on a triple quadrupole instrument to measure their energy-resolved tandem mass spectra. Fission of the disulfide bond yields RSH*H(+) and RS(+) ions. The logarithm of the intensity ratio of the RS(+)/RSH*H(+) fragments in homodimeric disulfides is proportional to the normal reduction potential of their RSSR/RSH pairs determined by nuclear magnetic resonance (NMR) in solution, the more reducing ones yielding the higher ratios. Also in some R(1)S-SR(2) disulfides, the ratio of the intensities of the RSH + H(+) and RS(+) ions of each participating thiol shows a linear relationship with the Nernst equation potential difference of the corresponding redox pairs. This behavior allows us to measure the redox potentials of some disulfide/thiol pairs by using different thiol-reducing probes of known oxidoreductive potential as reference. To assist understanding of the fission mechanism of the disulfide bond, the fragments tentatively identified as 'sulfenium' were themselves fragmented; accurate mass measurement of the resulting second-generation fragments demonstrated a loss of thioformaldehyde, thus supporting the assigned structure of this elusive intermediate of the oxidative stress pathway. Understanding this fragmentation process allows us to employ this technique with larger molecules to measure by mass spectrometry the micro-redox properties of different disulfide bonds in peptides with catalytic and signaling biological activity.

  3. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  4. Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines.

    Science.gov (United States)

    Summers, Fiona A; Morgan, Philip E; Davies, Michael J; Hawkins, Clare L

    2008-09-01

    Hypochlorous acid (HOCl), the major strong oxidant produced by myeloperoxidase, reacts readily with free amino groups to form N-chloramines. Although HOCl and N-chloramines play an important role in the human immune system by killing bacteria and invading pathogens, they have also been shown to cause damage to tissues, which is believed to contribute to a number of diseases. It has been shown previously that N-chloramines react more readily with protein thiols than with other targets in plasma, but the nature of the plasma thiol-containing proteins oxidized is unknown. In this study, the ability of N-chloramines to selectively oxidize thiol-containing plasma proteins was determined using the thiol-specific probe, 5-iodoacetamidofluorescein, combined with two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Experiments were performed with N-chloramines formed on Nalpha-acetyl-lysine, Nalpha-acetyl-histidine (HisCA), glycine, taurine, and ammonia. With the exception of HisCA, the N-chloramines were more efficient than HOCl at oxidizing plasma thiols. The thiol-containing plasma proteins alpha1-antitrypsin and transthyretin were found to be oxidized in addition to albumin, with this treatment resulting in the inactivation of alpha1-antitrypsin. A similar selectivity of reaction and extent of thiol oxidation were also observed with myeloperoxidase in the presence of hydrogen peroxide and chloride ions.

  5. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels.

    Science.gov (United States)

    Smith, M Ryan; Vayalil, Praveen K; Zhou, Fen; Benavides, Gloria A; Beggs, Reena R; Golzarian, Hafez; Nijampatnam, Bhavitavya; Oliver, Patsy G; Smith, Robin A J; Murphy, Michael P; Velu, Sadanandan E; Landar, Aimee

    2016-08-01

    Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP), decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231) breast adenocarcinoma cells up to 6 days after an initial 24h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR) in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10µM) of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC) protein levels, although other protein levels were unaffected. This study

  6. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  7. Inelastic tunneling spectroscopy of gold-thiol and gold-thiolate interfaces in molecular junctions: the role of hydrogen.

    Science.gov (United States)

    Demir, Firuz; Kirczenow, George

    2012-09-07

    It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here, we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances, and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one, or two thiol hydrogen atoms. We find that in most cases, the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum as a gold STM tip approaches the intact S-H group at the end of a molecule bound at its other end to a second electrode. We predict the frequency of a vibrational mode of the thiol H atom to increase by a factor ~2 as the gap between the tip and molecule narrows. Therefore, IETS should be able to track the approach of the tip towards the thiol group of the molecule and detect the detachment of the thiol H atom from the molecule when it occurs.

  8. Rocket fuel for the quantification of S-nitrosothiols. Highly specific reduction of S-nitrosothiols to thiols by methylhydrazine.

    Science.gov (United States)

    Wiesweg, M; Berchner-Pfannschmidt, U; Fandrey, J; Petrat, F; de Groot, H; Kirsch, M

    2013-02-01

    Reduction of S-nitrosothiols to the corresponding thiol function is the key step in analyzing S-nitrosocysteinyl residues in proteins. Though it has been shown to give low yields, ascorbate-dependent reduction is commonly performed in the frequently used biotin-switch technique. We demonstrate that the compound methylhydrazine can act as a specific and efficient reducing agent for S-nitrosothiols. The corresponding thiol function is exclusively generated from low molecular weight and proteinaceous S-nitrosothiols while methylhydrazine failed to reduce disulfides. It was possible to optimize the experimental conditions so that thiol autoxidation is excluded, and high reaction yields (>90%) are obtained for the thiol function. The biotin-switch technique performed with methylhydrazine-dependent reduction shows remarkably improved sensitivity compared to the ascorbate-dependent procedure.

  9. The compromise of dynamic disulfide/thiol homeostasis as a biomarker of oxidative stress in trichloroethylene exposure.

    Science.gov (United States)

    Bal, C; Büyükşekerci, M; Koca, C; Ağış, E R; Erdoğan, S; Baran, P; Gündüzöz, M; Yilmaz, Öh

    2016-09-01

    In this study, we aimed to investigate disulfide/thiol homeostasis in trichloroethylene (TCE) exposure. The study was carried out in 30 nonsmoker TCE-exposed workers with a variety of occupations. Additionally, 30 healthy nonsmoker volunteers were recruited as the control group. TCE exposure was determined by measuring urinary trichloroacetic acid (TCA) concentration. Median urinary TCA levels of exposed workers (20.5 mg/L) were significantly higher than control subjects (5 mg/L). Thiol and disulfide concentrations were determined using a novel automated method. Disulfide/thiol ratio was significantly higher in the exposed group (p < 0.001). Thiol/disulfide homeostasis was found to be disturbed in TCE-exposed workers. We predict that in TCE-exposed workers this disturbance can be a therapeutic target, and the efficiency of the treatment can easily be monitored by the novel method we used.

  10. Imaging thiol redox status in murine tumors in vivo with rapid-scan electron paramagnetic resonance

    Science.gov (United States)

    Epel, Boris; Sundramoorthy, Subramanian V.; Krzykawska-Serda, Martyna; Maggio, Matthew C.; Tseytlin, Mark; Eaton, Gareth R.; Eaton, Sandra S.; Rosen, Gerald M.; Kao, Joseph P. Y.; Halpern, Howard J.

    2017-03-01

    Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with L-buthionine sulfoximine (BSO) markedly altered the kinetic images.

  11. Antioxidant Defense by Thioredoxin Can Occur Independently of Canonical Thiol-Disulfide Oxidoreductase Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Miryoung Song

    2016-03-01

    Full Text Available The thiol-disulfide oxidoreductase CXXC catalytic domain of thioredoxin contributes to antioxidant defense in phylogenetically diverse organisms. We find that although the oxidoreductase activity of thioredoxin-1 protects Salmonella enterica serovar Typhimurium from hydrogen peroxide in vitro, it does not appear to contribute to Salmonella’s antioxidant defenses in vivo. Nonetheless, thioredoxin-1 defends Salmonella from oxidative stress resulting from NADPH phagocyte oxidase macrophage expression during the innate immune response in mice. Thioredoxin-1 binds to the flexible linker, which connects the receiver and effector domains of SsrB, thereby keeping this response regulator in the soluble fraction. Thioredoxin-1, independently of thiol-disulfide exchange, activates intracellular SPI2 gene transcription required for Salmonella resistance to both reactive species generated by NADPH phagocyte oxidase and oxygen-independent lysosomal host defenses. These findings suggest that the horizontally acquired virulence determinant SsrB is regulated post-translationally by ancestrally present thioredoxin.

  12. Modification of porous silicon rugate filters through thiol-yne photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Soeriyadi, Alexander H., E-mail: alexander.soeriyadi@unsw.edu.au; Zhu, Ying, E-mail: alexander.soeriyadi@unsw.edu.au; Gooding, J. Justin, E-mail: justin.gooding@unsw.edu.au [Australian Centre for Nanomedicine and School of Chemistry, University of New South Wales, Sydney 2052 (Australia); Reece, Peter [School of Physics, University of New South Wales, Sydney 2052 (Australia)

    2014-02-24

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  13. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam;

    2013-01-01

    The suitable optical properties of thiol–ene polymers combined with the ease of modifying their surface for the attachment of recognition molecules make them ideal candidates in many biochip applications. This paper reports the rapid one-step photochemical surface patterning of biomolecules...... in microfluidic thiol–ene chips. This work focuses on thiol–ene substrates featuring an excess of thiol groups at their surface. The thiol–ene stoichiometric composition can be varied to precisely control the number of surface thiol groups available for surface modification up to an average surface density of 136...... ! 17 SH nm"2. Biotin alkyne was patterned directly inside thiol–ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent waveinduced fluorescence (EWIF), demonstrating the success of the grafting procedure and its...

  14. Characterization of Helicobacter pylori adhesin thiol peroxidase (HP0390) purified from Escherichia coli

    Indian Academy of Sciences (India)

    Huyen Thi Minh Nguyen; Kwang-Ho Nam; Yasar Saleem; Key-Sun Kim

    2010-06-01

    The antioxidant protein, adhesin thiol peroxidase (HpTpx or HP0390), plays an important role in enabling Helicobacter pylori to survive gastric oxidative stress. The bacterium colonizes the host stomach and produces gastric cancer. However, little information is available about the biochemical characteristics of HpTpx. We expressed recombinant HpTpx in Escherichia coli, purified to homogeneity, and characterized it. The results showed that HpTpx existed in a monomeric hydrodynamic form and the enzyme fully retained its peroxidase and antioxidant activities. The catalytic reaction of the enzyme was similar to an atypical 2-cysteine peroxiredoxin (Prx). The conformation of the enzyme was observed in the presence and absence of dithiothreitol (DTT); similar to other known thiol peroxidases, conformational change was observed in HpTpx by the addition of DTT.

  15. Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass.

    Science.gov (United States)

    Chai, Liyuan; Wang, Qingwei; Li, Qingzhu; Yang, Zhihui; Wang, Yunyan

    2010-01-01

    Spent grain, the low-cost and abundant biomass produced in the brewing industry, was functionalized with thiol groups to be used as an adsorbent for Hg(II) removal from acidic aqueous solution. The adsorbents were characterized by the energy-dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectroscopy. Optimum pH for Hg(II) adsorption onto the thiol-functionalized spent grain (TFSG) was 2.0. The equilibrium and kinetics of the adsorption of Hg(II) onto TFSG from acidic aqueous solution were investigated. From the Langmuir isotherm model the maximum adsorption capacity of TFSG for Hg(II) was found to be 221.73 mg g(-1), which was higher than that of most various adsorbents reported in literature. Moreover, the adsorption of Hg(II) onto TFSG followed pseudo-second-order kinetic model.

  16. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ......Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid......, subsequent chain-extension by atom transfer radical polymerization (ATRP) of tert-butyl acrylate (tBA), and final deprotection steps. ROP of c-CL initiated by 2-hydroxyethyl 2-bromoisobutyrate, and catalysed by tin octoate afforded Br-PCL-OH with the degree of polymerization of 30 and narrow molecular weight...

  17. Highly stretchable thermoset fibers and nonwovens using thiol-ene photopolymerization.

    Science.gov (United States)

    Shanmuganathan, Kadhiravan; Elliot, Steven M; Lane, Austin P; Ellison, Christopher J

    2014-08-27

    In this report, we describe the preparation and characterization of a new class of thermoset fibers with high elongation and elastic recovery. Integrating UV-activated thiol-ene photopolymerization and electrospinning, we demonstrate an environmentally friendly single step approach to convert small monomeric precursor molecules into highly elastic fibers and nonwoven mats. The fibers were derived by in situ photopolymerization of a trifunctional vinyl ether monomer and a tetrafunctional thiol. Although thermosets often offer good chemical and thermal stability, these fibers also have a high average elongation at break of 62%. The elastomeric nature of these vinyl-ether based fibers can be partly attributed to their subambient Tg and partly to the cross-link density, monomer structure, and resulting network homogeneity. Nonwoven mats of these fibers were also stretchable and exhibited a much higher elongation at break of about 85%. These thermoset stretchable fibers could have potential applications as textile, biomedical, hot chemical filtration, and composite materials.

  18. Synthesis and Biological Evaluation of Novel Benzothiazole-2-thiol Derivatives as Potential Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Luo-Ting Yu

    2012-03-01

    Full Text Available A series of novel benzothiazole-2-thiol derivatives were synthesized and their structures determined by 1H-NMR, 13C-NMR and HRMS (ESI. The effects of all compounds on a panel of different types of human cancer cell lines were investigated. Among them, pyridinyl-2-amine linked benzothiazole-2-thiol compounds 7d, 7e, 7f and 7i exhibited potent and broad-spectrum inhibitory activities. Compound 7e displayed the most potent anticancer activity on SKRB-3 (IC50 = 1.2 nM, SW620 (IC50 = 4.3 nM, A549 (IC50 = 44 nM and HepG2 (IC50 = 48 nM and was found to induce apoptosis in HepG2 cancer cells.

  19. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    Science.gov (United States)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  20. Generation of thiols by biotransformation of cysteine-aldehyde conjugates with baker's yeast.

    Science.gov (United States)

    Huynh-Ba, Tuong; Matthey-Doret, Walter; Fay, Laurent B; Bel Rhlid, Rachid

    2003-06-01

    Baker's yeast was shown to catalyze the transformation of cysteine-furfural conjugate into 2-furfurylthiol. The biotransformation's yield and kinetics were influenced by the reaction parameters such as pH, incubation mode (aerobic and anaerobic), and substrate concentration. 2-Furfurylthiol was obtained in an optimal 37% yield when cysteine-furfural conjugate at a 20 mM concentration was anaerobically incubated with whole cell baker's yeast at pH 8.0 and 30 degrees C. Similarly to 2-furfurylthiol, 5-methyl-2-furfurylthiol (11%), benzylthiol (8%), 2-thiophenemethanethiol (22%), 3-methyl-2-thiophenemethanethiol (3%), and 2-pyrrolemethanethiol (6%) were obtained from the corresponding cysteine-aldehyde conjugates by incubation with baker's yeast. This work indicates the versatile bioconversion capacity of baker's yeast for the generation of thiols from cysteine-aldehyde conjugates. Thanks to its food-grade character, baker's yeast provides a biochemical tool to produce thiols, which can be used as flavorings in foods and beverages.

  1. A study of oxidative stress, thiol proteins and role of vitamin E supplementation in chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Anita M. Raut

    2013-04-01

    Full Text Available Background: Lipid peroxide plays an important role in inflammatory lung disease. Increased epithelial permeability produced by cigarette smoke is likely to be mediated through depletion of thiol proteins. Imbalance between oxidants and thiol proteins is also an established fact in these patients. Materials & methods: In the present study 30 healthy non-smokers were served as controls and 20 patients with stable COPD were included. Their base line clinical examination, Malondialdehyde (MDA as an oxidant, alpha tocopherol and erythrocyte superoxide dismutase (SOD as an antioxidants and thiol proteins levels were measured. All above parameters were repeated after 12 weeks of supplementation with 400 IU of vitamin E daily. Results: We observed that the mean malondialdehyde levels in these patients at base line were high (p<0.001 than Control Plasma alpha-tocopherol, SOD and thiol proteins levels were low (p<0.001 in the patients compared to controls. Exogenous vitamin E (400 IU twice daily Supplementation did not bring about any significant change in plasma Erythrocyte Superoxide Dismutase and vitamin E. But slight increase in the plasma thiol proteins levels was seen. The present study shows that initially the plasma lipid peroxide (MDA levels were high antioxidant (alpha- tocopherol, SOD and thiol proteins were low in patients with COPD. Exogenous supplementation with vitamin E increases slightly thiol proteins levels and brings down the levels of MDA showing attenuation of further damage. Conclusion: Our study confirmed the existence of oxidative stress and and the augmentation of antioxidant defenses as shown by slight increase in thiol proteins level. The antioxidant therapy is adjunct in lung disease patients and opens a promising field in prevention of oxidative stress related complications in these patients.

  2. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients

    OpenAIRE

    Sarkar, A.; S; Dash; Barik, B. K.; Muttigi, Manjunatha S.; Kedage, V; Shetty, J. K.; Prakash, M.

    2010-01-01

    Presence of oxidative stress in type 2 diabetes mellitus (DM) is well proved. Current study was undertaken to know the relation between fasting plasma glucose (FPG) and copper along with antioxidants like total thiols and ceruloplasmin, and antioxidant enzyme glutathione S transferase (GST). The study group consisted of a total of 201 subjects which included nondiabetic healthy control subjects (n = 78) and diabetic patients (n = 123). Plasma total thiols, GST, copper and ceruloplasmin levels...

  3. Synthesis of cysteine-rich peptides by native chemical ligation without use of exogenous thiols.

    Science.gov (United States)

    Tsuda, Shugo; Yoshiya, Taku; Mochizuki, Masayoshi; Nishiuchi, Yuji

    2015-04-03

    Native chemical ligation (NCL) performed without resorting to the use of thiol additives was demonstrated to be an efficient and effective procedure for synthesizing Cys-rich peptides. This method using tris(2-carboxyethyl)phosphine (TCEP) as a reducing agent facilitates the ligation reaction even at the Thr-Cys or Ile-Cys site and enables one-pot synthesis of Cys-rich peptides throughout NCL and oxidative folding.

  4. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ....... As a result stable, aggregation-free nanopaticles with moderate dispersity as estimated from UV-visible spectroscopy and transmission electron microscopy (TEM) data were obtained....

  5. Histamine chloramine reactivity with thiol compounds, ascorbate, and methionine and with intracellular glutathione.

    Science.gov (United States)

    Peskin, Alexander V; Winterbourn, Christine C

    2003-11-15

    Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.

  6. Polarographic determination of europium(III) with 3-hydroxypyridine-2-thiol

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu, R.S.; Katyal, M.; Puri, B.K.

    1987-11-20

    The polarographic behavior of europium(III) has been studied in 3-hydroxypyridine-2-thiol (HPT) as the supporting electrolyte. The polarographic wave in this electrolyte is diffusion controlled, quasi-reversible, and well defined, and there is no need of a maximum suppressor. The interference of various ions has been studied in detail, and this method has been utilized for the quantitative determination of europium in various synthetic samples

  7. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hara, Kiyotaka Y; Aoki, Naoko; Kobayashi, Jyumpei; Kiriyama, Kentaro; Nishida, Keiji; Araki, Michihiro; Kondo, Akihiko

    2015-11-01

    Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.

  8. Carbocysteine restores steroid sensitivity by targeting histone deacetylase 2 in a thiol/GSH-dependent manner.

    Science.gov (United States)

    Song, Yun; Lu, Hao-Zhong; Xu, Jian-Rong; Wang, Xiao-Lin; Zhou, Wei; Hou, Li-Na; Zhu, Liang; Yu, Zhi-Hua; Chen, Hong-Zhuan; Cui, Yong-Yao

    2015-01-01

    Steroid insensitivity is commonly observed in patients with chronic obstructive pulmonary disease. Here, we report the effects and mechanisms of carbocysteine (S-CMC), a mucolytic agent, in cellular and animal models of oxidative stress-mediated steroid insensitivity. The following results were obtained: oxidative stress induced higher levels of interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α), which are insensitive to dexamethasone (DEX). The failure of DEX was improved by the addition of S-CMC by increasing histone deacetylase 2 (HDAC2) expression/activity. S-CMC also counteracted the oxidative stress-induced increase in reactive oxygen species (ROS) levels and decreases in glutathione (GSH) levels and superoxide dismutase (SOD) activity. Moreover, oxidative stress-induced events were decreased by the thiol-reducing agent dithiothreitol (DTT), enhanced by the thiol-oxidizing agent diamide, and the ability of DEX was strengthened by DTT. In addition, the oxidative stress-induced decrease in HDAC2 activity was counteracted by S-CMC by increasing thiol/GSH levels, which exhibited a direct interaction with HDAC2. S-CMC treatment increased HDAC2 recruitment and suppressed H4 acetylation of the IL-8 promoter, and this effect was further ablated by addition of buthionine sulfoximine, a specific inhibitor of GSH synthesis. Our results indicate that S-CMC restored steroid sensitivity by increasing HDAC2 expression/activity in a thiol/GSH-dependent manner and suggest that S-CMC may be useful in a combination therapy with glucocorticoids for treatment of steroid-insensitive pulmonary diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    Science.gov (United States)

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  10. Functionalized 3D Architected Materials via Thiol-Michael Addition and Two-Photon Lithography.

    Science.gov (United States)

    Yee, Daryl W; Schulz, Michael D; Grubbs, Robert H; Greer, Julia R

    2017-04-01

    Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ruthenium(III Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mingzhong Cai

    2009-09-01

    Full Text Available Ruthenium(III chloride-catalyzed acylation of a variety of alcohols, phenols, and thiols was achieved in high yields under mild conditions (room temperature in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]. The ionic liquid and ruthenium catalyst can be recycled at least 10 times. Our system not only solves the basic problem of ruthenium catalyst reuse, but also avoids the use of volatile acetonitrile as solvent.

  12. Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles

    OpenAIRE

    Guerrero, Estefanía; Muñoz-Márquez, Miguel Ángel; Fernández-Camacho, A.; Crespo, P.; Hernando, Antonio, 1947-; Lucena, R; Conesa Cegarra, José Carlos

    2010-01-01

    In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization measurements based on, for example, the x-ray magnetic circular dichroism technique that have allowed the identification of gold as the magnetic moment carrier....

  13. EXPRESSION AND DISTRIBUTION OF THIOL-REGULATING ENZYME GLUTAREDOXIN 2 (GRX2) IN PORCINE OCULAR TISSUES*

    OpenAIRE

    Upadhyaya, Bijaya; Tian, Xiaoli; Wu, Hongli; Lou, Marjorie F.

    2014-01-01

    Glutaredoxin2 (Grx2) is a mitochondrial isozyme of the cytosolic glutaredoxin1 (thioltransferase or TTase). Both belong to the large oxidoreductase family and play an important role in maintaining thiol/disulfide redox homeostasis in the cells. Grx2 is recently found in the lens where its activities of disulfide reductase and peroxidase, similar to TTase, can protect the lens against oxidative stress. Since other eye tissues are also highly sensitive to oxidative stress, and TTase’s distribut...

  14. Magnetometry and electron paramagnetic resonance studies of phosphine- and thiol-capped gold nanoparticles

    Science.gov (United States)

    Guerrero, E.; Muñoz-Márquez, M. A.; Fernández, A.; Crespo, P.; Hernando, A.; Lucena, R.; Conesa, J. C.

    2010-03-01

    In the last years, the number of studies performed by wholly independent research groups that confirm the permanent magnetism, first observed in our research lab, for thiol-capped Au nanoparticles (NPs) has rapidly increased. Throughout the years, the initial magnetometry studies have been completed with element-specific magnetization measurements based on, for example, the x-ray magnetic circular dichroism technique that have allowed the identification of gold as the magnetic moment carrier. In the research work here presented, we have focused our efforts in the evaluation of the magnetic behavior and iron impurities content in the synthesized samples by means of superconducting quantum interference device magnetometry and electron paramagnetic resonance spectrometry, respectively. As a result, hysteresis cycles typical of a ferromagnetic material have been measured from nominally iron-free gold NPs protected with thiol, phosphine, and chlorine ligands. It is also observed that for samples containing both, capped gold NPs and highly diluted iron concentrations, the magnetic behavior of the NPs is not affected by the presence of paramagnetic iron impurities. The hysteresis cycles reported for phosphine-chlorine-capped gold NPs confirm that the magnetic behavior is not exclusively for the metal-thiol system.

  15. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development.

    Science.gov (United States)

    Roberts, Justine J; Bryant, Stephanie J

    2013-12-01

    When designing hydrogels for tissue regeneration, differences in polymerization mechanism and network structure have the potential to impact cellular behavior. Poly(ethylene glycol) hydrogels were formed by free-radical photopolymerization of acrylates (chain-growth) or thiol-norbornenes (step-growth) to investigate the impact of hydrogel system (polymerization mechanism and network structure) on the development of engineered tissue. Bovine chondrocytes were encapsulated in hydrogels and cultured under free swelling or dynamic compressive loading. In the acrylate system immediately after encapsulation chondrocytes exhibited high levels of intracellular ROS concomitant with a reduction in hydrogel compressive modulus and higher variability in cell deformation upon compressive strain; findings that were not observed in the thiol-norbornene system. Long-term the quantity of sulfated glycosaminoglycans and total collagen was greater in the acrylate system, but the quality resembled that of hypertrophic cartilage with positive staining for aggrecan, collagens I, II, and X and collagen catabolism. The thiol-norbornene system led to hyaline-like cartilage production especially under mechanical loading with positive staining for aggrecan and collagen II and minimal staining for collagens I and X and collagen catabolism. Findings from this study confirm that the polymerization mechanism and network structure have long-term effects on the quality of engineered cartilage, especially under mechanical loading.

  16. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  17. Optimization of Optical Properties of Polycarbonate Film with Thiol Gold-Nanoparticles

    Directory of Open Access Journals (Sweden)

    Claudio Larosa

    2009-09-01

    Full Text Available A new nanostructured composite film based on thiol gold nanoparticles dispersed in polycarbonate and prepared by evaporating a solution of 1-dodecanthiol gold nanoparticles and polycarbonate was developed for applications as optical lenses. Lenses with superior mechanical properties, coloring and UV ray absorption and with the same transparency as the matrix were obtained. The supporting highly transparent polycarbonate matrix and the chloroform solution of thiol gold nanoparticles, 3 nm mean size, was mixed according to a doping protocol employing different concentrations of thiol gold nanoparticles vs. polycarbonate. The presence of nanoparticles in the polymer films was confirmed by the spectrophotometric detection of the characteristic absorbance marker peak at 540–580 nm. The nanostructured films obtained show a better coverage in the UV-vis range (250–450 nm even at very low doping ratios, of the order of 1:1,000. These results offer a very promising approach towards the development of efficient nanostructured materials for applications to optical lenses.

  18. Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans

    Directory of Open Access Journals (Sweden)

    Ángel Gabriel Díaz-Sánchez

    2016-11-01

    Full Text Available Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU, following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2′-dipyridyl disulphide, DPS, suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a “hinge” located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.

  19. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  20. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    Science.gov (United States)

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed.

  1. Characterization of plasma thiol redox potential in a common marmoset model of aging

    Directory of Open Access Journals (Sweden)

    James R. Roede

    2013-01-01

    Full Text Available Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys, cystine (CySS, glutathione (GSH and glutathione disulfide (GSSG. Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  2. Plasma total thiol pool in children with asthma: Modulation during montelukast monotherapy.

    Science.gov (United States)

    Dilek, Fatih; Ozkaya, Emin; Kocyigit, Abdurrahim; Yazici, Mebrure; Guler, Eray Metin; Dundaroz, Mehmet Rusen

    2016-03-01

    Inflammation, which is a hallmark of asthma, is one of the main sources of oxidative stress in the human body. Thiols are powerful antioxidants that protect cells against the consequences of oxidative stress. We aimed to investigate whether asthma and montelukast monotherapy affect the total plasma thiol pool in children. A total of 60 children with asthma and 35 healthy controls participated in the study. Group I consisted of newly diagnosed asthmatics who did not have regular anti-asthmatic therapy previously. Group II consisted of patients who had been undertaking montelukast monotherapy regularly for at least 4 months. Plasma total antioxidant status (TAS) and plasma total thiol (PTT) were measured using spectrophotometric methods. Bronchial asthma patients in both groups I and II had decreased median TAS levels compared with the control group (1.59 [interquartile range, 1.04-1.70] and 1.67 [1.50-1.75] vs. 2.98 [2.76-3.16] Trolox equiv./L, respectively; P0.05). In addition, the median TAS and PTT levels for groups I and II were not statistically different (P>0.05). There was a positive correlation between TAS and PTT levels (rho=0.38, Pchildren with asthma. Montelukast monotherapy can limit oxidative stress and thus restore PTT levels but not TAS levels in asthmatic children. © The Author(s) 2015.

  3. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis.

  4. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene.

    Science.gov (United States)

    Xu, Huiying; Xiao, Jingjing; Liu, Baohong; Griveau, Sophie; Bedioui, Fethi

    2015-04-15

    A hybrid nanocomposite based on cobalt phthalocyanine (CoPc) immobilized on nitrogen-doped graphene (N-G) (N-G/CoPc) has been developed to modify glassy carbon electrode (GCE) for the sensitive detection of thiols. The nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetric studies showed that cobalt phthalocyanine and nitrogen doped graphene have a synergic effect and significantly enhance the electrocatalytic activity of the modified electrode towards thiols oxidation compared with electrodes modified with solely CoPc or N-G. The electrochemical oxidation responses were studied and the reaction mechanisms were discussed. The sensors exhibited a wide linear response range from 1μΜ to 16mM and a low detection limit of 1μΜ for the determination of l-cysteine, reduced l-glutathione and 2-mercaptoethanesulfonic acid in alkaline aqueous solution. The proposed N-G/CoPc hybrids contribute to the construction of rapid, convenient and low-cost electrochemical sensors for sensitive detection of thiols. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization

    Science.gov (United States)

    Luo, Xiaona; Ma, Kai; Jiao, Tifeng; Xing, Ruirui; Zhang, Lexin; Zhou, Jingxin; Li, Bingbing

    2017-02-01

    The effective synthesis and self-assembly of graphene oxide (GO) nanocomposites are of key importance for a broad range of nanomaterial applications. In this work, a one-step chemical strategy is presented to synthesize stable GO-polymer Langmuir composite films by interfacial thiol-ene photopolymerization at room temperature, without use of any crosslinking agents and stabilizing agents. It is discovered that photopolymerization reaction between thiol groups modified GO sheets and ene in polymer molecules is critically responsible for the formation of the composite Langmuir films. The film formed by Langmuir assembly of such GO-polymer composite films shows potential to improve the mechanical and chemical properties and promotes the design of various GO-based nanocomposites. Thus, the GO-polymer composite Langmuir films synthesized by interfacial thiol-ene photopolymerization with such a straightforward and clean manner, provide new alternatives for developing chemically modified GO-based hybrid self-assembled films and nanomaterials towards a range of soft matter and graphene applications.

  6. Investigation into the Effect of Molds in Grasses on Their Content of Low Molecular Mass Thiols

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2012-10-01

    Full Text Available The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH and oxidized (GSSG glutathione, and phytochelatins (PC2, PC3, PC4 and PC5. Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05 PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05 PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05 GSSG content in June than did L. perenne and F. braunii.

  7. The critical role of the cellular thiol homeostasis in cadmium perturbation of the lung extracellular matrix.

    Science.gov (United States)

    Zhao, Yinzhi; Chen, Lijun; Gao, Song; Toselli, Paul; Stone, Phillip; Li, Wande

    2010-01-12

    Cadmium (Cd) inhalation can result in emphysema. Cd exposure of rat lung fibroblasts (RFL6) enhanced levels of metal scavenging thiols, e.g., metallothionein (MT) and glutathione (GSH), and the heavy chain of gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, concomitant with downregulation of lysyl oxidase (LO), a copper-dependent enzyme for crosslinking collagen and elastin in the extracellular matrix (ECM). Cd downregulation of LO in treated cells was closely accompanied by suppression of synthesis of collagen, a major structure component of the lung ECM. Using rats intratracheally instilled with cadmium chloride (30 microg, once a week) as an animal model, we further demonstrated that although 2-week Cd instillation induced a non-significant change in the lung LO activity and collagen synthesis, 4- and 6-week Cd instillation resulted in a steady decrease in the lung LO and collagen expression. The lung MT and total GSH levels were both upregulated upon the long-term Cd exposure. Emphysematous lesions were generated in lungs of 6-week Cd-dosed rats. Increases of cellular thiols by transfection of cells with MT-II expression vectors or treatment of cells with GSH monoethyl ester, a GSH delivery system, markedly inhibited LO mRNA levels and catalytic activities in the cell model. Thus, Cd upregulation of cellular thiols may be a critical cellular event facilitating downregulation of LO, a potential mechanism for Cd-induced emphysema.

  8. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Science.gov (United States)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun

    2016-11-01

    A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4‧-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for glucosyl microspheres. Thus, the thiol-ene modified polyphosphazene microspheres displayed chemical flexibility in post-functionalization. These microspheres can be potentially applicated in enzyme immobilization, protein adsorption and chromatographic separation.

  9. Inelastic Tunneling Spectroscopy of Gold-Thiol and Gold-Thiolate Interfaces in Molecular Junctions: The Role of Hydrogen

    CERN Document Server

    Demir, Firuz

    2012-01-01

    It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one or two thiol hydrogen atoms. We find that in most cases the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum ...

  10. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gaffrey, Matthew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Su, Dian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Genentech Inc., South San Francisco, CA (United States); Liu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Camp, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qian, Weijun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-12

    Reversible modifications on cysteine thiols play a significant role in redox signaling and regulation. A number of reversible redox modifications, including disulfide formation, S-nitrosylation, and S-glutathionylation, have been recognized for their significance in various physiological and pathological processes. Here we describe in detail a resin-assisted thiol-affinity enrichment protocol for both biochemical and proteomics applications. This protocol serves as a general approach for specific isolation of thiol-containing proteins or peptides derived from reversible redox-modified proteins. This approach utilizes thiol-affinity resins to directly capture thiol-containing proteins or peptides through a disulfide exchange reaction followed by on-resin protein digestion and on-resin multiplexed isobaric labeling to facilitate LC-MS/MS based quantitative site-specific analysis of redox modifications. The overall approach requires a much simpler workflow with increased specificity compared to the commonly used biotin switch technique. By coupling different selective reduction strategies, the resin-assisted approach provides the researcher with a useful tool capable of enriching different types of reversible modifications on protein thiols. Procedures for selective enrichment and analyses of S-nitrosylation and total reversible cysteine oxidation are presented to demonstrate the utility of this general strategy.

  11. Quantum mechanical treatment of As(3+)-thiol model compounds: implication for the core structure of As(III)-metallothionein.

    Science.gov (United States)

    Garla, Roobee; Kaur, Narinder; Bansal, Mohinder Pal; Garg, Mohan Lal; Mohanty, Biraja Prasad

    2017-03-01

    Exposure to inorganic arsenic (As) is one of the major health concerns in several regions around the world. Binding of As(III) with thiols is central to the mechanisms related to its toxicity, detoxification, and therapeutic effects. Due to its high thiol content, metallothionein (MT) is presumed to play an important role in case of arsenic toxicity. Consequences of these As-thiol interactions are not yet clear due to various difficulties in the characterization of arsenic bound proteins by spectroscopic techniques. Computational modeling can be a reliable approach in predicting the molecular structures of such complexes. This paper presents the results of a systematic study on different As(III)-thiol model compounds conducted by both ab initio and DFT methods with different Gaussian type basis sets. Proficiency of these theoretical methods has been evaluated in terms of bond lengths, bond angles, free energy, partial atomic charges, computational cost, and comparison with the experimental data. It has been demonstrated that the DFT-B3LYP/6-311+G(3df) functional offers better accuracy in predicting the structure and the UV absorption spectra of As(III)-thiol complexes. The results of the present study also helps in defining the boundaries for the core of arsenic bound MT so that quantum mechanical/molecular mechanical (QM/MM) methods can be employed to predict the structural and functional aspects of the protein. Graphical Abstract Optimized structural parameters of As(3+)-thiol model compounds.

  12. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    Directory of Open Access Journals (Sweden)

    Marcio S Medeiros

    Full Text Available Parkinson's disease (PD is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD, catalase (CAT, nitrosative stress marker (NOx, thiobarbituric acid reactive substances (TBARS, non-protein thiols (NPSH, advanced oxidation protein products (AOPP, ferric reducing ability of plasma (FRAP and vitamin C as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA, ischemic-modified albumin (IMA and myeloperoxidase. Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP and inflammatory markers (NTPDases, IMA, and myeloperoxidase were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  13. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers.

    Science.gov (United States)

    Medeiros, Marcio S; Schumacher-Schuh, Arthur; Cardoso, Andreia Machado; Bochi, Guilherme Vargas; Baldissarelli, Jucimara; Kegler, Aline; Santana, Daniel; Chaves, Carolina Maria Martins Behle Soares; Schetinger, Maria Rosa Chitolina; Moresco, Rafael Noal; Rieder, Carlos R M; Fighera, Michele Rechia

    2016-01-01

    Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5'-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5'-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations

  14. Photo-initiated thiol-ene click reactions as a potential strategy for incorporation of [M(I)(CO)3]+ (M = Re, (99m)Tc) complexes.

    Science.gov (United States)

    Hayes, Thomas R; Lyon, Patrice A; Silva-Lopez, Elsa; Twamley, Brendan; Benny, Paul D

    2013-03-18

    Click reactions offer a rapid technique to covalently assemble two molecules. In radiopharmaceutical construction, these reactions can be utilized to combine a radioactive metal complex with a biological targeting molecule to yield a potent tool for imaging or therapy applications. The photo-initiated radical thiol-ene click reaction between a thiol and an alkene was examined for the incorporation of [M(I)(CO)3](+) (M = Re, (99m)Tc) systems for conjugating biologically active targeting molecules containing a thiol. In this strategy, a potent chelate system, 2,2'-dipicolylamine (DPA), for [M(I)(CO)3](+) was functionalized at the central amine with a terminal alkene linker that was explored with two synthetic approaches, click then chelate and chelate then click, to determine the flexibility and applicability of the thiol-ene click reaction to specifically incorporate ligand systems and metal complexes with a thiol containing molecule. In the click then chelate approach, the thiol-ene click reaction was carried out with the DPA chelate followed by complexation with [M(I)(CO)3](+). In the chelate then click approach, the alkene functionalized DPA chelate was first complexed with [M(I)(CO)3](+) followed by the conduction of the thiol-ene click reaction. Initial studies utilized benzyl mercaptan as a model thiol for both strategies to generate the identical product from either route to provide information on reactivity and product formation. DPA ligands functionalized with two unique linker systems (allyl and propyl allyl ether) were prepared to examine the effect of the proximity of the chelate or complex on the thiol-ene click reaction. Both the thiol-ene click and coordination reactions with Re, (99m)Tc were performed in moderate to high yields demonstrating the potential of the thiol-ene click reaction for [M(I)(CO)3](+) incorporation into thiol containing biomolecules.

  15. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  16. Protein Tyrosine Nitration and Thiol Oxidation by Peroxynitrite—Strategies to Prevent These Oxidative Modifications

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-01-01

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite. PMID:23567270

  17. Protein tyrosine nitration and thiol oxidation by peroxynitrite-strategies to prevent these oxidative modifications.

    Science.gov (United States)

    Daiber, Andreas; Daub, Steffen; Bachschmid, Markus; Schildknecht, Stefan; Oelze, Matthias; Steven, Sebastian; Schmidt, Patrick; Megner, Alexandra; Wada, Masayuki; Tanabe, Tadashi; Münzel, Thomas; Bottari, Serge; Ullrich, Volker

    2013-04-08

    The reaction product of nitric oxide and superoxide, peroxynitrite, is a potent biological oxidant. The most important oxidative protein modifications described for peroxynitrite are cysteine-thiol oxidation and tyrosine nitration. We have previously demonstrated that intrinsic heme-thiolate (P450)-dependent enzymatic catalysis increases the nitration of tyrosine 430 in prostacyclin synthase and results in loss of activity which contributes to endothelial dysfunction. We here report the sensitive peroxynitrite-dependent nitration of an over-expressed and partially purified human prostacyclin synthase (3.3 μM) with an EC50 value of 5 μM. Microsomal thiols in these preparations effectively compete for peroxynitrite and block the nitration of other proteins up to 50 μM peroxynitrite. Purified, recombinant PGIS showed a half-maximal nitration by 10 μM 3-morpholino sydnonimine (Sin-1) which increased in the presence of bicarbonate, and was only marginally induced by freely diffusing NO2-radicals generated by a peroxidase/nitrite/hydrogen peroxide system. Based on these observations, we would like to emphasize that prostacyclin synthase is among the most efficiently and sensitively nitrated proteins investigated by us so far. In the second part of the study, we identified two classes of peroxynitrite scavengers, blocking either peroxynitrite anion-mediated thiol oxidations or phenol/tyrosine nitrations by free radical mechanisms. Dithiopurines and dithiopyrimidines were highly effective in inhibiting both reaction types which could make this class of compounds interesting therapeutic tools. In the present work, we highlighted the impact of experimental conditions on the outcome of peroxynitrite-mediated nitrations. The limitations identified in this work need to be considered in the assessment of experimental data involving peroxynitrite.

  18. Thiol-oxidant monochloramine mobilizes intracellular Ca2+ in parietal cells of rabbit gastric glands.

    Science.gov (United States)

    Walsh, Breda M; Naik, Haley B; Dubach, J Matthew; Beshire, Melissa; Wieland, Aaron M; Soybel, David I

    2007-11-01

    In Helicobacter pylori-induced gastritis, oxidants are generated through the interactions of bacteria in the lumen, activated granulocytes, and cells of the gastric mucosa. In this study we explored the ability of one such class of oxidants, represented by monochloramine (NH(2)Cl), to serve as agonists of Ca(2+) accumulation within the parietal cell of the gastric gland. Individual gastric glands isolated from rabbit mucosa were loaded with fluorescent reporters for Ca(2+) in the cytoplasm (fura-2 AM) or intracellular stores (mag-fura-2 AM). Conditions were adjusted to screen out contributions from metal cations such as Zn(2+), for which these reporters have affinity. Exposure to NH(2)Cl (up to 200 microM) led to dose-dependent increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), in the range of 200-400 nM above baseline levels. These alterations were prevented by pretreatment with the oxidant scavenger vitamin C or a thiol-reducing agent, dithiothreitol (DTT), which shields intracellular thiol groups from oxidation by chlorinated oxidants. Introduction of vitamin C during ongoing exposure to NH(2)Cl arrested but did not reverse accumulation of Ca(2+) in the cytoplasm. In contrast, introduction of DTT or N-acetylcysteine permitted arrest and partial reversal of the effects of NH(2)Cl. Accumulation of Ca(2+) in the cytoplasm induced by NH(2)Cl is due to release from intracellular stores, entry from the extracellular fluid, and impaired extrusion. Ca(2+)-handling proteins are susceptible to oxidation by chloramines, leading to sustained increases in [Ca(2+)](i). Under certain conditions, NH(2)Cl may act not as an irritant but as an agent that activates intracellular signaling pathways. Anti-NH(2)Cl strategies should take into account different effects of oxidant scavengers and thiol-reducing agents.

  19. Advantages and drawbacks of Thiol-ene based resins for 3D-printing

    Science.gov (United States)

    Leonards, Holger; Engelhardt, Sascha; Hoffmann, Andreas; Pongratz, Ludwig; Schriever, Sascha; Bläsius, Jana; Wehner, Martin; Gillner, Arnold

    2015-03-01

    The technology of 3D printing is conquering the world and awakens the interest of many users in the most varying of applications. New formulation approaches for photo-sensitive thiol-ene resins in combination with various printing technologies, like stereolithography (SLA), projection based printing/digital light processing (DLP) or two-photon polymerization (TPP) are presented. Thiol-ene polymerizations are known for its fast and quantitative reaction and to form highly homogeneous polymer networks. As the resins are locally and temporally photo-curable the polymerization type is very promising for 3D-printing. By using suitable wavelengths, photoinitiator-free fabrication is feasible for single- and two photon induced polymerization. In this paper divinyl ethers of polyethylene glycols in combination with star-shaped tetrathiols were used to design a simple test-system for photo-curable thiol-ene resins. In order to control and improve curing depth and lateral resolution in 3D-polymerization processes, either additives in chemical formulation or process parameters can be changed. The achieved curing depth and resolution limits depend on the applied fabrication method. While two-/multiphoton induced lithography offers the possibility of micron- to sub-micron resolution it lacks in built-up speed. Hence single-photon polymerization is a fast alternative with optimization potential in sub-10-micron resolution. Absorber- and initiator free compositions were developed in order to avoid aging, yellowing and toxicity of resulting products. They can be cured with UV-laser radiation below 300 nm. The development at Fraunhofer ILT is focusing on new applications in the field of medical products and implants, technical products with respect to mechanical properties or optical properties of 3D-printed objects. Recent process results with model system (polyethylene glycol divinylether/ Pentaerithrytol tetrakis (3-mercaptopropionat), Raman measurements of polymer conversion

  20. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation

    Directory of Open Access Journals (Sweden)

    Lauren E. Musumeci

    2015-07-01

    Full Text Available Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH, 3-mercaptohexylacetate (3-MHA, and 4-mercapto-4-methyl-2-pentanone (4-MMP are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS. We describe a method in which thiols are converted to pentafluorobenzyl (PFB derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%–109% and precision (5%–11% RSD were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines, V. labruscana (Niagara, and Vitis spp. (Cayuga White. Mean 4-MMP concentrations in New York Niagara (17 ng/L were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  1. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic.

    Science.gov (United States)

    Cánovas, David; Vooijs, Riet; Schat, Henk; de Lorenzo, Víctor

    2004-12-01

    Aspergillus sp. P37 is an arsenate-hypertolerant fungus isolated from a river in Spain with a long history of contamination with metals. This strain is able to grow in the presence of 0.2 M arsenate, i.e. 20-fold higher than the reference strain, Aspergillus nidulans TS1. Although Aspergillus sp. P37 reduces As(V) to As(III), which is slowly pumped out of the cell, the measured efflux of oxyanions is insufficient to explain the high tolerance levels of this strain. To gain an insight into this paradox, the accumulation of acid-soluble thiol species in Aspergillus sp. P37 when exposed to arsenic was compared with that of the arsenic-sensitive A. nidulans TS1 strain. Increasing levels of arsenic in the medium did not diminish the intracellular pool of reduced glutathione in Aspergillus sp. P37, in sharp contrast with the decline of glutathione in A. nidulans under the same conditions. Furthermore, concentrations of arsenic that were inhibitory for the sensitive A. nidulans strain (e.g. 50 mM and above) provoked a massive formation of vacuoles filled with thiol species. Because the major fraction of the cellular arsenic was present as the glutathione conjugate As(GS)3, it is plausible that the arsenic-hypertolerant phenotype of Aspergillus sp. P37 is in part due to an enhanced capacity to maintain a large intracellular glutathione pool under conditions of arsenic exposure and to sequester As(GS)3 in vacuoles. High pressure liquid chromatography analysis of cell extracts revealed that the contact of Aspergillus sp. P37 (but not A. nidulans) with high arsenic concentrations (> or =150 mM) induced the production of small quantities of a distinct thiol species indistinguishable from plant phytochelatin-2. Yet, we argue that phytochelatins do not explain arsenic resistance in Aspergillus, and we advocate the role of As(GS)3 complexes in arsenic detoxification.

  2. Hydrophobic Coatings by Thiol-Ene Click Functionalization of Silsesquioxanes with Tunable Architecture.

    Science.gov (United States)

    Dirè, Sandra; Bottone, Davide; Callone, Emanuela; Maniglio, Devid; Génois, Isabelle; Ribot, François

    2017-08-08

    The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

  3. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huaping [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); South China Univ. of Technology (SCUT), Gangzhou (China); Hu, Michael Z. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shao, Lei [Beijing Univ. of Chemical Technology (China); Yu, Kui [National Research Council of Canada, Ottawa, ON (Canada); Dabestani, Reza T [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zaman, Md. Badruz [National Research Council of Canada, Ottawa, ON (Canada); Liao, Dr. Shijun [South China University of Technology, Guangzhou, PR China

    2014-03-20

    The colloidal photoluminescent quantum dots (QDs) of CdSe (core) and CdSe/ZnS (core/shell) were synthesized at different temperatures with different growth periods. The optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra) of the resulting QDs were investigated. The CdSe/ZnS QDs exhibited higher photoluminescent (PL) efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP), and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules used included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, 11-mercapto-1-undecanol, and 1,8 octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to self-assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  4. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell Quantum Dots by Ligand Exchange

    Directory of Open Access Journals (Sweden)

    Huaping Zhu

    2014-01-01

    Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  5. Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection

    Science.gov (United States)

    Yazdanparast, Mohammad S.; Jeffries, William R.; Gray, Eric R.

    2017-01-01

    Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI. PMID:28832505

  6. Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection

    Directory of Open Access Journals (Sweden)

    Mohammad S. Yazdanparast

    2017-08-01

    Full Text Available Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI.

  7. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    Science.gov (United States)

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O2-dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO2(-)). Previous chemical rescue studies identified a putative Fe(III)-O2(-) intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O2-consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Analysis of Phytochelatins and Other Thiol-Containing Compounds by RP-HPLC with Monobromobimane Precolumn Derivatization

    Institute of Scientific and Technical Information of China (English)

    Sun Qin; Ye Zhihong; Wang Xiaorong; Wong Minghong

    2006-01-01

    In this article,a method for quantitative determination ofphytochelatins(PCn being the classic example)and other thiol-containing compounds in mixed standard solution and plant tissues is presented.Thiols were converted to fluorescent derivatives by precolumn derivatization with monobromobimane.The results showed that PCn and other thiol-containing compounds in standard mixed solutions were rapidly separated within 15 min by using a ACN 0.1% trifluoroacetic acid binary gradient elution.Glutathione was representatively selected to test the precision of this method.The calibration curve was linear in the range of 1.25-160 ng μl-1(regression coefficient r2=0.9999).It was confirmed that this method was rapid,simple,highly sensitive,stable,and had the property of simultaneous determination of PCn and other thiol-containing compounds.This method was applied to determine PCn and other thiol-containing compounds in a Cd hyperaccumulator Sedum alfredii in response to Cd.It was found that no PCn was detected in any tissue at any Cd treatment,suggesting that Cd hyperaccumulation and detoxification in this plant is not based on PC synthesis.

  9. Scavenging of the one-electron reduction product from nisoldipine with relevant thiols: electrochemical and EPR spectroscopic evidences.

    Science.gov (United States)

    Núñez-Vergara, L J; Díaz-Araya, G; Olea-Azar, C; Atria, A M; Bollo-Dragnic, S; Squella, J A

    1998-11-01

    To determine the formation of the one-electron reduction product from nisoldipine and its reactivity with relevant thiols in mixed medium. Cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) techniques were used to determine the one-electron reduction product corresponding to the nitro radical anion. CV was employed to assess both the rate constants corresponding to the decay of the radicals and its interaction with relevant thiols. The nisoldipine radical anion follows second order kinetics, with an association rate constant of 283+/-16 l mol(-1) sec(-1). Nitro radical anion from nisoldipine significantly reacted with thiol compounds. This reactivity was significantly higher than the natural decay of the radical in mixed medium. EPR spectra recorded in situ using DMF/ 0.1 N NaOH (pH 13) confirmed the formation of the nitro radical anion, giving a well-resolved spectra in 35 lines using 0.1 G modulation. Electrochemical and EPR data indicated that all the tested thiols scavenged the nitro radical anion from nisoldipine. The following tentative order of reactivity towards the thiols can be proposed: cysteamine approximately glutathione > N-acetylcysteine > captopril > penicillamine.

  10. The Synthesis of a Coumarin Carbohydrazide Dinuclear Copper Complex Based Fluorescence Probe and Its Detection of Thiols.

    Science.gov (United States)

    He, Guangjie; Li, Jing; Yang, Lu; Hou, Chunhua; Ni, Tianjun; Yang, Zhijun; Qian, Xinlai; Li, Changzheng

    2016-01-01

    Small-molecule thiols, such as cysteine (CYS) and glutathione (GSH), are essential for maintaining the cellular redox environment and play important roles in regulating various cellular physiological functions. A fluorescence probe (compound 1-Cu2+) for thiols based on coumarin carbohydrazide dinuclear copper complex was developed. Compound 1 was synthesized from the reaction of 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide with 4-tert-butyl-2,6- diformylphenol. Accordingly, the copper complex (compound 1-Cu2+) was prepared by mixing compound 1 with 2 equivalents copper ions. Compound 1 had strong fluorescence while compound 1-Cu2+ hardly possessed fluorescence owing to the quenching nature of paramagnetism Cu2+ to the fluorescence molecule excited state. However, the fluorescence intensity of compound 1-Cu2+ was increased dramatically after the addition of thiol-containing amino acids, but not the other non-sulfhydryl amino acids. UV-vis absorption and fluorescence spectra indicated that compound 1-Cu2+ had good selectivity and sensitivity for thiols such as glutathione in CH3CN:H2O (3:2, v/v) PBS solution. The fluorescence imaging experiments implied that compound 1-Cu2+ has potential application in thiol-containing amino acids detection in living cells.

  11. Copper and ceruloplasmin levels in relation to total thiols and GST in type 2 diabetes mellitus patients.

    Science.gov (United States)

    Sarkar, A; Dash, S; Barik, B K; Muttigi, Manjunatha S; Kedage, V; Shetty, J K; Prakash, M

    2010-01-01

    Presence of oxidative stress in type 2 diabetes mellitus (DM) is well proved. Current study was undertaken to know the relation between fasting plasma glucose (FPG) and copper along with antioxidants like total thiols and ceruloplasmin, and antioxidant enzyme glutathione S transferase (GST). The study group consisted of a total of 201 subjects which included nondiabetic healthy control subjects (n = 78) and diabetic patients (n = 123). Plasma total thiols, GST, copper and ceruloplasmin levels were measured all the subjects using spectrophotometric methods and FPG levels were determined in clinical chemistry analyzer Hitachi 912. There was significant increase in FPG (P<0.001) and copper (P<0.001) and decrease in ceruloplasmin (P<0.001) and protein thiols (P<0.001) in type 2 DM cases compared to healthy controls. There was no significant change in GST between type 2 DM cases and controls. There was significant negative correlation of FPG with antioxidants like ceruloplasmin (r = -0.420, P<0.001) and total thiols (r = -0.565, P<0.001). Protein thiols correlated positively with ceruloplasmin (r = 0.364, P<0.001). Our study indicates possible increase in copper mediated generation of ROS leading to increased consumption of available antioxidants in the body.

  12. Glutathione and mitochondria

    National Research Council Canada - National Science Library

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2014-01-01

    Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes...

  13. “Oxygen sensing” by Na,K-ATPase: these miraculous thiols

    Directory of Open Access Journals (Sweden)

    Anna Bogdanova

    2016-08-01

    Full Text Available Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its oxygen-sensitivity is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidised glutathione are the signalling messengers that make the Na,K-ATPase oxygen-sensitive. This very ancient signalling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the optimal level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterise the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summery on (i the sources of free radical production in hypoxic cells, (ii localisation of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzymes to a variety of stimuli (hypoxia, receptors’ activation control of the enzyme activity (iii redox-sensitive regulatory phosphorylation, and (iv the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate

  14. δ-Thiolactones as prodrugs of thiol-based glutamate carboxypeptidase II (GCPII) inhibitors.

    Science.gov (United States)

    Ferraris, Dana V; Majer, Pavel; Ni, Chiyou; Slusher, C Ethan; Rais, Rana; Wu, Ying; Wozniak, Krystyna M; Alt, Jesse; Rojas, Camilo; Slusher, Barbara S; Tsukamoto, Takashi

    2014-01-09

    δ-Thiolactones derived from thiol-based glutamate carboxypeptidase II (GCPII) inhibitors were evaluated as prodrugs. In rat liver microsomes, 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA, 1) was gradually produced from 3-(2-oxotetrahydrothiopyran-3-yl)propionic acid (5), a thiolactone derived from 1. Compound 1 was detected in plasma at concentrations well above its IC50 for GCPII following oral administration of 5 in rats. Consistent with the oral plasma pharmacokinetics, thiolactone 5 exhibited efficacy in a rat model of neuropathic pain following oral administration.

  15. Self-consistent GW calculations of electronic transport in thiol- and amine-linked molecular junctions

    DEFF Research Database (Denmark)

    Strange, M.; Rostgaard, Carsten; Hakkinen, H.

    2011-01-01

    The electronic conductance of a benzene molecule connected to gold electrodes via thiol, thiolate, or amino anchoring groups is calculated using nonequilibrium Green functions in combination with the fully self-consistent GW approximation for exchange and correlation. The calculated conductance...... suggest that more complex gold-thiolate structures where the thiolate anchors are chemically passivated by Au adatoms are responsible for the measured conductance. Analysis of the energy level alignment obtained with DFT, Hartree-Fock, and GW reveals the importance of self-interaction corrections...

  16. Redox Characteristics of Thiol Compounds Using Radicals Produced by Water Vapor Radio Frequency Discharge

    Science.gov (United States)

    Hayashi, Nobuya; Nakahigashi, Akari; Goto, Masaaki; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-08-01

    The redox reaction between cystein and cystine is observed using radicals produced in water vapor plasma for the control of plant growth. Cystein is oxidized to cystine using the OH radical in the higher-pressure regime and cystine is reduced to cystein by the H radical generated in the lower-pressure regime. Also, the oxidative stress reaction of plants is observed when water vapor plasma is irradiated onto seeds of plants such as radish sprouts. The mechanism of the control of plant growth is explained by the change in thiol compound quantity of the plant cells induced by the radical reaction.

  17. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation.

    Science.gov (United States)

    Ghezzi, Pietro; Bonetto, Valentina; Fratelli, Maddalena

    2005-01-01

    Originally, small thiols, including glutathione, were viewed as protective antioxidants, acting as free radical scavengers in the context of oxidative damage. Recently, there is a growing literature showing that protein glutathionylation (formation of protein-glutathione mixed disulfides) and other forms of cysteine oxidation may be a means of redox regulation under physiological conditions. This review discusses the importance of protein oxidation in redox regulation in view of the recent data originating from the application of redox proteomics to identify redox-sensitive targets.

  18. Characterization of thiol-functionalised silica films deposited on electrode surfaces

    Directory of Open Access Journals (Sweden)

    Ivana Cesarino

    2008-12-01

    Full Text Available Thiol-functionalised silica films were deposited on various electrode surfaces (gold, platinum, glassy carbon by spin-coating sol-gel mixtures in the presence of a surfactant template. Film formation occurred by evaporation induced self-assembly (EISA involving the hydrolysis and (cocondensation of silane and organosilane precursors on the electrode surface. The characterization of such material was performed by IR spectroscopy, thermogravimetry (TG, elemental analysis (EA, atomic force microscopy (AFM, scanning electron microscopy (SEM and cyclic voltammetry (CV.

  19. Reactivity of vegetable oil macromonomers in thiol-ene, cationic, and emulsion polymerizations

    Science.gov (United States)

    Black, Micah Stephen

    Vegetable oils were, and continue, to be a mainstay in unsaturated polyester ("alkyd") technology. Our endeavor is to use vegetable oil-based polymers in environmentally-friendly coatings. The role of vegetable oil cis-unsaturation has not been fully explored in polymers. To that end, vegetable oil macromonomers (VOMMs) in three different systems were investigated to determine the involvement of cis-unsaturation in chain transfer, auto-oxidation, and copolymerization reactions. VOMMs were incorporated into UV curable thiol-ene coatings, UV cationic coatings, and acrylic solution copolymers and fundamental studies were conducted to determine how and to what extent cis-unsaturation contributes to film performance properties. In thiol-ene UV curable coatings, cis-unsaturation was involved in the initial curing reaction and to lesser degrees, in postcure crosslinking. Its behavior was determined to be dependent on the ene component. Thiol-ene photopolymerization yielded homogeneous networks but formulations containing VOMMs exhibited greater heterogeneity due to non-uniformity in the VOMM chemical structures, and the concurrent reactions occurring during thiol-ene photopolymerization and "dark cure". Partially epoxidized soybean oil was synthesized to contain varying levels of residual cis-unsaturation. Cationic photopolymerization of partially epoxidized soybean oil yielded lightly crosslinked films, but the influence of free radical decomposition byproducts has not been fully investigated. The low involvement of the cis-unsaturation in photopolymerization was attributed to its low reactivity and/or radical combination with antioxidants and molecular oxygen dissolved in the films. When used in emulsion polymerization, VOMMs lower the minimum filming temperature during coalescence and increase the Tg after application via auto-oxidation. Free radical polymerization of VOMMs is accompanied by chain transfer reactions between polymer radicals and VOMMs that reduces

  20. 巯基-烯点击化学%Thiol-Ene Click Chemistry

    Institute of Scientific and Technical Information of China (English)

    徐源鸿; 熊兴泉; 蔡雷; 唐忠科; 叶章基

    2012-01-01

    "Click chemistry", introduced by Sharpless in 2001, becomes a new synthetic method used in areas such as drugs, polymers and materials rapidly because of its high efficiency, high selectivity and reliable characteristics. With the further research on click chemistry, the types of it are increasing continuously and the scope of application is also expanding. Radical-mediated or nucleophile-initiated thiol-ene reaction is a novel kind of click reactions, which shows the characteristics of click chemistry. Starting from the concept, characteristic and types of click chemistry, the mechanism and the wide applications of thiol-ene reaction in preparation of functional polymers and topologic macromolecules, polymeric materials surface modification and biomaterials are emphasized. Furthermore, the latest research based on thiol-ene chemistry is summarized. The prospects of thiol-ene reaction are also discussed.%点击化学自2001年由Sharpless提出后,由于其高效、可靠、高选择性的特点迅速成为药物和高分子材料合成的新方法。随着对点击化学研究的深入,其反应类型在不断增多,应用范围也在不断扩大。自由基或亲核试剂引发的巯基.烯反应作为其中一种新型的点击反应具有点击化学的所有特性。本文从点击化学的概念、特征和类型出发,重点介绍了巯基-烯反应的机理和在合成功能聚合物、制备拓扑结构高分子、表面修饰以及生物药物等方面的应用,并对巯基.烯反应的最新研究成果进行综述,最后展望了巯基-烯的点击化学的发展前景。

  1. Thiol-functionalized MCM-48: an Effective Absorbent of Mercury Ions

    Institute of Scientific and Technical Information of China (English)

    Shu Guo WANG; Jin Lin LI

    2006-01-01

    Mercaptopropyl groups were grafted onto the pore walls of mesoporous molecular sieves MCM-48. The pore structures were characterized by powder X-ray diffraction and N2 adsorption analysis. Elemental analysis confirmed that the material with high organic moiety (2.2 mmol/g) had been obtained. 13C MAS NMR verified the tethered organic groups. The thiol-functionalized MCM-48 showed effective capture of mercury ions, and all of the organic ligands were accessible for the binding of mercury ions.

  2. Enhancing Electrophoretic Display Lifetime: Thiol-Polybutadiene Evaporation Barrier Property Response to Network Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Caitlyn Christian [California State Polytechnic State Univ., San Luis Obispo, CA (United States)

    2017-02-27

    An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elastic response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and

  3. Considering Hydrophobicity via Contact Angle Stability of Organic Thiols Measured with a Homemade Goniometer

    Science.gov (United States)

    Seraly, Mark; Ollander, Brooke; Statman, Ariel; Poynor, Adele

    2014-03-01

    When water meets an extended hydrophobic surface, an ultra-thin, low-density depletion layer is expected at the interface. Exactly how the depletion layer changes with change in hydrophobicity is still an open question. An accurate measure of contact angle is essential in determining how water meets a hydrophobic surface. Utilizing a homemade goniometer with ImageJ software we investigate the stability of self-assembled organic thiol monolayers, 1-octadecanethiol (ODT) and 11-mercaptoundecanoic acid (MUA). We report the changes in contact angle due to exposure to air, water, and ethanol. Other factors that affect contact angles were also considered in our investigation.

  4. Tailoring the physical properties of thiol-capped PbS quantum dots by thermal annealing.

    Science.gov (United States)

    Turyanska, L; Elfurawi, U; Li, M; Fay, M W; Thomas, N R; Mann, S; Blokland, J H; Christianen, P C M; Patanè, A

    2009-08-05

    We show that the thermal annealing of thiol-capped PbS colloidal quantum dots provides a means of narrowing the nanoparticle size distribution, increasing the size of the quantum dots and facilitating their coalescence preferentially along the 100 crystallographic axes. We exploit these phenomena to tune the photoluminescence emission of an ensemble of dots and to narrow the optical linewidth to values that compare with those reported at room temperature for single PbS quantum dots. We probe the influence of annealing on the electronic properties of the quantum dots by temperature dependent studies of the photoluminescence and magneto-photoluminescence.

  5. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent...... by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion...

  6. Synthesis of Some New 4,5-Substituted-4H-1,2,4-triazole-3-thiol Derivatives

    Directory of Open Access Journals (Sweden)

    A. Demirdağ

    2004-03-01

    Full Text Available In this study appropriate hydrazide compounds, furan-2-carboxylic acidhydrazide (1 and phenylacetic acid hydrazide (2 were converted into 1,4-substitutedthiosemicarbazides 4a-e and 5a-e and 4-amino-5-(furan-2-yl or benzyl-4H-1,2,4-triazole-3-thiols 7 and 10. The 1,4-substituted thiosemicarbazides were then converted into5-(furan-2-yl or benzyl-4-(aryl-4H-1,2,4-triazole-3-thiols 8a-e and 9a-e. In addition, theazomethines 11a-d and 12a-d were prepared from the corresponding arylaldehydes and the4-amino-5-(furan-2-yl or benzyl-4H-1,2,4-triazole-3-thiols 7 and 10. The structures of allthe synthesized compounds were confirmed by elemental analyses, IR, 1H-NMR and13 C-NMR spectra.

  7. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer.

    Science.gov (United States)

    Lund, Marianne N; Krämer, Anna C; Andersen, Mogens L

    2015-09-23

    The radical-mediated reactions occurring during the early stages of beer storage were studied by following the rate of oxygen consumption, radical formation as detected by electron spin resonance spectroscopy, and concentrations of the antioxidant compounds sulfite and thiols. Addition of either Fe(III) or Fe(II) had similar effects, indicating that a fast redox equilibrium is obtained between the two species in beer. Addition of iron in combination with hydrogen peroxide gave the most pronounced levels of oxidation due to a direct initiation of ethanol oxidation through generation of hydroxyl radicals by the Fenton reaction. The concentration of sulfite decreased more than the thiol concentration, suggesting that thiols play a secondary role as antioxidants by mainly quenching 1-hydroxyethyl radicals that are intermediates in the oxidation of ethanol. Increasing the temperature had a minor effect on the rate of oxygen consumption.

  8. Effects of butane-2,3-dione thiosemicarbazone oxime on testicular damage induced by cadmium in mice.

    Science.gov (United States)

    de Freitas, Mayara Lutchemeyer; Dalmolin, Laíza; Oliveira, Lia Pavelacki; da Rosa Moreira, Laís; Roman, Silvane Souza; Soares, Félix Alexandre Antunes; Bresolin, Leandro; Duarte, Marta Maria Medeiros Frescura; Brandão, Ricardo

    2012-01-01

    Our group of studies investigated the action of butane-2,3-dione thiosemicarbazone oxime against the testicular damage caused by cadmium chloride (CdCl(2)) in mice. Mice received a single injection of CdCl(2 )(5 mg/kg, intraperitoneally) and, after thirty minutes, the oxime (10 mg/kg, subcutaneously) was administered. Twenty four hours after the last administration, the animals were killed by cervical dislocation and the testes and serum were removed for analysis. The parameters determined were δ-aminolevulinate dehydratase (δ-ALA-D), myeloperoxidase (MPO), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) activities. The levels of thiobarbituric acid-reactive substances (TBARS), nonprotein thiols (NPSH), ascorbic acid, cadmium and testosterone were also determined. In addition, histological analysis and cytokines quantification (IL-1, IL-6, IL-10, TNF-α and IFN-γ) were performed. Our results demonstrated that the oxime was effective in restoring the inhibition in δ-ALA-D activity induced by CdCl(2). The activation of MPO and increase in IL-1, IL-6, TNF-α and IFN-γ levels induced by CdCl(2) were also reduced by oxime. IL-10, which was reduced by cadmium, was restored by oxime administration. In addition, the oxime was effective in restoring the increase in TBARS levels and the reduction on NPSH levels induced by CdCl(2). Our results demonstrated that oxime was effective in containing the histological alterations induced by CdCl(2). In addition, oxime was able to increase the testosterone levels, reduced by cadmium exposure. In conclusion, the oxime tested was effective in reducing the testicular damage induced by CdCl(2) in mice. The beneficial effects of this oxime are related to its antioxidant and anti-inflammatory action.

  9. Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil.

    Science.gov (United States)

    Menezes, Charlene; Leitemperger, Jossiele; Murussi, Camila; de Souza Viera, Mariela; Adaime, Martha B; Zanella, Renato; Loro, Vania Lucia

    2016-10-01

    The ability of diphenyl diselenide [(PhSe)2] to attenuate oxidative damage was evaluated in the liver, gills, brain, and muscle of carp (Cyprinus carpio) and silver catfish (Rhamdia quelen) experimentally exposed to fipronil (FPN). Initially, the fish were fed a diet without (PhSe)2 or a diet containing 3.0 mg/kg of (PhSe)2 for 60 days. After the 60-day period, the fish were exposed to 0.65 µg/L of FPN for 192 h. The results showed that carp exposed to FPN and not fed with (PhSe)2 exhibited acetylcholinesterase (AChE) inhibition in brain and muscle, and increased thiobarbituric acid-reactive substance (TBARS) in liver, gills, and brain. Furthermore, FPN decreased nonprotein thiols (NPSH) and δ-aminolevulinate dehydratase (δ-ALA-D) in carp liver and gills, and increased plasma glucose and protein levels. In silver catfish, FPN inhibited AChE and increased TBARS levels in muscle. In addition, glutathione S-transferase (GST) decreased in liver and muscle, and plasma glucose was increased. (PhSe)2 reversed some of these effects. It prevented the increase in TBARS levels in liver, gills, and brain in carp and in silver catfish muscle, and reversed the increase in plasma glucose levels in both species. Additionally, (PhSe)2 increased the NPSH levels in carp and silver catfish that had decreased in response to FPN exposure. However, (PhSe)2 was not effective in reversing the AChE inhibition in brain and muscle or the δ-ALA-D decrease in carp liver. Thus, (PhSe)2 protects tissues of both species of fish, mainly by preventing or counteracting the effects of FPN, on TBARS levels, antioxidants, and present anti-hyperglycemic property.

  10. Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup®

    Science.gov (United States)

    Jasper, Raquel; Locatelli, Gabriel Olivo; Pilati, Celso

    2012-01-01

    We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup® on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and γ-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and γ-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup® can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species. PMID:23554553

  11. Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup(®).

    Science.gov (United States)

    Jasper, Raquel; Locatelli, Gabriel Olivo; Pilati, Celso; Locatelli, Claudriana

    2012-09-01

    We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup(®) on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and γ-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and γ-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup(®) can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species.

  12. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Science.gov (United States)

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (pswimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and pswimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.

  13. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated.

  14. Changes of cell-surface thiols and intracellular signaling in human monocytic cell line THP-1 treated with diphenylcyclopropenone.

    Science.gov (United States)

    Hirota, Morihiko; Motoyama, Akira; Suzuki, Mie; Yanagi, Masashi; Kitagaki, Masato; Kouzuki, Hirokazu; Hagino, Shigenobu; Itagaki, Hiroshi; Sasa, Hitoshi; Kagatani, Saori; Aiba, Setsuya

    2010-12-01

    Changes of cell-surface thiols induced by chemical treatment may affect the conformations of membrane proteins and intracellular signaling mechanisms. In our previous study, we found that a non-toxic dose of diphenylcyclopropene (DPCP), which is a potent skin sensitizer, induced an increase of cell-surface thiols in cells of a human monocytic cell line, THP-1. Here, we examined the influence of DPCP on intracellular signaling. First, we confirmed that DPCP induced an increase of cell-surface thiols not only in THP-1 cells, but also in primary monocytes. The intracellular reduced-form glutathione/oxidized-form glutathione ratio (GSH/GSSG ratio) was not affected by DPCP treatment. By means of labeling with a membrane-impermeable thiol-reactive compound, Alexa Fluor 488 C5 maleimide (AFM), followed by two-dimensional gel electrophoresis and analysis by liquid chromatography coupled with electrospray tandem mass spectrometry (LC/MS/MS), we identified several proteins whose thiol contents were modified in response to DPCP. These proteins included cell membrane components, such as actin and β-tubulin, molecular chaperones, such as heat shock protein 27A and 70, and endoplasmic reticulum (ER) stress-inducible proteins. Next, we confirmed the expression in DPCP-treated cells of spliced XBP1, a known marker of ER stress. We also detected the phosphorylation of SAPK/JNK and p38 MAPK, which are downstream signaling molecules in the IRE1α-ASK1 pathway, which is activated by ER stress. These data suggested that increase of cell-surface thiols might be associated with activation of ER stress-mediated signaling.

  15. Functional and Structural Characterization of a Thiol Peroxidase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rho,B.; Hung, L.; Holton, J.; Vigil, D.; Kim, S.; Park, M.; Terwilliger, T.; Pedelacq, j.

    2006-01-01

    A thiol peroxidase (Tpx) from Mycobacterium tuberculosis was functionally analyzed. The enzyme shows NADPH-linked peroxidase activity using a thioredoxin-thioredoxin reductase system as electron donor, and anti-oxidant activity in a thiol-dependent metal-catalyzed oxidation system. It reduces H{sub 2}O{sub 2}, t-butyl hydroperoxide, and cumene hydroperoxide, and is inhibited by sulfhydryl reagents. Mutational studies revealed that the peroxidatic (Cys60) and resolving (Cys93) cysteine residues are critical amino acids for catalytic activity. The X-ray structure determined to a resolution of 1.75 Angstroms shows a thioredoxin fold similar to that of other peroxiredoxin family members. Superposition with structural homologues in oxidized and reduced forms indicates that the M. tuberculosis Tpx is a member of the atypical two-Cys peroxiredoxin family. In addition, the short distance that separates the Ca atoms of Cys60 and Cys93 and the location of these cysteine residues in unstructured regions may indicate that the M. tuberculosis enzyme is oxidized, though the side-chain of Cys60 is poorly visible. It is solely in the reduced Streptococcus pneumoniae Tpx structure that both residues are part of two distinct helical segments. The M. tuberculosis Tpx is dimeric both in solution and in the crystal structure. Amino acid residues from both monomers delineate the active site pocket.

  16. Thiol capped colloidal CdTe quantum dots synthesized using laser ablation

    Science.gov (United States)

    Almeida, D. B.; Rodriguez, E.; Moreira, R. S.; Agouram, S.; Barbosa, L. C.; Jimenez, E.; Cesar, C. L.

    2009-08-01

    Semiconductor quantum dots [QD] have shown a great number of applications from fluorescent markers to solar cell devices. Colloidal systems have been usually obtained through chemical synthesis, that have to be devoleped for each material. The best quality QDs have been obtained with non-aqueous solution and non-physiological pH, requiring a posterior processing to be used in biology, for example. In contrast, the same physical synthetic method, such as laser ablation, would be applied to any semiconductor, metallic or dielectric material. Colloidal QD can be obtained by laser ablation of a target inside any solvent, given this method a very large flexibility. The fluorescence efficiency, however, depend on the surface traps and stability of colloids. The usual method to avoid surface traps is to grow a cap layer to passivate its surface and, at the same time, stabilize the colloid, sterically or electrostatically. In this work we report a novel technique for obtain thiol capped CdTe colloidal quantum dots in one step. A target immerse in a solution of ethanol and 3-mercaptopropyltrimethoxysilane (MPS), or thiol, was hit by a nanosecond 532 nm laser. With this assembly CdTe luminescent QDs were obtained. The colloid photoluminescence and other optical and structural properties are studied.

  17. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    Science.gov (United States)

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.

    2016-10-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  18. EVALUATION OF THIOL-BASED ANTIOXIDANT THERAPEUTICS IN CYSTIC FIBROSIS SPUTUM: FOCUS ON MYELOPEROXIDASE

    Science.gov (United States)

    Vasu, Vihas T.; De Cruz, Sharon J.; Houghton, Jessica S.; Hayakawa, Keri A.; Morrissey, Brian M.; Cross, Carroll E.; Eiserich, Jason P.

    2010-01-01

    Neutrophil-dependent reactions catalyzed by myeloperoxidase (MPO) are thought to play important roles in the pulmonary pathobiology of cystic fibrosis (CF). Aerosolized thiol antioxidants such as glutathione (GSH) and N-acetylcysteine (NAC) are currently being utilized as therapeutics to modify CF respiratory tract oxidative processes. We hypothesized that MPO in CF airway lining fluids may be a target of such therapeutics. MPO activity in sputum from 21 adult CF patients was found to be inversely associated with lung function (FEV1). In contrast, systemic inflammation (assessed by plasma C-reactive protein) was not correlated with lung function. Ex vivo studies revealed that GSH and NAC effectively scavenged N-chloramines in sputum, and inhibited sputum MPO activity with potency exquisitely dependent upon MPO activity levels. Detailed kinetic analyses revealed that NAC and GSH inhibit MPO by distinct mechanisms. Activation of the key proinflammatory transcription factor NF-κB in cultured HBE1 cells was inhibited by GSH. Our findings reveal that MPO activity and its reactive products represent useful predictors of the doses of inhaled thiol antioxidants required to ameliorate airway oxidative stress and inflammation in CF patients, and provides mechanistic insight into the antioxidative/anti-inflammatory mechanisms of action of GSH and NAC when administered into the CF lung. PMID:20954832

  19. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors.

    Science.gov (United States)

    Abdul-Hay, Samer O; Bannister, Thomas D; Wang, Hui; Cameron, Michael D; Caulfield, Thomas R; Masson, Amandine; Bertrand, Juliette; Howard, Erin A; McGuire, Michael P; Crisafulli, Umberto; Rosenberry, Terrone R; Topper, Caitlyn L; Thompson, Caroline R; Schürer, Stephan C; Madoux, Franck; Hodder, Peter; Leissring, Malcolm A

    2015-12-18

    Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.

  20. Differential response of oxidative stress and thiol metabolism in contrasting rice genotypes for arsenic tolerance.

    Science.gov (United States)

    Tripathi, Preeti; Mishra, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Singh, Rana Pratap; Tripathi, Rudra Deo

    2012-05-01

    The mechanism of arsenic (As) tolerance was investigated on two contrasting rice (Oryza sativa L.) genotypes, selected for As tolerance and accumulation. One tolerant (Triguna) and one sensitive (IET-4786) variety were exposed to various arsenate (0-50 μM) levels for 7 d for biochemical analyses. Arsenic induced oxidative stress was more pronounced in IET-4786 than Triguna especially in terms of reactive oxygen species, lipid peroxidation, EC and pro-oxidant enzymes (NADPH oxidase and ascorbate oxidase). However, Triguna tolerated As stress through the enhanced enzymes activities particularly pertaining to thiol metabolism such as serine acetyl transferase (SAT), cysteine synthase (CS), γ-glutamyl cysteine synthase (γ-ECS), γ-glutamyl transpeptidase (γ-GT), and glutathione-S-transferase (GST) as well as arsenate reductase (AR). Besides maintaining the ratio of redox couples GSH/GSSG and ASC/DHA, the level of phytochelatins (PCs) and phytochelatin synthase (PCS) activity were more pronounced in Triguna, in which harmonized responses of thiol metabolism was responsible for As tolerance in contrast to IET-4786 showing its susceptible nature towards As exposure.

  1. Calcium transport, thiol status, and hepatotoxicity following N-nitrosodimethylamine exposure in mice

    Energy Technology Data Exchange (ETDEWEB)

    Reitman, F.A.; Berger, M.L.; Minnema, D.J.; Shertzer, H.G.

    1988-01-01

    The hepatotoxicant N-nitrosodimethylamine (NDMA) is presumed to exert toxicity through reactive metabolites. NDMA is similar in this respect to numerous other hepatotoxicants, for which hepatotoxicity is also associated with a rapid depletion of soluble and/or protein thiols, and an inhibition of calcium transport systems. The authors examined the hypothesis that hepatotoxicity for NDMA is preceded by thiol depletion and/or inhibition of calcium transport in isolated liver subcellular fractions. Centrizonal liver necrosis in mice was evident at 24 but not at 12 h subsequent to intraperitoneal administration of 40 mg NDMA/kg. Hepatotoxicity was not preceded by depletion of liver protein-free sulfhydryls, nor by protein sulfhydryl depletion in liver whole homogenate, microsomal, or plasma membrane fractions. NDMA-mediated toxicity was also not preceded by inhibition of calcium uptake capability by microsomal, mitochondrial, or plasma membrane fractions. In contrast, carbon tetrachloride produced the expected rapid decrease in microsomal calcium uptake capability, followed by a centrizonal necrosis that was maximal at about 24 h. These studies suggest that the mechanism of NDMA hepatotoxicity may differ from that of a number of other hepatotoxicants (e.g., carbon tetrachloride, acetaminophen, bromobenzene) for which toxicity is also mediated through reactive metabolites.

  2. Proximity-based Protein Thiol Oxidation by H2O2-scavenging Peroxidases*♦

    Science.gov (United States)

    Gutscher, Marcus; Sobotta, Mirko C.; Wabnitz, Guido H.; Ballikaya, Seda; Meyer, Andreas J.; Samstag, Yvonne; Dick, Tobias P.

    2009-01-01

    H2O2 acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H2O2-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H2O2-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H2O2, and the Orp1-roGFP2 redox relay effectively converts physiological H2O2 signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H2O2-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins. PMID:19755417

  3. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases.

    Science.gov (United States)

    Gutscher, Marcus; Sobotta, Mirko C; Wabnitz, Guido H; Ballikaya, Seda; Meyer, Andreas J; Samstag, Yvonne; Dick, Tobias P

    2009-11-13

    H(2)O(2) acts as a signaling molecule by oxidizing critical thiol groups on redox-regulated target proteins. To explain the efficiency and selectivity of H(2)O(2)-based signaling, it has been proposed that oxidation of target proteins may be facilitated by H(2)O(2)-scavenging peroxidases. Recently, a peroxidase-based protein oxidation relay has been identified in yeast, namely the oxidation of the transcription factor Yap1 by the peroxidase Orp1. It has remained unclear whether the protein oxidase function of Orp1 is a singular adaptation or whether it may represent a more general principle. Here we show that Orp1 is in fact not restricted to oxidizing Yap1 but can also form a highly efficient redox relay with the oxidant target protein roGFP (redox-sensitive green fluorescent protein) in mammalian cells. Orp1 mediates near quantitative oxidation of roGFP2 by H(2)O(2), and the Orp1-roGFP2 redox relay effectively converts physiological H(2)O(2) signals into measurable fluorescent signals in living cells. Furthermore, the oxidant relay phenomenon is not restricted to Orp1 as the mammalian peroxidase Gpx4 also mediates oxidation of proximal roGFP2 in living cells. Together, these findings support the concept that certain peroxidases harbor an intrinsic and powerful capacity to act as H(2)O(2)-dependent protein thiol oxidases when they are recruited into proximity of oxidizable target proteins.

  4. Mixing thiols on the surface of silver nanoparticles: preserving antibacterial properties while introducing SERS activity

    Energy Technology Data Exchange (ETDEWEB)

    Taglietti, Angelo, E-mail: angelo.taglietti@unipv.it [Università di Pavia, Dipartimento di Chimica (Italy); Diaz Fernandez, Yuri A. [Chalmers University of Technology, Department of Chemical and Biological Engineering (Sweden); Galinetto, Pietro [Università di Pavia, Dipartimento di Fisica (Italy); Grisoli, Pietro [Università di Pavia, Dipartimento di Scienze del Farmaco (Italy); Milanese, Chiara; Pallavicini, Piersandro [Università di Pavia, Dipartimento di Chimica (Italy)

    2013-11-15

    Controlling the surface composition of self-assembled monolayers is one of the major experimental challenges in nanotechnology. Despite the significant interest of the scientific community and the considerable number of publications related to this topic, the potential in this field is still far from being fully exploited.We present in this study a versatile method to coat silver nanoparticles (AgNPs) having average diameter of 7 nm with mixed monolayers of two thiols, achieving a precise control of surface composition. Different combinations of thiols have been investigated, and the nanomaterials obtained have been characterized by complementary experimental techniques, addressing the composition of the mixed monolayer. The surface-enhanced Raman spectroscopy (SERS) effect on a Raman reporter (7-mercapto-4-methylcoumarine) introduced into the mixed monolayers has also been investigated. The antibacterial activity of the coated AgNPs was investigated, showing that the colloids were active against Escherichia coli and Staphilococcus aureus irrespective of the nature of the mixed monolayer. These materials are good candidates as SERS-tags for biological applications.

  5. The isolation of nuclear envelopes. Effects of thiol-group oxidation and of calcium ions.

    Science.gov (United States)

    Comerford, S A; McLuckie, I F; Gorman, M; Scott, K A; Agutter, P S

    1985-02-15

    The effects of (a) oxidative cross-linking of protein thiol groups and (b) the presence or absence of Ca2+ ions on rat liver nuclear-envelope isolation were studied. Two envelope-isolation procedures were compared: a well characterized low-ionic-strength method and a recently developed high-ionic-strength method. The latter method seems preferable to the former in respect of lower intranuclear contamination of the envelopes, suppression of endogenous serine proteinase, and maintenance of high specific activities of envelope-associated enzymes. In both procedures, however, the presence of Ca2+ gave rise to a rapid, apparently irreversible, contamination of the envelopes by intranuclear material. This effect was half-maximal at 20 microM-Ca2+. In addition, the envelopes became contaminated with intranuclear material by a Ca2+-independent mechanism, apparently resulting from N-ethylmaleimide-sensitive intermolecular disulphide-bond formation. This oxidative process seemed to have two major kinetic components (half-life, t1/2, approx. 2 min and 10 min). In view of these findings, it is recommended that (i) for most purposes, nuclear envelopes be isolated by the newly developed high-ionic-strength procedure, (ii) irrespective of the method used, Ca2+-chelators be included in all the buffers, (iii) thiol-group oxidation be prevented or reversed during the procedure.

  6. Effect of silver nanomaterials on the activity of thiol-containing antioxidants.

    Science.gov (United States)

    Zhou, Yu-Ting; He, Weiwei; Lo, Y Martin; Hu, Xiaona; Wu, Xiaochun; Yin, Jun-Jie

    2013-08-14

    The use of nanomaterials in consumer products is rapidly expanding. In most studies, nanomaterials are examined as isolated ingredients. However, consumer products such as foods, cosmetics, and dietary supplements are complex chemical matrixes. Therefore, interactions between nanomaterials and other components of the product must be investigated to ensure the product's performance and safety. Silver nanomaterials are increasingly being used in food packaging as antimicrobial agents. Thiol-containing compounds, such as reduced glutathione (GSH), cysteine, and dihydrolipoic acid, are used as antioxidants in many consumer products. In the current study, we have investigated the interaction between silver nanomaterials and thiol-containing antioxidants. The selected Ag nanomaterials were Ag coated with citrate, Ag coated with poly(vinylpyrrolidone), and Au nanorods coated with Ag in a core/shell structure. We observed direct quenching of the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) by all three Ag nanomaterials to varying degrees. The Ag nanomaterials also reduced the quenching of DPPH by GSH to varying degrees. In addition, we determined that the mixture of GSH and Au@Ag nanorods held at 37 °C was less effective at quenching azo radical than at ambient temperature. Furthermore, we determined that Au@Ag nanorods significantly reduced the ability of GSH and cysteine to quench hydroxyl and superoxide radicals. The work presented here demonstrates the importance of examining the chemical interactions between nanomaterials used in products and physiologically important antioxidants.

  7. Thiol peroxidase-like activity of some intramolecularly coordinated diorganyl diselenides

    Indian Academy of Sciences (India)

    Sangit Kumar; Harkesh B Singh

    2005-11-01

    Several new diaryl diselenides having intramolecular coordinating groups have been synthesized by ortho-lithiation/Na2Se2 routes in good yield. Bis[2-(N-phenylferrocenecarboxamide)] diselenide (10), bis[2-(N-tert-butylferrocenecarboxamide)] diselenide (11), ()()-bis[2(--phenethylferrocenecarboxamide)] diselenide (12) were synthesized by the ortho-lithiation route. Bis[2-(N,N-dimethylaminomethylnaphthyl)] diselenide (13) was synthesized by lithium/bromide exchange reaction whereas bis(2,4-dinitrophenyl) diselenide (14) was prepared by the reaction of disodium diselenide with 2,4- dinitro-1-chlorobenzene. Thiol peroxidase-like activities of the diorganodiselenides have been evaluated by using H2O2 as substrate and PhSH as cosubstrate. Diselenides (13) and (14) with dimethylaminomethyl- or nitro-donor groups in close proximity to selenium, show much better thiol peroxidase-like activities compared to diselenides 10-12 with amide donor groups. Cyclic voltammetry study of diselenides 10-12 derived from redox-active ferrocenamide has been carried out.

  8. Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy.

    Science.gov (United States)

    Heiskanen, Arto R; Spégel, Christer F; Kostesha, Natalie; Ruzgas, Tautgirdas; Emnéus, Jenny

    2008-08-19

    An impedance spectroscopic study of the interaction between thiol-modified Au electrodes and Saccharomyces cerevisiae of strain EBY44 revealed that the cells formed an integral part of the interface, modulating the capacitive properties until a complete monolayer was obtained, whereas the charge transfer resistance ( R ct) to the redox process of [Fe(CN)6] 3-/4- showed a linear relationship to the number of cells even beyond the monolayer coverage. R ct showed strong pH dependence upon increasing the pH of the utilized buffer to 7.2. Upon addition of S. cerevisiae cells at pH 7.2, the obtained value of R ct showed over 560% increase with respect to the value obtained on the same thiol-modified electrode without cells. It was demonstrated that real-time monitoring of S. cerevisiae proliferation, with frequency-normalized imaginary admittance (real capacitance) as the indicator, was possible using a miniaturized culture system, ECIS Cultureware, with integrated planar cysteamine-modified Au microelectrodes. A monolayer coverage was reached after 20-28 h of cultivation, observed as an approximately 15% decrease in the real capacitance of the system.

  9. Preparation and properties of cyclic acetal based biodegradable gel by thiol-ene photopolymerization.

    Science.gov (United States)

    Wang, Kemin; Lu, Jian; Yin, Ruixue; Chen, Lu; Du, Shuang; Jiang, Yan; Yu, Qiang

    2013-04-01

    Synthetic, hydrolytically degradable biomaterials have been widely developed for biomedical use; however, most of them will form acidic products upon degradation of polymer backbone. In order to address this concern, we proposed to fabricate a biodegradable gel based on the crosslinking of a cyclic acetal monomer with reactable diallyl group and multifunctional thiols by thiol-ene photopolymerization. This gel produces diols and carbonyl end groups upon hydrolytic degradation and could be entirely devoid of acidic by-products. Real time infrared spectroscopy was employed to investigate the effect of different light intensities and concentrations of photoinitiator on the polymerization kinetics. With the increase of the concentration of photoinitiator and light intensity, both the rate of polymerization and final double bond conversion increased. Degradation of cyclic acetal based networks was investigated in PBS medium so as to simulate physiological conditions. The remaining mass of the materials after 25 days incubation was 84%. TGA analysis showed that the gels exhibited a typical weight loss (97.2%) at around 378 °C. In vitro cytotoxicity showed that the cyclic acetal based gels had non-toxicity to cell L-929 and had good biocompatibility.

  10. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives.

    Science.gov (United States)

    Traverso, Jose A; Pulido, Amada; Rodríguez-García, María I; Alché, Juan D

    2013-01-01

    The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network.

  11. Silanized aryl layers through thiol-yne photo-click reaction.

    Science.gov (United States)

    Bengamra, Marwen; Khlifi, Akila; Ktari, Nadia; Mahouche-Chergui, Samia; Carbonnier, Benjamin; Fourati, Najla; Kalfat, Rafik; Chehimi, Mohamed M

    2015-10-06

    Nanometer-scale multilayered coatings were prepared by sequential surface reactions on gold plates. First 4-ethynylphenyl organic layer was electrografted from the parent diazonium tetrafluoroborate salt providing reactive alkynylated gold plate (Au-Y). The latter served for clicking mercaptosilane via a thiol-yne photo-triggered reaction to obtain alkoxysilane-functionalized surface. The trialkoxysilane top groups in turn served as anchor sites for the final sol-gel coating resulting from the surface reaction between aminopropylsilane and tetraethoxysilane (TEOS). It is demonstrated that two coupling agents, namely, aryl diazonium salt and silane, can be coupled using photo-triggered thiol-yne click reaction, resulting in robust multilayered coatings. In addition, the process is versatile in that it offers the possibility to design patterned surfaces. The top sol-gel layer can in turn be reacted with aminosilane, therefore providing a reactive and functional surface that can be used for different applications given the reactivity of amine groups. This approach opens new avenues for photo-triggered click reactions of aryl layers from diazonium salts. It shows that the new class of surface modifiers and coupling agents has much to offer and continues to be renewed for achieving tightly bound, reactive top coatings.

  12. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction.

    Science.gov (United States)

    Tajima, Kenji; Iwamoto, Kosuke; Satoh, Yasuharu; Sakai, Ryosuke; Satoh, Toshifumi; Dairi, Tohru

    2016-05-01

    Polyhydroxyalkanoates (PHAs) incorporating vinyl-bearing 3-hydroxyalkanoates were prepared in 8.5-12.9 g L(-1) yield. The molar ratios (0-16 mol%) of the vinyl-bearing 3-hydroxyalkanoate derivatives were controlled by the continuous feeding of undecylenate at various concentrations. Subsequently, the PHAs were functionalized by UV-initiated thiol-ene click reaction and chemical modification. (1)H NMR spectra suggested that 3-mercaptopropionic acid and 2-aminoethanethiol were successfully introduced into the vinyl-bearing PHA. Subsequently, chemical modification using fluorescein or a fibronectin active fragment (GRGDS) was attempted. The former yielded a PHA derivative capable of emitting fluorescence under UV irradiation, which was useful for determining the miscibility of PHA in a composite film comprising poly-ʟ-lactic acid (PLLA) and PHA. In the latter case, PHA bearing GRGDS peptides exhibited cell adhesiveness, suggesting that its biocompatibility was improved upon peptide introduction. Taken together, the UV-initiated thiol-ene click reaction was demonstrated to be useful in PHA modification.

  13. Biostability enhancement of oil core - polysaccharide multilayer shell via photoinitiator free thiol-ene 'click' reaction.

    Science.gov (United States)

    Calcagno, Vincenzo; Vecchione, Raffaele; Sagliano, Angela; Carella, Antonio; Guarnieri, Daniela; Belli, Valentina; Raiola, Luca; Roviello, Antonio; Netti, Paolo A

    2016-06-01

    Layer-by-layer of polyelectrolytes has emerged as one of the easiest and most controlled techniques to deposit ultrathin polymer layers mainly driven by electrostatic interactions. However, this kind of interaction results to be weak and easily breakable in physiological environment. Here we report on the preparation of nanocapsules completely made of natural biomaterials: a lipophilic core (soybean oil and egg lecithin as surfactant) as nanometric template and a polysaccharide-based multilayer shell (glycol chitosan and heparin) covalently cross-linked. We first modified glycol chitosan with a thiol moiety and heparin with an alkene moiety, respectively, and then we built a polymer multilayer film with a covalent cross-linkage among layers, exploiting the light initiated thiol-ene reaction, known as click chemistry. We showed the possibility to perform the covalent cross-linkage without any photoinitiator or metal catalyst, thus avoiding cytotoxic effects and further purification steps. The so realized nanocapsules resulted to be stable and completely biocompatible and, therefore, of interest for the biotechnology fields, mainly for drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Liquid—liquid interface-mediated Au—ZnO composite membrane using ‘thiol-ene’ click chemistry

    Science.gov (United States)

    Ali, Mohammed; Ghosh, Sujit Kumar

    2015-07-01

    A nanoparticle-decorated composite membrane has been devised at the water/CCl4 interface based on the self-assembly of ligand-stabilized gold and zinc oxide nanoparticles, exploiting the ‘thiol-ene’ click chemistry between the thiol groups of 11-mercaptoundecanoic acid-stabilized ZnO nanoparticles and the ene functionality of cinnamic acid attached to gold nanoparticles. The interfacial assembly of ultrasmall particles leads to a multilayer film that exhibits charge-dependent permeability of amino acid molecules across the membrane.

  15. Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Alkyl Chain

    Science.gov (United States)

    1989-05-01

    Methyl- terminated thiols generate surfaces that are composed of densely packed methyl groups and are both hydrophobic (Oa(H20) = 1120) and oleophobic ...together with monolayers of the two pure thiols. Both pure monolayers were autophobic and oleophobic : Oa(HD) = 470 for HS(CH2)2 1CH 3, 0a(HD) = 460 for...would be oleophobic , and we would expect Oa(HD) to be independent of the composition of the monolayer. The contact angles in Fig. 3 were measured

  16. Comparison of hydrazone heterobifunctional cross-linking agents for reversible conjugation of thiol-containing chemistry.

    Science.gov (United States)

    Christie, R James; Anderson, Diana J; Grainger, David W

    2010-10-20

    Reversible covalent conjugation chemistries that allow site- and condition-specific coupling and uncoupling reactions are attractive components in nanotechnologies, bioconjugation methods, imaging, and drug delivery systems. Here, we compare three heterobifunctional cross-linkers, containing both thiol- and amine-reactive chemistries, to form pH-labile hydrazones with hydrazide derivatives of the known and often published water-soluble polymer, poly[N-(2-hydroxypropyl methacrylamide)] (pHPMA), while subsequently coupling thiol-containing molecules to the cross-linker via maleimide addition. Two novel cross-linkers were prepared from the popular heterobifunctional cross-linking agent, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), modified to contain either terminal aldehyde groups (i.e., 1-(N-3-propanal)-4-(N-maleimidomethyl) cyclohexane carboxamide, PMCA) or methylketone groups (i.e., 1-(N-3-butanone)-4-(N-maleimidomethyl) cyclohexane carboxamide, BMCA). A third cross-linking agent was the commercially available N-4-acetylphenyl maleimide (APM). PMCA and BMCA exhibited excellent reactivity toward hydrazide-derivatized pHPMA with essentially complete hydrazone conjugation to polymer reactive sites, while APM coupled only ∼60% of available reactive sites on the polymer despite a 3-fold molar excess relative to polymer hydrazide groups. All polymer hydrazone conjugates bearing these bifunctional agents were then further reacted with thiol-modified tetramethylrhodamine dye, confirming cross-linker maleimide reactivity after initial hydrazone polymer conjugation. Incubation of dye-labeled polymer conjugates in phosphate buffered saline at 37 °C showed that hydrazone coupling resulting from APM exhibited the greatest difference in stability between pH 7.4 and 5.0, with hydrolysis and dye release increased at pH 5.0 over a 24 h incubation period. Polymer conjugates bearing hydrazones formed from cross-linker BMCA exhibited intermediate stability

  17. Removal of lead(II ions from aqueous solutions using cashew nut shell liquid-templated thiol-silica materials

    Directory of Open Access Journals (Sweden)

    J. E. G. Mdoe

    2014-09-01

    Full Text Available A range of thiol-silica composites were prepared using cashew nut shell liquid (CNSL or one of its phenolic constituents, cardanol, as templates. The procedure involved formation of a CNSL or cardanol emulsion in a water-ethanol system into which (3-mercaptopropyl-trimethoxysilane and tetraethyl orthosilicate were simultaneously added at various ratios. The reaction mixture was aged at room temperature for 18 h followed by a Soxhlet extraction of the template and drying. The materials were characterized by diffuse reflectance Fourier transform infrared, nitrogen physisorption, scanning electron microscopy and acid titration. Results indicated that indeed the thiol-silica composites were successfully prepared, with thiol group loadings ranging from 1.6-2.5 mmol/g. The materials were tested for lead(II adsorption, and results showed that they had maximum adsorption capacities up to 66.7 mg/g, depending on the thiol group loading and type of template used in preparing the adsorbent. DOI: http://dx.doi.org/10.4314/bcse.v28i3.5

  18. In situ generated hypoiodous acid in an efficient and heterogeneous catalytic system for the homo-oxidative coupling of thiols

    Directory of Open Access Journals (Sweden)

    Ghorbani-Choghamarani Arash

    2013-01-01

    Full Text Available Supported hydrogen peroxide on polyvinylpolypyrrolidone (PVPH2O2, silica sulfuric acid (SiO2-OSO3H and catalytic amounts of potassium iodide (KI has been developed as a heterogeneous medium for the rapid oxidative coupling of thiols into symmetrical homodisulfides. This oxidizing system proceeds under extremely mild conditions and gives no other oxidized side products.

  19. Opposing regulation of histamine-induced calcium signaling by sodium selenite and ebselen via alterations of thiol redox status.

    Science.gov (United States)

    Zhang, Huihui; Zhong, Liangwei

    2010-01-25

    Elevated blood histamine plays a role in the pathogenesis of atherosclerosis. Calcium signaling mediates histamine action in endothelial cells. Selenium (Se) is a dietary essential trace element for humans. Se compounds in different oxidation states were found to exhibit an opposing effect on the histamine-induced calcium signaling in the ECV304 cell line. When Se in the form of sodium selenite was added in the cell culture, the reactivity of the histamine H(1)-receptor was increased as reported in our previous paper. We here show that as a culture supplement, sodium selenite enhanced the activity of selenoprotein thioredoxin reductase (TrxR) and the calcium response to histamine stimulation, which were reversed by treating the cells with gold thioglucose, a nucleophilic drug that selectively modifies thiolate/selenolate groups. Sodium selenite most likely caused a reductive shift in the thiol/disulfide redox balance through increasing TrxR activity. In contrast, when the cells were treated with Se in the form of ebselen, a thiol oxidant with peroxidase-like activity, histamine-induced calcium release and calcium entry were significantly suppressed. This effect appeared related to the thiol-directed modification rather than the peroxidase-like activity of ebselen, because this inhibitory effect was not replicated by increasing cellular peroxidase activity. Thus, the opposing effects of sodium selenite and ebselen on histamine-induced calcium signaling are achieved, at least in part, through their opposite actions in modulating the thiol/disulfide redox state.

  20. Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation.

    Science.gov (United States)

    Esquivel, Dolores; Ouwehand, Judith; Meledina, Maria; Turner, Stuart; Tendeloo, Gustaaf Van; Romero-Salguero, Francisco J; Clercq, Jeriffa De; Voort, Pascal Van Der

    2017-10-05

    Highly ordered thiol-ethylene bridged Periodic Mesoporous Organosilicas were synthesized directly from a homemade thiol-functionalized bis-silane precursor. These high surface area materials contain up to 4.3mmol/g sulfur functions in the walls and can adsorb up to 1183mg/g mercury ions. Raman spectroscopy reveals the existence of thiol and disulfide moieties. These groups have been evaluated by a combination of Raman spectroscopy, Ellman's reagent and elemental analysis. The adsorption of mercury ions was evidenced by different techniques, including Raman, XPS and porosimetry, which indicate that thiol groups are highly accessible to mercury. Scanning transmission electron microscopy combined with EDX showed an even homogenous distribution of the sulfur atoms throughout the structure, and have revealed for the first time that a fraction of the adsorbed mercury is forming thiolate nanocrystals in the pores. The adsorbent is highly selective for mercury and can be regenerated and reused multiple times, maintaining its structure and functionalities and showing only a marginal loss of adsorption capacity after several runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Glutathione S-Transferase activity and total thiol status in chronic alcohol abusers before and 30 days after alcohol abstinence

    Directory of Open Access Journals (Sweden)

    Manjunatha S Muttigi

    2009-05-01

    Full Text Available Background: Glutathione S Transferase (GST has been involved in detoxification process in the liver and its activity has been shown to be increased in alcohol abusers. In the current work we measured the GST activity, total thiol status, AST, ALT, and direct bilirubin in chronic alcohol abusers before and 30 days after alcohol abstinence and lifestyle modification. Methods: Serum and urine GST activity and total thiol status were determined using spectrophotometric methods and serum transaminases were determined using clinical chemistry analyzer. Results: We found,significant increase in serum and urine GST (p<0.001, AST (p<0.001, ALT (p<0.001, and decrease in total thiol status (p<0.001 in chronic alcohol abusers. GST activity significantly decreased (p<0.001 and total thiol status were improved significantly (p<0.001 30 days after alcohol abstinence and lifestyle modification. Conclusion: This study provides preliminary data to suggest the role of GST as prognostic indicator of alcohol abstinence with possible trend towards an improvement in liver function.

  2. Self-assembled monolayers of terminal acetylenes as replacements for thiols in bottom-up tunneling junctions

    NARCIS (Netherlands)

    Fracasso, Davide; Kumar, Sumit; Rudolf, Petra; Chiechi, Ryan C.

    2014-01-01

    Why use thiols in Molecular Electronics? They stink, oxidize readily, poison catalysts, and often require nontrivial protection/deprotection chemistry. In this communication we demonstrate the fabrication of tunneling junctions formed by contact of self-assembled monolayers (SAMs) of terminal alkyne

  3. Hydrotalcite as an Efficient and Reusable Catalyst for Acylation of Phenols, Amines and Thiols Under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    A. R. Massah

    2012-01-01

    Full Text Available A wide variety of alcohols, phenols, amines and thiols were efficiently acylated with carboxylic acid anhydrides and chlorides in the presence of Hydrotalcite under solvent-free conditions at room temperature in good to high yields. Eco-friendly conditions and reusability of the catalyst are the most important advantages of this protocol.

  4. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  5. Thiol-disulfide Oxidoreductases TRX1 and TMX3 Decrease Neuronal Atrophy in a Lentiviral Mouse Model of Huntington's Disease.

    Science.gov (United States)

    Fox, Jonathan; Lu, Zhen; Barrows, Lorraine

    2015-11-06

    Huntington's disease (HD) is caused by a trinucleotide CAG repeat in the huntingtin gene (HTT) that results in expression of a polyglutamine-expanded mutant huntingtin protein (mHTT). N-terminal fragments of mHTT accumulate in brain neurons and glia as soluble monomeric and oligomeric species as well as insoluble protein aggregates and drive the disease process. Decreasing mHTT levels in brain provides protection and reversal of disease signs in HD mice making mHTT a prime target for disease modification. There is evidence for aberrant thiol oxidation within mHTT and other proteins in HD models. Based on this, we hypothesized that a specific thiol-disulfide oxidoreductase exists that decreases mHTT levels in cells and provides protection in HD mice. We undertook an in-vitro genetic screen of key thiol-disulfide oxidoreductases then completed secondary screens to identify those with mHTT decreasing properties. Our in-vitro experiments identified thioredoxin 1 and thioredoxin-related transmembrane protein 3 as proteins that decrease soluble mHTT levels in cultured cells. Using a lentiviral mouse model of HD we tested the effect of these proteins in striatum. Both proteins decreased mHTT-induced striatal neuronal atrophy. Findings provide evidence for a role of dysregulated protein-thiol homeostasis in the pathogenesis of HD.

  6. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    Science.gov (United States)

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  7. The Rearrangement of 2-Benzothiazolylthioacetyl Hydrazide in Synthesis of s-Triazolo[3,4-b]benzothiazole-3-thiol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rearrangement reaction of 2-benzothiazolylthioacetyl hydrazide 1 with potassium hydroxide and carbon disulfide in ethanol to produce s-triazolo[3,4-b]benzothiazole-3-thiol 3 was described.3 also can be obtained from 2-benzothiazolylhydazine 2 and the two methods for getting 3 were compared.Mannich reaction of compounds 3 was reported too.

  8. Thiol accumulation and cysteine desulfhydrase activity in H2S-fumigated leaves and leaf homogenates of cucurbit plants

    NARCIS (Netherlands)

    Schütz, Bärbel; De Kok, Luit J.; Rennenberg, Heinz

    1991-01-01

    Fumigation of both, cucurbit plants and cucurbit leaf homogenates with hydrogen sulfide (H2S) resulted in an increase in soluble thiol, mainly glutathione and cysteine. In leaf homogenates this increase was counteracted or prevented by the addition at 1 mM of inhibitors of pyridoxalphosphate depende

  9. New non-hydroxamic ADAMTS-5 inhibitors based on the 1,2,4-triazole-3-thiol scaffold.

    Science.gov (United States)

    Maingot, Lucie; Leroux, Florence; Landry, Valérie; Dumont, Julie; Nagase, Hideaki; Villoutreix, Bruno; Sperandio, Olivier; Deprez-Poulain, Rebecca; Deprez, Benoit

    2010-11-01

    In this Letter we describe the design, synthesis, screening, and optimization of a new family of ADAMTS-5 inhibitors. These inhibitors display an original 1,2,4-triazole-3-thiol scaffold as a putative zinc binding-group. In vitro results are rationalized by in silico docking of the compounds in ADAMTS-5's crystal structure.

  10. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Science.gov (United States)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-11-01

    Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH2) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such zwitterion modified PP surface.

  11. Interfacial thiol-isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation.

    Science.gov (United States)

    Kuypers, Sören; Pramanik, Sumit Kumar; D'Olieslaeger, Lien; Reekmans, Gunter; Peters, Martijn; D'Haen, Jan; Vanderzande, Dirk; Junkers, Thomas; Adriaensens, Peter; Ethirajan, Anitha

    2015-11-11

    Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.

  12. Quinone-induced inhibition of urease: elucidation of its mechanisms by probing thiol groups of the enzyme.

    Science.gov (United States)

    Zaborska, Wiesława; Krajewska, Barbara; Kot, Mirosława; Karcz, Waldemar

    2007-06-01

    In this work we studied the reaction of four quinones, 1,4-benzoquinone (1,4-BQ), 2,5-dimethyl-1,4-benzoquinone (2,5-DM-1,4-BQ), tetrachloro-1,4-benzoquinone (TC-1,4-BQ) and 1,4-naphthoquinone (1,4-NQ) with jack bean urease in phosphate buffer, pH 7.8. The enzyme was allowed to react with different concentrations of the quinones during different incubation times in aerobic conditions. Upon incubation the samples had their residual activities assayed and their thiol content titrated. The titration carried out with use of 5,5'-di-thiobis(2-nitrobenzoic) acid was done to examine the involvement of urease thiol groups in the quinone-induced inhibition. The quinones under investigation showed two distinct patterns of behaviour, one by 1,4-BQ, 2,5-DM-1,4-BQ and TC-1,4-BQ, and the other by 1,4-NQ. The former consisted of a concentration-dependent inactivation of urease where the enzyme-inhibitor equilibrium was achieved in no longer than 10min, and of the residual activity of the enzyme being linearly correlated with the number of modified thiols in urease. We concluded that arylation of the thiols in urease by these quinones resulting in conformational changes in the enzyme molecule is responsible for the inhibition. The other pattern of behaviour observed for 1,4-NQ consisted of time- and concentration-dependent inactivation of urease with a nonlinear residual activity-modified thiols dependence. This suggests that in 1,4-NQ inhibition, in addition to the arylation of thiols, operative are other reactions, most likely oxidations of thiols provoked by 1,4-NQ-catalyzed redox cycling. In terms of the inhibitory strength, the quinones studied formed a series: 1,4-NQ approximately 2,5-DM-1,4-BQ<1,4-BQ

  13. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Zanella, Rodolfo; Basiuk, Elena V; Santiago, Patricia; Basiuk, Vladimir A; Mireles, Edgar; Puente-Lee, Iván; Saniger, José M

    2005-09-01

    Gold nanoparticles were deposited on the surface of multiwalled carbon nanotubes (MWNTs) functionalized with aliphatic bifunctional thiols (1,4-butanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, and 2-aminoethanethiol) through a direct solvent-free procedure. Small gold particles, with a narrow particle size distribution around 1.7 nm, were obtained on 1,6-hexanedithiol-functionalized MWNTs. For MWNTs functionalized with the aminothiol, the average Au particle size was larger, 5.5 nm, apparently due to a coalescence phenomenon. Gatan image filter (GIF) observations show that sulfur is at the nanotube surface with a non-homogeneous distribution. A higher sulfur concentration was observed around the gold nanoparticles' location.

  14. Thiol-yne Click Adamantane Monolithic Stationary Phase for Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    Dao, Thi Thu Hien; Guerrouache, Mohamed; Carbonnier, Benjamin

    2012-01-01

    A porous crosslinked organic polymer based on N-acryloxysuccinimide (NAS) and ethylene dimethacrylate (EDMA) was prepared inside 75 μm i.d. fused silica capillary as functionalizable monolithic stationary phase for electrochromatographic applications. Succinimide groups on the monolith surface provide reactive sites able to re- act readily through standard electrophile-nucleophile chemistry. Propargylamine was used to prepare alkyne func- tionalized poly(NAS-co-EDMA). Onto this thiol-reactive polymer surface was grafted adamantane units via a photochemically-driven addition reaction. Chemical characterization was performed in situ after each synthetic step by means of Raman spectroscopy and grafting kinetics was investigated to ensure quantitative grafting of 1-adamantanethiol. The as-designed monolithic stationary phase exhibited typical reversed-phase separation mechanism as evidenced by the linear increase of the logarithm of retention factor of neutral aromatic solutes with the increase of the aqueous buffer content in the mobile phase.

  15. Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds.

    Science.gov (United States)

    Negishi, O; Ozawa, T

    2000-06-01

    In a reaction between (-)-epicatechin (EC) and 2-mercaptoethanol (2ME), catalyzed by partially purified polyphenol oxidase (PPO) extracted from the style of Rhododendron mucronatum, 2'-(2-hydroxyethylthio)-(-)-epicatechin (2'-HETEC), 5'-(2-hydroxyethylthio)-(-)-epicatechin (5'-HETEC), and 2',5'-bis(2-hydroxyethylthio)-(-)-epicatechin (2',5'-HETEC) were formed. The rate of formation of 2',5'-HETEC from 5'-HETEC was faster than that from 2'-HETEC. In the absence of 2ME, the concentration of EC decreased rapidly and the reaction mixture turned brown; 2'-, 5'-, and 2',5'-HETEC, especially 2'-substituted HETECs. reacted more slowly. These data indicate that 2ME acts both as an inhibitor of the polymerization of O-quinone, presumably by binding to it and as a reductant involved in the conversion of O-quinone to O-dihydroxyphenol, Inhibition of enzymatic browning by other thiol compounds such as cysteine and dithiothreitol was also investigated.

  16. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  17. Modeling of the Bioactivation of an Organic Nitrate by a Thiol to Form a Thionitrate Intermediate.

    Science.gov (United States)

    Sano, Tsukasa; Shimada, Keiichi; Aoki, Yohei; Kawashima, Takayuki; Sase, Shohei; Goto, Kei

    2016-12-25

    Thionitrates (R-SNO₂) have been proposed as key intermediates in the biotransformation of organic nitrates that have been used for the clinical treatment of angina pectoris for over 100 years. It has been proposed and widely accepted that a thiol would react with an organic nitrate to afford a thionitrate intermediate. However, there has been no example of an experimental demonstration of this elementary chemical process in organic systems. Herein, we report that aryl- and primary-alkyl-substituted thionitrates were successfully synthesized by the reaction of the corresponding lithium thiolates with organic nitrates by taking advantage of cavity-shaped substituents. The structure of a primary-alkyl-substituted thionitrate was unambiguously established by X-ray crystallographic analysis.

  18. A Fluorescence Turn-On Probe for Thiols with a Tunable Dynamic Range.

    Science.gov (United States)

    Li, Qian; Guo, Rui; Lin, Weiying

    2016-05-01

    We designed and synthesized a novel probe Cou-Rho-SA-Cu (II) for detection of thiols based on a coumarin-rhodamine FRET system. The compound Cou-Rho-SA exhibited strong blue fluorescence as the rhodamine moiety of the compound Cou-Rho-SA was in a ring-closing form and no FRET process occurred. The probe Cou-Rho-SA-Cu (II) was prepared by addition of Cu(2+) to the solution of Cou-Rho-SA. In the absence of GSH, the complex Cou-Rho-SA-Cu (II) showed almost no fluorescence owing to the FRET process and the paramagnetic nature of Cu(2+) . However, upon addition of GSH, the rhodamine moiety of the probe Cou-Rho-SA-Cu (II) recovered to its ring-closing form, and the FRET process was prohibited to show the blue fluorescence again. Moreover, via tuning the Cu(2+) concentrations, the probe could detect the different levels of GSH.

  19. Biochemical methods for monitoring protein thiol redox states in biological systems

    Directory of Open Access Journals (Sweden)

    Olena Rudyk

    2014-01-01

    Full Text Available Oxidative post-translational modifications of proteins resulting from events that increase cellular oxidant levels play important roles in physiological and pathophysiological processes. Evaluation of alterations to protein redox states is increasingly common place because of methodological advances that have enabled detection, quantification and identification of such changes in cells and tissues. This mini-review provides a synopsis of biochemical methods that can be utilized to monitor the array of different oxidative and electrophilic modifications that can occur to protein thiols and can be important in the regulatory or maladaptive impact oxidants can have on biological systems. Several of the methods discussed are valuable for monitoring the redox state of established redox sensing proteins such as Keap1.

  20. Conserved water-mediated H-bonding dynamics of catalytic Asn 175 in plant thiol protease

    Indian Academy of Sciences (India)

    Tapas K Nandi; Hridoy R Bairagya; Bishnu P Mukhopadhyay; K Sekar; Dipankar Sukul; Asim K Bera

    2009-03-01

    The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

  1. An excellent ozone-resistant polymethylvinylsiloxane coating on natural rubber by thiol-ene click chemistry

    Directory of Open Access Journals (Sweden)

    N. Y. Ning

    2015-06-01

    Full Text Available Natural rubber (NR as renewable resource is a kind of cheap and versatile elastomer. A disadvantage of NR is that the ozone resistance is not good, which needs to be improved for its wider application. In this study, polymethylvinylsiloxane (PMVS coating on natural rubber (NR was realized for the first time by using thiol-ene click reaction under UV irradiation, simultaniously realizing the fast crosslinking of PMVS layer and the covalent crosslinking between PMVS layer and NR layer. As a result, a good interphase adhesion between PMVS coating and NR was obtained. The coating of the crosslinked PMVS layer on NR resulted in an obvious increase in the ozone resistance of NR. Our study provides a new and high efficient strategy to prepare elastomer materials with good ozone resistance.

  2. Enzymatic improvement of mitochondrial thiol oxidase Erv1 for oxidized glutathione fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Kobayashi, Jyumpei; Sasaki, Daisuke; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-15

    Oxidized glutathione (GSSG) is the preferred form for industrial mass production of glutathione due to its high stability compared with reduced glutathione (GSH). In our previous study, over-expression of the mitochondrial thiol oxidase ERV1 gene was the most effective for high GSSG production in Saccharomyces cerevisiae cells among three types of different thiol oxidase genes. We improved Erv1 enzyme activity for oxidation of GSH and revealed that S32 and N34 residues are critical for the oxidation. Five engineered Erv1 variant proteins containing S32 and/or N34 replacements exhibited 1.7- to 2.4-fold higher in vitro GSH oxidation activity than that of parental Erv1, whereas the oxidation activities of these variants for γ-glutamylcysteine were comparable. According to three-dimensional structures of Erv1 and protein stability assays, S32 and N34 residues interact with nearby residues through hydrogen bonding and greatly contribute to protein stability. These results suggest that increased flexibility by amino acid replacements around the active center decrease inhibitory effects on GSH oxidation. Over-expressions of mutant genes coding these Erv1 variants also increased GSSG and consequently total glutathione production in S. cerevisiae cells. Over-expression of the ERV1 (S32A) gene was the most effective for GSSG production in S. cerevisiae cells among the parent and other mutant genes, and it increased GSSG production about 1.5-fold compared to that of the parental ERV1 gene. This is the first study demonstrating the pivotal effects of S32 and N34 residues to high GSH oxidation activity of Erv1. Furthermore, in vivo validity of Erv1 variants containing these S32 and N34 replacements were also demonstrated. This study indicates potentials of Erv1 for high GSSG production.

  3. Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Malloci, G. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Petrozza, A. [Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy); Mattoni, A., E-mail: mattoni@iom.cnr.it [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy)

    2014-06-02

    Small aromatic molecules such as benzene or pyridine derivatives are often used as interface modifiers (IMs) at polymer/metal oxide hybrid interfaces. We performed a theoretical investigation on prototypical thiol-terminated IMs aimed at improving the photovoltaic performances of poly(3-hexylthiophene)/TiO{sub 2} devices. By means of first-principles calculations in the framework of the density functional theory we investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol (6QT) molecules. We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine (4MP) which has recently shown to induce a large improvement in the overall power conversion efficiency of mesoporous films of TiO{sub 2} infiltrated by poly(3-hexylthiophene). The IMs investigated are expected to keep the beneficial features of 4MP giving at the same time the possibility to further tune the interlayer properties (e.g., its thickness, stability, and density). Dense interlayers of 6QT turn out to be slightly unstable since the titania substrate induces a compressive strain in the molecular film. On the contrary, we predict very stable films for both 3FT and 4MB molecules, which makes them interesting candidates for future experimental investigations. - Highlights: • We performed a theoretical investigation on thiol-terminated interface modifiers. • We investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol molecules. • We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine. • Dense interlayers of 6-isoquinolinethiol turn out to be slightly unstable. • We predict very stable self-assembled thin-films for both 3FT and 4MB molecules.

  4. Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Silvestrini, M. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy); Schiavuta, P.; Scopece, P. [Associazione CIVEN, via delle Industrie 5, 30175 Marghera - Venice (Italy); Pecchielan, G.; Moretto, L.M. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy); Ugo, P., E-mail: ugo@unive.it [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy)

    2011-09-01

    Highlights: > Complex nanostructures are built on the gold surface of ensembles of nanoelectrodes. > Gold surface of nanoelectrodes was functionalized with SAM of organic sulphurs. > The polycarbonate surrounding nanoelectrodes was functionalized with proteins. > SAMs protect the nanoelectrodes from undesired proteins adsorption. - Abstract: The possibility to functionalize selectively with thiols or disulfides the surface of the gold nanoelectrodes of polycarbonate templated nanoelectrode ensembles (NEEs) is studied. It is shown that the Au nanoelectrodes can be coated by a self assembled monolayer (SAM) of thioctic acid (TA) or 2-mercaptoethanesulfonic (MES) acid. The study of the electrochemical behavior of SAM-modified NEEs by cyclic voltammetry (CV) at different solution pH, using ferrocenecarboxylate as an anionic redox probe (FcCOO{sup -}) and (ferrocenylmethyl)trimethylammonium (FA{sup +}) as a cationic redox probe, demonstrate that the SAM-modified nanoelectrodes are permselective, in that only cationic or neutral probes can access the SAM-coated nanoelectrode surface. CV, AFM and FTIR-ATR data indicate that proteins such as casein or bovine serum albumin, which are polyanionic at pH 7, adsorb on the surface of NEEs untreated with thiols, tending to block the electron transfer of the ferrocenyl redox probes. On the contrary, the pre-treatment of the NEE with an anionic SAM protects the nanoelectrodes from protein fouling, allowing the detection of well shaped voltammetric patterns for the redox probe. Experimental results indicate that, in the case of MES treated NEEs, the protein is bound only onto the polycarbonate surface which surrounds the nanoelectrodes, while the tips of the gold nanoelectrodes remain protein free.

  5. A well-defined (POCOP)Rh catalyst for the coupling of aryl halides with thiols.

    Science.gov (United States)

    Timpa, Samuel D; Pell, Christopher J; Ozerov, Oleg V

    2014-10-22

    This article describes a well-defined pincer-Rh catalyst for C-S cross-coupling reactions. (POCOP)Rh(H)(Cl) serves as an active precatalyst for the coupling of aryl chlorides and bromides with aryl and alkyl thiols under reasonable conditions (3% mol cat., 110 °C, 2-24 h, >90% yield). For select substrates, >90% yields were obtained with catalyst loading as low as 0.1%. Key mechanistic intermediates have been isolated and fully characterized, including (POCOP)Rh(Ph)(SPh) (6a) and (POCOP)Rh(SPh2) (6b). The aryl/bis(phosphinite) (POCOP)Rh system has been shown to favor aryl thiolate reductive elimination at elevated temperatures and in some cases at room temperature, compared with the analogous diarylamido/bis(phosphine) (PNP)Rh pincer system. Concerted reductive elimination has been studied with 6a directly and in the presence of aryl bromide and aryl chloride traps. This investigation demonstrates a clear rate dependence on aryl chloride concentration during catalysis, a dependence that is absent when using aryl bromides. The rate of catalysis is dramatically reduced or brought to zero for ortho-tolyl halides, which can be traced to slower C-S coupling and slower carbon-halogen oxidative addition for ortho-substituted aryls. The influence of the sterics in the thiol component is less straightforward. The S-H oxidative addition product (POCOP)Rh(H)(SPh) (16) has been fully characterized and its reactivity has been examined, resulting in the isolation of the sodium-thiolate adduct (POCOP)Rh(NaSPh) (19). The solid-state structure of 19 shows Na interactions not only with sulfur, but also with a neighboring Rh and the chelating aryl carbon of the pincer framework. The reactivity of 16 and 19 indicates that these potential side products should not hinder catalysis.

  6. Thiol-based redox signaling in the nitrogen-fixing symbiosis

    Directory of Open Access Journals (Sweden)

    Pierre eFrendo

    2013-09-01

    Full Text Available In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, their spatio-temporally distribution is correlated with the corresponding (homoglutathione synthetase activities, and are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume

  7. Thiol-based redox regulation in sexual plant reproduction: new insights and perspectives

    Science.gov (United States)

    Traverso, Jose A.; Pulido, Amada; Rodríguez-García, María I.; Alché, Juan D.

    2013-01-01

    The success of sexual reproduction in plants involves (i) the proper formation of the plant gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment of specific interactions between pollen grains and the stigma, which subsequently lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing to the lack of mobility, plants have developed specific regulatory mechanisms to control all developmental events underlying the sexual plant reproduction according to environmental challenges. Over the last decade, redox regulation and signaling have come into sight as crucial mechanisms able to manage critical stages during sexual plant reproduction. This regulation involves a complex redox network which includes reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs). These proteins participate as critical elements not only in the switch between the mitotic to the meiotic cycle but also at further developmental stages of microsporogenesis. They are also implicated in the regulation of pollen rejection as the result of self-incompatibility. In addition, they display precise space-temporal patterns of expression and are present in specific localizations like the stigmatic papillae or the mature pollen, although their functions and subcellular localizations are not clear yet. In this review we summarize insights and perspectives about the presence of thiol/disulphide-containing proteins in plant reproduction, taking into account the general context of the cell redox network. PMID:24294217

  8. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

    Science.gov (United States)

    Baker, Laura M S; Baker, Paul R S; Golin-Bisello, Franca; Schopfer, Francisco J; Fink, Mitchell; Woodcock, Steven R; Branchaud, Bruce P; Radi, Rafael; Freeman, Bruce A

    2007-10-19

    Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

  9. Production of low-molecular weight thiols as a response to cadmium uptake by tumbleweed (Salsola kali).

    Science.gov (United States)

    De la Rosa, Guadalupe; Martínez-Martínez, Alejandro; Pelayo, Helvia; Peralta-Videa, José R; Sanchez-Salcido, Blanca; Gardea-Torresdey, Jorge L

    2005-05-01

    Tumbleweed (Salsola kali) is a desert plant species that has shown to be a potential Cd hyperaccumulator. In this study, the production of low-molecular weight thiols (LMWT) as a response to cadmium stress was determined in hydroponically grown seedlings exposed to 0, 45, 89, and 178 microM Cd(2+). The treatment of 89 microM Cd(2+) was tested alone and supplemented with an equimolar concentration of ethylenediaminetetraacetic acid (EDTA) to determine the effect of this chelating agent on Cd uptake and thiols production. After 6 days of growth, the Cd concentration in plant tissues was determined by using inductively coupled plasma/optical emission spectroscopy (ICP/OES). Results indicated that Cd uptake by plants was concentration-dependent. Plants treated with 178 microM Cd(2+), had 10+/-0.62, 9.7+/-1.4, and 4.3+/-0.83 mmol Cd kg(-1) dry tissue in roots, stems, and leaves, respectively. The production of thiols was dependent on Cd concentration in tissues. According to the stoichiometry performed, plants treated with Cd concentrations up to 178 muM produced 0.131+/-0.02, and 0.087+/-0.012 mmol SH per mmol Cd present in roots and stems. In leaves, the production of thiols decreased at the highest Cd concentration tested. Thus, up to 89 microM Cd in the media, 0.528+/-0.004 mmol SH per mmol Cd in leaf tissues were produced. EDTA equimolar to Cd reduced both Cd uptake and thiols production. Catalase activity (CAT) (EC 1.11.1.6) was significantly depressed at the lowest Cd concentration. None of the conditions tested affected biomass or plant elongation.

  10. One-step interfacial thiol-ene photopolymerization for metal nanoparticle-decorated microcapsules (MNP@MCs).

    Science.gov (United States)

    Liu, Dandan; Jiang, Xuesong; Yin, Jie

    2014-06-24

    We herein reported a one-step strategy to prepare the noble metal nanoparticle-decorated microcapsules (MNP@MCs) through the interfacial thiol-ene photopolymerization. In the presence of amphiphlic polyhedral oligomeric silsesquioxane (POSS) containing thiol groups (PTPS) as a reactive surfactant and trimethylolpropane triacrylate (TMPTA) as a cross-linker, the oil phase of toluene dissolved with a photoinitiator was emulsified into a water phase containing a metal precursor to form an oil-in-water (O/W) emulsion. Upon irradiation of ultraviolet (UV) light, the thiol-ene photoploymerization and photoreduction at the interface of toluene/water lead to the formation of the cross-linked wall and metal nanoparticles, respectively. A series of gold, silver, and platinum nanoparticle-decorated microcapsules (AuNP@MC, AgNP@MC, and PtNP@MC) were prepared through this one-step interfacial thiol-ene photopolymerization and were characterized carefully by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The results revealed that the obtained MNP@MCs were 2.2-2.7 μm in diameter with a wall of 40-70 nm in thickness, which was covered with the metal nanoparticles. The size and amount of metal nanoparticles increased with the increasing concentration of the metal precursor in water. Furthermore, the catalyst performance of AuNP@MC was studied by reduction of aromatic nitro compounds and exhibited the enhanced catalytic activity and good stability in the reduction of hydrophobic nitrophenol. It is believed that this robust, convenient, simple strategy based on the one-step interfacial thiol-ene photopolymerization will provide an important alternative to fabricate the functional metal nanoparticle-modified microcapsules.

  11. Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance.

    Science.gov (United States)

    Chang, Jia-Yaw; Li, Chen-Hei; Chiang, Ya-Han; Chen, Chia-Hung; Li, Pei-Ni

    2016-07-27

    This paper reports a facile and environmentally friendly approach to the preparation of highly efficient quantum dot-sensitized solar cells (QDSSCs) based on a combination of aqueous CuInS2 quantum dots (QDs) and thiol coadsorbents. The photovoltaic properties of the QDSSCs were found to be dependent on the type and concentration of the thiol coadsorbent. The incorporation of thiol coadsorbents results in improved JSC and VOC because (1) they provide disulfide reductants during the QD sensitization process and (2) the coadsorbent molecules are anchored on the TiO2 surface, thus affecting the movement of the conduction band of TiO2. To the best of the our knowledge, this is the first demonstrated use of various thiol coadsorbents as reducing agents in the fabrication of high-efficiency QDSSCs. CuInS2 QDSSCs fabricated with the assistance of thioglycolic acid coadsorbents exhibited efficiencies as high as 5.90%, which is 20 times higher than that of the control device without thiol coadsorbents (0.29%). In addition, the photovoltaic properties of a device fabricated using the colloidal CuInS2 QDs coated with different bifunctional linkers were investigated for comparison. The versatility of this facile fabrication process was demonstrated in the preparation of solar cells sensitized with aqueous AgInS2 or CdSeTe QDs. The AgInS2 QDSSC showed a conversion efficiency of 2.72%, which is the highest reported for Ag-based metal sulfides QDSSCs thus far.

  12. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli

    Science.gov (United States)

    LaVoie, Stephen P.; Mapolelo, Daphne T.; Cowart, Darin M.; Polacco, Benjamin J.; Johnson, Michael K.; Scott, Robert A.; Miller, Susan M.; Summers, Anne O.

    2015-01-01

    The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol- and metal- homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na+/K+ electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol- and Fe-homeostases reflected their different uptake and valences; (b) their similar effects on essential metal- and electrolyte-homeostases reflected the energy-dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology. PMID:26498643

  13. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli.

    Science.gov (United States)

    LaVoie, Stephen P; Mapolelo, Daphne T; Cowart, Darin M; Polacco, Benjamin J; Johnson, Michael K; Scott, Robert A; Miller, Susan M; Summers, Anne O

    2015-12-01

    The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol and metal homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) blocked bulk cellular thiols and protein-associated thiols more completely than higher concentrations of monovalent organomercurials, phenylmercuric acetate (PMA) and merthiolate (MT). Cells bound Hg(II) and PMA in excess of their available thiol ligands; X-ray absorption spectroscopy indicated nitrogens as likely additional ligands. The mercurials released protein-bound iron (Fe) more effectively than common organic oxidants and all disturbed the Na(+)/K(+) electrolyte balance, but none provoked efflux of six essential transition metals including Fe. PMA and MT made stable cysteine monothiol adducts in many Fe-binding proteins, but stable Hg(II) adducts were only seen in CysXxx(n)Cys peptides. We conclude that on acute exposure: (a) the distinct effects of mercurials on thiol and Fe homeostases reflected their different uptake and valences; (b) their similar effects on essential metal and electrolyte homeostases reflected the energy dependence of these processes; and (c) peptide phenylmercury-adducts were more stable or detectable in mass spectrometry than Hg(II)-adducts. These first in vivo observations in a well-defined model organism reveal differences upon acute exposure to inorganic and organic mercurials that may underlie their distinct toxicology.

  14. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  15. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid*♦

    Science.gov (United States)

    Turell, Lucía; Vitturi, Darío A.; Coitiño, E. Laura; Lebrato, Lourdes; Möller, Matías N.; Sagasti, Camila; Salvatore, Sonia R.; Woodcock, Steven R.; Alvarez, Beatriz; Schopfer, Francisco J.

    2017-01-01

    Nitroalkene fatty acids are formed in vivo and exert protective and anti-inflammatory effects via reversible Michael addition to thiol-containing proteins in key signaling pathways. Nitro-conjugated linoleic acid (NO2-CLA) is preferentially formed, constitutes the most abundant nitrated fatty acid in humans, and contains two carbons that could potentially react with thiols, modulating signaling actions and levels. In this work, we examined the reactions of NO2-CLA with low molecular weight thiols (glutathione, cysteine, homocysteine, cysteinylglycine, and β-mercaptoethanol) and human serum albumin. Reactions followed reversible biphasic kinetics, consistent with the presence of two electrophilic centers in NO2-CLA located on the β- and δ-carbons with respect to the nitro group. The differential reactivity was confirmed by computational modeling of the electronic structure. The rates (kon and koff) and equilibrium constants for both reactions were determined for different thiols. LC-UV-Visible and LC-MS analyses showed that the fast reaction corresponds to β-adduct formation (the kinetic product), while the slow reaction corresponds to the formation of the δ-adduct (the thermodynamic product). The pH dependence of the rate constants, the correlation between intrinsic reactivity and thiol pKa, and the absence of deuterium solvent kinetic isotope effects suggested stepwise mechanisms with thiolate attack on NO2-CLA as rate-controlling step. Computational modeling supported the mechanism and revealed additional features of the transition states, anionic intermediates, and final neutral products. Importantly, the detection of cysteine-δ-adducts in human urine provided evidence for the biological relevance of this reaction. Finally, human serum albumin was found to bind NO2-CLA both non-covalently and to form covalent adducts at Cys-34, suggesting potential modes for systemic distribution. These results provide new insights into the chemical basis of NO2-CLA

  16. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    Science.gov (United States)

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Thiol-ene "click" reaction triggered by neutral ionic liquid: the "ambiphilic" character of [hmim]Br in the regioselective nucleophilic hydrothiolation.

    Science.gov (United States)

    Kumar, Rajesh; Saima; Shard, Amit; Andhare, Nitin H; Richa; Sinha, Arun K

    2015-01-12

    Thiol-ene "click" chemistry has emerged as a powerful strategy to construct carbon-heteroatom (C-S) bonds, which generally results in the formation of two regioisomers. To this end, the neutral ionic liquid [hmim]Br has been explored as a solvent cum catalyst for the synthesis of linear thioethers from activated and inactivated styrene derivatives or secondary benzyl alcohols and thiols without the requirement of using a metal complex, base, or free radical initiator. Furthermore, detailed mechanistic investigations using (1)H NMR spectroscopy and quadrupole time-of-flight electrospray ionization mass spectrometry (Q-TOF ESI-MS) revealed that the "ambiphilic" character of the ionic liquid promotes the nucleophilic addition of thiol to styrene through an anti-Markovnikov pathway. The catalyst recyclability and the extension of the methodology for thiol-yne click chemistry are additional benefits. A competitive study among thiophenol, styrene, and phenyl acetylene revealed that the rate of reaction is in the order of thiol-yne>thiol-ene>dimerization of thiol in [hmim]Br. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Elaboration de revêtements à base d'huile végétale par chimie thiol-X photoamorcée

    OpenAIRE

    Zhao, Yu Hui

    2015-01-01

    Two types of coatings constituted about 80 wt% of vegetable oil were prepared by photoinitiated thiol-X chemistry. The first one has been prepared by crosslinking of native and stand linseed oil triglycerides in the presence of 0.5 equivalent of various thiols (SH/ene) under air and UV radiation, without photoinitiator or solvent. The oxidation of fatty acids has shown a beneficial effect on the thiol-ene addition as well as on the final properties of coatings. This process is thus an interes...

  19. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

    DEFF Research Database (Denmark)

    Mesbah, Kiarach; Mai, T.D.; Jensen, Thomas Glasdam

    2016-01-01

    We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N, N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3......-(DMA-PMAMAPS) copolymer were evaluated in terms of surface hydrophilicity, suppression and stability of electro-osmotic flow and prevention of protein adsorption. Surface modification of thiol-ene containing a 20 % excess of thiols with the terpolymer p-(DMA-PMA-MAPS) was found to offer the most stable coating and most...

  20. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    Science.gov (United States)

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl3), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  1. Toxicological aspects of trans fat consumption over two sequential generations of rats: Oxidative damage and preference for amphetamine.

    Science.gov (United States)

    Kuhn, Fábio Teixeira; Trevizol, Fabíola; Dias, Verônica Tironi; Barcelos, Raquel Cristine Silva; Pase, Camila Simonetti; Roversi, Karine; Antoniazzi, Caren Tatiane de David; Roversi, Katiane; Boufleur, Nardeli; Benvegnú, Dalila Moter; Emanuelli, Tatiana; Bürger, Marilise Escobar

    2015-01-01

    Chronic consumption of processed food causes structural changes in membrane phospholipids, affecting brain neurotransmission. Here we evaluated noxious influences of dietary fats over two generations of rats on amphetamine (AMPH)-conditioned place preference (CPP). Female rats received soybean oil (SO, rich in n-6 fatty acids (FA)), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans fatty acids (TFA)) for two successive generations. Male pups from the 2nd generation were maintained on the same supplementation until 41 days of age, when they were conditioned with AMPH in CPP. While the FO group showed higher incorporation of n-3 polyunsaturated-FA (PUFA) in cortex/hippocampus, the HVF group showed TFA incorporation in these same brain areas. The SO and HVF groups showed AMPH-preference and anxiety-like symptoms during abstinence. Higher levels of protein carbonyl (PC) and lower levels of non-protein thiols (NPSH) were observed in cortex/hippocampus of the HVF group, indicating antioxidant defense system impairment. In contrast, the FO group showed no drug-preference and lower PC levels in cortex. Cortical PC was positively correlated with n-6/n-3 PUFA ratio, locomotion and anxiety-like behavior, and hippocampal PC was positively correlated with AMPH-preference, reinforcing connections between oxidative damage and AMPH-induced preference/abstinence behaviors. As brain incorporation of trans and n-6 PUFA modifies its physiological functions, it may facilitate drug addiction.

  2. Protective effect of brown Brazilian propolis against acute vaginal lesions caused by herpes simplex virus type 2 in mice: involvement of antioxidant and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sartori, Gláubia; Pesarico, Ana Paula; Pinton, Simone; Dobrachinski, Fernando; Roman, Silvane Souza; Pauletto, Fernanda; Rodrigues, Luiz Carlos; Prigol, Marina

    2012-01-01

    Propolis has been highlighted for its antioxidant, anti-inflammatory and antiviral properties. The purpose of this study was to investigate if brown Brazilian hydroalcoholic propolis extract (HPE) protects against vaginal lesions caused by herpes simplex virus type 2 (HSV-2) in female BALB/c mice. The treatment was divided in 5 days of pre-treatment with HPE [50 mg · kg(-1), once a day, intragastric (i.g.)], HSV-2 infection [10 µl of a solution 1 × 10(2) plaque-forming unit (PFU · ml(-1) HSV-2), intravaginal inoculation at day 6] and post-treatment with HPE (50 mg · kg(-1)) for 5 days more. At day 11, the animals were killed, and the in vivo analysis (score of lesions) and ex vivo analysis [haematological and histological evaluation; superoxide dismutase (SOD), catalase (CAT) and myeloperoxidase (MPO) activities; reactive species (RS), tyrosine nitration levels, non-protein thiols (NPSH) and ascorbic acid (AA) levels] were carried out. HPE treatment reduced extravaginal lesions and the histological damage caused by HSV-2 infection in vaginal tissues of animals. HPE was able to decrease RS, tyrosine nitration, AA levels and MPO activity. Also, it protected against the inhibition of CAT activity in vaginal tissues of mice. HPE promoted protective effect on HSV-2 infected animals by acting on inflammatory and oxidative processes, and this effect probably is caused by its antioxidant and anti-inflammatory properties.

  3. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Directory of Open Access Journals (Sweden)

    Danuta Kowalczyk-Pachel

    Full Text Available The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days cocaine (10 mg/kg i.p. administration on the total cysteine (Cys metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS and malondialdehyde (MDA as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH, ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked

  4. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Science.gov (United States)

    Kowalczyk-Pachel, Danuta; Iciek, Małgorzata; Wydra, Karolina; Nowak, Ewa; Górny, Magdalena; Filip, Małgorzata; Włodek, Lidia; Lorenc-Koci, Elżbieta

    2016-01-01

    The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase

  5. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-01

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311 ++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data.

  7. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection.

    Science.gov (United States)

    Stantchev, Tzanko S; Paciga, Mark; Lankford, Carla R; Schwartzkopff, Franziska; Broder, Christopher C; Clouse, Kathleen A

    2012-12-03

    The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI) and/or thioredoxin (Trx) have emerged as the two enzymes most often implicated in this process. We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets--primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM), and also phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb) in HIV-1 envelope pseudotyped and wild type (wt) virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this process and may provide an explanation for differences

  8. Cell-type specific requirements for thiol/disulfide exchange during HIV-1 entry and infection

    Directory of Open Access Journals (Sweden)

    Stantchev Tzanko S

    2012-12-01

    Full Text Available Abstract Background The role of disulfide bond remodeling in HIV-1 infection is well described, but the process still remains incompletely characterized. At present, the data have been predominantly obtained using established cell lines and/or CXCR4-tropic laboratory-adapted virus strains. There is also ambiguity about which disulfide isomerases/ reductases play a major role in HIV-1 entry, as protein disulfide isomerase (PDI and/or thioredoxin (Trx have emerged as the two enzymes most often implicated in this process. Results We have extended our previous findings and those of others by focusing on CCR5-using HIV-1 strains and their natural targets - primary human macrophages and CD4+ T lymphocytes. We found that the nonspecific thiol/disulfide exchange inhibitor, 5,5'-dithiobis(2-nitrobenzoic acid (DTNB, significantly reduced HIV-1 entry and infection in cell lines, human monocyte-derived macrophages (MDM, and also phytohemagglutinin (PHA-stimulated peripheral blood mononuclear cells (PBMC. Subsequent studies were performed using specific anti-PDI or Trx monoclonal antibodies (mAb in HIV-1 envelope pseudotyped and wild type (wt virus infection systems. Although human donor-to-donor variability was observed as expected, Trx appeared to play a greater role than PDI in HIV-1 infection of MDM. In contrast, PDI, but not Trx, was predominantly involved in HIV-1 entry and infection of the CD4+/CCR5+ T cell line, PM-1, and PHA-stimulated primary human T lymphocytes. Intriguingly, both PDI and Trx were present on the surface of MDM, PM-1 and PHA-stimulated CD4+ T cells. However, considerably lower levels of Trx were detected on freshly isolated CD4+ lymphocytes, compared to PHA-stimulated cells. Conclusions Our findings clearly demonstrate the role of thiol/disulfide exchange in HIV-1 entry in primary T lymphocytes and MDM. They also establish a cell-type specificity regarding the involvement of particular disulfide isomerases/reductases in this

  9. Decaborane thiols as building blocks for self-assembled monolayers on metal surfaces.

    Science.gov (United States)

    Bould, Jonathan; Macháček, Jan; Londesborough, Michael G S; Macías, Ramón; Kennedy, John D; Bastl, Zdeněk; Rupper, Patrick; Baše, Tomáš

    2012-02-01

    Three nido-decaborane thiol cluster compounds, [1-(HS)-nido-B(10)H(13)] 1, [2-(HS)-nido-B(10)H(13)] 2, and [1,2-(HS)(2)-nido-B(10)H(12)] 3 have been characterized using NMR spectroscopy, single-crystal X-ray diffraction analysis, and quantum-chemical calculations. In the solid state, 1, 2, and 3 feature weak intermolecular hydrogen bonding between the sulfur atom and the relatively positive bridging hydrogen atoms on the open face of an adjacent cluster. Density functional theory (DFT) calculations show that the value of the interaction energy is approximately proportional to the number of hydrogen atoms involved in the interaction and that these values are consistent with a related bridging-hydrogen atom interaction calculated for a B(18)H(22)·C(6)H(6) solvate. Self-assembled monolayers (SAMs) of 1, 2, and 3 on gold and silver surfaces have been prepared and characterized using X-ray photoelectron spectroscopy. The variations in the measured sulfur binding energies, as thiolates on the surface, correlate with the (CC2) calculated atomic charge for the relevant boron vertices and for the associated sulfur substituents for the parent B(10)H(13)(SH) compounds. The calculated charges also correlate with the measured and DFT-calculated thiol (1)H chemical shifts. Wetting-angle measurements indicate that the hydrophilic open face of the cluster is directed upward from the substrate surface, allowing the bridging hydrogen atoms to exhibit a similar reactivity to that of the bulk compound. Thus, [PtMe(2)(PMe(2)Ph)(2)] reacts with the exposed and acidic B-H-B bridging hydrogen atoms of a SAM of 1 on a gold substrate, affording the addition of the metal moiety to the cluster. The XPS-derived stoichiometry is very similar to that for a SAM produced directly from the adsorption of [1-(HS)-7,7-(PMe(2)Ph)(2)-nido-7-PtB(10)H(11)] 4. The use of reactive boron hydride SAMs as templates on which further chemistry may be carried out is unprecedented, and the principle may be

  10. Electronic Transport through Self Assembled Thiol Molecules: Effect of Monolayer Order, Dynamics and Temperature

    Science.gov (United States)

    Dholakia, Geetha; Fan, Wendy; Meyyappan, M.

    2005-01-01

    We present the charge transport and tunneling conductance of self assembled organic thiol molecules and discuss the influence of order and dynamics in the monolayer on the transport behavior and the effect of temperature. Conjugated thiol molecular wires and organometals such as terpyridine metal complexes provide a new platform for molecular electronic devices and we study their self assembly on Au(111) substrates by the scanning tunneling microscope. Determining the organization of the molecule and the ability to control the nature of its interface with the substrate is important for reliable performance of the molecular electronic devices. By concurrent scanning tunneling microscopy and spectroscopy studies on SAMs formed from oligo (phenelyne ethynelyne) monolayers with and without molecular order, we show that packing and order determine the response of a self assembled monolayer (SAM) to competing interactions. Molecular resolution STM imaging in vacuum shows that the OPES adopt an imcommensurate SAM structure on Au(111) with a rectangular unit cell. Tunneling spectroscopic measurements were performed on the SAM as a function of junction resistance. STS results show that the I-Vs are non linear and asymmetric due to the inherent asymmetry in the molecular structure, with larger currents at negative sample biases. The asymmetry increases with increasing junction resistance due to the asymmetry in the coupling to the leads. This is brought out clearly in the differential conductance, which also shows a gap at the Fermi level. We also studied the effect of order and dynamics in the monolayer on the charge transport and found that competing forces between the electric field, intermolecular interactions, tip-molecule physisorption and substrate-molecule chemisorption impact the transport measurements and its reliability and that the presence of molecular order is very important for reproducible transport measurements. Thus while developing new electronic platforms

  11. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  12. An excited state intramolecular proton transfer dye based fluorescence turn-on probe for fast detection of thiols and its applications in bioimaging

    Science.gov (United States)

    Zhao, Yun; Xue, Yuanyuan; Li, Haoyang; Zhu, Ruitao; Ren, Yuehong; Shi, Qinghua; Wang, Song; Guo, Wei

    2017-03-01

    In this study, a new fluorescent probe 2-(2‧-hydroxy-5‧-N-maleimide phenyl)-benzothiazole (probe 1), was designed and synthesized by linking the excited state intramolecular proton transfer (ESIPT) fluorophore to the maleimide group for selective detection of thiols in aqueous solution. The fluorescence of probe 1 is strongly quenched by maleimide group through the photo-induced electron transfer (PET) mechanism, but after reaction with thiol, the fluorescence of ESIPT fluorophore is restored, affording a large Stokes shifts. Upon addition of cysteine (Cys), probe 1 exhibited a fast response time (complete within 30 s) and a high signal-to-noise ratio (up to 23-fold). It showed a high selectivity and excellent sensitivity to thiols over other relevant biological species, with a detection limit of 3.78 × 10- 8 M (S/N = 3). Moreover, the probe was successfully applied to the imaging of thiols in living cells.

  13. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    Science.gov (United States)

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups.

  14. Potassium carbonate: a highly efficient catalyst for the acylation of alco-hols, phenols and thiols under mild conditions

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2014-02-01

    Full Text Available A general, mild and efficient protocol has been developed for the synthesis of esters and thioesters. The process has been taking place using tetra n-butylammonium iodide (TBAI as a phase-transfer catalyst and in the presence of potassium carbonate (K2CO3. A wide range of esters and thioesters was prepared in high yields and suitable times by the treatment of alcohols, phenols and thiols with acetic anhydride. Acylation reactions of a number of alcohols, phenols and thiols with acetic anhydride demonstrated that potassium carbonate is a convenient and efficient catalyst for the synthesis of esters and thioesters. This is a mild, general and practical procedure for the synthesis of esters and thioesters in high yields and suitable times.

  15. Photostability and Performance of Polystyrene Films Containing 1,2,4-Triazole-3-thiol Ring System Schiff Bases

    Directory of Open Access Journals (Sweden)

    Gassan Q. Ali

    2016-12-01

    Full Text Available Series of 4-(4-substituted benzylideneamino-5-(3,4,5-trimethoxyphenyl-4H-1,2,4-triazole-3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing synthesized Schiff bases (0.5% by weight were irradiated (λmax = 365 nm and light intensity = 6.43 × 10−9 ein·dm−3·s−1 at room temperature. The photostabilization effect of 1,2,4-triazole-3-thiols Schiff bases was determined using various methods. All the additives used enhanced the photostability of polystyrene films against irradiation compared with the result obtained in the absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct absorption of UV radiation and/or radical scavengers.

  16. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  17. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  18. Photostability and Performance of Polystyrene Films Containing 1,2,4-Triazole-3-thiol Ring System Schiff Bases.

    Science.gov (United States)

    Ali, Gassan Q; El-Hiti, Gamal A; Tomi, Ivan Hameed R; Haddad, Raghad; Al-Qaisi, Alaa J; Yousif, Emad

    2016-12-09

    Series of 4-(4-substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing synthesized Schiff bases (0.5% by weight) were irradiated (λmax = 365 nm and light intensity = 6.43 × 10(-9) ein·dm(-3)·s(-1)) at room temperature. The photostabilization effect of 1,2,4-triazole-3-thiols Schiff bases was determined using various methods. All the additives used enhanced the photostability of polystyrene films against irradiation compared with the result obtained in the absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct absorption of UV radiation and/or radical scavengers.

  19. Adsorption kinetics and mechanical properties of thiol-modified DNA-oligos on gold investigated by microcantilever sensors

    DEFF Research Database (Denmark)

    Marie, Rodolphe Charly Willy; Jensenius, Henriette; Thaysen, Jacob

    2002-01-01

    -mer thiol-modified DNA-oligo layer. The self-assembly induces a surface-stress change, which closely follows Langmuir adsorption model. The adsorption results in compressive surface-stress formation, which might be due to intermolecular repulsive forces in the oligo layer. The rate constant...... of the adsorption depends on the concentration of the oligo solution. Based on the calculated rate constants a surface free energy of the thiol-modified DNA-oligo adsorption on gold is found to be -32.4 kJ mol(-1). The adsorption experiments also indicate that first a single layer of DNA-oligos is assembled...... on the gold surface after which a significant unspecific adsorption takes place on top of the first DNA-oligo layer. The cantilever-based sensor principle has a wide range of applications in real-time local monitoring of chemical and biological interactions as well as in the detection of specific DNA...

  20. The synthesis of novel thiol/amino bifunctionalized SBA-15 and application on the Cr(VI) absorption

    Science.gov (United States)

    Yang, Y.; Wang, D.; Yang, J. X.

    2017-08-01

    Novel amino/thiol organic groups modified SBA-15 materials were successfully prepared by a simple co-condensation approach. The synthesize mesoporous materials were characterized by FT-IR, SAXRD, N2 adsorption and elemental analysis (EA). The absorption behavior of Cr (VI) in the samples has been investigated. The experiments revealed that the adsorption amount of Cr (VI) was decided by thiol groups, but the adsorption equilibrium time was mainly effected by amino groups. The 15% NH2+20%SH sample had the best adsorption performance. Its maximum adsorption capacity can be up to 49.29 mg/g at the optimum conditions. The research of adsorption mechanism including adsorption kinetics and adsorption thermodynamics was also presented.

  1. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-based regulation.

    Science.gov (United States)

    Masalkar, Pintu D; Roberts, Daniel M

    2015-01-16

    Legume root nodule glutamine synthetase (GS) catalyzes the assimilation of ammonia produced by nitrogen fixation. Two GS isoform subtypes (GS1β and GS1γ) are present in soybean nodules. GS1γ isoforms differ from GS1β isoforms in terms of their susceptibility to reversible inhibition by intersubunit disulfide bond formation between C159 and C92 at the shared active site at subunit interfaces. Although nodule GS enzymes share 86% amino acid sequence identity, analytical ultracentrifugation experiments showed that GS1γ is a dodecamer, whereas the GS1β is a decamer. It is proposed that this difference contributes to the differential thiol sensitivity of each isoform, and that GS1γ1 may be a target of thiol-based regulation.

  2. Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions.

    Science.gov (United States)

    Boyère, Cédric; Broze, Guy; Blecker, Christophe; Jérôme, Christine; Debuigne, Antoine

    2013-10-18

    An original and versatile method for the synthesis of a range of novel mannose-based surfactants was developed via metal-free photo-induced thiol-ene/-yne 'click' reactions. This light-mediated hydrothiolation reaction involving a thiolated mannose was successfully applied to terminal and internal alkenes, dienes, and alkynes, leading to monocatenary, branched, double-headed, and bolaform amphiphilic carbohydrate esters, respectively. A surface activity study showed that these new compounds possess valuable properties and display specific behavior at the air-water interface. It also demonstrated the greater flexibility of the thioether moiety in the spacer of the surfactants produced via a thiol-ene reaction in comparison with the triazole heterocyclic rings in similar glucose-based surfactants synthesized elsewhere by the alkyne-azide 1,3-dipolar addition.

  3. Thiol click chemistry on gold-decorated MoS2: elastomer composites and structural phase transitions

    Science.gov (United States)

    Topolovsek, Peter; Cmok, Luka; Gadermaier, Christoph; Borovsak, Milos; Kovac, J.; Mrzel, Ales

    2016-05-01

    We show that gold decorated MoS2 flakes are amenable to thiol chemistry by blending them with a cross-linkable thiolated polysiloxane (PMMS). PMMS prevents restacking of dispersed MoS2 when transforming the metallic to the semiconducting phase. Cross-linking PMMS yields an elastomer of good optical quality, containing individual, mostly single-layer MoS2 flakes.We show that gold decorated MoS2 flakes are amenable to thiol chemistry by blending them with a cross-linkable thiolated polysiloxane (PMMS). PMMS prevents restacking of dispersed MoS2 when transforming the metallic to the semiconducting phase. Cross-linking PMMS yields an elastomer of good optical quality, containing individual, mostly single-layer MoS2 flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01490a

  4. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition.

    Science.gov (United States)

    Keleş, Elif; Hazer, Baki; Cömert, Füsun B

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS-b-PI-b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, (1)H NMR, (13)C NMR, GPC and FTIR.

  5. Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention.

    Science.gov (United States)

    Yang, Kai; Li, De-Feng; Wang, Xi'e; Liang, Jinzhao; Sitia, Roberto; Wang, Chih-Chen; Wang, Xi

    2016-10-04

    ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis.

  6. Synthesis of thiol-functionalized TiO_2 nanocomposite and photocatalytic degradation for PAH under visible light irradiation

    Institute of Scientific and Technical Information of China (English)

    Long Liu; Jia Hui Kou; Da Meng Guo; Jing Yang; Hong Lin Liu; Hong Xia Yu; Sheng Chu; Ke Ren Jiang; Ying Wang; Zhi Gang Zou

    2009-01-01

    In this paper, a thiol-functionalized nanophotocatalyst MPTES/TiO_2 was first synthesized by one-pot method using P123 as a template. X-ray diffraction confirms the complete anatasc crystalline of thiol-funetionalized TiO_2, N_2 adsorption-desorption isotherm demonstrated that these materials possess high surface area and mesoporous structure. The results of XPS show that MPTES has been successfully polymerized in mesoporous structured TiO_2. The photodegradation of phenanthrene (PHE) was investigated under visible light irradiation (λ>420 nm) to evaluate the photocatalytic activity of these materials. Based the experiment results of GC-Mass analysis, a possible mechanism was proposed.

  7. Influence of liposome forms of the rhenium compounds and cis-platin on thiol-disulfide coefficient in the rats’ blood

    Directory of Open Access Journals (Sweden)

    I. V. Klenina

    2007-12-01

    Full Text Available Thiol-disulfide coefficient (TDC and its different modifications in model in vivo were studied. Introduction of the liposome forms of cluster rhenium compounds with organic ligands (CROL leads to both TDC increasing and to the constancy of the TDC. Thus, CROLs aren’t toxic agents and some compounds could mobilize organisms’ thiol defence system. Liposome form of cis-platin leads to the TDC decreasing. Important CROL capacities for its future medical treatment practice were shown.

  8. Solvent-free Thia-Michael Addition Reactions Using 3-[Bis(alkylthio)methylene]pentane-2,4-diones as Efficient and Odorless Thiol Equivalents

    Institute of Scientific and Technical Information of China (English)

    LIN Chun; ZHAO Xiao-Liang; OUYANG Yan; YU Hai-Feng; DONG De-Wen

    2008-01-01

    3-[Bis(alkylthio)methylene]pentane-2,4-diones (1a and 1b) have been investigated as nonthiolic and odorless thiol equivalents for thia-Michael addition reactions under solvent-free conditions. Promoted by HCl (aq.), the cleavage of compounds 1 took place, and the in-situ generated thiols underwent facile conjugate addition to α,β-unsaturated carbonyl compounds 2 affording the corresponding β-keto sulfides 3 in high yields.

  9. Effectiveness of the antimicrobial removal device, BACTEC 16B medium, and thiol broth in neutralizing antibacterial activities of imipenem, norfloxacin, and related agents.

    OpenAIRE

    Weinberg, E.; Shungu, D L; Gadebusch, H. H.

    1984-01-01

    The Antimicrobial Removal Device (ARD), BACTEC 16B medium, and Thiol broth were evaluated for their effectiveness in reducing the activity of imipenem (IPM), cefoxitin, moxalactam, and ceftazidime in blood samples. In addition, the capability of the ARD and Thiol broth to bind norfloxacin and the ARD to bind oxolinic and nalidixic acids in urine samples was investigated. At the highest concentrations of the drugs tested (32 micrograms/ml for the four beta-lactams and 256 micrograms/ml for the...

  10. Dissolved low-molecular weight thiol concentrations from the U.S. GEOTRACES North Atlantic Ocean zonal transect

    Science.gov (United States)

    Swarr, Gretchen J.; Kading, Tristan; Lamborg, Carl H.; Hammerschmidt, Chad R.; Bowman, Katlin L.

    2016-10-01

    Low-molecular weight thiols, including cysteine and glutathione, are biomolecules involved in a variety of metabolic pathways and act as important antioxidant and metal buffering agents. In this last capacity, they represent a potential mechanism for modulating the bioavailability and biogeochemistry of many trace elements in the ocean, particularly for chalcophilic elements (e.g., Cu, Zn, Cd, Ag and Hg). For this reason, and in the context of the international GEOTRACES program that seeks to understand the biogeochemistry of trace elements in the ocean, we measured the concentration of individual dissolved low-molecular weight thiols during the U.S. GEOTRACES North Atlantic Zonal Transect (USGNAZT). Only two thiols were identified, cysteine and glutathione, in contrast to results from the northeast subarctic Pacific Ocean, where the dipeptides glycine-cysteine and arginine-cysteine were also present and γ-glutamylcysteine was dominant. Concentrations of cysteine and glutathione in the North Atlantic Ocean were lower than in the Pacific and ranged from below detection ( 0.01 nM) to 0.61 nM of cysteine and up to 1.0 nM of glutathione, with cysteine generally more abundant than glutathione. Vertical profiles of cysteine and glutathione were broadly consistent with their biological production, being more abundant in surface water and usually below detection at depths greater than about 200 m. Subsurface concentration maxima, often co-incident with the deep chlorophyll maximum, were frequently observed but not universal. We conclude that cysteine and glutathione do not make up significant portions of complexation capacity for Cu and Zn in the upper open ocean but could be important for Cd, Hg, and potentially other chalcophiles. Extremely low concentrations of cysteine and glutathione in deep water suggest that higher molecular-weight thiols are a more important ligand class for chalcophiles in that portion of the ocean.

  11. Dye conjugation to linseed oil by highly-effective thiol-ene coupling and subsequent esterification reactions

    OpenAIRE

    Hayashi, T; Kazlauciunas, A; Thornton, PD

    2015-01-01

    Linseed oil, a renewable material obtained from the ripened seeds of the flax plant, was conjugated with C. I. Disperse Red 1 to yield a coloured macromolecule in two experimentally-simplistic coupling steps. Firstly, the abundant presence of carbon-carbon double bonds in linseed oil was exploited to introduce carboxylic acid functionality to linseed oil via a thiol-ene reaction between linseed oil and 3-mercaptopropionic acid. C. I. Disperse Red 1 was then grafted to the carboxylic acid unit...

  12. In Situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition

    OpenAIRE

    Fu, Yao; Kao, Weiyuan John

    2011-01-01

    The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel ...

  13. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.

    Science.gov (United States)

    Shih, Han; Liu, Hung-Yi; Lin, Chien-Chi

    2017-02-28

    Hydrogels immobilized with biomimetic peptides have been used widely for tissue engineering and drug delivery applications. Photopolymerization has been among the most commonly used techniques to fabricate peptide-immobilized hydrogels as it offers rapid and robust peptide immobilization within a crosslinked hydrogel network. Both chain-growth and step-growth photopolymerizations can be used to immobilize peptides within covalently crosslinked hydrogels. A previously developed visible light mediated step-growth thiol-norbornene gelation scheme has demonstrated efficient crosslinking of hydrogels composed of an inert poly(ethylene glycol)-norbornene (PEGNB) macromer and a small molecular weight bis-thiol linker, such as dithiothreitol (DTT). Compared with conventional visible light mediated chain-polymerizations where multiple initiator components are required, step-growth photopolymerized thiol-norbornene hydrogels are more cytocompatible for the in situ encapsulation of radical sensitive cells (e.g., pancreatic β-cells). This contribution explored visible light based crosslinking of various bis-cysteine containing peptides with macromer 8-arm PEGNB to form biomimetic hydrogels suitable for in situ cell encapsulation. It was found that the addition of soluble tyrosine during polymerization not only significantly accelerated gelation, but also improved the crosslinking efficiency of PEG-peptide hydrogels as evidenced by a decreased gel point and enhanced gel modulus. In addition, soluble tyrosine drastically enhanced the cytocompatibility of the resulting PEG-peptide hydrogels, as demonstrated by in situ encapsulation and culture of pancreatic MIN6 β-cells. This visible light based thiol-norbornene crosslinking mechanism provides an attractive gelation method for preparing cytocompatible PEG-peptide hydrogels for tissue engineering applications.

  14. Organic and inorganic mercurials have distinct effects on cellular thiols, metal homeostasis, and Fe-binding proteins in Escherichia coli

    OpenAIRE

    LaVoie, Stephen P.; Mapolelo, Daphne T.; Cowart, Darin M.; Polacco, Benjamin J.; Johnson, Michael K.; Scott, Robert A.; Miller, Susan M.; Summers, Anne O.

    2015-01-01

    The protean chemical properties of the toxic metal mercury (Hg) have made it attractive in diverse applications since antiquity. However, growing public concern has led to an international agreement to decrease its impact on health and the environment. During a recent proteomics study of acute Hg exposure in E. coli, we also examined the effects of inorganic and organic Hg compounds on thiol- and metal- homeostases. On brief exposure, lower concentrations of divalent inorganic mercury Hg(II) ...

  15. Drastic difference in luminescence stability between amine- and thiol-capped quantum dots treated with CO2

    Science.gov (United States)

    Vokhmintcev, Kirill V.; Nabiev, Igor R.; Samokhvalov, Pavel S.

    2016-04-01

    Research on the surface chemistry of quantum dots (QDs) has been rapidly developing in recent years, since the understanding of the processes that occur on their surface is prerequisite for successful exploration of the outstanding fluorescence properties and superior stability of these nanomaterials in numerous applications. The lack of stability during long-term storage under atmospheric conditions restricts QD applications. Here, we have investigated the interaction of QDs with carbon dioxide as a model system for studying their long-term storage or operation in atmospheric environment. Quenching of the photoluminescence of CdSe/ZnS semiconductor QDs continuously treated with CO2 has shown that this process depends on the type of the QD surface ligands. The luminescence of QDs capped with amine ligands is quenched to a higher degree, the quenching being caused by the formation of carbamic acid precipitate. The luminescence of QDs capped with thiols remain absolutely stable upon CO2 treatment due to the chemical resistance of thiol functional groups to CO2, which makes this type of QDs suitable for long-term storage and operation under atmospheric conditions. However, further functionalization of such QDs may be difficult, because the strong bond between thiol ligands and QD surface may limit the efficiency of ligand-exchange procedures. A new ligand system of alkylamine salts of fatty acids has been proposed as an alternative to thiols. It has been shown to be inert to CO2, and also can be easily replaced with functional surface ligands. The results are important for development of nextgeneration QDs with superior stability suitable for various applications requiring efficient ligand exchange and operation in the atmospheric environment.

  16. Fabrication of Thiol-Ene "Clickable" Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography.

    Science.gov (United States)

    Dübner, Matthias; Gevrek, Tugce N; Sanyal, Amitav; Spencer, Nicholas D; Padeste, Celestino

    2015-06-03

    We demonstrate a new approach to grafting thiol-reactive nanopatterned copolymer-brush structures on polymeric substrates by means of extreme ultraviolet (EUV) interference lithography. The copolymer brushes were designed to contain maleimide functional groups as thiol-reactive centers. Fluoropolymer films were exposed to EUV radiation at the X-ray interference lithography beamline (XIL-II) at the Swiss Light Source, in order to create radical patterns on their surfaces. The radicals served as initiators for the copolymerization of thiol-ene "clickable" brushes, composed of a furan-protected maleimide monomer (FuMaMA) and different methacrylates, namely, methyl methacrylate (MMA), ethylene glycol methyl ether methacrylate (EGMA), or poly(ethylene glycol) methyl ether methacrylate (PEGMA). Copolymerization with ethylene-glycol-containing monomers provides antibiofouling properties to these surfaces. The number of reactive centers on the grafted brush structures can be tailored by varying the monomer ratios in the feed. Grafted copolymers were characterized by using attenuated total reflection infrared (ATR-IR) spectroscopy. The reactive maleimide methacrylate (MaMA) units were utilized to conjugate thiol-containing moieties using the nucleophilic Michael-addition reaction, which proceeds at room temperature without the need for any metal-based catalyst. Using this approach, a variety of functionalities was introduced to yield polyelectrolytes, as well as fluorescent and light-responsive polymer-brush structures. Functionalization of the brush structures was demonstrated via ATR-IR and UV-vis spectroscopy and fluorescence microscopy, and was also indicated by a color switch. Furthermore, grafted surfaces were generated via plasma activation, showing a strongly increased wettability for polyelectrolytes and a reversible switch in static water contact angle (CA) of up to 18° for P(EGMA-co-MaMA-SP) brushes, upon exposure to alternating visible and UV-light irradiation.

  17. Effects of copper on induction of thiol-compounds and antioxidant enzymes by the fruiting body of Oudemansiella radicata.

    Science.gov (United States)

    Jiang, Juan; Qin, Chuixin; Shu, Xueqin; Chen, Rong; Song, Haihai; Li, Qiao; Xu, Heng

    2015-01-01

    Oudemansiella radicata has been found to have ability to tolerate and accumulate heavy metals. In this study, to know about the metal tolerance and detoxification strategy of O. radicata, the tolerance responses in both cap and stipe of the fruiting body, including the copper content, the changes of thiol compounds production and antioxidant enzymes activities, caused by various copper stress (150-600 mg kg(-1)) during 2-6 days were investigated. Results showed that Cu content in the fruiting bodies increased with the increasing Cu concentrations and growing time, which was higher in cap than that in stipe. For thiols contents, the maximum level was in the sample at 300 mg kg(-1) Cu after 2 d both in cap and stipe, in accordance with superoxide dismutase (SOD) and glutathione reductase (GR) activities. Guaicol peroxidase (POD) activities reached maximum at 150 mg kg(-1) Cu after 4 d and 6 d, respectively in cap and stipe, while the maximum of catalase (CAT) activities was recorded at 300 and 600 mg kg(-1) Cu after 4 d in the cap and stipe, respectively. As a whole, low concentration of Cu stimulated the production of thiols and activated the antioxidant enzymes activities in the fruiting body of O. radicata after 2/4 d, while high-level Cu decreased the thiols production and enzymes activities after 4/6 d. Furthermore, the cap was more sensitive than the stipe to Cu exposure. Different indicators showed different responses to copper accumulation and the different fruiting part (cap and stipe) of O. radicata had ability to response the oxidative stress caused by Cu. Considering the metal accumulation and its own detoxification with short growing time, mushroom might have the potential to be used as bio-accumulator to deal with Cu exposure in the Cu-contaminated farmland soil.

  18. Phenolics from Garcinia mangostana Inhibit Advanced Glycation Endproducts Formation: Effect on Amadori Products, Cross-Linked Structures and Protein Thiols

    Directory of Open Access Journals (Sweden)

    Hossam M. Abdallah

    2016-02-01

    Full Text Available Accumulation of Advanced Glycation Endproducts (AGEs in body tissues plays a major role in the development of diabetic complications. Here, the inhibitory effect of bioactive metabolites isolated from fruit hulls of Garcinia mangostana on AGE formation was investigated through bio-guided approach using aminoguanidine (AG as a positive control. Including G. mangostana total methanol extract (GMT in the reaction mixture of bovine serum albumin (BSA and glucose or ribose inhibited the fluorescent and non-fluorescent AGEs formation in a dose dependent manner. The bioassay guided fractionation of GMT revealed isolation of four bioactive constituents from the bioactive fraction; which were identified as: garcimangosone D (1, aromadendrin-8-C-glucopyranoside (2, epicatechin (3, and 2,3′,4,5′,6-pentahydroxybenzophenone (4. All the tested compounds significantly inhibited fluorescent and non-fluorescent AGEs formation in a dose dependent manner whereas compound 3 (epicatechin was found to be the most potent. In search for the level of action, addition of GMT, and compounds 2–4 inhibited fructosamine (Amadori product and protein aggregation formation in both glucose and ribose. To explore the mechanism of action, it was found that addition of GMT and only compound (3 to reaction mixture increased protein thiol in both glucose and ribose while compounds 1, 2 and 4 only increased thiol in case of ribose. In conclusion, phenolic compounds 1–4 inhibited AGEs formation at the levels of Amadori product and protein aggregation formation through saving protein thiol.

  19. Jack bean urease: the effect of active-site binding inhibitors on the reactivity of enzyme thiol groups.

    Science.gov (United States)

    Krajewska, Barbara; Zaborska, Wiesława

    2007-10-01

    In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.

  20. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  1. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: elifkelesh@hotmail.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: bhazer2@yahoo.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  2. Characterization of the thiol/disulfide chemistry of neurohypophyseal peptide hormones by high-performance liquid chromatography.

    Science.gov (United States)

    Yeo, P L; Rabenstein, D L

    1993-11-01

    Methodology is described for characterization of the kinetics and equilibria of thiol/disulfide interchange reactions of the disulfide bonds in the neurohypophyseal peptide hormones arginine vasopressin and oxytocin and the related peptides pressinoic acid and tocinoic acid. Thiol/disulfide interchange reaction mixtures are analyzed by reversed-phase high-performance liquid chromatography. The effect of mobile-phase composition and pH on the HPLC capacity factors for the native disulfide and reduced dithiol forms of each peptide was examined. In each case, the capacity factor decreases as the acetonitrile content of the mobile phase increases. For each disulfide/dithiol peptide pair, the capacity factor is larger for the dithiol form of the peptide, indicating that the hydrophobic side chains of the linear peptide are more accessible for interaction with the hydrophobic stationary phase. To illustrate application of the methodology, rate and equilibrium constants are reported for the thiol/disulfide interchange reactions of cysteine with arginine vasopressin at pH 7.0. Cysteine reacts with arginine vasopressin to form two mixed disulfides, which in turn react with another molecule of cysteine to give the dithiol form of arginine vasopressin and cystine. Rate and equilibrium constants were determined for each step by analysis of reaction mixtures by HPLC. The results are compared to rate and equilibrium constants for reaction of cysteine with oxidized glutathione.

  3. Identification of proteins susceptible to thiol oxidation in endothelial cells exposed to hypochlorous acid and N-chloramines.

    Science.gov (United States)

    Summers, Fiona A; Forsman Quigley, Anna; Hawkins, Clare L

    2012-08-24

    Hypochlorous acid (HOCl) is a potent oxidant produced by the enzyme myeloperoxidase, which is released by neutrophils under inflammatory conditions. Although important in the immune system, HOCl can also damage host tissue, which contributes to the development of disease. HOCl reacts readily with free amino groups to form N-chloramines, which also cause damage in vivo, owing to the extracellular release of myeloperoxidase and production of HOCl. HOCl and N-chloramines react readily with cellular thiols, which causes dysfunction via enzyme inactivation and modulation of redox signaling processes. In this study, the ability of HOCl and model N-chloramines produced on histamine and ammonia at inflammatory sites, to oxidize specific thiol-containing proteins in human coronary artery endothelial cells was investigated. Using a proteomics approach with the thiol-specific probe, 5-iodoacetamidofluorescein, we show that several proteins including peptidylprolyl isomerase A (cyclophilin A), protein disulfide isomerase, glyceraldehyde-3-phosphate dehydrogenase and galectin-1 are particularly sensitive to oxidation by HOCl and N-chloramines formed at inflammatory sites. This will contribute to cellular dysfunction and may play a role in inflammatory disease pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions.

    Science.gov (United States)

    Lin, Wan-Ing; Shao, Feng; Stephanidis, Bruno; Zenobi, Renato

    2015-11-01

    Phase segregation of coadsorbed thiol molecules on a gold surface was investigated with nanoscale chemical imaging using tip-enhanced Raman spectroscopy (TERS). Samples were prepared using mixed solutions containing thiophenol (PhS) and an oligomeric phenylene-ethynylene (OPE) thiol, with 10:1, 2:1, and 1:1 molar ratios. Phase segregation into domains with sizes from ≈30 to 240 nm is observed with these molar ratios. A comparison of TERS images with different pixel sizes indicates that a pixel size bigger than 15 nm is not reliable in defining nanodomains, because of undersampling. In this study, the formation of nanodomains was clearly evident based on the molecular fingerprints provided by TERS, while ambient scanning tunneling microscopy (STM) was not capable of discerning individual domains via their apparent height difference. TERS therefore allows to image nanodomains in binary self-assembled monolayers, which are invisible to methods solely relying on topographic or electron density characteristics of self-assembled monolayers. Moreover, TERS mapping provides statistical data to describe the distribution of molecules on the sample surface in a well-defined manner. Peak ratio histograms of selected TERS signals from samples prepared with different mixing ratios give a better understanding of the adsorption preference of the thiols studied, and the relationship of their mixing ratio in solution and adsorbed on the surface.

  5. Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice.

    Science.gov (United States)

    Takeo, Toru; Horikoshi, Yuka; Nakao, Satohiro; Sakoh, Kazuhito; Ishizuka, Yuta; Tsutsumi, Aki; Fukumoto, Kiyoko; Kondo, Tomoko; Haruguchi, Yukie; Takeshita, Yumi; Nakamuta, Yuko; Tsuchiyama, Shuuji; Nakagata, Naomi

    2015-04-01

    Archives of cryopreserved sperm harvested from genetically engineered mice, in mouse resource centers, are a readily accessible genetic resource for the scientific community. We previously reported that exposure of oocytes to reduced glutathione (GSH) greatly improves the fertilization rate of frozen-thawed mouse sperm. Application of GSH to in vitro fertilization techniques is widely accepted as a standard protocol to produce sufficient numbers of mice from cryopreserved sperm. However, the detailed mechanism of the enhancement of fertilization mediated by GSH in vitro is not fully understood. Here we focused on the chemical by determining the effects of its amino acid constituents and cysteine analogs on the fertilization of oocytes by frozen-thawed sperm. Furthermore, we determined the stability of these compounds in aqueous solution. We show here that l-cysteine (l-Cys), d-cysteine (d-Cys), or N-acetyl-l-cysteine (NAC) increased the rate of fertilization when added to the medium but did not adversely affect embryo development in vitro or in vivo. The levels of thiol groups of proteins in the zona pellucida (ZP) and the expansion of the ZP were increased by l-Cys, d-Cys, and NAC. These effects were abrogated by the methylation of the thiol group of l-Cys. NAC was the most stable of these compounds in the fertilization medium at 4°C. These results suggest that the thiol groups of cysteine analogs markedly enhance the fertilization rate of mouse oocytes.

  6. Species-Specific Standard Redox Potential of Thiol-Disulfide Systems: A Key Parameter to Develop Agents against Oxidative Stress

    Science.gov (United States)

    Mirzahosseini, Arash; Noszál, Béla

    2016-11-01

    Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  7. Aptamer-based organic-silica hybrid affinity monolith prepared via "thiol-ene" click reaction for extraction of thrombin.

    Science.gov (United States)

    Wang, Zheng; Zhao, Jin-cheng; Lian, Hong-zhen; Chen, Hong-yuan

    2015-06-01

    A novel strategy for preparing aptamer-based organic-silica hybrid monolithic column was developed via "thiol-ene" click chemistry. Due to the large specific surface area of the hybrid matrix and the simplicity, rapidness and high efficiency of "thiol-ene" click reaction, the average coverage density of aptamer on the organic-silica hybrid monolith reached 420 pmol μL(-1). Human α-thrombin can be captured on the prepared affinity monolithic column with high specificity and eluted by NaClO4 solution. N-p-tosyl-Gly-Pro-Arg p-nitroanilide acetate was used as the sensitive chromogenic substrate of thrombin. The thrombin enriched by this affinity column was detected with a detection of limit of 0.01 μM by spectrophotometry. Furthermore, the extraction recovery of thrombin at 0.15 μM in human serum was 91.8% with a relative standard deviation of 4.0%. These results indicated that "thiol-ene" click chemistry provided a promising technique to immobilize aptamer on organic-inorganic hybrid monolith and the easily-assembled affinity monolithic material could be used to realize highly selective recognition of trace proteins.

  8. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.

    Science.gov (United States)

    Lin, Chien-Chi; Raza, Asad; Shih, Han

    2011-12-01

    Hydrogels provide three-dimensional frameworks with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. While recent research efforts have created diverse macromer chemistry to form hydrogels, the mechanisms of hydrogel polymerization for in situ cell encapsulation remain limited. Hydrogels prepared from chain-growth photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) are commonly used to encapsulate cells. However, free radical associated cell damage poses significant limitation for this gel platform. More recently, PEG hydrogels formed by thiol-ene photo-click chemistry have been developed for cell encapsulation. While both chain-growth and step-growth photopolymerizations offer spatial-temporal control over polymerization kinetics, step-growth thiol-ene hydrogels offer more diverse and preferential properties. Here, we report the superior properties of step-growth thiol-ene click hydrogels, including cytocompatibility of the reactions, improved hydrogel physical properties, and the ability for 3D culture of pancreatic β-cells. Cells encapsulated in thiol-ene hydrogels formed spherical clusters naturally and were retrieved via rapid chymotrypsin-mediated gel erosion. The recovered cell spheroids released insulin in response to glucose treatment, demonstrating the cytocompatibility of thiol-ene hydrogels and the enzymatic mechanism of cell spheroids recovery. Thiol-ene click reactions provide an attractive means to fabricate PEG hydrogels with superior gel properties for in situ cell encapsulation, as well as to generate and recover 3D cellular structures for regenerative medicine applications.

  9. A novel thiol-affinity micropipette tip method using zinc(II)-cyclen-attached agarose beads for enrichment of cysteine-containing molecules.

    Science.gov (United States)

    Kusamoto, Hiroshi; Shiba, Akio; Koretake, Norinao; Fujioka, Haruto; Hieda, Yuhzo; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2016-09-15

    Cysteine-containing biomolecules are attractive targets in the study of thiol biology. Here we introduce a novel method for the selective enrichment of thiol-containing molecules using a thiol-capture zinc(II) complex of 1,4,7,10-tetraazacyclododecane (Zn(2+)-cyclen). Recognition of N-acetylcysteine amide by Zn(2+)-cyclen has been studied by potentiometric pH titration, revealing formation of a 1:1 thiolate-bound Zn(2+)-cyclen complex with a large thiolate-affinity constant of 10(6.2)M(-1) at 25°C and I=0.10M (NaCl). The Zn(2+)-bound thiolate anion is unexpectedly stable in aqueous solution at pH 7.8 under atmospheric conditions for a few days. These findings have contributed to the development of a convenient method for separation of thiol compounds by using a micropipette tip. A 200μL micropipette tip containing 10μL of hydrophilic cross-linked agarose beads attached to Zn(2+)-cyclen moieties was prepared. All steps for thiol-affinity separation (binding, washing, and eluting) are conducted using aqueous buffers at room temperature. The entire separation protocol requires less than 15min per sample. We demonstrate practical example separations of cysteine-containing molecules. This micropipette tip method would be used preferentially as an alternative to existing tools for reliable enrichment of thiol-containing molecules.

  10. Changes in plasma thiol levels induced by different phases of treatment in breast cancer; the role of commercial extract from black chokeberry.

    Science.gov (United States)

    Kędzierska, Magdalena; Głowacki, Rafał; Czernek, Urszula; Szydłowska-Pazera, Katarzyna; Potemski, Piotr; Piekarski, Janusz; Jeziorski, Arkadiusz; Olas, Beata

    2013-01-01

    Different low-molecular-weight thiols, including glutathione, cysteine, and cysteinylglycine are physiological free radical scavengers. On the other hand, homocysteine may play a role as an oxidant. The aim of our present study was to establish in vitro the effects of the commercial extract of Aronia melanocarpa (Aronox(®)) on the amount of selected low-molecular-weight thiols and the activity of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in plasma obtained from patients with invasive breast cancer during different phases of treatment [before or after the surgery and patients after different phases of chemotherapy (doxorubicin and cyclophosphamide)] and from healthy subjects. Patients were hospitalized in Department of Oncological Surgery and Department of Chemotherapy, Medical University of Lodz, Poland. The level of low-molecular-weight thiols was determined by high-performance liquid chromatography. We observed that in the presence of the Aronia extract changes in amount of thiols in plasma from breast cancer patients (at all tested groups) were significantly reduced. Our results showed that tested commercial extract reduced modifications of antioxidative enzymes activity in plasma from patients during different phases of treatment, but this effect was not statistical significant. Our results suggest that the Aronia extract supplementation in breast cancer patients has a beneficial effect on thiols concentration in plasma. Plasma, as reported in this work, could be used as an experimental model to evaluate the beneficial action of plant supplements, including phenolic extracts on thiols or other molecules during different phases of treatment.

  11. Synthesis of the Hemoglobin-Conjugated Polymer Micelles by Thiol Michael Addition Reactions.

    Science.gov (United States)

    Qi, Yanxin; Li, Taihang; Wang, Yupeng; Wei, Xing; Li, Bin; Chen, Xuesi; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2016-06-01

    Amphiphilic triblock copolymers mPEG-b-PMAC-b-PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε-caprolactone. Copolymers are self-assembled into core-shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X-ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  12. Mitochondrial Sulfide Detoxification Requires a Functional Isoform O-Acetylserine(thiol)lyase C in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Consolación (A)lvarez; Irene García; Luis C.Romero; Cecilia Gotor

    2012-01-01

    In non-cyanogenic species,the main source of cyanide derives from ethylene and camalexin biosyntheses.In mitochondria,cyanide is a potent inhibitor of the cytochrome c oxidase and is metabolized bythe β-cyanoalanine synthase CYS-C1,catalyzing the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine.The hydrogen sulfide released also inhibits the cytochrome c oxidase and needs to be detoxified by the O-acetylserine(thiol)lyase mitochondrial isoform,OAS-C,which catalyzes the incorporation of sulfide to O-acetylserine to produce cysteine,thus generating a cyclic pathway in the mitochondria.The loss of functional OAS-C isoforms causes phenotypic characteristics very similar to the loss of the CYS-C1 enzyme,showing defects in root hair formation.Genetic complementation with the OAS-C gene rescues the impairment of root hair elongation,restoring the wild-type phenotype.The mitochondria compromise their capacity to properly detoxify cyanide and the resulting sulfide because the latter cannot re-assimilate into cysteine in the oas-c null mutant.Consequently,we observe an accumulation of sulfide and cyanide and of the alternative oxidase,which is unable to prevent the production of reactive oxygen species probably due to the accumulation of both toxic molecules.Our results allow us to suggest that the significance of OAS-C is related to its role in the proper sulfide and cyanide detoxification in mitochondria.

  13. Photolithographic fabrication of solid-liquid core waveguides by thiol-ene chemistry

    Science.gov (United States)

    Sagar, Kaushal; Gopalakrishnan, Nimi; Brøkner Christiansen, Mads; Kristensen, Anders; Ndoni, Sokol

    2011-09-01

    In this work we demonstrate an efficient and cleanroom compatible method for the fabrication of solid-liquid core waveguides based on nanoporous polymers. We have used thiol-ene photo-grafting to tune and pattern the hydrophilicity of an originally hydrophobic nanoporous 1, 2-polybutadiene. The generated refractive index contrast between the patterned water-filled volume and the surrounding empty hydrophobic porous polymer allows for light confinement within the water-filled volume—the solid-liquid core. The presented fabrication process is simple and fast. It allows a high degree of flexibility on the type and grade of surface chemistry imparted to the large nanoporous area depending upon the application. The fabrication does not need demanding chemical reaction conditions. Thus, it can be readily used on a standard silicon lithography bench. The propagation loss values reported in this work are comparable with literature values for state-of-the-art liquid-core waveguide devices. The demonstrated waveguide function added to the nanoporous polymer with a very high internal surface area makes the system interesting for many applications in different areas, such as diagnostics and bio-chemical sensing.

  14. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    Science.gov (United States)

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  15. Effect of thiol derivatives on mixed mucus and blood clots in vitro.

    Science.gov (United States)

    Risack, L E; Vandevelde, M E; Gobert, J G

    1978-01-01

    The disintegrating effect of three reducing thiol derivatives: [sodium mercaptoethane sulphonate (Mesna), N-acetyl-L-cysteine (NAC) and dithio-1,4-threitol (DTT)] was investigated in vitro upon blood clots formed in the absence or in the presence of tracheobronchial secretions and compared with the effect of iso-osmotic saline solution. The amounts of haemoglobin released from the clots after 30 min incubation and the initial rates of haemoglobin release were compared for the different products at different concentrations. All three reducing agents showed some ability to disintegrate mixed clots to an extent depending on their concentration. After 30 min incubation, statistical analysis showed a highly significant difference in favour of Mesna at the three concentrations used, i.e. 0.1, 1.0 and 10 mmol/1. The initial rate of haemoglobin release in presence of Mesna was at all concentrations significantly higher than that of NAC or DTT. The effects on normal blood clots were much less pronounced. The effectiveness of Mesna in splitting up mixed blood and mucus clots in the management of patients who had inhaled blood is discussed.

  16. Toxicity induced by cumene hydroperoxide in PC12 cells: protective role of thiol donors.

    Science.gov (United States)

    Vimard, F; Saucet, M; Nicole, O; Feuilloley, M; Duval, D

    2011-01-01

    Oxidative shock and production of reactive oxygen species are known to play a major role in situations leading to neuron degeneration, but the precise mechanisms responsible for cell degeneration remain uncertain. In the present article, we have studied in PC 12 cells the effect of cumene hydroxyperoxide on both cell metabolism and morphology. We observed that relatively low concentrations of the drug (100 μM) led to a significant decrease in the cellular content of ATP and reduced glutathione as well as to a decreased mitochondrial potential. These metabolic alterations were followed by an important increase in intracellular free calcium and membrane disruption and death. In parallel, we observed profound changes in cell morphology with a shortening of cell extensions, the formation of ruffles and blebs at the cell surface, and a progressive detachment of the cells from the surface of the culture flasks. We also showed that addition of thiol donors such as N-acetylcysteine or β-mercaptoethanol, which were able to enhance cell glutathione content, almost completely protected PC 12 cells from the toxic action of cumene hydroperoxide whereas pretreatment by buthionine sulfoximine, a selective inhibitor of GSH synthesis, enhanced its action.

  17. Effects of hydrogen peroxide treatment on thiol contents in fresh-cut asparagus (Asparagus officinalis) spears.

    Science.gov (United States)

    Demrkol, Omca

    2009-01-01

    In this work, the impact of hydrogen peroxide (H2O2) was investigated on the thiol content of asparagus. Fresh-cut asparagus was treated with H2O2 at varied oxidant concentrations and contact times. A significant decrease (alpha=0.05) was observed in N-acetylcysteine levels treated with 2.5% H2O2 for 10 min and with 5% H2O2 for 3, 5 and 10 min. Captopril and cysteine levels significantly decreased (alpha=0.05) in all and most treatment conditions, respectively. Glutathione levels only significantly decreased with 2.5% and 5% H2O2 for 10 min treatment. In order to determine whether asparagus undergoes oxidative stress, a well-known oxidative stress indicator-the glutathione/oxidized glutathione ratio-was calculated. This study showed that the common use of H2O2 as a disinfectant/sterilizer by the food industry could markedly diminish the important biothiols and develop oxidative stress in asparagus, and potentially in other vegetables as well.

  18. Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes.

    Directory of Open Access Journals (Sweden)

    Masashi Fujita

    Full Text Available Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6–4 photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6–4 photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.

  19. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Pasternak, Taras; Asard, Han; Potters, Geert; Jansen, Marcel A K

    2014-01-01

    Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Immunological role of thiol-dependent peroxiredoxin gene in Macrobrachium rosenbergii.

    Science.gov (United States)

    Arockiaraj, Jesu; Easwvaran, Sarasvathi; Vanaraja, Puganeshwaran; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2012-07-01

    In this study, we have reported a full length of peroxiredoxin (designated MrPrdx) gene, identified from the transcriptome of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrPrdx is 940 base pairs in length, and encodes 186 amino acids. MrPrdx contains a long thioredoxin domain in the amino acid sequence between 34 and 186. The gene expressions of MrPrdx in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction. MrPrdx is highly expressed in all the other tissues of M. rosenbergii considered for analysis and the highest in gills. The expression is strongly up-regulated in gills after IHHNV infection. To understand MrPrdx functional properties, the recombinant MrPrdx protein was expressed in Escherichia coli BL21 (DE3) and purified. A peroxidise activity assay was conducted using recombinant MrPrdx protein at different concentrations. This peroxidises activity showed that the recombinant MrPrdx is a thiol-dependant protein. Additionally, this result showed that recombinant MrPrdx protein, as a secretory protein can remove H₂O₂ and protect DNA damage. This finding leads a possible way to propose the recombinant MrPrdx protein as an effective medicine for reactive oxygen species (ROS) related diseases.

  1. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes.

    Science.gov (United States)

    Bandaru, Narasimha Murthy; Reta, Nekane; Dalal, Habibullah; Ellis, Amanda V; Shapter, Joseph; Voelcker, Nicolas H

    2013-10-15

    Thiol-derivatized single walled carbon nanotube (SWCNT-SH) powders were synthesized by reacting acid-cut SWCNTs with cysteamine hydrochloride using carbodiimide coupling. Infrared (IR) spectroscopy, Raman spectroscopy and thermogravimetric analysis confirmed the successful functionalization of the SWCNTs. SWCNT-SH powders exhibited a threefold higher adsorption capacity for Hg(II) ions compared to pristine SWCNTs, and a fourfold higher adsorption capacity compared to activated carbon. The influence of adsorption time, pH, initial metal concentration and adsorbent dose on Hg(II) ion removal was investigated. The maximum adsorption capacity of the SWCNT-SH powders was estimated by using equilibrium isotherms, such as Freundlich and Langmuir, and the maximum adsorption capacity of the SWCNT-SH powder was found to be 131 mg/g. A first-order rate model was employed to describe the kinetic adsorption process of Hg(II) ions onto the SWCNT-SH powders. Desorption studies revealed that Hg(II) ions could be easily removed from the SWCNT-SH powders by altering the pH. Further, the adsorption efficiency of recovered SWCNT-SH powders was retained up to 91%, even after 5 adsorption/desorption cycles.

  2. Polysiloxane-based luminescent elastomers prepared by thiol-ene "click" chemistry.

    Science.gov (United States)

    Zuo, Yujing; Lu, Haifeng; Xue, Lei; Wang, Xianming; Wu, Lianfeng; Feng, Shengyu

    2014-09-26

    Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cystatin like thiol proteinase inhibitor from pancreas of Capra hircus: purification and detailed biochemical characterization.

    Science.gov (United States)

    Priyadarshini, Medha; Bano, Bilqees

    2010-04-01

    A thiol proteinase inhibitor from Capra hircus (goat) pancreas (PTPI) isolated by ammonium sulphate precipitation (20-80%) and gel filtration chromatography on Sephacryl S-100HR, with 20.4% yield and 500-fold purification, gave molecular mass of 44 kDa determined by its electrophoretic and gel filtration behavior, respectively. The stokes radius, diffusion and sedimentation coefficients of PTPI were 27.3 A, 7.87 x 10(-7) cm(2) s(-1) and 3.83 s, respectively. It was stable in pH range 3-10 and up to 70 degrees C (critical temperature, E (a) = 21 kJ mol(-1)). Kinetic analysis revealed reversible and competitive mode of inhibition with PTPI showing the highest inhibitory efficiency against papain (K ( i ) = 5.88 nM). The partial amino acid sequence analysis showed that it shared good homology with bovine parotid and skin cystatin C. PTPI possessed 17.18% alpha helical content assessed by CD spectroscopy. The hydropathy plot of first 24 residues suggested that most amino acids of this stretch might be in the hydrophobic core of the protein.

  4. Component analysis of fluorescence spectra of thiol DAB dendrimer/ZnSe-PEA nanoparticles.

    Science.gov (United States)

    Algarra, M; Radotić, K; Kalauzi, A; Alonso, B; Casado, C M; Esteves da Silva, J C G

    2013-02-15

    The fluorescence spectroscopy technique is an accurate method and has great utility in the interpretation of complex systems based on several emission bands. An interpretation of the system requires determination of the number, positions and intensities of the spectral components. In this work, the emission spectra of the synthesized ZnSe complex coated with O-phosphorylethanolamine (ZnSe-PEA), both with and without thiol DAB dendrimer generation 5 (S-DAB G5), were analyzed using a combination of asymmetric (log-normal) and symmetric (Gaussian) models. The method applied for the deconvolution of fluorescence spectra has proven to be very sensitive for observing the stability of the ZnSe-PEA complex after binding with S-DAB. The ZnSe-PEA emission spectrum contains two components. The positions of the emission maxima of these two components are not significantly affected by the presence of S-DAB G5 in the complex, which revealed the presence of a stable complex at a pH of 7. By applying the spectral deconvolution method, strong evidence was obtained that suggested that the ZnSe-PEA complex is stable after complexation with S-DAB G5. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    Science.gov (United States)

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  6. Thiol redox requirements and substrate specificities of recombinant cytochrome c assembly systems II and III.

    Science.gov (United States)

    Richard-Fogal, Cynthia L; San Francisco, Brian; Frawley, Elaine R; Kranz, Robert G

    2012-06-01

    The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.

  7. Plasma brominated polymer particles as grafting substrate for thiol-terminated telomers.

    Science.gov (United States)

    Byström, Emil; Nordborg, Anna; Limé, Fredrik; Dinh, Ngoc Phuoc; Irgum, Knut

    2010-06-01

    A combined surface activation and "grafting to" strategy was developed to convert divinylbenzene particles into weak cation exchangers suitable for protein separation. The initial activation step was based on plasma modification with bromoform, which rendered the particles amenable to further reaction with nucleophiles by introducing Br to a surface content of 11.2 atom-%, as determined by X-ray photoelectron spectroscopy. Grafting of thiol-terminated glydicyl methacrylate telomers to freshly plasma activated surfaces was accomplished without the use of added initiator, and the grafting was verified both by reduction in bromine content and the appearance of sulfur-carbon linkages, showing that the surface grafts were covalently bonded. Following grafting the attached glydicyl methacrylate telomer tentacles were further modified by a two-step procedure involving hydrolysis to 2,3-hydroxypropyl groups and conversion of hydroxyl groups to carboxylate functionality by succinic anhydride. The final material was capable of baseline separating four model proteins in 3 min by gradient cation exchange chromatography in a fully aqueous eluent.

  8. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  9. Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines

    Energy Technology Data Exchange (ETDEWEB)

    Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. (Oak Ridge National Lab., TN (United States))

    1994-04-15

    Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

  10. Association between plasma thiols and immune activation marker neopterin in stable coronary heart disease.

    Science.gov (United States)

    Schroecksnadel, Katharina; Walter, Roland B; Weiss, Guenter; Mark, Michael; Reinhart, Walter H; Fuchs, Dietmar

    2008-01-01

    Studies have associated elevated plasma levels of the thiols homocysteine and cysteine with an increased risk of atherosclerosis. Their relationship with systemic inflammatory parameters and sclerosis scores was investigated in this study. Total homocysteine, total cysteine, neopterin and C-reactive protein (CRP) concentrations were measured in blood samples of 242 patients undergoing elective coronary angiography. A total of 181 patients had coronary artery disease (CAD), as defined by occlusion of > 75% of at least one of the three main coronary arteries, and 61 subjects did not have relevant coronary stenoses. Total cysteine concentrations were higher in patients suffering from coronary artery sclerosis with stepwise increases relative to the extent of coronary artery sclerosis (p < 0.001). In contrast, neither total homocysteine nor the inflammatory markers, CRP and neopterin, differed between patients and controls. However, total homocysteine concentrations correlated with total cysteine (r = 0.468) and neopterin concentrations (r = 0.290), as well as serum creatinine (r = 0.226; all p < 0.001), the latter indicating a dependence of total homocysteine concentrations on kidney function. Total cysteine concentrations were associated with increased neopterin levels (r = 0.231, p < 0.001). Total cysteine concentrations were well suited to estimate the extent of coronary artery sclerosis, while in our study of stable CAD patients total homocysteine was not increased compared to controls. The association between homocysteine, cysteine and parameters of immune activation and inflammation in our study suggests that these markers of CAD may be interdependent.

  11. Simple thiol-ene click chemistry modification of SBA-15 silica pores with carboxylic acids.

    Science.gov (United States)

    Bordoni, Andrea V; Lombardo, M Verónica; Regazzoni, Alberto E; Soler-Illia, Galo J A A; Wolosiuk, Alejandro

    2015-07-15

    A straightforward approach for anchoring tailored carboxylic groups in mesoporous SiO2 colloidal materials is presented. The thiol-ene photochemical reaction between vinyltrimethoxysilane precursors and various thiocarboxylic acids which has, click chemistry features (i.e. high conversion yields, insensitivity to oxygen, mild reaction conditions), results in carboxylated silane precursors that can be readily used as surface modifiers. The carboxylic groups of acetic, undecanoic and succinic acid were immobilized on the silica mesopore walls of SBA-15 powders employing the synthesized silane precursors. Post-grafting has been confirmed through infrared spectrometry (FTIR), energy dispersive X-ray spectroscopy (EDS), elemental analysis (EA) and zeta potential measurements. Detailed field-emission gun scanning electron microscopy (FESEM) images and small angle X-ray scattering (SAXS) data revealed parallel mesopores and ordered mesostructures. It is shown that the immobilized COOH groups are chemically accessible for acid-base reactions as well as copper adsorption. Immobilization of easily synthesized tailored carboxylic modified alkoxide precursors within mesoporous systems provides a unique chemical nanoenvironment within these ordered frameworks.

  12. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments.

    Science.gov (United States)

    Chekmeneva, Elena; Gusmão, Rui; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2011-08-01

    Isothermal Titration Calorimetry (ITC) was used to study the binding of Cd(2+) by phytochelatins ((γGlu-Cys)(n)-Gly, PC(n); n = 1-5) and their selected fragments (Cys, Cys-Gly and γGlu-Cys) in order to understand the influence of the chain length on the complex stabilities and the origin of the enhanced affinities in Tris buffer at pH 7.5 and 8.5 and at 25 °C. Different complexes are formed with glutathione (GSH) and its fragments, Cys, Cys-Gly and γGlu-Cys, and their stabilities depend on the corresponding pK(a) value of the thiol group in the ligands. The stability of Cd-PC(n) complexes increases moving towards higher PC(2-5), as well as the complexing capacity expressed as the number of metal ions that can be bound by one ligand molecule. The affinity of Cd(2+) for the PC(n) can be described by the following GSH < PC(2) < PC(3)≤ PC(4)≤ PC(5) sequence. On the basis of these thermodynamic data it is possible to explain the abundance of certain Cd-PC(n) complexes found in nature. The comprehension of the thermodynamic rules that govern the interactions of Cd(2+) with PC(n) and their constituents is of great service in the research with real plant samples subjected to metal stress and in the development of new strategies of bio/phytoremediation.

  13. Biochemical, immunological and kinetic characterisation of thiol protease inhibitor (cystatin) from liver.

    Science.gov (United States)

    Shah, Aaliya; Priyadarshini, Medha; Khan, Mohd Shahnawaz; Aatif, Mohammad; Amin, Fakhra; Bano, Bilqees

    2013-10-01

    Regulation of the cysteine protease activity is imperative for proper functioning of the various organ systems. Elevated activities of cysteine proteinases due to impaired regulation by the endogenous cysteine proteinase inhibitors (cystatins) have been linked to liver malignancies. To gain an insight into these regulatory processes, it is essential to purify and characterise the inhibitors, cystatins. Present study was undertaken to purify the inhibitor from the liver. The purification was accomplished in four steps: alkaline treatment, ammonium sulphate fractionation, acetone precipitation and gel filtration column (Sephacryl S-100 HR). The eluted protein exhibited inhibitory activity towards papain, and its purity was further reaffirmed using western blotting and immunodiffusion. The purified inhibitor (liver cystatin (LC)) was stable in the pH range of 6-8 and temperature up to 45 °C. In view of the significance of kinetics parameters for drug delivery, the kinetic parameters of liver cystatin were also determined. LC showed the greatest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy results showed that binding of LC with thiol proteases induced changes in the environment of aromatic residues. Recent advances in the field of proteinase inhibitors have drawn attention to the possible use of this collected knowledge to control pathologies.

  14. Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold

    Science.gov (United States)

    Muglali, Mutlu I.; Erbe, Andreas; Chen, Ying; Barth, Christoph; Koelsch, Patrick; Rohwerder, Michael

    2013-01-01

    Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum–frequency–generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two–dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre–orientation of water present in the nanometer–sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER. PMID:24235778

  15. Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold.

    Science.gov (United States)

    Muglali, Mutlu I; Erbe, Andreas; Chen, Ying; Barth, Christoph; Koelsch, Patrick; Rohwerder, Michael

    2013-02-15

    Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum-frequency-generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two-dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre-orientation of water present in the nanometer-sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.

  16. Site-dependent atomic and molecular affinities of hydrocarbons, amines and thiols on diamond nanoparticles

    Science.gov (United States)

    Lai, Lin; Barnard, Amanda S.

    2016-04-01

    Like many of the useful nanomaterials being produced on the industrial scale, the surface of diamond nanoparticles includes a complicated mixture of various atomic and molecular adsorbates, attaching to the facets following synthesis. Some of these adsorbates may be functional, and adsorption is encouraged to promote applications in biotechnology and nanomedicine, but others are purely adventurous and must be removed prior to use. In order to devise more effective treatments it is advantageous to know the relative strength of the interactions of the adsorbates with the surface, and ideally how abundant they are likely to be under different conditions. In this paper we use a series of explicit electronic structure simulations to map the distribution of small hydrocarbons, amines and thiols on a 2.9 nm diamond nanoparticle, with atomic level resolution, in 3-D. We find a clear relationship between surface reconstructions, facet orientation, and the distribution of the different adsorbates; with a greater concentration expected on the (100) and (110) facets, particularly when the supersaturation in the reservoir is high. Adsorption on the (111) facets is highly unlikely, suggesting that controlled graphitization may be a useful stage in the cleaning and treatment of nanodiamonds, prior to the deliberate coating with functional adsorbates needed for drug delivery applications.

  17. Automated ARGET ATRP Accelerates Catalyst Optimization for the Synthesis of Thiol-Functionalized Polymers.

    Science.gov (United States)

    Siegwart, Daniel J; Leiendecker, Matthias; Langer, Robert; Anderson, Daniel G

    2012-02-14

    Conventional synthesis of polymers by ATRP is relatively low throughput, involving iterative optimization of conditions in an inert atmosphere. Automated, high-throughput controlled radical polymerization was developed to accelerate catalyst optimization and production of disulfide-functionalized polymers without the need of an inert gas. Using ARGET ATRP, polymerization conditions were rapidly identified for eight different monomers, including the first ARGET ATRP of 2-(diethylamino)ethyl methacrylate and di(ethylene glycol) methyl ether methacrylate. In addition, butyl acrylate, oligo(ethylene glycol) methacrylate 300 and 475, 2-(dimethylamino)ethyl methacrylate, styrene, and methyl methacrylate were polymerized using bis(2-hydroxyethyl) disulfide bis(2-bromo-2-methylpropionate) as the initiator, tris(2-pyridylmethyl)amine as the ligand, and tin(II) 2-ethylhexanoate as the reducing agent. The catalyst and reducing agent concentration was optimized specifically for each monomer, and then a library of polymers was synthesized systematically using the optimized conditions. The disulfide-functionalized chains could be cleaved to two thiol-terminated chains upon exposure to dithiothreitol, which may have utility for the synthesis of polymer bioconjugates. Finally, we demonstrated that these new conditions translated perfectly to conventional batch polymerization. We believe the methods developed here may prove generally useful to accelerate the systematic optimization of a variety of chemical reactions and polymerizations.

  18. Copper-induced changes in intracellular thiols in two marine diatoms: Phaeodactylum tricornutum and Ceratoneis closterium.

    Science.gov (United States)

    Smith, Cassandra L; Steele, Jessica E; Stauber, Jennifer L; Jolley, Dianne F

    2014-11-01

    Phytochelatins and glutathione (reduced (GSH) and oxidised (GSSG)) are important intracellular ligands involved in metal sequestration and detoxification in algae. Intracellular ratios of GSH:GSSG are sensitive indicators of metal stress in algae, and like phytochelatin production are influenced by metal speciation, concentration, exposure time and the biological species. This study investigated the effect of copper exposure on phytochelatin and glutathione content in two marine diatoms Phaeodactylum tricornutum and Ceratoneis closterium at various time intervals between 0.5 and 72h. Liberation of cellular glutathione and phytochelatins was optimised using freeze/thaw cycles and chemical extraction, respectively. Extracted phytochelatins were derivatised (by fluorescent tagging of thiol compounds), separated and quantified using HPLC with fluorescence detection. Glutathione ratios were determined using a commercially available kit, which uses the enzyme glutathione reductase to measure total and oxidised glutathione. Despite similarities in size and shape between the two diatoms, differences in internalised copper, phytochelatin production (both chain length and quantity) and reduced glutathione concentrations were observed. P. tricornutum maintained reduced glutathione at between 58 and 80% of total glutathione levels at all time points, which would indicate low cellular stress. In C. closterium reduced glutathione constituted <10% of total glutathione after 48h. P. tricornutum also produced more phytochelatins and phytochelatins of longer chain length than C. closterium despite the latter species internalising significantly more copper. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.

    Science.gov (United States)

    Liu, Zhongshan; Liu, Jing; Liu, Zheyi; Wang, Hongwei; Ou, Junjie; Ye, Mingliang; Zou, Hanfa

    2017-05-19

    The vinyl-functionalized hybrid monolithic columns (75 and 150μm i.d.) were prepared via sol-gel chemistry of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS). The content of accessible vinyl groups was further improved after the monolithic column was post-treated with vinyldimethylethoxysilane (VDMES). The surface properties of monolithic columns were tailored via thiol-ene click reaction by using 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate and 2,2'-(ethylenedioxy)diethanethiol/vinylphosphonic acid, respectively. The preparing octadecyl-functionalized monolithic columns were adopted for proteomics analysis in cLC-MS/MS. A 37-cm-long×75-μm-i.d. monolithic column could identify 3918 unique peptides and 1067 unique proteins in the tryptic digest of proteins from HeLa cells. When a 90-cm-long×75-μm-i.d. monolithic column was used, the numbers of unique peptides and proteins were increased by 82% and 32%, respectively. Furthermore, strong cation exchange (SCX) monolithic columns (4cm in length×150μm i.d.) were also prepared and coupled with the 37-cm-long×75-μm-i.d. octadecyl-functionalized monolithic column for two-dimensional SCX-RPLC-MS/MS analysis, which could identify 17114 unique peptides and 3211 unique proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Gold electrode modified by self-assembled monolayers of thiols to determine DNA sequences hybridization

    Indian Academy of Sciences (India)

    Mízia M S Silva; Igor T Cavalcanti; M Fátima Barroso; M Goreti F Sales; Rosa Fireman Dutra

    2010-11-01

    The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.