WorldWideScience

Sample records for nonporous zno nanobelts

  1. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance

    Science.gov (United States)

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-01

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

  2. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property

    Energy Technology Data Exchange (ETDEWEB)

    Xing, G Z; Zhang, Z; Wang, D D; Liao, L; Zheng, Z; Xu, H R; Yu, T; Shen, Z X; Huan, C H A; Sum, T C; Wu, T [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Fang, X S [Department of Materials Science, Fudan University, Shanghai 200433 (China); Huang, X; Guo, J; Zhang, H, E-mail: xing0012@ntu.edu.sg, E-mail: tomwu@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-06-25

    We report the growth of ultrathin single-crystal ZnO nanobelts by using a Ag-catalyzed vapor transport method. Extensive transmission electron microscopy and atomic force microscopy measurements reveal that the thickness of the ultrathin ZnO nanobelts is {approx} 2 nm. Scanning electron microscopy and post-growth annealing studies suggest a '1D branching and 2D filling' growth process. Our results demonstrate the critical role of catalyst in the deterministic synthesis of nanomaterials with the desired morphology. In addition, these ultrafine nanobelts exhibit stable field emission with unprecedented high emission current density of 40.17 mA cm{sup -2}. These bottom-up building blocks of ultrathin ZnO nanobelts may facilitate the construction of advanced electronic and photonic nanodevices.

  3. Gas dependent sensing mechanism in ZnO nanobelt sensor

    Science.gov (United States)

    Kaur, Manmeet; Kailasaganapathi, S.; Ramgir, Niranjan; Datta, Niyanta; Kumar, Sushil; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2017-02-01

    Gas sensing properties of ZnO nanobelts synthesized using carbothermal reduction method has been investigated. At room temperature (28 °C), the sensor films exhibit an appreciable response towards H2S and NO and response of these two gases were studied as a function of concentration. For NO the sensor films exhibit a complete reversible curve for the concentration range between 1 and 60 ppm. However, for H2S a complete recovery was obtained for concentration H2S exposure. After exposure, appearance of an additional peak at 26.6° corresponding to the formation of ZnS was observed in XRD. Formation of additional phase was further corroborated using the results of XPS. H2S exposure causes decrease in the intensity of O 1s peak and appearance of sulphide peaks at binding energies of 162.8 and 161.8 eV corresponding to S-2p peaks - 2p3/2 and 2p1/2, confirms the formation of ZnS upon exposure.

  4. Pyroelectric-field driven defects diffusion along c-axis in ZnO nanobelts under high-energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong, E-mail: yong.ding@mse.gatech.edu; Liu, Ying; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States)

    2014-10-21

    When ZnO nanobelts are exposed to a high-dose electron probe of several nanometers to hundred nanometers in diameter inside a transmission electron microscope, due to the radiolysis effect, part of oxygen atoms will be ejected into the vacuum and leaving a Zn-ion rich surface with a pit appearance at both the electron-entrance and electron-exit surfaces. At the same time, a temperature distribution is created around the electron probe due to local beam heating effect, which generates a unidirectional pyroelectric field. This pyroelectric field is strong enough to drive Zn ions moving along its positive c-axis direction as interstitial ions. In the first case, for the ZnO nanobelts with c-axis lie in their large surfaces, defects due to the aggregation of Zn interstitial ions will be formed at some distances of 30–50 nm approximately along the c-axis direction from the electron beam illuminated area. Alternatively, for the ZnO nanobelts with ±(0001) planes as their large surfaces, the incident electron beam is along its c-axis and the generated pyroelectric field will drive the interstitial Zn-ions to aggregate at the Zn terminated (0001) surface where the local electrical potential is the lowest. Such electron beam induced damage in ZnO nanostructures is suggested as a result of Zn ion diffusion driven by the temperature gradient induced pyroelectric field along c-axis. Our study shows a radiation damage caused by electron beam in transmission electron microscopy, especially when the electron energy is high.

  5. 水热法制备ZnO带/ZnO线复合结构以及光催化性质研究%Fabriication and Photocatalytic Properties of ZnO Nanobelt/ZnO Nanowire Composite Structrue by Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    曲铭镭

    2015-01-01

    A sample hydrothermal process is proposed for the fabrication of ZnO nanobelt,Through secondary growth in preparation of ZnO nanowire on the ZnO nanobelt,The as-grown samples were characterized by scanning electron microscopy( SEM),X-ray diffraction( XRD)and photoluminescence( PL). We reserch the influence of diauxic growth on the photocatalytic activity of ZnO nanobelts,The tesults turn out that,the photocatalytic activity of ZnO nanobelt /ZnO nanowire composite structrue is enhanced.%通过水热法制备ZnO纳米带,再通过二次生长的方法在ZnO纳米线上制备ZnO纳米线。通过扫描电镜、X射线衍射、光致发光等测试手段对样品的形貌、结构和光学性质进行表征。研究在二次生长前后光催化活性的变化,结果表明,ZnO带/ZnO线复合材料对甲基橙降解效果有明显的提高。

  6. Simple fabrication of gold nanobelts and patterns.

    Directory of Open Access Journals (Sweden)

    Renyun Zhang

    Full Text Available Gold nanobelts are of interest in several areas; however, there are only few methods available to produce these belts. We report here on a simple evaporation induced self-assembly (EISA method to produce porous gold nanobelts with dimensions that scale across nanometer (thickness ∼80 nm and micrometer (width ∼20 µm, to decimeter (length ∼0.15 m. The gold nanobelts are well packed on the beaker wall and can be easily made to float on the surface of the solution for depositing onto other substrates. Microscopy showed that gold nanobelts had a different structure on the two sides of the belt; the density of gold nanowires on one side was greater than on the other side. Electrical measurements showed that these nanobelts were sensitive to compressive or tensile forces, indicating a potential use as a strain sensor. The patterned nanobelts were further used as a template to grow ZnO nanowires for potential use in applications such as piezo-electronics.

  7. 表面等离子体增强氧化锌纳米带发光特性的研究*%Enhancement of emission from ZnO nanobelts via surface plasmons∗

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      利用简单的化学气相沉积方法在低温下高产量地合成了ZnO纳米带,并利用磁控溅射对样品进行表面修饰,制备了Au-ZnO复合纳米带。通过扫描电镜、透射电镜及微区拉曼等手段系统地研究了表面修饰对ZnO纳米材料发光性能的影响。结果表明,在ZnO纳米带上溅射Au纳米颗粒,可有效增强其近带边发光并使可见发光强度发生淬灭,从而增强ZnO纳米带的发光性能。 ZnO纳米带发光增强因子η最大可达到85倍。基于Au纳米颗粒的散射、吸收、Purcell增强因子,以及Ostwald熟化理论,又进一步探讨了Au-ZnO复合材料的发光机制。采用表面等离子体耦合的方法可以有效地提高光电半导体器件的发光效率。%ZnO nanobelts are synthesized in high yield by a simple chemical vapor deposition method, at low temperature. And then Au nanoparticles are sputtered on the ZnO nanobelts. The effect on the photoluminescence of Au-ZnO composite nanobelts by surface plasmon is systematically investigated by the scanning electron microscopy, transmission electron microscopy and photoluminescence spectrum. The enhancement ratio by surface plasmon resonance and the almost completely suppressed defect emission for Au-ZnO composite nanobelts are observed, and the emission enhancement ratioηof Au-ZnO composite nanobelts reaches a maximal value of 85-fold. Additionally, the photoluminescence mechanism is proposed in terms of the scattering and absorption by Au nanoparticles, the Purcell enhancement factor, and the Ostwald ripening.

  8. Transport properties and nanosensors of oxide nanowires and nanobelts

    Science.gov (United States)

    Lao, Changshi

    ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO ID nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property. This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO nanobelts, nanorings and nanosprings. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO, the abundant of available Zn ions in the vapor, and the polar surface dominated effects. These factors contribute to the large abundant available ZnO nanostructures. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Research results obtained here provide a basic and thoroughly understanding the control process and fabrication criteria in building a functional

  9. Enhanced photocatalytic performance of porous TiO2 nanobelts with phase junctions

    Science.gov (United States)

    Pang, Lai-xue; Wang, Xiao-ying; Tang, Xin-de

    2015-01-01

    Porous TiO2 nanobelts with rutile/anatase phase junctions are successfully prepared through a hydrothermal route and ion exchange process. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were conducted to characterize the products. The photocatalytic performance of the porous nanobelts was evaluated by measuring the degradation of methyl blue under UV light irradiation. The photocatalytic activity of the porous nanobelts is much superior to that of P-25 and pristine non-porous nanobelts. The excellent photocatalytic of porous nanobelts can be attributed to pores which enhanced ability in UV-light harvesting. What's more, the existence of rutile/anatase phase junction is favorable for the formation and separation of the hole-electron pair, resulting in a reduced electron-hole recombination.

  10. First-principles studies on transport properties and contact effects of Cu(111)/ZnO-nanobelt(1010)/Cu(111) systems.

    Science.gov (United States)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang; Zhang, Yue

    2013-08-21

    The transport properties of ZnO nanobelts along the (101¯0) non-polarized direction coupled with Cu electrodes were studied via non-equivalent Greens functions method and density functional theory formalism. The transport properties were greatly affected by interfacial spacing and nanobelt widths. The conductance decreased exponentially with the widths of the nanobelts. Ohmic behavior was found in narrow nanobelts, while rectifying characteristics were observed in wide nanobelts. In the case of narrow belts, the current-voltage characteristics were changed from ohmic type to rectifying characteristics as the interspace increased, corresponding to the contacts transforming from chemical to physical interactions. However, the conductance in the wider nanobelts declined exponentially as the interfacial distance increased. The change of metal induced gap states (MIGS) depends strongly on the interfacial distance but not significantly on the thickness of ZnO nanobelts. An n-type Schottky barrier between copper and ZnO nanobelts is induced by interfacial polarization effects. The Schottky barrier heights for the narrowest and widest nanobelts with equilibrium interfacial spacing were 0.37 eV and 0.44 eV, respectively, which is in good agreement with the experimental values. Additionally, the Schottky barrier heights increased almost linearly as the width of the nanobelts changed from 0.34 nm to 1.2 nm.

  11. Preparation of Manganese Oxide Nanobelts

    Institute of Scientific and Technical Information of China (English)

    Jisen WANG; Jinquan SUN; Ying BAO; Xiufang BIAN

    2003-01-01

    Oriented nanobelts of manganese oxide have been firstly and successfully prepared by a microemulsion techniqueunder controlled circumstances. The samples were characterized by X-ray diffraction (XRD), transmission electronmicroscope (TEM). Influences of sodium chloride and annealed temperature on the synthesis of Mn3O4 nanobeltswere investigated. It was found that NaCl is the key factor to synthesize oriented Mn3O4 nanobelts and 827 K isoptimum temperature to produce fine nanobelts. Oriented growth mechanism of Mn3O4 nanobelts was discussed.

  12. pH and Protein Sensing with Functionalized Semiconducting Oxide Nanobelt FETs

    Science.gov (United States)

    Cheng, Yi; Yun, C. S.; Strouse, G. F.; Xiong, P.; Yang, R. S.; Wang, Z. L.

    2008-03-01

    We report solution pH sensing and selective protein detection with high-performance channel-limited field-effect transistors (FETs) based on single semiconducting oxide (ZnO and SnO2) nanobelts^1. The devices were integrated with PDMS microfluidic channels for analyte delivery and the source/drain contacts were passivated for in-solution sensing. pH sensing experiments were performed on FETs with functionalized and unmodified nanobelts. Functionalization of the nanobelts by APTES was found to greatly improve the pH sensitivity. The change in nanobelt conductance as functions of pH values at different gate voltages and ionic strengths showed high sensitivity and consistency. For the protein detection, we achieved highly selective biotinylation of the nanobelt channel with through APTES linkage. The specific binding of fluorescently-tagged streptavidin to the biotinylated nanobelt was verified by fluorescence microscopy; non-specific binding to the substrate was largely eliminated using PEG-silane passivation. The electrical responses of the biotinylated FETs to the streptavidin binding in PBS buffers of different pH values were systematically measured. The results will be presented and discussed. ^1Y. Cheng et al., Appl. Phys. Lett. 89, 093114 (2006). *Supported by NSF NIRT Grant ECS-0210332.

  13. Single-ZnO-Nanobelt-Based Single-Electron Transistors

    Science.gov (United States)

    Ji, Xiao-Fan; Xu, Zheng; Cao, Shuo; Qiu, Kang-Sheng; Tang, Jing; Zhang, Xi-Tian; Xu, Xiu-Lai

    2014-06-01

    We fabricate single electron transistors based on a single ZnO nanobelt using standard micro-fabrication techniques. The transport properties of the devices are characterized at room temperature and at low temperature (4.2 K). At room temperature, the source-drain current increases linearly as the bias voltage increases, indicating a good ohmic contact in the transistors. At 4.2 K, a Coulomb blockade regime is observed up to a bias voltage of a few millivolts. With scanning the back gate voltage, Coulomb oscillations can be clearly resolved with a period around 1 V. From the oscillations, the charging energy for the single electron transistor is calculated to be about 10 meV, which suggests that confined quantum dots exist with sizes around 35 nm in diameter. The irregular Coulomb diamonds are observed due to the multi-tunneling junctions between dots in the nanobelt.

  14. Porous gold nanobelts templated by metal-surfactant complex nanobelts.

    Science.gov (United States)

    Li, Lianshan; Wang, Zhijian; Huang, Teng; Xie, Jinglin; Qi, Limin

    2010-07-20

    Unique, porous gold nanobelts consisting of self-organized nanoparticles were synthesized in a high yield by morphology-preserved transformation from metal-surfactant complex precursor nanobelts formed by a bolaform surfactant dodecane-1,12-bis(trimethylammonium bromide) (N-C(12)-NBr(2)) and HAuCl(4). It was revealed that the precursor nanobelts of the stoichiometric N-C(12)-N(AuCl(4))(2) complex formed through electrostatic combination of the positively charged quaternary ammonium headgroups of N-C(n)-NBr(2) and the negatively charged AuCl(4)(-) ions. They were subsequently converted into porous gold nanobelts with shrunken sizes upon reduction by NaBH(4). The morphology of the produced gold nanostructures could be adjusted by changing the mixing ratio between N-C(12)-NBr(2) and HAuCl(4) in the reaction solution. It was found that the obtained porous Au nanobelts exhibited enhanced catalytic activity toward reduction of 4-nitrophenol compared with solid gold nanobelts, probably owing to their larger surface area and more active sites.

  15. Energy scavenging based on a single-crystal PMN-PT nanobelt

    OpenAIRE

    Fan Wu; Wei Cai; Yao-Wen Yeh; Shiyou Xu; Nan Yao

    2016-01-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from...

  16. Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt

    Institute of Scientific and Technical Information of China (English)

    唐欣月; 高红; 武立立; 温静; 潘思明; 刘欣; 张喜田

    2015-01-01

    One-dimensional (1D) In2O3(ZnO)m superlattice nanobelts are synthesized by chemical vapor deposition method. The formation of In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images. The typical zigzag boundaries could be clearly observed. An additional peak at 614 cm−1 is found in the Raman spec-trum, which may correspond to the superlattice structure. The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I–V characteristics even under the Ohmic contact measurement con-dition, which are different from the Ohmic behaviors of the In-doped ZnO nanobelts. The photoelectrical measurements show the differences in photocurrent property between them, and their transport mechanisms are also discussed.

  17. Energy scavenging based on a single-crystal PMN-PT nanobelt

    Science.gov (United States)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 ‑ x)Pb(Mg1/3Nb2/3)O3 ‑ xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  18. Development of gas sensors using ZnO nanostructures

    Indian Academy of Sciences (India)

    S K Gupta; Aditee Joshi; Manmeet Kaur

    2010-01-01

    Different ZnO nanostructures such as nanowires, nanobelts and tetrapods have been grown and used for preparation of thick film (with random grain boundaries) as well as isolated nanowire/nanobelt gas sensors. Sensitivity of different type of sensors has been studied to H2S and NO gases. The results show that the response of ZnO sensors to H2S arises from grain boundary only whereas both grain boundaries and intragrain resistances contribute towards response to NO. In addition, oxygen vacancies in the lattice were also seen to help in improvement of sensor response. Room temperature operating H2S and NO sensors based on ZnO nanowires have been demonstrated. Further, sensors based on isolated nanobelts were found to be highly selective in their response to NO.

  19. Surface-effects-dominated thermal and mechanical responses of zinc oxide nanobelts

    Institute of Scientific and Technical Information of China (English)

    A.J.Kulkarni; M.Zhou

    2006-01-01

    Molecular dynamics(MD)simulations are carried out to characterize the mechanical and thermal responses of [ol(l)o]-oriented ZnO nanobelts with lateral dimensions of 21.22(A)×18.95(A),31.02(A)×29.42(A) and 40.81(A)×39.89(A) over the temperature range of 300-1000 K. The Young's modulus and thermal conductivity of the nanobelts are evaluated. Significant surface effects on properties due to the highsurface-to-volume ratios of the nanobelts are observed. For the mechanical response, surface-stress-induced internal stress plays an important role. For the thermal response, surface scattering of phonons dominates. Calculations show that the Young's modulus is higher than the corresponding value for bulk ZnO and decreases by~33%as the lateral dimensions increase from 21.22(A)×18.95(A) to 40.8l(A)×39.89(A).The thermal conductivity is one order of magnitude lower than the corresponding value for bulk ZnO single crystal and decreases with wire size. Specifically, the conductivity of the 21.22(A)×18.95(A) beltis approximately(31-18)% lower than that of the 40.81(A)×39.89(A) belt over the temperature range analyzed. A significant dependence of properties on temperature is also observed. with the Young's modulus decreasing on average by 12% and the conductivity decreasing by 50% as temperature increases from 300 K to 1000 K.

  20. High Performance Indium-Doped ZnO Gas Sensor

    Directory of Open Access Journals (Sweden)

    Junjie Qi

    2015-01-01

    Full Text Available Gas sensors for ethanol and acetone based on ZnO nanobelts with doping element indium were fabricated. Excellent sensitivity accompanied with short response time (10 s and recovery time (23 s to 150 ppm ethanol is obtained. For In-doped sensors, a minimum concentration of 37.5 ppm at 275°C in acetone was observed with an average sensitivity of 714.4, which is 7 times larger than that of the pure sensors and much larger than that reported response (16 of Co-doped ZnO nanofibers to acetone. These results indicate that doping elements can improve gas sensitivity, which is associated with oxygen space and valence ions. In-doped ZnO nanobelts exhibit higher sensitivity to acetone than that to ethanol. These results indicate that doped ZnO nanobelts can successfully distinguish acetone and ethanol, which can be put into various practical applications.

  1. Optical sensor based on a single CdS nanobelt.

    Science.gov (United States)

    Li, Lei; Yang, Shuming; Han, Feng; Wang, Liangjun; Zhang, Xiaotong; Jiang, Zhuangde; Pan, Anlian

    2014-04-23

    In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 10⁴, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  2. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  3. Reactivity of gold nanobelts with unique {110} facets.

    Science.gov (United States)

    Chen, Ying; Milenkovic, Srdjan; Hassel, Achim Walter

    2010-09-10

    Gold nanobelts were synthesized by directional solidification of the Fe-Au eutectoid followed by selective phase dissolution. Cleaning from organic molecules was performed in alkaline solution by PbO(2) deposition/dissolution to avoid surface reconstruction. The electrochemical behaviour of the Au nanobelts was determined by structure-sensitive electrochemical reactions, and the findings confirm the results obtained by selected area electron diffraction (SAED). The underpotential deposition (UPD) of lead under alkaline conditions and cyclic voltammograms (CVs) in sulphuric acid revealed an unusual large amount of (110) domains (>65%). Finally, after cleaning the Au nanobelts showed a higher and stable electrocatalytic behaviour toward methanol oxidation in alkaline media. The possible mechanism and the potential applications of the Au nanobelts are discussed.

  4. Optical Sensor Based on a Single CdS Nanobelt

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-04-01

    Full Text Available In this paper, an optical sensor based on a cadmium sulfide (CdS nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT method. X-Ray Diffraction (XRD and Transmission Electron Microscopy (TEM results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.

  5. Effects of temperature and pressure on morphologies of quasi-one-dimensional ZnO nanostructures fabricated via thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    LIU Wen-cheng; CAI Wei; MENG Xiang-long

    2006-01-01

    Quasi one-dimensional zinc oxide nanomaterials were synthesized by thermal evaporation. The structure,morphologies and composition of ZnO nanomaterials prepared under different conditions were studied by XRD,TEM,SEM and EDX. The morphologies are strongly sensitive to the temperature and the pressure during growth,including nanowires,nanobelts,nanocombs and pyramidal-like nanomaterials.

  6. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  7. Porous-ZnO-Nanobelt Film as Recyclable Photocatalysts with Enhanced Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Wang Min

    2010-01-01

    Full Text Available Abstract In this article, the porous-ZnO-nanobelt film was synthesized by oxidizing the ZnSe-nanobelt film in air. The experiment results show that the porous-ZnO-nanobelt film possesses enhanced photocatalytic activity compared with the ZnO-nanobelt film, and can be used as recyclable photocatalysts. The enhanced photocatalytic activity of the porous-ZnO-nanobelt film is attributed to the increased surface area. Therefore, turning the 1D-nanostructure film into porous one may be a feasible approach to meet the demand of photocatalyst application.

  8. Synthesis and photoluminescence properties of Mn-doped ZnS nanobelts

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-yan; YANG Xiao-ling; HOU De-dong; LIU Ying-kai

    2009-01-01

    Mn-doped ZnS nanobelts have been prepared through a thermal evaporation method at 1100℃. The synthesized nanobelts are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectroscopy. The results show that the nanobelts have an uniform single-crystal hexagonal wurtzite structure and grow along [0001] direction. Room-temperature photoluminescence reveals that the intrinsic PL of the nanobelts disappears and a new PL peak of the Mn-doped ZnS nanobelts emerges at 575 nm.

  9. New Interfacial Nanochemistry on Sensory Bioscaffold-Membranes of Nanobelts

    Science.gov (United States)

    Chen, Feng

    Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface vital to the rapid and label-free electrochemical detections of protein (cytochrome c) and neurotransmitter (dopamine). This work is based on a suite of new physical and chemical properties on the titanate nanobelt in water, including high surface area, zwitterionic surface, chemical- and photochemical-durability, cation-exchange and anion- and cation-sorption capacities, protein- and cell-compatibility, thermal-stability, and charge conductivity. The Fourier transform infrared (FTIR) was used for identifying any denaturing of the cytochrome c pre-immobilized on the titanate nanobelts. On that basis, the pheochromocytoma cells (PC-12 cell) were chosen to grow on the titanate nanobelts. These experiments prove that the sensory bioscaffolds of titanate nanobelt-membrane is a multiplex platform for developing new tools for energy, environmental and life sciences.

  10. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  11. Investigation of Critical Heat Flux Enhancement for Porous and Non-porous Structures without Surface Wettability Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-05-15

    Nanoparticles and nano-sheets have been used in base fluids to enhance the BHT and CHF. Nanoparticles such as Al{sub 2}O{sub 3}, TiO{sub 2}, ZnO, Ag, Au and SiC have been studied for investigating the enhancement in the BHT and CHF. Most of the studies illustrated the enhancement in the heat transfer and CHF based on nanoparticle deposition during boiling occurrences. Research on nanotechnology in boiling experiments such as the deposition of particles on heating surfaces, nanowires, and thin film coatings laid on a substrate was investigated as point of effective heat transfer methods. A theoretical model to predict the CHF based on the dynamic receding contact angle, which includes surface-liquid interaction effects, was accommodated the change of surface wettability due to the deposition of nanoparticles. Park et al., however, reported the reverse results that the enhancement in the CHF could not be explained by the relation of the improved surface wettability. They focused on the change of hydrodynamic instability wavelength due to the deposition of nanoparticles and concluded that the change of instability wavelength could be considered as the CHF enhancement mechanism. Therefore, an experimental CHF study without the change of surface wettability should be conducted to define the parameters attributing to the CHF. This paper presents a study on the enhancement BHT and CHF with porous and non-porous surfaces deposited on a bare indium tin oxide (ITO) surface using FC-72 refrigerant. Plasma enhanced chemical vapor deposition (PECVD) system was applied to deposit the SiC surface as non-porous structure and porous SiC-coated surface was manufactured by deposition of nanoparticles. For graphene surface, rapid thermal annealing (RTA) method and nanoparticles of graphene oxide were used for non-porous and porous structure, respectively. In the present work the study of the BHT and CHF is conducted using non-porous and porous heater surfaces without the effect of

  12. Nanowires and nanobelts, v.2 nanowires and nanobelts of functional materials

    CERN Document Server

    Wang, Zhong Lin

    2010-01-01

    Nanowires, nanobelts, nanoribbons, nanorods ..., are a new class of quasi-one-dimensional materials that have been attracting a great research interest in the last few years. These non-carbon based materials have been demonstrated to exhibit superior electrical, optical, mechanical and thermal properties, and can be used as fundamental building blocks for nano-scale science and technology, ranging from chemical and biological sensors, field effect transistors to logic circuits. Nanocircuits built using semiconductor nanowires demonstrated were declared a ""breakthrough in science"" by Science

  13. Novel hybrid materials based on the vanadium oxide nanobelts

    Science.gov (United States)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  14. Extracting nanobelt mechanical properties from nanoindentation

    Science.gov (United States)

    Zhang, Yin

    2010-06-01

    A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested.

  15. Synthesis and Field Emission of ZnO Nanostructures on CuO Catalyzed Porous Silicon Substrate

    Institute of Scientific and Technical Information of China (English)

    YU Ke; ZHANG Yong-Sheng; OUYANG Shi-Xi; ZHANG Qing-Jie; LUO Lai-Qiang; ZHANG Qiu-Xiang; CHANG Zhong-Kun; LI Li-Jun; ZHU Zi-Qiang

    2005-01-01

    @@ Ma ss production of ZnO nanobelts and hexagonal nanorods has been successfully synthesized on CuO catalyzed porous silicon (PS) using a simple vapour-solid (VS) growth method. A comparison of their morphologies is investigated by scanning electron microscopy (SEM). The transmission electron microscopy (TEM) confirms that ZnO nanobelts and nanorods are single crystalline with the growth direction of (0110) and (0001), respectively.Field emission tests indicate that the ZnO nanostructures on porous silicon have low turn-on field of about3.6 V/μm (at 1.0μA/cm2) and the threshold field of about 8.3 V/μm (at 1.0mA/cm2), high emission site density(ESD) of approximately 104 cm-2.

  16. Au修饰ZnO纳米带制备及光催化特性研究%Fabrication and Photocatalytic Properties of ZnO Surface Modification of Au by Hydrothermal Process

    Institute of Scientific and Technical Information of China (English)

    曲铭镭

    2015-01-01

    A sample hydrothermal process is proposed for the fabrication of ZnO nanobelt,through of evaporation grow Au modified on the surface of ZnO nanobelt,The as-grown samples were characterized by scanning electron microscopy( SEM),X-ray diffraction( XRD)and photoluminescence( PL). We studied the influence of diauxic growth on the photocatalytic activity of ZnO nanobelts,The tesults turn out that,the photocatalytic activity of ZnO nanobelt /ZnO nanowire composite structrue is enhanced.%通过水热法制备ZnO纳米带,通过溅射的方法在ZnO纳米带进行表面Au修饰。通过扫描电镜、X射线衍射、光致发光等测试手段对样品的形貌、结构和光学性质进行表征。研究ZnO纳米带Au修饰前后的光催化活性的变化。结果表明,Au修饰ZnO纳米带样品对甲基橙降解效果有明显的提高。

  17. Physical model construction for electrical anisotropy of single crystal zinc oxide micro/nanobelt using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Guangbin [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Tang, Chaolong [Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Song, Jinhui, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), University of Alabama, Tuscaloosa, Alabama 35487 (United States); Lu, Wenqiang, E-mail: jhsong@eng.ua.edu, E-mail: wqlu@cigit.ac.cn [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2014-04-14

    Based on conductivity characterization of single crystal zinc oxide (ZnO) micro/nanobelt (MB/NB), we further investigate the physical mechanism of nonlinear intrinsic resistance-length characteristic using finite element method. By taking the same parameters used in experiment, a model of nonlinear anisotropic resistance change with single crystal MB/NB has been deduced, which matched the experiment characterization well. The nonlinear resistance-length comes from the different electron moving speed in various crystal planes. As the direct outcome, crystallography of the anisotropic semiconducting MB/NB has been identified, which could serve as a simple but effective method to identify crystal growth direction of single crystal semiconducting or conductive nanomaterial.

  18. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  19. Synthesis of GeSe2 Nanobelts Using Thermal Evaporation and Their Photoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2014-01-01

    Full Text Available GeSe2 nanobelts were synthesized via a simple thermal-evaporation process by using gold particles as catalyst and GeSe2 flakes as starting materials. The morphology, crystal structure, and composition were characterized with scanning electron microscopy (SEM, high-resolution transmission electron microscopy (TEM, X-ray diffraction spectroscopy (XRD, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. SEM micrographs show that most of GeSe2 nanobelts have distinct segmented structures (wide belt, zigzag belt, and narrow belt. A possible mechanism was proposed for the growth of segmented nanobelts. It is possible that the growth of the segmented nanobelts is dominated by both vapor-liquid-solid and vapor-solid mechanisms. Devices made of single GeSe2 nanobelt have been fabricated and their photoelectrical property has been investigated. Results indicate that these nanobelt devices are potential building blocks for optoelectronic applications.

  20. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Luo Haiyan [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); Wei Mingdeng, E-mail: wei-mingdeng@fzu.edu.cn [Institute of New Energy Technology and Nano-Materials, Fuzhou University, Fuzhou, Fujian 350002 (China); National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China); Wei Kemei [National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2011-01-21

    Research highlights: > Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. > These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  1. Synthesis and optical properties of two novel ZnO flower like and spindlelike nanostructures

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; WANG Wei-sheng

    2011-01-01

    A new aqueous chemical growth method for generation of ZnO flowerlike and spindlelike nanostructures, transformed from layered basic zinc acetate (LBZA) nanobelts, is developed. The novel as-synthesized ZnO flowerlike and spindlelike nanostructures are mainly due to the pH. They are characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The X-ray diffraction peaks indicate that these ZnO nanostructures prefer to grow along the C-axis.Photoluminescence (PL) measurements show that the ZnO flowerlike nanostructures have strong ultraviolet (UV) emission properties at 380 nm, while no defect-related visible emission can be detected. The good performance for photoluminescence emission makes the ZnO flowerlike nanostructures to be promising candidates for photonic and electronic device applications.

  2. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    Science.gov (United States)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  3. Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

    Science.gov (United States)

    Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui

    2016-02-01

    Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).

  4. Correction: β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties

    Science.gov (United States)

    Huang, Juntong; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Chen, Kai; Huang, Yaoting; Huang, Saifang; Ji, Haipeng; Yang, Jingzhou; Wu, Xiaowen; Zhang, Shaowei

    2016-07-01

    Correction for `β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties' by Juntong Huang, et al., Nanoscale, 2014, 6, 424-432.

  5. Electrochemical Property Bundles with of Manganese Oxide Nanobelt Layered Structure%Electrochemical Property Bundles with of Manganese Oxide Nanobelt Layered Structure

    Institute of Scientific and Technical Information of China (English)

    Kang, Liping; Jiang, Yishu; Tang, Xiuhua; Yang, Mingyang; Liu, Zonghuai

    2012-01-01

    One-dimensional manganese oxide nanobelt bundles with birnessite-type structure have been synthesized by a hydrothermal process in a NaOH solution employing K-type layered manganese oxide as a precursor. The obtained manganese oxide nanobelt bundles exhibit excellent discharge properties and cycle stability. The initial capacity is 376 mAh-g-1 and the reversible capacity of 243 mAhog-1 is maintained after the 50th cycle at a current density of 20 mA·g-t. Meanwhile, the manganese oxide nanobelt bundles show an excellent cycle performance even if at relative high current density.

  6. High ethanol sensitivity of palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions.

    Science.gov (United States)

    Wang, Dongzhou; Zhou, Weijia; Hu, Peiguang; Guan, Yu; Chen, Limei; Li, Jianhua; Wang, Guancong; Liu, Hong; Wang, Jiyang; Cao, Guozhong; Jiang, Huaidong

    2012-12-15

    TiO(2) nanobelts were prepared by the hydrothermal growth method. The surface of the nanobelts was coarsened by selective acid corrosion and functionalized with Pd catalyst particles. Three nanobelt samples (TiO(2) nanobelts, surface-coarsened TiO(2) nanobelts and Pd nanoparticle/TiO(2) nanobelt surface heterostructures) were configured as gas sensors and their sensing ability was measured. Both the surface-coarsened nanobelts and the Pd nanoparticle-decorated TiO(2) nanobelts exhibited dramatically improved sensitivity to ethanol vapor. Pd nanoparticle-decorated TiO(2) nanobelts with surface heterostructures exhibited the best sensitivity, selectivity, working temperature, response/recovery time, and reproducibility. The excellent ethanol sensing performance is attributed to the large surface area and enhancement by Schottky barrier-type junctions between the Pd nanoparticles and TiO(2) nanobelts.

  7. Carbon nanotube and CdSe nanobelt Schottky junction solar cells.

    Science.gov (United States)

    Zhang, Luhui; Jia, Yi; Wang, Shanshan; Li, Zhen; Ji, Chunyan; Wei, Jinquan; Zhu, Hongwei; Wang, Kunlin; Wu, Dehai; Shi, Enzheng; Fang, Ying; Cao, Anyuan

    2010-09-08

    Developing nanostructure junctions is a general and effective way for making photovoltaics. We report Schottky junction solar cells by coating carbon nanotube films on individual CdSe nanobelts with open-circuit voltages of 0.5 to 0.6 V and modest power-conversion efficiencies (0.45-0.72%) under AM 1.5G, 100 mW/cm(2) light condition. In our planar device structure, the CdSe nanobelt serves as a flat substrate to sustain a network of nanotubes, while the nanotube film forms Shottky junction with the underlying nanobelt at their interface and also makes a transparent electrode for the device. The nanotube-on-nanobelt solar cells can work either in front (nanotube side) or back (nanobelt side) illumination with stable performance in air. Our results demonstrate a promising way to develop large-area solar cells based on thin films of carbon nanotubes and semiconducting nanostructures.

  8. Theory of compact nonporous windscreens for infrasonic measurements.

    Science.gov (United States)

    Zuckerwar, Allan J

    2010-06-01

    The principle of the compact nonporous windscreen is based on the great penetrability of infrasound through matter. The windscreen performance is characterized by the ratio of the sound pressure at an interior microphone, located in the center of a windscreen, to the incident sound pressure in the free field. The frequency dependence of this pressure ratio is derived as a function of the windscreen material and geometric properties. Four different windscreen geometries are considered: a subsurface, box-shaped windscreen, a cylindrical windscreen of infinite length, a cylindrical windscreen of finite length, and a spherical windscreen. Results are presented for windscreens made of closed-cell polyurethane foam and for typical dimensions of each of the above geometries. The cylindrical windscreen of finite length, featuring evanescent radial modes, behaves as a unity-gain, low-pass filter, cutting off sharply at the end of the infrasonic range. The remaining geometries reveal a pass band that extends well into the audio range, terminated by a pronounced peak beyond which the response plummets rapidly.

  9. Sticking of molecules on non-porous amorphous water ice

    CERN Document Server

    He, Jiao; Vidali, Gianfranco

    2016-01-01

    Accurate modeling of physical and chemical processes in the interstellar medium requires detailed knowledge of how atoms and molecule adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H$_2$, D$_2$, N$_2$, O$_2$, CO, CH$_4$, and CO$_2$ on non-porous amorphous solid water (np-ASW). The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient --- the King-Wells method --- leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on th...

  10. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response

    Science.gov (United States)

    Zhao, Hong; Ning, Yuesheng; Zhao, Binyuan; Yin, Fujun; Du, Cuiling; Wang, Fei; Lai, Yijian; Zheng, Junwei; Li, Shuan; Chen, Li

    2015-09-01

    Silver is one of the most important materials in plasmonics. Tuning the size of various silver nanostructures has been actively pursued in the last decade. However, silver nanobelt, a typical one-dimensional silver nanostructure, has not been systematically studied as to tuning its size for controllable plasmonic response. Here we show that silver nanobelts, with mean width ranging from 45 to 105 nm and thickness at ca. 13 nm, can grow abundantly on monolithic activated carbon (MAC) through a galvanic-cell reaction mechanism. The widths of silver nanobelts are positively correlated to the growth temperatures. The width/thickness ratio of the silver nanobelts can be adjusted so that their transversal plasmonic absorption peaks can nearly span the whole visible light band, which endows them with different colours. This work demonstrates the great versatility of a simple, green and conceptually novel approach in controlled synthesis of noble metal nanostructures.

  11. Temperature dependent growth and optical properties of SnO2 nanowires and nanobelts

    Indian Academy of Sciences (India)

    S P Mondal; S K Ray; J Ravichandran; I Manna

    2010-08-01

    SnO2 nanowires and nanobelts have been grown by the thermal evaporation of Sn powders. The growth of nanowires and nanobelts has been investigated at different temperatures (750–1000°C). The field emission scanning electron microscopic and transmission electron microscopic studies revealed the growth of nanowires and nano-belts at different growth temperatures. The growth mechanisms of the formation of the nanostructures have also been discussed. X-ray diffraction patterns showed that the nanowires and nanobelts are highly crystalline with tetragonal rutile phase. UV-visible absorption spectrum showed the bulk bandgap value (∼ 3.6 eV) of SnO2. Photoluminescence spectra demonstrated a Stokes-shifted emission in the wavelength range 558–588 nm. The Raman and Fourier transform infrared spectra revealed the formation of stoichiometric SnO2 at different growth temperatures.

  12. Biocompatible Single-Crystal Selenium Nanobelt Based Nanodevice as a Temperature-Tunable Photosensor

    Directory of Open Access Journals (Sweden)

    Yongshan Niu

    2012-01-01

    Full Text Available Selenium materials are widely used in photoelectrical devices, owing to their unique semiconductive properties. Single-crystal selenium nanobelts with large specific surface area, fine photoconductivity, and biocompatibility provide potential applications in biomedical nanodevices, such as implantable artificial retina and rapid photon detector/stimulator for optogenetics. Here, we present a selenium nanobelt based nanodevice, which is fabricated with single Se nanobelt. This device shows a rapid photo response, different sensitivities to visible light of variable wave length, and temperature-tunable property. The biocompatibility of the Se nanobelts was proved by MTT test using two cell lines. Our investigation introduced a photosensor that will be important for multiple potential applications in human visual system, photocells in energy or MEMS, and temperature-tunable photoelectrical device for optogenetics research.

  13. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    Science.gov (United States)

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential.

  14. Crystal-phase control of molybdenum carbide nanobelts for dehydrogenation of benzyl alcohol.

    Science.gov (United States)

    Li, Zhongcheng; Chen, Chunhui; Zhan, Ensheng; Ta, Na; Li, Yong; Shen, Wenjie

    2014-05-04

    Belt-shaped molybdenum carbides in α- and β-phases were synthesized by reducing and carburizing a nano-sized α-MoO3 precursor with hydrocarbon-hydrogen mixtures at appropriate temperatures; the β-Mo2C nanobelts with a higher fraction of coordinatively unsaturated Mo sites were more active than the α-MoC1-x nanobelts in dehydrogenation of benzyl alcohol to benzaldehyde.

  15. Electrical and optoelectrical modification of cadmium sulfide nanobelts by low-energy electron beam irradiation

    Science.gov (United States)

    Zhang, Lijie; Liu, Manman; Zhao, Mei; Dong, Youqing; Zou, Chao; Yang, Keqin; Yang, Yun; Huang, Shaoming; Zhu, Da-Ming

    2016-09-01

    In this report, we describe a method for modifying electrical and optoelectrical properties of CdS nanobelts using low-energy (lower than 10 keV) e-beam irradiation in a scanning electron microscope. The electrical conductivity of the nanobelts was dramatically improved via the irradiation of e-beams. The modified conductivity of the nanobelts depends on the energy of the e-beam; it exhibits a larger photocurrent and higher external quantum efficiency but slower time-response than that before the modification. A possible mechanism about the modification is the increase of electron accumulation (injected electrons) in the nanobelts due to e-beam irradiation. In addition, the optoelectrical modification could be caused by the trapped electrons in the nanobelts and the decrease of contact resistance between the nanobelts and metal electrodes induced by e-beam irradiation. The results of this work are significant for the in situ study of semiconductor nanostructures in the electron microscope. Besides, the method of electrical and optoelectrical modification presented here has potential application in electronics and optoelectronics.

  16. The influence of VO2(B nanobelts on thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Zhang Yifu

    2015-09-01

    Full Text Available The influence of vanadium dioxide VO2(B on thermal decomposition of ammonium perchlorate (AP has not been reported before. In this contribution, the effect of VO2(B nanobelts on the thermal decomposition of AP was investigated by the Thermo- Gravimetric Analysis and Differential Thermal Analysis (TG/DTA. VO2(B nanobelts were hydrothermally prepared using peroxovanadium (V complexes, ethanol and water as starting materials. The thermal decomposition temperatures of AP in the presence of I wt.%, 3 wt.% and 6 wt.% of as-obtained VO2nanobelts were reduced by 39 °C. 62 °C and 74 °C, respectively. The results indicated that VO2(B nanobelts had a great influence on the thermal decomposition temperature of AP Furthermore, the influence of the corresponding V2Os, which was obtained by thermal treatment of VO2(B nanobelts, on the thermal decomposition of AP was also investigated. The resufs showed that VO2(B nanobelts had a greater influence on the thermal decomposition temperature of AP than that of V2Os.

  17. Synthesis and characterization of α-cobalt hydroxide nanobelts

    Science.gov (United States)

    Tian, L.; Zhu, J. L.; Chen, L.; An, B.; Liu, Q. Q.; Huang, K. L.

    2011-08-01

    α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic-inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2-)0.22(Ac-)0.07(H2O)0.11 and single-crystalline.

  18. Cation-Induced Coiling of Vanadium Pentoxide Nanobelts

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2010-01-01

    Full Text Available Abstract Single-crystalline V2O5·xH2O nanorings and microloops were chemically assembled via an ion-induced chemical spinning route in the designed hydrothermal system. The morphology and structure of products were investigated by means of scanning electron microscopy (SEM and transmission electron microscopy (TEM. X-ray powder diffraction (XRD measurement, energy-dispersive X-ray spectroscopy (EDS microanalysis and thermal gravimetric analysis (TGA revealed that the composition of nanorings and microloops is V2O5·1·1H2O. For these oxide nanorings and microloops, the cation-induced coiling growth mechanism of vanadium pentoxide nanobelts has been proposed on the basis of crystallographic structure of vanadium pentoxide. Our proposed chemical spinning process and the rational solution-phase synthesis route can also be extended to prepare novel 1D materials with layered or more complex structures.

  19. 21 CFR 888.3353 - Hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... cemented or nonporous uncemented prosthesis. 888.3353 Section 888.3353 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A hip joint metal/ceramic/polymer semi-constrained cemented or nonporous uncemented prosthesis is a device intended to be implanted to replace a hip joint. This device...

  20. The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts

    Science.gov (United States)

    2013-01-01

    Pure and Mn-doped ZnSe nanobelts were synthesized by a convenient thermal evaporation method. Scanning electron microscopy, X-ray powder diffraction, energy dispersive X-ray spectroscopy and corresponding element mapping, and transmission electron microscope were used to examine the morphology, phase structure, crystallinity, composition, and growth direction of as-prepared nanobelts. Raman spectra were used to confirm the effective doping of Mn2+ into ZnSe nanobelts. Micro-photoluminescence (PL) spectra were used to investigate the emission property of as-prepared samples. A dominant trapped-state emission band is observed in single ZnSeMn nanobelt. However, we cannot observe the transition emission of Mn ion in this ZnSeMn nanobelt, which confirm that Mn powder act as poor dopant. There are weak near-bandgap emission and strong 4T1 → 6A1 transition emission of Mn2+ in single ZnSeMnCl2 and ZnSeMn(CH3COO)2 nanobelt. More interesting, the 4T1 → 6A1 transition emission in ZnSeMn(CH3COO)2 nanobelt split into multi-bands. PL mapping of individual splitted sub-bands were carried out to explore the origin of multi-bands. These doped nanobelts with novel multi-bands emission can find application in frequency convertor and wavelength-tunable light emission devices. PMID:23829706

  1. Capillary liquid chromatography separations using non-porous pillar array columns

    NARCIS (Netherlands)

    de Malsche, Wim; de Bruyne, S.; op de Beek, J.; Sandra, P.; Gardeniers, Johannes G.E.; Desmet, G.; Lynen, F.

    2012-01-01

    We report on a series of explorative experiments wherein a non-porous pillar array column (NP-PAC) is coupled to a commercial capillary LC instrument. The performance of the system was evaluated by both non-retained and retained experiments using several types of samples. In order to minimize

  2. Evaporation of HD Droplets From Nonporous, Inert Surfaces in TGA Microbalance Wind Tunnels

    Science.gov (United States)

    2008-09-01

    2007 4. TITLE AND SUBTITLE Evaporation of HD Droplets from Nonporous, Inert Surfaces in TGA Microbalancc Wind Tunnels 5a. CONTRACT NUMBER DAAD13...hr (lightly swirled on a rotating plateau). Then, the glass was rinsed with dematerialized water and dried (using appropriate fat-free non-felting

  3. Capillary liquid chromatography separations using non-porous pillar array columns

    NARCIS (Netherlands)

    Malsche, de D.M.W.; Bruyne, de S.; Beek, op de J.; Sandra, P.; Gardeniers, J.G.E.; Desmet, G.; Lynen, F.

    2012-01-01

    We report on a series of explorative experiments wherein a non-porous pillar array column (NP-PAC) is coupled to a commercial capillary LC instrument. The performance of the system was evaluated by both non-retained and retained experiments using several types of samples. In order to minimize interf

  4. Hydrothermal synthesis of MoO{sub 3} nanobelt-graphene composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofei; Ding, Heyi; Zhang, Du; Yan, Xuehua; Lu, Chunyu; Qin, Jieling; Tang, Hua; Song, Haojie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-11-15

    A composite of graphene sheets decorated with molybdenum trioxide (MoO{sub 3}) nanobelts has been fabricated via a facile and efficient hydrothermal route in the presence of NaCl. The structure, morphology of these promising composites were investigated by means of field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and thermogravimetric (TG) analysis. FESEM and TEM studies suggest the presence of uniform crystalline MoO{sub 3} nanobelts and graphene sheets in as-prepared hybrid materials. XRD and Raman results confirm the reduction of graphite oxide (GO) sheets to graphene sheets accompanying by the formation of MoO{sub 3} nanobelts. Moreover, thermal properties of GO and MoO{sub 3} nanobelt-graphene composites reveal that thermal stability of the obtained MoO{sub 3} nanobelt-graphene composites is obviously higher than that of GO due to the transformation of GO sheets to highly stable graphene sheets in the hybrids. This work could provide new insights into the fabrication of high quality MoO{sub 3}-graphene hybrid nanomaterials and facilitate their potential applications in different fields. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures.

    Science.gov (United States)

    Tian, Jian; Sang, Yuanhua; Zhao, Zhenhuan; Zhou, Weijia; Wang, Dongzhou; Kang, Xueliang; Liu, Hong; Wang, Jiyang; Chen, Shaowei; Cai, Huaqiang; Huang, Hui

    2013-11-25

    CeO2 /TiO2 nanobelt heterostructures are synthesized via a cost-effective hydrothermal method. The as-prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface-coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2 /TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in the degradation of organic pollutants such as methyl orange (MO) under either UV or visible light irradiation. The enhanced photocatalytic performance is attributed to a novel capture-photodegradation-release mechanism. During the photocatalytic process, MO molecules are captured by CeO2 nanoparticles, degraded by photogenerated free radicals, and then released to the solution. With its high degradation efficiency, broad active light wavelength, and good stability, the CeO2 /TiO2 nanobelt heterostructures represent a new effective photocatalyst that is low-cost, recyclable, and will have wide application in photodegradation of various organic pollutants. The new capture-photodegradation-release mechanism for improved photocatalysis properties is of importance in the rational design and synthesis of new photocatalysts.

  6. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    Science.gov (United States)

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  7. Size-tunable Synthesis of Silver Nanobelts Using a Polyaniline Derived Polymer as a Template

    Science.gov (United States)

    Padmanaban, Sudakar; Kim, Minog; Yoon, Sungho

    2017-03-01

    Silver nanobelts (AgNBs) have attracted a great interest due to their excellent electrical conductivity and mechanical strength, leading a facile synthesis of these AgNBs in great demand. In here, we are reporting a simple, aqueous phase, size tunable synthesis of smooth surfaced 1D-silver nanobelts using a Polyaniline (PANi) derived polymer at room temperature. The specifically designed PANi polymer, comprising a pendant carboxyl group in the chain, acted as both a reducing agent and template. The resulting Ag nanobelts have more than 10 μm of length, mean width values ranging from 41.1 (11.5) nm to 118.5 (8.8) nm and a mean thickness value of 36.7 (12.5) nm. The UV-Visible spectrum of the AgNBs has shown two Surface Plasmon Resonance peaks at 352 nm and 383 nm.

  8. Size-tunable Synthesis of Silver Nanobelts Using a Polyaniline Derived Polymer as a Template

    Science.gov (United States)

    Padmanaban, Sudakar; Kim, Minog; Yoon, Sungho

    2017-01-01

    Silver nanobelts (AgNBs) have attracted a great interest due to their excellent electrical conductivity and mechanical strength, leading a facile synthesis of these AgNBs in great demand. In here, we are reporting a simple, aqueous phase, size tunable synthesis of smooth surfaced 1D-silver nanobelts using a Polyaniline (PANi) derived polymer at room temperature. The specifically designed PANi polymer, comprising a pendant carboxyl group in the chain, acted as both a reducing agent and template. The resulting Ag nanobelts have more than 10 μm of length, mean width values ranging from 41.1 (11.5) nm to 118.5 (8.8) nm and a mean thickness value of 36.7 (12.5) nm. The UV-Visible spectrum of the AgNBs has shown two Surface Plasmon Resonance peaks at 352 nm and 383 nm. PMID:28317940

  9. Ethanol assisted synthesis of anatase nanobelts with improved crystallinity and photocatalytic activity

    Science.gov (United States)

    Ni, Binbin; Li, Feng; Li, Xiaoning; Fu, Zhengping; Zhu, Yanwu; Lu, Yalin

    2013-10-01

    A modified alkaline hydrothermal method via adding the ethanol treatment to the intermediates was developed to synthesize TiO2 nanobelts, in which the main phase is anatase. Compared with the previous reported TiO2 nanobelts obtained without the ethanol treatment, the new TiO2 nanobelts obtained through the ethanol assisted route are with much improved anatase crystallinity and a sharply reduced amount of TiO2-B phase, as well as a significantly higher photocatalytic activity that is even better than P25 for degrading Rhodamine-B under the ultraviolet light irradiation, which apparently correlates to the increased contents and crystallinity of anatase. The mechanism of ethanol treatment is also discussed based on the FTIR results.

  10. A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts

    Science.gov (United States)

    Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.

    2016-09-01

    A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.

  11. Synthesis and electrical transport of single-crystal NH4V3O8 nanobelts.

    Science.gov (United States)

    Mai, L Q; Lao, C S; Hu, B; Zhou, J; Qi, Y Y; Chen, W; Gu, E D; Wang, Z L

    2006-09-21

    Monoclinic NH(4)V(3)O(8) single-crystalline nanobelts with widths of 80-180 nm, thicknesses of 50-100 nm, and lengths up to tens of micrometers have been synthesized at large scale in an ammonium metavanadate solution by a templates/catalysts-free route. Such nanobelts grow along the direction of [010]. The individual NH(4)V(3)O(8) nanobelt exhibits nonlinear, symmetric current/voltage (I/V) characteristics, with a conductivity of 0.1-1 S/cm at room temperature and a dielectric constant of approximately 130. The dominant conduction mechanism is based on small polaron hopping due to ohmic mechanism at low electric field below 249 V/cm due to Schottky emission at medium electric field between 249 and 600 V/cm and due to the Poole-Frenkel emission mechanism at high field above 600 V/cm.

  12. Ten years' venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications

    Institute of Scientific and Technical Information of China (English)

    Zhong Lin WANG

    2009-01-01

    Zinc oxide is a unique material that exhibits semiconducting,piezoelectric and pyroelectric multiple properties.Nanostructures of ZnO are equally important as carbon nanotubes and silicon nanowires (NWs) for nanotechnology,and have great potential applications in nano-electronics,optoelectronics,sensors,field emission,light emitting diodes,photocatalysis,nanogenerators,and nanopiezotronics.Ever since the discovery of nanobelts (NBs) in 2001 by my group,a world wide research in ZnO has been kicked off.This review introduces my group's experience in venturing the discovery,understanding and applications of ZnO NWs and NBs.The aim is to introduce the progress made in my research in the last 10 years in accompany to the huge social advances and economic development taking place in China in the last 10 years.

  13. Synthesis and characterization of α-MoO{sub 3} nanobelt composite positive electrode materials for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nadimicherla, Reddeppa [Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Guo, Xin, E-mail: xguo@hust.edu.cn [Laboratory of Solid State Ionics, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-06-15

    Graphical abstract: (a) TEM image of MoO{sub 3}/PEO nanobelts composite, (b) CV curves of MoO{sub 3}/PEO nanobelts composite. - Highlights: • α-MoO{sub 3} and PEO surfactant MoO{sub 3} nanobelts were synthesized by solvothermal method. • The capacity retention of 12.5 wt% PEO surfactant MoO{sub 3} nanobelts is 88.78%. • The specific capacity of 12.5 wt% PEO surfactant MoO{sub 3} nanobelts is 352 mAh g{sup −1}. • MoO{sub 3}/PEO nanobelts composite material demonstrates good cycling stability as cathode. - Abstract: α-MoO{sub 3} and PEO surfactant MoO{sub 3} nanobelts were synthesized by a solvothermal method. The morphology and nanostructure of samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Bare α-MoO{sub 3} and 12.5 wt% PEO surfactant MoO{sub 3} nanobelts have an initial specific capacities of 279 and 352 mAh g{sup −1}, respectively, at constant current density 30 mA g{sup −1} with potential range of 1.5–4.0 V vs. Li/Li{sup +}. While MoO{sub 3} is modified by the intercalation of PEO, it is effectively shielded against electrostatic interaction between the MoO{sub 3} interlayer and Li{sup +} ions. We reported positive material, a nanocomposite of MoO{sub 3} coated with polyethylene oxide. It presents good cycling stability due to existence of the conductive and protective polyethylene oxide coating and the nanobelt morphology of MoO{sub 3}. The polyethylene oxide acts as a conducting matrix, a binder and an active material, as well as a volume change buffer agent, which holds the MoO{sub 3} particles in place during the discharge cycles. The cyclic voltammograms of the 12.5 wt% PEO surfactant MoO{sub 3} nanobelt composite displayed better cyclic performance compared with pure MoO{sub 3} nanobelts. The specific capacity of the pure MoO{sub 3} nanobelts and 12.5 wt% PEO surfactant MoO{sub 3

  14. Ag nanoparticle mediated growth of CdS nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Sreejith, K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: ksreeju@rediffmail.com; Nuwad, J. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Thinaharan, C. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai (India); Pillai, C.G.S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    2007-06-30

    Catalytic growth of CdS have been carried out on large scale by evaporation of bulk CdS on Ag deposited Si (1 1 1) at atmospheric pressure. The as prepared CdS had wurtzite structure as evidenced by X-ray diffraction. The nanostructures were beltlike with several tens of micrometers length, several micrometers width and few nanometers to tens of nanometers thick as seen by scanning electron microscope and confirmed by TEM studies. The nanobelts were single crystalline in nature and showed reflection corresponding to (1 1 2) and (0 0 2) planes in SAED. The PL studies revealed the green band due to band gap emission and red band due to emission from the surface states. The higher intensity of the defect emission indicated the presence of considerable concentration of surface defects in the as prepared sample. The deposition of CdS could be explained on the basis of catalyst assisted vapor-liquid-solid and vapor-solid mechanism.

  15. Ag nanoparticle mediated growth of CdS nanobelts

    Science.gov (United States)

    Sreejith, K.; Nuwad, J.; Thinaharan, C.; Dey, G. K.; Pillai, C. G. S.

    2007-06-01

    Catalytic growth of CdS have been carried out on large scale by evaporation of bulk CdS on Ag deposited Si (1 1 1) at atmospheric pressure. The as prepared CdS had wurtzite structure as evidenced by X-ray diffraction. The nanostructures were beltlike with several tens of micrometers length, several micrometers width and few nanometers to tens of nanometers thick as seen by scanning electron microscope and confirmed by TEM studies. The nanobelts were single crystalline in nature and showed reflection corresponding to (1 1 2) and (0 0 2) planes in SAED. The PL studies revealed the green band due to band gap emission and red band due to emission from the surface states. The higher intensity of the defect emission indicated the presence of considerable concentration of surface defects in the as prepared sample. The deposition of CdS could be explained on the basis of catalyst assisted vapor-liquid-solid and vapor-solid mechanism.

  16. Synthesis, structure and electrochemical properties of polyaniline/MoO{sub 3} nanobelt composite for lithium battery

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Varishetty Madhu, E-mail: madhuvm123@yahoo.com [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Murakami, Kenji [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2013-02-15

    Graphical abstract: Hydrothermal method was introduced for the synthesis of MoO{sub 3} nanobelts and polyaniline (PANI)/MoO{sub 3} nanobelt composites. The structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. We can see the presence of polyaniline on the MoO{sub 3} nanobelts surface in the TEM pictures as shown in Fig. (a). The pure MoO{sub 3} nanobelts exhibit the initial specific capacity 276 mAhg{sup −1}, whereas PANI/MoO{sub 3} nanobelt composite shows little low initially 228 mAhg{sup −1} after that it has more stabilized specific capacity with increasing cycle numbers as shown in Fig. (b). The cyclic voltammograms of the PANI/MoO{sub 3} nanobelt composite show better cyclic performance compared to pure MoO{sub 3} nanobelts. The electrochemical impedance spectres were studied for both the pure and PANI/MoO{sub 3} samples at 2.0 and 3.5 potentials. The role of the PANI polymeric component of the composite material seems to be the stabilization of the specific capacity due to probable homogeneous distribution of the induced stress during cycling. Display Omitted Highlights: ► Hydrothermal synthesis of MoO{sub 3}, PANI/MoO{sub 3} nanobelts. ► Samples were characterised by XRD, FTIR, DSC, SEM, TEM, CV and impedance. ► MoO{sub 3} nanobelts cathode battery shows initial specific capacity 276 mAhg{sup −1}. ► PANI/MoO{sub 3} nanobelts show initial specific capacity 228 mAhg{sup −1} but high stability. ► PANI/MoO{sub 3} sample studies by impedance at the potentials of 2.0 and 3.5 V. -- Abstract: The MoO{sub 3} nanobelts and polyaniline (PANI)/MoO{sub 3} nanobelt composite were synthesized using hydrothermal method. The crystal structure and morphology of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared radiation (FTIR), scanning electron microscopy (SEM) and

  17. Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles.

    Science.gov (United States)

    Yang, Hongru; Tian, Jian; Bo, Yanyan; Zhou, Yanli; Wang, Xinzhen; Cui, Hongzhi

    2017-02-01

    Novel In2O3 nanoparticle/TiO2 nanobelt heterostructures with enhanced visible-light photocatalytic and photoelectrochemical (PEC) performance were successfully prepared via a facile hydrothermal method. Well-dispersed In2O3 nanoparticles with small sizes are uniformly attached on the surface of TiO2 nanobelts to form In2O3 nanoparticle/TiO2 nanobelt heterostructures. The TiO2 nanobelts as backbones restrict the aggregation of In2O3 nanoparticles, resulting in the formation of smaller In2O3 nanoparticles with more interaction sites for pollutants. The visible photocatalytic activity of as-prepared heterostructures for degradation of methyl blue (MB) is higher than those of TiO2 nanobelts and In2O3 nanoparticles alone. Moreover, the In2O3 nanoparticle/TiO2 nanobelt heterostructure shows an enhanced PEC performance under irradiation of visible light. The enhanced photocatalytic and PEC activities are mainly ascribed to the synergic effect of efficient charge separation of heterostructure, visible-light harvesting ability of In2O3, and the formation of preferential adsorption sites by the small size of In2O3 nanoparticles. Finally, based on the experimental results of Mott-Schottky, UV-vis DRS, photocurrent and open-circuit voltage response, a possible photocatalytic mechanism over the In2O3 nanoparticle/TiO2 nanobelt heterostructure is proposed.

  18. Preparation of A-type zeolite membranes on nonporous metal supports by using electrophoretic technique

    Institute of Scientific and Technical Information of China (English)

    HUANG Aisheng; LIU Jie; LI Yanshuo; LIN Yuesheng; YANG Weishen

    2004-01-01

    A-type zeolite membranes were prepared onthe nonporous metal supports by using electrophoretic tech-nique. The as-synthesized membranes were characterized byXRD and SEM. The effect of the applied potential on theformation of the A-type zeolite membrane was investigated,and the formation mechanism of zeolite membrane in theelectric field was discussed. The results showed that thenegative charged zeolite particles could migrate to the anodemetal surface homogenously and rapidly under the action ofthe applied electric field, consequently formed uniform anddense membranes in short time. The applied potential hadgreat effect on the membrane formation, and more uniformand denser zeolite membranes were prepared on the non-porous metal supports with 1 V potential.

  19. Use of quantum dots in aqueous solution to detect blood fingermarks on non-porous surfaces.

    Science.gov (United States)

    Becue, Andy; Moret, Sébastien; Champod, Christophe; Margot, Pierre

    2009-10-30

    A new and original reagent based on the use of highly fluorescent cadmium telluride (CdTe) quantum dots (QDs) in aqueous solution is proposed to detect weak fingermarks in blood on non-porous surfaces. To assess the efficiency of this approach, comparisons were performed with one of the most efficient blood reagents on non-porous surfaces, Acid Yellow 7 (AY7). To this end, four non-porous surfaces were studied, i.e. glass, transparent polypropylene, black polyethylene, and aluminium foil. To evaluate the sensitivity of both reagents, sets of depleted fingermarks were prepared, using the same finger, initially soaked with blood, which was then successively applied on the same surface without recharging it with blood or latent secretions. The successive marks were then cut in halves and the halves treated separately with each reagent. The results showed that QDs were equally efficient to AY7 on glass, polyethylene and polypropylene surfaces, and were superior to AY7 on aluminium. The use of QDs in new, sensitive and highly efficient latent and blood mark detection techniques appears highly promising. Health and safety issues related to the use of cadmium are also discussed. It is suggested that applying QDs in aqueous solution (and not as a dry dusting powder) considerably lowers the toxicity risks.

  20. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, Manuel, E-mail: malgarra67@gmail.com [Centro de Geología da Universidade do Porto, Departamento de Geociências, Ambiente e Ordenamemto do Territorio do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Beograd (Serbia); Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique [Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071Málaga (Spain); Silva, Joaquim C.G. Esteves da [Centro de Investigação em Química (CIQ-UP). Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Guerrero-González, Juan José [Policía Científica, Cuerpo Nacional de Policía, Málaga (Spain)

    2014-02-17

    Graphical abstract: -- Highlights: •Fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures. •Characterized by FTIR, XRD and fluorescence spectroscopies. •Deconvolution of the emission spectra was confirmed by using multivariate curve resolution (MCR) method. •Application for fingerprint detection and analysis on different non-porous surfaces. -- Abstract: A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH{sub 2}@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods.

  1. Ge nanobelts with high compressive strain fabricated by secondary oxidation of self-assembly SiGe rings

    DEFF Research Database (Denmark)

    Lu, Weifang; Li, Cheng; Lin, Guangyang

    2015-01-01

    Curled Ge nanobelts were fabricated by secondary oxidation of self-assembly SiGe rings, which were exfoliated from the SiGe stripes on the insulator. The Ge-rich SiGe stripes on insulator were formed by hololithography and modified Ge condensation processes of Si0.82Ge0.18 on SOI substrate. Ge na...... nanobelts, which extrudes to Ge nanobelts in radial and tangent directions during the cooling process. This technique is promising for application in high-mobility Ge nano-scale transistors...

  2. Gap states assisted MoO3 nanobelt photodetector with wide spectrum response.

    Science.gov (United States)

    Xiang, Du; Han, Cheng; Zhang, Jialin; Chen, Wei

    2014-05-08

    Molybdenum oxides have been widely investigated for their broad applications ranging from electronics to energy storage. Photodetectors based on molybdenum trioxide (MoO3), however, were seldom reported owing to their low conductivity and weak photoresponse. Herein we report a photodetector based on single MoO3 nanobelt with wide visible spectrum response by introducing substantial gap states via H2 annealing. The pristine MoO3 nanobelt possessed low electrical conductance and no photoresponse for nearly all visible lights. The H2 annealing can significantly improve the conductance of MoO3 nanobelt, and result in a good photodetector with wide visible spectrum response. Under illumination of 680 nm light, the photodetector exhibited high responsivity of ~56 A/W and external quantum efficiency of ~10200%. As corroborated by in situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy investigations, such strong wide spectrum photoresponse arises from the largely enriched gap states in the MoO3 nanobelt after H2 annealing.

  3. Polyaniline nanobelts,flower-like and rhizoid-like nanostructures by electrospinning

    Institute of Scientific and Technical Information of China (English)

    Qiao Zhen Yu; Ying Li; Mang Wang; Hong Zheng Chen

    2008-01-01

    Nanobelts,flower-like and rhizoid-like nanostructures of pure polyaniline (PANI)doped with sulfuric acid or hydrochloric acid were prepared via electrospinning by using a coagulation bath as the collector after optimizing the fabrication parameters.The morphologies of these nanostructures were characterized by scanning electron microscope (SEM).The possible formation mechanisms were discussed.

  4. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    Science.gov (United States)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  5. Novel radial vanadium pentoxide nanobelt clusters for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanping; Zhong, Wenwu [Department of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Du, Yinxiao, E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Wang, Xu [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China); Jia, Renxu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China)

    2015-06-05

    Highlights: • Radial V{sub 2}O{sub 5} nanobelt clusters were synthesized by a novel hydrothermal process. • The V{sub 2}O{sub 5} clusters are single crystallites with [0 1 0] growth direction. • Specific discharge capacity of V{sub 2}O{sub 5} is 134 mA h/g coupled with good cycle stability. - Abstract: This paper reports the synthesis, characterization and Li-ion intercalation properties of moundlily-like radial vanadium pentoxide (V{sub 2}O{sub 5}) nanobelt clusters. The V{sub 2}O{sub 5} nanobelt clusters was successfully synthesized by a novel soft template assisted hydrothermal process followed by thermal annealing. The as-prepared products were characterized by X-ray diffraction, thermogravimetric analysis, FT-IR spectrometry, scanning electron microscopy and high resolution transmission electron microscopy. The obtained V{sub 2}O{sub 5} possesses a single-crystalline structure with a preferred orientation along the [0 1 0] crystal plane. Electrochemical analysis shows that the specific discharge capacity of the V{sub 2}O{sub 5} nanobelt clusters reaches 134 mA h/g at a current density of 2 A/g coupled with good cycle stability.

  6. Synthesis and electrochemical performance of cable-like copper vanadates/polypyrrole nanobelts as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Shaoyan; Hou, Menghua; Hou, Linlin; Lu, Min

    2016-08-01

    Cable-like CuV2O6/polypyrrole (CVO/PPy) nanobelts have been synthesized via in-situ oxidative polymerization of pyrrole monomers on the surface of hydrothermally synthesized α-CuV2O6 (CVO) nanobelts. The microscope analysis revealed that the diameter of cable-like CVO/PPy nanobelts focused on 80-110 nm and the shell thickness was about 10-30 nm. The electrochemical properties of the cable-like CVO/PPy nanobelts as anode materials were systematically investigated and compared with bare α-CuV2O6 nanobelts. It was found that the electrochemical performance of the CVO/PPy nanobelts was significantly enhanced. The results suggest that the conductive PPy nanolayer coating help to preserve high capacity, maintain high electrochemical stability, and reduce charge transfer resistance during cycling performance.

  7. Engineering the Electrical Conductivity of Lamellar Silver-Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution.

    Science.gov (United States)

    Zhao, Xu; Zhang, Hantao; Yan, Yu; Cao, Jinhua; Li, Xingqi; Zhou, Shiming; Peng, Zhenmeng; Zeng, Jie

    2017-01-02

    Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag-CoSe2 nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag(+) cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag-CoSe2 nanobelts. Relative to the CoSe2 nanobelts, the as-prepared Ag-CoSe2 nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities.

  8. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries

    Science.gov (United States)

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-01

    Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  9. Controlled synthesis of layered Sn3O4 nanobelts by carbothermal reduction method and their gas sensor properties.

    Science.gov (United States)

    Suman, P H; Longo, E; Varela, J A; Orlandi, M O

    2014-09-01

    This paper reports both the controlled synthesis of Sn3O4 nanobelts by carbothermal reduction method and the gas sensor properties of these nanostructures. The synthesized material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and gas sensor measurements. The results showed that the Sn3O4 nanobelts grow in a layered way and the careful control of experimental parameters is fundamental for stabilization of the correct phase. From the gas sensor measurements using oxygen as analyte gas, it was observed that the Sn3O4 nanobelts exhibit n-type behavior and both the sensitivity and the response time are dependent on the oxygen concentration. A model based on molecules adsorption was proposed to illustrate the mechanism of gas detection of these nanostructures. In summary, these results indicate that Sn3O4 nanobelts synthesized by carbothermal reduction method are promising to be applied as gas sensors.

  10. Facile Preparation and Visible-light Photocatalysis Enhancement of N-Doped β-TiO2 Nanobelts

    Institute of Scientific and Technical Information of China (English)

    JI Tian-hao; LIU Yang; DONG Li-ya; HAN Peng; SUN Jia-yue

    2012-01-01

    A facile preparation of nitrogen-doped β-TiO2(N-doped β-TiO2) nanobelts and their visible-light photocatalytic activity were reported.The preparation of N-doped β-TiO2 nanobelts consisted of cation-exchange between layered sodium titanate nanobelts and NH4+ in aqueous solution at room temperature and subsequent calcination in air.Such a calcination treatment is beneficial to the formation of monoclinic N-doped β-TiO2 nanobelts.Various measurement results indicate that not only were the nitrogen atoms doped into the lattice ofβ-TiO2 nanobelts resulting in a strong visible-light absorption,but also a large number of defects were caused by them in the lattice,increasing the stability of β-TiO2.The photocatalysis enhancement of N-doped β-TiO2 nanobelts for the photodegradation of Rhodamine B was demonstrated.

  11. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    Science.gov (United States)

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial.

  12. Optical Properties of CdS Nanobelts and Nanosaws Synthesized by Thermal Evaporation Method

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei Peng; Bing-suo Zou

    2012-01-01

    By a simple one-step H2-assisted thermal evaporation method,high quality CdS nanostructures have been successfully fabricated on Au coated Si substrates in large scale.The as-synthesized CdS nanostructures consisted of sword-like nanobelts and toothed nanosaws with a single-crystal hexagonal wurtzite structure.The deposition temperature played an important role in determining the size and morphology of the CdS nanostructures.A combination of vapor-liquid-solid and vapor-solid growth mechanisms were proposed to interpret the formation of CdS nanostructures.Photoluminescence measurement indicated that the nanobelts and nanosaws have a prominent green emission at about 512 nm,which is the band-to-band emission of CdS.The waveguide characteristics of both types of CdS nanostructures were observed and discussed.

  13. Solid-state semiconductor optical cryocooler based on CdS nanobelts.

    Science.gov (United States)

    Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua

    2014-08-13

    We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.

  14. Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures

    Science.gov (United States)

    Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G.; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-Ju; Jang, Won Ick; Yu, Han Young

    2012-02-01

    Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm-3 and 40-80 m2 g-1, respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.

  15. A novel polytype - the stacking fault based γ-MoO3 nanobelts.

    Science.gov (United States)

    Sławiński, Wojciech A; Fjellvåg, Øystein S; Ruud, Amund; Fjellvåg, Helmer

    2016-04-01

    γ-MoO3 nanobelts prepared by hydrothermal synthesis were studied by synchrotron radiation powder diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. Their nm dimensions, in particular in two crystallographic directions, have a profound influence on electrochemical properties during cycling as the cathode material in lithium-ion batteries (LIBs). The diffraction analysis shows clearly that the crystal structure for the γ-MoO3 nanobelts differs significantly from that of bulk α-MoO3. The observed powder diffraction pattern, with asymmetric peaks, extremely broad peaks, as well as additional or absent diffraction peaks, is fully described by means of a model based on stacking disorder of MoO3 slabs.

  16. Raman selection rule of surface optical phonon in ZnS nanobelts

    KAUST Repository

    Ho, Chih-Hsiang

    2016-02-18

    We report Raman scattering results of high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition with strong surface optical (SO) phonon mode at 329 cm-1. The existence of SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectrum was performed on a single ZnS NB and for the first time SO phonon band has been detected on a single nanobelt. Different selection rules of SO phonon modeshown from their corresponding E1/A1 phonon modeswere attributed to the anisotropic translational symmetry breaking on the NB surface.

  17. Synthesis of high-quality crystalline {alpha}-MoO{sub 3} nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofei; Tang, Hua; Song, Haojie; Cao, Kesheng [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-04-15

    High-quality crystalline MoO{sub 3} nanobelts were successfully fabricated with a facile hydrothermal route by using common and inexpensive NaCl as a capping agent. The products are thoroughly characterized by the combination of different techniques. The results indicate that as-prepared MoO{sub 3} nanobelts have an orthorhombic crystal structure ({alpha}-MoO{sub 3}) with growth preferential in the [001] direction, the size of the obtained MoO{sub 3} nanobelts ranges from 200 nm to 300 nm in width and micrometers in length. The effects of the amount of NaCl on the morphology and size of the resultant MoO{sub 3} were also investigated, it is clearly shown that the presence of appropriate amount of NaCl plays a crucial role in controlling the size and morphology of the obtained MoO{sub 3}. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges

    Institute of Scientific and Technical Information of China (English)

    Guanchen Xu[1,2; Xinsheng Wang[1; Yupeng Sun[1; Xiao Chen[2; Jingying Zheng[1; Lifei Sun[1; Liying Jiao[1; Jinghong Li[1

    2015-01-01

    Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis.

  19. Hydrogen gas sensors from polysilicon nanobelt devices selectively modified with sensing materials

    Science.gov (United States)

    Tran, Nhan Ai; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2016-12-01

    Double-junction n+/n-/n+ polysilicon nanobelts featuring selectively deposited sensing materials have been investigated for application as H2 gas sensors. The selective modification of the devices was performed through a combination of localized ablation of a resist and lift-off of a previous catalyst material deposited through e-beam evaporation. Four nanobelt devices, differentiated by their doping concentrations at the n- region (from 2.5 × 1013 to 2.5 × 1014 cm-2), were analyzed in terms of the responses to H2 and their self-heating effects. A low doping concentration improved the response at room temperature, owing to a longer Debye length. The variation in the H2-induced surface potential associated with temperature, accounting for degradation in the response of the nanobelts with Joule heating bias, was analyzed in terms of the I-V characteristics of the double-junction device. Among various catalysts (Pt, Pd, Pt/Pd) evaluated for their H2 sensing characteristics, an ultrathin film of Pt/Pd was most favorable.

  20. Oriented free-standing ammonium vanadium oxide nanobelt membranes: highly selective absorbent materials.

    Science.gov (United States)

    Zou, Rujia; Zhang, Zhenyu; Yu, Li; Tian, Qiwei; Wu, Jianghong; Sun, Yangang; Chen, Zhigang; Hu, Junqing

    2010-12-27

    Highly selective, absorbent, free-standing, paper-like membranes made of ammonium vanadium oxide (NH(4)V(4)O(14)) nanobelts have been engineered by taking advantage of the nanoscaled self-assembly of architectures that display a mesh structure with an average periodic pore size of about 5 to 10 nm. The NH(4)V(4)O(14) nanobelts are synthesized by using a simple hydrothermal process, and exhibit the same orientation and assemble into bundles, each about 40 to 80 nm in width, 3 to 5 nm in thickness, and up to several millimeters in length. Importantly, the as-obtained NH(4)V(4)O(14) nanobelt membranes can highly selectively absorb a variety of organic solvents, covering both polar and non-polar solvents, for example, the absorbent capacity of glycol is 28 times as high as the initial weight of the membrane, and it can even separate organic solvents with similar polarities and absorb solid contaminants in organic solvents. These highly selective, absorbent membrane materials can be an ideal candidate for the separation and removal of pollution in industrial and environmental applications.

  1. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    Science.gov (United States)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  2. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.

    Science.gov (United States)

    Baquedano, Estela; Martinez, Ramses V; Llorens, José M; Postigo, Pablo A

    2017-05-11

    Soft lithography allows for the simple and low-cost fabrication of nanopatterns with different shapes and sizes over large areas. However, the resolution and the aspect ratio of the nanostructures fabricated by soft lithography are limited by the depth and the physical properties of the stamp. In this work, silicon nanobelts and nanostructures were achieved by combining soft nanolithography patterning with optimized reactive ion etching (RIE) in silicon. Using polymethylmethacrylate (PMMA) nanopatterned layers with thicknesses ranging between 14 and 50 nm, we obtained silicon nanobelts in areas of square centimeters with aspect ratios up to ~1.6 and linewidths of 225 nm. The soft lithographic process was assisted by a thin film of SiOx (less than 15 nm) used as a hard mask and RIE. This simple patterning method was also used to fabricate 2D nanostructures (nanopillars) with aspect ratios of ~2.7 and diameters of ~200 nm. We demonstrate that large areas patterned with silicon nanobelts exhibit a high reflectivity peak in the ultraviolet C (UVC) spectral region (280 nm) where some aminoacids and peptides have a strong absorption. We also demonstrated how to tailor the aspect ratio and the wettability of these photonic surfaces (contact angles ranging from 8.1 to 96.2°) by changing the RIE power applied during the fabrication process.

  3. Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts

    Directory of Open Access Journals (Sweden)

    Yuemei Wu

    2015-06-01

    Full Text Available Single crystal SnO2 nanobelts (SnO2 NBs and La-SnO2 nanobelts (La-SnO2 NBs were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed.

  4. Synthesis and Gas Sensing Properties of Single La-Doped SnO₂ Nanobelts.

    Science.gov (United States)

    Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun

    2015-06-16

    Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed.

  5. One-pot synthesis of ZnO nanowires and belts through orientation attachment mechanism

    Science.gov (United States)

    Hossain, Mohammad Kamal

    2017-01-01

    Zinc oxide (ZnO) is one of the promising materials for optoelectronics and advanced electronics-based device fabrication. Nanostructured features include further flavor to the applications as well due to inherent and unprecedented properties. With this view, a sol-gel route for the synthesis of nanostructured ZnO, such as nanoparticles, nanowires and nanobelts subsequently obtained in one-pot has been reported. The process includes synthesis of monodispersed nanoparticles that can find potential applications as gas sensing layers and transparent conducting layers. Hexagonal wurtzite crystal structure with cell constants, a = 3.2427 Ǻ and c = 5.1948 Ǻ was confirmed by X-ray diffraction. Strong preferential growth along {101} plane indicated the growth of ZnO crystallites along c-axis. Vibrational band for Zn-O stretching and deformation modes was confirmed by Fourier transform infrared absorption spectroscopy. A reasonably well-coverage of ZnO nanoparticles, ca. 1 × 107 nanoparticles/cm2 along with size distribution of (13.5 ± 9.0) nm diameter, was obtained by topographic observation of scanning electron microscopy. A series of scanning electron micrographs revealed that as-synthesized nanoparticles were further processed to obtain nanometric wires and belts under controlled conditions. The nanowires were formed from anisotropic agglomeration of nanometric particles, and the belts were formed by agglomeration of these nanometric wires into bundles. A close observation indicated that ZnO nanowires of diameter 40-50 nm were consisted of one to three constituent colloids. Control of these selective agglomeration processes is a key challenge for application of nanowires and belts into useful devices.

  6. An enzyme free Vitamin C augmented sensing with different ZnO morphologies on SnO2/F transparent glass electrode: A comparative study.

    Science.gov (United States)

    Singhal, Chaitali; Malhotra, Nitesh; Pundir, C S; Deepshikha; Narang, Jagriti

    2016-12-01

    Three types of Zinc oxide (ZnO) nanostructures viz. ZnO nanocrystals (ZnONCs), ZnO nanoparticles (ZnONPs) and ZnO nanobelts (ZnONBs) were synthesized and characterized by UV-Vis, FTIR and SEM. A comparison of signal amplification by these ZnO nanostructures as judged by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) revealed that ZnONCs are better sensing interface for electrochemical detection. When these ZnO nanostructure were compared electrochemically for sensing Vitamin C, ZnONC's sensor outperformed the ZnONP and ZnONB sensor and previously reported sensors. The ZnONCs/MB/FTO electrode showed a wide linear sensing range (0.001μM to 4000μM), low detection limit (0.0001μM), a small response time (5s) and a storage stability of 6months. To the best of our knowledge, this elevated sensitivity and remarkable stability for electrochemical Vitamin C detection using ZnONC's have not been reported so far.

  7. Preparation and Characterization of Non-porous Superparamagnetic Microspheres with Epoxy Groups by Dispersion Polymerization

    Institute of Scientific and Technical Information of China (English)

    马志亚; 官月平; 刘先桥; 刘会洲

    2005-01-01

    Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2’-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of-1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu.g-1. There was abundance of epoxy groups with density of 0.028 mmol·g-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology.

  8. Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions.

    Science.gov (United States)

    Lopez, Gerardo U; Gerba, Charles P; Tamimi, Akrum H; Kitajima, Masaaki; Maxwell, Sheri L; Rose, Joan B

    2013-09-01

    Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm(2) of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (<6.8%) under low relative humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms.

  9. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities

    NARCIS (Netherlands)

    Mujawar, L.H.; Norde, W.; Amerongen, van A.

    2013-01-01

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost

  10. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities

    NARCIS (Netherlands)

    Mujawar, L.H.; Norde, W.; Amerongen, van A.

    2013-01-01

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost

  11. Composite sampling of a Bacillus anthracis surrogate with cellulose sponge surface samplers from a nonporous surface.

    Directory of Open Access Journals (Sweden)

    Jenia A M Tufts

    Full Text Available A series of experiments was conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a nonporous stainless steel surface. Two composite-based collection approaches were evaluated over a surface area of 3716 cm2 (four separate 929 cm2 areas, larger than the 645 cm2 prescribed by the standard Centers for Disease Control (CDC and Prevention cellulose sponge sampling protocol for use on nonporous surfaces. The CDC method was also compared to a modified protocol where only one surface of the sponge sampler was used for each of the four areas composited. Differences in collection efficiency compared to positive controls and the potential for contaminant transfer for each protocol were assessed. The impact of the loss of wetting buffer from the sponge sampler onto additional surface areas sampled was evaluated. Statistical tests of the results using ANOVA indicate that the collection of composite samples using the modified sampling protocol is comparable to the collection of composite samples using the standard CDC protocol (p  =  0.261. Most of the surface-bound spores are collected on the first sampling pass, suggesting that multiple passes with the sponge sampler over the same surface may be unnecessary. The effect of moisture loss from the sponge sampler on collection efficiency was not significant (p  =  0.720 for both methods. Contaminant transfer occurs with both sampling protocols, but the magnitude of transfer is significantly greater when using the standard protocol than when the modified protocol is used (p<0.001. The results of this study suggest that composite surface sampling, by either method presented here, could successfully be used to increase the surface area sampled per sponge sampler, resulting in reduced sampling times in the field and decreased laboratory processing cost and turn-around times.

  12. Facile synthesis and characterization of FeP x V1 - x O4 nanobelts with enhanced photocatalytic performance

    Science.gov (United States)

    Liu, Zhendong; Lu, Qifang; Guo, Enyan; Wei, Mingzhi; Wang, Qinyu; Yao, Linbing

    2017-09-01

    With doping a bit of phosphorus (P) into the lattice of FeVO4 nanobelts, FeP x V1 - x O4 solid solution nanobelts have been successfully synthesized for the first time via a simple electrospinning process. The as-prepared products were characterized by thermogravimetric and differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis absorbance spectroscopy, and electrochemical impedance spectra (EIS). The results demonstrated that the lattice constants of FeVO4 were changed and transport of charge carriers was improved after doping P element. Furthermore, the FeP0.005V0.995O4 nanobelts presented an admirable one-dimensional morphology and the excellent photocatalytic properties for the degradation of methylene blue (MB) solution under the visible light irradiation. [Figure not available: see fulltext.

  13. Synthesis of Cu0.95V2O5/polypyrrole core/sheath nanobelts and its electrochemical property

    Science.gov (United States)

    Zhang, Shaoyan; Han, Weirong; Chang, Yongfang; Sun, Yan; Li, Chunsheng

    2017-01-01

    A novel heterogeneous Cu0.95V2O5/polypyrrole core/sheath nanobelts have been synthesized via in-situ oxidative polymerization of pyrrole monomers on the surface of hydrothermally synthesized Cu0.95V2O5 nanobelts. The composite are several micrometers in length and 100-200 nm in width. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated and compared with bare Cu0.95V2O5 nanobelts. It was found the electrochemical performance of Cu0.95V2O5/PPy was significantly enhanced. The remarkable electrochemical performance is mainly attributed to the heterogeneous core/sheath structure, the conductive PPy nanolayer coating help to preserve high capacity, maintain high electrochemical stability, and reduce charge transfer resistance during cycling performance.

  14. Effects of an oxygen environment on the electrical properties of a single CdS nanobelt device

    Energy Technology Data Exchange (ETDEWEB)

    An Jin; Xue Kun; Xie Weiguang; Xu Jianbin [Department of Electronic Engineering and Material Science and Technology Research Center, Chinese University of Hong Kong, Shatin, NT, Hong Kong (Hong Kong); Li Quan, E-mail: kxue@ee.cuhk.edu.hk, E-mail: jbxu@ee.cuhk.edu.hk [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (Hong Kong)

    2011-04-01

    The influence of the oxygen environment on the transport behavior of a cadmium sulfide (CdS) single crystal nanobelt is investigated by device performance under various light illuminations and oxygen partial pressures. The CdS nanobelt shows superior photo response in the visible light region and the conductance is sensitive to the oxygen environment. The results show that when exposed to oxygen, the surface chemisorbed oxygen species and their interactions with surface defects will significantly affect the conductivity by decreasing the carrier concentrations and reducing the mobility. The effect is explained by surface band bending which is observed by surface potential measurement. Furthermore, we show that the height of the nanobelt is one of the critical factors that greatly affects the conductance due to the intrinsic belt-like geometry.

  15. Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst.

    Science.gov (United States)

    Tian, Jian; Leng, Yanhua; Cui, Hongzhi; Liu, Hong

    2015-12-15

    TiO2 nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO2 (H-TiO2) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti(3+) ions and oxygen vacancies in TiO2 nanobelts created by hydrogenation. Ti(3+) ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron-hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Catalyst-nanostructure interaction in the growth of 1-D ZnO nanostructures.

    Science.gov (United States)

    Borchers, C; Müller, S; Stichtenoth, D; Schwen, D; Ronning, C

    2006-02-02

    Vapor-liquid-solid is a well-established process in catalyst guided growth of 1-D nanostructures, i.e., nanobelts and nanowires. The catalyst particle is generally believed to be in the liquid state during growth, and is the site for impinging molecules. The crystalline structure of the catalyst may not have any influence on the structure of the grown nanostructures. In this work, using Au guided growth of ZnO, we show that the interfaces between the catalyst droplet and the nanostructure grow in well-defined mutual crystallographic relationships. The nanostructure defines the crystallographic orientation of the solidifying Au droplet. Possible alloy, intermetallic, or eutectic phase formation during catalysis are elucidated with the help of a proposed ternary Au-Zn-O phase diagram.

  17. Biexciton emission and crystalline quality of ZnO nano-objects

    Energy Technology Data Exchange (ETDEWEB)

    Corfdir, Pierre; Abid, Mohamed; Papa, Elisa; Ansermet, Jean-Philippe; Ganiere, Jean-Daniel; Deveaud-Pledran, BenoIt [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Mouti, Anas; Stadelmann, Pierre A, E-mail: pierre.corfdir@epfl.ch [Centre Interdisciplinaire de Microscopie Electronique, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    The design of cost-effective standards for the quality of nano-objects is currently a key issue toward their massive use for optoelectronic applications. The observation by photoluminescence of narrow excitonic and biexcitonic emission lines in semiconductor nanowires is usually accepted as evidence for high structural quality. Here, we perform time-resolved cathodoluminescence experiments on isolated ZnO nanobelts grown by chemical vapor deposition. We observe narrow emission lines at low temperature, together with a clear biexciton line. Still, drastic alterations in both the CL intensity and lifetime are observed locally along the nano-object. We attribute these to non-radiative recombinations at edge dislocations, closing basal plane stacking faults, inhomogeneously distributed along the NB length. This leads us to the conclusion that the observation of narrow excitonic and biexcitonic emission lines is far from sufficient to grade the quality of a nano-object.

  18. Nanopaper based on Ag/TiO{sub 2} nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijia; Du, Guojun; Hu, Peiguang [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Yin, Yongquan [The School of Environmental Science and Engineering, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Li, Jianhua [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Yu, Jiahong [The School of Environmental Science and Engineering, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Guancong [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Jinxia [School of Light Chemistry and Environment Engineering, Shandong Polytechnic University, Daxue Road, Western University Science Park, Jinan 250353 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Wang, Jiyang, E-mail: jywang@icm.sdu.edu.cn [State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100 (China); Zhang, Hua [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The photocatalytic activity of TiO{sub 2} nanobelts is evidently enhanced by the heterostructures between Ag nanoparticles and TiO{sub 2} nanobelts. Black-Right-Pointing-Pointer The nanopapers based on Ag/TiO{sub 2} nanobelt heterostructures are fabricated via a modified paper-making process. Black-Right-Pointing-Pointer A continuous flow photocatalytic reactor is designed. Black-Right-Pointing-Pointer The TiO{sub 2} nanopapers in the microreactor show an excellent continuous photocatalytic performance for liquid and gas phase pollutants. Black-Right-Pointing-Pointer The Ag/TiO{sub 2} nanobelts nanopaper shows a good antibacterial effect. - Abstract: The Ag/TiO{sub 2} nanobelt heterostructures were prepared by the acid-assisted hydrothermal method followed by an in situ photo-reduction process. The photocatalytic activity of TiO{sub 2} nanobelts was evidently enhanced by the heterostructures between Ag nanoparticles and TiO{sub 2} nanobelts. The nanopapers based on Ag/TiO{sub 2} nanobelt heterostructures were fabricated via a modified paper-making process. A novel continuous photocatalytic reactor was designed, and MO removal rate of Ag/C-TiO{sub 2} nanopaper was achieved to 100% in 40 min for single layer and only in 6 min for three layers. The self-supported TiO{sub 2} nanopapers with porous structures also showed an excellent continuous photocatalytic performance for toluene gas under UV light irradiation, and the corresponding degradation rate was 69.5% in 184 min. Moreover, the Ag/TiO{sub 2} nanobelts nanopaper showed a good antibacterial effect. The multifunctional TiO{sub 2} nanopapers modified by the heterostuctures could have potential applications in the environmental and biomaterial fields.

  19. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.

    Science.gov (United States)

    Pan, Anlian; Liu, Ruibin; Sun, Minghua; Ning, Cun-Zheng

    2009-07-15

    We used an improved cothermal evaporation route for the first time to achieve quaternary semiconductor nanostructured alloys, using an example of Zn(x)Cd(1-x)S(y)Se(1-y) nanobelts. The PL (bandgap) of these as-grown nanostructured alloys can be continuously tunable across the entire visible spectrum through experimentally controlling their compositions. Such widely controlled alloy nanostructures via composition/light emission provide a new material platform for applications in wavelength-tunable lasers, multicolor detectors, full-spectrum solar cells, LEDs, and color displays.

  20. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  1. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO{sub 2} nanobelt

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuanghui, E-mail: lishuanghui808@163.com [Key Laboratory of Yunnan Higher Education Institutes for Optoelectric Information & Technology, Kunming 650500 (China); Key Laboratory of Photoelectric Materials & Device, Kunming 650500 (China); Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); Liu, Yingkai, E-mail: liuyingkai99@163.com [Key Laboratory of Yunnan Higher Education Institutes for Optoelectric Information & Technology, Kunming 650500 (China); Key Laboratory of Photoelectric Materials & Device, Kunming 650500 (China); Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); Wu, Yuemei, E-mail: wuyuemei893@163.com [Key Laboratory of Yunnan Higher Education Institutes for Optoelectric Information & Technology, Kunming 650500 (China); Key Laboratory of Photoelectric Materials & Device, Kunming 650500 (China); Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); Chen, Weiwu, E-mail: chenweiwu55@163.com [Key Laboratory of Yunnan Higher Education Institutes for Optoelectric Information & Technology, Kunming 650500 (China); Key Laboratory of Photoelectric Materials & Device, Kunming 650500 (China); Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); Qin, Zhaojun; Gong, Nailiang, E-mail: qinzhaojun031@163.com [Key Laboratory of Yunnan Higher Education Institutes for Optoelectric Information & Technology, Kunming 650500 (China); Key Laboratory of Photoelectric Materials & Device, Kunming 650500 (China); Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); Yu, Dapeng, E-mail: gongnailiang@163.com [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500 (China); State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2016-05-15

    SnO{sub 2} nanobelts (SnO{sub 2} NBs) and Er{sup 3+}-doped SnO{sub 2} nanobelts (Er–SnO{sub 2} NBs) were synthesized by thermal evaporation. The obtained samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), and X-ray photoelectron spectrometer (XPS). It is found that Er–SnO{sub 2} NBs have a good morphology with smooth surface and their thickness are about 30 nm, widths between 200 nm and 600 nm, and lengths 30–80 mm. The nanobelts with good morphology were taken to develop sensors based on a single Er–SnO{sub 2} NB/SnO{sub 2} NB for studying sensitive properties. The results reveal that the response of a single Er–SnO{sub 2} nanobelt device is 9 to the formaldehyde gas with a shorter response (recovery time) of 17 (25) s.

  2. Hydrogenated TiO{sub 2} nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Jian [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Leng, Yanhua [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Cui, Hongzhi, E-mail: cuihongzhi1965@163.com [School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Liu, Hong, E-mail: hongliu@sdu.edu.cn [State key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-12-15

    Highlights: • A facile synthesis of hydrogenated TiO{sub 2} nanobelts is reported. • Utilizing UV and visible light in photocatalytic degradation and H{sub 2} production. • The improved photocatalytic property is owe to Ti{sup 3+} ions and oxygen vacancies. - Abstract: TiO{sub 2} nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO{sub 2} (H-TiO{sub 2}) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti{sup 3+} ions and oxygen vacancies in TiO{sub 2} nanobelts created by hydrogenation. Ti{sup 3+} ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron–hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

  3. Diffusion and Clustering of Carbon Dioxide on non-porous Amorphous Solid Water

    CERN Document Server

    He, Jiao; Vidali, Gianfranco

    2016-01-01

    Observations by ISO and Spitzer towards young stellar objects (YSOs) showed that CO$_2$ segregates in the icy mantles covering dust grains. Thermal processing of ice mixture was proposed as responsible for the segregation. Although several laboratory studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO$_2$ along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption (TPD) and Reflection Absorption InfraRed Spectroscopy (RAIRS) to study how CO$_2$ molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO$_2$ diffuses significantly on a np-ASW surface above 65~K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO$_2$ on np-ASW is 2150$\\pm$50 K, assuming a diffusion pre-exponential factor of 10$^{12}$ s$^{-1}$. This energy should also apply to the diffusion of CO$_2$ on wall of pores...

  4. REVIEW ON POROUS AND NON-POROUS FLAT PLATE AIR COLLECTOR WITH MIRROR ENCLOSURE

    Directory of Open Access Journals (Sweden)

    M. PRADHAPRAJ,

    2010-09-01

    Full Text Available In solar air heater, flat plat collectors are the best heat transferring devices. But the effectiveness of these collectorsis very low because of lack of technology. Solar assisted heated air is successfully used for drying applications and space heating under controlled conditions. From the solar flat plate air heater the hot air is transferred to a conventional dryer or to the combined heater and drying chamber directly. Hence, solar assisted air heaters arecheaper and reliable. The important factors affecting these systems are the solar radiation, mechanical loading, temperature and leakage. The air heater efficiency depends on the design of the system as well as the construction materials and the assembly. The solar air heating systems has acceptable life span of 15 to 20 years. The addition ofside mirror enclosures is to increase the amount of solar radiation absorption at the collector plate so that the collector increases the yield and operate in a higher temperature range. Therefore with the addition of side mirrors one can able to maximize the output of fixed flat plate collectors. A flat plate air collector will be more efficient if it is made up of porous medium when comparing it with the non porous collectors according to the study. In this paper, the performances of porous and non-porous absorber plates are discussed. Also the possible methods of finding out air leakages and the methodology adopted for the performance and efficiency calculations are also discussed.

  5. The biocompatibility of porous vs non-porous bone cements: a new methodological approach

    Directory of Open Access Journals (Sweden)

    C. Dall'Oca

    2014-06-01

    Full Text Available Composite cements have been shown to be biocompatible, bioactive, with good mechanical properties and capability to bind to the bone. Despite these interesting characteristic, in vivo studies on animal models are still incomplete and ultrastructural data are lacking. The acquisition of new ultrastructural data is hampered by uncertainties in the methods of preparation of histological samples due to the use of resins that melt methacrylate present in bone cement composition. A new porous acrylic cement composed of polymethylmetacrylate (PMMA and β-tricalciumphosphate (β-TCP was developed and tested on an animal model. The cement was implanted in femurs of 8 New Zealand White rabbits, which were observed for 8 weeks before their sacrifice. Histological samples were prepared with an infiltration process of LR white resin and then the specimens were studied by X-rays, histology and scanning electron microscopy (SEM. As a control, an acrylic standard cement, commonly used in clinical procedures, was chosen. Radiographic ultrastructural and histological exams have allowed finding an excellent biocompatibility of the new porous cement. The high degree of osteointegration was demonstrated by growth of neo-created bone tissue inside the cement sample. Local or systemic toxicity signs were not detected. The present work shows that the proposed procedure for the evaluation of biocompatibility, based on the use of LR white resin allows to make a thorough and objective assessment of the biocompatibility of porous and non-porous bone cements.

  6. Synthesis of nonstoichiometric M-type barium ferrite nanobelt by spark plasma sintering method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wenyu; ZHANG Qingjie; TANG Xinfeng; CHENG Haibin

    2005-01-01

    This study investigated the feasibility of ultrafast crystallization of M-type barium ferrite when the coprecipitation precursors in stoichiometric proportions as BaFe12O19, Fe(OH)3 and BaCO3 nanoparticles, had been heated by spark plasma sintering (SPS) process. The results show that SPS method may realize the ultrafast crystallization of M-type barium ferrite, absolutely prevent the crystallization of intermediate phase α-Fe2O3, and significantly decrease the crystallization temperature of M-type barium ferrite. The sintered samples obtained at 800℃ by sintering the precursors for 10 minutes are a kind of multiphase ferrites composed of major phase M-type barium ferrite and trace amount of BaFe0.24Fe0.76O2.88. It is discovered that M-type barium ferrites in the holes of the sintered samples are in nanobelt microstructure about 100-300 nm in width and several micrometers in length. These M-type barium ferrite nanobelts are non-stoichiometric and may be expressed as BaFe12+Xo19+1.5x (-4.77≤x≤6.50). Their composistions suggest completely random Fe-rich or Ba-rich domains.

  7. A Single Nanobelt Transistor for Gas Identification: Using a Gas-Dielectric Strategy.

    Science.gov (United States)

    Cai, Bin; Song, Zhiqi; Tong, Yanhong; Tang, Qingxin; Shaymurat, Talgar; Liu, Yichun

    2016-06-21

    Despite tremendous potential and urgent demand in high-response low-cost gas identification, the development of gas identification based on a metal oxide semiconductor nanowire/nanobelt remains limited by fabrication complexity and redundant signals. Researchers have shown a multisensor-array strategy with "one key to one lock" configuration. Here, we describe a new strategy to create high-response room-temperature gas identification by employing gas as dielectric. This enables gas discrimination down to the part per billion (ppb) level only based on one pristine single nanobelt transistor, with the excellent average Mahalanobis distance (MD) as high as 35 at the linear discriminant analysis (LDA) space. The single device realizes the selective recognition function of electronic nose. The effect of the gas dielectric on the response of the multiple field-effect parameters is discussed by the comparative investigation of gas and solid-dielectric devices and the studies on trap density changes in the conductive channel. The current work opens up exciting opportunities for room-temperature gas recognition based on the pristine single device.

  8. A Single Nanobelt Transistor for Gas Identification: Using a Gas-Dielectric Strategy

    Directory of Open Access Journals (Sweden)

    Bin Cai

    2016-06-01

    Full Text Available Despite tremendous potential and urgent demand in high-response low-cost gas identification, the development of gas identification based on a metal oxide semiconductor nanowire/nanobelt remains limited by fabrication complexity and redundant signals. Researchers have shown a multisensor-array strategy with “one key to one lock” configuration. Here, we describe a new strategy to create high-response room-temperature gas identification by employing gas as dielectric. This enables gas discrimination down to the part per billion (ppb level only based on one pristine single nanobelt transistor, with the excellent average Mahalanobis distance (MD as high as 35 at the linear discriminant analysis (LDA space. The single device realizes the selective recognition function of electronic nose. The effect of the gas dielectric on the response of the multiple field-effect parameters is discussed by the comparative investigation of gas and solid-dielectric devices and the studies on trap density changes in the conductive channel. The current work opens up exciting opportunities for room-temperature gas recognition based on the pristine single device.

  9. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Science.gov (United States)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO2 segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO2 along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO2 molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO2 diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO2 on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 1012 s‑1. This energy should also apply to the diffusion of CO2 on the wall of pores. The binding energy of CO2 from CO2 clusters and CO2 from H2O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO2–CO2 interaction is stronger than CO2–H2O interaction, in agreement with the experimental finding that CO2 does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H2O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO2 on the icy mantles of dust grains.

  10. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials

    Science.gov (United States)

    Dhanabalan, Sathish Chander; Ponraj, Joice Sophia; Zhang, Han; Bao, Qiaoliang

    2016-03-01

    Recent research on photodetectors has been mainly focused on nanostructured materials that form the building blocks of device fabrication. The selection of a suitable material with well-defined properties forms the key issue for the fabrication of photodetectors that cover different ranges of the electromagnetic spectrum. In this review, the latest progress in light detection using nanobelts, nanoribbons, nanosheets and the emerging two-dimensional (2D) materials is reviewed. Particular emphasis is placed on the detection of light by the hybrid structures of the mentioned nanostructured materials in order to enhance the efficiency of the light-matter interaction. The booming research area of black phosphorus based photo-detection is also reviewed. This review provides an overview of basic concepts and new directions towards photodetectors, and highlights potential for the future development of high performance broadband photodetectors.

  11. Magnetic-field and temperature dependence of the energy gap in InN nanobelt

    Directory of Open Access Journals (Sweden)

    K. Aravind

    2012-03-01

    Full Text Available We present tunneling measurements on an InN nanobelt which shows signatures of superconductivity. Superconducting transition takes place at temperature of 1.3K and the critical magnetic field is measured to be about 5.5kGs. The energy gap extrapolated to absolute temperature is about 110μeV. As the magnetic field is decreased to cross the critical magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about 400%. This is attributed to the suppression of quasiparticle subgap tunneling in the presence of superconductivity. The measured magnetic-field and temperature dependence of the superconducting gap agree well with the reported dependences for conventional metallic superconductors.

  12. Nature of AX centers in antimony-doped cadmium telluride nanobelts.

    Science.gov (United States)

    Huang, Liubing; Lin, Chien-Chih; Riediger, Max; Röder, Robert; Tse, Pok Lam; Ronning, Carsten; Lu, Jia Grace

    2015-02-11

    Single crystalline p-type CdTe:Sb nanobelts were fabricated using an Au-catalyzed chemical vapor deposition method. Low carrier concentration and low mobility even at high Sb incorporation manifest compensation in the system. From cross examination of temperature-dependent charge transport and photoluminescence measurements, two major acceptor levels induced by Sb doping are determined: a shallow level attributed to substitutional Sb dopants without lattice relaxation and an associated deeper level resulted from large lattice relaxation-AX centers. Persistent photoconductivity and hysteresis photoconductance under the thermal cycle elucidate the nature of AX centers. This comprehensive investigation of the impurity levels in the material system is essential for the design and development of nanoelectronic devices based on the CdTe nanostructures.

  13. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode

    Science.gov (United States)

    Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra

    2016-09-01

    An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.

  14. Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities.

    Science.gov (United States)

    Mujawar, Liyakat Hamid; Norde, Willem; van Amerongen, Aart

    2013-01-21

    Non-contact inkjet printing technology is one of the most promising tools for producing microarrays. The quality of the microarray depends on the type of the substrate used for printing biomolecules. Various porous and non-porous substrates have been used in the past, but due to low production cost and easy availability, non-porous substrates like glass and plastic are preferred over porous substrates. On these non-porous substrates, obtaining spot uniformity and a high signal to noise ratio is a big challenge. In our research work, we have modified pristine glass slides using various silanes to produce a range of hydrophobic glass substrates. The hydrophobicities of the slides expressed in the contact angle (θ) of a sessile drop of water were 49°, 61°, 75°, 88° and 103°. Using a non-contact inkjet printer, microarrays of biotinylated biomolecules (BSA and IgG) were produced on these modified glass substrates, pristine (untreated) glass and also on HTA polystyrene slides. The uniformity of the spots, reflecting the distribution of the biomolecules in the spots, was analyzed and compared using confocal laser scanning microscopy (CLSM). The quality of the spots was superior on the glass slide with a contact angle of ∼75°. We also investigated the influence of the hydrophobicity of the substrate on a two-step, real diagnostic antibody assay. This nucleic acid microarray immunoassay (NAMIA) for the detection of Staphylococcus aureus showed that on highly hydrophilic (θ 100°) the assay signal was low, whereas an excellent signal was obtained on the substrates with intermediate contact angles, θ ∼ 61° and θ ∼ 75°, respectively.

  15. AgI/TiO{sub 2} nanobelts monolithic catalyst with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Junhui; Huang, Lingling; Wang, Hongjuan; Yu, Hao; Peng, Feng, E-mail: cefpeng@scut.edu.cn

    2015-03-02

    AgI NPs supported on TiO{sub 2} NBs grown on the Ti foil as a monolithic catalyst exhibited excellent visible-light-driven photocatalytic activity, recyclability, and stability for AO-II degradation. - Highlights: • TiO{sub 2} nanobelts (NBs) are grown in-situ on the Ti foil at 150 °C in a KOH solution. • AgI/TiO{sub 2} NBs monolithic catalyst is prepared by a simple method. • AgI/TiO{sub 2} NBs exhibit high visible-light photocatalytic activity for acid orange II degradation. • AgI/TiO{sub 2} NBs have an advantage over the drawback encountered with powder suspension. - Abstract: AgI nanoparticles (NPs) have been decorated on the TiO{sub 2} nanobelts (NBs) immobilized on a metal Ti substrate by a simple impregnating-precipitation method. The as-achieved AgI/TiO{sub 2} monolithic catalyst exhibits a high and stable visible photocatalytic activity toward acid orange II (AO-II) degradation, which is attributed to the suitable energy band match of AgI NPs and TiO{sub 2} NBs, leading to the efficient transfer of photo-generated electrons. In addition, it was found that ·O{sub 2}{sup −} radicals and h{sup +} are the main reactive species for the degradation of AO-II under visible light irradiation. A reasonable photocatalytic mechanism of AgI/TiO{sub 2} photocatalyst toward AO-II degradation was discussed. This monolithic catalyst provides an advantage over the drawback encountered with powder suspension.

  16. Orthorhombic MoO3 nanobelts based NO2 gas sensor

    Science.gov (United States)

    Mane, A. A.; Moholkar, A. V.

    2017-05-01

    Molybdenum trioxide (MoO3) nanobelts have been deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD patterns reveal that films are polycrystalline having an orthorhombic crystal structure. Raman spectra confirm that the films are orthorhombic in phase. The XPS study shows the presence of two well resolved spectral lines of Mo-3d core levels appearing at the binding energy values of 232.82 eV and 235.95 eV corresponding to Mo-3d5/2 and Mo-3d3/2, respectively. These binding energy values are assigned to Mo6+ oxidation state of fully oxidized MoO3. The FE-SEM micrographs show the formation of nanobelts-like morphology. The AFM micrographs reveal that the RMS surface roughness increases from 16.5 nm to 17.5 nm with increase in film thickness from 470 nm to 612 nm and then decreases to 16 nm for 633 nm film thickness. The band gap energy is found to be decreased from 3.40 eV to 3.38 eV. To understand the electronic transport phenomenon in MoO3 thin films, dielectric properties are studied. For 612 nm film thickness, the highest NO2 gas response of 68% is obtained at an operating temperature of 200 °C for 100 ppm concentration with response and recovery times of 15 s and 150 s, respectively. The lower detection limit is found to be 10 ppm which is half of the immediately dangerous to life or health (IDLH) value of 20 ppm. Finally, NO2 gas sensing mechanism in an orthorhombic MoO3 crystal structure is discussed in detail.

  17. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    OpenAIRE

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at...

  18. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO2 nanobelt photocatalysts

    Science.gov (United States)

    Liang, Robert; Hu, Anming; Li, Wenjuan; Zhou, Y. Norman

    2013-10-01

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO2, have potential for wastewater treatment. In this study, TiO2 anatase phase nanobelts (30-100 nm in width and 10 μm in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products—naproxen, carbamazepine, and theophylline—that are difficult to oxidize without AOP processes. TiO2 nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species—hydroxyl radial (OH·), positive holes (h+), and hydrogen peroxide (H2O2)—involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO2 nanobelt membranes, including those harnessing sunlight for water treatment.

  19. Enhanced degradation of persistent pharmaceuticals found in wastewater treatment effluents using TiO{sub 2} nanobelt photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Robert; Hu, Anming, E-mail: a2hu@uwaterloo.ca; Li, Wenjuan; Zhou, Y. Norman [University of Waterloo, Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering (Canada)

    2013-10-15

    Pharmaceuticals in wastewater effluents are a current and emerging global problem and the development of cost-effective methods to facilitate their removal is needed to mitigate this issue. Advanced oxidation processes (AOPs), in particular UV/TiO{sub 2}, have potential for wastewater treatment. In this study, TiO{sub 2} anatase phase nanobelts (30-100 nm in width and 10 {mu}m in length) have been synthesized using a high temperature hydrothermal method as a means to photocatalyze the oxidation of pharmaceutical contaminants. We have investigated a model dye (malachite green), three pharmaceuticals and personal care products-naproxen, carbamazepine, and theophylline-that are difficult to oxidize without AOP processes. TiO{sub 2} nanobelts were exposed to 365 nm UV illumination and the measured photocatalytic degradation rates and adsorption parameters of pharmaceuticals were explored using kinetic models. Furthermore we have determined the degree of pharmaceutical degradation as a function of solution pH, illumination time, temperature, and concentration of contaminant. In addition, the roles of active oxygen species-hydroxyl radial (OH{center_dot}), positive holes (h{sup +}), and hydrogen peroxide (H{sub 2}O{sub 2})-involved were also investigated in the degradation process. These studies offer additional applications of hierarchical TiO{sub 2} nanobelt membranes, including those harnessing sunlight for water treatment.

  20. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-01-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design. PMID:27677326

  1. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    Science.gov (United States)

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-01-28

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly)n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. This article is protected by copyright. All rights reserved.

  2. Profiling the progression of cancer: separation of microsomal proteins in MCF10 breast epithelial cell lines using nonporous chromatophoresis.

    Science.gov (United States)

    O'Neil, Kimberly A; Miller, Fred R; Barder, Timothy J; Lubman, David M

    2003-07-01

    The heterogeneity of cellular protein expression has stimulated development of separations targeting smaller groups of related proteins rather than entire proteomes. The following work describes the development of a technique for the characterization of membrane subproteomes from five different breast epithelial cell lines. Intact membrane proteins are separated by hydrophobicity in the first dimension using nonporous reversed-phase high-performance liquid chromatography (RP-HPLC) to generate unique chromatographic profiles. Fractions of eluent are further separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to create distinct banding patterns. This hybrid liquid phase/gel phase method circumvents issues of membrane protein precipitation and provides a simple strategy aimed at isolating and characterizing a traditionally underrepresented protein class. Membrane protein profiles are created that discriminate between microsomal fractions of breast epithelial cells in different stages of neoplastic progression. Proteins are subsequently identified using matrix-assisted laser desorption/ionization - mass spectrometry (MALDI-MS) mass fingerprinting and MALDI-quadrupole time of flight - tandem mass spectrometry (QTOF-MS/MS) peptide sequencing. Furthermore, as this strategy preserves intact protein structure, further characterization can be performed on proteins producing mass fingerprint spectra and fragmentation spectra that did not result in database protein identifications. The coupling of nonporous RP-HPLC with SDS-PAGE provides a useful alternative to two-dimensional PAGE (2-D-PAGE) for membrane protein analysis.

  3. Persistence of the 2009 pandemic influenza A (H1N1 virus in water and on non-porous surface.

    Directory of Open Access Journals (Sweden)

    Amélie Dublineau

    Full Text Available Knowledge of influenza A virus survival in different environmental conditions is a key element for the implementation of hygiene and personal protection measures by health authorities. As it is dependent on virus isolates even within the same subtype, we studied the survival of the 2009 H1N1 pandemic (H1N1pdm virus in water and on non-porous surface. The H1N1pdm virus was subjected to various environmental parameters over time and tested for infectivity. In water, at low and medium salinity levels and 4°C, virus survived at least 200 days. Increasing temperature and salinity had a strong negative effect on the survival of the virus which remained infectious no more than 1 day at 35°C and 270 parts per thousand (ppt of salt. Based on modeled data, the H1N1pdm virus retained its infectivity on smooth non-porous surface for at least 7 days at 35°C and up to 66 days at 4°C. The H1N1pdm virus has thus the ability to persist in water and on glass surface for extended periods of time, even at 35°C. Additional experiments suggest that external viral structures in direct contact with the environment are mostly involved in loss of virus infectivity.

  4. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  5. Integration Process Development for Improved Compatibility with Organic Non-Porous Ultralow-k Dielectric Fluorocarbon on Advanced Cu Interconnects

    Science.gov (United States)

    Gu, Xun; Tomita, Yugo; Nemoto, Takenao; Miyatani, Kotaro; Saito, Akane; Kobayashi, Yasuo; Teramoto, Akinobu; Kuroda, Rihito; Kuroki, Shin-Ichiro; Kawase, Kazumasa; Nozawa, Toshihisa; Matsuoka, Takaaki; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2012-05-01

    Integration of an organic non-porous ultralow-k dielectric, fluorocarbon (k= 2.2), into advanced Cu interconnects was demonstrated. The challenges of process-induced damage, such as delamination and variances of both the structure and electrical properties of the fluorocarbon during fabrication, were investigated on Cu/fluorocarbon damascene interconnects. A titanium-based barrier layer, instead of a tantalum-based barrier layer, was used to avoid delamination between Cu and fluorocarbon in Cu/fluorocarbon interconnects. A moisture-hermetic dielectric protective layer was also effective to avoid damage induced by wet chemical cleaning. On the other hand, a post-etching nitrogen plasma treatment to form a stable protective layer on the surface of the fluorocarbon was proposed for the practical minimization of damage introduction to fluorocarbon in the following damascene process, such as post-etching cleaning.

  6. Electromechanical properties of 1D ZnO nanostructures: nanopiezotronics building blocks, surface and size-scale effects.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed

    2014-03-14

    One-dimensional (1D) zinc oxide nanostructures are the main components of nanogenerators and central to the emerging field of nanopiezotronics. Understanding the underlying physics and quantifying the electromechanical properties of these structures, the topic of this research study, play a major role in designing next-generation nanoelectromechanical devices. Here, atomistic simulations are utilized to study surface and size-scale effects on the electromechanical response of 1D ZnO nanostructures. It is shown that the mechanical and piezoelectric properties of these structures are controlled by their size, cross-sectional geometry, and loading configuration. The study reveals enhancement of the piezoelectric and elastic modulus of ZnO nanowires (NW) with diameter d > 1 nm, followed by a sudden drop for d < 1 nm due to transformation of NWs to nanotubes (NTs). Degradation of mechanical and piezoelectric properties of ZnO nanobelts (NBs) followed by an enhancement in piezoelectric properties occurs when their lower dimension is reduced to <1 nm. The latter enhancement can be explained in the context of surface reconfiguration and formation of hexagon-tetragon (HT) pairs at the intersection of (21[combining macron]1[combining macron]0) and (011[combining macron]0) planes in NBs. Transition from a surface-reconstructed dominant to a surface-relaxed dominant region is demonstrated for lateral dimensions <1 nm. New phase-transformation (PT) kinetics from piezoelectric wurtzite to nonpiezoelectric body-centered tetragonal (WZ → BCT) and graphite-like phase (WZ → HX) structures occurs in ZnO NWs loaded up to large strains of ∼10%.

  7. ZnO tetrapod nanocrystals

    Directory of Open Access Journals (Sweden)

    Marcus C. Newton

    2007-05-01

    Full Text Available ZnO has received considerable attention because of its unique optical, piezoelectric, and magnetic properties. It also readily self-assembles into a family of nanocrystalline structures. We review the current status of research into ZnO tetrapod nanocrystals. These crystals consist of a ZnO core in the zinc blende structure from which four ZnO arms in the wurtzite structure radiate. The arms are cylinders of hexagonal cross section, with each arm of equal length and diameter. Possible applications in optoelectronics, photovoltaics, spintronics, and piezoelectricity are discussed.

  8. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Alqahtani, Mohammed S. [King Saud University, Department of Physics and Astronomy, Riyadh (Saudi Arabia); Hadia, N.M.A.; Mohamed, S.H. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2017-04-15

    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices. (orig.)

  9. Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Biao; Xiao, Xiang; Su, Jianjun [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Zhang, Xuming, E-mail: xumzhang@wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Peng, Xiang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Fu, Jijiang, E-mail: fujijiang@wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Highlights: • Nb{sub 4}N{sub 5} NBAs was fabricated by hydrothermal reaction, protonation and nitridation. • The Nb foil provides the source of Nb and works as the conductive substrate. • Nb{sub 4}N{sub 5} NBAs electrode delivers good specific capacitance and rate performance. • The good capacitive property is attributable to high porosity and conductivity. - Abstract: Mesoporous niobium nitride nanobelt arrays (Nb{sub 4}N{sub 5} NBAs) are fabricated directly on Nb foils by a hydrothermal reaction in KOH, protonation treatment in HNO{sub 3}, and calcination in an NH{sub 3} ambient. The morphology, composition and pore structure of the Nb{sub 4}N{sub 5} NBAs are characterized in details. In addition, the mesoporous Nb{sub 4}N{sub 5} NBAs electrode has good specific capacitance (37.4 mF cm{sup −2}, or 124 F g{sup −1}) and delivers excellent rate performance due to the high porosity and good electron conductivity boding well for application to next-generation energy storage systems.

  10. Schottky junction photovoltaic devices based on CdS single nanobelts.

    Science.gov (United States)

    Ye, Y; Dai, L; Wu, P C; Liu, C; Sun, T; Ma, R M; Qin, G G

    2009-09-16

    Schottky junction photovoltaic (PV) devices were fabricated on single CdS nanobelts (NBs). Au was used as the Schottky contact, and In/Au was used as the ohmic contact to CdS NB. Typically, the Schottky junction exhibits a well-defined rectifying behavior in the dark with a rectification ratio greater than 10(3) at +/- 0.3 V; and the PV device exhibits a clear PV behavior with an open circuit photovoltage of about 0.16 V, a short circuit current of about 23.8 pA, a maximum output power of about 1.6 pW, and a fill factor of 42%. Moreover, the output power can be multiplied by connecting two or more of the Schottky junction PV devices, made on a single CdS NB, in parallel or in series. This study demonstrates that the 1D Schottky junction PV devices, which have the merits of low cost, easy fabrication and material universality, can be an important candidate for power sources in nano-optoelectronic systems.

  11. Modulation of electronic properties of tin oxide nanobelts via thermal control of surface oxygen defects

    Science.gov (United States)

    Keiper, Timothy D.; Barreda, Jorge L.; Zheng, Jim P.; Xiong, Peng

    2017-02-01

    Nanomaterials made from binary metal oxides are of increasing interest because of their versatility in applications from flexible electronics to portable chemical and biological sensors. Controlling the electrical properties of these materials is the first step in device implementation. Tin dioxide (SnO2) nanobelts (NB) synthesized by the vapor-liquid-solid mechanism have shown much promise in this regard. We explore the modification of devices prepared with single crystalline NBs by thermal annealing in vacuum and oxygen, resulting in a viable field-effect transistor (FET) for numerous applications at ambient temperature. An oxygen annealing step initially increases the device conductance by up to a factor of 105, likely through the modification of the surface defects of the NB, leading to Schottky barrier limited devices. A multi-step annealing procedure leads to further increase of the conductance by approximately 350% and optimization of the electronic properties. The effects of each step is investigated systematically on a single NB. The optimization of the electrical properties of the NBs makes possible the consistent production of channel-limited FETs and control of the device performance. Understanding these improvements on the electrical properties over the as-grown materials provides a pathway to enhance and tailor the functionalities of tin oxide nanostructures for a wide variety of optical, electronic, optoelectronic, and sensing applications that operate at room temperature.

  12. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

    Science.gov (United States)

    Alqahtani, Mohammed S.; Hadia, N. M. A.; Mohamed, S. H.

    2017-04-01

    CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor-solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices.

  13. Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application

    Science.gov (United States)

    Narayanan, Remya

    2017-09-01

    Carbon nanodot (C-dot) decorated V2O5 (C-dot@V2O5) nanobelts are synthesized by single step, low cost hydrothermal route at low temperature by using V2O5 and glucose as precursors. We have not added any extra organic solvents or surfactants which are commonly used for the preparation of different nanostructures of V2O5. Electron microscopy analyses demonstrate that C-dot is entrapped inside V2O5 nanobelts which in turn enhance the conductivity and ion propagation property of this composite material. The C-dot@V2O5 nanobelts exhibit an excellent three electrode electrochemical performance in 1 M Na2SO4 and which showed a specific capacitance of 270 F g-1 at 1 A g-1, which is 4.5 times higher than the pristine V2O5 electrode. The electrochemical energy storage capacity of this hybrid is investigated towards solid state supercapacitor application also for the first time by employing electrophoretically deposited C-dot as the counter electrode and Li based gel as the electrolyte. The hybrid material delivers an energy density of 60 W h kg-1 and a reasonably high power density of 4.1 kW kg-1 at 5 A g-1 and good cycling stability and capacitance retention of about 87% was observed even after 5000 cycles. Above mentioned results clearly show that C-dot embedded hybrid, nanostructured transition metal oxides has great potential towards fabrication of electrodes for energy storage devices.

  14. Controllable synthesis and electrochemical hydrogen storage properties of Sb2Se3 ultralong nanobelts with urchin-like structures

    Science.gov (United States)

    Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang

    2011-09-01

    The controlled synthesis of one-dimensional and three-dimensional Sb2Se3 nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb2Se3 with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb2Se3 nanostructures. The Sb2Se3 ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g-1) and better cycle stability at room temperature.The controlled synthesis of one-dimensional and three-dimensional Sb2Se3 nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb2Se3 with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The

  15. 桥联聚倍半硅氧烷纳米带的制备%Preparation of Bridged Polysilsesquioxane Nanobelts

    Institute of Scientific and Technical Information of China (English)

    陈木子; 王海瑞; 侯逢文; 汪理文; 李宝宗; 李艺

    2012-01-01

    An anionic low-molecular-weight amphiphilic compound derived from L-alanine was synthesized according to the literature. Its self-assembly behavior in deionized water was studied using circular dichroism (CD). A series of bridged polysilsesquioxane nanobelts were prepared using the self-assemblies of this compound as templates and 3-aminopropyltriethoxysilane as a co-structure-directing agent through a sol-gel transcription method. The bridged polysilsesquioxane nanobelts have been investigated by scanning electron microscopy, transmission electron microscopy(TEM) and circular dichroism. The TEM images and CD spectra of the polysilsesquioxanes indicate that the obtained 1,4-phenylene-bridged polysilsesquioxane and 4,4'-biphenylene-bridged polysilsesquioxane are nanobelts with double layers having a gap in the middle, and these nanobelts are the chiral at levels of nanometer and angstrom.%依照文献以L-丙氨酸为手性源合成了-阴离子型两亲小分子化合物,利用圆二色谱研究了该化舍物在水中的自组装行为。同时通过溶胶-凝胶复制法,以该手性阴离子型两亲小分子化合物的自组装体作为模板,以(3-胺丙基)三甲氧基硅为结构助剂,以倍半硅氧烷为硅源制备了桥联聚倍半硅氧烷纳米带,并利用扫描电镜、透射电镜和圆二色谱方法研究了该纳米带结构。透射电镜和圆二色谱表征结果表明,1,4-亚苯基桥联聚倍半硅氧烷和4,4’-亚联苯基桥联聚倍半硅氧烷的结构为中间有间隙的双层纳米带,且在纳米和埃的尺度下具有手性。

  16. Highly porous NiCo2O4 Nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability.

    Science.gov (United States)

    Mondal, Anjon Kumar; Su, Dawei; Chen, Shuangqiang; Xie, Xiuqiang; Wang, Guoxiu

    2014-09-10

    Highly porous NiCo2O4 nanoflakes and nanobelts were synthesized by using a hydrothermal technique, followed by calcination of the NiCo2O4 precursors. The as-synthesized materials were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller methods. The NiCo2O4 nanoflakes and nanobelts were applied as anode materials for lithium-ion batteries. Owing to the unique porous structural features, the NiCo2O4 nanoflakes and nanobelts exhibited high specific capacities of 1033 and 1056 mA h g(-1), respectively, and good cycling stability and rate capability. These exceptional electrochemical performances could be ascribed to the remarkable structural feature with a high surface area and void spaces within the surface of nanoflakes and nanobelts, which provide large contact areas between electrolyte and active materials for electrolyte diffusion and cushion the volume variation during the lithium-ion insertion/extraction process.

  17. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics.

    Science.gov (United States)

    Kim, Janghyuk; Oh, Sooyeoun; Mastro, Michael A; Kim, Jihyun

    2016-06-21

    This study demonstrated the exfoliation of a two-dimensional (2D) β-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces β-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This β-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D β-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D β-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

  18. Improvement of Capacity and Cycling Performance of Spinel LiMn2O4 Cathode Materials with TiO2-B Nanobelts

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wang, T.L.;

    2013-01-01

    The spinel LiMn2O4 was modified with TiO2-B nanobelts to improve its specific capacity and cycling performance. TiO2-B/LiMn2O4 composites were fabricated by a facile liquid phase mixing method. The morphology and structure of the samples were characterized by means of X-ray diffraction, scanning ...

  19. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers.

    Science.gov (United States)

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-07-22

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm(-2) in air at a bias of 1.0 V, which is higher 10(7) times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances.

  20. Controllable synthesis and electrochemical hydrogen storage properties of Sb₂Se₃ ultralong nanobelts with urchin-like structures.

    Science.gov (United States)

    Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang

    2011-09-01

    The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.

  1. Solvothermal synthesis of TiO2 nanocrystals with {001} facets using titanic acid nanobelts for superior photocatalytic activity

    Science.gov (United States)

    Cao, Yuhui; Zong, Lanlan; Li, Qiuye; Li, Chen; Li, Junli; Yang, Jianjun

    2017-01-01

    Anatase TiO2 nanocrystals exposed with {001} facets were fabricated by solvothermal strategy in HF-C4H9OH mixed solution, using titanic acid nanobelts (TAN) as a precursor. The shape of TAN is a long flat plane with a high aspect ratio, and F- is easily adsorbed on the surface of the nanobelts, inducing a higher exposure of {001} facet of TiO2 nanoparticles during the structure reorganization. The exposed percentage of {001} facets could vary from 40 to 77% by adjusting the amount of HF. The as-prepared samples were characterized by transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscope. The photocatalytic measurement showed that TiO2 nanocrystals with 77% {001} facets exhibited much superior photocatalytic activity for photodegradation of methyl orange, methylene blue, and rhodamine B. And what's more, the mineralization rate of methyl orange was as high as 96% within 60 min. The photocatalytic enhancement is due to a large amount of the high energetic {001} facets exposing, the special truncated octahedral morphology and a stronger ability for dyes adsorption.

  2. H{sub 2}V{sub 3}O{sub 8} single-crystal nanobelts: Hydrothermal preparation and formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chang, K.-H. [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Hu, C.-C. [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan (China)], E-mail: cchu@che.nthu.edu.tw

    2007-10-15

    The formation mechanism of highly pure H{sub 2}V{sub 3}O{sub 8} single-crystal nanobelts is clarified in a hydrothermal synthesis process with a specially designed precursor solution containing V{sup 5+} and V{sup 4+} in a fixed ratio of 2/1. This specially designed precursor solution provides an additional merit for the rapid fabrication of highly pure H{sub 2}V{sub 3}O{sub 8} nanobelts through a simple hydrothermal route. During the hydrothermal synthesis process, V{sup 5+} species initially reacts with some V{sup 4+} to form a metastable, whisker-like V{sub 10}O{sub 24} . nH{sub 2}O (n < 12). The V{sup 5+} species dissolved from the whisker-like V{sub 10}O{sub 24} . nH{sub 2}O reacts continuously with residual V{sup 4+} ions in the precursor solution to form seeds of H{sub 2}V{sub 3}O{sub 8} single-crystals. The anisotropic growth of H{sub 2}V{sub 3}O{sub 8} single-crystal nanobelts with length > 10 {mu}m and width between 50 and 150 nm occurs with prolonging the hydrothermal time. Finally, highly pure H{sub 2}V{sub 3}O{sub 8} single-crystal nanobelts are obtained when the hydrothermal time reaches 4 h. The textures of vanadium oxides prepared at different hydrothermal times are systematically compared through X-ray diffraction, transmission electron microscopic and X-ray photoelectron spectroscopic analyses to clarify the synthesis mechanism of H{sub 2}V{sub 3}O{sub 8} single-crystal nanobelts.

  3. ZnO Film Photocatalysts

    Directory of Open Access Journals (Sweden)

    Bosi Yin

    2014-01-01

    Full Text Available We have synthesized high-quality, nanoscale ultrathin ZnO films at relatively low temperature using a facile and effective hydrothermal approach. ZnO films were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, Raman spectroscopy, photoluminescence spectra (PL, and UV-vis absorption spectroscopy. The products demonstrated 95% photodegradation efficiency with Congo red (CR after 40 min irradiation. The photocatalytic degradation experiments of methyl orange (MO and eosin red also were carried out. The results indicate that the as-obtained ZnO films might be promising candidates as the excellent photocatalysts for elimination of waste water.

  4. Preparation of Immobilized Metal Affinity Chromatographic Packings Based on Monodisperse Hydrophilic Non-porous Beads and Their Application

    Institute of Scientific and Technical Information of China (English)

    BO Chun-Miao; GONG Bo-Lin; HU Wen-Zhi

    2008-01-01

    Three hydrophilic immobilized metal affinity chromatographic packings for HPLC have been synthesized by chemical modification of 3.0 μm monodisperse non-porous poly(glycidyl methacrylate-co-ethylenedimethacrylate)(PGMMEDMA)beads.The retention behavior of proteins on the metal ion chelated columns loaded with copper(Ⅱ),nickel(Ⅱ)and zin(Ⅱ)ion was studied.The effect of pH on the protein retention Was investigated on both the naked and metal ion chelated columns in the range from 4.0 to 9.0.Four proteins were quickly separated in 3.0 min with linear gradient elution at a flow rate of 3.0 mL/min by using the synthesized Ni2+ -IDA(iminodiacetic acid)packings.The separation time was shorter than other immobilized metal affinity chromatography reported in the literature.Purification of lysozyme from egg white and trypsin on the commercially available trypsin was performed on the naked-IDA and Cu2+ -IDA columns,respectively.The purities of the purified trypsin and lysozyme were more than 92%and 95%,respectively.

  5. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    Science.gov (United States)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  6. Synthesis, conversion, and comparison of the photocatalytic and electrochemical properties of Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.K., E-mail: zhangxianke77@163.com; Yuan, J.J.; Yu, H.J.; Zhu, X.R.; Yin, Z.; Shen, H.; Xie, Y.M.

    2015-05-15

    Graphical abstract: The SEM images of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts (a) and galvanostatic charge and discharge cycling performance of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts (b) at a constant current density of 12.5 mA g{sup −1} in the voltage range between 1.0 and 3.0 V at 25 °C. - Highlights: • Li{sub 2}Ti{sub 6}O{sub 13} nanobelts have been prepared via a self-template process for the first time. • The electrochemical properties of Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts are investigated and compared. • The photocatalytic activities of nanobelts and counterpart bulks are investigated and compared. • The reversible discharge capacity of nanobelts is slightly less than that of counterpart bulks. - Abstract: Single-crystalline Li{sub 2}Ti{sub 6}O{sub 13} nanobelts have been prepared from Na{sub 2}Ti{sub 6}O{sub 13} nanobelts as the precursor templates via sodium/lithium ion-exchange in molten LiNO{sub 3} at 400 °C for 10 h for the first time. Both Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts are also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). Our experiments show that Na{sub 2}Ti{sub 6}O{sub 13} and Li{sub 2}Ti{sub 6}O{sub 13} nanobelts exhibit higher photocatalytic efficiency than their bulk counterparts for the degradation of Rhodamine B (RhB) under ultraviolet light (UV) irradiation. In comparison to Na{sub 2}Ti{sub 6}O{sub 13} nanobelts, Li{sub 2}Ti{sub 6}O{sub 13} nanobelts exhibit lower photocatalytic efficiency, which may result from the expansion of tunnel space in Li{sub 2}Ti{sub 6}O{sub 13}. However, the electrochemical Li insertion–extraction experiments reveal that the stable reversible discharge capacity of Li{sub 2}Ti{sub 6}O{sub 13} nanobelts is higher than that of Na{sub 2}Ti{sub 6}O{sub 13

  7. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property

    Science.gov (United States)

    Li, Haidong; Wang, Yana; Chen, Guohui; Sang, Yuanhua; Jiang, Huaidong; He, Jiating; Li, Xu; Liu, Hong

    2016-03-01

    Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas.Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of

  8. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    Science.gov (United States)

    Cui, Jingjie; Chen, Jing; Chen, Shaowei; Gao, Li; Xu, Ping; Li, Hong

    2016-03-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs and molecular biology research.

  9. ZnO UV Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-hard UV detectors will be developed with ZnO in Phase I efforts by MOXtronics, Inc. (MOX). ZnO is a very suitable material for fabrication of high-speed,...

  10. Research progress in growth of one-dimensional ZnO nanostructures and preparing methods of related devices%一维氧化锌纳米结构生长及器件制备研究进展

    Institute of Scientific and Technical Information of China (English)

    秦杰明; 田立飞; 赵东旭; 蒋大勇; 曹建明; 丁梦; 郭振

    2011-01-01

    Morphologies of one-dimensional ZnO nanostructures(nanowires,nanobelts,etc.) and their characteristics are introduced.Methods of growing one-dimensional ZnO nanostructures and the relevant devices are demonstrated comprehensively,e.g.hydrothermal and chemical vapor deposition and so on.Progress in applications including light-emitting diodes and nanogenerators is provided.Finally,the future developing trend of one-dimensional ZnO nanostructures is presented and some novel means,techniques,etc.are also proposed.%介绍了一维氧化锌(ZnO)纳米结构的形态(纳米线和纳米带等)及其特点,阐述了该结构生长及器件制备的方法,例如水热法和化学气相沉积法等.概述了该结构在发光二极管和纳米发电机等方面的应用进展.最后,对一维ZnO纳米结构的未来发展趋势进行了展望,并在新方法和新工艺等方面提出了一些建议.

  11. ZnO光阳极在染料敏化太阳能电池中的形貌研究进展%Research Progress of ZnO Photoanode Morphology in DSSC

    Institute of Scientific and Technical Information of China (English)

    耿蕊; 路胜利; 高建荣

    2015-01-01

    Different morphologies of ZnO photoanode applied in dye sensitized solar cells (DSSC) were introduced in this paper. The influences of ZnO photoanode morphologies synthesized by different methods, such as nanoparticles、nanosheets、nanowires、nanorods、nanotubes、nanofibers、nanobelts and nanoflowers, etc. on DSSC photovoltaic performance were emphatically discussed. Also prospect for the future trends of ZnO photoanode were presented.%介绍了应用于染料敏化太阳能电池(DSSC)中不同形貌ZnO光阳极,讨论了不同方法合成的ZnO纳米粒子、纳米片、纳米线、纳米棒、纳米管、纳米纤维、纳米带、纳米花等光阳极形貌对DSSC光伏性能的影响,并展望了ZnO光阳极今后研究趋势。

  12. Preparation of Montmorillonite Nanobelts Modified with Gluconic Acid%葡萄糖酸改性蒙脱石纳米带的制备

    Institute of Scientific and Technical Information of China (English)

    张珂; 潘远凤; 童张法; 韦藤幼

    2015-01-01

    Exfoliated gluconic acid montmorillonite nanobelts were prepared via an organic acid modification method. The effects of dispersion methods and purification sites of raw materials, the secondary dispersant species and shear rate on the length of montmorillonite nanobelts were investigated. In addition, the application of products ware also explored. The results show that longer stripped montmorillonite nanobelts can be obtained when the following process is employed: disperse bentonite with a wet method; use the middle part of the suspension as a raw material; use glycerol as a secondary dispersant and apply a shear rate of 20.94 s−1 . SEM results demonstrate that montmorillonite nanobelts prepared are 25~70 μm in length, 1~2μm in width,and less than 100 nm in thickness. Mechanical grinding during pretreatment and modification can break the montmorillonite nanobelts. A push force from the internal reaction and a pull force from solvents exist in the preparation process and balanced forces can prevent montmorillonite nanobelts from breaking. Add montmorillonite nanobelts with average length of 36μm in aqueous solution of CMC and PVA film can increase the CMC solution viscosity by 26.7% and increase the PVA film elongation rate by 28.6%, which were both better than that of adding short montmorillonite nanobelts with average length of 5μm.%采用有机酸改性的方法制备剥离型葡萄糖酸蒙脱石纳米带。考察了原料分散方法、提纯部位、助分散剂类型和剪切速率对蒙脱石纳米带长度的影响,并进行了产品应用探索。结果表明:膨润土矿采用湿法分散,沉降提纯时取中层部分为原料,剥离过程添加丙三醇作为助分散剂并在剪切速率为20.94 s−1时,剥离得到的蒙脱石纳米带长度较长。扫描电镜表明:制得的蒙脱石纳米带,长25~70μm,宽1~2μm,厚度<100 nm。在原料预处理及改性加工过程中进行机械粉碎操作会折断蒙脱石纳米

  13. Improvement of Capacity and Cycling Performance of Spinel LiMn2O4 Cathode Materials with TiO2-B Nanobelts

    DEFF Research Database (Denmark)

    Zhang, J.Y.; Shen, J.X.; Wang, T.L.

    2013-01-01

    electron microscopy and transmission electron microscopy. The results show that TiO2-B nanobelts are uniformly distributed in LiMn2O4 particle. Compared with bare LiMn2O4, TiO2-B/LiMn2O4 composite cathode material shows enhanced specific capacity of 129 mA h g−1 and improved cycling stability. After 50...

  14. A novel 3D structure composed of strings of hierarchical TiO{sub 2} spheres formed on TiO{sub 2} nanobelts with high photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongjian [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Song, Dandan; Li, Xiaodan; Yu, Yue [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2014-03-15

    A novel hierarchical titanium dioxide (TiO{sub 2}) composite nanostructure with strings of anatase TiO{sub 2} hierarchical micro-spheres and rutile nanobelts framework (TiO{sub 2} HSN) is successfully synthesized via a one-step hydrothermal method. Particularly, the strings of hierarchical spheres are assembled by very thin TiO{sub 2} nanosheets, which are composed of highly crystallized anatase nanocrystals. Meanwhile, the HSN has a large surface area of 191 m{sup 2}/g, which is about 3 times larger than Degussa P25. More importantly, the photocatalytic activity of HSN and P25 were evaluated by the photocatalytic oxidation decomposition of methyl orange (MO) under UV light illumination, and the TiO{sub 2} HSN shows enhanced photocatalytic activity compared with Degussa P25, as result of its continuous hierarchical structures, special conductive channel and large specific surface area. With these features, the hierarchical TiO{sub 2} may have more potential applications in the fields of dye-sensitized solar cells and lithium ion batteries. -- Graphical abstract: Novel TiO{sub 2} with anatase micro-spheres and rutile nanobelts is synthesized. Enhanced photocatalysis is attributed to hierarchical structures (3D spheres), conductive channel (1D nanobelts) and large specific surface area (2D nanosheet). Highlights: • The novel TiO{sub 2} nanostructure (HSN) is fabricated for the first time. • HSN is composed of strings of anatase hierarchical spheres and rutile nanobelt. • HSN presents a larger S{sub BET} of 191 m{sup 2}/g, 3 times larger than the Degussa P25 (59 m{sup 2}/g). • HSN owns three kinds of dimensional TiO{sub 2} (1D, 2D and 3D) simultaneously. • HSN exhibits better photocatalytic performance compared with Degussa P25.

  15. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga₂O₃ nanobelts.

    Science.gov (United States)

    Zou, Rujia; Zhang, Zhenyu; Liu, Qian; Hu, Junqing; Sang, Liwen; Liao, Meiyong; Zhang, Wenjun

    2014-05-14

    Fabrication of a high-temperature deep-ultraviolet photodetector working in the solar-blind spectrum range (190-280 nm) is a challenge due to the degradation in the dark current and photoresponse properties. Herein, β-Ga2O3 multi-layered nanobelts with (l00) facet-oriented were synthesized, and were demonstrated for the first time to possess excellent mechanical, electrical properties and stability at a high temperature inside a TEM studies. As-fabricated DUV solar-blind photodetectors using (l00) facet-oriented β-Ga2O3 multi-layered nanobelts demonstrated enhanced photodetective performances, that is, high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, importantly, at a temperature as high as 433 K, which are comparable to other reported semiconducting nanomaterial photodetectors. In particular, the characteristics of the photoresponsivity of the β-Ga2O3 nanobelt devices include a high photoexcited current (>21 nA), an ultralow dark current (below the detection limit of 10(-14) A), a fast time response (photodetectors or optical switches for high-temperature environment.

  16. Fabrication of BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts for enhanced visible-light activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Huang, Xiang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); School of Science, Tibet University, Lhasa 850000 (China); Tan, Xin [School of Science, Tibet University, Lhasa 850000 (China); Yu, Tao, E-mail: yutao@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Li, Xiangli [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Yang, Libin [College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457 (China); Wang, Shucong [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-03-01

    Graphical abstract: - Highlights: • BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts have been synthesized. • The p–n junction photocatalysts improved water splitting and dye degradation activity. • BiOBr amount in the BiOBr@TiO{sub 2} photocatalysts was investigated. - Abstract: The construction of p–n junction structure is a smart strategy for improving the photocatalytic activity, since p–n junctions can inhibit the recombination of photo-induced charges. Herein, BiOBr nanosheets@TiO{sub 2} nanobelts p–n junction photocatalysts were prepared by assembling BiOBr nanosheets on the surface of TiO{sub 2} nanobelts via a hydrothermal route followed by a co-precipitation process. BiOBr@TiO{sub 2} p–n junction photocatalysts exhibited enhanced photocatalytic activity in photocatalytic H{sub 2} production over water splitting and photodegradation of Rhodamine B (RhB) under visible light irradiation. Mott–Schottky plots confirmed the formation of p–n junctions in the interface of BiOBr and TiO{sub 2}. The enhanced photocatalytic performance can be ascribed to the 1D nanostructure and the formation of p–n junctions. This work shows a potential application of low cost BiOBr as a substitute for noble metals in photocatalytic H{sub 2} production under visible light irradiation.

  17. Catalyst-free growth of Al-doped SnO2 zigzag-nanobelts for low ppm detection of organic vapours

    Science.gov (United States)

    Sinha, Sudip Kumar; Ghosh, Saptarshi

    2016-10-01

    In this effort, we report on development of specific sensors dedicated for detection of two of these volatiles, namely ethanol and acetone, below the prescribed statutory limits. Single crystalline Al-doped SnO2 zigzag nanobelt structures were deposited on Si substrate by a catalyst-free thermal evaporation method. The Al-doped SnO2 zigzag nanostructures exhibit high sensitivity and repeatability together with coveted features like fast response and excellent stability. Structural attributes involving the crystal quality and morphology of Al-doped SnO2 zigzag nanobelts were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and transmission electron microscopy. The microscopic images revealed formation of randomly oriented 'zigzag-like' nanobelts with characteristic width between 60 nm and 200 nm and length of 50-300 μm. The Al-doping was observed to have a discerning effect in enhancing the sensitivity in comparison to the pristine nanowires by creating excess oxygen vacancies in the crystal lattice, confirmed through XPS and PL spectra.

  18. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity.

    Science.gov (United States)

    Chen, Guohui; Ji, Shaozheng; Sang, Yuanhua; Chang, Sujie; Wang, Yana; Hao, Pin; Claverie, Jerome; Liu, Hong; Yu, Guangwei

    2015-02-21

    A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the assistance of Pt as a co-catalyst, and enhanced the degradation ability of organic pollutants under both UV and visible light irradiation. In addition to the increased exposure of active facets and broad light absorption, the outstanding performance is ascribed to the matching energy band structure between Sn3O4 and TiO2 at the two sides of the heterostructure, which efficiently reduces the recombination of photo-excited electron-hole pairs and prolongs the lifetime of charge carriers. Both photocatalytic assessment and PEC tests revealed that Sn3O4/TiO2 heterostructures with a molar ratio of Sn/Ti of 2/1 exhibited the highest photocatalytic activity. This study provides a facile and low-cost method for the large scale production of Sn3O4 based materials in various applications.

  19. Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation.

    Science.gov (United States)

    Eswar, Neerugatti KrishnaRao; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2015-07-01

    This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.

  20. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng, E-mail: xfwang@tongji.edu.cn

    2015-08-30

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH){sub 4} nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10{sup 6} and a maximum relative standard deviation (RSD) of 0.18. • Ag{sub 2}O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH){sub 4} nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10{sup 6} and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag{sub 2}O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH){sub 4} NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO{sub 2} NBAs, which is much less active.

  1. Recovery and Disinfection of Two Human Norovirus Surrogates, Feline Calicivirus and Murine Norovirus, from Hard Nonporous and Soft Porous Surfaces.

    Science.gov (United States)

    Yeargin, Thomas; Fraser, Angela; Huang, Guohui; Jiang, Xiuping

    2015-10-01

    Human norovirus is a leading cause of foodborne disease and can be transmitted through many routes, including environmental exposure to fomites. In this study, both the recovery and inactivation of two human norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), on hard nonporous surfaces (glass) and soft porous surfaces (polyester and cotton) were evaluated by both plaque assay and reverse transcription quantitative PCR method. Two disinfectants, sodium hypochlorite (8.25%) and accelerated hydrogen peroxide (AHP, at 4.25%) were evaluated for disinfection efficacy. Five coupons per surface type were used to evaluate the recovery of FCV and MNV by sonication and stomaching and the disinfection of each surface type by using 5 ml of disinfectant for a contact time of 5 min. FCV at an initial titer of ca. 7 log PFU/ml was recovered from glass, cotton, and polyester at 6.2, 5.4, and 3.8 log PFU/ml, respectively, compared with 5.5, 5.2, and 4.1 log PFU/ml, respectively, for MNV with an initial titer of ca. 6 log PFU/ml. The use of sodium hypochlorite (5,000 ppm) was able to inactivate both FCV and MNV (3.1 to 5.5 log PFU/ml) below the limit of detection on all three surface types. AHP (2,656 ppm) inactivated FCV (3.1 to 5.5 log PFU/ml) below the limit of detection for all three surface types but achieved minimal inactivation of MNV (0.17 to 1.37 log PFU/ml). Reduction of viral RNA by sodium hypochlorite corresponded to 2.72 to 4.06 log reduction for FCV and 2.07 to 3.04 log reduction for MNV on all three surface types. Reduction of viral RNA by AHP corresponded to 1.89 to 3.4 log reduction for FCV and 0.54 to 0.85 log reduction for MNV. Our results clearly indicate that both virus and surface types significantly influence recovery efficiency and disinfection efficacy. Based on the performance of our proposed testing method, an improvement in virus recovery will be needed to effectively validate virus disinfection of soft porous surfaces.

  2. A Comparison of ZnO and ZnO(-)

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  3. Determination of Ro 48-3656 in rat plasma by reversed-phase high-performance liquid chromatography. Comparison of 1.5-microm nonporous silica to 3.5-microm porous silica analytical columns.

    Science.gov (United States)

    Paasch, B D; Lin, Y S; Porter, S; Modi, N B; Barder, T J

    1997-12-19

    We describe a method for measuring Ro 48-3656 in EDTA rat plasma by neutral pH, reversed-phase high-performance liquid chromatography using a 1.5-microm nonporous silica, C18 analytical column and UV absorbance detection to support pharmacokinetic studies. We also describe a comparison of the 1.5-microm nonporous silica C18 column versus 3.5-microm porous silica C18 columns. The final method using the 1.5-microm nonporous silica column demonstrated good precision (of both quantification and retention time), accuracy and recovery, linearity of dilution and limit of quantification (40 ng/ml Ro 48-3656 using a 20 microl injection). Samples of neat EDTA rat plasma were prepared by ultrafiltration followed by direct injection onto the HPLC column.

  4. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  5. Acceptors in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, Matthew D., E-mail: mattmcc@wsu.edu; Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Walter, Eric D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Norton, M. Grant; Harrison, Kale W. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 (United States); Ha, Su [Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164-6515 (United States)

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  6. Induced growth of high quality ZnO thin films by crystallized amorphous ZnO

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Jun; Song Li-Jun; Li Shou-Chun; Lu You-Ming; Tian Yun-Xia; Liu Jia-Yi; Wang Lian-Yuan

    2006-01-01

    This paper reports the induced growth of high quality ZnO thin film by crystallized amorphous ZnO. Firstly amorphous ZnO was prepared by solid-state pyrolytic reaction, then by taking crystallized amorphous ZnO as seeds (buffer layer), ZnO thin films have been grown in diethyene glycol solution of zinc acetate at 80℃. X-ray Diffraction curve indicates that the films were preferentially oriented [001] out-of-plane direction of the ZnO. Atomic force microscopy and scanning electron microscopy were used to evaluate the surface morphology of the ZnO thin film. Photoluminescence spectrum exhibits a strong ultraviolet emission while the visible emission is very weak. The results indicate that high quality ZnO thin film was obtained.

  7. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics

    KAUST Repository

    Wang, Zhong Lin

    2010-11-01

    Relying on the piezopotential created in ZnO under straining, nanogenerators, piezotronics and piezo-phototronics developed based on laterally bonded nanowires on a polymer substrate have been reviewed. The principle of the nanogenerator is a transient flow of electrons in external load as driven by the piezopotential created by dynamic straining. By integrating the contribution made by millions of nanowires, the output voltage has been raised to 1.2 V. Consequently, self-powered nanodevices have been demonstrated. This is an important platform technology for the future sensor network and the internet of things. Alternatively, the piezopotential can act as a gate voltage that can tune/gate the transport process of the charge carriers in the nanowire, which is a gate-electrode free field effect transistor (FET). The device fabricated based on this principle is called the piezotronic device. Piezo-phototronic effect is about the tuning and controlling of electro-optical processes by strain induced piezopotential. The piezotronic, piezophotonic and pieozo-phototronic devices are focused on low frequency applications in areas involving mechanical actions, such as MEMS/NEMS, nanorobotics, sensors, actuators and triggers. © 2010 Elsevier B.V. All rights reserved.

  8. Study of growth of gadolinium-doped ceria nanobelts by a hydrothermal microwave system; Estudo do crescimento de nanofitas de ceria dopada com gadolinio por sistema de aquecimento por micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, R.F.; Castro, D.A.; Santos, M.R.C.; Figueiredo, A.T.; Godinho Junior, M. [Universidade Federal de Goias (UFG), Catalao, GO (Brazil). Dept. de Quimica; Barrado, C.M. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Leite, E.R. [Universidade Federal de Sao Carlos (INCTMN/UFSCar), SP (Brazil). Dept. de Qumica

    2013-07-15

    Cerium oxide (ceria) has attracted attention because of its important applications such as solid oxide fuel cells, catalysts for automobile exhaust gas, catalysts to obtain hydrogen, UV blockers, biomaterials, etc.. Control methods for synthesis of ceria are of great importance to explain or predict these properties. Thus, the objective of this work was to study the growth of cerium oxide nanobelts in a microwave-assisted hydrothermal system, where in 8 min 330 nm nanobelts were obtained at 130 deg C and 3 atm. The results collaborate to the research on reformers for ethanol and/or solid oxide fuel cells anode. (author)

  9. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  10. Fabrication of V2O3/C core-shell structured composite and VC nanobelts by the thermal treatment of VO2/C composite

    Science.gov (United States)

    Zhang, Yifu; Fan, Meijuan; Hu, Ling; Wu, Weibing; Zhang, Juecheng; Liu, Xinghai; Zhong, Yalan; Huang, Chi

    2012-10-01

    Belt-like V2O3 encapsulated into carbon tubes (V2O3/C) core-shell structured composite and vanadium carbide (VC) nanobelts have been successfully synthesized by the thermal treatment with VO2/C core-shell structured composite through adjusting the heating temperature for the first time. The amorphous carbon on the surface of VO2 plays a dual role in this thermal process, namely as the reductant to reduce VO2 to V2O3 or VC, and as the carbon precursor for the V2O3/C carbon shell and VC. The as-obtained samples were respectively characterized by X-ray powder diffraction, energy-dispersive X-ray spectrometer, Raman spectrum, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller. V2O3/C was successfully synthesized at 700-900 °C for 2 h, and VC nanobelts were successfully prepared at 1000 °C for 2 h. The as-obtained V2O3/C composite and VC nanobelts contain C-H groups, which will facilitate the linkage of catalytic species or polymers to the surface in their potential applications. V2O3/C composite has higher specific surface area than that of VC due to the amorphous carbon coated on the surface of V2O3. Furthermore, the thermal stability of VC in air was investigated by Thermo-Gravimetric/Differential Thermal Analyzer, revealing that it had good thermal stability and oxidation resistance below 335 °C in air.

  11. Synthesis, Characterization, and Photocatalysis of ZnO and Er-Doped ZnO

    OpenAIRE

    Yu, Kai-sheng; Shi, Jian-ying; Zhang, Zai-Li; Liang, Yong-Mei; LIU Wei

    2013-01-01

    ZnO and Er-doped ZnO with different molar ratios of Er/Zn were prepared using the homogeneous precipitation method. The photocatalysts prepared were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), UV-vis spectroscopy, and photoluminescence spectroscopy. The results showed that the Er-doped ZnO displayed characteristic wurtzite-type peaks in the XRD spectra. The Er-doped ZnO absorbed much more light than ZnO in the ultraviolet region...

  12. Hydrogen in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, E.V., E-mail: edward.lavrov@physik.tu-dresden.d [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-12-15

    The results of a combined study of Raman scattering, IR absorption, photoluminescence, and photoconductivity on ZnO are presented. Two shallow donors-hydrogen at the bond-centered lattice site, H{sub BC}, and hydrogen bound in an oxygen vacancy, H{sub O}-were identified. Donor H{sub BC} has an ionization energy of 53 meV. The recombination of an exciton bound to H{sub BC} gives rise to the 3360.1+-0.2meV photoluminescence line. The 1s->2p donor transition at 330cm{sup -1} is detected in the Raman scattering and photoconductivity spectra. The stretch mode of the associated O-H bond is detected in IR absorption at 3611cm{sup -1}. The H{sub O} donor in ZnO has an ionization energy of 47 meV. The excitonic recombination at H{sub O} leads to the previously labeled I{sub 4} line at 3362.8 meV. Photoconductivity and Raman spectra reveal the 1s->2p donor transition at 265cm{sup -1}. It is shown that H{sub BC} migrating through the ZnO lattice forms electrically inactive interstitial H{sub 2}. Vibrational modes of H{sub 2}, HD, and D{sub 2} were identified at 4145, 3628, and 2985cm{sup -1}, respectively. These results suggest that interstitial H{sub 2} is responsible for the 'hidden' hydrogen in ZnO.

  13. Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at sub-monolayer and multilayer coverages

    CERN Document Server

    Noble, J A; Dulieu, F; Fraser, H J

    2011-01-01

    The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments exploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.

  14. 单根In掺杂ZnO纳米带场效应管的电学性质%Electrical characteristics of individual In-dop ed ZnO nanob elt field effect transistor

    Institute of Scientific and Technical Information of China (English)

    唐欣月; 高红; 潘思明; 孙鉴波; 姚秀伟; 张喜田

    2014-01-01

    Back-gate field effect transistors based on In-doped ZnO individual nanobelts have been fabricated using the low-cost microgrid template method. The output (Ids-Vds) and transfer (Ids-Vgs) characteristic curves for the transistors are measured, and the mobility is derived to be 622 cm2·V-1·s-1. This value is obviously superior to those for most of materials including pure ZnO in the literature, and possible influence factors have also been discussed.%采用化学气相沉积法合成了In掺杂ZnO纳米带,并对其进行了X射线衍射、光致发光及透射电镜表征。基于单根纳米带,采用廉价微栅模板法制备了背栅场效应管,利用半导体参数测试仪测量了场效应管的输出(Ids-Vds)和转移(Ids-Vgs)特性,得出相关电学参数,其中迁移率值为622 cm2·V-1·s-1,该值明显优于包括ZnO在内的大多数材料;讨论了迁移率提高的可能原因。

  15. ZnO UV Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-efficiency UV detectors will be developed in the Phase II program with ZnO and its alloy (ZnBeO). ZnO and ZnBeO are a very suitable material for fabrication of...

  16. 基于氧化钛纳米带及钯纳米颗粒的吗啡传感器的制备%Preparation of Morphine Sensor Based on Titanium Dioxide Nanobelts and Palladium Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    徐凤; 李月婷; 司剑飞; 杨丽君; 陶满兰; 杨云慧

    2011-01-01

    Titanium dioxide nanobelts are a new type of high performance functional materials, while synthesis method is the research hot spot. Ethanol thermal solvent was used to synthesize titanium dioxide nanobelts. Scanning electron microscopy was used to characterize the morphology of the nanobelts. Pd nanoparticles were electrodeposited on the glassy carbon electrode modified with obtained titanium dioxide nanobelts/chitosan film to construct morphine electrochemical sensor. The experimental results show that the sensor has good stability, high sensitivity and selectivity, simple preparation procedure and low cost. The sensor is applied to determine morphology with satisfactory.%氧化钛纳米带是一种性能优异的新型功能材料,其合成方法及应用是研究的热点.采用乙醇热溶剂法合成了氧化钛纳米带,并通过扫描电镜观察了纳米带的形貌.将氧化钛纳米带固定到电极表面,采用恒电位沉积钯纳米粒子后制得吗啡电化学传感器.结果表明,该传感器稳定性好、灵敏度高、选择性好、制作简单、成本低,应用于血清中吗啡的测定,结果令人满意.

  17. The loading of coordination complex modified polyoxometalate nanobelts on activated carbon fiber: a feasible strategy to obtain visible light active and highly efficient polyoxometalate based photocatalysts.

    Science.gov (United States)

    Lu, Tingting; Xu, Xinxin; Li, Huili; Li, Zhenyu; Zhang, Xia; Ou, Jinzhao; Mei, Mingliang

    2015-02-01

    To enhance the photocatalytic properties of coordination complex modified polyoxometalates (CC/POMs) in the visible light region, its nanobelts (CC/POMNBs) were loaded on activated carbon fiber (ACF) through a simple colloidal blending process. The resulting coordination complex modified polyoxometalate nanobelts loaded activated carbon fiber composite materials (CC/POMNBs/ACF) exhibited dramatic photocatalytic activity for the degradation of rhodamine B (RhB) under visible light irradiation. Optical and electrochemical methods illustrated the enhanced photocatalytic activity of CC/POMNBs/ACF, which originates from the high separation efficiency of the photogenerated electrons and holes on the interface of the CC/POMNBs and ACF, which results from the synergistic effects between them. In the composite material, the role of ACF could be described as a photosensitizer and a good electron transporter. Furthermore, the influence of the mass ratio between the CC/POMNBs and ACF on the photocatalytic performance of the resulting composite material was discussed, and an ideal value to obtain highly efficient photocatalysts was obtained. The results suggested that the loading of CC/POMNBs on the surface of ACF would be a feasible strategy to enhance their photocatalytic activity.

  18. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.

    Science.gov (United States)

    Shi, Gui-Mei; Zhang, Bin; Xu, Xin-Xin; Fu, Yan-Hong

    2015-06-28

    A visible light active photocatalyst was synthesized successfully by coating graphene oxide (GO) on a coordination polymer nanobelt (CPNB) using a simple colloidal blending process. Compared with neat CPNB, the resulting graphene oxide coated coordination polymer nanobelt composite material (GO/CPNB) exhibits excellent photocatalytic efficiency in the reduction of K2Cr2O7 under visible light irradiation. In the composite material, GO performs two functions. Firstly, it cuts down the band gap (E(g)) of the photocatalyst and extends its photoresponse region from the ultraviolet to visible light region. Secondly, GO exhibits excellent electron transportation ability that impedes its recombination with holes, and this can enhance photocatalytic efficiency. For GO, on its surface, the number of functional groups has a great influence on the photocatalytic performance of the resulting GO/CPNB composite material and an ideal GO"coater" to obtain a highly efficient GO/CPNB photocatalyst has been obtained. As a photocatalyst that may be used in the treatment of Cr(VI) in wastewater, GO/CPNB exhibited outstanding stability during the reduction of this pollutant.

  19. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Sun, Shuchao; Gao, Peng; Yang, Yurong; Yang, Piaoping; Chen, Yujin; Wang, Yanbo

    2016-07-20

    To narrow the band gap (3.2 eV) of TiO2 and extend its practical applicability under sunlight, the doping with nonmetal elements has been used to tune TiO2 electronic structure. However, the doping also brings new recombination centers among the photoinduced charge carriers, which results in a quantum efficiency loss accordingly. It has been proved that the {101} facets of anatase TiO2 are beneficial to generating and transmitting more reductive electrons to promote the H2-evolution in the photoreduction reaction, and the {001} facets exhibit a higher photoreactivity to accelerate the reaction involved of photogenerated hole. Thus, it was considered by us that using the surface heterojunction composed of both {001} and {101} facets may depress the disadvantage of N doping. Fortunately, we successfully synthesized anatase N-doped TiO2 nanobelts with a surface heterojunction of coexposed (101) and (001) facets. As expected, it realized the charge pairs' spatial separation and showed higher photocatalytic activity under a visible-light ray: a hydrogen generation rate of 670 μmol h(-1) g(-1) (much higher than others reported previously in literature of N-doped TiO2 nanobelts).

  20. Rocksalt ZnO nanocrystal formation by beam irradiation of wurtzite ZnO in a transmission electron microscope

    Science.gov (United States)

    Lee, Sung Bo

    2016-10-01

    Under ambient conditions, ZnO crystallizes in a hexagonal wurtzite structure, but undergoes a phase transformation into a rocksalt structure with increasing hydrostatic pressure. However, in the present study, I have successfully demonstrated that intense beam irradiation of a wurtzite ZnO specimen in a transmission electron microscope produces nanoparticles of rocksalt ZnO as well as wurtzite ZnO, suggesting that the application of pressures is not a necessary condition for the formation of rocksalt ZnO.

  1. ZnO nanocrystals and allied materials

    CERN Document Server

    Okada, Tatsuo

    2014-01-01

    ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.

  2. Influence of Oxygen Partial Pressure on Morphology and Optical Properties of ZnO Nanostructures%氧分压对ZnO纳米结构的形貌及光学性能的影响

    Institute of Scientific and Technical Information of China (English)

    王英华; 王新昌; 李光明; 张兵临; 田永涛; 姚宁

    2009-01-01

    ZnO nanostructures with different morphologies have been synthesized on Si substrate without any catalysts using a simple thermal evaporation method. The effects of oxygen partial pressure on morphology and optical properties of ZnO nanostructures were investigated. The results confirm that the morphology and optical properties of ZnO nanostructures are strongly influenced by oxygen partial pressure, and nanowires, nanobelts and comb-like structures can be obtained at oxygen partial pressure of 25%, 10%, and 5%, respectively. The X-ray diffraction pattern of these nanostructures shows a hexagonal wurtzite structure and a c-axis orientation. The optical properties have been revealed by photoluminescence spectra.%利用未采用催化剂的真空热蒸发法合成了不同形貌的硅基ZnO纳米结构,研究了氧分压对纳米ZnO结构及光学性能的影响.研究结果表明氧分压对ZnO纳米结构的形貌及光学性能具有明显的影响,在氧分压为25%、10%和5%时制得的纳米ZnO结构分别为纳米线、纳米带和纳米梳.X射线衍射测试表明制得的不同ZnO纳米材料均为六方纤锌矿结构,并具有明显的c轴择优取向性.采用PL谱对制备纳米结构的光学性能进行了测试.

  3. Doped Colloidal ZnO Nanocrystals

    Directory of Open Access Journals (Sweden)

    Yizheng Jin

    2012-01-01

    Full Text Available Colloidal ZnO nanocrystals are promising for a wide range of applications due to the combination of unique multifunctional nature and remarkable solution processability. Doping is an effective approach of enhancing the properties of colloidal ZnO nanocrystals in well-controlled manners. In this paper, we analyzed two synthetic strategies for the doped colloidal ZnO nanocrystals, emphasizing our understanding on the critical factors associated with the high temperature and nonaqueous approach. Latest advances of three topics, bandgap engineering, n-type doping, and dilute magnetic semiconductors related to doped ZnO nanocrystals were discussed to reveal the effects of dopants on the properties of the nanocrystalline materials.

  4. ZnO nanostructures and their applications

    CERN Document Server

    Xiaowei, Sun

    2011-01-01

    This book focuses on the various functional properties and potential applications of one-dimensional ZnO nanostructures, from basic principles to our most recent discoveries. It comprises experimental analysis of various properties of ZnO nanostructures, preparation techniques, research methods, and some promising applications. The areas of focus include ZnO-based gas/biochemical sensing devices, field emitters, solar cells, light-emitting diodes, e-papers, and single-nanowire-based transistors.

  5. ZnO: growth, doping & processing

    Directory of Open Access Journals (Sweden)

    D.P. Norton

    2004-06-01

    Full Text Available A review is given here of recent results in developing improved control of growth, doping, and fabrication processes for ZnO devices with possible applications to ultraviolet (UV light emitters, spin functional devices, gas sensors, transparent electronics, and surface acoustic wave devices. ZnO can be grown on cheap substrates such as glass at relatively low temperatures and may have advantages over the GaN system in some of these applications.

  6. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    Science.gov (United States)

    2014-01-01

    KOH (3 wt%), distilled water and isopropyl alcohol (10% vol%) at 95 C for 50 min. Subsequently, a 10 nm ZnO seed layer wasThis journal is © The Royal...ZnO have been widely used in sensors, piezo-nanogenerators, and solar cells. The hierarchical structures of ZnO nanowires grown on Si pyramid surfaces...exhibiting superhydrophobicity in this work will have promising applications in the next generation photovoltaic devices and solar cells

  7. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  8. ASTM D395 Short-Term Compression Set of Solid (Non-Porous) Siloxanes: SE 1700, Sylgard 184, and "New" M9787

    Energy Technology Data Exchange (ETDEWEB)

    Small, Ward [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jensen, Wayne A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-13

    Compression set of solid (non-porous) Dow Corning SE 1700, Sylgard 184, and “new” M9787 siloxane elastomers was measured according to ASTM D395 Method B. Specimens of SE 1700 were made using (1) the manufacturer’s suggested cure of 150°C for 30 min and (2) an extended cure of 60°C for 6 h and 150°C for 1 h followed by a post-cure under nitrogen purge at 125°C for 12 h. Four specimens of each material were aged at 25-27% compressive strain at 70°C under nitrogen purge for 70 h. Final thickness of each specimen was measured after a 30-min cooling/relaxation period, and compression set relative to deflection was calculated. The average compression set relative to deflection was 6.0% for SE 1700 made using the extended cure and post-cure, 11.3% for SE 1700 made using the manufacturer’s suggested cure, 12.1% for Sylgard 184, and 1.9% for M9787. The extended cure and post-cure reduced the amount of compression set in SE 1700.

  9. A facile approach to the synthesis of non-porous and microporous sub-micron spherical zirconia and alumina-zirconia solid solution.

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; Nasiri, Vida; Rafiee, Mehdi

    2013-01-01

    Amorphous monodisperse sub-micron spherical zirconia and alumina/zirconia solid solution particles were prepared by hydrolysis of zirconium and aluminum salts in ethanol. The heat-treatment process of the amorphous materials in air atmosphere at 500°C for 2h leaded to the production of non-porous zirconia and alumina/zirconia solid solution in tetragonal phase. The alkaline etching process of the as-prepared alumina/zirconia solid solution resulted in the formation of mono-modal microporous material with specific surface area of 125.0 m(2) g(-1) in comparison with 2. 9m(2) g(-1) for the parent material. Thermal analysis of the solid solution revealed that the incorporation of aluminum ions in the zirconia structure has decreased the phase transformation temperature from amorphous to crystalline structure. Moreover, optical study confirmed the presence of oxygen vacancy defect by substitution of tetravalent cations, Zr(4+) by trivalent cations, Al(3+) in zirconia lattice.

  10. Growth of vertically aligned ZnO nanorods using textured ZnO films

    Directory of Open Access Journals (Sweden)

    Meléndrez Manuel

    2011-01-01

    Full Text Available Abstract A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100 substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.

  11. Growth and optical properties of ZnO nanostructures grown on ZnO seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yong; Feneberg, Martin; Reiser, Anton; Tischer, Ingo; Wiedenmann, Michael; Frey, Reinhard; Roeder, Uwe; Sauer, Rolf; Thonke, Klaus [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    Using a ZnO seed layer, we grow well-aligned ZnO nanopillars on different substrates including a-plane sapphire, c-plane GaN, and (100) silicon. We use Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) to characterize the morphology of the ZnO seed layers and of the ZnO nanopillars. Layers and nanopillars were also investigated by optical spectroscopy. For all kinds of substrates used, we find well-faceted nanopillars which are uniform along the whole length. The data indicate that they grow via the vapour-solid (VS) mechanism under well-controlled growth conditions. The photoluminescence of the ZnO nanopillars shows sharp near-band-edge luminescence and nearly no green or yellow band luminescence, indicating very low contamination.

  12. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance.

    Science.gov (United States)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-06

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti(3+) and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h(-1 )g(-1)) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  13. Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution.

    Science.gov (United States)

    Praveen Kumar, D; Lakshmana Reddy, N; Karthikeyan, M; Chinnaiah, N; Bramhaiah, V; Durga Kumari, V; Shankar, M V

    2016-09-01

    Nanocavities are empty voids exposed on the surface of one dimensional TiO2 nanostructured material. Often, they exhibited beneficial optical and electrical properties that leads to efficient photocatalytic reactions. This study reports formation of nanocavities on anatase TiO2 nanobelts (TNB) through dehydroxylation of surface hydroxyl groups during calcination process (350-600°C). The morphological and crystal structure analysis of TNB-500, -550 and -600 displayed the nanobelts shape with high density of nano-size cavities and increase in average diameter with calcination temperature. The SAED patterns confirm the anatase TiO2 phase. The enhanced light absorption properties of biphasic anatase/TiO2-B and anatase TiO2 than H2Ti3O7 are attributed to transformation of crystal structure upon calcination process. The catalytic activity was evaluated for degradation of methyl orange dye in aqueous solution under solar light irradiation. The reaction variables such as calcination temperature, amount of catalyst and pH of the methyl orange dye solution were studied and discussed in detail. Under optimal experimental conditions TNB-550 photocatalyst displayed highest degradation performance about 8 folds higher than H2Ti3O7. The high performance is explained as due to synergistic properties of one dimensional anatase TiO2 with high density of nanocavities leading to one dimensional transfer of electrons and high absorption co-efficient in UV-A spectrum are suitable for efficient red-ox reactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    Science.gov (United States)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h‑1 g‑1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  15. Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots

    Directory of Open Access Journals (Sweden)

    Wang Nengwen

    2011-01-01

    Full Text Available Abstract ZnO nanoparticle array has been fabricated on the Si substrate by a simple thermal chemical vapor transport and condensation without any metal catalysts. This ZnO nanoparticles array is constructed from ZnO quantum dots (QDs, and half-embedded in the amorphous silicon oxide layer on the surface of the Si substrate. The cathodoluminescence measurements showed that there is a pronounced blue-shift of luminescence comparable to those of the bulk counterpart, which is suggested to originate from ZnO QDs with small size where the quantum confinement effect can work well. The fabrication mechanism of the ZnO nanoparticle array constructed from ZnO QDs was proposed, in which the immiscible-like interaction between ZnO nuclei and Si surface play a key role in the ZnO QDs cluster formation. These investigations showed the fabricated nanostructure has potential applications in ultraviolet emitters.

  16. Photoluminescence properties of Co-doped ZnO nanocrystals

    DEFF Research Database (Denmark)

    Lommens, P.; Smet, P.F.; De Mello Donega, C.

    2006-01-01

    We performed photoluminescence experiments on colloidal, Co -doped ZnO nanocrystals in order to study the electronic properties of Co in a ZnO host. Room temperature measurements showed, next to the ZnO exciton and trap emission, an additional emission related to the Co dopant. The spectral posit...

  17. Intrinsic Ferromagnetism in Eu doped ZnO

    OpenAIRE

    Assadi, M. H. N.; Zhang,Y.B.; Ionescu, M.; Photongkam, P.; Li, S.

    2010-01-01

    We report room temperature ferromagnetism in as-implanted Eu doped ZnO (ZnO:Eu). To address the origin of ferromagnetism ab initio calculations of ZnO:Eu system are performed. Results show that the ferromagnetism is induced by ZnO point defects as Eu ions in perfect ZnO tend to align antiferromagnetically.

  18. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    Science.gov (United States)

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (kd/SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (kd/SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA.

  19. Nanofitas de óxido de estanho: controle do estado de oxidação pela atmosfera de síntese Tin oxide nanobelts: oxidation state control by the synthesis atmosphere

    Directory of Open Access Journals (Sweden)

    M. O. Orlandi

    2004-03-01

    Full Text Available Nanofitas de óxido de estanho com diferentes estados de oxidação foram produzidas pelo método de redução carbotérmica a 1260 ºC. As nanoestruturas foram caracterizadas por difração de raios X, microscopia eletrônica de varredura e espectroscopia por dispersão de energia de raios X. O controle do estado de oxidação das nanoestruturas foi feito pela variação da atmosfera de síntese dentro do forno. Em atmosferas sem oxigênio os materiais obtidos foram nanofitas de SnO e de SnO2, enquanto em atmosferas com oxigênio (aproximadamente 10% obteve-se apenas o crescimento de nanofitas de SnO2.Tin oxide nanobelts in different states of oxidation were produced by carbothermal reduction at 1260 ºC. The nanostructures were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The state of oxidation of the nanostructures was controlled by the synthesis atmosphere inside the furnace. The materials obtained in atmospheres without oxygen were SnO and SnO2 nanobelts, while atmospheres with oxygen (about 10% only allowed for the growth of SnO2 nanobelts.

  20. On Cu diffusion in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, F.; Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden (Germany)

    2009-07-01

    Copper in ZnO is of special interest since recent theoretical and experimental studies found ferromagnetic behavior of ZnO:Cu at room temperature. In addition, Cu is a deep acceptor in ZnO and one of the causes of the green emission band. Experimental studies of Cu diffusion in bulk ZnO single crystals were carried out in the temperature range 1030 to 1180 C. Concentration profiles of substitutional Cu were determined via IR absorption at 5817 cm{sup -1}. Our findings reveal that the diffusion coefficient of Cu is 7.6 x 10{sup 7} exp(-4.56 eV/k{sub B}T) cm{sup 2}s{sup -1}. This is about a factor of 25 higher than reported in the earlier studies, which probed the total Cu concentration. The discrepancy is explained by the formation of Cu complexes, which occurs at high concentrations. Diffusion mechanisms are discussed.

  1. Preparation and Dielectric Properties of Nanostructured ZnO Whiskers

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Ling; YUAN Jie; ZHOU Wei; RONG Ji-Li; CAO Mao-Sheng

    2007-01-01

    By a novel controlled combustion synthesis method, a large number of nanostructured ZnO whiskers with different morphologies, such as tetra-needles, long-leg tetra-needles and multi-needles, are prepared without any additive in open air at high temperature. The morphologies and crystalline structures of the as-prepared ZnO nanostructured whiskers are investigated by SEM and XRD. The possible growth mechanism on the nanostructured ZnO whiskers is proposed. The experimental results indicate that the dielectric constants and losses of the nanostructured ZnO whiskers are very low, demonstrating that the nanostructured ZnO whiskers are low-loss materials for microwave absorption in X-band. However, obvious microwave absorption in nanostructured ZnO whiskers is observed. The quasi-microantenna model may be attributed to the microwave absorption of the ZnO whiskers.

  2. Nd-doped ZnO as a multifunctional nanomaterial

    Institute of Scientific and Technical Information of China (English)

    Surender Kumar; P.D. Sahare

    2012-01-01

    Chemically synthesised ZnO and Nd-doped ZnO nanoparticles were investigated for structural,optical,magnetic properties along with photocatalytic activity.Transmission electron microscopy measurement was performed on the undoped and doped ZnO nanoparticles.Compared to the undoped ZnO,Nd-doped ZnO nanoparticles showed enhanced photoluminescent and ferromagnetic properties.The Nddoped ZnO nanoparticles also showed improved photocatalytic properties compared with the undoped ZnO nanoparticles.Furthermore,the effect of UV light irradiation was studied with thermoluminescence (TL) and photoluminescence (PL) measurement techniques.It was found that in case ofNd-doped ZnO nanoparticles TL intensity increased while the green emission in PL spectra decreased with UV-light irradiation.This was attributed to the production of more surface defects on UV irradiation on Nd-doping.

  3. ZnO nanofluids - A potential antibacterial agent

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this work, ZnO nanofluids were produced by a medium mill with a pH value of about 7.2 and characterized by Nano-Sizer and SEM. After milling, ZnO nanofluids were formed with an average particle size of~198.4 nm. The ZnO nanofluids used for testing were stored for different periods (1-, 90- and 120-day) and kept in different conditions (under the light and in the dark). The antibacterial activ- ities of these ZnO nanofluids were evaluated by estimating the reduction ratio of the bacteria treated with ZnO. The results showed that the ZnO nanofluid stored for 120 days under the light had the best antibacterial behavior against Escherichia coli DH5α. SEM images suggest that an interaction between the ZnO particles and the E. Coli bacteria cells caused by electrostatic forces might be a mechanism.

  4. Hydrogen motion in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, E.V. [Technische Universitaet Dresden, 01062 Dresden (Germany)], E-mail: edward.lavrov@physik.tu-dresden.de; Boerrnert, F.; Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2007-12-15

    The motion of hydrogen in a variety of complexes in ZnO is studied by stress-induced dichroism. The defects investigated are Cu-H and Cu-H{sub 2}, the Zn vacancy passivated by two hydrogen atoms, and a complex resulting in an IR absorption line at 3326cm{sup -1}. The hydrogen movement in these complexes is related to the hydrogen diffusion in ZnO. In addition a new microscopic model for the 3326 cm{sup -1}line is proposed.

  5. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    Science.gov (United States)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  6. Tenacity of human norovirus and the surrogates feline calicivirus and murine norovirus during long-term storage on common nonporous food contact surfaces.

    Science.gov (United States)

    Mormann, Sascha; Heißenberg, Cathrin; Pfannebecker, Jens; Becker, Barbara

    2015-01-01

    The transfer of human norovirus (hNV) to food via contaminated surfaces is highly probable during food production, processing, and preparation. In this study, the tenacity of hNV and its cultivable surrogates feline calicivirus (FCV) and murine norovirus (MNV) on two common nonporous surface materials at two storage temperatures was directly compared. Virus titer reduction on artificially inoculated stainless steel and plastic carriers was monitored for 70 days at room temperature and at 7°C. Viruses were recovered at various time points by elution. Genomes from intact capsids (hNV, FCV, and MNV) were quantified with real-time reverse transcription (RT) PCR, and infectivity (FCV and MNV) was assessed with plaque assay. RNase treatment before RNA extraction was used to eliminate exposed RNA and to assess capsid integrity. No significant differences in titer reduction were found between materials (stainless steel or plastic) with the plaque assay or the real-time quantitative RT-PCR. At room temperature, infectious FCV and MNV were detected for 7 days. Titers of intact hNV, FCV, and MNV capsids dropped gradually and were still detectable after 70 days with a loss of 3 to 4 log units. At 7°C, the viruses were considerably more stable than they were at room temperature. Although only MNV infectivity was unchanged after 70 days, the numbers of intact capsids (hNV, FCV, and MNV) were stable with less than a 1-log reduction. The results indicate that hNV persists on food contact surfaces and seems to remain infective for weeks. MNV appears to be more stable than FCV at 7°C, and thus is the most suitable surrogate for hNV under dry conditions. Although a perfect quantitative correlation between intact capsids and infective particles was not obtained, real-time quantitative RT-PCR provided qualitative data about hNV inactivation characteristics. The results of this comparative study might support future efforts in assessment of foodborne virus risk and food safety.

  7. Application of Nonporous Hollow Fiber Membrane Contactor in CO2 Removal%中空纤维致密膜基吸收法在CO2脱除中的应用

    Institute of Scientific and Technical Information of China (English)

    姜尚; 孙承贵; 贾静璇; 康国栋; 曹义鸣; 袁权

    2013-01-01

    In order to investigate the application potential of hollow fiber membrane contactors, a commercial nonporous polyimide hollow fiber membrane contactor (φ200) was tested by using tap water and seawater as absorbents to separate the CO2 from the gas mixture of CO2 and N2. The effects of liquid flow rate, liquid pressure, gas flow rate and gas pressure on the removal efficiency and overall mass transfer coefficient of CO2 were investigated. The experimental results indicate that the membrane resistance and liquid film resistance control the mass transfer when tap water and seawater are employed as absorbents. Furthermore, the removal efficiency is enhanced when the liquid/gas flow rate ratio increases. The nonporous hollow fiber contactor could perform a high CO2 removal with efficiency over 70%by optimizing the operation conditions. Finally, a stable operation process was achieved. This smooth mass transfer process indicates that the nonporous hollow fiber membrane eliminates bubbling problem and weeping problem that are frequently encountered in microporous hollow fiber contactor. Therefore, the non-porous hollow fiber contactor used in this experiment has great potential for application as a gas-liquid contactor.%  以商业φ200聚酰亚胺中空纤维致密膜大组件为接触器,淡水和海水为吸收剂,进行了CO2/N2混合气中CO2的脱除实验。考察了气液相压力和流量对CO2脱除率和过程总传质系数的影响。结果显示,液相压力对膜接触器的影响不大,而加大液/气相流量比可以提高CO2的脱除效率,通过控制操作条件可使膜接触器的CO2脱除率在70%以上。实验过程中,气液两相压力可在较宽范围内独立操作,且无鼓泡和漏液现象发生。研究表明中空纤维致密膜基接触器在CO2气体分离领域具有很好的应用潜力和前景。

  8. Synthesis of vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts with high coverage using plasma assisted PVD approach

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rabindar K., E-mail: rkrksharma6@gmail.com; Kumar, Prabhat; Reddy, G.B.

    2015-07-25

    Highlights: • This report shows the growth of α-V{sub 2}O{sub 5} on Si [1 0 0] substrate using a facile PVD route. • The presence of O{sub 2}-plasma at 500 °C is most essential for the growth of NBs with excellent coverage. • The properties of V{sub 2}O{sub 5} films are systematically studied as function of growth temperature. • The three step growth mechanism of V{sub 2}O{sub 5} NBs is discussed in this paper briefly. - Abstract: Cost-saving, easy-handling, and eco-affable plasma assisted sublimation process (PASP) is proposed to synthesize vanadium pentoxide (V{sub 2}O{sub 5}) nanobelts (NBs) with excellent coverage on Si [1 0 0] wafer using oxygen plasma without using surfactants/catalysts. Pure orthorhombic V{sub 2}O{sub 5} NBs having average length of few hundred of microns with quite uniform width nearly of 100 nm are formed at 500 °C. No film is deposited on Si in presence of oxygen gas without exciting plasma at 500 °C. HRTEM analysis with SAED pattern confirm that all V{sub 2}O{sub 5} NBs are single crystalline in nature with the fringe width of 0.33 nm corresponding to [0 1 0] crystal plane. The XPS analysis shows the compositional purity and sub-stoichiometric nature of V{sub 2}O{sub 5} NBs. The sub-stoichiometric nature of NBs is manifested through an appearance of low intensity peak corresponding to low oxidation state of V (i.e. V{sup 4+}) at the binding energy of 514.8 eV. The micro-Raman and FTIR analysis of NBs are carried out to study the different vibrational modes exhibited by V and O atoms coordinated in distinct fashions. The nanobelts exhibit room temperature PL emission in UV–visible realm with a broad hump in the range of 450–750 nm, which confirms the presence of oxygen defects in NBs and strongly supports the XPS results as well. The possible growth mechanism of α-V{sub 2}O{sub 5} NBs is proposed in this paper briefly.

  9. Thermodynamic functions of the ZnO nanoweeds

    Energy Technology Data Exchange (ETDEWEB)

    Fan Gaochao; Jiang Junying; Li Yanfen [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China); Huang Zaiyin, E-mail: hzy210@163.com [College of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006 (China) and Key Laboratory of Forest Chemicals Development and Application of Guangxi Zhuang Autonomous Region, Nanning 530006 (China)

    2011-11-01

    Highlights: {yields} ZnO nanoweeds were prepared by microemulsion-mediated hydrothermal route. {yields} Thermodynamic functions of nano ZnO with bulk ZnO were associated by designing a novel thermochemical cycle. {yields} Coupled with in situ microcalorimetry, thermodynamic functions of the products were acquired. {yields} Striking differences, compared to thermodynamic functions of bulk ZnO, can be rooted to surface effect of nano ZnO. - Abstract: ZnO nanoweeds were prepared by a simple microemulsion-mediated hydrothermal route. SEM observation revealed that each weed consisted of several nanowires which were about 1 {mu}m in length and 40 nm in diameter. In order to associate thermodynamic functions of nano ZnO with bulk ZnO, a novel thermochemical cycle was designed. Combined with in situ microcalorimetry, the standard molar enthalpy of formation, standard molar Gibbs free energy of formation and standard molar entropy of the obtained products at 298.15 K were successfully acquired as (-319.10 {+-} 0.42) kJ mol{sup -1}, (-318.53 {+-} 0.03) kJ mol{sup -1} and (54.85 {+-} 1.02) J mol{sup -1} K{sup -1}, respectively. It can be concluded that the striking differences between thermodynamic functions of nano ZnO and bulk ZnO can be rooted to surface effect of nano material.

  10. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    Science.gov (United States)

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  11. High Temperature Thermoelectric Properties of ZnO Based Materials

    DEFF Research Database (Denmark)

    Han, Li

    This thesis investigated the high temperature thermoelectric properties of ZnO based materials. The investigation first focused on the doping mechanisms of Al-doped ZnO, and then the influence of spark plasma sintering conditions on the thermoelectric properties of Al, Ga-dually doped ZnO....... Following that, the nanostructuring effect for Al-doped ZnO was systematically investigated using samples with different microstructure morphologies. At last, the newly developed ZnCdO materials with superior thermoelectric properties and thermal stability were introduced as promising substitutions...... for conventional ZnO materials. For Al-doped ZnO, α- and γ-Al2O3 were selectively used as dopants in order to understand the doping mechanism of each phase and their effects on the thermoelectric properties. The samples were prepared by the spark plasma sintering technique from precursors calcined at various...

  12. Electrochemical horseradish peroxidase biosensor based on dextran-ionic liquid-V{sub 2}O{sub 5} nanobelt composite material modified carbon ionic liquid electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhihong [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Xiaoying; Wang Yan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042 (China); Zeng Yan [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China); Sun Wei, E-mail: sunwei_1975@public.qd.sd.cn [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042 (China); Huang Xintang [Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079 (China)

    2010-11-01

    Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO{sub 3}) and V{sub 2}O{sub 5} nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of -0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De-IL-V{sub 2}O{sub 5} nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L{sup -1}. The proposed electrode is valuable for the third-generation electrochemical biosensor.

  13. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes.

    Science.gov (United States)

    Zhang, Xiaojun; Shi, Wenhui; Zhu, Jixin; Kharistal, Daniel Julian; Zhao, Weiyun; Lalia, Boor Singh; Hng, Huey Hoon; Yan, Qingyu

    2011-03-22

    We report a simple wet-chemical process to prepare porous CuO nanobelts (NBs) with high surface area and small crystal grains. These CuO NBs were mixed with carbon nanotubes in an appropriate ratio to fabricate pseudocapacitor electrodes with stable cycling performances, which showed a series of high energy densities at different power densities, for example, 130.2, 92, 44, 25, and 20.8 W h kg(-1) at power densities of 1.25, 6.25, 25, and 50 k Wh kg(-1), respectively. CuO-on-single-walled carbon nanotube (SWCNT) flexible hybrid electrodes were also fabricated using the SWCNT films as current collectors. These flexible electrodes showed much higher specific capacitance than that of electrodes made of pure SWCNTs and exhibited more stable cycling performance, for example, effective specific capacitances of >62 F g(-1) for the hybrid electrodes after 1000 cycles in 1 M LiPF6/EC:DEC at a current density of 5 A g(-1) and specific capacitance of only 23.6 F g(-1) for pure SWCNT electrodes under the same testing condition.

  14. Synthesis and Optical Properties of ZnO Nanostructures

    OpenAIRE

    2008-01-01

    One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan ...

  15. Weak Localization and Mobility in ZnO Nanostructures

    OpenAIRE

    2009-01-01

    We conduct a comprehensive investigation into the electronic and magnetotransport properties of ZnO nanoplates grown concurrently with ZnO nanowires by the vapor-liquid-solid method. We present magnetoresistance data showing weak localization in our nanoplates and probe its dependence on temperature and carrier concentration. We measure phase coherence lengths of 50–100 nm at 1.9 K and, because we do not observe spin-orbit scattering through antilocalization, suggest that ZnO nanostructures m...

  16. Multi-photon excitation in ZnO materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A brief introduction on the advance in the fabrication technology of ZnO materials was given.Related research on the multi-photon excitation processes in several kinds of ZnO materials under intense pump conditions by fs pulses were reviewed.Stimulated emission properties in ZnO microtubes and nanowires have also been dealt with.Possible nonlinear effects that emerged under the extremely intense field were discussed.

  17. Fabrication of ZnO nanoparticles by laser ablation of sintered ZnO in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Keisuke; Nanai, Yasushi; Okuno, Tsuyoshi [University of Electro-Communications, Department of Applied Physics and Chemistry, Chofu, Tokyo (Japan); Kimura, Seiji [University of Electro-Communications, The Center for Instrumental Analysis, Chofu, Tokyo (Japan)

    2012-04-15

    Fabrication of ZnO nanoparticles by laser ablation in liquid medium is reported. The possibility of using a sintered ZnO target for the ablation as well as a Zn plate is demonstrated. The appropriate aqueous solution of sodium dodecyl sulfate is found to be 1 mM for ZnO growing. The shape of ZnO nanoparticles is sphere and its diameter is 30{proportional_to}60 nm. Fourier transform infrared spectra, Raman scattering spectra, and photoluminescence spectra reveal the optical properties of ZnO nanoparticles. Nanoparticles obtained by using ZnO targets show a smaller defect density compared with those by using Zn targets. (orig.)

  18. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  19. Preparation of ZnO nanocrystals via ultrasonic irradiation

    DEFF Research Database (Denmark)

    Qian, D.; Jiang, Jianzhong; Hansen, P. L.

    2003-01-01

    A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents for the precipit......A simple and rapid process has been developed for the preparation of nanometer-sized ZnO crystals via ultrasonic irradiation, by which pure ZnO nanocrystals with an average size of 6 nm and narrow size distribution can be synthesized in a short time and without using any solvents...

  20. Hydrothermal growth of ZnO nanostructures - revew article

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2009-01-01

    Full Text Available One-dimensional nanostructures exhibit interesting electronic and optical properties due to their low dimensionality leading to quantum confinement effects. ZnO has received lot of attention as a nanostructured material because of unique properties rendering it suitable for various applications. Amongst the different methods of synthesis of ZnO nanostructures, the hydrothermal method is attractive for its simplicity and environment friendly conditions. This review summarizes the conditions leading to the growth of different ZnO nanostructures using hydrothermal technique. Doping of ZnO nanostructures through hydrothermal method are also highlighted.

  1. Low-temperature synthesis of ZnO nanonails

    Science.gov (United States)

    Song, Xubo; Zhang, Yaohua; Zheng, Jie; Li, Xingguo

    2007-09-01

    Wurtzite ZnO nanonails on silicon substrate were successfully synthesized by thermal vapor transport and condensation method at a low temperature without a metal catalyst. Pure Zn powders were used as raw material and O2/Ar powders as source gas. The products were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that the deposited nanostructures include aligned ZnO nanonails. The ZnO nanonails, with crystalline cap and small-diameter shafts, grow along the c-axis. The optical properties have been revealed by photoluminescence spectra. We considered that the ZnO nanonails growth is a vapor solid process.

  2. Room temperature ferromagnetism in Cu-doped ZnO synthesized from CuO and ZnO nanoparticles

    Science.gov (United States)

    Owens, Frank J.

    2009-11-01

    AC susceptibility and ferromagnetic resonance (FMR) measurements indicate that ZnO doped with Cu by a simple sintering process starting from nanoparticles of ZnO and CuO is ferromagnetic above room temperature. FMR measurements above room temperature indicate the ordering temperature to be above 520 K. The observation supports the recent theoretical calculations of Huang et al. which predict ferromagnetism in copper-doped ZnO.

  3. 新颖氧化镁纳米带共沉淀法合成与表征%Synthesis and Characterization of New-type MgO Nanobelts via Co-precipitation Synthetic Way

    Institute of Scientific and Technical Information of China (English)

    陈晨; 庄京; 王定胜; 王训

    2005-01-01

    MgO nanobehs were successfully synthesized via a co-precipitation synthetic way by employing ammonia and salvolatile as co-precipitator. TEM characterization showed that these nanobehs were composed of uniform hexagonal shaped MgO nanocrystals. The formation of this new-type nanostructures was attributed to the crystal structures of the MgCO3·3H2O precursor. TG was adopted to show the gradual conversion process of from MgCO3·3H2O to MgO. Due to the large surface areas and the largely exposed (100) surfaces, these nanobelts may lind their applications in catalysis fields.

  4. Thermal oxidation synthesis and magnetic properties of large-areaα-Fe2 O3 nanobelts%大面积α-Fe2O3纳米带的热氧化制备及其磁性能

    Institute of Scientific and Technical Information of China (English)

    钟明龙; 刘仲武; 焦东玲; 钟喜春; 余红雅; 曾德长

    2014-01-01

    Large-areaα-Fe2 O3 nanobelts were synthesized by heating the Fe film on silicon substrate in air,using a very simple hotplate technique.The morphologies,crystal structures,growth mechanism and magnetic prop-erties of the nanobelts were investigated.The results showed that single-crystalα-Fe2 O3 nanobelts grew per-pendicularly to the substrate along [110]direction with a very sharp tip about 10-50 nm.The length of the nanobelts were from hundreds nanometers to several micrometers.A diffusion mechanism was responsible for theα-Fe2 O3 nanostructure growth at relatively low temperatures.The Morin temperature TM and Néel temper-ature TN ofα-Fe2 O3 nanostructures were only 113 and 814 K,respectively,which were about 150 K lower than those for their bulk counterpart.%通过电热板在空气中直接加热氧化沉积在硅基片上的Fe膜,在其表面上获得大面积α-Fe2 O3纳米带,这一方法为制备大面积氧化物纳米结构提供了一种非常简单的工艺。研究了所制备的α-Fe2 O3纳米带的形貌、晶体结构、生长机制及其磁性能。α-Fe2 O3纳米带呈尖锐状并沿[110]方向垂直基片生长,其顶端为10~50 nm,长度为几百纳米至几微米。α-Fe2 O3纳米带在较低温度下的生长过程是一种扩散机制。α-Fe2 O3纳米结构的Morin温度TM、Néel温度TN 分别为113和814 K,与其块体材料相比均降低了150 K左右。

  5. ZnO based ternary transparent conductors

    Energy Technology Data Exchange (ETDEWEB)

    Polity, Angelika; Meyer, Bruno K.; Kraemer, Thorsten; Wang, Changzhong [I. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany); Haboeck, Ute; Hoffmann, Axel [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2006-09-15

    ZnO{sub 1-x}S {sub x} films in the whole composition range were deposited by radio-frequency reactive sputtering on different substrates. Raman measurements verified that the LO phonon of ZnO shifts towards lower frequencies as a function of the S content in the alloyed films. The composition dependence of the band gap energy in the ternary system was determined by optical transmission and the optical bowing parameter was found to be about 3 eV. We compare this behavior to ZnOSe films which can, however, only be synthesized in a narrow composition range close to the binary constituents ZnO and ZnSe. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. A comparative study on the structural properties of ZnO and Ni-doped ZnO nanostructures

    OpenAIRE

    Kim, Kyungho; Jin, Zhuguang; Abe, Yoshio; Kawamura, Midori; 金, 敬鎬; 阿部, 良夫; 川村, みどり

    2015-01-01

    We investigated the structural properties of zinc oxide (ZnO) nanorods with various Ni doping amounts. The length and diameter of the nanorods decreased and increased, respectively, with increasing Ni doping amount to 5 mM. Ni-doped ZnO (Ni-ZnO) nanorods exhibited better crystalline quality than undoped ZnO nanorods. In the visible wavelength region, the optical transmittance of Ni-ZnO nanorods was slightly lower than that of ZnO nanorods. Upon further increasing the Ni doping amount (7 mM), ...

  7. Preparation and characterization of ZnO and Fe-doped ZnO films by sol-gel method

    OpenAIRE

    Zhang, Xin; Wang,Jiangang; Ma, Jing; Hu, Jianwen

    2016-01-01

    ZnO and Fe-doped ZnO thin films are prepared on glass substrate by sol-gel method, and the surface morphology, structure and optical property are analyzed by scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-Vis-NIR spectrophotometer. The results show that both films have a smooth surface and a hexagonal wurtzite structure with orienting along the (101) plane. Compared with the ZnO film, the surface of Fe-doped ZnO film becomes smoother, and its...

  8. ZnO ratio-induced photocatalytic behavior of TiO2-ZnO nanocomposite

    Science.gov (United States)

    Jlassi, M.; Chorfi, H.; Saadoun, M.; Bessaïs, B.

    2013-10-01

    The aim of this study is to examine the photocatalytic activity of TiO2 (P25)-ZnO nanocomposite. The precursors of the TiO2-ZnO nanocomposite were deposited on a low cost ceramic substrate using the simple roll-coating method. We seek to improve the photocatalytic performance and the mechanical adherence of the TiO2 nanoparticles by adding ZnO. The photocatalytic properties of the nanocomposite were tested through the bleaching of polluted water. These properties were optimized by varying the composition of the nanocomposite precursors, deposition conditions and temperature annealing. A systematic study of the nanocomposites was made using ultraviolet-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). These characterizations allowed us to establish a relationship between the photocatalytic performances and the ZnO ratio using an azo-dye (methyl orange). It was found that the kinetic degradation increases with the increasing of the ZnO ratio. The Photodegradation of the dye using the sole ZnO was found to be more efficient than the P25 TiO2 and the TiO2-ZnO nanocomposite itself. The discussions were based on the mobility and lifetime of the charge carriers generated in the ZnO or in TiO2-ZnO nanocomposite.

  9. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    Science.gov (United States)

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-01

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  10. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, R. Raj [Department of ECE, Gojan School of Business and Technology, Chennai (India); Rajendran, K. [Department of Electronics, Government Arts College for Women, Ramanathapuram, TN (India); Sambath, K. [Department of ECS, Sri Krishna Arts and Science College, Coimbatore, TN (India)

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  11. Photoluminescence lineshape of ZnO

    Directory of Open Access Journals (Sweden)

    Bruno Ullrich

    2014-12-01

    Full Text Available The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques.

  12. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing Lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Xiong, Rui [School of Physics and Technology, Wuhan University, Hubei 430072 (China); Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China)

    2015-01-01

    Graphical abstract: - Highlights: • Fern-like ZnO nanoleaves were synthesized by ultrasonicating Zn microcrystals in water. • A fern-like ZnO nanoleaf is a self-assembly of ZnO nanoplates along one ZnO nanorod. • Fern-like ZnO nanoleaves exhibit enhanced photocatalytic activity than ZnO nanocrystals. • The branched hierarchical structures are responsible for the enhanced photocatalytic activity. - Abstract: Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet–visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  13. Homoepitaxial growth of ZnO; Homoepitaxie von ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, C.

    2006-08-15

    This thesis deals with the homoepitaxial growth of ZnO epitaxial thin-films. It starts with a theoretical consideration of this material system and shows how to establish a successful epitaxy. Then, the thesis shows the development of a CVD process with metallic zinc precursor and nitrogen dioxide as oxygen precursor. Finally, the physical properties of the realized epitaxial thin films are shown. Besides excellent crystalline and optical properties one finds the dependence of incorporation of atoms of the gaseous phase from the polarity of the ZnO growth polarity. (orig.)

  14. Influence of Dopants in ZnO Films on Defects

    Institute of Scientific and Technical Information of China (English)

    PENG Cheng-Xiao; WENG Hui-Min; ZHANG Yang; MA Xing-Ping; YE Bang-Jiao

    2008-01-01

    @@ The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique.The results show S that parameters meet SAl Sun SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films.Zinc vacancies are found in all ZnO films with different dopants.According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film.When AI atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films.The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  15. ZnO nanowire arrays with and without cavity tops

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyu; Quan Baogang; Tang Haoying; Guo Chuanfei [National Center for Nanoscience and Technology, Beijing 100190 (China); Jiang Peng, E-mail: pjiang@nanoctr.cn [National Center for Nanoscience and Technology, Beijing 100190 (China); Yu Aifang [National Center for Nanoscience and Technology, Beijing 100190 (China); Xie Sishen, E-mail: ssxie@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Wang Zhonglin, E-mail: zhong.wang@mse.gatech.edu [National Center for Nanoscience and Technology, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2011-10-03

    Highlights: {yields} ZnO NW array structure was formed on a ZnO-seed-layer-patterned Si substrate. {yields} Both e-beam lithography and a wet chemical method were employed. {yields} A bubble-assisted method was used for constructing ZnO nanowire arrays with cavity tops. {yields} ZnO NW array structures with different morphologies exhibited different photoluminescence properties. - Abstract: We report a new bubble-assisted growing and etching method for constructing ZnO nanowire (NW) arrays with cavity tops. Firstly, a ZnO NW array structure was formed on a ZnO-seed-layer-patterned Si substrate by combining e-beam lithography and a wet chemical method. Secondly, a new kind of ZnO NW array with cavity tops could be formed by a subsequent bubble-assisted growing and etching. These ZnO NW array structures with different morphologies exhibited different photoluminescence properties, showing their potential applications in lasing cavities, stimulated emitters, nanogenerator, photocatalysis and light-emitting diodes. The bubble-assisted etching method will open a new door for morphology design of ZnO and other semiconductor nanowire arrays at special sites.

  16. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Zhang

    2015-05-01

    Full Text Available During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  17. Optical Properties of Indium Doeped ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    Tsung-Shine Ko

    2015-01-01

    Full Text Available We report the synthesis of the ZnO nanowires (NWs with different indium concentrations by using the thermal evaporation method. The gold nanoparticles were used as the catalyst and were dispersed on the silicon wafer to facilitate the growth of the ZnO NWs. High resolution transmission electron microscopy confirms that the ZnO NWs growth relied on vapor-liquid-solid mechanism and energy dispersion spectrum detects the atomic percentages of indium in ZnO NWs. Scanning electron microscopy shows that the diameters of pure ZnO NWs range from 20 to 30 nm and the diameters of ZnO:In were increased to 50–80 nm with increasing indium doping level. X-ray diffraction results point out that the crystal quality of the ZnO NWs was worse with doping higher indium concentration. Photoluminescence (PL study of the ZnO NWs exhibited main photoemission at 380 nm due to the recombination of excitons in near-band-edge (NBE. In addition, PL results also indicate the slightly blue shift and PL intensity decreasing of NBE emission from the ZnO NWs with higher indium concentrations could be attributed to more donor-induced trap center generations.

  18. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots.

  19. Magnetism in dopant-free ZnO nanoplates.

    Science.gov (United States)

    Hong, Jung-Il; Choi, Jiil; Jang, Seung Soon; Gu, Jiyeong; Chang, Yangling; Wortman, Gregory; Snyder, Robert L; Wang, Zhong Lin

    2012-02-01

    It is known that bulk ZnO is a nonmagnetic material. However, the electronic band structure of ZnO is severely distorted when the ZnO is in the shape of a very thin plate with its dimension along the c-axis reduced to a few nanometers while keeping the bulk scale sizes in the other two dimensions. We found that the chemically synthesized ZnO nanoplates exhibit magnetism even at room temperature. First-principles calculations show a growing asymmetry in the spin distribution within the distorted bands formed from Zn (3d) and O (2p) orbitals with the reduction of thickness of the ZnO nanoplates, which is suggested to be responsible for the observed magnetism. In contrast, reducing the dimension along the a- or b-axes of a ZnO crystal does not yield any magnetism for ZnO nanowires that grow along c-axis, suggesting that the internal electric field produced by the large {0001} polar surfaces of the nanoplates may be responsible for the distorted electronic band structures of thin ZnO nanoplates.

  20. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    Science.gov (United States)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  1. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton, Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and high (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

  2. Highly selective and sensitive response of 30.5 % of sprayed molybdenum trioxide (MoO3) nanobelts for nitrogen dioxide (NO2) gas detection.

    Science.gov (United States)

    Mane, A A; Suryawanshi, M P; Kim, J H; Moholkar, A V

    2016-12-01

    The molybdenum trioxide (MoO3) thin films have been successfully deposited onto the glass substrates using chemical spray pyrolysis (CSP) deposition technique at various substrate temperatures ranging from 300°C to 450°C with an interval of 50°C. The effect of substrate temperature on the structural, morphological, optical and gas sensing properties of MoO3 thin films has been thoroughly investigated. X-ray diffraction analysis reveals that all the films have an orthorhombic crystal structure and are polycrystalline in nature. FE-SEM micrographs depict the formation of nanobelts-like morphology. AFM study reveals that the RMS surface roughness of MoO3 thin films increases from 8.6nm to 12nm with increase in substrate temperature from 300°C to 400°C and then decreases to 11.5nm for substrate temperature of 450°C. Optical results show that the band gap of MoO3 thin films decreases from 3.92eV to 3.44eV. The selectivity studies show that the gas response of various gases varies as NH3deposited at substrate temperature of 400°C is highly selective and sensitive for detection of NO2 gas in comparison with other gases. The maximum response of 30.5 % is obtained towards 100ppm NO2 gas concentration at an operating temperature of 200°C with response and recovery times of 20s and 160s, respectively. Finally, NO2 gas sensing mechanism model based on the chemisorption process is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Fabrication and green emission of ZnO nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Well-aligned single-crystalline wurzite zinc oxide (ZnO) nanowire arrays were successfully fabricated on a Si substrate by a simple physical vapor-deposition (PVD) method at a relatively low temperature of about 500℃. The as-fabricated nanowires were preferentially arranged along the [001] direction of ZnO. The photoluminescence spectrum of ZnO nanowire arrays showed two emission bands: a strong green emission at around 500 nm and a weak ultraviolet emission at 380 nm. The strong green light emission was related to the existence of the oxygen vacancies in ZnO crystals. Corresponding growth mecha- nism of the ZnO nanowires was briefly discussed.

  4. A Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires.

    Science.gov (United States)

    Gao, Jingyun; Zhao, Qing; Sun, Yanghui; Li, Guo; Zhang, Jingmin; Yu, Dapeng

    2011-12-01

    We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence measurements. The chemical state of P was investigated by electron energy loss spectroscopy (EELS) analyses in individual ZnO nanowires. P was found to substitute at oxygen sites (PO), with the presence of anti-site P on Zn sites (PZn). P-doped ZnO nanowires were high resistance and the related P-doping mechanism was discussed by combining EELS results with electrical measurements, structure characterization and photoluminescence measurements. Our method provides an efficient way of synthesizing P-doped ZnO nanowires and the results help to understand the P-doping mechanism.

  5. Fabrication of a ZnO Pyroelectric Sensor

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2008-01-01

    Full Text Available This paper proposes a two-step radio frequency (RF sputtering process to forma ZnO film for pyroelectric sensors. It is shown that the two-step sputtering process with alower power step followed by a higher power step can significantly improve the voltageresponsivity of the ZnO pyroelectric sensor. The improvement is attributed mainly to theformation of ZnO film with a strongly preferred orientation towards the c-axis.Furthermore, a nickel film deposited onto the uncovered parts of the ZnO film caneffectively improve the voltage responsivity at higher modulating frequencies since thenickel film can enhance the incident energy absorption of the ZnO layer.

  6. Liquid crystal alignment on ZnO nanostructure films

    Science.gov (United States)

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2016-03-01

    The study of liquid crystal (LC) alignment is important for fundamental researches and industrial applications. The tunable pretilt angles of liquid crystal (LC) molecules aligned on the inorganic zinc oxide (ZnO) nanostructure films with controllable surface wettability are demonstrated in this work. The ZnO nanostructure films are deposited on the ITO- glass substrates by the two-steps hydrothermal process, and their wettability can be modified by annealing. Our experimental results show that the pretilt angles of LCs on ZnO nanostructure films can be successfully adjusted over a wide range from ~90° to ~0° as the surface energy on the ZnO nanostructure films changes from ~30 to ~70 mJ/m. Finally we have applied this technique to fabricate a no-bias optically-compensated bend (OCB) LCD with ZnO nanostructure films annealed at 235 °C.

  7. Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Johar

    2015-01-01

    Full Text Available Nanocomposites have a great potential to work as efficient, multifunctional materials for energy conversion and photoelectrochemical reactions. Nanocomposites may reveal more improved photocatalysis by implying the improvements of their electronic and structural properties than pure photocatalyst. This paper presents the recent work carried out on photoelectrochemical reactions using the composite materials of ZnO with CdS, ZnO with SnO2, ZnO with TiO2, ZnO with Ag2S, and ZnO with graphene and graphene oxide. The photocatalytic efficiency mainly depends upon the light harvesting span of a material, lifetime of photogenerated electron-hole pair, and reactive sites available in the photocatalyst. We reviewed the UV-Vis absorption spectrum of nanocomposite and photodegradation reported by the same material and how photodegradation depends upon the factors described above. Finally the improvement in the absorption band edge of nanocomposite material is discussed.

  8. Low temperature doping of ZnO nanostructures

    Institute of Scientific and Technical Information of China (English)

    M.A.THOMAS; H.KANDEL; Y.C.SOO

    2009-01-01

    Doping of ZnO nanostructures was investigated by using a low temperature electrochemical process. Various dopant materials have been studied, including transition metals, group I, and group VII elements. The structure, composition, and optical properties of the doped ZnO nanostructures were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence, and x-ray diffraction. It was demonstrated that dopant elements were incorporated into the ZnO structures. The effects of dopant incorporation on the structure and properties of ZnO were also investigated. This low temperature approach is compatible with current micro-fabrication techniques and promising for large-scale production of doped ZnO nanostructures for optical and electronic applications.

  9. Method and apparatus for separating hydrogen from gas mixtures by diffusion through a nonporous wall. Verfahren und Vorrichtung zur Abtrennung von Wasserstoff aus Gasgemischen durch Diffusion durch eine nichtporoese Wand

    Energy Technology Data Exchange (ETDEWEB)

    Behr, F.; Weirich, W.; Schulten, R.

    1983-06-23

    A Cu-saturated alloy containing 10-30% Ti, 3-10% V, 25 wt% Nb, and >30% Ta is used as a nonporous membrane for the separation of H from gas mixtures in nuclear reactors by selective diffusion. The primary side of the alloy contacting the gas mixture is coated with a Pd/Cu or Pd/Ag alloy, whereas the secondary side contacts a Na-K, Li, or Ba-Mg-Ca melt, the affinity of which to H is higher than that of the Ta-base alloy and the Pd-Cu or Pd-Ag coating. The alkali or alkaline-earth metal melt increases the diffusion rate of H through the membrane and prevents the formation of brittle hydrides in the membrane.

  10. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff

    2015-05-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  11. Characterization of ZnO Based Varistor Derived from Nano ZnO Powders and Ultrafine Dopants

    Institute of Scientific and Technical Information of China (English)

    Weizhong YANG; Dali ZHOU; Guangfu YIN; Runsheng WANG; Yun ZHANG

    2005-01-01

    Nanosized ZnO powders were prepared with a two-step precipitation method. The average size of ZnO particles was about 80 nm and their size distribution was narrow. Combining with ultrafine additive powders, ZnO base varistor was produced via an oxide mixing route. ZnO varistor derived from normal reagent grade starting materials was investigated for comparison purpose. Outstanding microstructure of the ZnO varistor derived from nanosize ZnO powders and ultrafine dopants was obtained: uniform distribution of fine ZnO grains (less than 3 microns), grain boundary and the dopant position. Higher varistor voltage (U=492 V/mm) and nonlinear coefficient (α=56.2) as well as lower leakage current (IL=1.5μA) were achieved. The better electrical properties were attributed to the uniform microstructure, which in turn led to stable and uniform potential barriers. Also this improved technique is more feasible for producing ZnO nanopowders and resulting varistor in large scales.

  12. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zafar Hussain Ibupoto

    2013-08-01

    Full Text Available Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002 peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  13. Self-assembly of ZnO nanoparticles and preparation of bulk ZnO porous nanosolids

    Institute of Scientific and Technical Information of China (English)

    LIU Xiulin; XU Hongyan; YU Lili; LI Mei; WANG Chengjian; CUI Deliang; JIANG Minhua

    2005-01-01

    Novel bulk ZnO porous nanosolids were prepared by a unique solvothermal hot-press method, using ZnO nanoparticles and several kinds of solvents as the starting materials. It was found from the experiments that ZnO nanoparticles underwent a "self-assembly process" under some specific hydrothermal hot-press conditions. As a result, some "nanoflowers" formed. The results showed that porous nanosolids with uniform pore diameters could be obtained when water distributed uniformly among the ZnO nanoparticles. On the contrary, if the uniformity of the distribution of water was poor, "nanoflowers" would appear in the water-rich region. It was also found that the photoluminescence of ZnO porous nanosolids was affected by the self-assembly phenomenon. In addition, the results also showed that, both the volume and diameters of the pores could be adjusted by changing either the hot-press temperature, pressure or the kinds of solvents.

  14. Solution growth of ZnO microwires and grass architectures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin, E-mail: nchopra@eng.ua.edu; Wu, Junchi; Shi, Wenwu

    2013-06-20

    Highlights: • Au nanoparticles with different shapes and sizes were produced. • Au nanoparticles resulted in uniformly dispersed and standing ZnO microwires. • Au nanoparticles serve as heterogeneous nucleation sites for the ZnO microwires. • Au nanoparticles also resulted in ZnO grass architectures. -- Abstract: In spite of extensive research in gold (Au) nanoparticles, it remains a challenge to synthesize structurally homogeneous sample-set with controlled morphologies. The latter critically affect the role of Au nanoparticles as a seed/catalyst for the growth of other nanostructures. Here, we systematically studied and quantified the growth of Au nanoparticles in a single-step chemical synthesis approach and observed the effects of growth temperature and duration, metal salt and surfactant concentration, and surfactant type. These parameters strongly influenced morphological evolution, distribution, and heterogeneities in the as-synthesized Au nanoparticles. Next, the synthesized Au nanoparticles were utilized for the growth of zinc oxide (ZnO) microwires in a solution growth approach. It was observed that Au nanoparticles on the substrate did not catalyze the growth of ZnO microwires but facilitated uniform dispersion of standing microwires. Supported by microscopic analysis, the proposed growth mechanism is heterogeneous nucleation of ZnO on the loosely bound Au nanoparticles on the substrates, favored by lattice match between the ZnO and Au. Based on this mechanism, Au nanoparticles only assisted in the initial stages of ZnO microwire growth. For longer growth duration (∼10 h), over-deposition of ZnO from the solution on already grown wires led to their micron scale diameters as well as grass architectures and making the growth process independent of size and shape of the Au nanoparticles. The formation of ZnO grass architecture is due to attachment of Au nanoparticles on the growing microwire surface, which further served as a heterogeneous

  15. Surface Barrier Models of ZnO

    Institute of Scientific and Technical Information of China (English)

    MA Yong; WANG Wan-lu; LIAO Ke-jun; KONG Chun-yang

    2004-01-01

    For a low surface barrier, the energy band, barrier height and width of the space charge region at the surface of relatively large grains of ZnO are presented analytically on condition that the electron distribution obeys the Boltzmann statistics. It is shown that the temperature in the space charge distribution factor has an important effect on the energy band, barrier height and width of the space charge region. The depletion approximation is a model in which the temperature in the space charge distribution factor is zero. Our results are better than the depletion approximation.

  16. Disc-Capped ZnO Nanocombs

    Institute of Scientific and Technical Information of China (English)

    LI Xin; XU chun-xiang; ZHU Guang-Ping; YANG Yi; LIU Jin-Ping; SUN Xiao-Wei; CUI Yi-Ping

    2007-01-01

    Nanocombs with a disc cap structure of ZnO have been synthesized on si substrates by using pure Zinc powders as the source materials based on a vapour-phase transport process.The morphology and the microstructure are investigated by a scanning electron microscopy and x-ray diffraction.Based on the transmission electron microscopy and selected area electron diffraction analysis,the growth directions of three representative parts,nanoribbon stem,nanorod branch and nanodisc cap of the nanocomb are revealed.The growth mechanism of the disc-capped nanocombs is discussed based on the self-catalyzed vapour-liquid-solid process.

  17. Self-standing particle-binding ZnO film.

    Science.gov (United States)

    Masuda, Yoshitake; Kato, Kazumi

    2009-01-01

    Self-standing particle-binding ZnO film was fabricated by combination of crystallization in aqueous solution and annealing on FTO (SnO2:F) coated glass substrate. Multi-needle ZnO particles crystallized in a solution of zinc nitrate hexahydrate and ethylenediamine at 60 degrees C. Crystalline particles having an ultrafine surface relief structure were gradually deposited on the substrate to form thick particulate film. The film was then annealed at 950 degrees C for 1 h in air. The ZnO particles formed necks to connect to each other. The glass substrate deformed into a dome shape generating stress between the ZnO film and substrate; on the other hand, FTO layers retained their uneven surface during annealing. ZnO particulate film was successfully peeled off from the substrate as self-standing film. Deformation of glass substrate and FTO joint-insulating layer supported peeling-off of the film. The connected ZnO particles formed continuous white porous film having many spaces and continuous open pores surrounded by multi-needle ZnO particles. The film can be used as self-standing film and be pasted on substrate such as polymer film, metal or paper for application to flexible lightweight devices.

  18. Controlling the visible luminescence in hydrothermal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lem, Laurent L.C.; Phillips, Matthew R.; Ton-That, Cuong, E-mail: Cuong.Ton-That@uts.edu.au

    2014-10-15

    Cathodoluminescence spectra have been measured in hydrothermal and hydrogen-doped ZnO at different excitation densities and temperatures to investigate the emission efficiencies of near-band-edge (NBE), green and yellow luminescence bands. The NBE intensity depends linearly on the electron beam excitation as expected for excitonic recombination character. The intensities of the green and yellow bands are highly dependent not only on the excitation density but also on temperature. At high excitation densities ZnO exhibits dominant green emission at room temperature; the intensity of the green band can be further controlled by doping ZnO with hydrogen, which passivates green luminescence centers. Conversely at small excitation densities (< 0.1 nA) and low temperatures the visible luminescence from ZnO is predominantly yellow due to the abundance of Li in hydrothermal ZnO. The results are explained by differences in the recombination kinetics and the relative concentrations of the green and yellow centers, and illustrate that single-color emission can be achieved in ZnO by adjusting the excitation power and temperature. - Highlights: • Hydrothermal ZnO crystals are analyzed by cathodoluminescence spectroscopy. • Intensities of luminescence bands are highly dependent on excitation density. • Visible luminescence is influenced by temperature and hydrogen dopants. • Emission efficiencies are explained by recombination kinetics of defects.

  19. Gold as an intruder in ZnO nanowires.

    Science.gov (United States)

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-07

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications.

  20. Interaction of Glucose with ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    P.K. Samanta

    2014-06-01

    Full Text Available We report the results of the extent of interaction as well as the formation of a bioconjugate of glucose with Zinc Oxide nano particles (ZnO NPs to understand the non-invasive monitoring of glucose by semiconductor NPs. We performed an array of photophysical as well as microscopic measurements to quantify the interaction between ZnO NPs and glucose. We have found that time constant of interaction (t1  18.47 min for the binding glucose with surface of ZnO NPs and follows a single exponential association process.

  1. Development in p-type Doping of ZnO

    Institute of Scientific and Technical Information of China (English)

    YU Liping; ZHU Qiqiang; FAN Dayong; LAN Zili

    2012-01-01

    Zinc oxide (ZnO) is a wide band-gap material of the Ⅱ-Ⅵ group with excellent optical properties for optoelectronics applications,such as the flat panel displays and solar cells used in sports tournament.Despite its advantages,the application of ZnO is hampered by the lack of stable p-type doping.In this paper,the recent progress in this field was briefly reviewed,and a comprehensive summary of the research was carried out on ZnO fabrication methods and its electrical,optical,and magnetic properties were presented.

  2. Preparation, characterization and properties of ZnO nanomaterials

    Science.gov (United States)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  3. Green emission in carbon doped ZnO films

    Directory of Open Access Journals (Sweden)

    L. T. Tseng

    2014-06-01

    Full Text Available The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR and low temperature photoluminescence (PL measurement.

  4. Green emission in carbon doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, L. T.; Yi, J. B., E-mail: jiabao.yi@unsw.edu.au; Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S. [School of Materials Science and Engineering, University of New South Wales, Kensington, NSW, 2052 (Australia); Fan, H. M. [School of Chemical Engineering, Northwest University, Xi' an 710069 (China); Herng, T. S.; Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 119260 (Singapore); Ionescu, M. [Australian Nuclear Science and Technology Organization, (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234 (Australia)

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  5. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films

    Directory of Open Access Journals (Sweden)

    Shuhan Jing

    2015-04-01

    Full Text Available The semiconductor industry has long been seeking a new kind of non-volatile memory technology with high-density, high-speed, and low-power consumption. This study demonstrated the electrochemical synthesis of ZnO films without adding any soft or hard templates. The effect of deposition temperatures on crystal structure, surface morphology and resistive switching characteristics were investigated. Our findings reveal that the crystallinity, surface morphology and resistive switching characteristics of ZnO thin films can be well tuned by controlling deposition temperature. A conducting filament based model is proposed to explain the switching mechanism in ZnO thin films.

  6. Synthesis of Vertically Aligned Dense ZnO Nanowires

    OpenAIRE

    Lihong Gong; Xiang Wu; Huibo Chen; Fengyu Qu; Maozhong An

    2011-01-01

    We reported the synthesis of vertically aligned dense ZnO nanowires using Zn powder as the source material by a hydrothermal method and a postannealing process at 200°C. The as-synthesized ZnO nanowires are 100–200 nm in diameter and several micrometers in length and each nanowire has a tapered tip. The morphologies of the products remain after post-annealing treatment. Structural analysis indicates the ZnO nanowire is single crystalline and grows along the [0001] direction. The possible grow...

  7. Tritium beta-luminescence in ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B; Yan, F; Chen, K P [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Philipose, U; Ruda, H [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4 (Canada); Kherani, N P [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 3G4 (Canada); Shmayda, W, E-mail: kherani@ecf.utoronto.c, E-mail: kchen@engr.pitt.ed [Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623 (United States)

    2010-10-20

    This paper reports on the observation of tritium-powered beta-luminescence (BL) in ZnO nanowires (NWs). The ZnO NWs, prepared using standard vapour-liquid-solid growth, were exposed to tritium betas emanating from a tritium gas source over a range of pressures and from a scandium tritide source. BL spectra were measured at room temperature, showing increasing signal strength with increasing tritium pressure and thus beta energy flux. Complementary photoluminescence studies with and without hydrogen impregnation indicate the quenching effect of hydrogen in ZnO NWs and thus reduced emission.

  8. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Science.gov (United States)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  9. Synthesis and optical characteristics of ZnO nanocrystals

    Indian Academy of Sciences (India)

    D Sridevi; K V Rajendran

    2009-04-01

    Zinc oxide nanomaterials with an average particle size of 20–30 nm are readily synthesized by the reaction of zinc acetate and oxalic acid under hydrothermal conditions. The samples are characterized by XRD, SEM, TEM, UV and photoluminescence (PL) studies. The average crystal size of the as prepared ZnO nanopowder is determined by XRD and the values are in good agreement with the TEM analysis. UV absorption spectra revealed the absorption at wavelength < 370 nm indicating the smaller size of ZnO nanoparticles. The quality and purity of ZnO nanomaterial crystalline samples are confirmed by photoluminescence spectra

  10. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    Directory of Open Access Journals (Sweden)

    Noriko Saito and Hajime Haneda

    2011-01-01

    Full Text Available We review the solvothermal synthesis, using a mixture of ethylene glycol (EG and water as the solvent, of zinc oxide (ZnO particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i EG restricts the growth of ZnO microcrystals, (ii EG promotes the self-assembly of small crystallites into spheroidal particles and (iii the high water content of EG results in hollow spheres.

  11. Photoluminescence of Eu (Ⅲ)-Doped ZnO Nanopowder and Energy Transfer from ZnO to Eu(Ⅲ) Ions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin-Li; GUO Chang-Xin; ZHAO Jun-Jing; HU Jun-Tao

    2005-01-01

    @@ An europium(Ⅲ)-doped ZnO (ZnO:Eu3+) nanopowder has been directly synthesized by a high-temperature calcination method. Under the typical UV ZnO excitation, Eua+-doped samples exhibit strong red luminescence from Eu3+ ions with complete quenching broad emission. An energy transfer from ZnO host to Eua+ ions can be observed.

  12. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    Science.gov (United States)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  13. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2016-07-01

    Full Text Available Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO nanobelts (VNBs and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO are formed in the presence of graphene oxide (GO, a mild oxidant, which transforms into reduced GO (rGOHT, assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV with a varying scan rate and galvanostatic charging-discharging (V–t profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3 showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1, as compared to V1G1 (VO/GO = 1:1 composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of

  14. 三氧化钼纳米带电致变色过程中的缺陷变化研究%Study on Evolvement of Defects in Electrochromic Effect of MoO3 Nanobelt

    Institute of Scientific and Technical Information of China (English)

    班冬梅; 潘孟美; 王林茂; 洪丽; 傅军

    2013-01-01

    Molybdenum trioxide nanobelt films were prepared on ITO glass substrate by thermal evaporation methods.The morphology and microstructure were investigated by scanning electron microscopy (SEM),X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR).The optical properties and the evolvement of defects in the electrochromic process were investigated in detail by ultraviolet-visible-near infrared (UV-Vis-NIR)spectroscopy,and photoluminescence spectroscopy (PL).It is shown that the optical band gap of MoO3 nanobelts is 3.36 eV.There are Mo5+ which come from lattice distortion and oxygen deficiency in as-prepared MoO3 nanobelts.The insertion of the Li+ and e-does not change the valence of these Mo5+,but form new Mo5+ following by new distortion of [MoO6] octahedron with the insertion.The electron's transfer between Mo6+ and Mo5+ lead to coloration.%采用热蒸发法在氧化铟锡玻璃上制备三氧化钼(MoO3)纳米带薄膜.通过扫描电镜、X射线衍射、红外光谱分析了纳米带的表面形貌及结构,通过紫外-可见-近红外光谱以及光致发光谱分析了电致变色前后纳米带光学性能以及缺陷分布情况.结果表明:纳米带的光学带隙为3.36 eV,变色前纳米带内部就存在着部分由晶格畸变和氧空位产生的+5价Mo离子;变色后,注入的Li+和e-使材料内部的[MoO6]八面体发生新的畸变,产生新的Mo5.电子在+6价和+5价的Mo离子间发生迁移而导致着色.

  15. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    Science.gov (United States)

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  16. ZNO and AG-ZNO crystals: synthesis, characterization, and application in heterogeneous photocatalysis

    Directory of Open Access Journals (Sweden)

    Adriana Campano Lucilha

    2016-05-01

    Full Text Available ZnO and Ag-ZnO were synthesized in a simple and efficient manner by thermal decomposition of zinc oxalate and silver/zinc mixed oxalate. The influence of the addition of metallic silver on ZnO particles and the effect of temperature in the thermal treatment were investigated. The samples were characterized by thermogravimetric analysis, Raman, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, specific surface area (Brunauer-Emmett-Teller and diffuse reflectance spectroscopy. The photocatalytic activity of these materials in the decolorization of direct red 23 diazo dye was studied. The complete conversion into oxides from oxalates at lower temperatures was determinant in the photocatalytic efficiency of both the oxides. The presence of silver in zinc oxide, treated at 400 °C, more than doubled the rate constant of diazo dye decolorization (6.87×10-3 min-1 with respect to ZnO, treated at 600 °C, resulting in 3.07×10-3 min-1 under UV irradiation at 30 °C.

  17. Spontaneous formation of single crystal ZnO nanohelices

    Institute of Scientific and Technical Information of China (English)

    Wu Xiang; Cai Wei; Qu Feng-Yu

    2009-01-01

    This paper reports a novel helix-like ZnO nanostructure with several tens of nanometres in thickness synthesized on a gold-coated Si substrate by thermal evaporation of zinc sulfide powder at 1020℃.Transmission electron microscope characterization shows that as-synthesized ZnO nanohelices extend along[01-11]direction and the axial direction of the helix is along[0001]direction.A catalyst-intervened dislocation-induced growth mechanism has been suggested to explain the fbrmation of the helix-like ZnO nanostructures.This study opens a new route to construct helix-like ZnO nancetructures by different evaporation sources.

  18. Tailoring radiation damage in ZnO by surface modification

    Science.gov (United States)

    Myers, M. T.; Charnvanichborikarn, S.; Myers, M. A.; Lee, J. H.; Wang, H.; Biener, M. M.; Shao, L.; Kucheyev, S. O.

    2013-07-01

    Heavy-ion irradiation of (0 0 0 1) ZnO crystals results in unusual damage buildup, including an additional (intermediate) peak in damage-depth profiles measured by ion channeling, the formation of near-surface nanocavities, and stoichiometric imbalance. All these effects are thought to be associated with the influence of the sample surface on dynamic annealing processes. Here, by using ion channeling and transmission electron microscopy, we find that placing an ~7 nm thick AlO(OH) layer on the (0 0 0 1) ZnO surface results in (i) suppression of cavity formation, (ii) a reduced intermediate defect peak intensity, and (iii) a decreased level of disorder extending up to ~100 nm from the ZnO surface for room-temperature bombardment with 500 keV Xe ions. Our results demonstrate the potential to control radiation damage in ZnO by surface manipulation.

  19. Fabrication and Wettability of ZnO Nanorod Array

    Institute of Scientific and Technical Information of China (English)

    Meng Sun; Yi Du; Weichang Hao; Huaizhe Xu; Youxing Yu; Tianmin Wang

    2009-01-01

    ZnO nanorod arrays were prepared in an open system by using a simple aqueous solution method. Spindle-like, wimble-like, tower-like and hexagonal rod-like ZnO rods were obtained under different conditions. ZnO nanorod arrays with different morphology and size were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurement (CAM). The size of ordered zinc oxide rods can be controlled by temperature of water bath, because this temperature can influences growing speeds in different crystal directions. Some additives, such as urea and thiourea, were introduced into reaction solution to improve quality of arrays. Surface character of ZnO nanorod arrays can be changed from hydrophilic to hydrophobic, which was proved to be dependence on size of air grooves on surface.

  20. Nanogenerator made of ZnO nanosheet networks

    Science.gov (United States)

    Zhang, Renyun; Hummelgård, Magnus; Olsen, Martin; Örtegren, Jonas; Olin, Håkan

    2017-05-01

    The piezoelectricity of nanomaterials attracts a great deal of attention due to its broad application, including the harvesting of ambient mechanical energy to power small electronics devices. We report here a simple method to fabricate piezoelectric nanogenerators consisting of networks of ZnO nanosheets grown on aluminum (Al) foils, where the Al acts as both a substrate for growth and as an electrode contacting the ZnO network. A second, top electrode was tapped, rolled, or rubbed against the ZnO to generate piezoelectricity. This second electrode was either a copper foil or fluorine doped tin oxide (FTO) glass. A piezo voltage of up to 0.924 V was detected during rolling and 6 μA was the highest current observed when rubbing the ZnO film with a FTO glass. Due to its simplicity, this nanogenerator fabrication method has the potential to be scaled up for the industrial production of piezoelectric energy harvesting devices.

  1. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    Science.gov (United States)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  2. Synthesis and Optical Properties of ZnO Nanostructures

    Science.gov (United States)

    Wang, Duo-Fa; Liao, Lei; Li, Jin-Chai; Fu, Qiang; Peng, Ming-Zeng; Zhou, Jun-Ming

    2005-08-01

    ZnO nanostructures with different morphologies were fabricated by changing the partial oxygen pressure. The structures, morphologies and optical properties of ZnO nanostructures were investigated by x-ray diffraction, field emission scanning electron microscopy and photoluminescence (PL) spectra at room temperature. All the samples show preferred orientation along the c-axis. The oxygen partial pressure and the annealing atmosphere have important effect on the PL property of ZnO nanostructures. The high oxygen partial pressure during growth of samples and high-temperature annealing of the ZnO samples in oxygen can increase oxygen vacancies and can especially increase antisite oxygen (Ozn) defects, which degraded the near band-edge emission. However, the annealing in H2 can significantly modify the NBE emission.

  3. Synthesis and Optical Properties of ZnO Nanostructures

    Institute of Scientific and Technical Information of China (English)

    WANG Duo-Fa; LIAO Lei; LI Jin-Chai; FU Qiang; PENG Ming-Zeng; ZHOU Jun-Ming

    2005-01-01

    @@ ZnO nanostructures with different morphologies were fabricated by changing the partial oxygen pressure. The structures, morphologies and optical properties of ZnO nanostructures were investigated by x-ray diffraction, field emission scanning electron microscopy and photoluminescence (PL) spectra at room temperature. All thesamples show preferred orientation along the c-axis. The oxygen partial pressure and the annealing atmosphere have important effect on the PL property of ZnO nanostructures. The high oxygen partial pressure during growth of samples and high-temperature annealing of the ZnO samples in oxygen can increase oxygen vacancies and can especially increase antisite oxygen (Ozn) defects, which degraded the near band-edge emission. However, the annealing in H2 can significantly modify the NBE emission.

  4. Preparation and Photoluminescence of ZnO Nanostructures

    Institute of Scientific and Technical Information of China (English)

    YAN Jin-Liang; ZHAO Yin-nu; SUN Xue-qing; GUO Chun

    2006-01-01

    Porous anodic alumina (PAA) hosts with ZnO nanoparticles loaded in were prepared by immersing PAA films in an aqueous solution of zinc acetate and then annealing at high temperatures. Highly ordered ZnO nanodot arrays were produced using the method in combination of PAA template with RF magnetron sputtering deposition. The photoluminescence of the ZnO/PAA composite and the highly ordered ZnO nanodot arrays were investigated by means of a fluorescent spectrometer. The ZnO/PAA composite exhibits intense and broad photoluminescence spectra with the peak position at around 485 nm. The ZnO nanodot arrays have a strong UV light emissive peak at about 380 nm and a wide light emissive peak at 460 nm-610 nm at the room temperature.

  5. EPD-deposited ZnO thin films: a review

    Energy Technology Data Exchange (ETDEWEB)

    Verde, M.

    2014-07-01

    ZnO-based materials and specifically ZnO films with tailored morphology have been subjected to extensive research in the past few years due to their high potential for multiple prospective applications, mainly in electronics. Electrophoretic Deposition (EPD) constitutes an economical, eco friendly, low energy consuming and easily scalable alternative to the high energy consuming evaporative techniques which are commonly used for the obtaining of these ZnO films. For its application, however, the use of stable, well dispersed suspensions is a necessary requirement, and thus a thorough study of their colloidal chemistry is essential. In this work the main contributions to the study of colloidal chemistry of ZnO nanoparticle suspensions and their shaping into ZnO films by EPD are summarized. (Author)

  6. Preparation of one-dimensional nanostructured ZnO

    Institute of Scientific and Technical Information of China (English)

    Xiuping Jiang; Youzhi Liu; Yanyang Cao; Xuejun Zhang; Lihong Shi

    2010-01-01

    Rod-like ZnO particles were synthesized via a sol-gel method by adding ethylene diamine(EDA)to the were characterized by XRD(X-ray powder diffractometer)and TEM(transmission electron microscope).Rod-like ZnO belongs to the hexagonal Wurtzite system,with diameters and lengths of about 20-200nm and 0.2-1.5μm,respectively.Experimental results showed that the morphology of nano-ZnO can be controlled by modulating the quantities of EDA added into the reaction system and that EDA plays an important role in the formation of rod-like ZnO particles.The growth mechanism of the rod-like nano-ZnO was briefly discussed.The proposed facile,reproducible,effective and low-cost synthesis promises future large-scale preparation of nanostructured ZnO for application in nanotechnology.

  7. Sonochemical effects on ZnO particles

    Directory of Open Access Journals (Sweden)

    Bruna C. Costa

    2014-01-01

    Full Text Available La variedad de aplicaciones tecnológicas relacionadas a los dispositivos basados en óxidos semiconductores nanoestructurados ha despertado un gran interés en la comunidad científica, haciendo con que los estudios relacionados a estos materiales han aumentado en los últimos años. Entre estos materiales, se encuentra el óxido de zinc (ZnO, que presenta aplicaciones en las más diversas áreas, desde diodos emisores de luz (LEDs a los dispositivos fotovoltaicos en células solares. Con el conocimiento de que las propiedades químicas y físicas que confieren a estos materiales las posibilidades de aplicación en dispositivos tecnológicos son fuertemente dependientes de las rutas de síntesis empleadas para la obtención de los mismos, presentamos en este trabajo una investigación con respecto de las modificaciones morfológicas ocurridas en partículas de ZnO, cuando el mismo es expuesto a un tratamiento sonoquímico, además de las influencias de los parámetros relacionados a éste método de síntesis en la obtención de este material. Para analizar los parámetros presentados anteriormente, tres muestras fueron preparadas, dos de ellas manteniendo la amplitud y variando el tiempo de sonicación y otra manteniendo el tiempo y variando la amplitud de sonicación, durante el tratamiento sonoquímico. El análisis de los resultados obtenidos indica que el tratamiento sonoquímico conduce a modificaciones morfológicas superficiales en las partículas de ZnO, además estas modificaciones se presentaron más evidentes cuando una mayor amplitud y un mayor tiempo de sonicación fueron utilizados en la síntesis de las muestras.

  8. Preparation and properties of ZnO nano-whiskers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By a novel controlled combustion synthesis method, a large amount of ZnO nano-whiskers with different morphologies like nanotetrapods, long-leg nanotetrapod and multipods, were prepared without any catalysts and additives in open air at high temperature. Their morphologies, structures and optical properties were in-vestigated by using SEM, XRD and PL spectrum. The possible growth mechanisms on the ZnO nano-whiskers were proposed in this paper.

  9. Controlled-synthesis of ZnO nanorings

    Institute of Scientific and Technical Information of China (English)

    Yin PENG; Ling BAO

    2008-01-01

    ZnO nanorings were synthesized on a large scale by an easy solution-based method at 70℃ for 5 h using hexamethylenetramine (C6H12N4, HMT) and Zn ant poly(acrylamide-co-diallyldimethylammonium chlor-ide) (PAM-CTAC). The structure and morphology of the products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The influence of experimental conditions such as concentra-tion of surfactant and reactants, reaction temperature on the structure and morphology of the products were inves-tigated. A probable formation mechanism of ZnO nanor-ings in the presence of surfactant PAM-CTAC was discussed. The results show that the products are wurtzite hexagonal ZnO nanorings with an inner diameter of 220 nm and a wall thickness of 70 nm. Reaction temper-ature and concentration of reactants influence the shape and size ofZnO nanorings but PAM-CTAC plays the key role in the formation of ZnO nanorings. Through adjust-ing the concentration of PAM-CTAC, controlled-syn-thesis of ZnO nanorings can be realized. A room temperature photoluminescence (PL) spectrum of ZnO obtained shows that the full width at half maximum (FWHM) of the UV emission (~7 nm) is much narrower than that of commercial ZnO bulk crystals (~18 nm). The narrow FWHM confirms the uniformity and narrow size distribution of the synthesized ZnO crystals.

  10. Facile synthesis of ZnO hollow fibres

    Indian Academy of Sciences (India)

    B T Su; K Wang; X W Zuo; H M Mu; N Dong; Y C Tong; J Bai; Z Q Lei

    2007-12-01

    In this paper, cotton fibres were used as bio-template to successfully synthesize new ceramic materials, ZnO hollow fibres and in an effort to explore the synthesis condition, and simplify the synthesis procedure. In this synthesis, a direct thermal decomposition of zinc acetate dihydrate coated on the surface of cotton fibres was explored. The wall porosity of the ZnO hollow fibres was controlled by changing the concentration of zinc acetate aqueous solution.

  11. Synthesis and Characterization of ZnO Nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Michael Hsuan-Yi; Mao Samuel; Henning Feick; Yan Haoquan; Wu Yiying; Hennes Kind; Richard Russo; Eicke Weber; Yang Peidong

    2004-01-01

    Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 C. Gold serves as a catalyst to capture Zn vapor during nanowire growth.Size control of ZnO nanowires has been achieved by varying the gold film thickness, using fine gold clusters, or tuning other growth conditions. Nanowire diameters ranging from 20 - 200 nm and lengths between 2 - 40 μm can be made. Structural characterization of the nanowires was mainly performed using powder X-ray diffractometry, scanning and transmission electron microscopy. Orientational control of ZnO nanowires can be achieved by growing the nanowires on sapphire substrates. Nearly perfect lattice match between the (002) c-axis growth of ZnO nanowires and the (110) a-plane surface of sapphire substrate allows vertical growth of ZnO nanowires. Fabrication of patterned ZnO nanowire array was then made by patterning the gold layer on the sapphire substrates.Optical characterization of the ZnO nanowires using a He-Cd laser (325 nm) shows that the nanowires possess a strong emission band around 375 - 380 nm. Room temperature power-dependent photoluminescence study using a Nd:YAG laser (266 nm, 3-ns pulse width) shows that the nanowires exhibit lasing emission property. This is the first nanowire system displaying such phenomenon.

  12. Screen printed nanosized ZnO thick film

    Indian Academy of Sciences (India)

    Bindu Krishnan; V P N Nampoori

    2005-06-01

    Nanosized ZnO was prepared by polyol synthesis. Fluorescence spectrum of the ZnO colloid at varying pump intensities was studied. The powder was extracted and characterized by XRD and BET. The extracted powder was screen printed on glass substrates using ethyl cellulose as binder and turpinol as solvent. Coherent back scattering studies were performed on the screen printed sample which showed evidence of weak localization. The screen printed pattern showed strong UV emission.

  13. On diffusion of Cu in ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Herklotz, F., E-mail: frank.herklotz@physik.tu-dresden.d [Institut fuer Angewandte Physik, Technische Universitaet Dresden, 01062 Dresden (Germany); Lavrov, E.V.; Weber, J. [Institut fuer Angewandte Physik, Technische Universitaet Dresden, 01062 Dresden (Germany)

    2009-12-15

    An experimental study of Cu diffusion in bulk ZnO single crystals in the temperature range 1012-1220 deg. C is presented. Concentration profiles of substitutional Cu were determined by IR absorption at 5817cm{sup -1}. Our findings reveal that Cu in ZnO diffuses faster than previously reported [G. Mueller, R. Helbig, J. Phys. Chem. Solids 32 (1971) 1971]. The discrepancy is tentatively explained by the formation of Cu complexes, which occurs at high Cu concentrations.

  14. ZnO Tetrapods: Synthesis and Applications in Solar Cells

    Directory of Open Access Journals (Sweden)

    Luting Yan

    2015-06-01

    Full Text Available Zinc oxide (ZnO tetrapods have received much interest due to their unique morphology, that is, four arms con‐ nected to one centre. Tetrapod networks possess the excellent electronic properties of the ZnO semiconductor, which is attractive for photoelectrode materials in energy- conversion devices because of their advantages in electron extraction and transportation. In this review, we have discussed recent advancements in the field of ZnO tetrapod synthesis, including vapour transport synthesis and the wet chemical method, together with their advantages and disadvantages in terms of morphology control and yield regulation. The developments and improvements in the applications of ZnO nanotetrapods in photovoltaics, including dye-sensitized solar cells and polymer solar cells, are also described. Our aim is to give readers a compre‐ hensive and critical overview of this unique morphology of ZnO, including synthesis control and growth mechanism, and to understand the role of this particular morphology in the development of solar cells. The future research directions in ZnO tetrapods-based solar cell are also discussed.

  15. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    Science.gov (United States)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  16. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    Science.gov (United States)

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-05

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  17. High efficient ZnO nanowalnuts photocatalyst: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Feng [College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011 (China); College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Zhang, Siwen; Liu, Yang [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Liu, Hongfeng [School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang 157011 (China); Qu, Fengyu [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China); Cai, Xue, E-mail: xuecai@mail.sdu.edu.cn [College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011 (China); Wu, Xiang, E-mail: wuxiang@hrbnu.edu.cn [College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025 (China)

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  18. Synthesis, Characterization and renal toxicity of ZnO and polyethylene glycol Coated ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Banafsheh Raisi Dehkourdi

    2017-01-01

    Full Text Available Objective(s: The wide scale use of Zinc oxide nanoparticles (ZnO NPs in the consumer market world makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. Therefore, the aim of the present study is to assess renal toxicity potential of ZnO and Polyethylene glycol Coated ZnO Nanoparticles in rat.Materials and Methods: Co-precipitation chemical method was used in order to synthesize ZnO nanoparticles. The synthesized nanoparticles were coated with PEG (Polyethylene glycol and the coating interactions were investigated by FTIR (Fourier Transform Infrared Spectroscopy. Structural properties of ZnO NPs were evaluated by TEM (Transmission Electron Microscope and XRD (X Ray Diffraction. Toxicity assessment of ZnO and PEG coated ZnO nanoparticles were studied in rat by intra peritoneal injections during a one-month. Renal factors (Creatinine, Uric acid and Blood Urea Nitrogen were measured 15 and 30 days post injection.Results: The synthesized nanoparticles were single phase and have spinel structure. Their size distribution was around 18 nm. Some kidney factors were changed due to the injection of both uncoated and coated nanoparticles (especially in groups received concentrations of more than 100 mg per kg of body weight. Renal factors changes were more considerable in groups received ZnO NPs in comparison with those received PEG coated ZnO NPs. Chemical toxicity studies showed that there was no irreversible effect in the groups received  concentrations less than 200 mg/kg (mg per kg of body weight.Conclusion: The results indicated that renal factors were changed during 15 days post injection, especially in groups received high doses (200 mg/kg. The results of measurements 30 days post injection showed less change in comparison with the control and this indicates that there was no irreversible effect on kidney. Moreover, PEG coated nanoparticles were less toxic in comparison with Uncoated ZnO NPs.

  19. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum.

    Science.gov (United States)

    Li, Jiji; Schiavo, Simona; Rametta, Gabriella; Miglietta, Maria Lucia; La Ferrara, Vera; Wu, Changwen; Manzo, Sonia

    2017-03-01

    The wide use of ZnO nanoparticles in a number of products implies an increasing release into the marine environment, resulting in the need to evaluate the potential effects upon organisms, and particularly phytoplankton, being at the base of the throphic chain. To this aim, dose-response curves for the green alga Tetraselmis suecica and the diatom Phaeodactylum tricornutum derived from the exposure to nano ZnO (100 nm) were evaluated and compared with those obtained for bulk ZnO (200 nm) and ionic zinc. The toxic effects to both algae species were reported as no observable effect concentration (NOEC) of growth inhibition and as 1, 10, and 50% effect concentrations (EC1, EC10, and EC50). The toxicity decreased in the order nano ZnO > Zn(2+) > bulk ZnO. EC50 values for nano ZnO were 3.91 [3.66-4.14] mg Zn/L towards the green microalgae and 1.09 [0.96-1.57] mg Zn/L towards the diatom, indicating a higher sensitivity of P. tricornutum. The observed diverse effects can be ascribed to the interaction occurring between different algae and ZnO particles. Due to algae motility, ZnO particles were intercepted in different phases of aggregation and sedimentation processes, while algae morphology and size can influence the level of entrapment by NP aggregates.This underlines the need to take into account the peculiarity of the biological system in the assessment of NP toxicity.

  20. Synthesis, Characterization and Photoluminescence of Well-Ordered ZnO Micropillars Grown on ZnO Buffer Layers

    Institute of Scientific and Technical Information of China (English)

    LU Hongbing; TIAN Yu; HU Meifeng; SHUAI Min; LI Jinchai

    2007-01-01

    Using ZnO buffer layers prepared by simply thermaloxidation of ion beam sputtered Zn films, highly oriented anduniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with free catalysts at low temperature of 430 ℃. The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subse-quently cooling process. The photo1luminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multi-functional microdevices, optoelectronic and field emission devices.

  1. Synergistic toxicity of zno nanoparticles and dimethoate in mice: Enhancing their biodistribution by synergistic binding of serum albumin and dimethoate to zno nanoparticles.

    Science.gov (United States)

    Yan, Xincheng; Xu, Xiaolong; Guo, Mingchun; Wang, Shasha; Gao, Shang; Zhu, Shanshan; Rong, Rui

    2017-04-01

    The extensive applications of ZnO nanoparticles (nano ZnO) and dimethoate (DM) have increased the risk of humans' co-exposure to nano ZnO and DM. Here, we report the synergistic effect of nano ZnO and DM on their biodistribution and subacute toxicity in mice. Nano ZnO and DM had a synergistic toxicity in mice. In contrast, bulk ZnO and DM did not cause an obvious synergistic toxicity in mice. Although nano ZnO was low toxic to mice, coexposure to nano ZnO and DM significantly enhanced DM-induced oxidative damage in the liver. Coadministration of nano ZnO with DM significantly increased Zn accumulation by 30.9 ± 1.9% and DM accumulation by 45.6 ± 2.2% in the liver, respectively. The increased accumulations of DM and Zn in the liver reduced its cholinesterase activity from 5.65 ± 0.32 to 4.37 ± 0.49 U/mg protein and induced hepatic oxidative stress. Nano ZnO had 3-fold or 2.4-fold higher binding capability for serum albumin or DM, respectively, than bulk ZnO. In addition, serum albumin significantly increased the binding capability of nano ZnO for DM by approximately four times via the interaction of serum albumin and DM. The uptake of serum albumin- and DM-bound nano ZnO by the macrophages significantly increased DM accumulation in mice. Serum albumins play an important role in the synergistic toxicity of nano ZnO and DM. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1202-1212, 2017.

  2. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    Directory of Open Access Journals (Sweden)

    Anees A. Ansari

    2013-09-01

    Full Text Available In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  3. Hydrothermal synthesis of 2D ordered macroporous ZnO films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ZnO films with two-dimensional ordered macroporous structure were successfully fabricated through hydrothermal crystal growth of ZnO on the ZnO substrate covered with a mouolayer of polystyrene (PS) spheres as template.The precursor solution of hydrothermal crystal growth of ZnO were prepared by equitramine (HMT).The confinement effect of the PS spheres template on the growth of ZnO nanorods and the influence of sodium citrate on the crystal growth of ZnO had been studied.The film surface morphology and the preferential growth of ZnO crystal were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD),respectively.Also,the photoluminescence spectrum of ZnO films had been measured,and the corresponding mechanism was discussed.

  4. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  5. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    Science.gov (United States)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  6. Size-controllable growth of ZnO nanorods on Si substrate

    Science.gov (United States)

    Yu, Zhentao; Li, Hui; Qiu, Yining; Yang, Xu; Zhang, Wu; Xu, Ning; Sun, Jian; Wu, Jiada

    2017-01-01

    Here we report a simple two-step chemical-solution-based method to grow highly oriented and size-controllable ZnO nanorods on ZnO-seeded Si substrate. The morphology of the grown ZnO nanorods was examined by field emission scanning electron microscopy. The structure was characterized by X-ray diffraction and Raman scattering spectrum. Photoluminescence spectra were measured at room temperature and low temperatures to evaluate the photoluminescence properties of the ZnO nanorods. The grown ZnO nanorods are structured with hexagonal wurtzite. The diameter and length of ZnO nanorods can be controlled by varying the crystal quality of the underlying ZnO seed layers. The crystal quality of the seed layers gets improved as the deposition time and annealing temperature for ZnO seed layers are increased. The effects of annealing on the ZnO nanorods were also studied.

  7. Single crystal to single crystal (SC-to-SC) transformation from a nonporous to porous metal-organic framework and its application potential in gas adsorption and Suzuki coupling reaction through postmodification.

    Science.gov (United States)

    Sen, Rupam; Saha, Debraj; Koner, Subratanath; Brandão, Paula; Lin, Zhi

    2015-04-07

    A new amino-functionalized strontium-carboxylate-based metal-organic framework (MOF) has been synthesized that undergoes single crystal to single crystal (SC-to-SC) transformation upon desolvation. Both structures have been characterized by single-crystal X-ray analysis. The desolvated structure shows an interesting 3D porous structure with pendent -NH2 groups inside the pore wall, whereas the solvated compound possesses a nonporous structure with DMF molecules on the metal centers. The amino group was postmodified through Schiff base condensation by pyridine-2-carboxaldehyde and palladium was anchored on that site. The modified framework has been utilized for the Suzuki cross-coupling reaction. The compound shows high activity towards the C-C cross-coupling reaction with good yields and turnover frequencies. Gas adsorption studies showed that the desolvated compound had permanent porosity and was microporous in nature with a BET surface area of 2052 m(2)  g(-1). The material also possesses good CO2 (8 wt %) and H2 (1.87 wt %) adsorption capabilities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nucleation and Growth Control of ZnO via Impurity-mediated Crystallization

    Science.gov (United States)

    2015-01-02

    Final 3. DATES COVERED (From - To) 26 Aug 2013 to 25 Aug 2014 4. TITLE AND SUBTITLE Nucleation and growth control of ZnO via impurity...13. SUPPLEMENTARY NOTES 14. ABSTRACT The primary objective is to develop a fabrication method of ZnO based on magnetron sputtering... ZnO films prepared by IMC method as buffer layers (IMC buffer layers), two kinds of high- quality ZnO based semiconductors have been fabricated, the

  9. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    Science.gov (United States)

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES...needed to demonstrate the use of Zinc Oxide ( ZnO ) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  10. Growth of ZnO Single Crystal by Chemical Vapor Transport Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

  11. SYNTHESIS OF ZnO NANOPARTICLES WITH NARROW SIZE DISTRIBUTION UNDER PULSED MICROWAVE HEATING

    Institute of Scientific and Technical Information of China (English)

    Yongjun He

    2004-01-01

    ZnO nanoparticles with very narrow size distribution were synthesized by coupling homogeneous precipitation with microemulsion under pulsed microwave heating. The conditions of preparing ZnO nanoparticles were investigated. The products were characterized with DTA, TGA, XRD, TEM and UV-Vis. The synthesized ZnO nanopartices had much stronger ultraviolet absorptivity than normal ZnO powders; the average size of products was sensitive to the variation of the power or duration of microwave irradiation.

  12. Enhanced Field Emission from Vertical ZnO Nanoneedles on Micropyramids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang; DIAO Da-Sheng

    2009-01-01

    Vertical ZnO nanoneedles with sharp tips are secondarily grown on tips of primarily grown ZnO micropyramids by a vapour transport process.The field emission (FE) properties exhibit a lower turn-on electric fieM and a higher field enhancement factor as compared with vertical ZnO microrods.This result indicates that ZnO nanoneedles have good optimum shapes for FE due to electron accumulation at sharp tips.

  13. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    Science.gov (United States)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  14. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  15. Sonochemical Synthesis of Er3+-Doped ZnO Nanospheres with Enhanced Upconversion Photoluminescence

    OpenAIRE

    Jun Geng; Guang-Hui Song; Jun-Jie Zhu

    2012-01-01

    Er3+-doped ZnO nanospheres have been synthesized via a sonochemical conversion process. The formation mechanism of these nanocrystals is connected with the sonochemical effect of ultrasound irradiation. The as-prepared Er3+ doped ZnO nanospheres show enhanced photoluminescence and upconversion photoluminescence properties compared with pure ZnO.

  16. Catalytic epitaxy of ZnO whiskers via the vapor-crystal mechanism

    Science.gov (United States)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.; Babaev, V. A.; Ismailov, A. M.

    2017-05-01

    A model of oriented growth of (0001) ZnO whiskers on sapphire substrates via the vapor-crystal mechanism using the catalytic properties of gold islands is proposed. The morphological transition from the primary pyramidal ZnO structures to hexagonal ZnO whiskers is described in terms of the minimization of the free energy density of three-dimensional heteroepitaxial islands.

  17. Density-controlled growth of well-aligned ZnO nanowires using chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Well-aligned ZnO nanowires were grown on Si substrate by chemical vapor deposition.The experimental results showed that the density of nanowires was related to the heating process and growth temperature.High-density ZnO nanowires were obtained under optimal conditions.The growth mechanism of the ZnO nanowires was presented as well.

  18. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    Science.gov (United States)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  19. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui

    2009-01-01

    achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst...

  20. From Bloch to random lasing in ZnO self-assembled nanostructures

    DEFF Research Database (Denmark)

    Garcia-Fernandez, Pedro David; Cefe, López

    2013-01-01

    In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. W...

  1. ZnO nanoflowers: novel biogenic synthesis and enhanced photocatalytic activity.

    Science.gov (United States)

    Tripathi, R M; Bhadwal, Akhshay Singh; Gupta, Rohit Kumar; Singh, Priti; Shrivastav, Archana; Shrivastav, B R

    2014-12-01

    We demonstrate a novel, unprecedented and eco-friendly mode for the biosynthesis of zinc oxide (ZnO) nanoflowers at ambient room temperature using Bacillus licheniformis MTCC 9555 and assessed their photocatalytic activity. The photocatalytic degradation of methylene blue (MB) dye was analyzed under UV-irradiation. An enhanced photocatalytic activity of ZnO nanoflowers was obtained compared to the earlier reports on ZnO nanostructures and other photocatalytic materials. The mechanism behind the enhanced photocatalytic activity was illustrated with diagrammatic representation. It is assumed that due to larger content of oxygen vacancy ZnO nanoflowers shows enhanced photocatalytic activity. Photostability of ZnO nanoflowers was analyzed for consecutive 3 cycles. The size and morphology of ZnO nanoflowers have been characterized by SEM, TEM and found to be in the size range of 250 nm to 1 μm with flower like morphology. It was found that ZnO nanoflowers was formed by agglomeration of ZnO nanorods. Further the EDX established the presence of the elemental signal of the Zn and O. XRD spectrum of ZnO nanoflowers confirmed 2θ values analogous to the ZnO nanocrystal. FTIR analysis was carried to determine the probable biomolecules responsible for stabilization of ZnO nanoflowers. The plausible mechanism behind the synthesis of ZnO nanoflowers by Bacillus licheniformis MTCC 9555 was also discussed with diagram representation.

  2. Hierarchical nanoflowers assembled with Au nanoparticles decorated ZnO nanosheets toward enhanced photocatalytic properties

    DEFF Research Database (Denmark)

    Yu, Cuiyan; Yu, Yanlong; Xu, Tao

    2017-01-01

    Hierarchical nanoflowers assembled with Au nanoparticles (NPs) decorated ZnO nanosheets (Au-ZnO nanosheet flowers, AZNSFs) were successful synthesized. The AZNSFs showed more efficient activity to photodegradation of RhB than that of pure ZnO nanosheet flowers and commercial ZnO nanopowders...

  3. One-pot synthesis of ZnO2/ZnO composite with enhanced photocatalytic performance for organic dye removal.

    Science.gov (United States)

    Liu, Wei; Wang, Mingliang; Xu, Chunxiang; Chen, Shifu; Fu, Xianliang

    2013-01-01

    The ZnO2/ZnO photocatalysts with various ZnO2 contents were prepared by one-pot synthesis method using ZnO and H2O2 as raw materials. The photocatalysts were characterized by XRD, UV-vis DRS, SEM, EDS, FT-IR spectra, fluorescence emission spectra, and BET specific area. The photocatalytic performance of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO) and rhodamine B (RhB). The results showed that the photocatalytic activity of the ZnO2/ZnO was much higher than that of single-phase ZnO or ZnO2. The optimum ZnO2 content was 1.0 wt.%. The maximal degradation rate constant of MO and RhB was 4.1 times and 2.2 times that observed for pure ZnO, respectively. The stability of the prepared photocatalyst in the photocatalytic process was also investigated. The active species in dye degradation were examined by adding a series of scavengers. The possible mechanisms involved in the photocatalytic degradation of dye were also discussed.

  4. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyo-Soo; Choi, Nak-Jung [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Kim, Kyoung-Bo [Department of Metallurgical and Materials Engineering, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Moojin [Department of Renewable Energy, Jungwon University, Goesan-gun, Chungbuk 367-805 (Korea, Republic of); Lee, Sung-Nam, E-mail: snlee@kpu.ac.kr [Department of Nano-Optical Engineering, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of)

    2016-10-15

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al content in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.

  5. ZnO Thin Film Electronics for More than Displays

    Science.gov (United States)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  6. Controlling Au Photodeposition on Large ZnO Nanoparticles.

    Science.gov (United States)

    Fernando, Joseph F S; Shortell, Matthew P; Noble, Christopher J; Harmer, Jeffrey R; Jaatinen, Esa A; Waclawik, Eric R

    2016-06-08

    This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites. Au NP photodeposition was effective in the presence of labile oleylamine ligands attached to the ZnO surface; however, when a strong-binding dodecanethiol ligand coated the surface, photodeposition was quenched. Rates of interfacial electron transfer at the ZnO-solution interface were adjusted by changing the solvent, and these rates were observed to strongly depend on the solvent's permittivity (ε) and viscosity. From measurements of electron transfer from ZnO to the organic dye toluidine blue at the ZnO-solution interface, it was confirmed that low ε solvent mixtures (ε ≈ 9.5) possessed markedly higher rates of photocatalytic interfacial electron transfer (∼3.2 × 10(4) electrons·particle(-1)·s(-1)) compared to solvent mixtures with high ε (ε = 29.9, ∼1.9 × 10(4) electrons·particle(-1)·s(-1)). Dissolved oxygen content in the solvent and the exposure time of ZnO to band-gap, near-UV photoexcitation were also identified as factors that strongly affected Au photodeposition behavior. Production of Au clusters was favored under conditions that caused electron accumulation in the ZnO-Au NP hybrid. Under conditions where electron discharge was rapid (such as in low ε solvents), AuCl2(-) precursor ions photoreduced at ZnO surfaces in less than 5 s, leading to deposition of several small, isolated ∼6 nm Au NP on the ZnO host instead.

  7. Photoluminescence Characterization of Nanocrystalline ZnO Array

    Institute of Scientific and Technical Information of China (English)

    CHANG Yong-Qin; YU Da-Peng; LI Guo-Hua; FANG Zai-Li; ZHANG Ye; CHEN Yao-Feng; YANG FU-Hua

    2004-01-01

    @@ High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied by photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38eV is weak. The free exciton emission could also be observed at low temperature, which implies the high optical quality of the ZnO sub-micron rods.This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.

  8. Genomic DNA binding to ZnO microrods

    Science.gov (United States)

    Guzmán-Embús, D. A.; Cardozo, M. Orrego; Vargas-Hernández, C.

    2015-08-01

    In this work, ZnO microrods were produced by hydrothermal synthesis. DNA was extracted from pork spleen cells by cellular lysis, deproteinization and precipitation. The analysis of the DNA binding to the ZnO was performed using Raman spectroscopy a technique that allowed for the evaluation of the effect that the presence of the ZnO in the complex has on the DNA structure. Vibrational spectral bands from the DNA molecule and hexagonal wurtzite ZnO were observed and classified as E2(M), A1(TO), E2(High), E1(LO) and 2LO. The Raman signals from the vibrational bands corresponding to the phosphodiester bond 5‧-C-O-P-O-C-3‧ and bond stretching of the PO2- group, as well as ring vibrations of the nitrogenous bases of the DNA, were enhanced by the presence of the ZnO microrods. The bands from the modes corresponding to the C-O and Odbnd Psbnd O- molecules of the DNA backbone were observed to exhibit larger spectral shifts due to the compression and tensile stresses generated at the ZnO/DNA interface, respectively. In addition, the relative vibrational mode intensities of the nitrogenous bases increased.

  9. Improving the Hydrophobicity of ZnO by PTFE Incorporation

    Directory of Open Access Journals (Sweden)

    Meenu Srivastava

    2011-01-01

    Full Text Available The objective of the present study is to obtain a zinc oxide- (ZnO- based superhydrophobic surface in a simple and cost-effective manner. Chemical immersion deposition being simple and economical has been adopted to develop modified ZnO coating on glass substrate. Several modifications of ZnO like treatment with alkanoic acid (stearic acid and fluoroalkylsilane to tune the surface wettability (hydrophobicity were attempted. The effect of thermal treatment on the hydrophobic performance was also studied. It was observed that thermal treatment at 70°C for 16 hrs followed by immersion in stearic acid resulted in high water contact angle (WCA, that is, a superhydrophobic surface. Thus, a modified ZnO superhydrophobic surface involves the consumption of large amount of electrical energy and time. Hence, the alternate involved the incorporation of low surface energy fluoropolymer polytetrafluoroethylene (PTFE in the ZnO coating. The immersion deposited ZnO-PTFE composite coating on modification with either stearic acid or fluoroalkylsilane resulted in a better superhydrophobic surface. The coatings were characterized using Scanning Electron Microscope (SEM for the surface morphology. It was found that microstructure of the coating was influenced by the additives employed. A flower-like morphology comprising of needle-like structure arranged in a radial manner was exhibited by the superhydrophobic coating.

  10. Nanosphericals and nanobundles of ZnO: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.i [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Khansari, Afsaneh [Department of Chemistry, Faculty of Science, University of Guilan, Rasht, P.O. Box 413354-1914 (Iran, Islamic Republic of)

    2011-01-05

    Research highlights: {yields} ZnO nanospherical has been synthesized using inorganic precursor via thermolysis process. {yields} ZnO nanobundle has been synthesized via thermolysis of [Zn(salen)] in the air at 500 {sup o}C for 5 h. - Abstract: ZnO nanosphericals and nanobundles well dispersion have been synthesized using [(N,N'-bis(salicylaldehydo)ethylenediamine)zinc(II)]; [Zn(salen)] as precursor via two methods. Nanosphericals of ZnO has been prepared via thermal decomposition of [Zn(salen)] in the presence of oleylamine at 290 {sup o}C for 90 min. Also nanobundle of ZnO has been synthesized via thermolysis of [Zn(salen)] in the air at 500 {sup o}C for 5 h. The as-synthesized products were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM). The room temperature photoluminescence (PL) spectra of both nanostructures are dominated by the green emission attributed to the oxygen vacancy (V{sub O}) related donor-acceptor transition. Presence of several infrared (IR) inactive vibrational modes in the Fourier transform infrared (FT-IR) absorption spectra of the samples indicates a breakdown of translational symmetry in the nanostructures induced by native defects.

  11. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO.

    Science.gov (United States)

    Qin, Hongchun; Li, Weiying; Xia, Yujing; He, Tao

    2011-08-01

    Different composite films prepared by coupling ZnO and nitrogen-doped ZnO (N-ZnO) were used to photodegrade humic acids (HA). The catalysts exhibit an activity in the order of glass/ZnO/N-ZnO > glass/N-ZnO >glass/ZnO > glass/N-ZnO/ZnO when light is irradiated from the film to glass substrate. However, glass/ZnO/N-ZnO exhibits a lower activity than glass/N-ZnO/ZnO when light is illuminated from glass to film. Moreover, glass/ZnO/N-ZnO shows a lower activity when light is irradiated from glass to film than that irradiated in the opposite direction. These results suggest that it is not always the case that the presence of a heterojunction at interface of two semiconductors can definitely result in improving the photoactivity of the heterostructure although it can suppress the recombination of photogenerated charge carriers. They also indicate that photodegradation of HA is mainly via the oxidization by HO• (rather than directly by O(2)(-) and h(+)), which is produced mainly by the reactions with h(+). This implies the importance of fabrication a right heterojunction at the interface between the composite materials when they are used for photocatalysis. We envision that this work will help to develop new photocatalysts, as well as to understand better the photocatalytic mechanism.

  12. Synthesis of ZnO Nanocrystals and Application in Inverted Polymer Solar Cells

    Science.gov (United States)

    Dong, Jing-Jing; Wu, Jian; Hao, Hui-Ying; Xing, Jie; Liu, Hao; Gao, Hua

    2017-09-01

    Controllable synthesis of various ZnO nanocrystals was achieved via a simple and cost-effective hydrothermal process. The morphology evolution of the ZnO nanostructures was well monitored by tuning hydrothermal growth parameters, such as solution concentration, reaction temperature, and surfactant. As-obtained ZnO nanocrystals with different morphologies, e.g., ZnO nanorods, nanotetrapods, nanoflowers, and nanocubes, were further introduced into the organic bulk heterojunction solar cells as the electron transport channel. It was found that the device performance was closely related to the morphology of the ZnO nanocrystals.

  13. A Study on the Antibacterial Activity Of Zno Nanoparticles Prepared By Combustion Method against E Coli

    OpenAIRE

    2014-01-01

    Crystalline Zinc Oxide (ZnO) nanoparticles were synthesized by low temperature solution combustion method using Oxalyl dihydrazide (ODH) as fuel, at much lower temperature (300oC). X-ray diffraction (XRD) confirmed the formation of wurtzite-structured pure ZnO No peaks from any else phases of ZnO and no impurity peaks were observed, indicating the high purity of the obtained hexagonal ZnO nanocrystals. The antibacterial activity of the formed nano ZnO were investigated against...

  14. Thermoelectric Properties of Al-Doped Mesoporous ZnO Thin Films

    OpenAIRE

    Min-Hee Hong; Chang-Sun Park; Won-Seon Seo; Young Soo Lim; Jung-Kun Lee; Hyung-Ho Park

    2013-01-01

    Al-doped mesoporous ZnO thin films were synthesized by a sol-gel process and an evaporation-induced self-assembly process. In this work, the effects of Al doping concentration on the electrical conductivity and characterization of mesoporous ZnO thin films were investigated. By changing the Al doping concentration, ZnO grain growth is inhibited, and the mesoporous structure of ZnO is maintained during a relatively high temperature annealing process. The porosity of Al-doped mesoporous ZnO thi...

  15. Single-Crystal Mesoporous ZnO Thin Films Composed of Nanowalls

    KAUST Repository

    Wang, Xudong

    2009-02-05

    This paper presents a controlled, large scale fabrication of mesoporous ZnO thin films. The entire ZnO mesoporous film is one piece of a single crystal, while high porosity made of nanowalls is present. The growth mechanism was proposed in comparison with the growth of ZnO nanowires. The ZnO mesoporous film was successfully applied as a gas sensor. The fabrication and growth analysis of the mesoporous ZnO thin film gi ve general guidance for the controlled growth of nanostructures. It also pro vides a unique structure with a superhigh surface-to-volume ratio for surface-related applications. © 2009 American Chemical Society.

  16. Fabrication of Cellulose ZnO Hybrid Nanocomposite and Its Strain Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Hyun-U Ko

    2014-10-01

    Full Text Available This paper reports a hybrid nanocomposite of well-aligned zinc oxide (ZnO nanorods on cellulose and its strain sensing behavior. ZnO nanorods are chemically grown on a cellulose film by using a hydrothermal process, termed as cellulose ZnO hybrid nanocomposite (CEZOHN. CEZOHN is made by seeding and growing of ZnO on the cellulose and its structural properties are investigated. The well-aligned ZnO nanorods in conjunction with the cellulose film shows enhancement of its electromechanical property. Strain sensing behaviors of the nanocomposite are tested in bending and longitudinal stretching modes and the CEZOHN strain sensors exhibit linear responses.

  17. Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

    OpenAIRE

    Chun Cheng; Abbas Amini; Chao Zhu; Zuli Xu; Haisheng Song; Ning Wang

    2014-01-01

    We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching observed from photoluminescence of TiO2-ZnO hybrid nanostructures implied an enhanced charge transfer/s...

  18. Structural and electrical properties of electric field assisted spray deposited pea structured ZnO film

    Science.gov (United States)

    Chaturvedi, Neha; Swami, Sanjay Kumar; Dutta, Viresh

    2016-05-01

    Spray deposition of ZnO film was carried out. The uneven growth of ZnO nanostructures is resulted for spray deposited ZnO film. Application of DC voltage (1000V) during spray deposition provides formation of pea like structures with uniform coverage over the substrate. Electric field assisted spray deposition provides increased crystallinity with reduced resistivity and improved mobility of the ZnO film as compared to spray deposited ZnO film without electric field. This with large area deposition makes the process more efficient than other techniques.

  19. Enhancement of Photoluminescence Lifetime of ZnO Nanorods Making Use of Thiourea

    OpenAIRE

    Erdal Sönmez; Kadem Meral

    2012-01-01

    We have investigated correlation of photoluminescence lifetime between zinc oxide (ZnO) nanorods and thiourea-doped ZnO nanorods (tu: CH4N2S). Aqueous solutions of ZnO nanorods were deposited on glass substrate by using pneumatic spray pyrolysis technique. The as-prepared specimens were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and time-resolved photoluminescence spectroscopy (TRPL). The photoluminescence lifetime of ZnO nanorods and ZnO nanorods containing...

  20. Effect of gamma irradiation on DC electrical conductivity of ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Swaroop, K.; Somashekarappa, H. M., E-mail: carrtmu@gmail.com [Centre for Application of Radioisotopes and Radiation Technology (CARRT), USIC, Mangalore University, Mangalagangotri-574199, Karnataka (India); Naveen, C. S.; Jayanna, H. S. [Department of PG Studies and Research in Physics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka (India)

    2015-06-24

    The temperature dependent dc electrical conductivity of gamma irradiated Zinc oxide (ZnO) nanoparticles is presented in this paper. The X-ray diffraction (XRD) pattern shows hexagonal wurtzite structure of ZnO. Fourier Transform Infrared Spectroscopy (FTIR) confirms Zn-O stretching vibrations. UV-Visible spectroscopy studies show that the energy band gap (E{sub g}) of the prepared ZnO nanoparticles increases with respect to gamma irradiation dose, which can be related to room temperature dc electrical conductivity. The result shows significant variation in the high temperature dc electrical conductivity of ZnO nanoparticles due to gamma irradiation.

  1. Resistive switching characteristics of a compact ZnO nanorod array grown directly on an Al-doped ZnO substrate

    Science.gov (United States)

    Yoo, E. J.; Shin, J. Y.; Yoon, T. S.; Kang, C. J.; Choi, Y. J.

    2016-07-01

    ZnO’s resistive switching properties have drawn much attention because ZnO has a simple chemical composition and is easy to manipulate. The propulsion mechanism for resistive switching in ZnO is based on a conducting filament that consists of oxygen vacancies. In the case of film structure, the random formation of the conducting filaments occasionally leads to unstable switching characteristics. Limiting the direction in which the conducting filaments are formed is one way to solve this problem. In this study, we demonstrate reliable resistive switching behavior in a device with an Au/compact ZnO nanorod array/Al-doped ZnO structure with stable resistive switching over 105 cycles and a long retention time of 104 s by confining conducting filaments along the boundaries between ZnO nanorods. The restrictive formation of conducting filaments along the boundaries between ZnO nanorods is observed directly using conductive atomic force microscopy.

  2. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films

    Science.gov (United States)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2016-11-01

    ZnO and Al-doped ZnO (AZO) films were synthesized using sol-gel spin-coating method. The powder XRD analysis revealed the stress relaxation mechanism upon Al doping in ZnO film. The reduction in the imaginary part of the dielectric constant and suppression of deep level acceptor type octahedral oxygen interstitial defects account for the reduction in carrier concentration in AZO with respect to ZnO. Electrical conductivity measurements and grain boundary conduction model are used to quantify the carrier concentration. From the Commission Internationale d'Eclairge diagram of ZnO and AZO, color parameters like dominant wavelength, color purity and luminosity are determined and reported for the first time. The prepared ZnO and AZO films show considerable blue emission. These films can be used for white light generation.

  3. Hybrid p-type ZnO film and n-type ZnO nanorod p-n homo-junction for efficient photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyun; Lee, Jun Seok; Lee, Sang Hyo; Nam, Hye Won [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.k [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Cha, Seoung Nam; Park, Young Jun; Kim, Jong Min [Samsung Advanced Institute of Technology, P.O. Box 11, 1 Suwon 440-600 (Korea, Republic of)

    2010-09-01

    Simple hybrid p-n homo-junctions using p-type ZnO thin films and n-type nanorods grown on fluorine tin oxide (FTO) substrates for photovoltaic applications are described. The ZnO nanorods (1.5 {mu}m) were synthesized via an aqueous solution method with zinc nitrate hexahydrate and hexamethylenetetramine on ZnO seed layers. The 10-nm-thick ZnO seed layers showed n-type conductivity on FTO substrates and were deposited with a sputtering-based method. After synthesizing ZnO nanorods, aluminum-nitride co-doped p-type ZnO films (200 nm) were efficiently grown using pre-activated nitrogen (N) plasma sources with an inductively-coupled dual-target co-sputtering system. The structural and electrical properties of hybrid p-n homo-junctions were investigated by scanning electron microscopy, transmittance spectrophotometry, and I-V measurements.

  4. Identification of hydrogen molecules in ZnO.

    Science.gov (United States)

    Lavrov, E V; Herklotz, F; Weber, J

    2009-05-08

    Hydrogen molecules in ZnO are identified by their local vibrational modes. In a Raman study, interstitial H2, HD, and D2 species were found to exhibit local vibrational modes at frequencies 4145, 3628, and 2985 cm-1, respectively. After thermal treatment of vapor phase grown ZnO samples in hydrogen atmosphere, most hydrogen forms shallow donors at the bond-centered site (HBC). Subsequently, HBC migrates through the crystal and forms electrically inactive H2. These results imply that the "hidden" hydrogen in ZnO [G. A. Shi et al., Appl. Phys. Lett. 85, 5601 (2004)10.1063/1.1832736] occurs in the form of interstitial H2.

  5. ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tsoutsouva, M.G. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Papadimitriou, D. [National Technical University of Athens, Department of Physics, GR-15780 Athens (Greece); Fasaki, I.; Kompitsas, M. [Theor. and Phys./Chem. Institute, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens (Greece)

    2011-04-15

    Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 deg. C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.

  6. Room-temperature ferromagnetism in pure ZnO nanoflowers

    Science.gov (United States)

    Bie, Xiaofei; Wang, Chunzhong; Ehrenberg, H.; Wei, Yingjin; Chen, Gang; Meng, Xing; Zou, Guangtian; Du, Fei

    2010-08-01

    ZnO nanoflowers are synthesized by hydrothermal method. The morphology of ZnO is captured by SEM, TEM and HRTEM, which is composed of closely packed nanorods of about 100 nm in diameter and 1 μm in length. The ZFC/FC curves show superparamagnetic features. The abnormal increase in magnetization curves below 14 K comes from the isolated vacancy clusters with no interaction. The magnetic hysteresis at 300 K displays saturation state and confirms room-temperature ferromagnetism. While the magnetic hysteresis at 5 K shows nonsaturation state due to the enhanced effects of vacancy clusters. The O 1s XPS results can be fitted to three Gaussian peaks. The existence of medium-binding energy located at 531.16 eV confirms the deficiency of O ions at the surface of ZnO nanoflowers.

  7. Hydrothermal preparation of nanocrystalline ZnO2

    Institute of Scientific and Technical Information of China (English)

    Guipeng Feng; Liyun Yang; Tianxi Wang; Jiamin Zhang; Tianjun Lou

    2012-01-01

    A green hydrothermal method was proposed for the synthesis of nanocrystalline ZnO2,using Zn5(CO3)2(OH)6 powder and 6 vol% H2O2 aqueous solution as the starting materials.Characterization results from X-ray diffraction,Raman,high resolution transmission electron microscopy and selected area electron diffraction revealed that the products synthesized at 80-120℃ for 6-18 h were pure cubic phase ZnO2 nanocrystals.Room temperature photoluminescence spectra of the as-synthesized ZnO2 nanocrystals displayed a wide and strong emission band in the visible region of about 525-570 nm upon laser excitation at 325 nm,which may have originated from their surface state and other crystal defects.

  8. Synthesis and characterization of ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Avnish Kumar Arora

    2014-12-01

    Full Text Available Zinc oxide (ZnO nanoparticles (NPs has been synthesized by precipitation method using ammonia as precipitating agent and ZnCl2. 4 H2O as starting material. Syntsesised nanoparticles (NPs have been characterized by using XRD (X-ray diffraction, TGA/DTA (Thermo Gravimetric Analysis, IR (Infrared Spectroscopy, magnetic measurement, surface area measurement, SEM(Scanning electron microscopy and TEM Transmission electron microscopy. XRD studies show that zinc oxide was formed as ZnO and it has hexagonal structure. Magnetic measurements showed diamagnetic nature of synthesized zinc oxide NPs. Surface area of NPs zinc oxide was 4.3737 m2/g. The particle size of the synthesized zinc oxide was determined by TEM. TEM images show that the size of particles of ZnO varied from 27nm to 82nm with average crystallite size 50 nm.

  9. Effect of Water on Ethanol Conversion over ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  10. Growth of ZnO nanowires on nonwoven polyethylene fibers

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah et al

    2008-01-01

    Full Text Available We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6–7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  11. Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography

    Directory of Open Access Journals (Sweden)

    Lee Hyoyoung

    2011-01-01

    Full Text Available Abstract In this research, nanoimprint lithography (NIL was used for patterning crystalline zinc oxide (ZnO nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS self-assembled monolayers (SAMs on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.

  12. Preparation and characterization of Ce-doped ZnO nanofibers by an electrospinning method

    Directory of Open Access Journals (Sweden)

    Jong-Pil Kim

    2011-02-01

    Full Text Available ZnO and Ce-doped ZnO Nanofibers on (111 Pt/SiO2/Si substrates were produced using an electrospinning technique. The as-prepared composite fibres were subjected to high-temperature calcination to produce inorganic fibers. After calcining at a temperature of 500 °C, the average diameter of the ZnO and Ce-doped ZnO nanofibers were determined to be 170 nm and 225 nm, respectively. The average grain size of the ZnO and Ce-doped ZnO nanofibers were about 50 nm and 57 nm, respectively. The microstructure, chemical bonding state and photoluminescence of the produced ZnO and Ce-doped ZnO nanofibers were investigated. The Ce-doped ZnO nanofiber can be assigned to the presence of Ce ions on substitutional sites of Zn ions and the Ce3+ state from X-ray photoelectron spectra. Compared with PL spectra of ZnO nanofibers, the peak position of the UV emission of the Ce-doped ZnO nanofibers is sharply suppressed while the green emission band is highly enhanced.

  13. A general deposition method for ZnO porous films: Occlusion electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haining, E-mail: chen-hn77@163.com [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Weiping; Hou Qin; Liu Huicong [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Zhu Liqun, E-mail: Zhulq@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2011-10-30

    In this paper, a modified electrodeposition method, occlusion electrosynthesis (OE), was used to prepare ZnO porous films. The processes of OE were similar to those of electrodeposition except the addition of ZnO nanoparticles in electrolyte. The ZnO porous film prepared by OE (OE-ZnO) was highly porous with considerable thickness (55 {mu}m). The quantum dots-sensitized solar cell based on OE-ZnO porous film showed superior photoelectrochemical performance to that based on the ZnO porous film prepared by doctor-blade (DB) method at the suitable concentrations of ZnO nanoparticles in electrolyte, about 16-32 g/L. In addition to the ZnO porous film constructed with ZnO nanoparticles, the ZnO porous film constructed with ZnO nanorods, ZnO/multi-walls carbon nanotubes and ZnO/TiO{sub 2} composite porous films have also been successfully synthesized by OE, which were expected to be widely applied in various fields. The low temperature (60 deg. C) processes without post treatment made OE more promising for preparing ZnO porous films than DB, especially the ZnO porous films for flexible devices.

  14. Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography

    Science.gov (United States)

    2011-01-01

    In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices. PMID:21711665

  15. Effects of doping concentration on properties of Mn-doped ZnO thin films

    Institute of Scientific and Technical Information of China (English)

    Gao Li; Zhang Jian-Min

    2009-01-01

    This paper reports that the radio frequency magnetron sputtering is used to fabricate ZnO and Mn-doped ZnO thin films on glass substrates at 500 ℃. The Mn-doped ZnO thin films present wurtzite structure of ZnO and have a smoother surface, better conductivity but no ferromagnetism. The x-ray photoelectron spectroscopy results show that the binding energy of Mn_(2p3/2) increases with increasing Mn content slightly, and the state of Mn in the Mn-doped ZnO thin films is divalent. The chemisorbed oxygen in the Mn-doped ZnO thin films increases with increasing Mn doping concentration. The photoluminescence spectra of ZnO and Mn-doped ZnO thin films have a similar ultraviolet emission. The yellow green emissions of 4 wt. % and 10 wt. % Mn-doped thin films are quenched, whereas the yellow green emission occurs because of abundant oxygen vacancies in the Mn-doped ZnO thin films after 20 wt. % Mn doping. Compared with pure ZnO thin film, the bandgap of the Mn-doped ZnO thin films increases with increasing Mn content.

  16. Enhancement of Photoluminescence Lifetime of ZnO Nanorods Making Use of Thiourea

    Directory of Open Access Journals (Sweden)

    Erdal Sönmez

    2012-01-01

    Full Text Available We have investigated correlation of photoluminescence lifetime between zinc oxide (ZnO nanorods and thiourea-doped ZnO nanorods (tu: CH4N2S. Aqueous solutions of ZnO nanorods were deposited on glass substrate by using pneumatic spray pyrolysis technique. The as-prepared specimens were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and time-resolved photoluminescence spectroscopy (TRPL. The photoluminescence lifetime of ZnO nanorods and ZnO nanorods containing thiourea was determined as =1.56±0.05 ns (2=0.9 and =2.12±0.03 ns (2=1.0, respectively. The calculated lifetime values of ZnO nanorods revealed that the presence of thiourea in ZnO nanorods resulted in increasing the exciton lifetime. In addition to the optical quality of ZnO nanorods, their exciton lifetime is comparable to the longest lifetimes reported for ZnO nanorods. The structural improvement of ZnO nanorods, containing thiourea, was also elucidated by taking their SEM images which show the thinner and longer ZnO nanorods compared to those without thiourea.

  17. Control of optical and electrical properties of ZnO nanocrystals by nanosecond-laser annealing

    Science.gov (United States)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Kawahara, H.; Higashihata, M.; Ikenoue, H.; Nakamura, D.; Okada, T.

    2014-03-01

    Effects of laser annealing on electrical and optical properties of Zinc oxide (ZnO) nanocrystals, which are expected as building blocks for optoelectronic devices, have been investigated in this study. In the case of fabricating p-n junction in single one-dimensional ZnO nanocrystal, phosphorus-ions implanted p-type ZnO nanocrystals were recrystallized and recovered in the optical properties by nanosecond-laser annealing using a KrF excimer laser. Antimony-doped p-type ZnO nanocrystals were synthesized by irradiating laminated structure which antimony thin film were deposited on ZnO nanocrystals with the laser beam. Additionally, it is possible to control the growth rate of ZnO nanowires by using laser annealing. Irradiating with pulsed laser a part of ZnO buffer layer deposited on the a-cut sapphire substrate, then ZnO nanowires were grown on the ZnO buffer layer by the nanoparticle assisted pulsed laser deposition method. As a result, the clear boundary of the laser annealed and non-laser annealed area was appeared. It was observed that ZnO nanowires were grown densely at non-laser annealed area, on the other hand, sparse ones were grown at the laser-annealed region. In this report, the possibility of laser annealing techniques to establish the stable and reliable fabrication process of ZnO nanowires-based LD and LED are discussed on the basis of experimental results.

  18. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    Science.gov (United States)

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L(-1) Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  19. Highly Oriented ZnO Rod Arrays on Si Substrates from Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    LIU Changsong; LI Zhiwen; ZHANG Qifeng

    2008-01-01

    Ordered zinc oxide (ZnO) rod arrays with very high orientation were fabricated on Si substrates by using a solution method. The substrate surfaces were functionalized by Self-Assembly Monolayers(SAMs). In the very early growth stage, the oriented ZnO crystals had already grown, which appeared to be themain reason why ZnO nanorods showed very high orientation. The un-dense and un-uniform SAMs provided a surface that was heterogeneous to ZnO nucleation. Consequently, highly oriented ZnO rods were selectively grown on the "coin-like" SAM-uncovered regions. The route developed here can provide some helpful information to control the nucleation and orientation of ZnO in aqueous solution. Also, the site-selective growth mechanisms can indicate a clue to grow patterned highly oriented ZnO nanorod arrays by the organic template.

  20. Preparation and Characterization of Highly Oriented ZnO Film by Ultrasonic Assisted SILAR Method

    Institute of Scientific and Technical Information of China (English)

    GAO Xiangdong; LI Xiaomin; YU Weidong

    2005-01-01

    Ultrasonic Assisted SILAR method ( UA-SILAR ) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films were analyzed by means of XRD and SEM. Moreover, the underling deposition mechanism of ZnO films was discussed. Results show that obtained ZnO films exhibit an excellent crystallinity with the preferential orientation of (002) plane. The crystalline grain of films is about 40nm in size, which is supported by both the Sherrer equation and the SEM result. However, the ZnO film is composed of numerous clustered particulates in the size of 200 to 300 nm, and each particulate is the compact aggregation of smaller ZnO crystalline grains. It is speculated that the excellent crystallinity of ZnO films may chiefly originate from the cavatition effect of the ultrasonic rinsing process.

  1. Nanostructured ZnO - its challenging properties and potential for device applications

    Science.gov (United States)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  2. Synthesis of ZnO nanosheets via electrodeposition method and their optical properties, growth mechanism

    Science.gov (United States)

    Yang, Jun; Wang, Yongqian; Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu

    2015-08-01

    ZnO nanosheets were prepared by electrochemical deposition method at 80 °C on seeded Indium Tin Oxide conducting glass substrates. The seed layer was coated on ITO by spin coating and annealed at 350 °C for 30 min prior to electrochemical deposition growth. X-ray diffraction patterns (XRD) and field emission scanning electron microscope (FESEM) images confirmed that the ZnO nanosheets consist of polycrystalline structures. Room temperature photoluminescence spectra (PL) of the ZnO nanosheets exhibited band-edge ultraviolet (UV) and visible emission (blue) indicating the ZnO nanosheets had excellent optical properties. The UV-Vis absorption spectrum of ZnO nanosheets was shown a strong absorption at 300 nm. The ZnO nanosheets structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. Moreover, the growth mechanism of the ZnO nanosheets had been discussed.

  3. Electronic Structure, Optical and Sensor Properties of ZnO Nanowires

    Directory of Open Access Journals (Sweden)

    O.V. Bovgyra

    2016-06-01

    Full Text Available Density functional theory calculations of structural, electronic and optical properties of nanowires ZnO were performed. The obtained results are showing that the band gap increase with the decrease of the ZnO nanowire size. The calculated ZnO nanowires dielectric function shows a significant blueshift with those of bulk ZnO. Our results give some reference to the thorough understanding of optical properties of ZnO, and also enable more precise monitoring and controlling during the growth of ZnO materials to be possible. Also theoretical calculations of adsorption of the different gases molecules on side of nanowires ZnO were performed. Their charge transfer to the nanowire sidewall is investigated in order to determine the donor or acceptor character of molecular adsorbing.

  4. Analysis of Li-related defects in ZnO thin films influenced by annealing ambient

    Indian Academy of Sciences (India)

    Bing Wang; Lidan Tang

    2014-02-01

    Li-doped ZnO thin films were grown on quartz substrates by radio frequency magnetron sputtering and in situ annealing under O2 or Ar ambient. Li-related defects in ZnO films strongly depend on the annealing ambient. AFM and XRD indicated that ZnO films possessed a good crystallinity with -axis orientation, uniform thickness and dense surface. Electrical and optical properties demonstrated that, an amount of LiZn defect had existed in ZnO annealed under O2 ambient and an amount of Lii(o) defect had existed in ZnO annealed under Ar ambient. First-principle calculations were performed to calculate formation energies of Li-doped ZnO in order to explain the formation mechanism of Li-related defects in ZnO.

  5. Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    ZnO nanocrystals with different morphologies were successful synthesized by a simple hydrothermal method combined with and without hexadecyl trimethyl ammonium bromide(CTAB).The phases and morphologies of the products were measured using X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM),respectively.The results indicated that the ZnO nanocrystals with different morphologies were of hexagonal wurtzite structure.ZnO nanorods were obtained without using CTAB,and then the morphology of ZnO changed to ZnO nanoflower and the density of nanoflower became denser with the increase of CTAB concentration.ZnO nanoflower and ZnO nanorod as photoanode were applied to dye-sensitized solar cells(DSSC),respectively.The nanoflower shows a higher dye loading,so DSSC with the use of the ZnO nanoflower possesses a higher conversion efficiency than ZnO nanorod.

  6. Shape-controllable Synthesis of Ultrafine ZnO Powders of Different Morphologies

    Institute of Scientific and Technical Information of China (English)

    Xiaoyi Shen; Yuan Liang; Yuchun Zhai; Zhiqiang Ning

    2013-01-01

    By employing zinc acetate and sodium hydroxide as raw materials,ultrafine ZnO powders with different morphologies were successfully synthesized through hydrothermal method.The influences of the reaction temperature,the OH /Zn2+ mol ratio and the reaction time on the morphologies of the ZnO powders were discussed.The reaction conditions were obtained,under which the ZnO of flower-like particles,micro-rods and flake particles was synthesized,respectively.The crystal structures and morphologies of those ZnO particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).The ZnO with flower-like structures was composed of lots of micro-rods with hexagon morphology.The XRD patterns indicated that the ZnO powders were hexagonal wurtzite structures with high purity.Finally,the growth mechanism of the ZnO particles was discussed.

  7. Transparent conductivity modulation of ZnO by group-IVA doping

    Science.gov (United States)

    Liu, J.; Fan, X. F.; Sun, C. Q.; Zhu, W.

    2016-04-01

    We examined the effect of group-IVA doping on the electronic structure and transmittance of ZnO using first-principle calculations. All these doped ZnO materials are found to perform n-type conductive behavior. Si-doped ZnO and Pb-doped ZnO are found to have larger optical band gap than those of Ge-doped ZnO and Sn-doped ZnO. The transmittance of Si-doped ZnO is found to be high in both UV and visible region. The enhancement of UV region transmittance can be attributed to the enhanced optical band gap, while the reduction of visible region transmittance is due to the intraband optical transition.

  8. Free-standing ZnO nanorods and nanowalls by aqueous solution method.

    Science.gov (United States)

    Kim, Dae-Hee; Lee, Sam-Dong; Kim, Kyoung-Kook; Park, Gyeong-Su; Lee, Ji-Myon; Kim, Sang-Woo

    2008-09-01

    Large quantity of free-standing ZnO nanorods and nanowalls were synthesized at low temperature of below 100 degrees C using zinc acetate, zinc nitrate hexahydrate, and hexamethylenetetramine by using a simple aqueous solution method. The general morphology of the grown ZnO nanostructures which include nanorods and nanowalls was strongly influenced by growth conditions. It was found that the grown ZnO nanorods are of a single-crystalline hexagonal structure and preferred c-axis growth orientation. ZnO nanorods were of better crystallinity than ZnO nanowalls, due to the higher growth temperature used to grow ZnO nanorods. Strong free exciton emission bands with relatively weak deep level emission were clearly observed from ZnO nanorods and nanowalls, indicating their good optical properties.

  9. Optical characterization of ZnO nanomaterial with praseodymium ions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Y. K., E-mail: dryksharma@yahoo.com; Bind, Umesh Chandra [Department of Physics, Centre of Nanotechnology, IIT Roorkee (India); Pal, Sudha, E-mail: namansingh91@gmail.com; Goyal, Priyanka, E-mail: namansingh91@gmail.com

    2016-05-06

    ZnO nanomaterial with praseodymium ions was prepared by chemical synthesis method. The ZnO nanomaterial was characterized by XRD, SEM and TEM. Their absorption in UV-VIS/NIR regions was measured at room temperature. The experimental oscillator strengths were calculated from the areas under the absorption bands. Eight absorption bands have been observed. From these spectral data various energy interaction parameters like Slater–Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters have been computed. Judd-Ofelt analysis has been carried out using the absorption spectra to evaluate the radiative properties for luminescent levels of the praseodymium ion and discussed. The observed nano particle size is 2nm.

  10. Improved Response of ZnO Films for Pyroelectric Devices

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Yu

    2012-12-01

    Full Text Available Increasing the temperature variation rate is a useful method for enhancing the response of pyroelectric devices. A three-dimensional ZnO film was fabricated by the aerosol deposition (AD rapid process using the shadow mask method, which induces lateral temperature gradients on the sidewalls of the responsive element, thereby increasing the temperature variation rate. To enhance the quality of the film and reduce the concentration of defects, the film was further treated by laser annealing, and the integration of a comb-like top electrode enhanced the voltage response and reduced the response time of the resulting ZnO pyroelectric devices.

  11. Room temperature ferromagnetism in ZnO prepared by microemulsion

    Directory of Open Access Journals (Sweden)

    Qingyu Xu

    2011-09-01

    Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.

  12. Piezoelectric ZnO nanostructure for energy harvesting

    CERN Document Server

    Leprince-Wang, Yamin

    2015-01-01

    Over the past decade, ZnO as an important II-VI semiconductor has attracted much attention within the scientific community over the world owing to its numerous unique and prosperous properties. This material, considered as a "future material", especially in nanostructural format, has aroused many interesting research works due to its large range of applications in electronics, photonics, acoustics, energy and sensing. The bio-compatibility, piezoelectricity & low cost fabrication make ZnO nanostructure a very promising material for energy harvesting.

  13. Permanent bending and alignment of ZnO nanowires.

    Science.gov (United States)

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  14. Permanent bending and alignment of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)

    2011-07-01

    Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.

  15. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    OpenAIRE

    Mikli Valdek; Kärber Erki; Raadik Taavi; Dedova Tatjana; Krustok Jüri; Mere Arvo; Krunks Malle

    2011-01-01

    Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, ...

  16. ZnO nanotube based dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. (Materials Science Division); (Northwestern Univ.)

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  17. ZnO nanotube based dye-sensitized solar cells.

    Science.gov (United States)

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  18. Optical characterization of ZnO nanomaterial with praseodymium ions

    Science.gov (United States)

    Sharma, Y. K.; Pal, Sudha; Goyal, Priyanka; Bind, Umesh Chandra

    2016-05-01

    ZnO nanomaterial with praseodymium ions was prepared by chemical synthesis method. The ZnO nanomaterial was characterized by XRD, SEM and TEM. Their absorption in UV-VIS/NIR regions was measured at room temperature. The experimental oscillator strengths were calculated from the areas under the absorption bands. Eight absorption bands have been observed. From these spectral data various energy interaction parameters like Slater-Condon, Lande, Racah, Nephelauxetic ratio and bonding parameters have been computed. Judd-Ofelt analysis has been carried out using the absorption spectra to evaluate the radiative properties for luminescent levels of the praseodymium ion and discussed. The observed nano particle size is 2nm.

  19. Preparation and characterization of ZnO nanofibers by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Siddheswaran, R. [Material Research Centre, Department of Physics, Velammal Engineering College, Chennai-600066 (India); Department of Physics, Pachaiyappa' s College, Chennai- 600 030 (India); Sankar, R.; Ramesh Babu, M.; Jayavel, R. [Crystal Growth Centre, Anna University, Chennai-600 025 (India); Rathnakumari, M.; Sureshkumar, P. [Material Research Centre, Department of Physics, Velammal Engineering College, Chennai-600066 (India); Murugakoothan, P. [Department of Physics, Pachaiyappa' s College, Chennai- 600 030 (India)

    2006-05-15

    Electrospun ZnO nanofibers were obtained by calcinating PVA/Zinc Acetate composite fibers at various temperatures. Atomic Force Microscopy (AFM) revealed that the ZnO fibers have diameters in the range of 100-200 nm. The fibers were characterized by FT- IR, TGA-DTA, and XRD studies. The XRD results showed that the crystal structure and the morphology of the fibers were largely dependent on the calcination temperature (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  1. Optical function of bionic nanostructure of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C X [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Zhu, G P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Liu, Y J [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore); Sun, X W [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Li, X [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Liu, J P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Cui, Y P [Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2007-10-15

    A novel bionic network nanostructure of zinc oxide (ZnO), which is similar to the microstructure of a butterfly wing, was first fabricated by a vapor-phase transport method using zinc powder as a source. These bionic nanostructures are composed of three ordered multi-aperture gratings. Similar to the optical effect of butterfly wings, the diffraction patterns of the bionic network of ZnO were observed. The mechanism of the optical function was discussed based on the physical model of multi-aperture diffraction.

  2. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    Science.gov (United States)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm‑1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  3. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.

    Science.gov (United States)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-13

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm(-1) for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  4. Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method

    Science.gov (United States)

    Kim, Soaram; Nam, Giwoong; Yim, Kwang Gug; Lee, Jewon; Kim, Yangsoo; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown by the hydrothermal method on ZnO seed layers post-heated in the range 350°C-500°C. The effects of the post-heated ZnO seed layers on the structural and optical properties of the ZnO nanostructures were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD) spectroscopy, and photoluminescence (PL) spectroscopy. The average grain sizes in the ZnO seed layers increased with increasing post-heating temperature, and nano-fibrous structures were observed on the surface of the ZnO seed layers post-heated at 450°C. The ZnO seed layers post-heated in the range 350°C-500°C affected the residual stress, lattice distortion in the ZnO nanostructures and the intensity, positions, and full widths at half maximum of 2 θ and PL peaks in the XRD and PL spectra for the ZnO nanostructures.

  5. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications

    Indian Academy of Sciences (India)

    PRITAM PATIL; GANESH GAIKWAD; D R PATIL; JITENDRA NAIK

    2016-06-01

    1-D ZnO nanorods and PPy/1-D ZnO nanocomposites were prepared by the surfactant-assisted precipitation and in situ polymerization method, respectively. The synthesized nanorods and nanocomposites were characterized by UV–Vis spectrophotometer, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM), which gave the evidence of 1-D ZnO nanorods, polymerization of pyrrole monomer and strong interaction between PPy and 1-D ZnO nanorods, respectively. Photocatalytic activity of 1-D ZnO nanorods was conducted by $3^3$ level full-factorial design to evaluate the effect of three independent process variables viz., dye concentration (crystal violet), catalyst concentration (1-D ZnO nanorods) and the reaction time on the preferred response: photodegradation efficiency (%). The PPy/1-D ZnO nanocompositeswere used for the sensing of NH$_3$, LPG, CO$_2$ and H$_2$S gases, respectively, at room temperature. It was observed that PPy/1-D ZnO nanocomposites with different 1-D ZnO nanorod weight ratios (15 and 25%) had better selectivity and sensitivity towards NH3 at room temperature.

  6. The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite

    OpenAIRE

    Shahram Moradi; Parviz Aberoomand-Azar; Sanaz Raeis-Farshid; Saeed Abedini-Khorrami; Mohammad Hadi Givianrad

    2016-01-01

    The TiO2/ZnO nanocomposite as a photocatalyst was prepared with different molar ratios of ZnO using the sol–gel method. The structures and properties were recognized with Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) methods. The XRD study exhibited that the crystallization behavior of the nanocomposites was associated with the molar ratios of ZnO. The SEM images indicated that with increasing the molar ratio of TiO2/ZnO unti...

  7. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra [Centre of Excellence in Nanomaterials, Department Of Applied Physics Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India)

    2015-06-24

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorption spectra was obtained and the band gap of the samples calculated.

  8. Definition of polycrystalline ZnO catalytic sites and their role in CO hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, C.; Saussey, J.; Lavalley, J.C.; Djega-Mariadassou, G.

    1986-08-15

    CO/sub 2/, H/sub 2/, CO and CO + H/sub 2/ adsorption at low temperature has been studied by FT-IR spectroscopy on two different ZnO samples obtained by thermal decomposition: ZnO ex-hydroxycarbonate (ZnO ex-h) and ZnO ex-oxalate (ZnO ex-o). The results are compared with those obtained on ZnO Kadox 15 (ZnO K15). Electron microscopy observations show that ZnO ex-h presents a majority of nonpolar faces and ZnO ex-o a majority of polar faces. IR experiments using CO/sub 2/ or CO as probe molecules confirm these results. Moreover CO/sub 2/ adsorption evidences particular sites formed by zinc ions with two vacancies next to a Zn-O couple with a basic oxygen. Their number per area unit increases in the following way: ZnO ex-o < ZnO ex-h < ZnO K15 and therefore does not vary proportionally to the surface area. H/sub 2/ adsorption at low temperature is specific to such sites. From volumetric measurements their number can be estimated to approx. 1.35 sites nm/sup -2/ on ZnO K15. Such sites could belong to pyramidal planes. They act as catalytic sites in the CO reduction by H/sub 2/ leading first to formyl species and then to methoxy groups. 2 tabs., 8 figs., 14 refs.

  9. Structural studies of ZnO nanostructures by varying the deposition parameters

    Science.gov (United States)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  10. Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film

    OpenAIRE

    Lin, Suanzhi; Hu, Hailong; Zheng, Weifeng; Qu, Yan; Lai, Fachun

    2013-01-01

    ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600°C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after t...

  11. Controllable hydrothermal synthesis of ZnO nanowires arrays on Al-doped ZnO seed layer and patterning of ZnO nanowires arrays via surface modification of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Que Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Jia Qiaoying [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Ye Xiangdong; Ding Yucheng [State Key Laboratory of Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2011-09-15

    ZnO nanowire (NW) arrays are assembled on the Al-doped ZnO (AZO) seed layer by a hydrothermal process. Effects of the temperature and growth time of the hydrothermal process on morphological and photoluminescence properties of the as-assembled ZnO NW arrays are characterized and studied. Results indicate that the length and diameter of the ZnO NWs increase with a lengthening of the growth time at 80 deg. C and the hydrothermal temperature has a significant effect on the growth rate and the photoluminescence properties of the ZnO NW arrays. The patterned AZO seed layer is fabricated on a silicon substrate by combining a sol-gel process with an electron-beam lithography process, as well as a surface fluorination technique, and then the ZnO NW arrays are selectively grown on those patterned regions of the AZO seed layer by the hydrothermal process. Room-temperature photoluminescence spectra of the patterned ZnO NW arrays shows that only a strong UV emission at about 380 nm is observed, which implies that few crystal defects exist inside the as-grown ZnO NW arrays.

  12. Ecotoxicity of Manufactured ZnO Nanoparticles - A Review

    Science.gov (United States)

    This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different phylum: bacteria, algae and plants, aquatic and terrestrial invertebrates and freshwater fish. Results show that the majority of s...

  13. Growth of ZnO and GaN Films

    Science.gov (United States)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  14. Trapping of cubic ZnO nanocrystallites at ambient conditions

    DEFF Research Database (Denmark)

    Decremps, F.; Pellicer-Porres, J.; Datchi, F.

    2002-01-01

    Dense powder of nanocrystalline ZnO has been recovered at ambient conditions in the metastable cubic structure after a heat treatment at high pressure (15 GPa and 550 K). Combined x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) experiments have been performed to probe both long-ra...

  15. NANO CRYSTALLINE ZnO CATALYZED ONE POT THREE ...

    African Journals Online (AJOL)

    giving higher chemical yields than multiple-step syntheses, and so can reduce ... equipped with a converter/transducer and titanium oscillator (horn), 12.5 mm in .... In order to study the morphology and particle size of ZnO nanoparticles, SEM ...

  16. Ferromagnetism in ZnO doped with alkaline elements

    Science.gov (United States)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  17. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Science.gov (United States)

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  18. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Directory of Open Access Journals (Sweden)

    Mikli Valdek

    2011-01-01

    Full Text Available Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm were grown in air onto a preheated soda-lime glass (SGL or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  19. Photoluminescence of spray pyrolysis deposited ZnO nanorods.

    Science.gov (United States)

    Kärber, Erki; Raadik, Taavi; Dedova, Tatjana; Krustok, Jüri; Mere, Arvo; Mikli, Valdek; Krunks, Malle

    2011-04-21

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods.PACS: 78.55.Et, 81.15.Rs, 61.46.Km.

  20. ZnO nanowire-based CO sensor

    Science.gov (United States)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  1. Direct Precipitation and Characterization of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. H. Moharram

    2014-01-01

    Full Text Available ZnO nanoparticles are prepared through hydrolysis and condensation of zinc acetate dihydrate by potassium hydroxide in alcoholic medium at low temperatures. Thermal gravimetric analysis (TGA of the precursor is made in order to specify the temperature range over which the weight loss and thermal effect are significant. X-ray diffraction of the as-prepared specimens shows that the hexagonal (a=3.2459 Å, c=5.1999 Å structure is the predominant crystallographic structure. According to Scherer’s formula, the average size of the nanoparticles is 22.4 ± 0.6 nm. The structural properties of the synthesized ZnO nanoparticles have been confirmed using the TEM micrographs. The optical energy gap of the ZnO nanoparticles, as obtained from applying Tauc’s equation, is equal to 3.52 eV, which is higher than that of the bulk material. Absorption peak of the as-prepared sample is 298 nm which is highly blue shifted as compared to the bulk (360 nm. Large optical energy gap and highly blue shifted absorption edge confirm that the prepared ZnO nanoparticle exhibits strong quantum confinement effect.

  2. Electron-hole quantum physics in ZnO

    NARCIS (Netherlands)

    Versteegh, M.A.M.

    2011-01-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on b

  3. Electron-hole quantum physics in ZnO

    NARCIS (Netherlands)

    Versteegh, M.A.M.

    2011-01-01

    This dissertation describes several new aspects of the quantum physics of electrons and holes in zinc oxide (ZnO), including a few possible applications. Zinc oxide is a II-VI semiconductor with a direct band gap in the ultraviolet. Experimental and theoretical studies have been performed, both on b

  4. The Applications of Morphology Controlled ZnO in Catalysis

    Directory of Open Access Journals (Sweden)

    Yuhai Sun

    2016-11-01

    Full Text Available Zinc oxide (ZnO, with the unique chemical and physical properties of high chemical stability, broad radiation absorption range, high electrochemical coupling coefficient, and high photo-stability, is an attractive multifunctional material which has promoted great interest in many fields. What is more, its properties can be tuned by controllable synthesized morphologies. Therefore, after the success of the abundant morphology controllable synthesis, both the morphology-dependent ZnO properties and their related applications have been extensively investigated. This review concentrates on the properties of morphology-dependent ZnO and their applications in catalysis, mainly involved reactions on green energy and environmental issues, such as CO2 hydrogenation to fuels, methanol steam reforming to generate H2, bio-diesel production, pollutant photo-degradation, etc. The impressive catalytic properties of ZnO are associated with morphology tuned specific microstructures, defects or abilities of electron transportation, etc. The main morphology-dependent promotion mechanisms are discussed and summarized.

  5. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles.

    Science.gov (United States)

    Wan, Biao; Yan, Yupeng; Tang, Yuanzhi; Bai, Yuge; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Feng, Xionghan

    2017-02-27

    The fate and toxicity of zinc oxide nanoparticles (ZnO NPs) in nature are affected by solution chemistry such as pH, anions, and natural organic matter (NOM). Inorganic polyphosphates are environmentally ubiquitous phosphorus (P) species that may change the speciation and environmental fate of ZnO NPs. In this study, the interactions of polyphosphates with ZnO NPs and the impacts on ZnO NP dissolution and transformation were investigated and compared with orthophosphate (P1). The results revealed that pyrophosphate (P2), tripolyphosphate (P3), and hexametaphosphate (P6) enhanced whereas P1 inhibited the dissolution of ZnO NPs. In addition, P1, P2, and P3 promoted the transformation of ZnO NPs into zinc phosphate (Zn-P) precipitates via interactions with dissolved Zn(2+). However, P6-promoted ZnO NP dissolution was through the formation of soluble Zn-P complexes due to the strong capability of P6 to chelate with Zn(2+). The transformation of ZnO NPs in the presence of P3 was affected by reaction time, pH, and P/Zn molar ratio. P3 first formed inner-sphere surface complexes on ZnO NPs, which gradually transformed into crystalline Zn2HP3O10(H2O)6 precipitates. This study provided a new perspective for understanding the reactivity of various forms of inorganic phosphate species with ZnO NPs in the natural environment.

  6. Influence of defects on electrical properties of electrodeposited co-doped ZnO nanocoatings

    Science.gov (United States)

    Simimol, A.; Anappara, Aji A.; Barshilia, Harish C.

    2017-01-01

    We present a systematic investigation of the electrical properties of undoped and Co-doped ZnO nanostructures at room temperature as an extensive study of the role of defects in ZnO. The ZnO nanostructures were fabricated by the electrodeposition method at low bath temperature (80 °C) and the Co concentration was varied from 0.01 to 0.2 mM. Electrical properties of the undoped and Co-doped ZnO nanostructures were studied in detail. The carrier concentration increases while the mobility reduces with increase in Co-concentration. The resistivity increases with an increase in Co-concentration and the reason is correlated with the defects in ZnO. In order to understand more details of the role of defects in the present I-V characteristic behavior of the Co-doped ZnO, high temperature vacuum annealing of ZnO sample was carried out. Electrical, optical and magnetic properties of the high temperature vacuum annealed ZnO were studied in detail. Photoluminescence spectroscopy (PL) results revealed more information of the defect levels which act as scattering centers for the carriers. Co-doping as well as annealing at high temperature in vacuum environment tunes the defects in ZnO and which influence the optical, magnetic and electrical behavior of the ZnO nanostructures.

  7. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO.

    Science.gov (United States)

    Patil, Ashokrao B; Patil, Kashinath R; Pardeshi, Satish K

    2010-11-15

    The S-doped ZnO was prepared by new ecofriendly method, which involves simple mechanochemical synthesis followed by thermal decomposition of bisthiourea zinc oxalate (BTZO) powders. The BTZO was characterized by FTIR and TG-DTA analysis while S-doped ZnO crystallite was characterized by XRD, XPS, SEM, EDXS, and photoluminescence (PL) spectra. X-ray diffraction data suggest the single phase wurtzite structure for S-doped ZnO and the incorporation of sulfur expand the lattice constants of ZnO. Room temperature PL spectra show more number of oxygen vacancies in S-doped ZnO as compare to that of pure ZnO. Photocatalytic activity of S-doped ZnO was checked by means of solar photocatalytic degradation (PCD) of resorcinol, using a batch photoreactor. The PCD efficiency of S-doped ZnO was found to be 2 times greater than that of pure ZnO. The inherent relationship between PL intensity and photocatalytic activity of S-doped ZnO was discussed.

  8. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    Science.gov (United States)

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food.

  9. Photocatalytic and optical properties of nanocomposite TiO2-ZnO thin films

    Science.gov (United States)

    Mohamed, S. H.; El-Hagary, M.; Althoyaib, S.

    2012-01-01

    Nanocomposite TiO2-ZnO thin films, with different ZnO content, were deposited by electron-beam evaporation on glass and Si(1 0 0) substrates. The resulting films were annealed in air for 1 h at 450 °C. X-ray diffraction revealed the presence of monoclinic β-TiO2 and hexagonal ZnO for the films prepared with ZnO content of 0 at.% and 100 at.%, respectively. Mixed monoclinic β-TiO2 and hexagonal ZnO phases were observed at higher ZnO content between 50 at.% and 85 at.%. Spectroscopic ellipsometry (SE) was employed to determine the film thickness and optical constants. A two-layer model was used to describe the experimental ellipsometric data. At any wavelength longer than 390 nm, the refractive index decreases gradually with increasing ZnO content in the composite films. The optical band gap increased with increasing ZnO content. The photocatalytic behavior of TiO2-ZnO thin films was mainly evaluated by measuring the decomposition of methylene blue. The nanocomposite film with ZnO content of 8 at.% has the best photocatalytic activities.

  10. Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Samapti; Sain, Sumanta [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Yoshio, Masaki [Advanced Research and Education Centre, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Kar, Tanusree [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal (India); Gunawardhana, Nanda, E-mail: nandagunawardhana@pdn.ac.lk [International Research Centre, Senate Building, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Pradhan, Swapan Kumar, E-mail: skpradhan@phys.buruniv.ac.in [Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2015-02-28

    Graphical abstract: - Highlights: • ZnO nanorods are synthesized at room temperature via a simple chemical route. • Growth direction of ZnO nanorods has been determined along 〈0 0 2〉. • ZnO nanorods constructed anode shows a high discharge capacity in first cycle. • It retains good reversible capacity compared to other ZnO morphologies. - Abstract: ZnO nanorods are synthesized at room temperature via a simple chemical route without using any template or capping agent and its importance is evaluated as a suitable candidate for anode material in lithium ion battery. Structural and microstructure characterizations of these nanorods are made by analyzing the X-ray diffraction data employing the Rietveld method of powder structure refinement. It reveals that the ZnO nanorods are grown up with a preferred orientation and elongated along 〈0 0 2〉. FESEM images reveal that these uniform cylindrical shaped nanorods are of different lengths and diameters. These synthesized ZnO nanorods are tested as an anode material for lithium ion batteries. The nano grain size of the ZnO rods results in less volume expansion and/or contraction during the alloying/de-alloying process and causes in good cyclability. In addition, synthesized ZnO nanorods deliver high charge/discharge capacities compared to other reported ZnO materials.

  11. Shape tunable synthesis of Eu- and Sm-doped ZnO microstructures: a morphological evaluation

    Indian Academy of Sciences (India)

    Gautam Sheel Thool; M Arunakumari; Ajaya Kumar Singh; Surya Prakash Singh

    2015-10-01

    Facile and low-cost aqueous chemical bath deposition route has been demonstrated to fabricate Eu- and Sm-doped ZnO microstructures. The effect of Eu and Sm ions on the morphology of the ZnO was investigated. The synthesized doped ZnO microstructures were systematically characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared spectra. FESEM images depicted the formation of Eu-doped ZnO microsphere and Sm-doped ZnO microplates. XRD spectra showed single crystalline nature of the undoped ZnO microdisks, whereas Eu- and Sm-doped ZnO exhibited the polycrystalline nature. The presence of Eu and Sm ions in the ZnO matrix was confirmed by XPS. This means that all the Eu ions substituted Zn2+ as Eu2+ into the ZnO matrix, whereas most of Sm ions were being in the trivalent state. This was probably due to the segregation of Sm2O3 species on the surface of ZnO microstructures.

  12. Growth of high aspect ratio ZnO nanorods by solution process: Effect of polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Han-Seok; Vaseem, Mohammad; Kim, Sang Gon; Im, Yeon-Ho [School of Semiconductor and Chemical Engineering, Dept. of BIN Fusion Technology, BK 21 Centre for Future Energy Materials and Devices, and Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hahn, Yoon-Bong, E-mail: ybhahn@chonbuk.ac.kr [School of Semiconductor and Chemical Engineering, Dept. of BIN Fusion Technology, BK 21 Centre for Future Energy Materials and Devices, and Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-05-15

    High aspect ratio ZnO nanorods were grown vertically on ZnO seed layer deposited silicon, glass and polyimide substrates by a solution process at low-temperature using zinc nitrate hexahydrate and hexamethylenetetramine. We studied the effect of polyethlyeneimine (PEI) on the growth of ZnO nanorods. It was found that PEI has a prominent effect on controlling the aspect ratio of ZnO nanorods in solution. The morphological and photoluminescence properties of the ZnO nanorods were also examined with varying the growth temperature (60-90 Degree-Sign C). - Graphical abstract: With addition of polyehyleneimine (PEI) high aspect-ratio ZnO nanorods were grown. It is believed that during ZnO nanorods growth, protonized form of linear PEI molecules inhibits the lateral growth by being adsorbed on non-polar lateral planes. Thus the vertical growth is favored. Highlights: Black-Right-Pointing-Pointer A controlled growth of high aspect ratio ZnO nanorods on different substrates. Black-Right-Pointing-Pointer A prominent effect of polyethlyeneimine (PEI) on controlling the aspect ratio of ZnO nanorods in solution. Black-Right-Pointing-Pointer Precursor concentration and growth temperature effect for various aspect ratio ZnO nanorods.

  13. The Antibacterial Activity of Ta-doped ZnO Nanoparticles.

    Science.gov (United States)

    Guo, Bing-Lei; Han, Ping; Guo, Li-Chuan; Cao, Yan-Qiang; Li, Ai-Dong; Kong, Ji-Zhou; Zhai, Hai-Fa; Wu, Di

    2015-12-01

    A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta(5+) ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta(5+) ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.

  14. ARTICLES: Synthesis and Characterization of TiO2 Doped ZnO Microtubes

    Science.gov (United States)

    Li, Yan

    2010-06-01

    The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemical method, using zinc chloride and titanium sulphate as the starting materials. The assynthesized products were characterized by X-ray diffraction, field emission scanning electron microscopy and room temperature photoluminescence measurement. The photocatalytic activity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti3O5 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very efficient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.

  15. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures

    Energy Technology Data Exchange (ETDEWEB)

    Han, Zhizhong; Liao, Lan [Fujian Engineering Research Center of Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research on the Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Wu, Yueting [College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou, Fujian 350002 (China); Pan, Haibo, E-mail: hbpan@fzu.edu.cn [Fujian Engineering Research Center of Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research on the Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Yishan Campus, Fuzhou, Fujian 350002 (China); Shen, Shuifa [Fujian Engineering Research Center of Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research on the Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China); Chen, Jianzhong, E-mail: j.z.chen@fzu.edu.cn [College of Chemistry and Chemical Engineering, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350108 (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer ZnO flower-rod arrays based on ITO was firstly used as a photocatalytic device. Black-Right-Pointing-Pointer This photocatalytic device is convenient to recycle without centrifugation. Black-Right-Pointing-Pointer Electrochemical method was used to research the photodegradation mechanism. Black-Right-Pointing-Pointer The degradation efficiency of Rhodamine B is enhanced by ZnO flower-rod arrays. Black-Right-Pointing-Pointer This structure could be found in applications in solar cells, sensors and other devices. - Abstract: An oriented hierarchical ZnO flower-rod arrays (FRs) were prepared on indium doped tin oxide (ITO) glass using a facile solution-based method assisted with ZnO seed layer. And the as-prepared ZnO FRs/ITO was used as a convenient photocatalytic device that recycled without centrifugation. The results show that ZnO FRs are wurtzite phase with single crystalline grown along the [0 0 1] direction. The photoluminescence (PL) spectra illustrate that there are more oxygen vacancies on the surface of ZnO FRs compared with ZnO nanoparticles (NPs). The electrochemical methods using Rhodamine B (RhB) as electrolyte are also performed to study on the photodegradation mechanism where RhB is acted as photocatalytic substrate. For ZnO FRs, the higher photoinduced currents under UV irradiation and current density prove that the recombination of electron-hole pairs is restrained with oxygen vacancies, and the lower charge transfer resistance suggest that the charges could move quickly through ZnO oriented structures. Therefore, the photocatalytic activity is enhanced by ZnO FRs compared with ZnO NPs, and RhB degradation efficiency of ZnO FRs photocatalysts is nearly 100% by UV irradiation for 1.5 h.

  16. Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, The Institute of Science, Madam Cama Road, Mumbai 400 032, (M.S.) (India); Lu, Shih-Yuan, E-mail: sylu@nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-12-05

    Highlights: •The simple, low cost, environmental benign hydrothermal method has been used to synthesize ZnO nanostructure. •The SEM images reveal the interesting 3D dandelion-like morphology of synthesized ZnO nanostructure. The SAED pattern and HRTEM study confirms that the ZnO nanorods are single crystalline. •Change in experimental conditions dramatically changes the morphologies of the synthesized ZnO. •The room temperature PL study reveals strong band edge emission along with much weaker defect related blue emission. •The reaction and growth mechanism of ZnO nanostructure is also discussed. -- Abstract: Three dimensional (3D) ZnO nanostructures have been synthesized by using a facile low-cost hydrothermal method under mild conditions. Aqueous alkaline ammonia solution of Zn(CH{sub 3}COO){sub 2} is used to grow 3D ZnO nanostructures. The X-ray diffraction (XRD) study reveals the well crystallized hexagonal structure of ZnO. SEM observations depict that the ZnO product grows in the form of nanorods united together to form 3D dandelion-like nanostructures. The elemental analysis using EDAX technique confirms the stoichiometry of the ZnO nanorods. The product exhibits special optical properties with red-shifts in optical absorption peak (376 nm) as compared with those of conventional ZnO nanorods. PL spectra show emission peak (396 nm) at the near band-edge and peak (464 nm) originated from defects states that are produced during the hydrothermal growth. TEM and SAED results reveal single crystalline structure of the synthesized product. The reaction and growth mechanisms on the morphological evolution of the ZnO nanostructures are discussed. The morphology of ZnO product is investigated by varying the reaction time, temperature, and type of complexing reagent.

  17. Ionic Liquids Assisted Synthesis of ZnO Nanostructures: Controlled Size,Morphology and Antibacterial Properties

    Institute of Scientific and Technical Information of China (English)

    R.Rajiv Gandhi; S.Gowri; J.Suresh; M.Sundrarajan

    2013-01-01

    Systematic analysis about the exploitation of imidazolium based ionic liquids (ILs),[BMIM] BF4 [IL1],[EMIM] BF4 [IL2] and [BMIM] PF6 [IL3] as the morphological template on the basic sol-gel method adopted synthesis of nanostructured zinc oxide (ZnO) is presented.X-ray diffraction (XRD),particle size analysis (PSA) and scanning electron microscopy (SEM) have been employed for the characterization of structure and morphology of the synthesized ZnO particles.Well-defined capsule like shaped morphology with lower nanosize is observed for the ZnO nanoparticles with IL1 than those with IL2 and IL3.This confirms that IL1 served as an effective templating material due to their unique properties.Especially the effective aggregation of ZnO particles with a self-organized frame of IL1 was the essential factor to produce the lower nanosized ZnO with capsule shaped structure.The synthesized ZnO samples with IL2 and IL3 fabricated the flake like shaped and rod like shaped morphologies in the range of nanoscale.The formed ZnO nanoparticles with IL2 exhibit higher nanosize than the ZnO nanoparticles produced by IL1,owing to shorter length of alkyl group in its cation which restricts steric effect and permits the nanoparticles to grow longer.Even though IL3 produced the discrete ZnO nanorods,the hydrophobic nature of IL3 created the higher nanosize than the ZnO nanoparticles formed by other two ionic liquids.Antibacterial properties of the synthesized ZnO nanostructures were investigated against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) bacteria by Agar diffusion test method.Microbial experiments indicate that the synthesized ZnO samples show a wide spectrum of antimicrobial activities and performed better against S.aureus than E.coli with the same concentration of ZnO.

  18. Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mengzhu, E-mail: liumengzhu125@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Wang, Yongpeng, E-mail: wyp4889@gmail.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Cheng, Zhiqiang, E-mail: czq5974@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); College of Resources and Environment, Jilin Agriculture University, Changchun, Jilin Province 130118 (China); Song, Lihua, E-mail: 120836684@qq.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang, Liaoning Province 110034 (China); Zhang, Mingyue, E-mail: zhangmingyue8803@163.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Hu, Meijuan, E-mail: 442675083@qq.com [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China); Li, Junfeng, E-mail: jfli@jlu.edu.cn [College of Chemistry, Jilin University, Changchun, Jilin Province 130012 (China)

    2014-09-15

    Graphical abstract: - Highlights: • PLA was used as templates to electrospin ZnO nanofibers for the first time. • Without NaOH hydrolysis, only ZnO film was prepared. • Under function of NaOH, ZnO nanofibers were obtained. • The function of NaOH was discussed. • ZnO nanofibers showed much higher photocatalytical efficiency than ZnO film. - Abstract: Mixture of polylactide (8 wt%), zinc acetate (6 wt%) and hexafluoroisopropanol was first used as electrospinning solution to fabricate ZnO nanofibers. Unfortunately, after direct calcination of the precursor polylactide/zinc acetate nanofibers, only ZnO film was prepared. Surprisingly, when the precursor fibers were pre-hydrolyzed with NaOH, ZnO nanofibers with diameter of 678 nm were obtained. The mechanism analysis showed that the preserve of fiber structure was attributed to the formation of zinc polylactic acid in the process of hydrolyzation. After characterized by scanning electron microscope and transmission electron microscope, the ZnO film was found to be an aggregation of irregular nanoparticles and the ZnO nanofiber was a necklace-like arrangement of cylindrical grains. X-ray diffraction and photoluminescence measurements indicated that the crystalline quality of the ZnO nanofibers was higher than the film. Furthermore, photocatalytic performance of the ZnO samples was investigated. Comparing with ZnO film, ZnO nanofibers exhibited much higher activity.

  19. Enormous enhancement of ZnO nanorod photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.H.; Duan, W.J. [Department of Physics, Beijing Normal University, Beijing 100875 (China); Wu, Z.L.; Zheng, D. [Analytic and Testing Center, Beijing Normal University, Beijing 100875 (China); Zhou, X.W.; Zhou, B.Y.; Dai, L.J. [Department of Physics, Beijing Normal University, Beijing 100875 (China); Wang, Y.S., E-mail: yswang@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2012-08-15

    ZnO nanorod arrays were grown on quartz slices in the aqueous solution of zinc acetate and hexamethylenetetramine at 90 Degree-Sign C. Then ZnO:Mg shells were epitaxially grown on the nanorods to form core/shell structures in the aqueous solution of zinc acetate, magnesium acetate and hexamethylenetetramine at the same temperature. Effects of the shells and UV laser beam irradiation on the crystal structure and photoluminescence properties of ZnO nanorods were studied. ZnO:Mg shells suppress the green emission and enhance the UV emission intensity of the nanorods by 38 times. Enhancement of the UV emission depends on the Mg content in the shells. Short time UV laser beam irradiation could improve ZnO nanorod emission efficiently. The UV emission intensity of ZnO nanorods is enhanced by 71 times by capping and subsequent UV laser beam irradiation. - Highlights: Black-Right-Pointing-Pointer ZnO nanorod arrays were grown on quartz slices in solution at 90 Degree-Sign C. Black-Right-Pointing-Pointer The nanorods were capped by ZnO:Mg layers to form core/shell structures. Black-Right-Pointing-Pointer ZnO:MgO shells suppress the green emission and enhance the UV emission intensity by 38 times. Black-Right-Pointing-Pointer The enhancement depends on the Mg content in the shells. Black-Right-Pointing-Pointer Exposing the nanorods to 325 laser beam improves the UV emission efficiently. Black-Right-Pointing-Pointer Capping and 325 nm laser beam irradiation could enhance the nanorod UV emission intensity by 71 times.

  20. Zn/O ratio and oxygen chemical state of nanocrystalline ZnO films grown at different temperatures

    Institute of Scientific and Technical Information of China (English)

    Fan Hai-Bo; Zheng Xin-Liang; Wu Si-Cheng; Liu Zhi-Gang; Yao He-Bao

    2012-01-01

    ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD).It is observed that when the growth temperature is low,the stoichiometric ratio between Zn and O atoms has a large deviation from the ideal ratio of 1:1.The ZnO grains in the film have small sizes and are not well crystallized,resulting in a poor photoluminescence (PL) property.When the temperature is increased to an appropriate value,the Zn/O ratio becomes optimized,and most of Zn and O atoms are combined into Zn-O bonds.Then the film has good crystal quality and good PL property.If the temperature is fairly high,the interfacial mutual diffusion of atoms between the substrate and the epitaxial film appears,and the desorption process of the oxygen atoms is enhanced.However,it has no effect on the film property.The film still has the best crystal quality and PL property.

  1. Ohmic-rectifying conversion of Ni contacts on ZnO and the possible determination of ZnO thin film surface polarity.

    Directory of Open Access Journals (Sweden)

    Kim Guan Saw

    Full Text Available The current-voltage characteristics of Ni contacts with the surfaces of ZnO thin films as well as single crystal (0001 ZnO substrate are investigated. The ZnO thin film shows a conversion from Ohmic to rectifying behavior when annealed at 800°C. Similar findings are also found on the Zn-polar surface of (0001 ZnO. The O-polar surface, however, only shows Ohmic behavior before and after annealing. The rectifying behavior observed on the Zn-polar and ZnO thin film surfaces is associated with the formation of nickel zinc oxide (Ni1-xZnxO, where x = 0.1, 0.2. The current-voltage characteristics suggest that a p-n junction is formed by Ni1-xZnxO (which is believed to be p-type and ZnO (which is intrinsically n-type. The rectifying behavior for the ZnO thin film as a result of annealing suggests that its surface is Zn-terminated. Current-voltage measurements could possibly be used to determine the surface polarity of ZnO thin films.

  2. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    Science.gov (United States)

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  3. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification.

    Science.gov (United States)

    Dong, Juan; Zhao, Yanhong; Shi, Jiangjian; Wei, Huiyun; Xiao, Junyan; Xu, Xin; Luo, Jianheng; Xu, Jing; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2014-11-11

    Al-doped ZnO (AZO) modified ZnO nanorods have been applied in CH3NH3PbI3 perovskite solar cells, which can show a positive effect on open circuit voltage and power conversion efficiency. The average power conversion efficiency is improved from 8.5% to 10.07% and the maximum efficiency reaches 10.7%.

  4. 分散聚合法合成含有环氧基的无孔超顺磁性微球及其表征%Preparation and Characterization of Non-porous Superparamagnetic Microspheres with Epoxy Groups by Dispersion Polymerization

    Institute of Scientific and Technical Information of China (English)

    马志亚; 官月平; 刘先桥; 刘会洲

    2005-01-01

    Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3 O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP)and 2,2'-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of have extensive potential uses in magnetic bioseparation and biotechnology.

  5. Thermodynamic Study of Interactions Between ZnO and ZnO Binding Peptides Using Isothermal Titration Calorimetry.

    Science.gov (United States)

    Limo, Marion J; Perry, Carole C

    2015-06-23

    While material-specific peptide binding sequences have been identified using a combination of combinatorial methods and computational modeling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering control over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC), and alanine mutants of G-12 (G-12A6, G-12A11, and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endothermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different peptides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol, and high adsorption affinity values indicated the occurrence of favorable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions, and with continued development, the knowledge gained may be instrumental for simplification of selection processes of organic molecules for the advancement of material synthesis and design.

  6. Spectral Dependent Photoelectrochemical Behaviors of CdS Sensitized ZnO Nanorods.

    Science.gov (United States)

    Majumder, T; Hmar, J J L; Roy, J N; Mondal, S P

    2016-04-01

    CdS decorated ZnO nanorods have been grown by a combination of hydrothermal method and successive ion layer absorption and reaction (SILAR) method. Optical absorption and emission properties of ZnO nanorods have been studied after sensitization with CdS nanoparticles. Current-voltage characteristics of ZnO nanorods and CdS sensitized ZnO nanorods have been studied in an electrochemical cell. The spectral dependent photocurrent and photopotential behaviors of ZnO nanorods and CdS sensitized ZnO nanorods have been investigated using monochromatic light of wavelength 300-700 nm. The photopotential recovery time have been estimated for CdS sensitized nanorods and pristine nanorods.

  7. Self-catalyst synthesis of aligned ZnO nanorods by pulsed laser deposition

    Institute of Scientific and Technical Information of China (English)

    LEN; Song-En; Andy

    2009-01-01

    High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100) substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images show that the ZnO buffer layer formed uniform drip-like structure and ZnO nano- rods were well-oriented perpendicular to the substrate surface. The sharp diffraction peak observed at 34.46° in X-ray diffraction scanning pattern suggests that the ZnO nanorods exhibit a (002)-preferred orientation. The PL spectra of ZnO samples shows a strong near band edge emission centered at about 380 nm and a weak deep level emission centered at around 495 nm, and it demonstrates that the ZnO nanorods produced in this work have high optical quality, which sheds light on further applications for nanodevices.

  8. Fabrication of ZnO nanorods in ionic liquids and their photoluminescent properties

    Institute of Scientific and Technical Information of China (English)

    WANG Li; ZHAO Bin; CHANG LiXian; ZHENG WenJun

    2007-01-01

    A novel and simple approach is reported to fabricate uniform single-crystal ZnO nanorods in ionic liquids. The as-obtained ZnO nanorods have been characterized by XRD, TEM, HRTEM, SAED, XPS, EDXA,PL and UV-vis absorption spectra. The rod diameters of the nanostructures can be controlled by tuning the amount of sodium hydroxide in the synthesis. Photoluminescence results show that the nanostructural ZnO exhibits better optical properties than bulk ZnO does and interestingly, the smaller the rod diameters are, the better optical property 1D nanostructural ZnO exhibits. The possible growth mechanism of ZnO nanorods is also investigated.

  9. Fabrication of ZnO nanorods in ionic liquids and their photoluminescent properties

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel and simple approach is reported to fabricate uniform single-crystal ZnO nanorods in ionic liq-uids. The as-obtained ZnO nanorods have been characterized by XRD,TEM,HRTEM,SAED,XPS,EDXA,PL and UV-vis absorption spectra. The rod diameters of the nanostructures can be controlled by tuning the amount of sodium hydroxide in the synthesis. Photoluminescence results show that the nanos-tructural ZnO exhibits better optical properties than bulk ZnO does and interestingly,the smaller the rod diameters are,the better optical property 1D nanostructural ZnO exhibits. The possible growth mechanism of ZnO nanorods is also investigated.

  10. ZnO piezoelectric fine wire gated graphene oxide field effect transistor.

    Science.gov (United States)

    Mohan, Rajneesh; Krishnamoorthy, Karthikeyan; Kim, Gui-Sik; Kim, Sang-Jae

    2013-05-01

    Here we report the fabrication and characteristics of graphene oxide (GO) field effect transistor gated with piezopotential of ZnO fine wires on a flexible substrate. The FET device consists of GO thin film on the bottom and ZnO piezoelectric fine wire (PFW) on the top. In the FET device the GO serves as a carrier transport channel and ZnO PFW acts as a gate. When the substrate is bent, a piezopotential is generated in the ZnO PFW. The piezopotential created by the strain in the ZnO PFW was used to control the carrier transport in the GO channel. This device demonstrates the application of piezoelectric ZnO PFW for creating the gating effect on the semiconducting performance of GO film.

  11. Controllable Growth of Ultrathin P-doped ZnO Nanosheets.

    Science.gov (United States)

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-12-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  12. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    Science.gov (United States)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  13. Effect of the morphology on the optical properties of ZnO nanostructures

    Science.gov (United States)

    Yang, Zao; Ye, Zhizhen; Xu, Zheng; zhao, Binghui

    2009-12-01

    ZnO nanostructures are fabricated by citric acid-assisted annealing process. The samples are characterized by X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), FTIR spectrophotometer, ultraviolet-visible-near IR spectroscopy and photoluminescence (PL) spectroscopy. The X-ray diffraction pattern of these samples shows that ZnO nanostructures are single crystalline and pure. The effect of morphology of ZnO nanostructures on the optical properties of ZnO nanostructures is analyzed on the basis of these results. Our results clearly demonstrate that tunable optical properties of ZnO nanostructures can be attained by changing the morphology of ZnO nanostructures.

  14. Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals

    Directory of Open Access Journals (Sweden)

    Satoshi Suehiro

    2016-09-01

    Full Text Available ZnO nanocrystals (NCs were synthesized by heating Zn (II acetylacetonate in oleic acid/oleylamine in the presence of 1,2-hexadecanediol at 220 °C. Transmission electron microscopy (TEM and dynamic light scattering (DLS measurements revealed the formation of monodispersed ZnO NCs of ca. 7 nm. ZnO NC assembled films were fabricated on a glass substrate by deposition with the colloidal ZnO NCs dispersed in toluene. The film composed of the NCs showed good optical transparency in the visible to near-infrared region. A device coupling the ZnO NC film with a p-type Cu2ZnSnS4 (CZTS NC film exhibited an obvious diode-like current–voltage behavior. The results suggest that the transparent ZnO film has a potentiality to be used for an n-type window layer in some optoelectronic applications.

  15. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes

    Institute of Scientific and Technical Information of China (English)

    Ye Yun; Guo Tailiang; Jiang Yadong

    2012-01-01

    Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires.The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern,respectively.Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/μm and a high field enhancement factor of 2.86 × 104.A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 × 104 cd/m2 under an applied voltage of 4 kV.

  16. Effect of potassium on structural, photocatalytic and antibacterial activities of ZnO nanoparticles

    Science.gov (United States)

    Bhaviya Raj, R.; Umadevi, M.; Poornima Parvathi, V.; Parimaladevi, R.

    2016-12-01

    ZnO and potassium doped ZnO nanoparticles were synthesized through wet chemical method. The samples were characterized by UV, XRD, SEM, TEM and EDAX. XRD analysis reveals that the prepared nanoparticles exhibit hexagonal wurtzite structure. TEM and SEM analyses disclose that synthesized samples were porous structure with needle shape. It also confirms that potassium was dispersed on ZnO surface. The influence of potassium on ZnO surface modulates the degradation of textile dyeing wastewater by improving its rate of decomposition to 0.007 min-1 with decoloration. A better zone of inhibition of about 20 mm against Staphylococci aureus and Pseudomonas aernginosa by ZnO and potassium doped ZnO nanoparticles were measured. The findings suggest that these nanoparticles have the potential to be a good photocatalyst and applied in water treatment to inhibit the bacterial growth.

  17. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Science.gov (United States)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  18. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  19. Hydrothermal synthesis and dielectric properties of chrysanthemum-like ZnO particles

    Institute of Scientific and Technical Information of China (English)

    Yan Jun-Feng; Zhang Zhi-Yong; You Tian-Gui; Zhao Wu; Yun Jiang-Ni

    2009-01-01

    By orthogonal design theory,technological parameters of chrysanthemum-like ZnO particles prepared in a hydrothermal process are optimized. This paper reports a set of technological parameters for growing chrysanthemumlike ZnO particles on a large scale. It investigates the morphologies and crystalline structures of the as-synthesized three-dimensional ZnO particles with a scanning electron microscope,x-ray diffractometer and transmission electron microscope,and the possible growth mechanism on the three-dimensional ZnO particles. The experimental results indicate that the values of ε'、ε" and tan δe gradually increase in the X band with the improvement of the developmental level of chrysanthemum-like ZnO particles,implying that the electromagnetic wave absorbing property depends on the morphologies of three-dimensional ZnO particles.

  20. Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination

    KAUST Repository

    Yao, Kexin

    2011-01-01

    In this work, wurtzite ZnO nanocrystals with unique "pyramid" morphology were firstly prepared via solvothermal synthesis. It was determined that the ZnO nanopyramids are grown along the polar c-axis with the vertexes pointing to the [001] direction. When the mixture of ZnO nanopyramids and Au precursor (HAuCl4) was exposed to ultraviolet (UV) illumination, Au particles were site-specifically formed on the vertexes of ZnO nanopyramids. The obtained Au/ZnO nanocomposite showed significantly enhanced photocatalytic activity as compared to the bare ZnO nanopyramids. First-principles based calculations well explained the formation of ZnO nanopyramids as well as the site-specific growth of Au, and revealed that during the photocatalysis process the Au particles can accommodate photoelectrons and thus facilitate the charge separation. © 2011 The Royal Society of Chemistry.

  1. High-frequency properties of oil-phase-synthesized ZnO nanoparticles

    Institute of Scientific and Technical Information of China (English)

    丁浩峰; 杨海涛; 柳丽平; 任肖; 宋宁宁; 沈俊; 张向群; 成昭华; 赵国平

    2015-01-01

    Monodispersive ZnO nanoparticles each with a hexagonal wurtzite structure are facilely prepared by the high-temperature organic phase method. The UV-visible absorption peak of ZnO nanoparticles presents an obvious blue-shift from 385 nm of bulk ZnO to 369 nm. Both the real part and the image part of complex permittivity of ZnO nanoparticles from 0.1 GHz to 10 GHz linearly decrease without obvious resonance peak appearing. The real parts of intrinsic permittiv-ity of ZnO nanoparticles are about 5.7 and 5.0 at 0.1 GHz and 10 GHz respectively, and show an obvious size-dependent behavior. The dielectric loss angle tangent (tanδ) of ZnO nanoparticles with a different weight ratio shows a different decreasing law with the increase of frequency.

  2. Effect of solution concentration on the functional properties of ZnO nanostructures: Role of Hexamethylenetetramine

    Science.gov (United States)

    Heo, Si Nae; Park, Keun Young; Seo, Yong Jun; Ahmed, Faheem; Anwar, M. S.; Koo, Bon Heun

    2013-05-01

    In this research, ZnO nanorods have been successfully synthesized via wet chemical method. XRD results revealed the single phase nature with the wurtzite structure of the as prepared ZnO nanorods. By only varying the concentration of Hexamethylenetetramine (HMT) in the solution, morphology of ZnO changed from hexagonal facet nanorods to pencil like nanorods and size of nanorods also changed. The band gap of as-synthesized ZnO nanorods was found to increase with increasing the concentration of HMT in the solution. The narrow full-width at half-maximum (FWHM) of the UV emission of PL spectra indicated that the grown ZnO nanorods have high crystal quality and is well matched with the obtained XRD results. These results revealed that the concentration of Hexamethylenetetramine plays a vital role to control the properties of ZnO nanorods.

  3. Enhanced photovoltaic performance of ZnO nanorod-based dye-sensitized solar cells by using Ga doped ZnO seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Yuanyao [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Wu, Fang, E-mail: fang01234@163.com [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Mao, Caiying [Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Fang, Liang, E-mail: lfang@cqu.edu.cn [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China); Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Guo, Shengchun [Department of Applied Physics, College of Physics, Chongqing University, Chongqing 401331 (China); Zhou, Miao [State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044 (China)

    2015-06-05

    Highlights: • ZnO nanorods were grown on Ga-doped ZnO seed layers using hydrothermal method. • Using the ZnO nanorods as photoanodes for fabricated dye-sensitized solar cells. • The highest η of 1.23% can be achieved in a DSSC with 3 at.% Ga-doped in seeds. • The effects of ZnO seed layers on electron transport properties were investigated. • The enhancement performance of DSSCs contributed to higher dye loading and η{sub cc}. - Abstract: Zinc oxide (ZnO) nanorod arrays were grown on FTO substrates with a Ga-doped ZnO (GZO) seed layer by a hydrothermal method. GZO seed layers were obtained via sol–gel technology with Ga concentration in the range of 0–4 at.%. The dye sensitized solar cells (DSSCs) using ZnO nanorod arrays as the photoanode layers were prepared. The effect of Ga dopant concentrations in ZnO seed layer on the morphology features of ZnO nanorod arrays and the performance of DSSCs were systematically investigated. Results indicate that the average diameter and density of ZnO nanorod arrays decrease with increasing Ga concentration, but their length shows an opposite trend. The photocurrent density–voltage (J–V) characteristics reveal that the DSSCs with GZO seed layer exhibit significantly improved photovoltaic performance. In particular, the highest energy conversion efficiency (η) of 1.23% can be achieved in a DSSC with 3 at.% Ga doping, which is increased by 86.36% compared with that of the undoped DSSC. The external quantum efficiency (EQE) spectra and electrochemical impedance spectroscopy (EIS) were employed to explore the photon-to-electron conversion process in DSSCs. It is demonstrated that the performance enhancement of DSSCs based on GZO seed layer can be attributed to higher amount of dye loading, more efficient electron transportation and better electrons collection efficiency.

  4. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil.

    Science.gov (United States)

    Bandyopadhyay, Susmita; Plascencia-Villa, Germán; Mukherjee, Arnab; Rico, Cyren M; José-Yacamán, Miguel; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-05-15

    ZnO nanoparticles (NPs) are reported as potentially phytotoxic in hydroponic and soil media. However, studies on ZnO NPs toxicity in a plant inoculated with bacterium in soil are limited. In this study, ZnO NPs, bulk ZnO, and ZnCl₂ were exposed to the symbiotic alfalfa (Medicago sativa L.)-Sinorhizobium meliloti association at concentrations ranging from 0 to 750 mg/kg soil. Plant growth, Zn bioaccumulation, dry biomass, leaf area, total protein, and catalase (CAT) activity were measured in 30 day-old plants. Results showed 50% germination reduction by bulk ZnO at 500 and 750 mg/kg and all ZnCl₂ concentrations. ZnO NPs and ionic Zn reduced root and shoot biomass by 80% and 25%, respectively. Conversely, bulk ZnO at 750 mg/kg increased shoot and root biomass by 225% and 10%, respectively, compared to control. At 500 and 750 mg/kg, ZnCl₂ reduced CAT activity in stems and leaves. Total leaf protein significantly decreased as external ZnCl₂ concentration increased. STEM-EDX imaging revealed the presence of ZnO particles in the root, stem, leaf, and nodule tissues. ZnO NPs showed less toxicity compared to ZnCl₂ and bulk ZnO found to be growth enhancing on measured traits. These findings are significant to reveal the toxicity effects of different Zn species (NPs, bulk, and ionic Zn) into environmentally important plant-bacterial system in soil.

  5. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    Science.gov (United States)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  6. Optical Multichannel Imaging of Pulsed Laser Deposition of ZnO (PostPrint)

    Science.gov (United States)

    2014-08-01

    AFRL-RX-WP-JA-2014-0186 OPTICAL MULTICHANNEL IMAGING OF PULSED LASER DEPOSITION OF ZNO (POSTPRINT) John G. Jones AFRL/RXAN...PULSED LASER DEPOSITION OF ZNO (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S...Optical Multichannel Imaging of Pulsed Laser Deposition of ZnO John G. Jones, Lirong Sun, Neil R. Murphy, and Rachel Jakubiak Abstract— Pulsed laser

  7. The effect of ZnO nanoparticles on liver function in rats.

    Science.gov (United States)

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300-600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced.

  8. Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)

    Science.gov (United States)

    2014-01-15

    AFRL-RY-WP-TP-2014-0009 TRANSPARENT CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) Monica Allen, Jeffery Allen...CONDUCTING OXIDES FOR INFRARED PLASMONIC WAVEGUIDES: ZnO (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N...for plasmonic waveguiding applications with an emphasis on highly conducting ZnO . In addition, the paper contains analysis of a set of thin Al-doped

  9. Fabrication of ZnO and ZnO:Sb Nanoparticles for Gas Sensor Applications

    OpenAIRE

    A.B. Kashyout; Soliman,H. M. A.; H. Shokry Hassan; Abousehly, A. M.

    2010-01-01

    ZnO and Sb-doped ZnO nanoparticles were successfully prepared using sol-gel technique. Different concentrations of triethanolamine (TEA) were utilized as the preparation procedure to act as complexing agent that enhances the doping probability of the formed Sb-doped ZnO nanopowder. Thick films of the prepared nanopowders were fabricated with spinner coating. Morphological characteristics, phase structure, chemical composition, thermal stability, and optical properties of the prepared nanopowd...

  10. ZnO Nanostructures Grown on AlN/Sapphire Substrates by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Hong-Yuan; HU Wei-Guo; ZHANG Pan-Feng; LIU Xiang-Lin; ZHU Qin-Sheng; WANG Zhan-Guo

    2007-01-01

    ZnO nanorods and nanotubes are successful synthesized on AlN/sapphire substrates by metal-organic chemical vapour deposition (MOCVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.

  11. Modeling of nanoscale morphology of regioregular poly(3-hexylthiophene) on a ZnO (1010) surface.

    Science.gov (United States)

    Dag, S; Wang, Lin-Wang

    2008-12-01

    We report detailed ab initio calculations of poly(3-hexylthiophene) (P3HT) on top of a ZnO (1010) surface. We studied different absorption sites and orientations. We found that the P3HT chain prefers to lay along the dimer row direction of the ZnO surface. We also found strong coupling between the P3HT molecule and the ZnO substrate in the conduction band states, while minimum coupling in the valence band states.

  12. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    OpenAIRE

    I. Abdul Rahman; Ayob, M. T. M.; Radiman, S.

    2014-01-01

    ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation ...

  13. Effect of Co-doping content on hydrothermal derived ZnO array films

    Energy Technology Data Exchange (ETDEWEB)

    He Xinhua, E-mail: imxhhe@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Department of Information Systems, City University of Hong Kong (Hong Kong); Yang Hu; Chen Zhiwu [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liao, Stephen S Y, E-mail: issliao@cityu.edu.hk [Department of Information Systems, City University of Hong Kong (Hong Kong)

    2012-08-01

    Cobalt doped ZnO films are synthesised using a hydrothermal process. The effect of Co{sup 2+} concentration on morphology, phase composition, crystallisation and spectroscopic characteristics of ZnO films is investigated. The results indicate that both the structure and morphology of the ZnO films evolve with the concentration of cobalt ions incorporated into the lattice. In the presence of a small amount of Co{sup 2+} ions, films are formed that comprise hexagonal ZnO nanorods, oriented with the c-axis perpendicular to the substrate. With increasing amount of Co{sup 2+}, cracks in the ZnO nanorods can be observed and growth in the [0 0 1] direction is significantly inhibited. When the Co{sup 2+} concentration exceeds 0.010 M, ZnO rods with the typical hexagonal structure are no longer observed and instead, ZnO films comprising close-packed grains with an irregular polygonal structure are formed. The epitaxial growth of ZnO films is nearly completely inhibited when the concentration of Co{sup 2+} is increased above 0.050 M. This behaviour can be explained by the selective adsorption of the organic substances in the solution onto the (0 0 1) ZnO crystal face, thus inhibiting growth in the [0 0 1] direction and disrupting the crystallisation of ZnO films. Increasing the Co content deteriorates the crystallisation of ZnO rods and increases tensile stresses present in the ZnO films.

  14. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Esmailzadeh, Hakimeh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sangpour, Parvaneh, E-mail: Sangpour@merc.ac.ir [Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Shahraz, Farzaneh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hejazi, Jalal [Department of Biochemistry and Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan (Iran, Islamic Republic of); Khaksar, Ramin [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. - Highlights: • ZnO containing nanocomposites decreased growth of both B. subtilis and E. aerogenes. • B. subtilis was more sensitive to ZnO containing nanocomposites. • The migration of Zn ions from nanocomposites was negligible.

  15. Mn doped nanostucture ZnO thin film for photo sensor and gas sensor application

    Science.gov (United States)

    Mahajan, Sandip V.; Upadhye, Deepak S.; Shaikh, Shahid U.; Birajadar, Ravikiran B.; Siddiqui, Farha Y.; Ghule, Anil V.; Sharma, Ramphal

    2013-02-01

    Mn doped nanostructure ZnO thin film prepared by soft chemically route method. ZnO thin films were deposited on glass substrate by successive ionic layer adsorption and reaction technique (SILAR). After deposit ZnO thin film dipped in MnSO4 solution for 1 min. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Structural properties were studied by XRD. The improvement in gas sensing properties was found to enhance after doping of Mn on ZnO thin film. The Photo Sensor nature was calculated by I-V characteristics.

  16. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    Science.gov (United States)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current⿿voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  17. Template-flee approach for hydrothermal fabrication of ZnO microspheres

    Institute of Scientific and Technical Information of China (English)

    Hao Jiang; Junqing Hu; Feng Gu; Chunzhong Li

    2009-01-01

    Wurtzite ZnO microspheres, 5.5-11 μm in diameter and with smooth surfaces, were prepared in abso-lute ethanol via a simple template-free method in the presence of ethylenediamine. The products were characterized using X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. This simple method to fabricate ZnO microspheres shows high yield (>90%) and good repro-ducibility. The formation process of ZnO microspheres was discussed. The as-obtained ZnO microspheres are expected to provide some immediate advantages for optical, microelectronic, and biological applica-tions.

  18. Stable fluorescence conjugation of ZnO nanoparticles and their size dependent cellular uptake.

    Science.gov (United States)

    Kim, Kyoung-Min; Kim, Min-Kyu; Paek, Hee-Jeong; Choi, Soo-Jin; Oh, Jae-Min

    2016-09-01

    We evaluated size dependent cellular uptake of ZnO nanoparticles utilizing stably introduced Cy5.5, which emits long-wavelength fluorescence. Through (3-aminopropyl)triethoxysilane modification, ZnO nanoparticles of different sizes (20 and 70nm) were functionalized with amine moiety, which was further reacted with Cy5.5-N-hydroxylsuccinimide ester to make covalently conjugated Cy5.5 dye on ZnO nanoparticles. Field emission-scanning electron microscopic images revealed that average particle size as well as particle morphology of ZnO nanoparticles were not altered by Cy5.5 conjugation. Zeta potential measurement confirmed that the positive surface charge of ZnO nanoparticles was well preserved after successive conjugation reactions. Based on infrared, ultraviolet-visible light and photoluminescence spectroscopies, we verify that the Cy5.5 was stably introduced to ZnO nanoparticles without serious aggregation. Surface conjugated Cy5.5 showed high stability in deionized water, phosphate buffered saline and cell culture medium, showing less than 2% of release during 85h. Confocal microscopy and fluorescence-activated cell sorting analysis demonstrated that smaller ZnO nanoparticles were more taken up in greater quantities by HaCaT cells. Moreover, systematic study on cellular uptake pathway showed that smaller ZnO nanoparticles were internalized into cells mainly by clathrin-mediated endocytosis, while larger ZnO nanoparticles entered cells via several pathways.

  19. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    Science.gov (United States)

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  20. Tuning photoluminescence properties of ZnO nanorods via surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin [National Center for Nanoscience and Technology, Beijing 100190 China (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xia, Yujing [National Center for Nanoscience and Technology, Beijing 100190 China (China); He, Tao, E-mail: het@nanoctr.cn [National Center for Nanoscience and Technology, Beijing 100190 China (China)

    2012-12-14

    Zinc oxide (ZnO) is a versatile material that has been used in photocatalysis, solar cells, chemical sensors, and piezoelectric transducers. All these are directly related to its surface properties. Here ZnO nanorod arrays were successfully synthesized by electrochemical deposition method, the surface of which was modified by dopamine, a robust anchor. Compared with pristine ZnO sample, the surface modification can greatly enhance the ultraviolet and visible-light photoluminescence. This is due to the formation of polydopamine on the nanorod surface, which may act as a dye that can be photoexcited. The resultant photogenerated electrons can inject into the conduction band of ZnO and take part in the luminescent process. These results may provide a foundation for real applications of ZnO nanomaterials in optoelectronic devices and, especially, for the applications in biological field as both the dopamine and ZnO are biocompatible materials. -- Highlights: Black-Right-Pointing-Pointer ZnO nanorod arrays are prepared via a simple electrochemical deposition method. Black-Right-Pointing-Pointer Photoluminescence of ZnO nanorods can be greatly enhanced via dopamine treatment. Black-Right-Pointing-Pointer Dye-like polydopamine can be formed on the nanorod surface upon dopamine treatment. Black-Right-Pointing-Pointer Photogenerated electrons in polydopamine can inject into conduction band of ZnO. Black-Right-Pointing-Pointer Enhanced photoluminescence is because more electrons can contribute to it.

  1. Evaluation of shape and size effects on optical properties of ZnO pigment

    Energy Technology Data Exchange (ETDEWEB)

    Kiomarsipour, Narges, E-mail: na.kiomarsipour@yahoo.com [Department of Materials Engineering, Malek Ashtar University of Technology, Shahin Shahr P.O. Box 83145/115, Isfahan (Iran, Islamic Republic of); Shoja Razavi, Reza [Department of Materials Engineering, Malek Ashtar University of Technology, Shahin Shahr P.O. Box 83145/115, Isfahan (Iran, Islamic Republic of); Ghani, Kamal [Department of Chemistry, Malek Ashtar University of Technology, Shahin Shahr P.O. Box 83145/115, Isfahan (Iran, Islamic Republic of); Kioumarsipour, Marjan [Department of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-04-01

    The pigment with optimized morphology would attain maximum diffuse solar reflectance at a lower film thickness and reduce the pigment volume concentration required. This factor would contribute to a reduction in overall weight and possibly extend the durability of the system to longer time scales, specially in space assets. In the present work, five different morphologies of ZnO pigment were synthesized by hydrothermal method. The ZnO pigments were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and N{sub 2} adsorption (BET). The optical property of the ZnO pigments was investigated by UV/VIS/NIR spectrophotometer. The results indicated that the optical properties of ZnO powders were strongly affected by the particle size and morphology. The nanorods and microrods ZnO structures showed the minimum spectral reflectance in visible and near infrared regions, whereas the novel nanoparticle-decorated ZnO pigment revealed the maximum spectral reflectance in the same regions. The reflectance spectra of scale-like and submicrorods ZnO were in the middle of the others. The higher surface roughness led to higher light scattering in nanoparticle-decorated ZnO pigment and multiple-scattering in them. These results proved that a significant improvement in the scattering efficiency of ZnO pigment can be realized by utilizing an optimized nanoparticle-decorated pigment.

  2. Explanation of ferromagnetism origin in C-doped ZnO by first principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    El Amiri, A., E-mail: aelamiri@casablanca.ma [Laboratoire de Physique Fondamentale et Appliquée (LPFA), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 Mâarif, Casablanca, Maroc (Morocco); Lassri, H. [Laboratoire de Physique des Matériaux, Micro-électronique, Automatique et Thermique (LPMMAT). Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 Mâarif, Casablanca, Maroc (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble (France); Abid, M. [Laboratoire de Physique Fondamentale et Appliquée (LPFA), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 Mâarif, Casablanca, Maroc (Morocco)

    2015-01-15

    By ab-initio calculations, we systematically study possible source of ferromagnetism C-doped ZnO compound. The electronic structure and magnetic properties of C-doped ZnO with / without ZnO host and C defects were investigated using the Korringa–Kohn–Rostoker (KKR) method combined with coherent potential approximation (CPA). We show that Zn vacancy and presence of C defects (substitutional, interstitial or combination of both) induce the ferromagnetism in C-doped ZnO. From density of state (DOS) analysis, we show that p–p interaction between C atoms and/or C and O atoms is the mechanism of ferromagnetic coupling in C-doped ZnO. - Highlights: • We study the effect of ZnO host and C defects on ferromagnetism in C-doped ZnO. • Details of KKR method calculations performed to investigate both magnetic and electronic structures. • Magnetic moments, total and partial DOS for C-doped ZnO are well calculated and discussed. • Based on DOS calculations we interpret a origin of ferromagnetism in C-doped ZnO. • Mechanism of ferromagnetic coupling is well proposed.

  3. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    Energy Technology Data Exchange (ETDEWEB)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo [Nano-optoelectronics Research and Technology Laboratory (NOR.), School of Physics, Universiti Sains Malaysia, 11800, USM, Pulau Pinang (Malaysia); Mohamed, Azman Seeni; Saifuddin, Siti Nazmin [Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bandar Putra Bertam, 13200 Kepala Batas, Pulau Pinang (Malaysia); Masudi, Sam’an Malik; Mohamad, Dasmawati [Craniofacial Science Laboratory, School of Dentistry, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  4. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.

    Science.gov (United States)

    Dutta, Raj Kumar; Nenavathu, Bhavani Prasad; Talukdar, Soumita

    2014-02-01

    Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles.

  5. Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies.

    Science.gov (United States)

    Barick, K C; Aslam, M; Dravid, Vinayak P; Bahadur, D

    2010-09-01

    Clustered nanoassemblies of Mn doped ZnO and co-doped ZnO (Mn, Sn co-doped ZnO; Mn, Sb co-doped ZnO; and Mn, Bi co-doped ZnO) were prepared by refluxing their respective precursors in diethylene glycol medium. The co-doping elements, Sn, Sb and Bi exist in multi oxidation states by forming Zn-O-M (M=Sb, Bi and Sn) bonds in hexagonal wurtzite nanostructure. The analyses of detailed structural characterization performed by XRD, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), show that co-doping ions are successfully incorporated into the ZnO nanostructure and do not appear as precipitates or secondary phases. HRTEM analysis also confirmed the oriented attachment of nanocrystals as well as their defect structures. The formation/activation of higher amount of intrinsic host defects, for instance, oxygen vacancies in co-doped ZnO as compared to Mn doped ZnO sample is evident from Raman spectra. The doped and co-doped samples exhibit ferromagnetic like behavior at room temperature presumably due to the presence of defects. Specifically, it has been observed that the incorporation of dopant and co-dopants into ZnO structure can modulate the local electronic structure due to the formation/activation of defects and hence, cause significant changes in their structural, vibrational, optical and magnetic properties.

  6. Organic photovoltaic solar cells with cathode modified by ZnO.

    Science.gov (United States)

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2013-07-01

    Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones with ZnO layer. Cathode modification layer can be used to reduce photogenerated excitions and finally improve the performance of the OPVs. The successful demonstrations of OPVs with an introduction of ZnO cathode layer give promise of further device progresses.

  7. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Water, Walter [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Fang, T.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net; Ji, L.-W.; Lee, C.-C. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China)

    2009-02-25

    ZnO nanowire arrays were synthesized on Au-coated silicon (1 0 0) substrates by using vapour-liquid-solid process in this work. The effect of growth temperatures on the crystal structure and the surface morphology of ZnO nanowires were investigated by X-ray diffraction and scanning electron microscope. The absorption and optical characteristics of the nanowires were examined by Ultraviolet/Visible spectroscopy, and photoluminescence, respectively. The photoluminescence results exhibited ZnO nanowires had an ultraviolet and blue emission at 383 and 492 nm. Then a nanogenerator with ZnO nanowire arrays was fabricated and demonstrated Schottky-like current-voltage characteristics.

  8. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    Science.gov (United States)

    Go, Bit-Na; Kim, Yang Doo; suk Oh, Kyoung; Kim, Chaehyun; Choi, Hak-Jong; Lee, Heon

    2014-09-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively.

  9. Effects of the Absorption Behaviour of ZnO Nanoparticles on Cytotoxicity Measurements

    Directory of Open Access Journals (Sweden)

    Nigar Najim

    2014-01-01

    Full Text Available ZnO absorbs certain wavelengths of light and this behavior is more pronounced for nanoparticles of ZnO. As many toxicity measurements rely on measuring light transmission in cell lines, it is essential to determine how far this light absorption influences experimental toxicity measurements. The main objective was to study the ZnO absorption and how this influenced the cytotoxicity measurements. The cytotoxicity of differently sized ZnO nanoparticles in normal and cancer cell lines derived from lung tissue (Hs888Lu, neuron-phenotypic cells (SH-SY5Y, neuroblastoma (SH-SY5Y, human histiocytic lymphoma (U937, and lung cancer (A549 was investigated. Our results demonstrate that the presence of ZnO affected the cytotoxicity measurements due to the absorption characteristic of ZnO nanoparticles. The data revealed that the ZnO nanoparticles with an average particle size of around 85.7 nm and 190 nm showed cytotoxicity towards U937, SH-SY5Y, differentiated SH-SY5Y, and Hs888Lu cell lines. No effect on the A549 cells was observed. It was also found that the cytotoxicity of ZnO was particle size, concentration, and time dependent. These studies are the first to quantify the influence of ZnO nanoparticles on cytotoxicity assays. Corrections for absorption effects were carried out which gave an accurate estimation of the concentrations that produce the cytotoxic effects.

  10. Effects of annealing temperature on morphologies and optical properties of ZnO nanostructures

    Science.gov (United States)

    Yang, Jinghai; Gao, Ming; Zhang, Yongjun; Yang, Lili; Lang, Jihui; Wang, Dandan; Liu, Huilian; Liu, Yanqing; Wang, Yaxin; Fan, Hougang

    2008-08-01

    The effects of annealing temperature on the morphologies and optical properties of ZnO nanostructures synthesized by sol-gel method were investigated in detail. The SEM results showed that uniform ZnO nanorods formed at 900 ∘C. The PL results showed an ultraviolet emission peak and a relatively broad visible light emission peak for all ZnO nanostructures sintered at different temperature. The increase of the crystal size and decrease of tensile stress resulted in the UV emission peak shifted from 386 to 389 nm when annealing temperature rose from 850 to 1000 ∘C. The growth mechanism of the ZnO nanorods is discussed.

  11. Hydrothermal growth of ZnO nanoflowers and their photocatalyst application

    Indian Academy of Sciences (India)

    Jincheng Fan; Tengfei Li; Hang Heng

    2016-02-01

    ZnO nanoflowers were prepared by the hydrothermal method and studied by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy and photoluminescence. ZnO nanoflowers with star-like morphology were of pure wurtzite phase. The edges of the petals were composed of assemblies of smaller nanocrystallites. Green and orange emissions in photoluminescence were attributed to O vacancies and O interstitials, respectively. Furthermore, ZnO nanoflowers demonstrated the effective photocatalytic activities, and O vacancies and O interstitials were considered to be the active sites of the ZnO photocatalyst.

  12. Synthesis and properties of novel liquid-medicine-filter shaped ZnO nanostructures.

    Science.gov (United States)

    Zhuang, Huizhao; Xu, Peng; Li, Junlin

    2013-06-01

    Liquid-medicine-filter shaped ZnO nanostructures have been synthesized on Al2O3-coated Si (111) substrates by chemical vapor deposition method (CVD) at 1050 °C. Every liquid-medicine-filter shaped ZnO nanostructure is made up of one nanorod and two nanowires at the ends. The liquid-medicine-filter shaped ZnO nanostructures are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectrometer (EDS) photoluminescence (PL). The results indicate that the liquid-medicine-filter shaped ZnO nanostructures are wurtzite hexagonal structure and the growth direction is [0001]. The liquid-medicine-filter shaped ZnO nanostructures became the new member of ZnO nanostructures for the novel configuration. PL reveals ultraviolet (UV) emission at 384 nm and a broad emission peak at 540 nm. These novel liquid-medicine-filter shaped ZnO nanostructures will provide an improvement for electronic and optical devices. The pre-prepared Al2O3 film on the Si (111) substrate solves the troublesome lattice mismatch problem between the Si substrate and ZnO, and makes the growth of liquid-medicine-filter shaped ZnO nanostructures more effective. In addition, the effect of screw dislocation and polar surfaces in understanding crystal growth mechanisms in nanometer scale were also provided.

  13. Atmospheric growth of ZnO films deposited by spray pyrolysis using diethylzinc solution

    Science.gov (United States)

    Imai, Masato; Watanabe, Marin; Mochihara, Akiko; Tominaga, Himeka; Yoshino, Kenji; Shen, Qing; Toyoda, Taro; Hayase, Shuzi

    2017-06-01

    Non-doped ZnO thin films are deposited on glass substrates by spray pyrolysis using diethylzinc solution at a range from a room temperature to 150 °C while making N2 gas flow in atmospheric pressure. The morphology, the structural property, the density and the optical band gap are studied. As the deposition temperature is increasing, the overall density and the optical band gap approach to the values of ZnO single crystal. The quality of ZnO thin film deposited at 150 °C becomes near ZnO single crystal.

  14. Facile Hydrothermal Approach to ZnO Nanorods at Mild Temperature

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2013-01-01

    Full Text Available In this work, ZnO nanorods are obtained through a facile hydrothermal route. The structure and morphology of the resultant products are characterized by X-ray diffraction (XRD and scanning electron microscope (SEM. The experimental results indicated that the as-synthesized ZnO nanorods have an average diameter of approximate 100 nm. A possible growth mechanism for ZnO nanorods was proposed based on the experimental results and found that Zn powder plays a critical role for the morphology of the products. Room temperature photoluminescence property of ZnO nanorods shows an ultraviolet emission peak at 390 nm.

  15. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst.

    Science.gov (United States)

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui; Sun, Sheng-Peng

    2009-12-30

    A novel dumbbell-shaped ZnO microcrystal photocatalyst was successfully synthesized by hydrothermal method in the present study. The prepared ZnO photocatalyst was systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG-DTA), photoluminescence spectrum (PL) and UV-vis absorption spectrum (UV-vis). The characterizations of dumbbell-shaped ZnO were also compared with the commercial ZnO. The results show that the prepared ZnO photocatalyst has a unique dumbbell shape and it belongs to the hexagonal wurtzite family. In addition, the photocatalytic activity of the prepared dumbbell-shaped ZnO microcrystal photocatalyst was evaluated by the degradation of three different kinds of dyes wastewater (Crystal Violet, Methyl Violet and Methylene Blue). After 75 min reaction, the decolourization efficiencies of the three kinds of dyes wastewater achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst showed good photocatalytic activity and it could be considered as a promising photocatalyst for dyes wastewater treatment.

  16. Propeller-Shaped ZnO Nanostructures Obtained by Chemical Vapor Deposition: Photoluminescence and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    S. L. Wang

    2012-01-01

    Full Text Available Propeller-shaped and flower-shaped ZnO nanostructures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nanostructure consists of a set of axial nanorod (50 nm in tip, 80 nm in root and 1 μm in length, surrounded by radial-oriented nanoribbons (20–30 nm in thickness and 1.5 μm in length. The morphology of flower-shaped ZnO nanostructure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nanorods leaves (30 nm in diameter and 1–1.5 μm in length are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nanostructures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nanostructures, the propeller-shaped ZnO nanostructures exhibited a higher photocatalytic property for the photocatalytic degradation of Rhodamine B under UV-light illumination.

  17. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    OpenAIRE

    2015-01-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase....

  18. Abnormal Photoluminescence Properties of Polycrystalline ZnO Nanowire Arrays Synthesized by Electrodeposition

    Institute of Scientific and Technical Information of China (English)

    XUE De-Sheng; GONG Yu

    2006-01-01

    @@ Large-scale ZnO nanowire arrays are synthesized by electrodeposition with subsequent heat treatment in atmosphere ambient at 450-650℃. Photoluminescence (PL) is investigated at 295K. Abnormal PL properties of an unusual sharp emission at 485nm and a broad ultraviolet emission which are different from the other works of ZnO PL before are observed. Field emission scanning electronic microscopy and transmission electron microscopy results show that the length of ZnO nanowires is nearly 5μm and their diameter is about 70 nm. X-ray diffraction and electron diffraction results reveal that the ZnO nanowires are a polycrystalline structure.

  19. Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.t [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China); Yang, Shu-Ying; Lin, Jia-Yi [Department of Chemical Engineering and Materials Science, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2010-06-30

    Vertically aligned ZnO nanorod arrays with different heights are grown on the ZnO seeded indium tin oxide substrate by cathodic electrochemical deposition from zinc nitrate at two temperatures of 60 {sup o}C and 80 {sup o}C. As-grown ZnO nanorods exhibit wurzite crystal structure and their heights can be well controlled by different deposition times. The fluorination coating tends to induce a superhydrophobicity of ZnO nanorods, i.e., the maximal value of contact angle: 166.9{sup o}. The super water repellency can be attributed to the fact that an air layer is confined in the nanorod arrays, and thus leads to water droplets sitting on the ZnO surfaces, referring as Cassie state. Interestingly, their water contact angles are found to vary with the heights of ZnO nanorods, ranged from 99.8 to 746 nm. The superhydrophobicity of ZnO surfaces can be well predicted by a proposed model that is capable of determining the wetted fraction of ZnO pillars. This satisfactory result would shed one light on how the variation of rod height would induce the superhydrophobic behavior of ZnO nanorod arrays.

  20. Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures

    Energy Technology Data Exchange (ETDEWEB)

    Pineda-Hernandez, G. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Escobedo-Morales, A., E-mail: alejandroescobedo@hotmail.com [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico); Pal, U. [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Apdo. Postal J-48, C.P. 72570 Puebla, Pue. (Mexico); Chigo-Anota, E. [Facultad de Ingenieria Quimica, Benemerita Universidad Autonoma de Puebla, C.P. 72570 Puebla, Pue. (Mexico)

    2012-08-15

    In the present article, the effect of gallium doping on the morphology, structural, and vibrational properties of hydrothermally grown ZnO nanostructures has been studied. It has been observed that incorporated gallium plays an important role on the growth kinetics and hence on the morphology evolution of the ZnO crystals. Ga doping in high concentration results in the contraction of ZnO unit cell, mainly along c-axis. Although Ga has high solubility in ZnO, heavy doping promotes the segregation of Ga atoms as a secondary phase. Incorporated Ga atoms strongly affect the vibrational characteristics of ZnO lattice and induce anomalous Raman modes. Possible mechanisms of morphology evolution and origin of anomalous Raman modes in Ga doped ZnO nanostructures are discussed. -- Highlights: Black-Right-Pointing-Pointer Ga doped ZnO nanostructures were successfully grown by hydrothermal chemical route. Black-Right-Pointing-Pointer Ga doping has strong effect on the resulting morphology of ZnO nanostructures. Black-Right-Pointing-Pointer Anomalous vibrational modes in wurtzite ZnO lattice are induced by Ga doping. Black-Right-Pointing-Pointer Incorporated Ga atoms accommodate at preferential lattice sites.