WorldWideScience

Sample records for nonpolar aprotic solvents

  1. Cellulose decomposition behavior in hot-compressed aprotic solvents

    Institute of Scientific and Technical Information of China (English)

    Shiro; SAKA

    2008-01-01

    Microcrystalline cellulose (avicel) is treated in hot-compressed aprotic solvents,sulfolane and 1,4-dioxane,using a batch-type reaction system with a molten tin bath in a range from 290 to 390℃. The corresponding densities of the solvent are 0.25-1.26 g/cm3 and 0.21-1.03 g/cm3 for sulfolane and 1,4-dioxane,respectively. As a result,in both solvents,more than 90% of cellulose is found to be de-composed to the solvent-soluble portion in which levoglucosan is the main component with the high-est yield of about 35% on original cellulose basis. The decomposition rate to levoglucosan is,however,faster in sulfolane than in 1,4-dioxane,while levoglucosan is more stable in 1,4-dioxane. In addition,its yield is found to be solvent-density dependent to be highest around 0.4-0.5 g/cm3 for both solvents. To elucidate these decomposition behaviors,the results obtained in this study with aprotic solvents are compared with protic solvents such as water and methanol in previous works.

  2. Cellulose decomposition behavior in hot-compressed aprotic solvents

    Institute of Scientific and Technical Information of China (English)

    BAO GuiRong; Shiro SAKA; WANG Hua

    2008-01-01

    Microcrystalline cellulose (avicel) is treated in hot-compressed aprotic solvents, sulfolane and 1,4-dioxane, using a batch-type reaction system with a molten tin bath in a range from 290 to 390℃. The corresponding densities of the solvent are 0.25-1.26 g/cm3 and 0.21-1.03 g/cm3 for sulfolane and 1,4-dioxane, respectively. As a result, in both solvents, more than 90% of cellulose is found to be de-composed to the solvent-soluble portion in which levoglucosan is the main component with the high-est yield of about 35% on original cellulose basis. The decomposition rate to levoglucosan is, however, faster in sulfolane than in 1,4-dioxane, while levoglucosan is more stable in 1,4-dioxane. In addition, its yield is found to be solvent-density dependent to be highest around 0.4-0.5 g/cm3 for both solvents. To elucidate these decomposition behaviors, the results obtained in this study with aprotic solvents are compared with protic solvents such as water and methanol in previous works.

  3. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  4. Ultrasensitive 4-methylumbelliferone fluorimetric determination of water contents in aprotic solvents.

    Science.gov (United States)

    Kłucińska, Katarzyna; Jurczakowski, Rafał; Maksymiuk, Krzysztof; Michalska, Agata

    2015-01-01

    A novel approach to the quantification of relatively small amounts of water present in low polarity, aprotic solvents is proposed. This method takes advantage of protolitic reaction of 4-methylumbelliferone dissolved in the solvent with water, acting as a base. The low emission intensity neutral 4-methylumbelliferone is transformed in reaction with water to a highly fluorescent anionic form. Thus the increase in emission intensity is observed for increasing water contents in aprotic solvents. For low water contents and highly lipophilic solvents, this method yields (in practical conditions) higher sensitivity compared to biamperometric Karl Fischer titration method in volumetric mode. It is also shown that organic compounds of protolitic character (amines, acids) not only interfere with water contents determination but increase the sensitivity of emission vs. water contents dependence. Introduction of aqueous solution of strong acid or base (HCl or NaOH) has similar effect on the system as introduction of pure water.

  5. Solvent density mode instability in non-polar solutions

    Indian Academy of Sciences (India)

    Susmita Kar; Ranjit Biswas; J Chakrabarti

    2008-08-01

    We analyse the origin of the multiple long time scales associated with the long time decay observed in non-polar solvation dynamics by linear stability analysis of solvent density modes where the effects of compressibility and solvent structure are systematically incorporated. The coupling of the solute–solvent interactions at both ground and excited states of the solute with the compressibility and solvent structure is found to have important effects on the time scales. The present theory suggests that the relatively longer time constant is controlled by the solvent compressibility, while the solvent structure at the nearest-neighbour length scale dominates the shorter time constant.

  6. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  7. Coal extraction by aprotic dipolar solvents. Final report. [Tetramethylurea, hexa-methylphosphoramide

    Energy Technology Data Exchange (ETDEWEB)

    Sears, J T

    1985-12-01

    The overall goals of this project were to examine the rate and amount of extraction of coals at low temperature by a class of solvents with a generic structure to include tetramethylurea (TMU) and hexa-methylphosphoramide (HMPA) and to examine the nature of the extracted coal chemicals. The class of solvents with similar action, however, can be classified as aprotic, base solvents or, somewhat more broadly, specific solvents. The action of solvents by this last classification was then examined to postulate a mechanism of attack. Experimental work was conducted to explain the specific solvent attack including (1) pure solvent extraction, (2) extraction in mixtures with otherwise inert solvents and inhibitors, and (3) extraction with simultaneous catalytic enhancement attempts including water-gas shift conversion. Thus nuclear magnetic resonance (NMR) and gas-chromatograph mass spectrometer (GC-MS) analysis of extract molecules and extraction with high-pressure CO in TMU (plus 2% H2O) was performed. Effects of solvent additives such as cumene and quinone of large amounts of inert solvents such as tetralin, liminone, or carbon disulfide on extraction were also determined. Results are discussed. 82 refs., 36 figs., 37 tabs.

  8. Photophysical properties of 1,8-naphthalic anhydride in aprotic solvents: An electron acceptor in excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sujay; Biswas, Subhanip; Mondal, Mousumi; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2014-01-15

    1,8-Naphthalic anhydride (NAN) has long been known as an intermediate for the synthesis of 1,8-naphthalimide derivatives with diverse applications. Uses of NAN for other purposes are restricted because it hydrolyzes in water and other protic solvents. In the current work we have investigated the absorption, steady-state and time-resolved fluorescence spectroscopy of NAN in eight different aprotic solvents of varying polarity. The compound is found to have different quantum yields in all the solvents. Astoundingly, NAN shows minimal fluorescence yield in dimethyl sulphoxide and N,N-dimethylformamide which is found to originate from pure collisional quenching owing to proton affinity of the solvent. In aprotic solvents acetonitrile and ethyl acetate, fluorescence emission and lifetime of NAN are quenched on addition of aliphatic amines namely triethylamine (TEA), tri-N-butylamine (TBA) and diisopropylethylamine (DIEA). Laser flash photolysis experiments in acetonitrile solvent have been used to find out the transient intermediates, which depict the involvement of photo-induced electron transfer from the amines to NAN. Hence, NAN has the potential to act as an efficient photo-induced electron acceptor in aprotic medium. -- Highlights: • In aprotic solvents NAN absorbs with maximum around 330–340 nm. • NAN fluoresce in aprotic solvents with maximum around 345–395 nm. • NAN has negligibly poor fluorescence in DMSO and DMF. • Fluorescence of NAN in aprotic solvents is quenched by TEA, TBA and DIEA. • Photo-induced electron transfer from the amines to NAN is the reason for such interaction.

  9. Method for selectively preparing evoglucosenone (LGO) and other anhydrosugars from biomass in polar aprotic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Cao, Fei; Dumesic, James A.; Schwartz, Thomas J.

    2016-06-28

    A method to produce 5-hydroxymethylfurfural (HMF) is described in which a reactant including cellulose, lignocellulose, or a combination thereof, in a reaction mixture of a polar, aprotic solvent and an acid is reacted for a time, at a temperature, and at a hydrogen ion concentration wherein at least a portion of the cellulose or lignocellulose present in the reactant is converted to HMF. The reaction mixture is initially substantially devoid of water. As the reaction proceeds, dehydration of intermediates causes the water concentration in the reaction mixture to rise to no more than about 2.0 wt % water.

  10. Methods for recovering a solvent from a fluid volume and methods of removing at least one compound from a nonpolar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Ginosar, Daniel M.; Wendt, Daniel S.; Petkovic, Lucia M.

    2014-06-10

    A method of removing a nonpolar solvent from a fluid volume that includes at least one nonpolar compound, such as a fat, an oil or a triglyceride, is provided. The method comprises contacting a fluid volume with an expanding gas to expand the nonpolar solvent and form a gas-expanded solvent. The gas-expanded solvent may have a substantially reduced density in comparison to the at least one nonpolar compound and/or a substantially reduced capacity to solubilize the nonpolar compound, causing the nonpolar compounds to separate from the gas-expanded nonpolar solvent into a separate liquid phase. The liquid phase including the at least one nonpolar compound may be separated from the gas-expanded solvent using conventional techniques. After separation of the liquid phase, at least one of the temperature and pressure may be reduced to separate the nonpolar solvent from the expanding gas such that the nonpolar solvent may be recovered and reused.

  11. Searching for halo-alkalophilic proteases maintaining stability and activity in hydrophilic aprotic solvents as biocatalysts in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Mørkholt, Camilla Kær; Nielsen, Carsten Bue

    2012-01-01

    BIOCAT2012, Hamburg University of Technology Book of Abstracts, p70 ISBN 987-3-941492 L12) Searching for halo-alkalophilic proteases maintaining stability and activity in hydrophilic aprotic solvents as biocatalysts in carbohydrate chemistry. Lars Haastrup Pedersen, Camilla Kær Mørkholt, Carsten...... Bue Nielsen Department of Biotechnology, Chemistry and Environmental Engineering Aalborg University Denmark Halo-alkalophilic proteases have proven relatively stable maintaining activity in hydrophilic aprotic solvents sufficiently to be useful as biocatalysts for regiospecific acylation of sucrose...... and other carbohydrates (1, 2). Therefore, we are searching for new bacterial halo-alkaline proteases from extreme environments in Denmark. So far we have identified a number of interesting isolates showing proteolytic activity at pH 7 and 10. Whole genome Illumina Hiseq 2000 amplicon sequencing, de novo...

  12. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  13. The role of solvent cohesion in nonpolar solvation

    NARCIS (Netherlands)

    Otto, Sijbren

    2013-01-01

    Understanding hydrophobic interactions requires a molecular-level picture of how water molecules adjust to the introduction of a nonpolar solute. New insights into the latter process are derived from the observation that the Gibbs energies of solvation of the noble gases and linear alkanes by a wide

  14. Non-polar Solvent Microwave-Assisted Extraction of Volatile Constituents from Dried Zingiber Officinale Rosc.

    Institute of Scientific and Technical Information of China (English)

    YU Yong; WANG Zi-Ming; WANG Yu-Tang; LI Tie-Chun; CHENG Jian-Hua; LIU Zhong-Ying; ZHANG Han-Qi

    2007-01-01

    A new method, non-polar solvent microwave-assisted extraction (NPSMAE), was applied to the extraction of essential oil from Zingiber officinale Rosc. in closed-vessel system. By adding microwave absorption mediumcarbonyl iron powders (CIP) into extraction system, the essential oil was extracted by the non-polar solvent (ether)which can be heated by CIP. The constituents of essential oil obtained by NPSMAE were comparable with those obtained by hydrodistillation (HD) by GC-MS analysis, which indicates that NPSMAE is a feasible way to extract essential oil from dried plant materials. The NPSMAE took much less extraction time (5 min) than HD (180 min),and its extraction efficiency was much higher than that of conventional polar solvent microwave-assisted extraction (PSMAE) and mixed solvent microwave-assisted extraction (MSMAE). It can be a good alternative for the extraction of volatile constituents from dried plant samples.

  15. Determinatin of the Dipole Moment of Polar Compounds in Nonpolar Solvents.

    Science.gov (United States)

    Janini, George M.; Katrib, Ali H.

    1983-01-01

    Proposes a simple experiment based on the procedure of Guggenheim and Smith for the determinatin of the dipole moments of two isomeric compounds in nonpolar solvents. Provides background information, laboratory procedures, sample data, results of least squares analysis and discussion of results. (JM)

  16. Measurement and Modeling of Carbon Dioxide Solubility in Polar and Nonpolar Solvent

    Directory of Open Access Journals (Sweden)

    Hojatollah Ahmadi

    2012-08-01

    Full Text Available The solubility of gases is an important issue in the industries. Carbon Dioxide Through gas transmission line exists as sour gas therefore it is eliminated by solvent in industry. Carbone Dioxide is nonpolar molecule that has lower solubility in liquid solvent. In this study the solubility of carbon dioxide in some polar and nonpolar solvents (include Acetone, Acetic Acid, Benzene, Carbon Tetra Chloride, Chlorobenzene, Chloroform, Cyclo-hexane, Di-Methyl Formamid, Ethanol, Ethyl acetate, Methanol, NButanol, N-Heptane, N-Hexane at atmospheric pressure and temperatures range from 5-35ºC was determined. A laboratory unit was made for this experience and the solubility of CO2 was reported. The solubility of carbon dioxide in these solvent was low due to unreactivity and nonpolarity nature of these material. The solubility of CO2 in Ethyl Acetate and Methanol was highest and lowest respectively. This investigation showed that the solvent with carbonyl group have higher activity than other.

  17. Translational diffusion in mixtures of imidazolium ILs with polar aprotic molecular solvents.

    Science.gov (United States)

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Buchner, Richard; Idrissi, Abdenacer

    2014-05-22

    Self-diffusion coefficients of cations and solvent molecules were determined with (1)H NMR in mixtures of 1-n-butyl-3-methylimidazolium (Bmim(+)) tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethylsulfonyl)imide (TFSI(-)) with acetonitrile (AN), γ-butyrolactone (γ-BL), and propylene carbonate (PC) over the entire composition range at 300 K. The relative diffusivities of solvent molecules to cations as a function of concentration were found to depend on the solvent but not on the anion (i.e., IL). In all cases the values exhibit a plateau at low IL content (x(IL) IL concentrations. This behavior was related to the different solvation patterns in the employed solvents. In BmimPF6-based systems, anionic diffusivities were followed via (31)P nuclei and found to be higher than the corresponding cation values in IL-poor systems and lower in the IL-rich region. The inversion point of relative ionic diffusivities was found around equimolar composition and does not depend on the solvent. At this point, a distinct change in the ion-diffusion mechanism appears to take place.

  18. Quantitative First-Principles Kinetic Modeling of the Aza-Michael Addition to Acrylates in Polar Aprotic Solvents.

    Science.gov (United States)

    Desmet, Gilles B; D'hooge, Dagmar R; Omurtag, Pinar Sinem; Espeel, Pieter; Marin, Guy B; Du Prez, Filip E; Reyniers, Marie-Françoise

    2016-12-16

    This work presents a detailed computational study and kinetic analysis of the aza-Michael addition of primary and secondary amines to acrylates in an aprotic solvent. Accurate rate coefficients for all elementary steps in the various competing mechanisms are calculated using an ONIOM-based approach in which the full system is calculated with M06-2X/6-311+G(d,p) and the core system with CBS-QB3 corrected for solvation using COSMO-RS. Diffusional contributions are taken into account using the coupled encounter pair model with diffusion coefficients calculated based on molecular dynamics simulations. The calculated thermodynamic and kinetic parameters for all forward and reverse elementary reactions are fed to a microkinetic model giving excellent agreement with experimental data obtained using GC analysis. Rate analysis reveals that for primary and secondary amines, the aza-Michael addition to ethyl acrylate occurs preferentially according to a 1,2-addition mechanism, consisting of the pseudoequilibrated formation of a zwitterion followed by a rate controlling amine assisted proton transfer toward the singly substituted product. The alternative 1,4-addition becomes competitive if substituents are present on the amine or double bond of the acrylate. Primary amines react faster than secondary amines due to increased solvation of the zwitterionic intermediate and less sterically hindered proton transfer.

  19. New crosslinking method of polyamide-imide membranes for potential application in harsh polar aprotic solvents

    NARCIS (Netherlands)

    Dutczak, S.M.; Cuperus, F.P.; Cuperus, F.P.; Wessling, Matthias; Stamatialis, Dimitrios

    2013-01-01

    We report for the first time successful crosslinking of polyamide–imide (Torlon®) based membranes using di-isocyanates. The crosslinked membranes are resistant to N-methyl pyrrolidone (which is solvent of the non-crosslinked membranes) and have very good mechanical properties. In contrast to the

  20. Enhancement of third-order nonlinear optical susceptibility of Alqsub>3sub> in polar aprotic solvents.

    Science.gov (United States)

    Derkowska-Zielinska, Beata

    2017-02-01

    The influence of solvent polarity on nonlinear optical properties of tris-(8-hydroxyquinoline)-aluminum (Alqsub>3sub>) was investigated by the degenerate four-wave mixing method at the 532 nm. It was obtained that the effective values of the third-order nonlinear optical susceptibility (χeff⟨3⟩) and the second-order hyperpolarizability (γsub>effsub>) of Alqsub>3sub> depend on the solvent polarity. Additionally, it was found that Alqsub>3sub> dissolved in dimethyl sulfoxide has the highest values of χeff⟨3⟩ and γsub>effsub>. Furthermore, two Stegeman's figures of merit were also calculated. The obtained results suggest that Alqsub>3sub> is also promising material for application in all-optical signal processing devices.

  1. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents.

    Science.gov (United States)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (epsilonpolymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  2. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim;

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  3. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries

    Science.gov (United States)

    Johnson, Lee; Li, Chunmei; Liu, Zheng; Chen, Yuhui; Freunberger, Stefan A.; Ashok, Praveen C.; Praveen, Bavishna B.; Dholakia, Kishan; Tarascon, Jean-Marie; Bruce, Peter G.

    2014-12-01

    When lithium-oxygen batteries discharge, O2 is reduced at the cathode to form solid Li2O2. Understanding the fundamental mechanism of O2 reduction in aprotic solvents is therefore essential to realizing their technological potential. Two different models have been proposed for Li2O2 formation, involving either solution or electrode surface routes. Here, we describe a single unified mechanism, which, unlike previous models, can explain O2 reduction across the whole range of solvents and for which the two previous models are limiting cases. We observe that the solvent influences O2 reduction through its effect on the solubility of LiO2, or, more precisely, the free energy of the reaction LiO2* ⇌ Li(sol)+ + O2-(sol) + ion pairs + higher aggregates (clusters). The unified mechanism shows that low-donor-number solvents are likely to lead to premature cell death, and that the future direction of research for lithium-oxygen batteries should focus on the search for new, stable, high-donor-number electrolytes, because they can support higher capacities and can better sustain discharge.

  4. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  5. Efficient Extraction of Astaxanthin from Phaffia rhodozyma with Polar and Non-polar Solvents after Acid Washing

    Institute of Scientific and Technical Information of China (English)

    YIN Chunhua; YANG Shuzhen; LIU Xiaolu; YAN Hai

    2013-01-01

    method of extracting astaxanthin from Phaffia rhodozyma with various solvents after acid washing was investigated.The extraction efficiency was distinctly increased after acid washing of P.rhodozyma cells.When the concentration of HCl was 0.4 mol·L-,the highest extraction efficiency of astaxanthin was achieved which was about three times higher than the control.Acetone or benzene as single polar or non-polar solvent was the most effective solvent in our research.With a combination of isopropanol and n-hexane (volume ratio of 2 ∶ 1),the maximal extraction efficiency was achieved,approximately 60% higher than that obtained with a single solvent.The liquid-solid ratio and the extracting time were also optimized.Under the optimum extraction conditions,the extraction yield of astaxanthin exceeded 98%.

  6. Modeling the structure and absorption spectra of stilbazolium merocyanine in polar and nonpolar solvents using hybrid QM/MM techniques.

    Science.gov (United States)

    Murugan, N Arul; Kongsted, Jacob; Rinkevicius, Zilvinas; Aidas, Kestutis; Ågren, Hans

    2010-10-28

    We have performed Car-Parrinello mixed quantum mechanics/molecular mechanics (CP-QM/MM) calculations for stilbazolium merocyanine (SM) in polar and nonpolar solvents in order to explore the role of solute molecular geometry, solvation shell structure, and different interaction mechanisms on the absorption spectra and its dependence on solvent polarity. On the basis of the average bond length values and group charge distributions, we find that the SM molecule remains in a neutral quinonoid form in chloroform (a nonpolar solvent) while it transforms to a charge-separated benzenoid form in water (a polar solvent). Based on a quantum mechanical/molecular mechanical response technique, with different MM descriptions for the water environment, absorption spectra were obtained as averages over configurations derived from the CP-QM/MM simulations. We show that for SM in water the solute polarization plays a major role in predictions of the λ(max) and solvatochromic shift and that once this effect is included the contributions from solvent polarization and intermolecular charge transfer become less important. For SM in chloroform and water solvents, we have also performed absorption spectra calculations using a polarizable continuum model in order to address its relative performance compared to the QM/MM response technique. In the case of SM in water, our study supports the notion that, in order to predict accurate absorption spectra and solvatochromic shifts, it is important to use a discrete description of the solvent when it, as in water, is involved in site-specific interaction with the solute molecule. The technique is thus shown to outperform the more conventional polarizable continuum model in predicting the solvatochromic shift.

  7. Automatic parametrization of non-polar implicit solvent models for the blind prediction of solvation free energies

    Science.gov (United States)

    Wang, Bao; Zhao, Zhixiong; Wei, Guo-Wei

    2016-09-01

    In this work, a systematic protocol is proposed to automatically parametrize the non-polar part of implicit solvent models with polar and non-polar components. The proposed protocol utilizes either the classical Poisson model or the Kohn-Sham density functional theory based polarizable Poisson model for modeling polar solvation free energies. Four sets of radius parameters are combined with four sets of charge force fields to arrive at a total of 16 different parametrizations for the polar component. For the non-polar component, either the standard model of surface area, molecular volume, and van der Waals interactions or a model with atomic surface areas and molecular volume is employed. To automatically parametrize a non-polar model, we develop scoring and ranking algorithms to classify solute molecules. The their non-polar parametrization is obtained based on the assumption that similar molecules have similar parametrizations. A large database with 668 experimental data is collected and employed to validate the proposed protocol. The lowest leave-one-out root mean square (RMS) error for the database is 1.33 kcal/mol. Additionally, five subsets of the database, i.e., SAMPL0-SAMPL4, are employed to further demonstrate that the proposed protocol. The optimal RMS errors are 0.93, 2.82, 1.90, 0.78, and 1.03 kcal/mol, respectively, for SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 test sets. The corresponding RMS errors for the polarizable Poisson model with the Amber Bondi radii are 0.93, 2.89, 1.90, 1.16, and 1.07 kcal/mol, respectively.

  8. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.

    Science.gov (United States)

    Lim, Heejin; Moon, SangJun

    2015-08-01

    Applications of microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS) have been limited to water-based analysis rather than nonpolar solvent based chemistry due to a PDMS swelling problem that occurs by the absorption of the solvents. The absorption and swelling causes PDMS channel deformation in shape, and changes the cross sectional area making it difficult to control the flow rate and concentrations of solution in PDMS microfluidic channels. We propose that poly-p-xylylene polymers (parylenes) are chemical vapors deposited on the surfaces of PDMS channels that alleviate the effect of solvents on the absorption and swelling. The parylene coated surface sustains 3 h with a small volumetric change (less than 22 % of PDMS swelling ratio). By generating an air-nonpolar solvent interface based on droplets in PDMS channel, we confirmed poly-p-xylylene coated PDMS microfluidic channels have the potential to be applicable to nanocrystal growth using nonpolar solvents.

  9. High yield synthesis of Ni-BTC metal-organic framework with ultrasonic irradiation: Role of polar aprotic DMF solvent.

    Science.gov (United States)

    Israr, Farrukh; Chun, Daye; Kim, Yeongmin; Kim, Duk Kyung

    2016-07-01

    Nickel based porous solid was synthesized with 20 kHz ultrasonic irradiation. The reaction of Ni(II) nitrate hexahydrate with 1,3,5-benzene tricarboxylic acid in N,N-Dimethylformamide (DMF) as the sole solvent under ultrasonic radiation produced porous Ni-BTC MOF. Choice of correct solvent for the ultrasonic treatment was proven important. The effect of varying ultrasonic powers (40%, 60% and 80% of 750 W) along with different temperature conditions (50 °C, 60 °C, 70 °C and 80 °C) influenced the respective yield. A very high yield of 88% Ni-BTC MOF was obtained from 80% ultrasonic power at 60 °C. BET surface areas of the MOF crystals measured by N2 gas adsorption isotherms were in the range of 960-1000 m(2)/g.

  10. Empirical valence bond model of an SN2 reaction in polar and nonpolar solvents

    Science.gov (United States)

    Benjamin, Ilan

    2008-08-01

    A new model for the substitution nucleophilic reaction (SN2) in solution is described using the empirical valence bond (EVB) method. The model includes a generalization to three dimensions of a collinear gas phase EVB model developed by Mathis et al. [J. Mol. Liq. 61, 81 (1994)] and a parametrization of solute-solvent interactions of four different solvents (water, ethanol, chloroform, and carbon tetrachloride). The model is used to compute (in these four solvents) reaction free energy profiles, reaction and solvent dynamics, a two-dimensional reaction/solvent free energy map, as well as a number of other properties that in the past have mostly been estimated.

  11. Dielectric behaviour of some amides and formamides dissolved in nonpolar solvents under static electric field

    Indian Academy of Sciences (India)

    S Sahoo; S K Sit

    2011-08-01

    Structural and associational aspects of polar amides () like formamide, acetamide, Nmethyl acetamide (NMA), N,N-dimethyl formamide (DMF), N,N-dimethyl acetamide (DMA) and acetanilide dissolved in the nonpolar solvent () benzene or 1,4-dioxan have been estimated from the measured static relative permittivity 0 and high-frequency permittivity ∞ at different weight fractions s of polar solute at 35°C under static electric field using Debye model of polar liquid molecule. The static dipole moments s are compared with s reported from conductivity method and theoretical theos to get exact cal $\\cdot$ theos of the molecules are predicted from the available bond angles and bond moments where difference in electron affinity exists between two adjacent atoms of a polar group due to inductive, mesomeric and electromeric effects in them. Solute–solute molecular association for NMA in benzene and solute–solvent association for other amides are ascertained to arrive at their conformational structures.

  12. Microhydration effects on a model SN2 reaction in a nonpolar solvent

    Science.gov (United States)

    Nelson, Katherine V.; Benjamin, Ilan

    2009-05-01

    Using a recently developed empirical valence bond model for the nucleophilic substitution reaction (SN2) in solution, we examine microhydration effects on the benchmark Cl-+CH3Cl reaction in liquid chloroform. Specifically, the effect of the hydration of the reactive system by one to five water molecules on the reaction-free energy profile and the rate constant is examined. We find that the activation-free energy is highly sensitive to the number of water molecules hydrating the nucleophile, increasing the barrier by about 4 kcal/mol by the first water molecule. With five water molecules, the barrier height is 10 kcal/mol larger than the barrier in bulk chloroform and only 3 kcal/mol below the barrier in bulk water. A number of properties vary monotonically with the number of water molecules, including the rate of change in the system's electronic structure and the solvent stabilization of the transition state. These and other properties are a rapidly varying function of the reaction coordinate. Deviation from transition state theory due to barrier recrossing is not large and falls between the behavior in bulk water and bulk chloroform.

  13. The solution properties of mefenamic acid and a closely related analogue are indistinguishable in polar solvents but significantly different in nonpolar environments.

    Science.gov (United States)

    Lee, Eun Hee; Byrn, Stephen R; Pinal, Rodolfo

    2012-12-01

    This study investigates the cosolute effects of mefenamic acid (XA) and flufenamic acid (FA). These compounds serve as model of a drug discovery lead compound and a structural analogue. The activity coefficients of XA and FA in different solvents were obtained from solubility measurements at 25°C. The effect of varying concentrations of FA on the solubility of XA in four different solvents, including toluene, cyclohexane, ethanol, and an ethanol-water mixture (80:20, v/v), was investigated. The magnitude of change in the activity coefficient of XA in the presence of FA in different solvents was used to elucidate the thermodynamic effect of FA on the solubility of XA. Nuclear magnetic resonance and Fourier-transform infrared spectroscopy were used to obtain molecular level information about the interactions of the compounds in solution. The presence of FA increases XA solubility in toluene and in cyclohexane as much as seven-fold. Conversely, in ethanol and the ethanol-water mixture, similar levels of FA have essentially no effect on the solubility of XA. The solution properties investigated show that despite the close structural similarity between XA and FA, the two compounds are strongly distinguishable in nonpolar solvents. Conversely, the solution properties of the same two solutes are indistinguishable in polar solvents. A solubilization model based on solute-cosolute interactions is presented.

  14. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ziming, E-mail: wangziming@jlu.edu.cn [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhao Xin; Xu Xu; Wu Lijie; Su Rui; Zhao Yajing; Jiang Chengfei; Zhang Hanqi [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ma Qiang [Chinese Academy of Inspection and Quarantine, Beijing 100123 (China); Lu Chunmei [College of Technology Center, Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Dong Deming [College of Environment and Resources, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2013-01-14

    Highlights: Black-Right-Pointing-Pointer An absorbing microwave {mu}-SPE device packed with activated carbon was used. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to enrich the analytes. Black-Right-Pointing-Pointer Absorbing microwave {mu}-SPE device was made and used to heat samples directly. Black-Right-Pointing-Pointer MAE-{mu}-SPE was applied to the extraction of OPPs with non-polar solvent only. - Abstract: A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction ({mu}-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave {mu}-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in {mu}-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave {mu}-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60 Degree-Sign C for 10 min. The extracts obtained by MAE-{mu}-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%.

  15. Double relaxation phenomena of associated binary polar liquid mixture in non-polar solvent under high frequency electric field

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, S. [Department of Electronics and Instrumentation Engg (India)], E-mail: swapansit@yahoo.co.in; Sit, S.K. [Department of Physics, Dr. Meghnad Saha Institute of Technology, Debhog, Haldia, Purba Medinipore, West Bengal 721657 (India)

    2009-06-25

    Double relaxation times {tau}{sub 2} and {tau}{sub 1} due to whole molecular rotation and the flexible parts of the binary polar liquid mixture (jk) 3-bromoaniline and 1-propanol dissolved in non-polar solvent (i) benzene were estimated in terms of measured real {chi}{sup '}{sub ijk}, imaginary {chi}{sup ''}{sub ijk} parts of complex high frequency orientational susceptibility {chi}{sub ijk}{sup *} and {chi}{sub 0ijk} which is real at 20, 30, 40 and 47 deg. C experimental temperatures for 0.0, 0.25, 0.50,0.75 and 1.00 mole fractions x{sub j}'s of 1-propanol under 9.1 GHz electric field. The slopes {omega}({tau}{sub 2} + {tau}{sub 1}) and intercepts {omega}{sup 2}{tau}{sub 2}{tau}{sub 1} of the analytical straight line equations used to estimate {tau}{sub 2} and {tau}{sub 1} were derived from Bergmann's equation [U. Saha, S.K. Sit, R.C. Basak, S. Acharyya, J. Phys. D: Appl. Phys. 27 (1994) 596] based on two Debye type dispersion model of binary polar mixture. The systems 3-bromoaniline in C{sub 6}H{sub 6} and 1-propanol in C{sub 6}H{sub 6} show {tau}{sub 2} and {tau}{sub 1} only at 47 deg. C temperature like 3-bromoaniline + 1-propanol in C{sub 6}H{sub 6} at 20 and 47 deg. C temperatures for 0.25 and 0.50 mole fractions x{sub j}'s of 1-propanol. The binary polar mixture for x{sub j} = 0.75 of 1-propanol is an exception exhibiting double relaxation times at all the experimental temperatures. The relative contributions c{sub 1} and c{sub 2} due to {tau}{sub 1} and {tau}{sub 2} for eight non-rigid systems were calculated from Froehlich's equation as well as graphical plots of {chi}{sup '}{sub ijk}/{chi}{sub 0ijk}-w{sub jk} and {chi}{sup ''}{sub ijk}/{chi}{sub 0ijk}-w{sub jk} curve at w{sub jk}{yields}0. c{sub 1} and c{sub 2} are positive for Froehlich's method whereas most of the c{sub 2}'s are negative for graphical method. The dipole moments {mu}{sub 2} and {mu}{sub 1} for all the systems are calculated from

  16. Effects of Low to Intermediate Water Concentrations on Proton-Coupled Electron Transfer (PCET) Reactions of Flavins in Aprotic Solvents and a Comparison with the PCET Reactions of Quinones.

    Science.gov (United States)

    Tan, Serena L J; Novianti, Maria L; Webster, Richard D

    2015-11-05

    The electrochemical reduction mechanisms of 2 synthesized flavins (Flox) were examined in detail in deoxygenated solutions of DMSO containing varying amounts of water, utilizing variable scan rate cyclic voltammetry (ν = 0.1-20 V s(-1)), controlled-potential bulk electrolysis, and UV-vis spectroscopy. Flavin 1, which contains a hydrogen atom at N(3), is capable of donating its proton to other reduced flavin species. After 1e(-) reduction, the initially formed Fl(•-) receives a proton from another Flox to form FlH(•) (and concomitantly produce the deprotonated flavin, Fl(-)), although the equilibrium constant for this process favors the back reaction. Any FlH(•) formed at the electrode surface immediately undergoes another 1e(-) reduction to form FlH(-), which reacts with Fl(-) to form 2 molecules of Fl(•-). Further 1e(-) reduction of Fl(•-) at more negative potentials produces the dianion, Fl(2-), which can also be protonated by another Flox to form FlH(-) and Fl(-). Flavin 2, which is methylated at N(3) (and therefore has no acidic proton), undergoes a simple chemically reversible 1e(-) reduction process in DMSO provided the water content is low (solvents results in protonation of the anion radical species, Fl(•-), for both flavins, causing an increase in the amount of FlH(-) in solution. This behavior contrasts with what is observed for quinones, which are also reduced in two 1e(-) steps in aprotic organic solvents to form the radical anions and dianions, but are able to exist in hydrogen-bonded forms (with trace or added water) without undergoing protonation.

  17. FTIR study of H-bonds cooperativity in complexes of 1,2-dihydroxybenzene with proton acceptors in aprotic solvents: influence of the intramolecular hydrogen bond.

    Science.gov (United States)

    Varfolomeev, Mikhail A; Abaidullina, Dilyara I; Gainutdinova, Aliya Z; Solomonov, Boris N

    2010-12-01

    FTIR spectroscopic study of hydrogen bonding of 1,2-dihydroxybenzene (catechol) with proton acceptors has been carried out. The influence of intramolecular and intermolecular hydrogen bonds on the strengths of each other in complexes of 1,2-dihydroxybenzene with various proton acceptors has been analyzed. It was shown that intramolecular hydrogen bond is strengthened when 1,2-dihydroxybenzene interacts with bases (ethers, amines, nitriles, etc.) in inert solvents. The contribution of the cooperativity of intramolecular hydrogen bonds in the frequency of stretching vibrations of O-H groups linearly depends on the proton acceptor ability of the bases. The solvent effect on hydrogen bond cooperativity in 1,2-dihydroxybenzene-base complexes has been studied. The approach to determine the influence of cooperative effects on the formation of intermolecular complexes with 1,2-dihydroxybenzene is proposed. It was shown that the strength of intramolecular hydrogen bonds in the complexes of 1,2-dihydroxybenzene with bases due to cooperativity of interactions increases by 30-70%, and the strength of intermolecular hydrogen bond by 7-22%.

  18. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation...... was estimated from steered MD in combination with umbrella sampling simulations. A cyclic peptide nanotube (CPNT) was constructed by stacking of eight cyclo[(d-Trp-l-Gln-d-Trp-l-Glu)2], and hereafter is referred to as (WQWE)8. Its dissociation was studied by pulling 1, 2, or 3 subunits from the nanotube....... The crucial point in the dissociation event of the CP subunit(s) is the breaking of backbone–backbone hydrogen bonds and consecutive annihilation of side chain interactions. Gibbs free energy calculations to estimate the binding affinity of CP subunit(s) reveal that the (WQWE)8 nanotube is significantly more...

  19. 7Li NMR chemical shift titration and theoretical DFT calculation studies: solvent and anion effects on second-order complexation of 12-crown-4 and 1-aza-12-crown-4 with lithium cation in several aprotic solvents.

    Science.gov (United States)

    Masiker, Marilyn C; Mayne, Charles L; Boone, Brian J; Orendt, Anita M; Eyring, Edward M

    2010-02-01

    (7)Li NMR titration was used to determine stepwise complexation constants for the second-order complexation of lithium cation with 12-crown-4 in acetonitrile, propylene carbonate and a binary mixture of propylene carbonate and dimethyl carbonate. The anions used were perchlorate, hexaflurophosphate and trifluromethanesulfonate. A second ligand 1-aza-12-crown-4 was similarly investigated. The exchange between the free and complexed cation in these reactions is fast on an NMR timescale resulting in a single lithium peak which is a concentration-weighted average of the free and bound species. Solvent effects show that the 1:1 complex is much more stable in acetonitrile than in propylene carbonate or in the propylene carbonate dimethyl carbonate mixture. Anion effects for a given solvent were small. Optimized geometries of the free ligands and the 1:1 and 1:2 (sandwich) metal-ligand complexes were predicted by hybrid-density functional theory using the Gaussian 03 software package. Results were compared to literature values for 1:1 stability constants found by microcalorimetry for several of these systems and are found to be in good agreement. Although microcalorimetry only considered the formation of 1:1 complexes, (7)Li NMR shows evidence that both 1:1 and 1:2 complexes should be considered.

  20. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents.

    Science.gov (United States)

    Hasenaka, Yuki; Okamura, Taka-aki; Tatsumi, Miki; Inazumi, Naoya; Onitsuka, Kiyotaka

    2014-11-07

    Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.

  1. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    Directory of Open Access Journals (Sweden)

    Yin Jia

    2016-10-01

    Full Text Available SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  2. Short, strong hydrogen bond between an aryloxide and phenol in aprotic media

    Science.gov (United States)

    Buzzeo, Marisa C.; Zakharov, Lev N.; Rheingold, Arnold L.; Doerrer, Linda H.

    2003-09-01

    Three examples of unsupported short, strong hydrogen bonds (SSHBs) between phenolic moieties in aprotic media are reported in three salts of the biphenoxide [{3,5-OC 6(CF 3) 2H 3} 2H] - anion, analogous to bifluoride, [FHF] -. The compounds were synthesized with three different cobalticinium cations and characterized via solution NMR and UV-Vis spectroscopies, elemental analyses, and single-crystal X-ray diffraction. These SSHB protons do not exchange with the aprotic solvent in solution or in the solid state and are important contributors to the study of SSHBs in enzyme active sites that often exclude water.

  3. Solvent

    OpenAIRE

    Hamida Y. Mostafa; Ebaa A. El-Shamy; Amal S. Farag; Nadia G. Kandile

    2013-01-01

    Neat ethylacetoacetate (EAA) and its mixtures with a co-solvent and an anti-solvent have been studied for refining of heavy wax distillate fraction to produce substantially non-carcinogenic base oil. The co-solvent and anti-solvent used are dipropylene glycol (DPG) and ethylene glycol (EG) respectively. The solubility characteristics of the main solvent and its mixed solvent systems were studied. Selection of the optimum solvent mixture and extraction variables has been studied. The effect of...

  4. Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed

    Science.gov (United States)

    Hayashi, Tomohiko; Oshima, Hiraku; Harano, Yuichi; Kinoshita, Masahiro

    2016-09-01

    For neutral hard-sphere solutes, we compare the reduced density profile of water around a solute g(r), solvation free energy μ, energy U, and entropy S under the isochoric condition predicted by the two theories: dielectrically consistent reference interaction site model (DRISM) and angle-dependent integral equation (ADIE) theories. A molecular model for water pertinent to each theory is adopted. The hypernetted-chain (HNC) closure is employed in the ADIE theory, and the HNC and Kovalenko-Hirata (K-H) closures are tested in the DRISM theory. We also calculate g(r), U, S, and μ of the same solute in a hard-sphere solvent whose molecular diameter and number density are set at those of water, in which case the radial-symmetric integral equation (RSIE) theory is employed. The dependences of μ, U, and S on the excluded volume and solvent-accessible surface area are analyzed using the morphometric approach (MA). The results from the ADIE theory are in by far better agreement with those from computer simulations available for g(r), U, and μ. For the DRISM theory, g(r) in the vicinity of the solute is quite high and becomes progressively higher as the solute diameter d U increases. By contrast, for the ADIE theory, it is much lower and becomes further lower as d U increases. Due to unphysically positive U and significantly larger |S|, μ from the DRISM theory becomes too high. It is interesting that μ, U, and S from the K-H closure are worse than those from the HNC closure. Overall, the results from the DRISM theory with a molecular model for water are quite similar to those from the RSIE theory with the hard-sphere solvent. Based on the results of the MA analysis, we comparatively discuss the different theoretical methods for cases where they are applied to studies on the solvation of a protein.

  5. Aggregation behavior of amphiphilic cyclodextrins in a nonpolar solvent: evidence of large-scale structures by atomistic molecular dynamics simulations and solution studies

    Directory of Open Access Journals (Sweden)

    Giuseppina Raffaini

    2016-01-01

    Full Text Available Chemically modified cyclodextrins carrying both hydrophobic and hydrophilic substituents may form supramolecular aggregates or nanostructures of great interest. These systems have been usually investigated and characterized in water for their potential use as nanocarriers for drug delivery, but they can also aggregate in apolar solvents, as shown in the present paper through atomistic molecular dynamics simulations and dynamic light scattering measurements. The simulations, carried out with a large number of molecules in vacuo adopting an unbiased bottom-up approach, suggest the formation of bidimensional structures with characteristic length scales of the order of 10 nm, although some of these sizes are possibly affected by the assumed periodicity of the simulation cell, in particular at longer lengths. In any case, these nanostructures are stable at least from the kinetic viewpoint for relatively long times thanks to the large number of intermolecular interactions of dipolar and dispersive nature. The dynamic light scattering experiments indicate the presence of aggregates with a hydrodynamic radius of the order of 80 nm and a relatively modest polydispersity, even though smaller nanometer-sized aggregates cannot be fully ruled out. Taken together, these simulation and experimental results indicate that amphiphilically modified cyclodextrins do also form large-scale nanoaggregates even in apolar solvents.

  6. Molecular dynamics study of self-agglomeration of charged fullerenes in solvents.

    Science.gov (United States)

    Banerjee, Soumik

    2013-01-28

    The agglomeration of fullerenes in solvents is an important phenomenon that is relevant to controlled synthesis of fullerene-based nanowires as well as fullerene-based composites. The molecular aggregation in solvents depends on the atomistic interactions of fullerene with the solvent and is made complicated by the fact that fullerenes accrue negative surface charges when present in solvents such as water. In the present work, we simulated fullerenes of varying size and shape (C60, C180, C240, and C540) with and without surface charges in polar protic (water), polar aprotic (acetone), and nonpolar (toluene) solvents using molecular dynamics method. Our results demonstrate that uncharged fullerenes form agglomerates in polar solvents such as water and acetone and remain relatively dispersed in nonpolar toluene. The presence of surface charge significantly reduces agglomerate size in water and acetone. Additionally, the relative influence of surface charge on fullerene agglomeration depends on the size and geometry of the fullerene with larger fullerenes forming relatively smaller agglomerates. We evaluated the diffusion coefficients of solvent molecules within the solvation shell of fullerenes and observed that they are much lower than the bulk solvent and are strongly associated with the fullerenes as seen in the corresponding radial distribution functions. To correlate agglomerate size with the binding energy between fullerenes, we evaluated the potential of mean force between fullerenes in each solvent. Consistent with the solubility of fullerenes, binding energy between fullerenes is the greatest in water followed by acetone and toluene. The presence of charge decreases the binding energy of fullerenes in water and thus results in dispersed fullerenes.

  7. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hung-Yu; Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tu, Sheng-Hung [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Tsao, Heng-Kwong, E-mail: yjsheng@ntu.edu.tw, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering and Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2014-08-07

    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n{sup ′}) motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n{sup ′}-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  8. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles.

    Science.gov (United States)

    Chang, Hung-Yu; Tu, Sheng-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-08-01

    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n') motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n'-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  9. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.

    Science.gov (United States)

    Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood

    2016-02-01

    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively.

  10. Molecular dynamics study of solvation effects on acid dissociation in aprotic media

    CERN Document Server

    Laria, D; Estrin, D A; Ciccotti, G; Laria, Daniel; Kapral, Raymond; Estrin, Dario; Ciccotti, Giovanni

    1996-01-01

    Acid ionization in aprotic media is studied using Molecular Dynamics techniques. In particular, models for HCl ionization in acetonitrile and dimethylsulfoxide are investigated. The proton is treated quantum mechanically using Feynman path integral methods and the remaining molecules are treated classically. Quantum effects are shown to be essential for the proper treatment of the ionization. The potential of mean force is computed as a function of the ion pair separation and the local solvent structure is examined. The computed dissociation constants in both solvents differ by several orders of magnitude which are in reasonable agreement with experimental results. Solvent separated ion pairs are found to exist in dimethylsulfoxide but not in acetonitrile. Dissociation mechanisms in small clusters are also investigated. Solvent separated ion pairs persist even in aggregates composed of rather few molecules, for instance, as few as thirty molecules. For smaller clusters or for large ion pair separations cluste...

  11. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-02-12

    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  12. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  13. Efficiency of bulky protic solvent for SN2 reaction.

    Science.gov (United States)

    Lee, Sung-Sik; Kim, Ho-Sung; Hwang, Tae-Kyu; Oh, Young-Ho; Park, Sung-Woo; Lee, Sungyul; Lee, Byoung Se; Chi, Dae Yoon

    2008-01-03

    We calculate and compare the effects of aprotic vs protic solvent on the rate of SN2 reaction [F- + C3H7OMs--> C3H7F + OMs-]. We find that aprotic solvent acetonitrile is more efficient than a small protic solvent such as methanol. Bulky protic solvent (tert-butyl alcohol) is predicted to be quite efficient, giving the rate constant that is similar to that in CH3CN. Our calculated relative activation barriers of the SN2 reaction in methanol, tert-butyl alcohol, and CH3CN are in good agreement with experimental observations.

  14. Electrokinetics of Polar Liquids in Contact with Non-Polar Surfaces

    CERN Document Server

    Lin, Chih-Hsiu; Chaudhury, Manoj K

    2014-01-01

    Zeta potentials of several polar protic (water, ethylene glycol, formamide) as well as polar aprotic (dimethyl sulfoxide) liquids were measured in contact with three non-polar surfaces using closed-cell electro-osmosis. The test surfaces were chemisorbed monolayers of alkyl siloxanes, fluoroalkyl siloxanes and polydimethylsiloxanes (PDMS) grafted on glass slides. All these liquids exhibited substantial electrokinetics in contact with the non-polar surfaces with these observations: the electrokinetic effect on the fluorocarbon-coated surface is the strongest; and on a PDMS grafted surface, the effect is the weakest. Even though these hygroscopic liquids contain small amounts of water, the current models of charging based on the adsorption of hydroxide ions at the interface or the dissociation of preexisting functionalities (e.g., silanol groups) appear to be insufficient to account for the various facets of the experimental observations. The results illustrate how ubiquitous the phenomenon of electro-kinetics ...

  15. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum–classical approximation. II. Proton transfer reaction in non-polar solvent

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.

  16. An aprotic lithium/polyiodide semi-liquid battery with an ionic shield

    Science.gov (United States)

    Ren, Y. X.; Liu, M.; Zhao, T. S.; Zeng, L.; Wu, M. C.

    2017-02-01

    In this paper, we report a high-energy-density lithium/polyiodide (Li/PI) semi-liquid battery with soluble polyiodide in ether-based solvents as the catholyte. The challenge of shuttle effect is addressed by adopting a hybrid membrane coated with negatively charged sulfonate-ended perfluoroalkyl polymer, which allows for inhibition of polyiodide shuttles due to the electrostatic repulsion. The assembled Li/PI battery demonstrates a superior volumetric energy density (170.5 Wh L-1), a stable cycling performance (>100 cycles, averaged decay 84%, 100 cycles at 2 C), and a high coulombic efficiency (>95%, 100 cycles at 2 C). These high performances achieved suggest that the aprotic Li/polyiodide battery with a compact architecture has the potential for various energy storage applications.

  17. Thermomolecular Orientation of Nonpolar Fluids

    NARCIS (Netherlands)

    Römer, F.; Bresme, F.; Muscatello, J.; Bedeaux, D.; Rubi, J.M.

    2012-01-01

    We investigate the response of molecular fluids to temperature gradients. Using nonequilibrium molecular dynamics computer simulations we show that nonpolar diatomic fluids adopt a preferred orientation as a response to a temperature gradient. We find that the magnitude of this thermomolecular orien

  18. Thermomolecular orientation of nonpolar fluids.

    Science.gov (United States)

    Römer, Frank; Bresme, Fernando; Muscatello, Jordan; Bedeaux, Dick; Rubí, J Miguel

    2012-03-09

    We investigate the response of molecular fluids to temperature gradients. Using nonequilibrium molecular dynamics computer simulations we show that nonpolar diatomic fluids adopt a preferred orientation as a response to a temperature gradient. We find that the magnitude of this thermomolecular orientation effect is proportional to the strength of the temperature gradient and the degree of molecular anisotropy, as defined by the different size or mass of the molecular atomic sites. We show that the preferred orientation of the molecules follows the same trends observed in the Soret effect of binary mixtures. We argue this is a general effect that should be observed in a wide range of length scales.

  19. Voltammetric reduction of 4-nitroimidazole derivatives: Influence of the N-1 substitution in protic and aprotic media

    Energy Technology Data Exchange (ETDEWEB)

    Bollo, S.; Jara-Ulloa, P.; Zapata-Torres, G.; Cutino, E.; Sturm, J.C.; Nunez-Vergara, L.J. [Bioelectrochemistry Laboratory, Chemical and Pharmaceutical Sciences Faculty, University of Chile, Postal Code 838492 Santiago (Chile); Squella, J.A., E-mail: asquella@ciq.uchile.c [Bioelectrochemistry Laboratory, Chemical and Pharmaceutical Sciences Faculty, University of Chile, Postal Code 838492 Santiago (Chile)

    2010-06-01

    The voltammetric reduction of 1-methyl- and 1-H- 4-nitroimidazole derivatives was studied in different protic and aprotic media to investigate the influence of the N-1 substitution in the mechanism of reduction, the susceptibility of the nitro group to reduction, and the stability of the nitro radical anion. The elucidation of their voltammetric behavior was carried out using differential pulse polarography and cyclic voltammetry with two different mixed media (Britton-Robinson/ethanol: 70/30 and DMF/citrate: 60/40) and an aprotic media (DMF) at the mercury electrode. In addition, we used UV-vis spectroscopy for the study of their chemistry in solution and quantum-chemical calculations to evaluate LUMO energies, HOMO and LUMO energy gaps, dipole moments and electron affinity, using water and DMF as solvents. The mechanism of reduction was strongly dependent on both the substitution at the N-1 position and the nature of the media. In all media, the methyl-substituted derivative (M-4-NImOH) was always more easily reduced than the demethylated species (H-4-NImOH). On the other hand, the nitro radical anion from M-4-NImOH was more stable than the nitro radical anion from H-4-NImOH.

  20. Understanding oxygen reactions in aprotic Li-O2 batteries

    Science.gov (United States)

    Shunchao, Ma; Yelong, Zhang; Qinghua, Cui; Jing, Zhao; Zhangquan, Peng

    2016-01-01

    Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an in-depth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell’s performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry. Project supported by the Recruitment Program of Global Youth Experts of China, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010401), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150623002TC), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131139).

  1. Solvent effect on thermodynamics of Ag(I) coordination to tripodal polypyridine ligands

    DEFF Research Database (Denmark)

    Del Piero, Silvia; Melchior, Andrea; Menotti, Davide

    2009-01-01

      An investigation on the thermodynamics of complex formation between Ag(I) ion and different tripodal ligands (tris[(2-pyridyl)methyl]amine) (TPA) and 6,6'-bis[bis(2-pyridylmethyl)aminomethyl]-2,2'-bipyridine (BTPA) has been carried out in the aprotic solvents dimethylsulfoxide (DMSO) and dimeth......  An investigation on the thermodynamics of complex formation between Ag(I) ion and different tripodal ligands (tris[(2-pyridyl)methyl]amine) (TPA) and 6,6'-bis[bis(2-pyridylmethyl)aminomethyl]-2,2'-bipyridine (BTPA) has been carried out in the aprotic solvents dimethylsulfoxide (DMSO...

  2. Hydrogen bonding mediated ion pairs of some aprotic ionic liquids and their structural transition in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Huiyong Wang; Miao Liu; Yuling Zhao; Xiaopeng Xuan; Yang Zhao; Jianji Wang

    2017-01-01

    Ion pair speciation of ionic liquids (ILs) has an important effect on the physical and chemical properties of ILs and recognition of the structure of ion pairs in solution is essential.It has been reported that ion pairs of some ILs can be formed by hydrogen bonding interactions between cations and anions of them.Considering the fact that far-IR (FIR) spectroscopy is a powerful tool in indicating the intermolecular and intramolecular hydrogen bonding,in this work,this spectroscopic technique has been combined with molecular dynamic (MD) simulation and nuclear magnetic resonance hydrogen spectroscopy (1H NMR) to investigate ion pairs ofaprotic ILs [Bmim][NO3],[BuPy][NO3],[Pyr14][NO3],[PP14][NO3] and [Bu-choline][NO3] in aqueous IL mixtures.The FIR spectra have been assigned with the aid of density functional theory (DFT) calculations,and the results are used to understand the effect of cationic nature on the structure of ion pairs.It is found that contact ion pairs formed in the neat aprotic ILs by hydrogen bonding interactions between cation and anion,were still maintained in aqueous solutions up to high water mole fraction (say 0.80 for [BuPy] [NO3]).When water content was increased to a critical mole fraction of water (say 0.83 for [BuPy] [NO3]),the contact ion pairs could be transformed into solvent-separated ion pairs due to the formation of the hydrogen bonding between ions and water.With the further dilution of the aqueous ILs solution,the solvent-separated ion pairs was finally turned into free cations and free anions (fully hydrated cations or anions).The concentrations of the ILs at which the contact ion pairs were transformed into solvent-separated ion pairs and solvent-separated ion pairs were transformed into free ions (fully hydrated ion) were dependent on the cationic structures.These information provides direct spectral evidence for ion pair structures of the aprotic ILs in aqueous.solution.MD simulation and 1H NMR results support the conclusion

  3. Covalent and non-covalent functionalization and solubilization of double-walled carbon nanotubes in nonpolar and aqueous media

    Indian Academy of Sciences (India)

    L S Panchakarla; A Govindaraj

    2008-11-01

    Double-walled carbon nanotubes (DWNTs) have been functionalized by both covalent and non-covalent means. Covalent functionalization has been carried out by attaching an aliphatic amide function to DWNTs which enable solubilization in non-polar solvents. Solubilization in non-polar solvents has also been accomplished by non-covalent functionalization by using 1-pyrenebutanoicacid succinimidyl ester (PYBS). Non-covalent functionalization of DWNTs has been carried out by using polyethylene glycol (PEG) and polyoxyethylene(40)nonylphenyl ether (IGPAL), both of which enable solubilization in aqueous media. These functionalized DWNTs have been characterized by transmission electron microscopy, IR and Raman spectroscopy.

  4. Superoxide production in aprotic interior of chloroplast thylakoids.

    Science.gov (United States)

    Takahashi, M; Asada, K

    1988-12-01

    The site of superoxide production in spinach thylakoids was found to be the aprotic interior of the thylakoid membranes near the P700 chlorophyll a protein at the reaction center of photosystem I complexes. This conclusion was drawn from the following findings. (i) Cytochrome c reduction by illuminated thylakoids, which was confirmed to be superoxide dependent by the failure of this reaction to occur in anaerobiosis, was completely inhibited by a dibutyl catechol, but partially inhibited by a hydrophilic disulfonated derivative. (ii) P700 chlorophyll a proteins were preferentially iodinated by lactoperoxidase by the use of hydrogen peroxide that was derived from the disproportionation of superoxides in illuminated thylakoids. (iii) Hydrogen peroxide production and oxygen uptake were induced by ammonium chloride, a proton conductor that can permeate through thylakoid membranes, but whole superoxide in the bulk solution was oxidized back to molecular oxygen by cytochrome c. The effective concentration of ammonium chloride decreased to one-sixtieth of the original, when an ammonium ion ionophore, nonactin, was added. Thus, the weak acid allowed superoxide to yield hydrogen peroxide disproportionately in the thylakoid membrane interior.

  5. Solvent-Controlled Chemoselectivity in the Photolytic Release of Hydroxamic Acids and Carboxamides from Solid Support.

    Science.gov (United States)

    Qvortrup, Katrine; Petersen, Rico G; Dohn, Asmus O; Møller, Klaus B; Nielsen, Thomas E

    2017-06-16

    The synthetic utility and theoretical basis of a photolabile hydroxylamine-linker are presented. The developed protocols enable the efficient synthesis and chemoselective photolytic release of either hydroxamates or carboxamides from solid support. The bidetachable mode of the linker unit is uniquely dependent on the solvent. Hydroxamic acids are obtained by performing photolysis in protic solvents, whereas photolysis in aprotic solvents enables the selective release of carboxamides.

  6. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI Hongji; HONG Ruijin; HE Hongbo; SHAO Jianda; FAN Zhengxiu

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  7. Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-02-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.

  8. Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries

    Science.gov (United States)

    Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing

    2017-01-01

    Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008

  9. Silylation of montmorillonite surfaces: dependence on solvent nature.

    Science.gov (United States)

    Su, Linna; Tao, Qi; He, Hongping; Zhu, Jianxi; Yuan, Peng; Zhu, Runliang

    2013-02-01

    Silylation of clay mineral surfaces has attracted much attention due to their extensive applications in materials science and environmental engineering. Silylation of montmorillonite surfaces with 3-aminopropyltriethoxysilane was carried out in polar-protic and nonpolar solvents. The swelling property of the silylated montmorillonites was investigated by intercalating with cetyltrimethylammonium bromide. Silylated montmorillonites prepared in nonpolar solvents showed a larger amount of loaded silane and a higher extent of condensation among different silane molecules, comparing with those prepared in polar-protic solvents with high dielectric constant. Meanwhile, the silylated montmorillonites prepared in nonpolar solvents displayed poor swelling property due to the linkage between silane oligomers and clay layers, that is, the neighboring clay layers were locked by the silane oligomers. The present study demonstrated that the polarity of the solvents used had an important influence on the extent of grafting, interlayer structure, and swelling property of the silylated products. This is of high importance for synthesis and application of silylated clay minerals.

  10. Organic fragments from graphene oxide: Isolation, characterization and solvent effects

    Indian Academy of Sciences (India)

    Ravula Thirupathi; Y Jayasubba Reddy; Erode N Prabhakaran; Hanudatta S Atreya

    2014-05-01

    As-prepared graphene oxide (GO) contains oxidative debris which can be washed using basic solutions. We present the isolation and characterization of these debris. Dynamic light scattering (DLS) is used to monitor the separation of the debris in various solvents in the presence of different protic and aprotic alkylamino bases. The study reveals that the debris are rich in carbonyl functional groups and water is an essential component for separation and removal of the debris from GO under oxidative reaction conditions.

  11. Solvent-Induced Crystallization of Poly(ether ether ketone)

    OpenAIRE

    McPeak, Jennifer Lynne

    1999-01-01

    The purpose of this study was learn how the diffusion, swelling, and crystallization processes are coupled during solvent-induced crystallization of poly(ether ether ketone) (PEEK). Unoriented amorphous PEEK films were immersed in aprotic organic liquids at ambient temperature and bulk properties or characteristics were monitored as a function of immersion time. The sorption behavior, Tg and Tm° suppression, crystallinity, and dynamic mechanical response were correlated as a function of sol...

  12. The spectral properties of (--epigallocatechin 3-O-gallate (EGCG fluorescence in different solvents: dependence on solvent polarity.

    Directory of Open Access Journals (Sweden)

    Vladislav Snitsarev

    Full Text Available (--Epigallocatechin 3-O-gallate (EGCG a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90, a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB at pH=7.0, acetonitrile (AN (a polar aprotic solvent, dimethylsulfoxide (DMSO (a polar aprotic solvent, and ethanol (EtOH (a polar protic solvent. We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  13. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids.

    Science.gov (United States)

    Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia

    2014-08-01

    Ionic liquids (ILs) are a fairly new and very promising group of compounds with a vast variety of possible structures and uses. They are considered to be potentially "green", but their impact on the environment tends to be neglected or not studied enough, especially when it comes to terrestrial ecotoxicity, where there are very few studies performed to date. This work presents a comparative study of the terrestrial ecotoxicity of selected representatives of two ILs groups: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). Toxicity of the ILs towards three terrestrial plant species (Allium cepa, Lolium perenne and Raphanus sativus) and soil microorganisms involved in carbon and nitrogen transformation was analyzed. Protic ILs have shown no toxic effect in most of the tests performed. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in all of the tests. The most toxic ILs are the most complex ones in both of the analyzed groups. Protic ILs seem to have a potential for biodegradation in soil, while aprotic ILs exhibit inhibitory effects towards the carbon transforming microbiota. These findings indicate that protic ILs can be considered as less toxic and safer for the terrestrial environment than the aprotic ILs.

  14. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Blomquist, Jakob; Datta, Soumendu;

    2010-01-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins...

  15. Morphology control of lithium peroxide using Pd3Co as an additive in aprotic Li-O2 batteries

    Science.gov (United States)

    Cho, Sung Man; Yom, Jee Ho; Hwang, Sun Woo; Seong, Il Won; Kim, Jiwoong; Cho, Sung Ho; Yoon, Woo Young

    2017-02-01

    During discharge in aprotic Li-O2 batteries, lithium peroxide (Li2O2) can be formed by a surface- or solution-mediated route. In the surface-mediated process, a Li2O2 film is formed electrochemically on the cathode surface, leading to low capacity and rate capability. In contrast, in high donor or acceptor number electrolyte systems, Li2O2 toroids are formed by solution-mediated growth through a disproportionation reaction, resulting in high capacity and rate capability. However, during charging, high donor or acceptor number solvents cause poor rechargeability because of the high crystallinity of Li2O2 toroids and byproduct formation. Therefore, controlling the size of Li2O2 in a solution-mediated discharge process is the key to the development of Li-O2 batteries with high capacity and good rechargeability. We demonstrate the application of Pd3Co nanoparticles to enhance the rechargeability of a Li-O2 cell in a solution-mediated process. Scanning electron microscopy and X-ray diffraction studies indicate that the Li2O2 particles formed during discharge are small and the decomposition of the reaction products is reversible. A cell fabricated with Pd3Co nanoparticles exhibits a lower overpotential than the one without the nanoparticles. The additive may provide nucleation sites for Li2O2 particles, leading to enhanced rechargeability and appropriate capacity in a solution-mediated process for Li-O2 batteries.

  16. Photodegradation mechanisms of 1-nitropyrene, an environmental pollutant: the effect of organic solvents, water, oxygen, phenols, and polycyclic aromatics on the destruction and product yields.

    Science.gov (United States)

    García-Berríos, Zulma I; Arce, Rafael

    2012-04-12

    This work describes studies of the photodegradation mechanism of 1-nitropyrene (1-NO(2)Py) in a chemical model system consisting of an organic solvent and known constituents of an aerosol particle. Photoproducts such as 1-hydroxypyrene (1-OHPy), 1-hydroxy-x-nitropyrenes (1-OH-x-NO(2)Py), 1-nitrosopyrene, and 1,6- and 1,8-pyrenediones were identified by high-performance liquid chromatography (HPLC) and HPLC/mass spectrometry (HPLC/MS) techniques, and their quantum yields show a significant dependence on the type of solvent. The photodegradation quantum yield of 1-NO(2)Py, φ((-1-NO2Py)), was larger in toluene, benzene, and polar protic solvents (10(-3)) in comparison with nonpolar and polar aprotic solvents, where the yield is on the order of 10(-4). In solvents with an abstractable hydrogen atom, the products formed in higher yields were 1-OHPy and 1-OH-x-NO(2)Py. These represent 60-80% of the photodestruction yield and result from abstraction and recombination reactions of the pyrenoxy radical, an intermediate postulated to be formed as a result of a nitro-nitrite rearrangement in nitroaromatics. The small O(2) effect in the photodegradation yield and the quenching experiments with azulene demonstrate the small contribution of the (3)(π,π*) state in the 1-NO(2)Py photoreaction. The nitrosopyrene product was not observed under these conditions, demonstrating the participation of the (3)(π,π*) state in its formation. In the presence various phenol aerosol constituents, the photodegradation yield increased by 10-fold in all solvents. This effect is partly ascribed to the reaction of the (3)(π,π*) state with the phenol. The effect of water resulted in the reduction of the 1-NO(2)Py photodegradation yield and of its photoproducts. The phototodegradation of 1-NO(2)Py was also studied in a viscous solvent, hexadecane, and it was determined that this medium does not inhibit its photodecay.

  17. Ab initio study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives.

    Science.gov (United States)

    Kenfack, Cyril A; Klymchenko, Andrey S; Duportail, Guy; Burger, Alain; Mély, Yves

    2012-07-07

    The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).

  18. Time resolved spectroscopy of 2-(dimethylamine)fluorene. Solvent effects and photophysical behavior.

    Science.gov (United States)

    Sánchez, Francisco G; Díaz, Aurora N; Algarra, Manuel; Lovillo, Josefa; Aguilar, Alfonso

    2011-12-01

    The effect of different solvents on the fluorescent properties of 2-(dimethylamine)fluorene (DAF) were studied. In aprotic solvents we detected a strongly emissive intramolecular charge transfer (ICT) state that decayed by intersystem crossing to triplet. In proton-accepting solvents DAF exhibits in the excited state an intramolecular proton transfer. An ionized species is postulated, which simultaneously twists to a rotated conformation in the excited state. Thus, the specific solvent interactions supplement but do not replace the twist mechanism and accompany the charge transfer accepted as the prerequisite for twisted intramolecular charged transfer (TICT) state formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Nitration of phenolic compounds and oxidation of hydroquinones using tetrabutylammonium chromate and dichromate under aprotic conditions

    Indian Academy of Sciences (India)

    Ali Reza Pourali; Arezou Goli

    2011-01-01

    In this work, we have reported a mild, efficient and selective method for the mononitration of phenolic compounds using sodium nitrite in the presence of tetrabutylammonium dichromate (TBAD) and oxidation of hydroquinones to quinones with TBAD in CH2Cl2. Using this method, high yields of nitrophenols and quinones were obtained under neutral aprotic conditions. Tetrabutylammonium chromate (TBAC) can also be used as oxidant at same conditions.

  20. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    Science.gov (United States)

    Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Nørskov, J. K.

    2010-02-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li2O2 electrode and show that in the presence of Li vacancies Li2O2 becomes a conductor.

  1. Solvent effects in the reaction between piperazine and benzyl bromide

    Indian Academy of Sciences (India)

    S Ranga Reddy; P Manikyamba

    2007-11-01

    The reaction between piperazine and benzyl bromide was studied conductometrically and the second order rate constants were computed. These rate constants determined in 12 different protic and aprotic solvents indicate that the rate of the reaction is influenced by electrophilicity (), hydrogen bond donor ability () and dipolarity/polarizability (*) of the solvent. The LSER derived from the statistical analysis indicates that the transition state is more solvated than the reactants due to hydrogen bond donation and polarizability of the solvent while the reactant is more solvated than the transition state due to electrophilicity of the solvent. Study of the reaction in methanol, dimethyl formamide mixtures suggests that the rate is maximum when dipolar interactions between the two solvents are maximum.

  2. EDLC performance of carbide-derived carbons in aprotic and acidic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A.; Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, 33080 Oviedo (Spain); Arulepp, M. [Tartu Technologies Ltd., 185 Riia Street, 51014 Tartu (Estonia); Leis, J. [University of Tartu, 2 Jakobi Street, 51014 Tartu (Estonia); Stoeckli, F. [IMT-Chimie des Surfaces, Universite de Neuchatel, Rue Emile Argand 11, CH-2009 Neuchatel (Switzerland)

    2008-10-15

    This study shows that carbide-derived carbons (CDCs) with average pore size distributions around 0.9-1 nm and effective surface areas of 1300-1400 m{sup 2} g{sup -1} provide electrochemical double-layer capacitors with high performances in both aqueous (2M H{sub 2}SO{sub 4}) and aprotic (1M (C{sub 2}H{sub 5}){sub 4}NBF{sub 4} in acetonitrile) electrolytes. In the acidic electrolytic solution, the gravimetric capacitance at low current density (1 mA cm{sup -2}) can exceed 200 F g{sup -1}, whereas the volumetric capacitance reaches 90 F cm{sup -3}. In the aprotic electrolyte they reach 150 F g{sup -1} and 60 F cm{sup -3}. A detailed comparison of the capacitive behaviour of CDCs at high current density (up to 100 mA cm{sup -2}) with other microporous and mesoporous carbons indicates better rate capabilities for the present materials in both electrolytes. This is due to the high surface area, the accessible porosity and the relatively low oxygen content. It also appears that the surface-related capacitances of the present CDCs in the aprotic electrolyte are in line with other carbons and show no anomalous behaviour. (author)

  3. Nonadditivity of Faradaic currents and modification of capacitance currents in the voltammetry of mixtures of ferrocene and the cobaltocenium cation in protic and aprotic ionic liquids.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J; Zhao, Chuan; Burgar, Iko; Kennedy, Gareth; Bond, Alan M

    2009-06-17

    Unexpected nonadditivity of currents encountered in the electrochemistry of mixtures of ferrocene (Fc) and cobaltocenium cation (Cc(+)) as the PF(6)(-) salt has been investigated by direct current (dc) and Fourier-transformed alternating current (ac) cyclic voltammetry in two aprotic (1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate) and three protic (triethylammonium formate, bis(2-hydroxyethyl)ammonium acetate, and triethylammonium acetate) ionic liquids (ILs). The voltammetry of the individual Fc(0/+) and Cc(+/0) couples always exhibits near-Nernstian behavior at glassy carbon and gold electrodes. As expected for an ideal process, the reversible formal potentials and diffusion coefficients at 23 +/- 1 degrees C in each IL determined from measurement on individual Fc and Cc(+) solutions were found to be independent of electrode material, concentration, and technique used for the measurement. However, when Fc and Cc(+) were simultaneously present, the dc and ac peak currents per unit concentration for the Fc(0/+) and Cc(+/0) processes were found to be significantly enhanced in both aprotic and protic ILs. Thus, the apparent diffusion coefficient values calculated for Fc and Cc(+) were respectively found to be about 25 and 35% larger than those determined individually in the aprotic ILs. A similar change in the Fc(0/+) mass transport characteristics was observed upon addition of tetrabutylammonium hexafluorophosphate (Bu(4)NPF(6)), and the double layer capacitance also varied in distinctly different ways when Fc and Cc(+) were present individually or in mixtures. Importantly, the nonadditivity of Faradaic current is not associated with a change in viscosity or from electron exchange as found when some solutes are added to ILs. The observation that the (1)H NMR T(1) relaxation times for the proton resonance in Cc(+) also are modified in mixed systems implies that specific interaction with aggregates of the constituent

  4. Predicting the Solution Morphology of a Sulfonated Pentablock Copolymer in an Arbitrary Solvent Mixture

    Science.gov (United States)

    Ford, Jamie; Kyei-Manu, William; Winey, Karen

    2013-03-01

    Block copolymers self assemble into a wide array of morphologies in solvents. To predict the solution morphology of the polymer, we assess the interactions between the individual blocks and the solvent or solvents. Here, we use the Hansen solubility parameters to calculate the interactions between a library of solvents and an ABCBA pentablock copolymer with non-polar A and B blocks and a polar, sulfonated C block to predict the expected morphology for a given solvent and compare it to our small-angle X-ray scattering data. In non-polar solvents, we observe micelles with a C core and an A-B corona. We observe inverted micelles in polar solvents - an A-B core with a C corona. We extended our methodology to mixed polar/non-polar solvent systems to predict the solvent ratios corresponding to the transition from micelles to inverted micelles.

  5. Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions.

    Science.gov (United States)

    Ballal, Deepti; Venkataraman, Pradeep; Fouad, Wael A; Cox, Kenneth R; Chapman, Walter G

    2014-08-14

    Intermolecular potential models for water and alkanes describe pure component properties fairly well, but fail to reproduce properties of water-alkane mixtures. Understanding interactions between water and non-polar molecules like alkanes is important not only for the hydrocarbon industry but has implications to biological processes as well. Although non-polar solutes in water have been widely studied, much less work has focused on water in non-polar solvents. In this study we calculate the solubility of water in different alkanes (methane to dodecane) at ambient conditions where the water content in alkanes is very low so that the non-polar water-alkane interactions determine solubility. Only the alkane-rich phase is simulated since the fugacity of water in the water rich phase is calculated from an accurate equation of state. Using the SPC/E model for water and TraPPE model for alkanes along with Lorentz-Berthelot mixing rules for the cross parameters produces a water solubility that is an order of magnitude lower than the experimental value. It is found that an effective water Lennard-Jones energy ε(W)/k = 220 K is required to match the experimental water solubility in TraPPE alkanes. This number is much higher than used in most simulation water models (SPC/E-ε(W)/k = 78.2 K). It is surprising that the interaction energy obtained here is also higher than the water-alkane interaction energy predicted by studies on solubility of alkanes in water. The reason for this high water-alkane interaction energy is not completely understood. Some factors that might contribute to the large interaction energy, such as polarizability of alkanes, octupole moment of methane, and clustering of water at low concentrations in alkanes, are examined. It is found that, though important, these factors do not completely explain the anomalously strong attraction between alkanes and water observed experimentally.

  6. Contact angles and wettability of ionic liquids on polar and non-polar surfaces.

    Science.gov (United States)

    Pereira, Matheus M; Kurnia, Kiki A; Sousa, Filipa L; Silva, Nuno J O; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.

  7. Contact angles and wettability of ionic liquids on polar and non-polar surfaces†

    Science.gov (United States)

    Sousa, Filipa L.; Silva, Nuno J. O.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation–anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation–anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application. PMID:26554705

  8. Novel solvent systems for in situ extraterrestrial sample analysis

    OpenAIRE

    2010-01-01

    The life marker chip (LMC) is being designed to test for the chemical signature of life in the soil and rocks of Mars. It will use an antibody array as part of its detection and characterisation system and aims to detect both polar and non-polar molecules at the sub-ppm to tens of ppb level. It is necessary to use a solvent to transfer organic compounds from the Martian samples to the LMC itself, but organic solvents such as dichloromethane or hexane, commonly used to dissolve non-polar molec...

  9. 应用石墨为微波吸收介质非极性溶剂微波提取孜然挥发油成分%Application of graphite Powder for Non-polar Solvent Microwave Extraction of Essential Oils Cumimm Cyminum L.

    Institute of Scientific and Technical Information of China (English)

    于永; 王玉堂; 汪子明; 李铁纯; 张寒琦

    2008-01-01

    1引言微波加热效率高低主要取决于体系中物质吸收微波的能力大小,由于非极性溶剂不吸收微波因而通常不能单独作为微波辅助提取的提取溶剂。乙醚是一种常用的非极性溶剂,在蒸馏-提取法(simultaneous distillation and solvent extraction,SDE)中被用作提取溶剂,石墨是一种良好的微波吸收介质,本实验通过在乙醚中加入石墨建立了孜然中挥发油组分的非极性溶剂微波提取法(non-polar solvent microwave extraction,NPSME),

  10. Polar Solvents Trigger Formation of Reverse Micelles.

    Science.gov (United States)

    Khoshnood, Atefeh; Firoozabadi, Abbas

    2015-06-09

    We use molecular dynamics simulations and molecular thermodynamics to investigate the formation of reverse micelles in a system of surfactants and nonpolar solvents. Since the early observation of reverse micelles, the question has been whether the existence of polar solvent molecules such as water is the driving force for the formation of reverse micelles in nonpolar solvents. In this work, we use a simple coarse-grained model of surfactants and solvents to show that a small number of polar solvent molecules triggers the formation of large permanent aggregates. In the absence of polar molecules, both the thermodynamic model and molecular simulations show that small aggregates are more populated in the solution and larger ones are less frequent as the system evolves over time. The size and shape of reverse micelles depend on the size of the polar core: the shape is spherical for a large core and ellipsoidal for a smaller one. Using the coarse-grained model, we also investigate the effect of temperature and surfactant tail length. Our results reveal that the number of surfactant molecules in the micelle decreases as the temperature increases, but the average diameter does not change because the size of the polar core remains invariant. A reverse micelle with small polar core attracts fewer surfactants when the tail is long. The uptake of solvent particles by a micelle of longer surfactant tail is less than shorter ones when the polar solvent particles are initially distributed randomly.

  11. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  12. Universal iso-density polarizable continuum model for molecular solvents

    CERN Document Server

    Gunceler, Deniz

    2014-01-01

    Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

  13. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    Science.gov (United States)

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-01

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  14. Oxidation of cumene in an aprotic medium in the presence of ascorbic acid

    Science.gov (United States)

    Smirnova, O. V.; Efimova, I. V.; Opeida, I. A.

    2015-06-01

    The process of the initiated oxidation of cumene (IPB) with oxygen under homophase conditions in the presence of ascorbic acid (AA) used over a wide range of concentrations is studied. It is shown that in this system, ascorbic acid is consumed in two ways: the auto-oxidation and the inhibition of the oxidation of cumene. The amount of ascorbic acid that participates in inhibiting the oxidation of cumene falls from 28.5 to 16.6% with a rise in the concentration of ascorbic acid in the range of 0.003-0.3 mol/L. The contribution from the rate of the oxidation of ascorbic acid to the total rate of the oxidation of the IPB-AA-DMSO-AIBN system grows from 67.2 to 92.5% with a rise in the concentration of ascorbic acid in the range of 0.01-0.3 mol/L. It is established that the most effective inhibition of the oxidation of cumene with ascorbic acid in aprotic media occurs at concentrations of ascorbic acid of up to 0.01 mol/L. A scheme for the initiated radical-chain oxidation of cumene with ascorbic acid in the aprotic medium that considers the inhibition of the oxidation of cumene with ascorbic acid and the auto-oxidation of ascorbic acid is proposed.

  15. Juniperus extraction: a comparison of species and solvents

    Science.gov (United States)

    The effectiveness of the three solvents, hexane, methanol and ethanol were compared for their ability to extract non-polar and polar materials from sawdust from three species of Juniperus (i.e., J. virginianna, J. occidentalis and J. ashei). These species studied represent the junipers with the grea...

  16. Selective nonspecific solvation under dielectric saturation and fluorescence spectra of dye solutions in binary solvents.

    Science.gov (United States)

    Bakhshiev, N G; Kiselev, M B

    1991-09-01

    The influence of selective nonspecific solvation on the fluorescence spectra of three substitutedN-methylphthalimides in a binary solvent system consisting of a nonpolar (n-heptane) and a polar (pyridine) component has been studied under conditions close to dielectric saturation. The substantially nonlinearity of the effect is confirmation that the spectral shifts of fluorescence bands depend on the number of polar solvent molecules involved in solvating the dye molecule. The measured fluorescence spectral shifts determined by substituting one nonpolar solvent molecula with a polar one in the proximity of the dye molecule agree quantitatively with the forecasts of the previously proposed semiempirical theory which describes this nonlinear solvation phenomenon.

  17. Voltammetric oxidation of Hantzsch 1,4-dihydropyridines in protic and aprotic media: relevance of the substitution on N position

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Alarcon, C.; Nunez-Vergara, L.J.; Squella, J.A

    2003-07-15

    A detailed investigation on the electrochemical oxidation of some Hantzsch 1,4-dihydropyridine derivatives with the aim of study the influence of the hydrogen substituent on the N1 position of the heterocyclic ring have been carried out in protic and aprotic media. For this objective we have synthesized two series of compounds wherein the difference was the substituent (H or ethyl) on the N1-position of the heterocyclic ring. Voltammetry, UV-Vis spectroscopy, Controlled potential electrolysis, EPR, {sup 1}H NMR and gas chromatography-mass spectrometry techniques in order to obtain evidences for postulate oxidation mechanisms in both protic and aprotic media have been used. Compounds having the ethyl substituent in the N1 position follow an oxidation mechanism obeying the sequence ECE with the second step as the r.d.e. in both, protic and aprotic media, thus producing the corresponding ethyl substituted pyridinium cation. On the other hand compounds having H in the N1 position follow the same ECE sequence only at acidic media. At basic media, the mechanism consisted of a DISP1 scheme in which rate determining step (r.d.s.) is the uptake of the proton in the N1 position by the OH{sup -} ion of the media. In aprotic media both type of compounds follow the same ECEC mechanism with the second step as the r.d.s. but only the H-substituted compounds generates an anionic species that is more easily oxidized than the parent compounds.

  18. Controlling Solution-Mediated Reaction Mechanisms of Oxygen Reduction Using Potential and Solvent for Aprotic Lithium-Oxygen Batteries.

    Science.gov (United States)

    Kwabi, David G; Tułodziecki, Michał; Pour, Nir; Itkis, Daniil M; Thompson, Carl V; Shao-Horn, Yang

    2016-04-07

    Fundamental understanding of growth mechanisms of Li2O2 in Li-O2 cells is critical for implementing batteries with high gravimetric energies. Li2O2 growth can occur first by 1e(-) transfer to O2, forming Li(+)-O2(-) and then either chemical disproportionation of Li(+)-O2(-), or a second electron transfer to Li(+)-O2(-). We demonstrate that Li2O2 growth is governed primarily by disproportionation of Li(+)-O2(-) at low overpotential, and surface-mediated electron transfer at high overpotential. We obtain evidence supporting this trend using the rotating ring disk electrode (RRDE) technique, which shows that the fraction of oxygen reduction reaction charge attributable to soluble Li(+)-O2(-)-based intermediates increases as the discharge overpotential reduces. Electrochemical quartz crystal microbalance (EQCM) measurements of oxygen reduction support this picture, and show that the dependence of the reaction mechanism on the applied potential explains the difference in Li2O2 morphologies observed at different discharge overpotentials: formation of large (∼250 nm-1 μm) toroids, and conformal coatings (<50 nm) at higher overpotentials. These results highlight that RRDE and EQCM can be used as complementary tools to gain new insights into the role of soluble and solid reaction intermediates in the growth of reaction products in metal-O2 batteries.

  19. Searching for halo-alkalophilic proteases maintaining stability and activity in hydrophilic aprotic solvents as biocatalysts in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Pedersen, Lars Haastrup; Mørkholt, Camilla Kær; Nielsen, Carsten Bue

    2012-01-01

    and other carbohydrates (1, 2). Therefore, we are searching for new bacterial halo-alkaline proteases from extreme environments in Denmark. So far we have identified a number of interesting isolates showing proteolytic activity at pH 7 and 10. Whole genome Illumina Hiseq 2000 amplicon sequencing, de novo...... assembly of the genome and automatic annotation of genes in the genome was carried out by RAST to find the genes responsible for protease production. The amino-acid sequence of the expressed proteolytic proteins was analyzed using tandem MS. The isolates identified so far belong to Bacillus sp. One...... of the interesting genomes with a total length of 4.1 Mb was assembled in 42 contigs with a total of 3070 known genes of which 39 are encoding for proteases (one serine endopeptidase). Another genome was assembled in 219 contigs with 4004 coding sequences and 2821 known genes of which 36 are encoding for proteases...

  20. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    Science.gov (United States)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  1. Molecular Dynamics Simulations on Parallel Computers: a Study of Polar Versus Nonpolar Media Effects in Small Molecule Solvation.

    Science.gov (United States)

    Debolt, Stephen Edward

    Solvent effects were studied and described via molecular dynamics (MD) and free energy perturbation (FEP) simulations using the molecular mechanics program AMBER. The following specific topics were explored:. Polar solvents cause a blue shift of the rm nto pi^* transition band of simple alkyl carbonyl compounds. The ground- versus excited-state solvation effects responsible for the observed solvatochromism are described in terms of the molecular level details of solute-solvent interactions in several modeled solvents spanning the range from polar to nonpolar, including water, methanol, and carbon tetrachloride. The structure and dynamics of octanol media were studied to explore the question: "why is octanol/water media such a good biophase analog?". The formation of linear and cyclic polymers of hydrogen-bonded solvent molecules, micelle-like clusters, and the effects of saturating waters are described. Two small drug-sized molecules, benzene and phenol, were solvated in water-saturated octanol. The solute-solvent structure and dynamics were analysed. The difference in their partitioning free energies was calculated. MD and FEP calculations were adapted for parallel computation, increasing their "speed" or the time span accessible by a simulation. The non-cyclic polyether ionophore salinomycin was studied in methanol solvent via parallel FEP. The path of binding and release for a potassium ion was investigated by calculating the potential of mean force along the "exit vector".

  2. Sustainable electrical energy storage through the ferrocene/ferrocenium redox reaction in aprotic electrolyte.

    Science.gov (United States)

    Zhao, Yu; Ding, Yu; Song, Jie; Li, Gang; Dong, Guangbin; Goodenough, John B; Yu, Guihua

    2014-10-06

    The large-scale, cost-effective storage of electrical energy obtained from the growing deployment of wind and solar power is critically needed for the integration into the grid of these renewable energy sources. Rechargeable batteries having a redox-flow cathode represent a viable solution for either a Li-ion or a Na-ion battery provided a suitable low-cost redox molecule soluble in an aprotic electrolyte can be identified that is stable for repeated cycling and does not cross the separator membrane to the anode. Here we demonstrate an environmentally friendly, low-cost ferrocene/ferrocenium molecular redox couple that shows about 95% energy efficiency and about 90% capacity retention after 250 full charge/discharge cycles.

  3. Elucidating interactions and conductivity of newly synthesised low bandgap polymer with protic and aprotic ionic liquids.

    Directory of Open Access Journals (Sweden)

    Pankaj Attri

    Full Text Available In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole (PHVTT. Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.

  4. Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance

    KAUST Repository

    Kirmani, Ahmad R.

    2014-06-04

    The absorbing layer in state-of-the-art colloidal quantum-dot solar cells is fabricated using a tedious layer-by-layer process repeated ten times. It is now shown that methanol, a common exchange solvent, is the main culprit, as extended exposure leaches off the surface halide passivant, creating carrier trap states. Use of a high-dipole-moment aprotic solvent eliminates this problem and is shown to produce state-of-the-art devices in far fewer steps. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solvent effects on photodegradation of CI Reactive Orange 16 by simulated solar light

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2008-01-01

    Full Text Available Organic solvents may appear in wastewaters and other industrial waste streams containing dyes, therefore, their photodegradation catalyzed by TiO2 should be investigated. Solvent effect on photodegradation of CI Reactive Orange 16 has been studied using simulated solar light and P-25 TiO2. Methyl, ethyl and isopropyl alcohol as well as acetone were used as solvents. Photodegradation reaction was faster in methyl than in ethyl alcohol while in water was the slowest. RO16 photodegradation efficiency and reaction rate decreased in the presence of small concentration of ethanol. Higher photodegradation efficiency was observed for higher ethanol concentration. For acetone, photodegradation decreased as concentration of acetone increased. It seems that protic solvents at higher concentrations promote reaction, while at low concentrations slow down reaction. Aprotic solvents slow down reaction.

  6. Thin-film composite crosslinked polythiosemicarbazide membranes for organic solvent nanofiltration (OSN)

    KAUST Repository

    Aburabie, Jamaliah

    2015-01-01

    In this work we report a new class of solvent stable thin-film composite (TFC) membrane fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate that exhibits superior stability compared with other solvent stable polymeric membranes reported up to now. Integrally skinned asymmetric PTSC membranes were prepared by the phase inversion process and crosslinked with an aromatic bifunctional crosslinker to improve the solvent stability. TFC membranes were obtained via interfacial polymerization using trimesoyl chloride (TMC) and diaminopiperazine (DAP) monomers. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement.The membranes exhibited high fluxes toward solvents like tetrahydrofuran (THF), dimethylformamide (DMF) and dimethylsulfoxide (DMSO) ranging around 20L/m2 h at 5bar with a molecular weight cut off (MWCO) of around 1000g/mol. The PTSC-based thin-film composite membranes are very stable toward polar aprotic solvents and they have potential applications in the petrochemical and pharmaceutical industry.

  7. Spectrophotometric determination of the acidity constants of calcon in water and mixed water–organic solvents

    Directory of Open Access Journals (Sweden)

    MOHAMMAD MAZLOUM-ARDAKANI

    2009-02-01

    Full Text Available The acid–base properties of calcon (1-(2-hydroxy-1-naphthylazo-2-naphthol-4-sulfonic acid in water and mixed water–organic solvents at 25 °C at an ionic strength of 0.10 M are studied by a multiwavelength spectrophotometric method. The organic solvents used were the amphiprotic (methanol, dipolar aprotic (dimethylsulfoxide, and low basic aprotic (acetonitrile. To evaluate the pH absorbance data, a resolution method based on the combination of soft- and hard-modeling was applied. The acidity constants of all related equilibria were estimated using the whole spectral fitting of the collected data to an established factor analysis model. The data analysis program Datan was applied for determination of the acidity constants. The corresponding pKa values were determined in water and mixed water–organic solvents. Linear relationship between the acidity constants and the mole fraction of the different sol-vents in the mixtures exist. The effect of solvent properties on acid–base behavior is discussed.

  8. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  9. Long-Wavelength Phonon Scattering in Nonpolar Semiconductors

    DEFF Research Database (Denmark)

    Lawætz, Peter

    1969-01-01

    The long-wavelength acoustic- and optical-phonon scattering of carriers in nonpolar semiconductors is considered from a general point of view. The deformation-potential approximation is defined and it is shown that long-range electrostatic forces give a nontrivial correction to the scattering. Fo...

  10. Solvent effects on hydrogen bonding between primary alcohols and esters

    Institute of Scientific and Technical Information of China (English)

    DHARMALINGAM K.; RAMACHANDRAN K.; SIVAGURUNATHAN P.

    2006-01-01

    The interaction by hydrogen bond formation of some primary alcohols (1-heptanol, 1-octanol and 1-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane,CCh and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent effect on the hydrogen bond formation is discussed in terms of specific interaction between the solute and solvent.

  11. Effect of solvent on absorption and fluorescence spectra of a typical fluorinated azo dye for its acidic and basic structures

    Science.gov (United States)

    Abdel-Halim, Shakir T.

    2011-11-01

    The effect of 15 polar solvents on absorption and fluorescence energies of a typical fluorinated azo dye, 4-(2,3,5,6-tetrafluoro-pyridin-4-yl azo)-phenol, was reported for its acidic, MH, and basic, M, structures. For MH, the absorption energy is described on the basis of multi-linear equation with Taft's π* (solvent polarity) and β (hydrogen bond acceptor) parameters while the fluorescence energy varies rectilinearly with free energy of transferring the proton to the surrounding solvent, Δ Gt°. For M, the hydrogen bonding donor ability of protic solvent, α, is a predominant factor which affects the absorption energy while in aprotic solvents, the absorption energy correlates linearly with Kirkwood function. As the ability of the solvent for hydrogen bonding increases, the absorption band width will increase in parallel with the transition energy.

  12. How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions.

    Science.gov (United States)

    Mitroka, Susan; Zimmeck, Stephanie; Troya, Diego; Tanko, James M

    2010-03-10

    The hydroxyl radical (HO*) is a highly reactive oxygen-centered radical whose bimolecular rate constants for reaction with organic compounds (hydrogen atom abstraction) approach the diffusion-controlled limit in aqueous solution. The results reported herein show that hydroxyl radical is considerably less reactive in dipolar, aprotic solvents such as acetonitrile. This diminished reactivity is explained on the basis of a polarized transition state for hydrogen abstraction, in which the oxygen of the hydroxyl radical becomes highly negative and can serve as a hydrogen bond acceptor. Because acetonitrile cannot participate as a hydrogen bond donor, the transition state cannot be stabilized by hydrogen bonding, and the reaction rate is lower; the opposite is true when water is the solvent. This hypothesis explains hydroxyl radical reactivity both in solution and in the gas phase and may be the basis for a "containment strategy" used by Nature when hydroxyl radical is produced endogenously.

  13. Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes.

    Science.gov (United States)

    Prache, Nolwenn; Abreu, Sonia; Sassiat, Patrick; Thiébaut, Didier; Chaminade, Pierre

    2016-09-16

    An evaluation of solvents alternative to n-heptane (d-limonene and hexamethyldisiloxane) and chloroform (cyclopentyl methyl ether, 2-methyltetrahydrofuran and isopentyl acetate) was developed for lipid classes separation of non-polar cholesteryl ester to highly polar phospholipids by high-performance liquid chromatography on bare silica stationary phase and evaporative light-scattering detection. Screening of alternative solvents was used to estimate their compatibility with liquid chromatography and evaporative light-scattering detection and to evaluate their chromatographic selectivity. This work shows that n-heptane can be advantageously replaced by hexamethyldisiloxane. An increase of non-polar lipids retention is observed with hexamethyldisiloxane as weak solvent. Chloroform, which is largely used for lipid analysis, might be replaced efficaciously by cyclopentyl methyl ether, 2-methyltetrahydrofuran or isopentyl acetate. Aside from offering a different selectivity, the gradients composed by one or both alternative solvents gave efficient and comparable or even better separations than those obtained with conventional solvents.

  14. Strong guest binding by cyclodextrin hosts in competing nonpolar solvents and the unique crystalline structure.

    Science.gov (United States)

    Kida, Toshiyuki; Iwamoto, Takuya; Fujino, Yoshinori; Tohnai, Norimitsu; Miyata, Mikiji; Akashi, Mitsuru

    2011-09-02

    6-O-Modified β-cyclodextrins, such as heptakis(6-O-triisopropylsilyl)-β-cyclodextrin (TIPS-β-CD) and heptakis(6-O-tert-butyldimethylsilyl)-β-cyclodextrin (TBDMS-β-CD), formed 2:1 inclusion complexes with pyrene in benzene and cyclohexane with high association constants. The X-ray crystalline structure of the TIPS-β-CD-pyrene complex obtained from the benzene solution showed that one pyrene molecule was incorporated in the form of a sandwich-type complex with two benzene molecules within the cavity of the dimer formed by two TIPS-β-CD molecules.

  15. Liquid crystalline phases in suspensions of pigments in non-polar solvents

    Science.gov (United States)

    Klein, Susanne; Richardson, Robert M.; Eremin, Alexey

    We will discuss colloid suspensions of pigments and compare their electro-optic properties with those of traditional dyed low molecular weight liquid crystal systems. There are several potential advantages of colloidal suspensions over low molecular weight liquid crystal systems: a very high contrast because of the high orientational order parameter of suspensions of rod shaped nano-particles, the excellent light fastness of pigments as compared to dyes and high colour saturations resulting from the high loading of the colour stuff. Although a weak `single-particle' electro-optic response can be observed in dilute suspensions, the response is very much enhanced when the concentration of the particles is sufficient to lead to a nematic phase. Excellent stability of suspensions is beneficial for experimental observation and reproducibility, but it is a fundamental necessity for display applications. We therefore discuss a method to achieve long term stability of dispersed pigments and the reasons for its success. Small angle X-ray scattering was used to determine the orientational order parameter of the suspensions as a function of concentration and the dynamic response to an applied electric field. Optical properties were investigated for a wide range of pigment concentrations. Electro-optical phenomena, such as field-induced birefringence and switching, were characterised. In addition, mixtures of pigment suspensions with small amounts of ferrofluids show promise as future magneto-optical materials.

  16. Green solvents and technologies for oil extraction from oilseeds.

    Science.gov (United States)

    Kumar, S P Jeevan; Prasad, S Rajendra; Banerjee, Rintu; Agarwal, Dinesh K; Kulkarni, Kalyani S; Ramesh, K V

    2017-01-01

    Oilseeds are crucial for the nutritional security of the global population. The conventional technology used for oil extraction from oilseeds is by solvent extraction. In solvent extraction, n-hexane is used as a solvent for its attributes such as simple recovery, non-polar nature, low latent heat of vaporization (330 kJ/kg) and high selectivity to solvents. However, usage of hexane as a solvent has lead to several repercussions such as air pollution, toxicity and harmfulness that prompted to look for alternative options. To circumvent the problem, green solvents could be a promising approach to replace solvent extraction. In this review, green solvents and technology like aqueous assisted enzyme extraction are better solution for oil extraction from oilseeds. Enzyme mediated extraction is eco-friendly, can obtain higher yields, cost-effective and aids in obtaining co-products without any damage. Enzyme technology has great potential for oil extraction in oilseed industry. Similarly, green solvents such as terpenes and ionic liquids have tremendous solvent properties that enable to extract the oil in eco-friendly manner. These green solvents and technologies are considered green owing to the attributes of energy reduction, eco-friendliness, non-toxicity and non-harmfulness. Hence, the review is mainly focussed on the prospects and challenges of green solvents and technology as the best option to replace the conventional methods without compromising the quality of the extracted products.

  17. Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.

    Science.gov (United States)

    Wandt, Johannes; Jakes, Peter; Granwehr, Josef; Gasteiger, Hubert A; Eichel, Rüdiger-A

    2016-06-06

    Aprotic lithium-oxygen (Li-O2 ) batteries have attracted considerable attention in recent years owing to their outstanding theoretical energy density. A major challenge is their poor reversibility caused by degradation reactions, which mainly occur during battery charge and are still poorly understood. Herein, we show that singlet oxygen ((1) Δg ) is formed upon Li2 O2 oxidation at potentials above 3.5 V. Singlet oxygen was detected through a reaction with a spin trap to form a stable radical that was observed by time- and voltage-resolved in operando EPR spectroscopy in a purpose-built spectroelectrochemical cell. According to our estimate, a lower limit of approximately 0.5 % of the evolved oxygen is singlet oxygen. The occurrence of highly reactive singlet oxygen might be the long-overlooked missing link in the understanding of the electrolyte degradation and carbon corrosion reactions that occur during the charging of Li-O2 cells.

  18. Gelation mechanism of tetra-armed poly(ethylene glycol) in aprotic ionic liquid containing nonvolatile proton source, protic ionic liquid.

    Science.gov (United States)

    Hashimoto, Kei; Fujii, Kenta; Nishi, Kengo; Sakai, Takamasa; Yoshimoto, Nobuko; Morita, Masayuki; Shibayama, Mitsuhiro

    2015-04-02

    We report the gelation mechanism of tetra-armed prepolymer chains in typical aprotic ionic liquid (aIL), i.e., A-B type cross-end coupling reaction of tetra-armed poly(ethylene glycol)s with amine and activated ester terminals (TetraPEG-NH2 and TetraPEG-NHS, respectively) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mIm][TFSA]). In the ion gel system, we focused on the pH (or H(+) concentration) dependence of the gelation reaction. We thus applied the protic ionic liquid (pIL), 1-ethylimidazolium TFSA ([C2ImH][TFSA]), as a nonvolatile H(+) source, and added it into the solvent aIL. It was found that the gelation time of TetraPEG ion gel can be successfully controlled from 1 min to 3 h depending on the concentration of pIL (cpIL = 0-3 mM). This suggests that the acid-base properties of TetraPEG-NH2 showing acid-base equilibrium (-NH2 + H(+) ⇆ -NH3(+)) in the solutions play a key role in the gelation process. The acid dissociation constants, pKa's of TetraPEG-NH3(+) and C2ImH(+) (cation of pIL) in aIL were directly determined by potentiometric titration to be 16.4 and 13.7, respectively. This indicates that most of the H(+) ions bind to TetraPEG-NH2 and then C2ImH(+) exists as neutral C2Im. The reaction efficiency of amide bond (cross-linked point) systematically decreased with increasing cpIL, which was reflected to the mechanical strength of the ion gels. From these results, we discuss the gelation mechanism of TetraPEG in aIL to point out the relationship between polymer network structure and [H(+)] in the solutions.

  19. Fluctuation capture in non-polar gases and liquids

    CERN Document Server

    Cocks, D G

    2016-01-01

    We present a new model to identify natural fluctuations in fluids, allowing us to describe localization phenomena in the transport of electrons, positrons and positronium through non-polar fluids. The theory contains no free parameters and allows for the calculation of capture cross sections $\\sigma_{cap}(\\epsilon)$ of light-particles in any non-polar fluid, required for non-equilibrium transport simulations. We postulate that localization occurs through large shallow traps before stable bound states are formed. Our results allow us to explain most of the experimental observations of changes in mobility and annihilation rates in the noble gases and liquids as well as make predictions for future experiments. Quantities which are currently inaccessible to experiment, such as positron mobilities, can be obtained from our theory. Unlike other theoretical approaches to localization, the outputs of our theory can be applied in non-equilibrium transport simulations and an extension to the determination of waiting ti...

  20. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Science.gov (United States)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C60 fullerene. This was confirmed from fluorescence energy transfer studies. UV Vis studies further supported this observation that it is possible to selectively remove the C60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  1. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, C. N. [M.S. University of Baroda, Applied Chemistry Department, Faculty of Technology and Engineering (India)

    2005-01-15

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C{sub 60} fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C{sub 60} fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C{sub 60} fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C{sub 60} fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  2. Thermodiffusion in binary and ternary nonpolar hydrocarbon + alcohol mixtures

    Science.gov (United States)

    Eslamian, Morteza; Saghir, M. Ziad

    2012-12-01

    Thermodiffusion in complex mixtures, such as associating, molten metal, and polymer mixtures is difficult to model usually owing to the occurrence of a sign change in the thermodiffusion coefficient when the mixture concentration and temperature change. A mixture comprised of a nonpolar hydrocarbon and an alcohol is a complex and highly non-ideal mixture. In this paper an existing binary non-equilibrium thermodynamics model (Eslamian and Saghir, Physical Review E 80, 061201, 2009) developed for aqueous mixtures of alcohols is examined against the experimental data of binary nonpolar hydrocarbon and alcohol mixtures. For ternary mixtures, non-equilibrium thermodynamic expressions developed by the authors for aqueous mixtures of alcohols (Eslamian and Saghir, Canadian Journal of Chemical Engineering, DOI 10.1002/cjce.20581) is used to predict thermodiffusion coefficients of ternary nonpolar hydrocarbon and alcohol mixtures. The rationale behind the sign change is elucidated and attributed to an anomalous change in the molecular structure and therefore viscosity of such mixtures. Model predictions of thermodiffusion coefficients of binary mixtures predict a sign change consistent with the experimental data although the model is still too primitive to capture all structural complexities. For instance, in the methanol-benzene mixture where the model predictions are poorest, the viscosity data show that when concentration varies, the mixture's molecular structure experiences a severe change twice, the first major change leading to a maximum in the thermodiffusion coefficient, whereas the second change causes a sign change.

  3. Predicting Solvation Free Energies and Thermodynamics in Polar Solvents and Mixtures Using a Solvation-Layer Interface Condition

    CERN Document Server

    Tabrizi, Amirhossein Molavi; Rahimi, Ali Mehdizadeh; Knepley, Matthew G; Bardhan, Jaydeep P

    2016-01-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics in numerous polar solvents, and ion solvation free energies in water--co-solvent mixtures. The first modification involves perturbing the macroscopic dielectric-flux interface condition at the solute--solvent interface with a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is a simple treatment of the microscopic interface potential (static potential). We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water--co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermo...

  4. Solvent effects on some new meso-aryl substituted octabromoporphyrins

    Indian Academy of Sciences (India)

    Regimol G George; M Padmanabhan

    2003-08-01

    A series of porphyrins with tolyl and naphthyl substituents at the meso positions, their octabromoderivatives (OBP) with Br substituents at -pyrrole positions are synthesised and characterised by chemical analysis, 1H NMR and electronic spectral studies. It is seen that all the OBPs exhibit pronounced red shifts in both the Soret and bands of their electronic spectra compared to their nonbrominated form in various polar and nonpolar solvents, the energy difference $\\bar{v}$ being in the range 2300-2700 cm-1. The high energy band of naphthyl porphyrins (both brominated and nonbrominated) are found to be more red-shifted than that of tolyl porphyrins, owing to the noticeable mesomeric effect of the naphthyl groups. Detailed spectral studies reveal that while none of the nonbrominated porphyrin show solvent-dependent change in their and bands, all the OBPs manifest significant shifts depending on the nature of solvents. Solvent-solute interaction can be considered to be of strong dipole-dipole nature for OBPs with polar solvents and of - type with aromatic non-polar solvents. In the brominated form we find two categories of porphyrins exhibiting distinctly different absorption phenomena in aromatic solvents. The OBPs having meso-groups not shielding the porphyrin -framework exhibit additional absorption peaks (split Soret peaks and broadened Q bands) in some aromatic solvents. This could be explained in terms of - type donor-acceptor (DA) complex formation between such bromoporphyrins (acceptor) and the aromatic solvent molecules (donor) that is not possible for OBPs that have bulky meso groups that block the approach of aromatic solvent molecules close to the porphyrin framework.

  5. Molecular dynamics study on the solvent dependent heme cooling following ligand photolysis in carbonmonoxy myoglobin.

    Science.gov (United States)

    Zhang, Yong; Fujisaki, Hiroshi; Straub, John E

    2007-03-29

    The time scale and mechanism of vibrational energy relaxation of the heme moiety in myoglobin was studied using molecular dynamics simulation. Five different solvent models, including normal water, heavy water, normal glycerol, deuterated glycerol and a nonpolar solvent, and two forms of the heme, one native and one lacking acidic side chains, were studied. Structural alteration of the protein was observed in native myoglobin glycerol solution and native myoglobin water solution. The single-exponential decay of the excess kinetic energy of the heme following ligand photolysis was observed in all systems studied. The relaxation rate depends on the solvent used. However, this dependence cannot be explained using bulk transport properties of the solvent including macroscopic thermal diffusion. The rate and mechanism of heme cooling depends upon the detailed microscopic interaction between the heme and solvent. Three intermolecular energy transfer mechanisms were considered: (i) energy transfer mediated by hydrogen bonds, (ii) direct vibration-vibration energy transfer via resonant interaction, and (iii) energy transfer via vibration-translation or vibration-rotation interaction, or in other words, thermal collision. The hydrogen bond interaction and vibration-vibration interaction between the heme and solvent molecules dominates the energy transfer in native myoglobin aqueous solution and native myoglobin glycerol solutions. For modified myoglobin, the vibration-vibration interaction is also effective in glycerol solution, different from aqueous solution. Thermal collisions form the dominant energy transfer pathway for modified myoglobin in water solution, and for both native myoglobin and modified myoglobin in a nonpolar environment. For native myoglobin in a nonpolar solvent solution, hydrogen bonds between heme isopropionate side chains and nearby protein residues, absent in the modified myoglobin nonpolar solvent solution, are key interactions influencing the

  6. Understanding surface interactions in aqueous miscible organic solvent treated layered double hydroxides.

    OpenAIRE

    Erastova, Valentina; Degiacomi, Matteo T.; O'Hare, Dermot; Greenwell, H. Chris

    2016-01-01

    Layered materials are of interest for use in a wealth of technological applications, many of which require a high surface area for optimal properties and performance. Recently, an industrially scalable method to create high surface area layered double hydroxide (LDH) materials, which may be readily dispersed in non-polar solvents, has been developed. This method involves treatment of LDHs with aqueous miscible organic (AMO) solvents. Here, molecular modeling is exploited to elucidate the AMO ...

  7. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-Ying; SHI Jin-Hui; YUAN Li-Bo

    2008-01-01

    A polarizing beam splitter(PBS)and a non-polarizing beam splitter(NPBS)based on a photonic crystal(PC)directional coupler are demonstrated.The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap.The photonic band structure and the band gap map are calculated using the plane wave expansion(PWE)method.The splitting properties of the splitter are investigated numerically using the finite difference time domain(FDTD)method.

  8. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  9. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  10. Contrasting solvent polarity effect on the photophysical properties of two newly synthesized aminostyryl dyes in the lower and in the higher solvent polarity regions.

    Science.gov (United States)

    Shaikh, M; Mohanty, J; Singh, P K; Bhasikuttan, A C; Rajule, R N; Satam, V S; Bendre, S R; Kanetkar, V R; Pal, H

    2010-04-08

    Solvent polarity effect on the photophysical properties of two newly synthesized aminostyryl-thiazoloquinoxaline dyes, one with a flexible diphenylamino group, namely, N,N-diphenyl-4-[2-(thiazolo[4,5-b]quinoxalin-2-yl)vinyl]aniline (TQ1), and the other with a rigid julolidinylamino group, namely, (9-[2-(thiazolo[4,5-b]quinoxalin-2-yl)vinyl]julolidine) (TQ2), have been investigated in different aprotic solvents and solvent mixtures. From the polarity dependent changes in the absorption and fluorescence spectral properties, it is indicated that the fluorescent states of the dyes are of intramolecular charge transfer (ICT) character. For both the dyes, the photophysical properties like fluorescence quantum yields (Phi(f)), fluorescence lifetimes (tau(f)), radiative rate constants (k(f) = Phi(f)/tau(f)), and nonradiative rate constants (k(nr) = 1/tau(f) - Phi(f)/tau(f)) show clearly contrasting solvent polarity effects in the lower and in the higher solvent polarity region, causing an interesting reversal in the properties below and above an intermediate solvent polarity. It is inferred that the domination of the cis-trans isomerization in the lower solvent polarity region and that of the twisted intramolecular charge transfer (TICT) state formation in the higher solvent polarity region are responsible for the observed contrasting solvent polarity effects on the photophysical properties of the two dyes. As both isomerization and TICT state formation causes an enhancement in the nonradiative decay rate of the excited dyes and both the processes become less significant at the intermediate solvent polarity region, the two dyes show their largest Phi(f) and tau(f) values at intermediate solvent polarities. Suitable mechanistic schemes have been proposed and qualitative potential energy diagrams have been presented to explain the observed results with the changes in the polarity of the solvents used.

  11. INFLUENCE OF ORGANIC SOLVENTS ON WATER DISSOCIATION IN BIPOLAR MEMBRANE

    Directory of Open Access Journals (Sweden)

    Sheldeshov N. V.

    2015-12-01

    Full Text Available The article discusses results of experimental research of the influence of aprotic and proton solvents on reaction rate of water molecules dissociation in the bipolar membrane MB-1 by the method of electrochemical impedance frequency spectrum. It was discovered, that addition of organic component in aqueous solutions results in significant influence on the parameters of water dissociation in a bipolar region of the membrane. The reason for this influence is the reduction of the mass fraction of water in solution and, consequently, in a bipolar region of the membrane, which itself reduces the rate of the dissociation reaction. Another reason for the influence of the organic solvent is its effect on the network of hydrogen bonds existing in water and aqueous solutions. Depending on the nature of organic solvent and its concentration, the network of hydrogen bonds may be strengthened, or destroyed, thus facilitating removal of the proton involved in the reactions between water molecules and catalytic centers in cation-exchange and anion-exchange layer of bipolar membrane, or retarding removal of proton. This leads respectively to speed up or slow down the rate of dissociation in the bipolar region of the membrane, as well as changing the constants of the dissociation reaction of water. Introduction of organic solvent in solutions, which are in the contact with bipolar membrane, is a convenient method of investigating the role of solution composition on the rate of proton transfer between water molecules and catalytic centers in the membranes

  12. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, B.

    2017-05-30

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic solvents. We report for the first time porous polymeric membranes manufactured from poly(oxindolebiphenylylene) (POXI), a polymer with thermal stability as high as 500 °C in oxidative conditions. The membranes were prepared by solution casting and phase inversion by immersion in water. The asymmetric porous morphology was characterized by scanning electronic microscopy. The pristine membranes are stable in alcohols, acetone, acetonitrile and hexane, as well as in aqueous solutions with pH between 0 and 14. The membrane stability was extended for application in other organic solvents by crosslinking, using various dibromides, and the efficiency of the different crosslinkers was evaluated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). POXI crosslinked membranes are stable up to 329 °C in oxidative conditions and showed organic solvent resistance in polar aprotic solvents with 99% rejection of Red Direct 80 in DMF at 70 °C. With this development, the application of polymeric membranes could be extended to high temperature and harsh environments, fields currently dominated by ceramic membranes.

  13. Roles of urea and TMAO on the interaction between extended non-polar peptides

    Science.gov (United States)

    Su, Zhaoqian; Dias, Cristiano

    Urea and trimethylamine n-oxide (TMAO) are small molecules known to destabilize and stabilize, respectively, the structure of proteins when added to aqueous solution. To unravel the molecular mechanisms of these cosolvents on protein structure we perform explicit all-atom molecular dynamics simulations of extended poly-alanine and polyleucine dimers. We use an umbrella sampling protocol to compute the potential of mean force (PMF) of dimers at different concentrations of urea and TMAO. We find that the large non-polar side chain of leucine is affected by urea whereas backbone atoms and alanine's side chain are not. Urea is found to occupy positions between leucine's side chains that are not accessible to water. This accounts for extra Lennard-Jones bonds between urea and side chains that favors the unfolded state. These bonds compete with urea-solvent interactions that favor the folded state. The sum of these two energetic terms provide the enthalpic driving force for unfolding. We show here that this enthalpy correlate with the potential of mean force of poly-leucine dimers. Moreover, the framework developed here is general and may be used to provide insights into effects of other small molecules on protein interactions. The effect of the TMAO will be in the presentation. Department of Physics, University Heights, Newark, New Jersey, 07102-1982.

  14. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  15. Observation of water dangling OH bonds around dissolved nonpolar groups.

    Science.gov (United States)

    Perera, P N; Fega, K R; Lawrence, C; Sundstrom, E J; Tomlinson-Phillips, J; Ben-Amotz, Dor

    2009-07-28

    We report the experimental observation of water dangling OH bonds in the hydration shells around dissolved nonpolar (hydrocarbon) groups. The results are obtained by combining vibrational (Raman) spectroscopy and multivariate curve resolution (MCR), to reveal a high-frequency OH stretch peak arising from the hydration shell around nonpolar (hydrocarbon) solute groups. The frequency and width of the observed peak is similar to that of dangling OH bonds previously detected at macroscopic air-water and oil-water interfaces. The area of the observed peak is used to quantify the number of water dangling bonds around hydrocarbon chains of different length. Molecular dynamics simulation of the vibrational spectra of water molecules in the hydration shell around neopentane and benzene reveals high-frequency OH features that closely resemble the experimentally observed dangling OH vibrational bands around neopentyl alcohol and benzyl alcohol. The red-shift of approximately 50 cm(-1) induced by aromatic solutes is similar to that previously observed upon formation of a pi-H bond (in low-temperature benzene-water clusters).

  16. Temperature dependence of the positronium yields in polar and nonpolar pure liquids; an experimental test of a phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Levay, B

    2004-08-02

    A phenomenological model describing the temperature dependence of the positronium yields (I{sub Ps}, %) was tested in pure liquids of different polarity. The investigated solvents were: m-xylene (m-Xy) and iso-octane (i-C8) as aromatic and aliphatic nonpolar hydrocarbons, methanol (MeOH), water and dimethyl formamide as polar solvents with and without OH group. Arrhenius type linear relationship predicted by the model for the lnQ vs 1/T function, where Q=(100/I{sub Ps}-1), was found to be valid in all cases. The slopes of the lines correspond to the activation energy differences ({delta}E{sup *}=E{sub rec}-E{sub Ps}) between the two main competing reaction pathways in the positron spur, i.e., solvent recombination (e{sup -} + M{sup +}) and positronium formation (e{sup -} + e{sup +}). The slopes were positive, i.e., {delta}E{sup *}<0 and E{sub rec}

  17. Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Tulia; Sanes, José; Jiménez, Ana-Eva [Grupo de Ciencia de Materiales e Ingeniería Metalúrgica, Departamento de Ingeniería de Materiales y Fabricación, Universidad Politécnica de Cartagena, Campus de la Muralla del Mar. C/Doctor Fleming, s/n. 30202-Cartagena (Spain); Bermúdez, María-Dolores, E-mail: mdolores.bermudez@upct.es [Grupo de Ciencia de Materiales e Ingeniería Metalúrgica, Departamento de Ingeniería de Materiales y Fabricación, Universidad Politécnica de Cartagena, Campus de la Muralla del Mar. C/Doctor Fleming, s/n. 30202-Cartagena (Spain)

    2013-05-15

    In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO{sub 3}H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C{sub 8}H{sub 17}SO{sub 4}); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF{sub 4}) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF{sub 6}). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM–EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C{sub 8}H{sub 17}SO{sub 4} reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO{sub 3}H produces severe corrosion to form a phosphonate–copper soluble phase. [HMIM]BF{sub 4} gives rise to the highest roughness increase of the

  18. Coherent Control of Vibrational State Population in a Nonpolar Molecule

    CERN Document Server

    Picón, A; Jaron-Becker, A; Becker, A; 10.1103/PhysRevA.83.023412

    2011-01-01

    A coherent control scheme for the population distribution in the vibrational states of nonpolar molecules is proposed. Our theoretical analysis and results of numerical simulations for the interaction of the hydrogen molecular ion in its electronic ground state with an infrared laser pulse reveal a selective two-photon transition between the vibrational states via a coupling with the first excited dissociative state. We demonstrate that for a given temporal intensity profile the population transfer between vibrational states, or a superposition of vibrational states, can be made complete for a single chirped pulse or a train of chirped pulses, which accounts for the accumulated phase difference due to the AC Stark effect. Effects of a spatial intensity (or, focal) averaging are discussed.

  19. Polarity inversion in polar-nonpolar-polar heterostructures.

    Science.gov (United States)

    Cho, S; Youn, S J; Kim, Y; DiVenere, A; Wong, G K; Freeman, A J; Ketterson, J B

    2001-09-17

    We have observed an epilayer-thickness-dependent polarity inversion for the growth of CdTe on Sb(Bi)/CdTe(111)B. For films with Sb(Bi) thicknesses of less than 40 A (15 A), the CdTe layer shows a B (Te-terminated) face, but it switches to an A (Cd-terminated) face for thicker layers. On the other hand, a CdTe layer grown on Bi(Sb)/CdTe(111)A always shows the A face regardless of Sb or Bi layer thicknesses. In order to address the observations we have performed ab initio calculations, which suggest that the polarity of a polar material on a nonpolar one results from the binding energy difference between the two possible surface configurations.

  20. Solvent Extraction and Characterization of Neutral Lipids in Oocystis sp.

    Directory of Open Access Journals (Sweden)

    Renil eAnthony

    2015-01-01

    Full Text Available Microalgae are a favorable feedstock for bioproducts and biofuels due to their high oil content, fast growth rates and low resource demands. Solvent lipid extraction efficiency from microalgae is dependent on algal strain and the extraction solvent. Four non-polar extraction solvents were evaluated for the recovery of neutral cellular lipids from microalgae Oocystis sp. (UTEX LB2396. Methylene chloride, hexane, diethyl ether, and cyclohexane were selected as the extraction solvents. All solvent extracts contained hexadecanoic acid, linoleic acid and linolenic acid; accounting for 70% of total lipid content with a proportional wt% composition of the three fatty acids, except for the hexane extracts that showed only hexadecanoic acid and linoleic acid. While not statistically differentiated, methylene chloride proved to be the most effective solvent for Oocystis sp. among the four solvents tested with a total average neutral lipid recovery of 0.25% of dry weight followed by diethyl ether (0.18%, cyclohexane (0.14% and hexane (0.11%. This research presents a simple methodology to optimize the selection of lipid specific extraction solvents for the microalgal strain selected.

  1. ASSOCIATION OF ETHYLENE VINYL ACETATE COPOLYMER IN DILUTE SOLUTIONS Ⅳ.SOLVENT MIXTURE AND ADDITIVE EFFECT ON CA

    Institute of Scientific and Technical Information of China (English)

    Jin-wen Qian; Jing Li; Guo-rong Qi; Lin-xian Feng

    1999-01-01

    Critical association concentration (CA) of ethylene-vinyl acetate copolymer (EVA) in selective solvent mixtures of 1,2-dichloroethane (DCE) (polar solvent) and cyclohexane (CYH) (non-polar solvent)was investigated. DCE is a good solvent for polyvinyl acetate (PVAc) and a poor solvent for paraffin,whereas CYH is a good solvent for the paraffin and a precipitant for PVAc. Viscosities of EVA in different compositions of the solvent mixture with and without additives were measured. Viscosity results were used to determine the CA value of the systems. It is shown that CA was markedly dependent on the composition of the solvent mixture and concentration and structure of the additive. Solvation and competition between hydrogen bonding and micellisation were suggested for qualitative description of the changing of CA value observed.

  2. ON THE APPROXIMATION OF SOLVENT EFFECTS ON THE CONFORMATION AND DYNAMICS OF CYCLOSPORIN A BY STOCHASTIC DYNAMICS SIMULATION TECHNIQUES

    NARCIS (Netherlands)

    Shi Yun-yu, [No Value; Wang Lu, [No Value; Van Gunsteren, W. F.

    1988-01-01

    The molecular simulation technique of stochastic dynamics (SD) is tested by application to the immunosuppressive drug cyclosporin A (CPA). Two stochastic dynamics simulations are performed, one (SDCCl4) with atomic friction coefficients proportional to the viscosity of the nonpolar solvent CCl4, and

  3. The reaction-field effect on the chemical potentials of polar aprotic non-aromatic liquids 1. Vapour pressure

    Science.gov (United States)

    Rosseinsky, D. R.; Stead, K.; Mowforth, C. W.

    1998-10-01

    The reaction field for the interaction of a molecule with its identical neighbours is shown to be a major determinant of the chemical potential of many dipolar liquids. The electrostatic potential w, derived for immersion of the dipolar molecule in its own kind, and notably comprising solely static and hf permittivities, is equated with the difference between the polar-liquid chemical potential and that of an isostructural non-polar hydrocarbon. For all the 26 non-aromatic Onsager liquids for which the requisite data are available, acceptable conformity is established of the vapour pressure calculated from w with that observed, fluorocarbons excepted. If w turns out to be small, vapour pressures of (these 12) dipolars approximate quite closely to those of the isostructural non-polars, as expected. For ketones and nitroalkanes varied-temperature data are available and well reproduced via w: thus calculated vaporization enthalpies equal the observed.

  4. Non-polar Extraction Effect Analysis of Mimusops elengi (L. bark to Larvae of Aedes aegypti (L.

    Directory of Open Access Journals (Sweden)

    Mutiara Widawati

    2012-11-01

    Full Text Available Tanjung or Mimusops elengi is one of a tree that has many therapeutic effects and has been widely studied as an alternative drug like anti-inflammatory agent, diarrhea, and asthma. This study tested the larvicidal ability of Tanjung bark extract for larvae of Aedes aegypti. The solvent that will be used for Mimusops elengi stem extraction in this research is semi-polar and non-polar solvent, which is ethyl acetate and hexane. The method used in this research was reflux extraction and proceed further with fractionation that has been analyzed by thin layer chromatography. The larvicidal activity of Mimusops elengi extract was tested using a bioassay method that has been established by WHO to determine LC50 and LC9O which can be processed further in order to compare the ejjicacy ofsolvent used. The LC50 value of the extract 1,2 and 3, were each 59.36 ppm, 82.53 ppm, and 110.42 ppm. The experimental results showed that hexane has the most powerful larvicidal ability compared to other extracts.

  5. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    Christian Ahoba-Sam

    2017-07-01

    Full Text Available Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO2 catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ɛ = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ɛ value of diglyme (ɛ = 7.2. To probe the observed trend, possible side reactions of methyl formate (MF, the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i decarbonylation to form CO and MeOH and (ii a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  6. Density and Phase State of a Confined Nonpolar Fluid

    Science.gov (United States)

    Kienle, Daniel F.; Kuhl, Tonya L.

    2016-07-01

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  7. Design of non-polarizing thin film edge filters

    Institute of Scientific and Technical Information of China (English)

    GU Pei-fu; ZHENG Zhen-rong

    2006-01-01

    The separation between s- and p-polarization components invariably affects thin film edge filters used for tilted incidence and is a difficult problem for many applications, especially for optical communication. This paper presents a novel design method to obtain edge filters with non-polarization at incidence angle of 45°. The polarization separation at 50% transmittance for a long-wave-pass filter and a short-wave-pass filter is 0.3 nm and 0.1 nm respectively. The design method is based on a broadband Fabry-Perot thin-film interference filter in which the higher or lower interference band at both sides of the main transmittance peak can be used for initial design of long-wave-pass filter or short-wave-pass filter and then can be refined to reduce the transmittance ripples. The spacer 2H2L2H or 2L2H2L of the filter is usually taken. Moreover, the method for expanding the bandwidth of rejection and transmission is explained. The bandwidth of 200 nm for both rejection region and transmission band is obtained at wavelength 1550 nm. In this way, the long-wave-pass and short-wave-pass edge filters with zero separation between two polarization components can easily be fabricated.

  8. Metabolic Activation of Nonpolar Sediment Extracts Results in enhanced Thyroid Hormone Disrupting Potency

    NARCIS (Netherlands)

    Montano, M.; Weiss, J.; Hoffmann, L.; Gutleb, A.C.; Murk, A.J.

    2013-01-01

    Traditional sediment risk assessment predominantly considers the hazard derived from legacy contaminants that are present in nonpolar sediment extracts, such as polychlorinated biphenyls (PCBs), dioxins, furans (PCDD/Fs), and polyaromatic hydrocarbons (PAHs). Although in vivo experiments with these

  9. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles

    NARCIS (Netherlands)

    Wang, Fang; Haftka, Joris J H; Sinnige, Theo L.; Hermens, Joop L M; Chen, Wei

    2014-01-01

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and 1,3-dichlorobenz

  10. A multi-layered Fe2O3/graphene composite with mesopores as a catalyst for rechargeable aprotic lithium-oxygen batteries

    Science.gov (United States)

    Feng, Ningning; Mu, Xiaowei; Zheng, Mingbo; Wang, Chaoqiang; Lin, Zixia; Zhang, Xueping; Shi, Yi; He, Ping; Zhou, Haoshen

    2016-09-01

    Aprotic Li-O2 batteries have attracted a huge amount of interest in the past decade owing to their extremely high energy density. However, identifying a desirable cathodic catalyst for this promising battery system is one of the biggest challenges at present. In this work, a multi-layered Fe2O3/graphene nanosheets (Fe2O3/GNS) composite with sandwich structure was synthesized using an easy thermal casting method, and served as a cathodic catalyst for aprotic Li-O2 batteries. The aprotic Li-O2 cell with the Fe2O3/GNS catalyst demonstrated a better reversibility, lower overpotential for oxygen evolution, and a higher Coulombic efficiency (close to 100%) than those of pure GNS. An excellent rate performance and good cycle stability were also confirmed. The results, characterized by ex and in situ methods, revealed that the dominant discharge product Li2O2 was decomposed below 4.35 V. This superior electrochemical performance is mainly attributed to the unique sandwich structure of the Fe2O3/GNS catalyst with mesopores, which can provide substantially more catalytic sites and prevent direct contact between carbon and Li2O2.

  11. Acousto-optic modulation and deflection of terahertz electromagnetic radiation in nonpolar liquids

    Science.gov (United States)

    Nikitin, P. A.; Voloshinov, V. B.; Gerasimov, V. V.; Knyazev, B. A.

    2017-07-01

    The results of a series of experiments on controlled deflection of electromagnetic radiation of a free-electron laser upon diffraction by an acoustic wave in nonpolar liquids are presented. Acoustic and optical properties of liquids that are transparent in the terahertz range are discussed. It is demonstrated that nonpolar liquids may turn out to be a more efficient acousto-optic interaction medium than dielectric crystals or semiconductors.

  12. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    description of our copolymerization results. The polyisobutylene (b- PIB ) that is produced by homopolymerization of IB in an inert solvent such as 1,2...the linear polyisobutylene (l- PIB ) produced under the usual cationic initiation. The difference is clear in spectral (NMR) and physical (DSC, TGA...HPLC) properties. A detailed 2D-NMR examination of b- PIB obtained from ordinary IB and several isotopically labeled versions of IB revealed that its

  13. Critical concentration of ion-pairs formation in nonpolar media.

    Science.gov (United States)

    Dukhin, Andrei

    2014-07-01

    It is known that nonpolar liquids can be ionized by adding surfactants, either ionic or nonionic. Surfactant molecules serve as solvating agents, building inverse micelles around ions, and preventing their association back into neutral molecules. According to the Bjerrum-Onsager-Fuoss theory, these inverse micelle ions should form "ion pairs." This, in turn, leads to nonlinear dependence of the conductivity on the concentration. Surprisingly, ionic surfactants exhibit linear conductivity dependence, which implies that these inverse micelle ions do not form ion pairs. Theory predicts the existence of two ionic strength ranges, which are separated by a certain critical ion concentration. Ionic strength above the critical one is proportional to the square root of the ion concentration, whereas it becomes linear below the critical concentration. Critical ion concentration lies within the range of 10(-11) -10(-7) mol/L when ion size ranges from 1 to 3 nm. Critical ion concentration is related, but not equal, to a certain surfactant concentration (critical concentration of ion-pairs formation (CIPC)) because only a fraction of the surfactant molecules is incorporated into the micelles ions. The linear conductivity dependence for ionic surfactants indicates that the corresponding CIPC is above the range of studied concentrations, perhaps, due to rather large ion size. The same linearity is a sign that charged inverse micelles structure and fraction are concentration independent due to strong charge-dipole interaction in the charge micelle core. This also proves that CIPC is independent of critical concentration of micelle formation. Nonionic surfactants, on the other hand, exhibit nonlinear conductivity dependence apparently due to smaller ion sizes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The influence of non-polar lipids on tear film dynamics

    KAUST Repository

    Bruna, M.

    2014-04-04

    © 2014 Cambridge University Press. In this paper we examine the effect that physiological non-polar lipids, residing on the surface of an aqueous tear film, have on the film evolution. In our model we track the evolution of the thickness of the non-polar lipid layer, the thickness of the aqueous layer and the concentration of polar lipids which reside at the interface between the two. We also utilise a force balance in the non-polar lipid layer in order to determine its velocity. We show how to obtain previous models in the literature from our model by making particular choices of the parameters. We see the formation of boundary layers in some of these submodels, across which the concentration of polar lipid and the non-polar lipid velocity and film thickness vary. We solve our model numerically for physically realistic parameter values, and we find that the evolution of the aqueous layer and the polar lipid layer are similar to that described by previous authors. However, there are interesting dynamics for the non-polar lipid layer. The effects of altering the key parameters are highlighted and discussed. In particular, we see that the Marangoni number plays a key role in determining how far over the eye the non-polar lipid spreads.

  15. Mechanism of Nonpolar Model Substances to Inhibit Primary Gushing Induced by Hydrophobin HFBI.

    Science.gov (United States)

    Shokribousjein, Zahra; Riveros Galan, David; Losada-Pérez, Patricia; Wagner, Patrick; Lammertyn, Jeroen; Arghir, Iulia; Golreihan, Asefeh; Verachtert, Hubert; Aydın, Ahmet Alper; De Maeyer, Marc; Titze, Jean; Ilberg, Vladimír; Derdelinckx, Guy

    2015-05-13

    In this work, the interactions of a well-studied hydrophobin with different types of nonpolar model substances and their impact on primary gushing is evaluated. The nature, length, and degree of saturation of nonpolar molecules are key parameters defining the gushing ability or inhibition. When mixed with hydrophobins, the nonpolar molecule-hydrophobin assembly acts as a less gushing or no gushing system. This effect can be explained in the framework of a competition effect between non-polar systems and CO2 to interact with the hydrophobic patch of the hydrophobin. Interactions of these molecules with hydrophobins are promoted as a result of the similar size of the nonpolar molecules with the hydrophobic patch of the protein, at the expense of the formation of nanobubbles with CO2. In order to prove the presence of interactions and to unravel the mechanisms behind them, a complete set of experimental techniques was used. Surface sensitive techniques clearly show the presence of the interactions, whose nature is not covalent nor hydrogen bonding according to infrared spectroscopy results. Interactions were also reflected by particle size analysis in which mixtures of particles displayed larger size than their pure component counterparts. Upon mixing with nonpolar molecules, the gushing ability of the protein is significantly disrupted.

  16. Extended Hansen solubility approach: naphthalene in individual solvents.

    Science.gov (United States)

    Martin, A; Wu, P L; Adjei, A; Beerbower, A; Prausnitz, J M

    1981-11-01

    A multiple regression method using Hansen partial solubility parameters, delta D, delta p, and delta H, was used to reproduce the solubilities of naphthalene in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The method, called the extended Hansen approach, was compared with the extended Hildebrand solubility approach and the universal-functional-group-activity-coefficient (UNIFAC) method. The Hildebrand regular solution theory was also used to calculate naphthalene solubility. Naphthalene, an aromatic molecule having no side chains or functional groups, is "well-behaved', i.e., its solubility in active solvents known to interact with drug molecules is fairly regular. Because of its simplicity, naphthalene is a suitable solute with which to initiate the difficult study of solubility phenomena. The three methods tested (Hildebrand regular solution theory was introduced only for comparison of solubilities in regular solution) yielded similar results, reproducing naphthalene solubilities within approximately 30% of literature values. In some cases, however, the error was considerably greater. The UNIFAC calculation is superior in that it requires only the solute's heat of fusion, the melting point, and a knowledge of chemical structures of solute and solvent. The extended Hansen and extended Hildebrand methods need experimental solubility data on which to carry out regression analysis. The extended Hansen approach was the method of second choice because of its adaptability to solutes and solvents from various classes. Sample calculations are included to illustrate methods of predicting solubilities in untested solvents at various temperatures. The UNIFAC method was successful in this regard.

  17. Chemical modification of alginates in organic solvent systems.

    Science.gov (United States)

    Pawar, Siddhesh N; Edgar, Kevin J

    2011-11-14

    Alginates are (1→4)-linked linear copolysaccharides composed of β-D-mannuronic acid (M) and its C-5 epimer, α-l-guluronic acid (G). Several strategies to synthesize organically modified alginate derivatives have been reported, but almost all chemistries are performed in either aqueous or aqueous-organic media. The ability to react alginates homogeneously in organic solvents would open up access to a wide range of new chemistries and derivatives. However, past attempts have been restricted by the absence of methods for alginate dissolution in organic media. We therefore report a strategy to dissolve tetrabutylammonium (TBA) salts of alginic acid in polar aprotic solvents containing tetrabutylammonium fluoride (TBAF). Acylation of TBA-alginate was performed under homogeneous conditions, such that both M and G residues were acetylated up to a total degree of substitution (DS) ≈1.0. Performing the same reaction under heterogeneous conditions resulted in selective acylation of M residues. Regioselectivity in the acylated alginate products was studied, and degradation under basic reaction conditions was probed.

  18. The Influence of Electrode Microstructure on the Performance of Free-Standing Cathode for Aprotic Lithium-Oxygen Battery

    Science.gov (United States)

    Shen, Chen; Wen, Zhaoyin; Wang, Fan; Wu, Xiangwei; Chen, Chunhua

    2016-10-01

    Free-standing NiCo2O4@Ni cathodes for aprotic lithium-oxygen batteries were synthesized through a simple hydrothermal process followed by heat treatment in the air. The morphology of the NiCo2O4 deposit changed from nanosheet to nanowire with the increase of hydrothermal time. Further observation revealed that the nanosheet/nanowire NiCo2O4 were assembled by nanoparticles with a size of 10-20 nm. The directional assembly of the nanoparticles were not affected by the reaction time. The influence of catalyst microstructure on the electrochemical performance of Li-O2 batteries was studied. The results of battery tests in pure oxygen indicate that the cathode material with a high specific surface area, large pore volume and broad pore size distribution can facilitate the discharge reaction, leading to an improved cell performance. As a result, the cathode based on the NiCo2O4 nanowire array delivered a specific discharge capacity of 1682 mAh g-1 at 30 mA g-1 and a stable cyclability of 50 cycles with a capacity limitation of 500 mAh g-1.

  19. Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive.

    Science.gov (United States)

    Abate, Iwnetim I; Thompson, Leslie E; Kim, Ho-Cheol; Aetukuri, Nagaphani B

    2016-06-16

    Aprotic metal-oxygen batteries, such as Li-O2 and Na-O2 batteries, are of topical research interest as high specific energy alternatives to state-of-the-art Li-ion batteries. In particular, Na-O2 batteries with NaO2 as the discharge product offer higher practical specific energy with better rechargeability and round-trip energy efficiency when compared to Li-O2 batteries. In this work, we show that the electrochemical deposition and dissolution of NaO2 in Na-O2 batteries is unperturbed by trace water impurities in Na-O2 battery electrolytes, which is desirable for practical battery applications. We find no evidence for the formation of other discharge products such as Na2O2·H2O. Furthermore, the electrochemical efficiency during charge remains near ideal in the presence of trace water in electrolytes. Although sodium anodes react with trace water leading to the formation of a high-impedance solid electrolyte interphase, the increase in discharge overpotential is only ∼100 mV when compared to cells employing nominally anhydrous electrolytes.

  20. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  1. Miscellaneous hydrocarbon solvents.

    Science.gov (United States)

    Bebarta, Vikhyat; DeWitt, Christopher

    2004-08-01

    The solvents discussed in this article are common solvents not categorized as halogenated, aromatic, or botanical. The solvents discussed are categorized into two groups: hydrocarbon mixtures and single agents. The hydrocarbon mixtures discussed are Stoddard solvent, naphtha, and kerosene. The remaining solvents described are n-hexane, methyl n-butyl ketone, dimethylformamide, dimethyl sulfoxide, and butyl mercaptans. Effects common to this group of agents and their unique effects are characterized. Treatment of exposures and toxic effects of these solvents is described, and physiochemical properties and occupational exposure levels are listed.

  2. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.

    1998-01-01

    A series of single-solute and binary-solute sorption data have been obtained on representative samples of polar compounds (substituted ureas and phenolic compounds) and of nonpolar compounds (e.g., EDB and TCE) on a peat soil and a mineral (Woodburn) soil; the data extend to low relative solute concentrations (C(e)/S(w)). At relatively low C(e)/S(w), both the nonpolar and the polar solutes exhibit nonlinear sorption. The sorption nonlinearity approaches apparent saturation at about C(e)/S(w) = 0.010-0.015 for the nonpolar solutes and at about C(e)/S(w) = 0.10-0.13 for the polar solutes; above these C(e)/S(w) regions, the isotherms are practically linear. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil. The small nonlinear sorption capacity for a nonpolar solute is suppressed indiscriminately by either a nonpolar or a polar cosolute at relatively low C(e)/S(w) of the cosolute. By contrast, the abilities of different cosolutes to suppress the nonlinear capacity of a nominal polar solute differ drastically. For polar solutes, a nonpolar cosolute exhibits a limited suppression even at high cosolute C(e)/S(w); effective suppression occurs when the cosolute is relatively polar and at various C(e)/S(w). These differences suggest that more than a single mechanism is required to account for the nonlinear sorption of both nonpolar and polar compounds at low C(e)/S(w). Mechanistic processes consistent with these observations and with soil surface areas are discussed along with other suggested models. Some important consequences of the nonlinear competitive sorption to the behavior of contaminants in natural systems are discussed.A number of conceptual models was postulated to account for the nonlinear solute sorption on soils of significant soil organic matter. A series of single-solute and binary-route sorption data was obtained representing samples of polar compounds of

  3. Solvent-induced red-shifts for the proton stretch vibrational frequency in a hydrogen-bonded complex. 1. A valence bond-based theoretical approach.

    Science.gov (United States)

    Kiefer, Philip M; Pines, Ehud; Pines, Dina; Hynes, James T

    2014-07-17

    A theory is presented for the proton stretch vibrational frequency νAH for hydrogen (H-) bonded complexes of the acid dissociation type, that is, AH···B ⇔ A(-)···HB(+)(but without complete proton transfer), in both polar and nonpolar solvents, with special attention given to the variation of νAH with the solvent's dielectric constant ε. The theory involves a valence bond (VB) model for the complex's electronic structure, quantization of the complex's proton and H-bond motions, and a solvent coordinate accounting for nonequilibrium solvation. A general prediction is that νAH decreases with increasing ε largely due to increased solvent stabilization of the ionic VB structure A(-)···HB(+) relative to the neutral VB structure AH···B. Theoretical νAH versus 1/ε slope expressions are derived; these differ for polar and nonpolar solvents and allow analysis of the solvent dependence of νAH. The theory predicts that both polar and nonpolar slopes are determined by (i) a structure factor reflecting the complex's size/geometry, (ii) the complex's dipole moment in the ground vibrational state, and (iii) the dipole moment change in the transition, which especially reflects charge transfer and the solution phase proton potential shapes. The experimental proton frequency solvent dependence for several OH···O H-bonded complexes is successfully accounted for and analyzed with the theory.

  4. Effects of Hydrogen-bonding Interaction and Polarity on Emission Spectrum of Naphthalene-Triethylamine in Mixed Solvent

    Institute of Scientific and Technical Information of China (English)

    XIE Guo-bin; Yoshimi Sueishi; Shunzo Yamamoto

    2004-01-01

    The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethylamine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene (band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hydrogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethylamine to the excited naphthalene on the relative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hydrogen-bonding interaction quantitatively.

  5. Solvent resistant nanofiltration membranes

    OpenAIRE

    Dutczak, S.M.

    2011-01-01

    This thesis describes preparation and characterization of membranes for organic solvent filtration (OSF). The main aim was developing membranes for solvent resistant nanofiltration (SRNF) with molecular weight cut-off below 500 g mol-1.

  6. Solvents in novolak synthesis

    Science.gov (United States)

    Sobodacha, Chet J.; Lynch, Thomas J.; Durham, Dana L.; Paradis, Valerie R.

    1993-09-01

    Novolac resins may be prepared with or without a solvent present. We have found that solvent power greatly affects the properties of the finished resin and thus gives the resist chemist another variable with which to `fine-tune' resist properties. Using designed experiments, we investigated the effect of solvent power, as measured by Hansen's Solubility Parameters, of a number of solvents and solvent mixtures on the final properties of the novolac resin. We found that the relative molecular weight (RMW) and dissolution rate of a novolac resin can be varied by selection of a solvent or solvent mixture with the appropriate polarity and hydrogen- bonding characteristics. The solvent polarity and hydrogen-bonding characteristics may affect the stability of the cresol/formaldehyde transition state, thus causing the observed changes in RMW and dissolution rate.

  7. Solvent-polarity-tuned morphology and inversion of supramolecular chirality in a self-assembled pyridylpyrazole-linked glutamide derivative: nanofibers, nanotwists, nanotubes, and microtubes.

    Science.gov (United States)

    Jin, Qingxian; Zhang, Li; Liu, Minghua

    2013-07-01

    The self-assembly of a low-molecular-weight organogelator into various hierarchical structures has been achieved for a pyridylpyrazole linked L-glutamide amphiphile in different solvents. Upon gel formation, supramolecular chirality was observed, which exhibited an obvious dependence on the polarity of the solvent. Positive supramolecular chirality was obtained in nonpolar solvents, whereas it was inverted into negative supramolecular chirality in polar solvents. Moreover, the gelator molecules self-assembled into a diverse array of nanostructures over a wide scale range, from nanofibers to nanotubes and microtubes, depending on the solvent polarity. Such morphological changes could even occur for the xerogels in the solvent vapors. We found that the interactions between the pyridylpyrazole headgroups and the solvents could subtly change the stacking of the molecules and, hence, their self-assembled nanostructures. This work exemplifies that organic solvents can significantly involve the gelation, as well as tune the structure and properties, of a gel.

  8. The effect of solvent-conditioning on soil organic matter sorption affinity for diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2009-08-01

    The effect of solvent-conditioning on the sorption of diuron and phenanthrene was investigated. The organic carbon-normalized sorption coefficients (K(OC)) for diuron and phenanthrene (determined from single initial concentrations of 0.8mgL(-1) and 1.5mgL(-1), respectively) were consistently higher following solvent-conditioning of a whole soil with five organic solvents (acetonitrile, acetone, methanol, chloroform and dichloromethane). The relative increase in K(OC) was inversely related to the polarity of the conditioning solvent (i.e. greater increases in K(OC) were observed for the least polar solvents: chloroform and dichloromethane). The effect of solvent-conditioning on the sorption properties of the same soil that had been lipid-extracted using accelerated solvent extraction (ASE) was also investigated. Since lipid extraction involves treatment with a non-polar solvent (95:5 dichloromethane:methanol) one may have expected no further increase in K(OC) on solvent-conditioning. On the contrary, the lipid-extracted soil exhibited very similar increases in K(OC) as the whole soil. This demonstrated that lipid removal and solvent-conditioning, which both increased K(OC) for this soil, are quite separate phenomena.

  9. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents

    Directory of Open Access Journals (Sweden)

    Pleiss Jürgen

    2008-02-01

    Full Text Available Abstract Background The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined. Results The simulated structure was independent of the solvent, and had a low deviation from the crystal structure. However, the hydrophilic surface of CALB in non-polar solvents decreased by 10% in comparison to water, while the hydrophobic surface is slightly increased by 1%. There is a large influence on the flexibility depending on the dielectric constant of the solvent, with a high flexibility in water and a low flexibility in organic solvents. With decreasing dielectric constant, the number of surface bound water molecules significantly increased and a spanning water network with an increasing size was formed. Conclusion The reduced flexibility of Candida antarctica lipase B in organic solvents is caused by a spanning water network resulting from less mobile and slowly exchanging water molecules at the protein-surface. The reduced flexibility of Candida antarctica lipase B in organic solvent is not only caused by the interactions between solvent-protein, but mainly by the formation of a spanning water network.

  10. Solvent-dependent enthalpic versus entropic anion binding by biaryl substituted quinoline based anion receptors.

    Science.gov (United States)

    Sun, Zhan-Hu; Albrecht, Markus; Raabe, Gerhard; Pan, Fang-Fang; Räuber, Christoph

    2015-01-08

    Anion receptors based on an 8-thiourea substituted quinoline with pentafluorinated (1a) or nonfluorinated (1b) biarylamide groups in the 2-position show similar binding of halide anions with somewhat higher association constants for the more acidic fluorinated derivative. Surprisingly, binding affinities for the halides in the case of the nonfluorinated 1b are similar in nonpolar chloroform or polar DMSO as solvent. Thorough thermodynamic investigations based on NMR van't Hoff analysis show that anion binding in chloroform is mainly enthalpically driven. In DMSO, entropy is the driving force for the binding of the ions with replacement of attached solvent.

  11. Simulation of Nonpolar p-GaN/i-N/n-GaN Solar Cells

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2012-01-01

    Full Text Available It is well known that nitride-based devices suffer the polarization effects. A promising way to overcome the polarization effects is growth in a direction perpendicular to the c-axis (nonpolar direction. Nonpolar devices do not suffer polarization charge, and then they have a chance to achieve the high solar efficiency. The understanding of the solar performance of non-polar InGaN-based solar cells will be interesting. For a pin non-polar solar cell with GaN p- and n-cladding layers, the conduction band offset (or barrier height, between an intrinsic layer and n-GaN layer is an important issue correlating to the efficiency and fill factor. The efficiency and fill factor will be seriously degraded due to sufficiently high barrier height. To reduce a high barrier height, some graded layers with an energy bandgap between the energy bandgap of n-GaN and InxGa1−xN intrinsic layer can be inserted to the interface of n-GaN and InxGa1-xN layers. From simulation, it indicates that the insertion of graded layer is an effective method to lower energy barrier when there exists a high energy band offset in non-polar nitride devices.

  12. Generalizing The Mean Spherical Approximation as a Multiscale, Nonlinear Boundary Condition at the Solute--Solvent Interface

    CERN Document Server

    Tabrizi, Amirhossein Molavi; Bardhan, Jaydeep P

    2016-01-01

    In this paper we extend the familiar continuum electrostatic model with a perturbation to the usual macroscopic boundary condition. The perturbation is based on the mean spherical approximation (MSA), to derive a multiscale hydration-shell boundary condition (HSBC). We show that the HSBC/MSA model reproduces MSA predictions for Born ions in a variety of polar solvents, including both protic and aprotic solvents. Importantly, the HSBC/MSA model predicts not only solvation free energies accurately but also solvation entropies, which standard continuum electrostatic models fail to predict. The HSBC/MSA model depends only on the normal electric field at the dielectric boundary, similar to our recent development of an HSBC model for charge-sign hydration asymmetry, and the reformulation of the MSA as a boundary condition enables its straightforward application to complex molecules such as proteins.

  13. New Vistas on the Anionic Polymerization of Styrene in Non-Polar Solvents by Means of Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Hideo Morita

    2016-10-01

    Full Text Available The elementary processes of anionic styrene polymerization in the gas phase and in cyclohexane were studied using M062X (a recently developed density functional theory (DFT method combined with the 6-31+G(d basis sets, in order to clarify the complicated phenomena caused by the association of the active chain-ends and elucidate the details of the polymerization mechanism. Three types of HSt2Li (a model structure of polystyryllithium chain-ends were obtained; the well-known first structure in which Li is coordinated to the side chain, the second structure in which Li is coordinated to the phenyl ring, (both without the penultimate unit coordination, and the third structure in which Li is coordinated to both the chain-end unit and the penultimate styrene unit. Although the third HSt2Li is the most stable as expected, the free energy for the transition state of its reaction with styrene is higher than those for the other two transition states due to its steric hindrance. The free energy for the transition state of the reaction of the second HSt2Li with styrene is the lowest, suggesting that the route through it is the predominant reaction path. The penultimate unit effect, slower addition of styrene to HSt2Li than to HStLi, is attributed to coordination of the penultimate styrene units of the polystyryllithium dimer (one of the starting materials to its Li atoms. The calculated enthalpy for the reaction barrier of the second HSt2Li with styrene in cyclohexane was found to agree with the observed apparent activation energy in benzene.

  14. Solvent abuse: a review.

    Science.gov (United States)

    Barnes, G E

    1979-01-01

    The literature on solvent abuse is reviewed. Methods of use, symptoms of use, and effects of long-term solvent abuse are discussed. Several surveys on solvent use are summarized. The highest prevalence of solvent abuse seems to occur in native peoples undergoing periods of cultural change. Environmental conditions which are postulated as leading to psychological vulnerability and solvent abuse include: low social assets, parental drug use, peer and sibling influence, and acculturative stress. Solvent abuse seems to provide a pharmacological way out of a stressful environment for people who feel helpless to improve their situation in other ways. Methods of intervention that have been proposed for dealing with solvent abuse are discussed. Methods of intervention thus far employed generally have not been evaluated in any systematic fashion. Suggestions for future research are provided.

  15. Can Nonpolar Polyisobutylenes be Measured by Electrospray Ionization Mass Spectrometry? Anion-Attachment Proved to be an Appropriate Method

    Science.gov (United States)

    Nagy, Lajos; Nagy, Tibor; Deák, György; Kuki, Ákos; Purgel, Mihály; Narmandakh, Mijid; Iván, Béla; Zsuga, Miklós; Kéki, Sándor

    2016-03-01

    Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 - and Cl- ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3]- and [PIB + Cl]- adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3]- and [PIB + Cl]- ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl]- ions requires higher collision energy than that of [PIB + NO3]-. In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 - and Cl- as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3]- and [PIB + Cl]- adduct ions.

  16. Relaxation phenomena of polar non-polar liquid mixtures under low and high frequency electric field

    Indian Academy of Sciences (India)

    K Dutta; S K Sit; S Acharyya

    2003-10-01

    Simultaneous calculation of the dipole moment and the relaxation time of a certain number of non-spherical rigid aliphatic polar liquid molecules () in non-polar solvents () under 9.8 GHz electric field is possible from real $'$ and imaginary $''$ parts of the complex relative permittivity $^{*}_{}$. The low frequency and infinite frequency permittivities 0 and ∞ measured by Purohit et al [1,2] and Srivastava and Srivastava [3] at 25, 35 and 30°C respectively are used to obtain static . The ratio of the individual slopes of imaginary and real $'$ parts of high frequency (hf) complex conductivity $^{*}_{}$ with weight fractions at → 0 and the slopes of $''_{}-'_{}$ curves for different s [4] are employed to obtain s. The former method is better in comparison to the existing one as it eliminates polar–polar interaction. The hf s in Coulomb metre (C m) when compared with static and reported s indicate that ss favour the monomer formations which combine to form dimers in the hf electric field. The comparison among s shows that a part of the molecule is rotating under X-band electric field [5]. The theoretical theos from available bond angles and bond moments of the substituent polar groups attached to the parent molecules differ from the measured s and s to establish the possible existence of mesomeric, inductive and electromeric effects in polar liquid molecules.

  17. Large organized surface domains self-assembled from nonpolar amphiphiles.

    Science.gov (United States)

    Krafft, Marie Pierre

    2012-04-17

    unambiguously demonstrated the presence of surface micelles in monolayers of diblocks prior to LB transfer for atomic force microscopy imaging. We characterized an almost perfect two-dimensional crystal, with 12 assignable diffraction peaks, which established that self-assembly and regular nanopatterning were not caused by transfer or induced by the solid support. These experiments also provide the first direct identification of surface micelles on water, and the first identification of such large-size domains using GISAXS. Revisiting Langmuir film compression behavior after we realized that it actually was a compression of nanometric objects led to further unanticipated observations. These films could be compressed far beyond the documented film "collapse", eventually leading to the buildup of two superimposed, less-organized bilayers of diblocks on top of the initially formed monolayer of hemimicelles. Remarkably, the latter withstood the final, irreversible collapse of the composite films. "Gemini" tetrablocks, di(FnHm), with two Fn-chains and two Hm-chains, provided two superposed layers of discrete micelles, apparently the first example of thin films made of stacked discrete self-assembled nanoobjects. Decoration of solid surfaces with domains of predetermined size of these small "nonpolar" molecules is straightforward. Initial examples of applications include deposition of metal dots and catalytic oxidation of CO, and nanopatterning of SiO(2) films.

  18. Assessing solvent effects on the singlet excited state lifetime of uracil derivatives: A femtosecond fluorescence upconversion study in alcohols and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Thomas [Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM - CNRS URA 2453, CEA/Saclay, F-91191 Gif-sur-Yvette (France)], E-mail: thomas.gustavsson@cea.fr; Banyasz, Akos [Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM - CNRS URA 2453, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Sarkar, Nilmoni [Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, WB (India); Markovitsi, Dimitra [Laboratoire Francis Perrin, CEA/DSM/DRECAM/SPAM - CNRS URA 2453, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Improta, Roberto [Dipartimento di Chimica, Universita Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Istituto Biostrutture e Bioimmagini/CNR, V. Mezzocannone 6 - 80134 Napoli (Italy)

    2008-06-23

    The excited state lifetimes of uracil, thymine and 5-fluorouracil have been measured using femtosecond UV fluorescence upconversion in various protic and aprotic polar solvents. The fastest decays are observed in acetonitrile and the slowest in aqueous solution while those observed in alcohols are intermediate. No direct correlation with macroscopic solvent parameters such as polarity or viscosity is found, but hydrogen bonding is one key factor affecting the fluorescence decay. It is proposed that the solvent modulates the relative energy of two close-lying electronically excited states, the bright {pi}{pi}* and the dark n{pi}* states. This relative energy gap controls the non-radiative relaxation of the {pi}{pi}* state through a conical intersection close to the Franck-Condon region competing with the ultrafast internal conversion to the ground state. In addition, an inverse isotope effect is observed in D{sub 2}O where the decays are faster than in H{sub 2}O.

  19. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M;

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shor...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.......We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  20. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  1. Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT

    Science.gov (United States)

    Gunceler, Deniz; Arias, T. A.

    2017-01-01

    Implicit electron-density solvation models offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models in the plane-wave context to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents a simple approach to quickly find approximations to the non-electrostatic contributions to the solvation energy, allowing for development of new iso-density models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. Finally, to illustrate the capabilities of the resulting theory, we also calculate the surface solvation energies of crystalline LiF in various different non-aqueous solvents, and discuss the observed trends and their relevance to lithium battery technology.

  2. Investigation of the Phase Equilibria and Interfacial Properties for Non-polar Fluids

    Institute of Scientific and Technical Information of China (English)

    付东; 赵毅

    2005-01-01

    A self-consistent density-functional theory (DFT) was applied to investigate the phase behavior and interfacial properties of non-polar fluids. For the bulk phases, the theory was reduced to the statistical associating fluid theory(SAFF) that provides accurate descriptions of vapor-liquid phase diagrams below the critical region. The phase diagrams in the critical region were corrected by the renormalization group theory (RGT). The density profile in the surface was obtained by minimizing the grand potential. With the same set of molecular parameters, both the phase equilibria and the interfacial properties of non-polar fluids were investigated satisfactorily.

  3. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  4. Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Atanu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Kumbhakar, Manoj [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Nath, Sukhendu [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Pal, Haridas [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)], E-mail: hpal@apsara.barc.ernet.in

    2005-08-29

    Photophysical properties of coumarin-1 (C1) dye in different protic solvents have been investigated using steady-state and time-resolved fluorescence measurements. Correlation of the Stokes' shifts ({delta}{nu}-bar ) with the solvent polarity ({delta}f) suggests the intramolecular charge transfer (ICT) character for the dye fluorescent state. Fluorescence quantum yields ({phi}{sub f}) and lifetimes ({tau}{sub f}) of the dye show an abrupt reduction in high polarity solvents having {delta}f >{approx}0.28. In these solvents {tau}{sub f} is seen to be strongly temperature dependent, though it is temperature independent in solvents with {delta}f <{approx}0.28. It is inferred that in high polarity protic solvents there is a participation of an additional nonradiative decay process via the involvement of twisted intramolecular charge transfer (TICT) state. Unlike present results, no involvement of TICT state was observed even in strongly polar aprotic solvent like acetonitrile. It is indicated that the intermolecular hydrogen bonding of the dye with protic solvents in addition with the solvent polarity helps in the stabilization of the TICT state for C1 dye. Unlike most TICT molecules, the activation barrier ({delta}E{sub a}) for the TICT mediated nonradiative process for C1 dye is seen to increase with solvent polarity. This is rationalized on the basis of the assumption that the TICT to ground state conversion is the activation-controlled rate-determining step for the present system than the usual ICT to TICT conversion as encountered for most other TICT molecules.

  5. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  6. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  7. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment

    NARCIS (Netherlands)

    Booij, K.; Robinson, C.D.; Burgess, R.M.; Mayer, P.; Roberts, C.A.; Ahrens, L.; Allan, I.J.; Brant, J.; Jones, L.; Kraus, U.R.; Larsen, M.M.; Lepom, P.; Petersen, J.; Pröfrock, D.; Roose, P.; Schäfer, S.; Smedes, F.; Tixier, C.; Vorkamp, K.; Whitehouse, P.

    2016-01-01

    We reviewed compliance monitoring requirements in the EuropeanUnion, the United States, and the Oslo-Paris Convention for the protection of themarine environment of the North-East Atlantic, and evaluated if these are met bypassive sampling methods for nonpolar compounds. The strengths andshortcoming

  8. Nitro radical anions from megazol and related nitroimidazoles in aprotic media. A father-son type reaction triggered by an acidic proton

    Energy Technology Data Exchange (ETDEWEB)

    Bonta, M.; Chauviere, G.; Perie, J.; Nunez-Vergara, L.J.; Squella, J.A

    2002-09-25

    We have studied the electrochemical reduction of some nitroimidazoles such as megazol(2-amino-5-(1-methyl-5-nitro-2-imidazolyl)-1,3,4-thiadiazol, CAS 19622-55-0) and two related derivatives in aprotic media (100% DMF, 0.1 M TBAP). All the studied compounds were easily reducible in aprotic media generating the corresponding nitro radical anions as products of the one electron reduction of the parent compound. The nitro radical anions decay by a dimerization reaction and the dimerization rate constants were obtained according to the Olmstead's approach by obtaining values of 150{+-}24, 1690{+-}42 and 640{+-}32 M{sup -1} s{sup -1} for megazol, GC-361 and GC-284, respectively. The existence of an acidic proton on the acetamide group in the GC-361 molecule triggered the appearance of father-son type reactions between the nitro radical anion from GC-361 (son compound) and GC-361 (father compound) generating the neutral radical and the conjugate base of GC-361. Thus the nitro radical anion from GC-361 acts as a Broensted base abstracting the proton of the acetamide group in the GC-361 derivative of megazol.

  9. Surface chemistry and electronic structure of nonpolar and polar GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, T.C. Shibin; Aggarwal, Neha; Gupta, Govind, E-mail: govind@nplindia.org

    2015-08-01

    Highlights: • Surface chemistry and electronic structure of polar and nonpolar GaN is reported. • Influence of polarization on electron affinity of p & np GaN films is investigated. • Correlation between surface morphology and polarity has been deduced. - Abstract: Photoemission and microscopic analysis of nonpolar (a-GaN/r-Sapphire) and polar (c-GaN/c-Sapphire) epitaxial gallium nitride (GaN) films grown via RF-Molecular Beam Epitaxy is reported. The effect of polarization on surface properties like surface states, electronic structure, chemical bonding and morphology has been investigated and correlated. It was observed that polarization lead to shifts in core level (CL) as well as valence band (VB) spectra. Angle dependent X-ray Photoelectron Spectroscopic analysis revealed higher surface oxide in polar GaN film compared to nonpolar GaN film. On varying the take off angle (TOA) from 0° to 60°, the Ga−O/Ga−N ratio varied from 0.11–0.23 for nonpolar and 0.17–0.36 for polar GaN film. The nonpolar film exhibited N-face polarity while Ga-face polarity was perceived in polar GaN film due to the inherent polarization effect. Polarization charge compensated surface states were observed on the polar GaN film and resulted in downward band bending. Ultraviolet photoelectron spectroscopic measurements revealed electron affinity and ionization energy of 3.4 ± 0.1 eV and 6.8 ± 0.1 eV for nonpolar GaN film and 3.8 ± 0.1 eV and 7.2 ± 0.1 eV for polar GaN film respectively. Field Emission Scanning Electron Microscopy measurements divulged smooth morphology with pits on polar GaN film. The nonpolar film on the other hand showed pyramidal structures having facets all over the surface.

  10. Solvent effects on photophysical properties of copper and zinc porphyrins

    Institute of Scientific and Technical Information of China (English)

    LI Ye

    2008-01-01

    The photophysics of Zn(tetraphenylporphyrin,TPP), Zn(tetra-2,4,6-trimethylphenyl porphyrin, TMP), Zn (tetra-(o-dichlorophenyl) porphyrin, TPPCI8), Cu(tetraphenylporphyrin,TPP), Cu(tetra-2,4,6-trimethyl-phenyl porphyrin,TMP), and Cu(tetra-(o-dichlorophenyl) porphyrin, TPPCI8,TPPCI8) in several solvents have been investigated on steady state and time-resolved spectroscopy. The Cu(TPPCI8) is normal and shows no evidence of CT transition in the visible or near UV regions in nonpolar solvent. However,Cu(TPPCI8)shows a blue shift in the absorption spectrum and intramolecular CT bands at absorption spectra in polar solvent, which shows a fluorescence maximum emission at 650 nm and 8.4 ns lifetime.The reason can be attributed to two points. Firstly, the increase of solvent polarity can enlarge outer reorganisational energy, which is favorable to reduce the activation free energy of charger-transfer transition based on Marcus theory of electron transfer. Moreover, the internal heavy-atom effect on Cu(TPPCI8) is encouraging to stabilize the 2T1 state also, which increases the possibility of population to CT band from 2T1 state. This result is in accord with an earlier estimate of a 10 ns lifetime and CT absorption at 640 nm bands for the CT state of Cu (Ⅱ) octethylporphyrins. Other possible reasons arousing unusual fluorescence like H-bonding, axial ligands, molecular aggregation are excluded.

  11. Alternative Green Solvents Project

    Science.gov (United States)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  12. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  13. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  14. Automatic parametrization of implicit solvent models for the blind prediction of solvation free energies

    CERN Document Server

    Wang, Bao; Wei, Guowei

    2016-01-01

    In this work, a systematic protocol is proposed to automatically parametrize implicit solvent models with polar and nonpolar components. The proposed protocol utilizes the classical Poisson model or the Kohn-Sham density functional theory (KSDFT) based polarizable Poisson model for modeling polar solvation free energies. For the nonpolar component, either the standard model of surface area, molecular volume, and van der Waals interactions, or a model with atomic surface areas and molecular volume is employed. Based on the assumption that similar molecules have similar parametrizations, we develop scoring and ranking algorithms to classify solute molecules. Four sets of radius parameters are combined with four sets of charge force fields to arrive at a total of 16 different parametrizations for the Poisson model. A large database with 668 experimental data is utilized to validate the proposed protocol. The lowest leave-one-out root mean square (RMS) error for the database is 1.33k cal/mol. Additionally, five s...

  15. Understanding the Solvent Molecules Induced Spontaneous Growth of Uncapped Tellurium Nanoparticles

    Science.gov (United States)

    Liu, Jun; Liang, Changhao; Zhu, Xiaoguang; Lin, Yue; Zhang, Hao; Wu, Shouliang

    2016-01-01

    Understanding the thermodynamic behavior and growth kinetics of colloidal nanoparticles (NPs) is essential to synthesize materials with desirable structures and properties. In this paper, we present specific uncapped Te colloidal NPs obtained through laser ablation of Te in various protic or aprotic solvents. At ambient temperature and pressure, the uncapped Te NPs spontaneously exhibited analogous evolution and growth of “nanoparticle-nanochain-agglomerate-microsphere” in different solvents. The distinctive growth kinetics of the formation of nanochains strongly depended on the polarity and dielectric constant of solvent molecules. The growth rate of agglomerates and microspheres was closely related to the zeta potential of the colloidal solution of Te nanochains and the average size of Te agglomerates. Furthermore, the resulting uncapped Te NPs and Te nanochains displayed a prominent size-dependent and structure-inherited chemical reductive ability. These findings provide insights into the growth of active uncapped nanoparticles in various dispersion media. This study also provides an alternative route in designing novel nanostructures of alloys, telluride, and functional composites using Te as a unique reactive precursor. PMID:27599448

  16. Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations

    Science.gov (United States)

    Nejad, Marjan A.; Mücksch, Christian; Urbassek, Herbert M.

    2017-02-01

    Adsorption of insulin on polar and nonpolar surfaces of crystalline SiO2 (cristobalite and α -quartz) is studied using molecular dynamics simulation. Acceleration techniques are used in order to sample adsorption phase space efficiently and to identify realistic adsorption conformations. We find major differences between the polar and nonpolar surfaces. Electrostatic interactions govern the adsorption on polar surfaces and can be described by the alignment of the protein dipole with the surface dipole; hence spreading of the protein on the surface is irrelevant. On nonpolar surfaces, on the other hand, van-der-Waals interaction dominates, inducing surface spreading of the protein.

  17. Conformational preferences of 3-(dimethylazinoyl)propanoic acid as a function of pH and solvent; intermolecular versus intramolecular hydrogen bonding.

    Science.gov (United States)

    Nkansah, Richard A; Liu, Yang; Alley, Olivia J; Gerken, James B; Drake, Michael D; Roberts, John D

    2009-03-20

    The conformational equilibrium of 3-(dimethylazinoyl)propanoic acid (DMAPA, azinoyl = N(+)(O(-)) has a weak pH-dependence in D(2)O, with a slight preference for trans in alkaline solutions. The acid ionization constants of the protonated amine oxide and carboxylic functional groups as determined by NMR spectroscopy were 7.9 x 10(-4) and 6.3 x 10(-6), respectively. The corresponding value of K(1)/K(2) of 1.3 x 10(2) is not deemed large enough to provide experimental NMR evidence for a significant degree of intramolecular hydrogen bonding in D(2)O. Conformational preferences of DMAPA are mostly close to statistical (gauche/trans = 2/1) in other protic solvents, e.g., alcohols. However, the un-ionized form of DMAPA appears to be strongly intramolecularly hydrogen-bonded and gauche in aprotic solvents.

  18. Supercritical solvent coal extraction

    Science.gov (United States)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  19. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  20. Light- and Solvent-Controlled Self-Assembly Behavior of Spiropyran-Polyoxometalate-Alkyl Hybrid Molecules.

    Science.gov (United States)

    Chu, Yang; Saad, Ali; Yin, Panchao; Wu, Jiayingzi; Oms, Olivier; Dolbecq, Anne; Mialane, Pierre; Liu, Tianbo

    2016-08-08

    A molecular photochromic spiropyran-polyoxometalate-alkyl organic-inorganic hybrid has been synthesized and fully characterized. The reversible switching of the hydrophobic spiropyran fragment to the hydrophilic merocyanine one can be easily achieved under light irradiation at different wavelengths. This switch changes the amphiphilic feature of the hybrid, leading to a light-controlled self-assembly behavior in solution. It has been shown that the hybrid can reversibly self-assemble into vesicles in polar solvents and irreversibly into reverse vesicles in non-polar solvents. The sizes of the vesicles and the reverse vesicles are both tunable by the polarity of the solvent, with the hydrophobic interactions being the main driving force.

  1. Quantum theory of interfacial tension quantitatively predicts spontaneous charging of nonpolar aqueous interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Ariel, E-mail: ariel@afinnovation.com [Argentine Institute of Mathematics (I. A. M.), National Research Council (CONICET), Buenos Aires 1083 (Argentina); Collegium Basilea – Institute for Advanced Study, Basel CH4053 (Switzerland)

    2015-10-16

    The spontaneous negative charging of aqueous nonpolar interfaces has eluded quantitative first-principle prediction, possibly because it steadfastly challenges the classical Debye dielectric picture. In this work we show that quantitative prediction requires a substantive revision of Debye's linear dielectric ansatz to incorporate an anomalous polarization component yielding electrostatic energy stored as interfacial tension and detailed enough to account for the differences in electronic structure between water and its ionized states. The minimization of this interfacial tension is due to a quantum effect resulting in the reduction in hydrogen-bond frustration that takes place upon hydroxide ion adsorption. The quantitative predictions are validated vis-à-vis measurements of the free energy change associated with hydroxide adsorption obtained using sum-frequency vibrational spectroscopy. - Highlights: • Spontaneous charging of aqueous nonpolar interfaces challenges Debye dielectrics. • A quantum non-Debye theory of interfacial tension is developed. • The minimization of the interfacial tension promotes hydroxide ion adsorption.

  2. A Simple Method for Estimation of Dielectric Constants and Polarizabilities of Nonpolar and Slightly Polar Hydrocarbons

    Science.gov (United States)

    Panuganti, Sai R.; Wang, Fei; Chapman, Walter G.; Vargas, Francisco M.

    2016-07-01

    Many of the liquids that are used as electrical insulators are nonpolar or slightly polar petroleum-derived hydrocarbons, such as the ones used for cable and/or transformer oils. In this work, semi-empirical expressions with no adjustable parameters for the dielectric constant and the polarizability of nonpolar and slightly polar hydrocarbons and their mixtures are proposed and validated. The expressions that were derived using the Vargas-Chapman One-Third rule require the mass density and the molecular weight of the substance of interest. The equations were successfully tested for various hydrocarbons and polymers with dipole moments eliminate the need of extensive experimental data and require less input parameters compared to existing correlations.

  3. Influence of oxygen in architecting large scale nonpolar GaN nanowires

    CERN Document Server

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, S

    2015-01-01

    Manipulation of surface architecture of semiconducting nanowires with a control in surface polarity is one of the important objectives for nanowire based electronic and optoelectronic devices for commercialization. We report the growth of exceptionally high structural and optical quality nonpolar GaN nanowires with controlled and uniform surface morphology and size distribution, for large scale production. The role of O contamination (~1-10^5 ppm) in the surface architecture of these nanowires is investigated with the possible mechanism involved. Nonpolar GaN nanowires grown in O rich condition show the inhomogeneous surface morphologies and sizes (50 - 150 nm) while nanowires are having precise sizes of 40(5) nm and uniform surface morphology, for the samples grown in O reduced condition. Relative O contents are estimated using electron energy loss spectroscopy studies. Size-selective growth of uniform nanowires is also demonstrated, in the O reduced condition, using different catalyst sizes. Photoluminescen...

  4. Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets

    Science.gov (United States)

    Yeh, Ting-Wei; Lin, Yen-Ting; Ahn, Byungmin; Stewart, Lawrence S.; Daniel Dapkus, P.; Nutt, Steven R.

    2012-01-01

    We demonstrate that nonpolar m-plane surfaces can be generated on uniform GaN nanosheet arrays grown vertically from the (0001)-GaN bulk material. InGaN/GaN multiple quantum wells (MQWs) grown on the facets of these nanosheets are demonstrated by cross-sectional transmission electron microscopy. Owing to the high aspect ratio of the GaN nanosheet structure, the MQWs predominantly grow on nonpolar GaN planes. The results suggest that GaN nanosheets provide a conduction path for device fabrication and also a growth template to reduce the piezoelectric field inside the active region of InGaN-based light emitting diodes.

  5. Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl

    Science.gov (United States)

    Erdem, Talha; Soran-Erdem, Zeliha; Sharma, Vijay Kumar; Kelestemur, Yusuf; Adam, Marcus; Gaponik, Nikolai; Demir, Hilmi Volkan

    2015-10-01

    In this work, we propose and develop the inorganic salt encapsulation of semiconductor nanocrystal (NC) dispersion in a nonpolar phase to make a highly stable and highly efficient colour converting powder for colour enrichment in light-emitting diode backlighting. Here the wrapping of the as-synthesized green-emitting CdSe/CdZnSeS/ZnS nanocrystals into a salt matrix without ligand exchange is uniquely enabled by using a LiCl ionic host dissolved in tetrahydrofuran (THF), which simultaneously disperses these nonpolar nanocrystals. We studied the emission stability of the solid films prepared using NCs with and without LiCl encapsulation on blue LEDs driven at high current levels. The encapsulated NC powder in epoxy preserved 95.5% of the initial emission intensity and stabilized at this level while the emission intensity of NCs without salt encapsulation continuously decreased to 34.7% of its initial value after 96 h of operation. In addition, we investigated the effect of ionic salt encapsulation on the quantum efficiency of nonpolar NCs and found the quantum efficiency of the NCs-in-LiCl to be 75.1% while that of the NCs in dispersion was 73.0% and that in a film without LiCl encapsulation was 67.9%. We believe that such ionic salt encapsulated powders of nonpolar NCs presented here will find ubiquitous use for colour enrichment in display backlighting.In this work, we propose and develop the inorganic salt encapsulation of semiconductor nanocrystal (NC) dispersion in a nonpolar phase to make a highly stable and highly efficient colour converting powder for colour enrichment in light-emitting diode backlighting. Here the wrapping of the as-synthesized green-emitting CdSe/CdZnSeS/ZnS nanocrystals into a salt matrix without ligand exchange is uniquely enabled by using a LiCl ionic host dissolved in tetrahydrofuran (THF), which simultaneously disperses these nonpolar nanocrystals. We studied the emission stability of the solid films prepared using NCs with and

  6. Broadband non-polarizing terahertz beam splitters with variable split ratio

    KAUST Repository

    Wei, Minggui

    2017-08-15

    Seeking effective terahertz functional devices has always aroused extensive attention. Of particular interest is the terahertz beam splitter. Here, we have proposed, designed, manufactured, and tested a broadband non-polarizing terahertz beam splitter with a variable split ratio based on an all-dielectric metasurface. The metasurface was created by patterning a dielectric surface of the N-step phase gradient and etching to a few hundred micrometers. The conversion efficiency as high as 81% under the normal incidence at 0.7 THz was achieved. Meanwhile, such a splitter works well over a broad frequency range. The split ratio of the proposed design can be continuously tuned by simply shifting the metasurface, and the angle of emergences can also be easily adjusted by choosing the step of phase gradients. The proposed design is non-polarizing, and its performance is kept under different polarizations.

  7. Solvent- and guest-responsive supramolecular self-assembly of 1,3,5-tris(10-carboxydecyloxy) benzene by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Lihua; Miao, Xinrui, E-mail: msxrmiao@scut.edu.cn; Xu, Li; Deng, Wenli, E-mail: wldeng@scut.edu.cn

    2014-09-15

    Graphical abstract: - Highlights: • TCDB can entrap solvent molecules or π-electron-conjugated guest molecules. • We calculate hydrogen bonding which is crucial to stabilize the assembly networks. • Structural properties rely on the solvent- and guest-responsive assembly. • Kinetics and thermodynamics explain the morphology character of polarity. - Abstract: Two-dimensional hydrogen-bonded networks formed in the self-assembly of 1,3,5-tris(10-carboxydecyloxy) benzene (TCDB) show regular solvent- and guest-induced supramolecular structural properties, which have been presented by scanning tunneling microscopy at the liquid–solid interface at ambient conditions. TCDB acting as a host template can entrap solvent molecules or π-electron-conjugated guest molecules to fabricate the flexible co-adsorption architectures, which are subject to the balance between the hydrogen bonding of the host lattice and the van der Waals forces between the host and the guest molecules. Hydrogen bonding among TCDB molecules is crucial to stabilize the host networks to settle the system into a global minimum of Gibbs free energy. We also find a strong correlation between the structural parameters and the physical properties of the solvent. Statistical analysis shows that the unit cell volume of TCDB dissolved in nonpolar 1-phenylotane and n-tetradecane shrank significantly compared with that of host–guest system, which fully reflects the coadsorption effect of nonpolar solvent molecules. Our results identify that the kinetic effect of adsorption/desorption as well as the solvent viscosity comes into play in tuning the two-dimensional self-assembled structures. Furthermore, mechanical calculations demonstrate that TCDB incline to adsorb with a larger dipole configuration in nonpolar solvents due to its dissolvability. It is believed that the results are of significance to supramolecular host–guest chemistry and surface science.

  8. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference, volati...

  9. A comparative DFT study of the structural and electronic properties of nonpolar GaN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    González-Hernández, Rafael, E-mail: rhernandezj@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); González-García, Alvaro [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); Barragán-Yani, Daniel [Fachgebiet Material modellierung, Institut für Materialwissenschaft, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); López-Pérez, William [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia)

    2014-09-30

    Highlights: • A comparative analysis of the geometry and the electronic characteristics of nonpolar GaN surfaces was carried out. • Surface energies are too low for LDA, but lower still for GGA and MGGA functionals, except for PBEsol. • PBEsol exhibits good lattice parameters and surface energies. • Surface intra-gap states reduce the band gap of the nonpolar GaN surfaces. • Slight changes in the dispersion of surface states were observed for the LDA, GGA, and MGGA functionals. - Abstract: A comparative analysis of the geometry and the electronic characteristics of nonpolar GaN surfaces was carried out using density-functional theory (DFT) with different approximations for the exchange-correlation energy (LDA, PBE, PBEsol, RPBE, TPSS, revTPSS, and HSE). The obtained data show that the GaN(101{sup ¯}0) (m-plane) is more energetically stable than the GaN(112{sup ¯}0) (a-plane) surface. However, these surfaces have similar surface relaxation geometry, with a Ga-N surface bond-length contraction of around 6–7% and a Ga-N surface rotational angle in the range of 6–9°. Our results show that the use of different exchange-correlation functionals does not significantly change the surface energy and surface geometry. In addition, we found the presence of surface intra-gap states that reduce the band gap of the nonpolar GaN surface with respect to the bulk value, in agreement with recent photoelectron and surface optical spectroscopy experiments.

  10. Modeling diffusion coefficients in binary mixtures of polar and non-polar compounds

    DEFF Research Database (Denmark)

    Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    The theory of transport coefficients in liquids, developed previously, is tested on a description of the diffusion coefficients in binary polar/non-polar mixtures, by applying advanced thermodynamic models. Comparison to a large set of experimental data shows good performance of the model. Only...... components and to only one parameter for mixtures consisting of non-polar components. A possibility of complete prediction of the parameters is discussed....

  11. Hydrophobic monolayered nanoflakes of tungsten oxide: coupled exfoliation and fracture in a nonpolar organic medium.

    Science.gov (United States)

    Honda, Masashi; Oaki, Yuya; Imai, Hiroaki

    2015-06-21

    Coupled exfoliation and fracture induced formation of hydrophobic monolayered nanoflakes in a nonpolar organic medium. The hydrophobic monolayered nanoflakes 5-20 nm in lateral size consisted of a tungstate layer with surface modification by stearylammonium ions (C18H37NH3)0.397 H0.603Cs3W11O35·xH2O (x < 0.625).

  12. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media.

    Science.gov (United States)

    Meng, Yanyan; Yuan, Yuan; Zhu, Yanyan; Guo, Yanzhi; Li, Menglong; Wang, Zhimeng; Pu, Xuemei; Jiang, Lin

    2013-09-01

    In this work, we used molecular dynamic (MD) simulation to study trypsin with and without a six-amino-acid peptide bound in three different solvents (water, acetonitrile and hexane) in order to provide molecular information for well understanding the structure and function of enzymes in non-aqueous media. The results show that the enzyme is more compact and less native-like in hexane than in the other two polar solvents. The substrate could stabilize the native protein structure in the two polar media, but not in the non-polar hexane. There are no significant differences in the conformation of the S1 pocket upon the substrate binding in water and acetonitrile media while a reverse behavior is observed in hexane media, implying a possible induced fit binding mechanism in the non-polar media. The substrate binding enhances the stability of catalytic H-bond network since it could expel the solvent molecules from the active site. The enzyme and the substrate appear to be more appropriate to the reactive conformation in the organic solvents compared with aqueous solution. There is much greater substrate binding strength in hexane media than the water and acetonitrile ones since the polar solvent significantly weakens electrostatic interactions, which are observed to be the main driving force to the binding. In addition, some residues of the S1 pocket could remain favorable contribution to the binding despite the solvent change, but with differences in the contribution extent, the number and the type of residues between the three media.

  13. Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation

    Science.gov (United States)

    Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro

    The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.

  14. Enhanced UV detection by non-polar epitaxial GaN films

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore (India); Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore (India); Central Research Laboratory, Bharat Electronics, Bangalore (India); Shetty, Arjun [Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore (India)

    2015-12-15

    Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time.

  15. Chemical etching behaviors of semipolar (11̄22) and nonpolar (11̄20) gallium nitride films.

    Science.gov (United States)

    Jung, Younghun; Baik, Kwang Hyeon; Mastro, Michael A; Hite, Jennifer K; Eddy, Charles R; Kim, Jihyun

    2014-08-14

    Wet chemical etching using hot KOH and H3PO4 solutions was performed on semipolar (11̄22) and nonpolar (11̄20) GaN films grown on sapphire substrates. An alternating KOH/H3PO4/KOH etch process was developed to control the orientation of the facets on the thin-film surface. The initial etch step in KOH produced c- and m-plane facets on the surface of both semipolar (11̄22) and nonpolar (11̄20) GaN thin-films. A second etch step in H3PO4 solution additionally exposed a (̄1̄12̄2) plane, which is chemically stable in H3PO4 solution. By repeating the chemical etch with KOH solution, the m-plane facets as seen in the original KOH etch step were recovered. The etching methods developed in our work can be used to control the surface morphologies of nonpolar and semipolar GaN-based optoelectronic devices such as light-emitting diodes and solar cells.

  16. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.

    Science.gov (United States)

    Paska, Yair; Stelzner, Thomas; Christiansen, Silke; Haick, Hossam

    2011-07-26

    Silicon nanowire field effect transistors (Si NW FETs) are emerging as powerful sensors for direct detection of biological and chemical species. However, the low sensitivity of the Si NW FET sensors toward nonpolar volatile organic compounds (VOCs) is problematic for many applications. In this study, we show that modifying Si NW FETs with a silane monolayer having a low fraction of Si-O-Si bonds between the adjacent molecules greatly enhances the sensitivity toward nonpolar VOCs. This can be explained in terms of an indirect sensor-VOC interaction, whereby the nonpolar VOC molecules induce conformational changes in the organic monolayer, affecting (i) the dielectric constant and/or effective dipole moment of the organic monolayer and/or (ii) the density of charged surface states at the SiO(2)/monolayer interface. In contrast, polar VOCs are sensed directly via VOC-induced changes in the Si NW charge carriers, most probably due to electrostatic interaction between the Si NW and polar VOCs. A semiempirical model for the VOC-induced conductivity changes in the Si NW FETs is presented and discussed.

  17. Solvent-induced O-H vibration red-shifts of oxygen-acids in hydrogen-bonded O-H···base complexes.

    Science.gov (United States)

    Keinan, Sharon; Pines, Dina; Kiefer, Philip M; Hynes, James T; Pines, Ehud

    2015-01-22

    Infrared spectroscopy has been used to characterize the solvent effect on the OH stretching vibrations νOH of phenol, 1-naphthol, 2-naphthol, 1-hydroxypyrene, and ethanol. We distinguish the dielectric (nonspecific) effect of the solvent on ΔνOH, the observed red-shifts in νOH, from the much larger red-shift caused by direct hydrogen (H)-bonding interactions with the solvents. To isolate the solvent dielectric constant ε effect on νOH, the OH oscillator was also studied when it is already H-bonded with an invariant oxygen base, dimethyl sulfoxide. We find that ΔνOH depends importantly on ΔPA, the difference between the proton affinities of the conjugate base of the proton donor and the proton acceptor. For a given H-bonded complex, νOH tends to vary inversely with ε, exhibiting different slopes for polar and nonpolar solvents, i.e., solvents comprising molecules with and without a permanent dipole moment, respectively. We use a two-state valence-bond-based theory to analyze our experimental data. This demonstrates that the OH oscillator acquires a more ionic-like character in the vibrational excited state, i.e., charge transfer; this results in a stronger H-bond in a more anharmonic potential for the OH vibration. The theory distinguishes between nonpolar and polar solvents and successfully accounts for the observed 1/ε and ΔPA variations.

  18. A turn-on type stimuli-responsive fluorescent dye with specific solvent effect: Implication for a new prototype of paper using water as the ink

    Science.gov (United States)

    Hu, Xiaochen; Liu, Yang; Duan, Yuai; Han, Jingqi; Li, Zhongfeng; Han, Tianyu

    2017-09-01

    In this study, we reported the photoluminescence (PL) behaviour of a new intramolecular charge transfer (ICT) compound, ((E)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid, (HABA), which shows ICT solvent effect in aprotic solvents as confirmed by absorption and emission spectra. While in protic solvents including water and ethanol, the charge transfer (CT) band significantly reduces. Remarkable fluorescence enhancement in the blue region was also observed for HABA in polar protic solvents. We described such phenomena as ;specific solvent effect;. It can be ascribed to the hydrogen bonding formation between HABA and protic solvents, which not only causes significant reduction in the rate of internal conversion but also elevates the energy gap. Density functional theory (DFT) calculations as well as the dynamics analysis were performed to further verify the existence of hydrogen bonding complexes. Stronger emission turn-on effect was observed on HABA solid film when it is treated with water and base solution. The stimuli-responsive fluorescence of HABA enables a new green printing technique that uses water/base as the ink, affording fluorescent handwritings highly distinct from the background. Thermoanalysis of the dye suggests the nice thermostability, which is highly desired for real-world printing in a wide temperature range.

  19. Investigation of solvent effect and cyclodextrins on fluorescence properties of ochratoxin A

    Science.gov (United States)

    Hashemi, Javad; Alizadeh, Naader

    2009-07-01

    Fluorescence properties of ochratoxin A (OTA) solutions depend on the pH, solvent polarity and can be influenced by the presence of cyclodextrins (CDs). In this work, the effect of b-cyclodextrin (b-CD) and heptakis-2,6-dimethyl-o-b-cyclodextrin (ome-CD), on fluorescence properties of OTA in aqueous solutions has been investigated by means of steady-state fluorescence at different pHs (range 2-10). Binding constants of OTA/CDs inclusion complexes have been determined by applying by non-linear regression analysis. A 1:1 stoichiometry of OTA/CDs complexes has been observed at all tested pHs. The use of ome-CD generally resulted in the greatest fluorescence intensity. The effects of solvent and pH on the positions of λmax (excitation) and λmax (emission) of OTA was determined. Correlations between the excitation and emission wavelength of OTA (monoanion and dianionic forms) and the solvent parameters were analysed with Lippert-Mataga plots. Results show that the peak position is affected mainly by specific and non-specific types of interactions between the solvent and solute. The fluorescence quenching of OTA by chloroform (aprotic) and water (protic) were studied in methanol as solvent at room temperature. The quenching was found to be appreciable and a non-linear curve with downward curvature was obtained in the Stern-Volmer (SV) plot for the water in the concentration range studied. The quenching efficiency is related to hydrogen bond-donating capacity of the quencher molecule. It was inferred that non-linearity can be attributed to fractional accessibility of fluorophore to quencher. The quenching constant was calculated from the modified SV equation.

  20. Theoretical study of chlorophyll a hydrates formation in aqueous organic solvents.

    Science.gov (United States)

    Ben Fredj, Arij; Ruiz-López, Manuel F

    2010-01-14

    A theoretical analysis of chlorophyll a (Chla) hydration processes in aqueous organic solvents has been carried out by means of quantum chemistry calculations. A detailed knowledge of the thermodynamics of these processes is fundamental in order to better understand the organization of chlorophyll molecules in vivo, specifically the structure of chlorophyll pairs in photosystems I and II. In the present work, we assumed a Chla model in which the phytyl chain is replaced by a methyl group. Calculations were performed at the B3LYP/6-31G(d) level corrected for basis set superposition errors and dispersion interaction energy. This computational scheme was previously shown to provide data close to MP2/6-311++(2d,2p) results. Solvents effects were taken into account using either continuum (for nonpolar solvents) or discrete-continuum (for polar coordinating solvents) methods. In the latter case, we first examined the structure of Chla in rigorously dry solutions. Two types of solvents were characterized according to Mg-atom coordination: In type I solvents (acetone, acetonitrile, DMSO), Mg exhibits five-coordination, whereas in type II solvents (THF, pyridine), Mg exhibits six-coordination. Hydration processes are quite dependent on solvent nature. In nonpolar or low-polarity solvents such as cyclohexane or chloroform, hydration is always exothermic and exergonic, despite a large entropy term that strongly opposes hydration. In polar solvents of type II, hydration is quite unfavorable, and essentially no hydrates are expected in these media, except perhaps at very large water concentrations (although, in such a case, the medium cannot be simply described as an organic solvent). In polar solvents of type I, the situation is intermediate, and dihydration is favorable in some cases (acetone, acetonitrile) and unfavorable in others (DMSO). It is interesting to note that first hydration processes in coordinating solvents (of either type I or type II), where a water molecule

  1. Purex process solvent: literature review

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1979-10-01

    This document summarizes the data on Purex process solvent presently published in a variety of sources. Extracts from these various sources are presented herein and contain the work done, the salient results obtained, and the original, unaltered conclusions of the author of each paper. Three major areas are addressed: solvent stability, solvent quality testing, and solvent treatment processes. 34 references, 44 tables.

  2. Chemical Potential of the Solvent: a Crucial Player for Rationalizing Host-Guest Affinities.

    Science.gov (United States)

    Piguet, Claude; Baudet, Karine; Guerra, Sebastiano

    2017-08-08

    An access to reliable values of the thermodynamic constants which controls simple host-guest association, is crucial in medicine, biology, pharmacy and chemistry since the optimum concentration of an effector (i.e. a drug) acting on a receptor is set to the inverse of these constants. Intermolecular association between charged species in polar solvents largely obeys this principle. Any deviation from ideality is mastered by the Debye-Hückel theory of ionic atmosphere. Much less is known for related association reactions involving neutral species in non-polar (lipophilic) media such as membranes, bilayers or organic polymers. Taking the intermolecular association between [La(hfa)3dig] guest and tridentate polyaromatic host receptors L1-L3 in dichloromethane as a proof-of-concept, we show that the progress of the association reactions disrupt the chemical potential of the solvent to such an extent that may seemingly be shifted by two orders of magnitude, thus leading to erroneous dose-response prescriptions. A simple chemical model, which considers a subset of solvent molecules in surface contact with the partners of the association reaction, restores a reliable access to true and interpretable thermodynamic constants. This 'complement' to the law of mass action offers a simple method for safely taking care of the non-predictable variations of the activity coefficients of the various partners when host-guest reactions are conducted in non-polar media. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of various techniques for separation of non-polar modifier concentrates from petroleum waxy by-products

    Directory of Open Access Journals (Sweden)

    Fathi S. Soliman

    2014-09-01

    Full Text Available Two petroleum waxy by-products (light and middle slack wax crudes were evaluated for separation of non-polar modifiers by using different techniques. The results showed that, the light slack wax is selected as a suitable wax for separation of n-alkanes with even number of carbon atoms ranging from C20 to C26 for their high n-paraffin contents and can be used as non-polar structural modifiers. Different separation techniques; multistage fractional crystallization and liquid–solid chromatography; followed by the urea adduction technique have been used to separate non-polar modifier concentrates from the light slack wax crude. The light slack wax, its saturate components, the hard wax fractions isolated from light slack wax by the multistage fractional crystallization technique and their adducts were analyzed by GC to characterize and compare the produced components. The resulting data reveal that, the adducts of light slack wax and its saturate components; can be used as non-polar modifier concentrates of low carbon atoms (C20 + C22. From an economic point of view, the light slack wax adduct is selected as a non-polar modifier concentrate whereas, the separation step can be neglected to save energy. Meanwhile, the adduct of the hard wax isolated at 30 °C can be used as the preferable non-polar modifier concentrate of the high carbon number atoms (C24 + C26.

  4. Halogenated solvent remediation

    Science.gov (United States)

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  5. Safe battery solvents

    Science.gov (United States)

    Harrup, Mason K.; Delmastro, Joseph R.; Stewart, Frederick F.; Luther, Thomas A.

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  6. Cyclodextrin Films with Fast Solvent Transport and Shape-Selective Permeability.

    Science.gov (United States)

    Villalobos, Luis Francisco; Huang, Tiefan; Peinemann, Klaus-Viktor

    2017-07-01

    This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester-crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cyclodextrin Films with Fast Solvent Transport and Shape-Selective Permeability

    KAUST Repository

    Villalobos, Luis Francisco

    2017-04-24

    This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester-crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.

  8. Energy requirements for wet solvent extraction of lipids from microalgal biomass.

    Science.gov (United States)

    Martin, Gregory J O

    2016-04-01

    Biofuel production from microalgae requires energy efficient processes for extracting and converting triacylglyceride lipids to fuel, compatible with coproduction of protein feeds and nutraceuticals. Wet solvent extraction involves mechanical cell rupture, lipid extraction via solvent contacting, physical phase separation, thermal solvent recovery, and transesterification. A detailed analysis of the effect of key process parameters on the parasitic energy demand of this process was performed. On a well-to-pump basis, between 16% and 320% of the resultant biodiesel energy was consumed depending solely on the process parameters. Highly positive energy balances can be achieved, but only if a correctly designed process is used. This requires processing concentrated biomass (ca 25%w/w) with a high triacylglyceride content (ca 30%w/w), and an efficient extraction process employing a non-polar solvent, low solvent-to-paste ratio, and efficient energy recovery. These requirements preclude many laboratory scale processes and polar co-solvents as viable options for large-scale biofuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  10. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  11. DMSO as a solvent/ligand to monodisperse CdS spherical nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijun [China Pharmaceutical University, Physical Chemistry Lab, School of Science (China); Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education (China)

    2016-01-15

    Monodisperse CdS nanospheres assembled by small nanoparticles were prepared using dimethyl sulfoxide (DMSO) as a solvent through several routes including thermolysis of xanthate, the reaction of cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}) with thiourea, and interfacial reaction of CS{sub 2} and Cd(CH{sub 3}CO{sub 2}){sub 2}/DMSO. The corresponding products possessed the particle sizes ranging from around 35 to 45 nm, 63 to 73 nm, and 240 to 280 nm, respectively. These products presented uniform spherical morphology, which provide insights into the effect of DMSO on CdS morphology. DMSO, as an aprotic and polar solvent, possesses unique properties. The oxygen and sulfur atoms in DMSO can coordinate to metal ions on nanoparticles surface, and the high polarity of DMSO is favorable to fast reaction, nucleation, growth, and Ostwald ripening, forming monodisperse nanospheres with narrow size distribution. The influence of CdS size on its photocatalytic activity was evaluated using Rhodamine B (RhB) as a model compound under visible light irradiation.

  12. Uniform Treatment of Solute-Solvent Dispersion in the Ground and Excited Electronic States of the Solute Based on a Solvation Model with State-Specific Polarizability.

    Science.gov (United States)

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2013-08-13

    We present a new kind of treatment of the solute-solvent dispersion contribution to the free energy of solvation using a solvation model with state-specific polarizability (SMSSP). To evaluate the solute-solvent dispersion contribution, the SMSSP model utilizes only two descriptors, namely, the spherically averaged dipole polarizability of the solute molecule (either in its ground or excited electronic state) and the refractive index of the solvent. The model was parametrized over 643 ground-state solvation free energy data for 231 solutes in 14 nonpolar, non-hydrogen-bonding solvents. We show that the SMSSP model is applicable to solutes in both the ground and the excited electronic state. For example, in comparison to available experimental data, the model yields qualitatively accurate predictions of the solvatochromic shifts for a number of systems where solute-solvent dispersion is the dominant contributor to the shift.

  13. Permeability of starch gel matrices and select films to solvent vapors.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick

    2006-05-03

    Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.

  14. Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency

    Science.gov (United States)

    Huang, Xuanqi; Fu, Houqiang; Chen, Hong; Zhang, Xiaodong; Lu, Zhijian; Montes, Jossue; Iza, Michael; DenBaars, Steven P.; Nakamura, Shuji; Zhao, Yuji

    2017-04-01

    We demonstrate the nonpolar and semipolar InGaN/GaN multiple-quantum-well (MQW) solar cells grown on the nonpolar m-plane and semipolar ( 20 2 ¯ 1 ) plane bulk GaN substrates. The optical properties and photovoltaic performance of the nonpolar and semipolar InGaN solar cells were systematically studied, and the results were compared to the conventional polar c-plane devices. The absorption spectra, current density-voltage (J-V) characteristics, external quantum efficiency (EQE), and internal quantum efficiency (IQE) were measured for nonpolar m-plane, semipolar ( 20 2 ¯ 1 ) plane, and polar c-plane InGaN/GaN MQW solar cells. Nonpolar m-plane InGaN/GaN MQW solar cells showed the best performance across all devices, with a high open-circuit voltage of 2.32 V, a low bandgap-voltage offset of 0.59 V, and the highest EQE and IQE. In contrast, the polar c-plane device showed the lowest EQE despite the highest absorption spectra. This huge difference is attributed to the better carrier transport and collection on nonpolar m-plane devices due to the reduced polarization effects, which were further confirmed by bias-dependent EQE measurements and energy band diagram simulations. This study demonstrates the high potential of nonpolar and semipolar InGaN solar cells and can serve as guidance for the future design and fabrication of high efficiency III-nitride solar cells.

  15. In Vitro Anticancer Activity of a Nonpolar Fraction from Gynostemma pentaphyllum (Thunb.) Makino

    Science.gov (United States)

    Li, Yantao; Huang, Jiajun; Lin, Wanjun; Yuan, Zhongwen; Feng, Senling; Xie, Ying; Ma, Wenzhe

    2016-01-01

    Gynostemma pentaphyllum (Thunb.) Makino (GpM) has been widely used in traditional Chinese medicine (TCM) for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose) polymerase (cPARP). Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant. PMID:27034692

  16. In Vitro Anticancer Activity of a Nonpolar Fraction from Gynostemma pentaphyllum (Thunb. Makino

    Directory of Open Access Journals (Sweden)

    Yantao Li

    2016-01-01

    Full Text Available Gynostemma pentaphyllum (Thunb. Makino (GpM has been widely used in traditional Chinese medicine (TCM for the treatment of various diseases including cancer. Most previous studies have focused primarily on polar fractions of GpM for anticancer activities. In this study, a nonpolar fraction EA1.3A from GpM showed potent growth inhibitory activities against four cancer cell lines with IC50 ranging from 31.62 μg/mL to 38.02 μg/mL. Furthermore, EA1.3A also inhibited the growth of breast cancer cell MDA-MB-453 time-dependently, as well as its colony formation ability. EA1.3A induced apoptosis on MDA-MB-453 cells both dose-dependently and time-dependently as analyzed by flow cytometry and verified by western blotting analysis of apoptosis marker cleaved nuclear poly(ADP-ribose polymerase (cPARP. Additionally, EA1.3A induced cell cycle arrest in G0/G1 phase. Chemical components analysis of EA1.3A by GC-MS revealed that this nonpolar fraction from GpM contains 10 compounds including four alkaloids, three organic esters, two terpenes, and one catechol substance, and all these compounds have not been reported in GpM. In summary, the nonpolar fraction EA1.3A from GpM inhibited cancer cell growth through induction of apoptosis and regulation of cell cycle progression. Our study shed light on new chemical bases for the anticancer activities of GpM and feasibilities to develop new anticancer agents from this widely used medicinal plant.

  17. Solvent Vapour Detection with Cholesteric Liquid Crystals—Optical and Mass-Sensitive Evaluation of the Sensor Mechanism

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2010-05-01

    Full Text Available Cholesteric liquid crystals (CLCs are used as sensitive coatings for the detection of organic solvent vapours for both polar and non-polar substances. The incorporation of different analyte vapours in the CLC layers disturbs the pitch length which changes the optical properties, i.e., shifting the absorption band. The engulfing of CLCs around non-polar solvent vapours such as tetrahedrofuran (THF, chloroform and tetrachloroethylene is favoured in comparison to polar ones, i.e., methanol and ethanol. Increasing solvent vapour concentrations shift the absorbance maximumto smaller wavelengths, e.g., as observed for THF. Additionally, CLCs have been coated on acoustic devices such as the quartz crystal microbalance (QCM to measure the frequency shift of analyte samples at similar concentration levels. The mass effect for tetrachloroethylene was about six times higher than chloroform. Thus, optical response can be correlated with intercalation in accordance to mass detection. The mechanical stability was gained by combining CLCs with imprinted polymers. Therefore, pre-concentration of solvent vapours was performed leading to an additional selectivity.

  18. Study on Surface Properties for Non-polar Fluids with Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    吴畏; 陆九芳; 付东; 刘金晨; 李以圭

    2004-01-01

    The density functional theory, simplified by the local density approximation and mean-field approximation, is applied to study the surface properties of pure non-polar fluids. A reasonable long rang correction is adopted to avoid the truncation of the potential. The perturbation theory is applied to establish the equation for the phase equilibrium, in which the hard-core chain fluid is as the reference fluid and the Yukawa potential is used as the perturbation term. Three parameters, elk, d and ms, are regressed from the vapor-liquid equilibria, and the surface properties, including density profile, surface tension and local surface tension profile are predicted with these parameters.

  19. A semiempirical model for estimating the hydration free energy of neutral nonpolar compounds

    Science.gov (United States)

    Ratkova, E. L.

    2012-10-01

    An improved semiempirical model for determining the hydration free energy of neutral nonpolar compounds is presented. The model is based on a combination of the RISM approach of the integral equation theory and empirical correlations. It is demonstrated that the developed model has high predictive ability for alkanes, alkenes, and dienes (present only in the test set of compounds). It is concluded that this semiempirical model can be applied in estimating the hydration free energy of more complicated structures based on saturated and nonsaturated aliphatic hydrocarbons.

  20. Dynamic solvation shell and solubility of C60 in organic solvents.

    Science.gov (United States)

    Wang, Chun I; Hua, Chi C; Chen, Show A

    2014-08-21

    The notion of (static) solvation shells has recently proved fruitful in revealing key molecular factors that dictate the solubility and aggregation properties of fullerene species in polar or ionic solvent media. Using molecular dynamics schemes with carefully evaluated force fields, we have scrutinized both the static and the dynamic features of the solvation shells of single C60 particle for three nonpolar organic solvents (i.e., chloroform, toluene, and chlorobenzene) and a range of system temperatures (i.e., T = 250-330 K). The central findings have been that, while the static structures of the solvation shell remain, in general, insensitive to the effects of changing solvent type or system temperature, the dynamic behavior of solvent molecules within the shell exhibits prominent dependence on both factors. Detailed analyses led us to propose the notion of dynamically stable solvation shell, effectiveness of which can be characterized by a new physical parameter defined as the ratio of two fundamental time constants representing, respectively, the solvent relaxation (or residence) time within the first solvation shell and the characteristic time required for the fullerene particle to diffuse a distance comparable to the shell thickness. We show that, for the five (two from the literature) different solvent media and the range of system temperatures examined herein, this parameter bears a value around unity and, in particular, correlates intimately with known trends of solubility for C60 solutions. We also provide evidence revealing that, in addition to fullerene-solvent interactions, solvent-solvent interactions play an important role, too, in shaping the dynamic solvation shell, as implied by recent experimental trends.

  1. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica.

    Science.gov (United States)

    Koch, Barbara; Schmidt, Claudia; Daum, Günther

    2014-09-01

    Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.

  2. Solvent Immersion Imprint Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  3. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  4. Role of solvent/non-solvent ratio on microsphere formation using the solvent removal method.

    Science.gov (United States)

    Godbee, J; Scott, E; Pattamunuch, P; Chen, S; Mathiowitz, E

    2004-03-01

    The importance of good solvent concentration in the non-solvent mixture and the non-solvent viscosity on the ability to form microspheres using solvent removal process was investigated. The higher the viscosity of the polymer solutions, the higher the concentration of good solvent needed in the nonsolvent mixture to produce microspheres. This finding was due to faster precipitation of the polymer phase. Also, the addition of a model drug, fluorescein isothiocyanate conjugated-labelled bovine serum albumin, to the polymer solution (10% poly-L-lactic acid:poly(fumaric-co-sebacic) anhydride in methylene chloride) resulted in an overall lower polymer solution viscosity (15.5 cP with fluorescein isothiocyanate conjugated-labelled bovine serum albumin as compared with 18.25 cP for blank polymer at 25 degrees C). Additionally, the effect of good solvent concentration on non-solvent viscosity was evaluated, and the viscosity decreased as the concentration of good solvent increased. The effect of good solvent concentration on the non-solvent mixture on sphere formation was of great importance. Microspheres would not form when the good polymer solvent (methylene chloride) in the non-solvent phase was too low (below 175 ml for poly-L-lactic acid or 150 ml for poly(D,L-lactidco-glycolid)) or was replaced by another good solvent such as ethyl acetate, even though the same viscosity was achieved. It was shown that the concentration of the good solvent in the non-solvent mixture was more of a controlling factor than the viscosity of the non-solvent mixture in microsphere formation and the findings support the conclusion that diffusion is the main controlling parameter in solvent removal.

  5. Diamex solvent regeneration studies

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, C.; Cames, B.; Margot, L.; Ramain, L. [CEA/VALRHO - site de Marcoule, Dept. de Recherche en Retraitement et en Vitrification, DRRV, 30 - Marcoule (France)

    2000-07-01

    The CEA has undertaken the development of the DIAMEX process as the first step in the strategy aiming at recovering minor actinides which could then be transmuted or separately conditioned. The scientific feasibility of this process was demonstrated during counter current hot tests operated in 1993. Then experimental works were conducted, on one hand to optimise the extractant formula, on the other hand to improve the flowsheet. Reference extractant and flowsheet were then chosen, respectively in 1995 and 1996. The next step, still in progress, is the demonstration of the DIAMEX technical feasibility (in 2002); this means that the flowsheet should include solvent regeneration treatments. In this aim, degradation studies were performed to quantify main degradation products, and identify those which could be disturbing in the process. This paper deals with experimental studies performed with intend to propose a regeneration treatment, included in the flowsheet, so that the solvent could be recycled. It comprises: - Quantification of the main degradation products issued from radiolysis or hydrolysis, which are methyl octyl amine (MOA) and carboxylic acids; - Effects of these products on extracting and hydrodynamics performances of the process; - Study of methods able to remove mainly disturbing degradation products. Acidic scrubbing, which are performed in the scrubbing and stripping sections of the DIAMEX process, should allow the quantitative removal of methyl octyl amine. Then basic scrubbings, which were more especially studied, should eliminate at least 80% of carboxylic acids, and part of the cations remaining in the solvent. (authors)

  6. Iridium(I) complexes with anionic N-heterocyclic carbene ligands as catalysts for the hydrogenation of alkenes in nonpolar media.

    Science.gov (United States)

    Kolychev, Eugene L; Kronig, Sabrina; Brandhorst, Kai; Freytag, Matthias; Jones, Peter G; Tamm, Matthias

    2013-08-21

    A series of lithium complexes of anionic N-heterocyclic carbenes that contain a weakly coordinating borate moiety (WCA-NHC) was prepared in one step from free N-heterocyclic carbenes by deprotonation with n-butyl lithium followed by borane addition. The reaction of the resulting lithium-carbene adducts with [M(COD)Cl]2 (M = Rh, Ir; COD = 1,5-cyclooctadiene) afforded zwitterionic rhodium(I) and iridium(I) complexes of the type [(WCA-NHC)M(COD)], in which the metal atoms exhibit an intramolecular interaction with the N-aryl groups of the carbene ligands. For M = Rh, the neutral complex [(WCA-NHC)Rh(CO)2] and the ate complex (NEt4)[(WCA-NHC)Rh(CO)2Cl] were prepared, with the latter allowing an assessment of the donor ability of the ligand by IR spectroscopy. The zwitterionic iridium-COD complexes were tested as catalysts for the homogeneous hydrogenation of alkenes, which can be performed in the presence of nonpolar solvents or in the neat alkene substrate. Thereby, the most active complex showed excellent stability and activity in hydrogenation of alkenes at low catalyst loadings (down to 10 ppm).

  7. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    Science.gov (United States)

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  8. A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces.

    Science.gov (United States)

    Yu, Liping; Zunger, Alex

    2014-10-13

    The discovery of conductivity and magnetism at the polar-nonpolar interfaces of insulating nonmagnetic oxides such as LaAlO3 and SrTiO3 has raised prospects for attaining interfacial functionalities absent in the component materials. Yet, the microscopic origin of such emergent phenomena remains unclear, posing obstacles to design of improved functionalities. Here we present first principles calculations of electronic and defect properties of LaAlO3/SrTiO3 interfaces and reveal a unifying mechanism for the origins of both conductivity and magnetism. We demonstrate that the polar discontinuity across the interface triggers thermodynamically the spontaneous formation of certain defects that in turn cancel the polar field induced by the polar discontinuity. The ionization of the spontaneously formed surface oxygen vacancy defects leads to interface conductivity, whereas the unionized Ti-on-Al antisite defects lead to interface magnetism. The proposed mechanism suggests practical design principles for inducing and controlling both conductivity and magnetism at general polar-nonpolar interfaces.

  9. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    KAUST Repository

    Leonard, J. T.

    2015-07-06

    © 2015 AIP Publishing LLC. We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3nm quantum well width, 1nm barriers, a 5nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406nm nonpolar VCSEL with a low threshold current density (∼16kA/cm2), a peak output power of ∼12μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  10. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    Science.gov (United States)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-07-01

    We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406 nm nonpolar VCSEL with a low threshold current density (˜16 kA/cm2), a peak output power of ˜12 μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  11. Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations

    Science.gov (United States)

    Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji

    2017-05-01

    We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.

  12. Non-Polar Natural Products from Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Ole Johan Juvik

    2017-09-01

    Full Text Available Extensive regional droughts are already a major problem on all inhabited continents and severe regional droughts are expected to become an increasing and extended problem in the future. Consequently, extended use of available drought resistant food plants should be encouraged. Bromelia laciniosa, Neoglaziovia variegata and Encholirium spectabile are excellent candidates in that respect because they are established drought resistant edible plants from the semi-arid Caatinga region. From a food safety perspective, increased utilization of these plants would necessitate detailed knowledge about their chemical constituents. However, their chemical compositions have previously not been determined. For the first time, the non-polar constituents of B. laciniosa, N. variegata and E. spectabile have been identified. This is the first thorough report on natural products from N. variegata, E. spectabile, and B. laciniosa. Altogether, 20 non-polar natural products were characterized. The identifications were based on hyphenated gas chromatography-high resolution mass spectrometry (GC-HRMS and supported by 1D and 2D Nuclear Magnetic Resonance (NMR plant metabolomics.

  13. Dermoscopic features of basal cell carcinomas: differences in appearance under non-polarized and polarized light.

    Science.gov (United States)

    Liebman, Tracey N; Jaimes-Lopez, Natalia; Balagula, Yevgeniy; Rabinovitz, Harold S; Wang, Steven Q; Dusza, Stephen W; Marghoob, Ashfaq A

    2012-03-01

    Basal cell carcinomas (BCCs) can be diagnosed using different dermoscopic modalities. To evaluate dermoscopic features of BCCs using nonpolarized and polarized dermoscopy to highlight similarities and differences between dermoscopic modalities. Retrospective study of 149 BCCs under nonpolarized dermoscopy (NPD), polarized contact dermoscopy (PCD), and polarized noncontact dermoscopy (PNCD). Images were evaluated for a range of dermoscopic colors, structures, and vessels. Features were compared according to histopathologic subtype. The most common dermoscopic structures in BCCs across all modalities included globules (50.3-51.0%), dots (49.7-50.3%), white structureless areas (63.1-74.5%), structureless gray-brown areas (24.2-24.8%), and ulcerations (28.2%). The most frequently observed vasculature included arborizing vessels (18.8-38.3%), short fine telangiectasias (SFTs) (73.8-82.6%), and vascular blush (41.6-83.2%). Structures with higher levels of agreement across modalities included pigmented structures and ulcerations. Lower levels of agreement existed between contact and noncontact modalities for certain vascular features. White shiny structures, which include shiny white lines (chrysalis and crystalline structures) (0-69.1%), shiny white areas (0-25.5%), and rosettes (0-11.4%), exhibited no agreement between NPD and polarized modalities. This study highlights differences in dermoscopic features of BCCs under three dermoscopic modalities. Shiny white lines (chrysalis and crystalline structures) and shiny white areas may be used as additional criteria to diagnose BCCs. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  14. Relative effectiveness of pretreatments on performance of Rhizomucor miehei lipase in nonpolar reaction media.

    Science.gov (United States)

    Garcia, Rafael A; Riley, Mark R

    2005-02-01

    Enzymes can be used in nonpolar reaction media to modify water-insoluble substrates. A variety of pretreatments, applied to the enzyme prior to introduction to the nonpolar media, can improve enzyme activity. However, the various pretreatments have not been studied using directly comparable conditions, nor have they been applied simultaneously to test for interactive effects. This work evaluates pretreatment of lipase with various classes of additives. The pretreated lipase is used to catalyze esterification between citronellol and acetic acid in a medium of n-hexane. The effectiveness of a particular pretreatment is presented in terms of relative performance (RP), which is equal to the number of times faster the pretreated lipase catalyzes the reaction relative to untreated lipase. The individual and interactive effects of the pretreatment factors were studied and compared. Buffer salts had a much stronger performance-enhancing effect than nonbuffer salts; pretreatment with 90% (w/w) sodium phosphate yielded lipase with an RP of approx 64. A strong interaction was found between the treatments with sodium phosphate and pH adjustment. These treatments may mitigate the inhibitory effect of acetic acid. Activating effects of phase interfaces and active-site protectants are shown to be complementary to other treatments, demonstrating that they likely act by distinct mechanisms.

  15. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE

    Directory of Open Access Journals (Sweden)

    Shruti Mukundan

    2015-03-01

    Full Text Available Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In0.55Ga0.45N over non-polar (11-20 a-plane In0.17Ga0.83N epilayer grown on a-plane (11-20GaN/(1-102 r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE. Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of InxGa1−xN alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.

  16. Morphological, structural and electrical investigations on non-polar a-plane ZnO epilayers

    Science.gov (United States)

    Lautenschlaeger, Stefan; Eisermann, Sebastian; Hofmann, Michael N.; Roemer, Udo; Pinnisch, Melanie; Laufer, Andreas; Meyer, Bruno K.; von Wenckstern, Holger; Lajn, Alexander; Schmidt, Florian; Grundmann, Marius; Blaesing, Juergen; Krost, Alois

    2010-07-01

    We report on the growth of non-polar a-plane ZnO by CVD on r-plane-sapphire-wafers, a-plane GaN-templates and a-plane ZnO single-crystal substrates. Only the homoepitaxial growth approach leads to a Frank-van-der-Merwe growth mode, as shown by atomic force microscopy. The X-ray-diffraction spectra of the homoepitaxial thin films mirror the excellent crystalline quality of the ZnO substrate. The morphological and the structural quality of the homoepitaxial films is comparable to the best results for the growth on c-plane ZnO-substrates. The impurity incorporation, especially of group III elements, seems to be reduced when growing on the non-polar a-plane surface compared to the c-plane films as demonstrated by secondary ion mass spectrometry (SIMS). Optical properties have been investigated using low temperature photoluminescence measurements. We employed capacitance-voltage measurements ( C- V) to measure the background carrier density and its profile from substrate/film interface throughout the film to the surface. In thermal admittance spectroscopy (TAS) specific traps could be distinguished, and their thermal activation energies and capture cross sections could be determined.

  17. High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B., E-mail: sbk@mrc.iisc.ernet.in; Shinde, Satish; Nanda, K. K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Maiti, R.; Ray, S. K. [Department of Physics, Indian Institute of Technology, Kharagpur (India)

    2015-03-15

    Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In{sub 0.55}Ga{sub 0.45}N over non-polar (11-20) a-plane In{sub 0.17}Ga{sub 0.83}N epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of In{sub x}Ga{sub 1−x}N alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.

  18. Barrierity of hydrogenated butadiene-acrylonitrile rubber and butyl rubber after exposure to organic solvents.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M

    2011-01-01

    Resistance of antichemical clothing primarily depends on the type of material it is made from, in particular on the type of polymer used for coating the fabric carrier. This paper reports on systematic investigations on the influence of the cross-linking density of an elastomer and the composition of a cross-linked elastomer on its resistance to permeation of selected organic solvents. Tests of barrier material samples made from nonpolar butyl rubber (IIR) and polar hydrogenated butadiene-acrylonitrile rubber (HNBR) showed that (a) in rubber-solvent systems with medium thermodynamic affinity, cross-linking density influenced resistance to permeation and (b) the polarity of the system had a significant influence on barrierity.

  19. Variation in Scent Compounds of Oil-Bearing Rose (Rosa damascena Mill.) Produced by Headspace Solid Phase Microextraction, Hydrodistillation and Solvent Extraction

    OpenAIRE

    Sabri Erbaş; Hasan Baydar

    2016-01-01

    In this research, rose oil and rose water were hydro-distilled from the fresh oil-bearing rose flowers (Rosa damascena Mill.) using Clevenger-type apparatus. Rose concretes were extracted from the fresh rose flowers by using non-polar solvents, e.g. diethyl ether, petroleum ether, cyclo-hexane, chloroform and n-hexane, and subsequently by evaporation of the solvents under vacuum. Absolutes were produced from the concretes with ethyl alcohol extraction at -20°C, leaving behind the wax and othe...

  20. A study of the solvent effect on the morphology of RDX crystal by molecular modeling method.

    Science.gov (United States)

    Chen, Gang; Xia, Mingzhu; Lei, Wu; Wang, Fengyun; Gong, Xuedong

    2013-12-01

    Molecular dynamics simulations have been performed to investigate the effect of acetone solvent on the crystal morphology of RDX. The results show that the growth morphology of RDX crystal in vacuum is dominated by the (111), (020), (200), (002), and (210) faces using the BFDH laws, and (111) face is morphologically the most important. The analysis of surface structures of RDX crystal indicates that (020) face is non-polar, while (210), (111), (002), and (200) faces are polar among which (210) face has the strongest polarity. The interaction between acetone solvent and each RDX crystal face is different, and the order of binding energy on these surfaces is (210) > (111) > (002) > (200) > (020). The analysis of interactions among RDX and acetone molecules reveal that the system nonbond interactions are primary strong van der Waals and electrostatic interactions containing π-hole interactions, the weak hydrogen bond interactions are also existent. The effect of acetone on the growth of RDX crystal can be evaluated by comparing the binding energies of RDX crystalline faces. It can be predicted that compared to that in vacuum, in the process of RDX crystallization from acetone, the morphological importance of (210) face is increased more and (111) face is not the most important among RDX polar surfaces, while the non-polar (020) face probably disappears. The experimentally obtained RDX morphology grown from acetone is in agreement with the theoretical prediction.

  1. Conformation stability, halogen and solvent effects on CO stretching of 4-chloro-3-halogenobenzaldehydes.

    Science.gov (United States)

    Tursun, Mahir; Parlak, Cemal

    2015-04-15

    The effects of halogen and solvent on the conformation and carbonyl stretching of 4-chloro-3-halogenobenzaldehydes [C7H4ClXO; X=F (CFB), Cl (CCB) or Br (CBB)] were investigated using the density functional theory (DFT) method. The B3LYP functional was used by the 6-311+G(3df,p) basis set in combination with the polarizable continuum model (PCM). Computations were focused on the cis and trans isomers of the compounds in 18 different polar or non-polar organic solvents. The theoretical frequencies of the solvent-induced CO stretching vibrations were correlated with the empirical solvent parameters such as the Kirkwood-Bauer-Magat (KBM) equation, the solvent acceptor number (AN), Swain parameters and the linear solvation energy relationships (LSER). The present work explores the effect of both the halogen and medium on the conformational preference and CO vibrational frequency. The findings of this work can be useful to those systems involving changes in the conformations analogous to the compounds studied.

  2. Spectroscopic, solvent influence and thermal studies of ternary copper(II) complexes of diester and dinitrogen base ligands.

    Science.gov (United States)

    Emara, Adel A A; Abu-Hussein, Azza A A; Taha, Ahmed A; Mahmoud, Nelly H

    2010-10-15

    New mixed-ligand copper(II) complexes containing the bidentate dinitrogen ligands [N,N,N',N'-tetramethylethylenediamine (tmen), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)] and the bidentate dioxygen ligands [diethylmalonate (DEM), ethylacetoacetate (EAA) and ethylbenzoylacetate (EBA)] were prepared. The complexes were characterized by elemental analysis, infrared, mass and ESR spectral data, magnetic and molar conductance measurements and thermal gravimetric analysis. From the investigation, the geometries of the complexes are square planar for perchlorate complexes and a square pyramid or octahedral for the nitrate complexes. Solvatochromic behavior of the Cu(II) complexes indicates strong solvatochromism of their solutions in polar and non-polar solvents. The observed solvatochromism is due to the solute-solvent interaction between the chelate cation and the solvent molecules.

  3. Chiroptical Properties and the Racemization of Pyrene and Tetrathiafulvalene-Substituted Allene: Substitution and Solvent Effects on Racemization in Tetrathiafulvalenylallene

    Directory of Open Access Journals (Sweden)

    Masashi Hasegawa

    2014-03-01

    Full Text Available Dissymmetric 1,3-diphenylallene derivative 3 connected with 4,5-bis(methyl-thiotetrathiafulvalenyl and 1-pyrenyl substituents was prepared and characterized. The molecular structure was determined by X-ray crystallographic analysis. Optical resolution was accomplished using a recycling chiral HPLC, and its chiroptical properties were examined with optical rotation and electronic circular dichroism (ECD spectra. The title compound underwent photoracemization under daylight. This behavior was investigated in various solvents and compared with that of 1,3-bis(tetrathiafulvalenylallene (bis-TTF-allene derivative 2. The first-order rate plot of the intensity of the ECD spectra at a given time interval gave the rate of racemization. Mild racemization was observed in polar solvents, whereas a relatively fast rate was obtained in less polar solvents. In addition, the TTF groups of the allene also accelerate the racemization rate. These results suggest that the racemization mechanism occurs via a non-polar diradical structure.

  4. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  5. Is Water a Universal Solvent for Life?

    Science.gov (United States)

    Pohorill, Andrew

    2012-01-01

    There are strong reasons to believe that the laws, principles and constraints of physics and chemistry are universal. It is much less clear how this universality translates into our understanding of the origins of life. Conventionally, discussions of this topic focus on chemistry that must be sufficiently rich to seed life. Although this is clearly a prerequisite for the emergence of living systems, I propose to focus instead on self-organization of matter into functional structures capable of reproduction, evolution and responding to environmental changes. In biology, most essential functions are largely mediated by noncovalent interactions (interactions that do not involve making or breaking chemical bonds). Forming chemical bonds is only a small part of what living systems do. There are specific implications of this point of view for universality. I will concentrate on one of these implications. Strength of non-covalent interactions must be properly tuned. If they were too weak, the system would exhibit undesired, uncontrolled response to natural fluctuations of physical and chemical parameters. If they were too strong kinetics of biological processes would be slow and energetics costly. This balance, however, is not a natural property of complex chemical systems. Instead, it has to be achieved with the aid of an appropriate solvent for life. In particular, potential solvents for life must be characterized by a high dielectric constant to ensure solubility of polar species and sufficient flexibility of biological structures stabilized by electrostatic interactions. Among these solvents, water exhibits a remarkable trait that it also promotes solvophobic (hydrophobic) interactions between non-polar species, typically manifested by a tendency of these species to aggregate and minimize their contacts with the aqueous solvent. Hydrophobic interactions are responsible, at least in part, for many self-organization phenomena in biological systems, such as the formation

  6. Occupational solvent exposure and cognition

    Science.gov (United States)

    Sabbath, E.L.; Glymour, M.M.; Berr, C.; Singh-Manoux, A.; Zins, M.; Goldberg, M.

    2012-01-01

    Objective: Chronic occupational solvent exposure is associated with long-term cognitive deficits. Cognitive reserve may protect solvent-exposed workers from cognitive impairment. We tested whether the association between chronic solvent exposure and cognition varied by educational attainment, a proxy for cognitive reserve. Methods: Data were drawn from a prospective cohort of French national gas and electricity (GAZEL) employees (n = 4,134). Lifetime exposure to 4 solvent types (chlorinated solvents, petroleum solvents, benzene, and nonbenzene aromatic solvents) was assessed using a validated job-exposure matrix. Education was dichotomized at less than secondary school or below. Cognitive impairment was defined as scoring below the 25th percentile on the Digit Symbol Substitution Test at mean age 59 (SD 2.8; 88% of participants were retired at testing). Log-binomial regression was used to model risk ratios (RRs) for poor cognition as predicted by solvent exposure, stratified by education and adjusted for sociodemographic and behavioral factors. Results: Solvent exposure rates were higher among less-educated patients. Within this group, there was a dose-response relationship between lifetime exposure to each solvent type and RR for poor cognition (e.g., for high exposure to benzene, RR = 1.24, 95% confidence interval 1.09–1.41), with significant linear trends (p < 0.05) in 3 out of 4 solvent types. Recency of solvent exposure also predicted worse cognition among less-educated patients. Among those with secondary education or higher, there was no significant or near-significant relationship between any quantification of solvent exposure and cognition. Conclusions: Solvent exposure is associated with poor cognition only among less-educated individuals. Higher cognitive reserve in the more-educated group may explain this finding. PMID:22641403

  7. Partial solubility parameters and solvatochromic parameters for predicting the solubility of single and multiple drugs in individual solvents.

    Science.gov (United States)

    Bustamante, P; Martin, A; Gonzalez-Guisandez, M A

    1993-06-01

    A modification of the extended Hansen method is used for estimating the solubility of sulfadiazine and other organic drug molecules in a number of individual solvents ranging from nonpolar to highly polar. The equations obtained for each drug involve the partial solubility parameters of the solvents and allow the prediction of solubility of these drugs in a new solvent. Furthermore, a number of drugs (e.g., sulfadiazine, sulfamethoxypyridazine, naphthalene, and some benzoic acid derivatives) are combined in a single expression including the ideal solubility of the drugs and the partial solubility parameters of the solvents. The equation fits the solubilities of these drugs in a wide variety of solvents and may be used to predict the solubility of other sulfonamides and benzoic acid derivatives in semipolar and highly polar solvents. The solvatochromic parameter approach is also used in models for predicting the solubility of single drugs in individual solvents. It was tested with multiple solutes as was the partial solubility parameter approach. However, the latter approach is superior; the parameters of the solubility parameter method are all statistically significant for drugs tested individually or together in a single equation, a condition that is not obtained with the solvatochromic model.

  8. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  9. Role of the electronegativity for the interface properties of non-polar heterostructures

    KAUST Repository

    Nazir, Safdar

    2012-04-01

    Density functional theory is used to investigate the interfaces in the non-polar ATiO 3/SrTiO 3 (A=Pb, Ca, Ba) heterostructures. All TiO 2-terminated interfaces show an insulating behavior. By reduction of the O content in the AO, SrO, and TiO 2 layers, metallic interface states develop, due to the occupation of the Ti 3d orbitals. For PbTiO 3/SrTiO 3, the Pb 6p states cross the Fermi energy. O vacancy formation energies depend strictly on the electronegativity and the effective volume of the A ion, while the main characteristics of the interface electronic states are maintained. © Europhysics Letters Association, 2012.

  10. Homoepitaxial HVPE-GaN growth on non-polar and semi-polar seeds

    Science.gov (United States)

    Amilusik, M.; Sochacki, T.; Lucznik, B.; Fijalkowski, M.; Smalc-Koziorowska, J.; Weyher, J. L.; Teisseyre, H.; Sadovyi, B.; Bockowski, M.; Grzegory, I.

    2014-10-01

    In this work homoepitaxial HVPE-GaN growth on non-polar and semi-polar GaN seeds was described. Two crystallization processes, in the same experimental conditions but using different carrier gases: N2 and H2, were performed. An influence of growth directions and growth conditions on the growth rate and properties (morphology, structural quality and oxygen and silicon contaminations) of obtained crystals were investigated and discussed. It was shown that the growth rate strongly depends on the growth direction and the carrier gas. It was demonstrated that for the semi-polar [20-21] direction it was possible to obtain high quality and highly conductive (without intentional doping) gallium nitride layers.

  11. ADSORPTION OF LATERALLY INTERACTING 1-NAPHTHOL/1-NAPHTHYL AMINE MIXTURES ON NONPOLAR SURFACES FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Wei-ming Zhang; Jin-long Chen; Qun Chen; Ming-yang He; Bing-cai Pan; Quan-xing Zhang

    2006-01-01

    The binary adsorption behavior of 1-naphthol/1-naphthylamine mixtures in water on nonpolar adsorbent Amberlite XAD4 was investigated at 293 K, 303 K and 313 K, respectively. The experimental uptakes of 1-naphthol and 1-naphthylamine in all binary-component systems of different molar ratios were obviously higher than the corresponding uptakes predicted by the extended Langmuir model, assuming no interaction between the adsorbed molecules of the two components. This phenomenon was attributed to the cooperative adsorption effect arising from the hydrogen bonding interaction between 1-naphthol and 1-naphthylamine molecules. A modified extended Langmuir model was proposed to describe the binary adsorption behavior by means of introducing a fitting parameter related with the cooperative adsorption effect of the adsorbates.

  12. Variability of non-polar secondary metabolites in the red alga Portieria.

    Science.gov (United States)

    Payo, Dioli Ann; Colo, Joannamel; Calumpong, Hilconida; de Clerck, Olivier

    2011-01-01

    Possible sources of variation in non-polar secondary metabolites of Portieria hornemannii, sampled from two distinct regions in the Philippines (Batanes and Visayas), resulting from different life-history stages, presence of cryptic species, and/or spatiotemporal factors, were investigated. PCA analyses demonstrated secondary metabolite variation between, as well as within, five cryptic Batanes species. Intraspecific variation was even more pronounced in the three cryptic Visayas species, which included samples from six sites. Neither species groupings, nor spatial or temporal based patterns, were observed in the PCA analysis, however, intraspecific variation in secondary metabolites was detected between life-history stages. Male gametophytes (102 metabolites detected) were strongly discriminated from the two other stages, whilst female gametophyte (202 metabolites detected) and tetrasporophyte (106 metabolites detected) samples were partially discriminated. These results suggest that life-history driven variations, and possibly other microscale factors, may influence the variation within Portieria species.

  13. Variability of Non-Polar Secondary Metabolites in the Red Alga Portieria

    Directory of Open Access Journals (Sweden)

    Olivier de Clerck

    2011-11-01

    Full Text Available Possible sources of variation in non-polar secondary metabolites of Portieria hornemannii, sampled from two distinct regions in the Philippines (Batanes and Visayas, resulting from different life-history stages, presence of cryptic species, and/or spatiotemporal factors, were investigated. PCA analyses demonstrated secondary metabolite variation between, as well as within, five cryptic Batanes species. Intraspecific variation was even more pronounced in the three cryptic Visayas species, which included samples from six sites. Neither species groupings, nor spatial or temporal based patterns, were observed in the PCA analysis, however, intraspecific variation in secondary metabolites was detected between life-history stages. Male gametophytes (102 metabolites detected were strongly discriminated from the two other stages, whilst female gametophyte (202 metabolites detected and tetrasporophyte (106 metabolites detected samples were partially discriminated. These results suggest that life-history driven variations, and possibly other microscale factors, may influence the variation within Portieria species.

  14. On the rotational energy distributions of reactive, non-polar species in the interstellar medium

    CERN Document Server

    Glinski, Robert J; Downum, Clark R

    2013-01-01

    A basic model for the formation of non-equilibrium rotational energy distributions is described for reactive, homo-polar diatomic molecules and ions in the interstellar medium. Kinetic models were constructed to calculate the rotational populations of C2+ under the conditions it would experience in the diffuse interstellar medium. As the non-polar ion reacts with molecular hydrogen, but not atomic hydrogen, the thermalization of a hot nascent rotational population will be arrested by chemical reaction when the H2 density begins to be significant. Populations that deviate strongly from the local thermodynamic equilibrium are predicted for C2+ in environments where it may be detectable. Consequences of this are discussed and a new optical spectrum is calculated.

  15. Dynamics of electric field induced particle alignment in nonpolar polymer matrix

    Science.gov (United States)

    Tai, Xiangyang; Wu, Guozhang; Yui, Hiroshi; Asai, Shigeo; Sumita, Masao

    2003-11-01

    The dynamics of electric field induced particle alignment in nonpolar polymer matrix to build one-dimensional conductive materials was investigated. The influence of electric field on particle alignment was real-time traced by dynamic percolation measurement using carbon black (CB) filled polyethylene as a model system. The activation energy of the continuous CB path formation was calculated and found to be unchanged with CB alignment. The critical percolation concentration at thermodynamic equilibrium state φc* was deduced to characterize the anisotropism of network structure, by which the thermodynamic prerequisite electric field E* for the transition from three-dimensional isotropic network to one-dimensional chain could be easily found out.

  16. Application of classical thermodynamics to the conductivity in non-polar media

    Science.gov (United States)

    Gourdin-Bertin, S.; Chassagne, C.

    2016-06-01

    Electrical conductivity in non-polar media is a subject which recently regained interest. If most of experiments and theoretical developments were done more than 50 years ago, new experiments and theories have been recently published. As the electrical conductivity describes, at low field, the equilibrium state of a system, it is natural to apply theories based on equilibrium thermodynamics. In this article, well-established classical thermodynamics and solvations models are applied to recently published data. This enables to get a new insight in intriguing phenomena, such as the linear dependence of the conductivity on the concentration of ionic surfactant and the evaluation of conductivity for the mixture of two miscible fluids, such as alcohol and alcane, which have very different conductivities.

  17. Chronic toxicity and body residues of the nonpolar narcotic 1,2,3,4-tetrachrlorobenzene in Chironomus riparius

    NARCIS (Netherlands)

    Leslie, H.A.; Kraak, M.H.S.; Hermens, J.L.

    2004-01-01

    The use of internal concentrations as a dose parameter for baseline toxicity requires an understanding of the relationship between accumulation level and toxic effects, not only for acute but also for chronic exposure. In this study of chronic toxicity of the nonpolar narcotic 1,2,3,4-tetrachloroben

  18. Chronic toxicity and body residues of the nonpolar narcotic 1,2,3,4-tetrachrlorobenzene in Chironomus riparius

    NARCIS (Netherlands)

    Leslie, H.A.; Kraak, M.H.S.; Hermens, J.L.

    2004-01-01

    The use of internal concentrations as a dose parameter for baseline toxicity requires an understanding of the relationship between accumulation level and toxic effects, not only for acute but also for chronic exposure. In this study of chronic toxicity of the nonpolar narcotic

  19. Evaluation of Extraction Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using Multivariate Projection Methods

    Directory of Open Access Journals (Sweden)

    Nicolas P. Tambellini

    2013-07-01

    Full Text Available Metabolomic and lipidomic approaches aim to measure metabolites or lipids in the cell. Metabolite extraction is a key step in obtaining useful and reliable data for successful metabolite studies. Significant efforts have been made to identify the optimal extraction protocol for various platforms and biological systems, for both polar and non-polar metabolites. Here we report an approach utilizing chemoinformatics for systematic comparison of protocols to extract both from a single sample of the model yeast organism Saccharomyces cerevisiae. Three chloroform/methanol/water partitioning based extraction protocols found in literature were evaluated for their effectiveness at reproducibly extracting both polar and non-polar metabolites. Fatty acid methyl esters and methoxyamine/trimethylsilyl derivatized aqueous compounds were analyzed by gas chromatography mass spectrometry to evaluate non-polar or polar metabolite analysis. The comparative breadth and amount of recovered metabolites was evaluated using multivariate projection methods. This approach identified an optimal protocol consisting of 64 identified polar metabolites from 105 ion hits and 12 fatty acids recovered, and will potentially attenuate the error and variation associated with combining metabolite profiles from different samples for untargeted analysis with both polar and non-polar analytes. It also confirmed the value of using multivariate projection methods to compare established extraction protocols.

  20. Non-polar lipids accumulate during storage of transfusion products and do not contribute to the onset of transfusion-related acute lung injury.

    Science.gov (United States)

    Peters, A L; Vervaart, M A T; van Bruggen, R; de Korte, D; Nieuwland, R; Kulik, W; Vlaar, A P J

    2017-01-01

    The accumulation of non-polar lipids arachidonic acid, 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE and 15-HETE during storage of transfusion products may play a role in the onset of transfusion-related acute lung injury (TRALI), a syndrome of respiratory distress after transfusion. We investigated non-polar lipid accumulation in red blood cells (RBCs) stored for 42 days, plasma stored for 7 days at either 4 or 20°C and platelet (PLT) transfusion products stored for 7 days. Furthermore, we investigated whether transfusion of RBCs with increased levels of non-polar lipids induces TRALI in a 'two-hit' human volunteer model. All products were produced following Dutch Blood Bank protocols and are according to European standards. Non-polar lipids were measured with high-performance liquid chromotography followed by mass spectrometry. All non-polar lipids increased in RBCs after 21 days of storage compared to baseline. The non-polar lipid concentration in plasma increased significantly, and the increase was even more pronounced in products stored at 20°C. In platelets, baseline levels of 5-HETE and 15-HETE were higher than in RBCs or plasma. However, the non-polar lipids did not change significantly during storage of PLT products. Infusion of RBCs with increased levels of non-polar lipids did not induce TRALI in LPS-primed human volunteers. We conclude that non-polar lipids accumulate in RBC and plasma transfusion products and that accumulation is temperature dependent. Accumulation of non-polar lipids does not appear to explain the onset of TRALI (Dutch Trial Register - NTR4455). © 2016 International Society of Blood Transfusion.

  1. Effect of Solvent Dielectric Constant and Acidity on the OH Vibration Frequency in Hydrogen-Bonded Complexes of Fluorinated Ethanols.

    Science.gov (United States)

    Pines, Dina; Keinan, Sharon; Kiefer, Philip M; Hynes, James T; Pines, Ehud

    2015-07-23

    Infrared spectroscopy measurements were used to characterize the OH stretching vibrations in a series of similarly structured fluoroethanols, RCH2OH (R = CH3, CH2F, CHF2, CF3), a series which exhibits a systematic increase in the molecule acidity with increasing number of F atoms. This study, which expands our earlier efforts, was carried out in non-hydrogen-bonding solvents comprising molecules with and without a permanent dipole moment, with the former solvents being classified as polar solvents and the latter designated as nonpolar. The hydrogen bond interaction in donor-acceptor complexes formed in solution between the fluorinated ethanol H-donors and the H-acceptor base DMSO was investigated in relation to the solvent dielectric and to the differences ΔPA of the gas phase proton affinities (PAs) of the conjugate base of the fluorinated alcohols and DMSO. We have observed that νOH decreases as the acidity of the alcohol increases (ΔPA decreases) and that νOH varies inversely with ε, exhibiting different slopes for nonpolar and polar solvents. These 1/ε slopes tend to vary linearly with ΔPA, increasing with increasing acidity. These experimental findings, including the ΔPA trends, are described with our recently published two-state Valence Bond-based theory for acid-base H-bonded complexes. Lastly, the correlation of the alcohol's conjugate base PAs with Taft σ* values of the fluorinated ethyl groups CH(n)F(3-n)CH2- provides a connection of the inductive effects for these groups with the acidity parameter ΔPA associated with the H-bonded complexes.

  2. Molecular, vibrational and electronic structure of 4-bromo-2-halogenobenzaldehydes: Halogen and solvent effects

    Science.gov (United States)

    Fernández, David; Parlak, Cemal; Bilge, Metin; Kaya, Mehmet Fatih; Tursun, Mahir; Keşan, Gürkan; Rhyman, Lydia; Ramasami, Ponnadurai; Şenyel, Mustafa

    2017-09-01

    The halogen and solvent effects on the structure of 4-bromo-2-halogenobenzaldehydes [C7H4BrXO; X = F (BFB), Cl (BCB) or Br (BBB)] were investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The B3LYP functional and HF and MP2 levels of theory were used with the 6-311+G(3df,p) or aug-cc-pVDZ basis sets. Computations were focused on the cis and trans conformers of the investigated compounds in the gas phase and solutions of 18 different polar or non-polar organic solvents. The computed frequencies of the C=O stretching vibration of the compounds were correlated with some empirical solvent parameters such as the Kirkwood-Bauer-Magat (KBM) equation, solvent acceptor number (AN), Swain parameters and linear solvation energy relationships (LSERs). The electronic properties of the compounds were also examined. The present work explores the effects of the medium and halogen on the conformation, geometrical parameters, dipole moment, ν(C=O) vibration, UV data, frontier orbitals and density-of-states diagram of the compounds. The findings of this research can be useful for studies on benzaldehydes.

  3. SOLVENT EXTRACTION OF URANIUM VALUES

    Science.gov (United States)

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  4. Supercritical multicomponent solvent coal extraction

    Science.gov (United States)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  5. Determining the orientation of protegrin-1 in DLPC bilayers using an implicit solvent-membrane model.

    Directory of Open Access Journals (Sweden)

    Abdallah Sayyed-Ahmad

    Full Text Available Continuum models that describe the effects of solvent and biological membrane molecules on the structure and behavior of antimicrobial peptides, holds a promise to improve our understanding of the mechanisms of antimicrobial action of these peptides. In such methods, a lipid bilayer model membrane is implicitly represented by multiple layers of relatively low dielectric constant embedded in a high dielectric aqueous solvent, while an antimicrobial peptide is accounted for by a dielectric cavity with fixed partial charge at the center of each one of its atoms. In the present work, we investigate the ability of continuum approaches to predict the most probable orientation of the beta-hairpin antimicrobial peptide Protegrin-1 (PG-1 in DLPC lipid bilayers by calculating the difference in the transfer free energy from an aqueous environment to a membrane-water environment for multiple orientations. The transfer free energy is computed as a sum of two terms; polar/electrostatic and non-polar. They both include energetic and entropic contributions to the free energy. We numerically solve the Poisson-Boltzmann equation to calculate the electrostatic contribution to the transfer free energy, while the non-polar contribution to the free energy is approximated using a linear solvent accessible surface area relationships. The most probable orientation of PG-1 is that with the lowest relative transfer free energy. Our simulation results indicate that PG-1 assumes an oblique orientation in DLPC lipid bilayers. The predicted most favorable orientation was with a tilt angle of 19 degrees, which is in qualitative agreement with the experimentally observed orientations derived from solid-state NMR data.

  6. Selection and design of solvents

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    . With increasing interest on issues such as waste, sustainability, environmental impact and green chemistry, the selection and design of solvents have become important problems that need to be addressed during chemical product-process design and development. Systematic methods and tools suitable for selection......Solvents are liquid solutions consisting of one or more chemicals. They have a very wide use and their use is not necessarily restricted to the process industries. This lecture will discuss the different roles and uses of solvents in chemical products and processes that manufacture them...... and design of solvents will be presented together with application examples. The selection problem is defined as finding known chemicals that match the desired functions of a solvent for a specified set of applications. The design problem is defined as finding the molecular structure (or mixture of molecules...

  7. Comparison of lipid membrane-water partitioning with various organic solvent-water partitions of neutral species and ionic species: Uniqueness of cerasome as a model for the stratum corneum in partition processes.

    Science.gov (United States)

    Zhang, Keda; Fahr, Alfred; Abraham, Michael H; Acree, William E; Tobin, Desmond J; Liu, Xiangli

    2015-10-15

    Lipid membrane-water partitions (e.g., immobilized artificial membrane systems where the lipid membrane is a neutral phospholipid monolayer bound to gel beads) were compared to various organic solvent-water partitions using linear free energy relationships. To this end, we also measured the retention factors of 36 compounds (including neutral and ionic species) from water to liposomes made up of 3-sn-phosphatidylcholine and 3-sn-phosphatidyl-l-serine (80:20, mol/mol), employing liposome electrokinetic chromatography in this work. The results show that lipid membranes exhibit a considerably different chemical environment from those of organic solvents. For both neutral species and ionic species, partitions into the more polar hydroxylic solvents are chemically closer to partition into the lipid membrane as compared to partitions into the less polar hydroxylic solvents and into aprotic solvents. This means that solutes partition into the polar parts of lipid membranes, regardless of whether they are charged or not. In addition, cerasome (i.e., liposome composed mainly of stratum corneum lipids) was compared with regular phospholipid liposomes as a possible model for human stratum corneum in partitions. It was found that the cerasome-water partition exhibits a better chemical similarity to skin permeation. This is probably due to the unique structures of ceramides that occur in cerasome and in the stratum corneum lipid domain. We further show that membranes in membrane-water partitions exhibit very different properties.

  8. Solvent degradation products in nuclear fuel processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  9. Switchable Polarity Solvents: Are They Green?

    Science.gov (United States)

    Plaumann, Heinz

    2017-03-01

    Solvents play an incredibly important role in large scale chemical reactions. Switchable polarity solvents may prove to be a class of solvent that offers energy and material efficiencies greater than existing solvents. This paper examines such solvents and their potential in a variety of chemical reactions.

  10. Heme and non-heme iron transporters in non-polarized and polarized cells

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2010-06-01

    Full Text Available Abstract Background Heme and non-heme iron from diet, and recycled iron from hemoglobin are important products of the synthesis of iron-containing molecules. In excess, iron is potentially toxic because it can produce reactive oxygen species through the Fenton reaction. Humans can absorb, transport, store, and recycle iron without an excretory system to remove excess iron. Two candidate heme transporters and two iron transporters have been reported thus far. Heme incorporated into cells is degraded by heme oxygenases (HOs, and the iron product is reutilized by the body. To specify the processes of heme uptake and degradation, and the reutilization of iron, we determined the subcellular localizations of these transporters and HOs. Results In this study, we analyzed the subcellular localizations of 2 isoenzymes of HOs, 4 isoforms of divalent metal transporter 1 (DMT1, and 2 candidate heme transporters--heme carrier protein 1 (HCP1 and heme responsive gene-1 (HRG-1--in non-polarized and polarized cells. In non-polarized cells, HCP1, HRG-1, and DMT1A-I are located in the plasma membrane. In polarized cells, they show distinct localizations: HCP1 and DMT1A-I are located in the apical membrane, whereas HRG-1 is located in the basolateral membrane and lysosome. 16Leu at DMT1A-I N-terminal cytosolic domain was found to be crucial for plasma membrane localization. HOs are located in smooth endoplasmic reticulum and colocalize with NADPH-cytochrome P450 reductase. Conclusions HCP1 and DMT1A-I are localized to the apical membrane, and HRG-1 to the basolateral membrane and lysosome. These findings suggest that HCP1 and DMT1A-I have functions in the uptake of dietary heme and non-heme iron. HRG-1 can transport endocytosed heme from the lysosome into the cytosol. These localization studies support a model in which cytosolic heme can be degraded by HOs, and the resulting iron is exported into tissue fluids via the iron transporter ferroportin 1, which is

  11. Remarks on energetic conditions for positronium formation in non-polar solids. Coupled Dipole Method application

    CERN Document Server

    Pietrow, Marek

    2015-01-01

    A numerical program calculating an energy of a positron or (and) an electron near the free volume in solid n-alkanes has been build. The theory of interaction of e+ or (and) e- with this non-polar media based on polarizability has been introduced. The energy of the e+ -- e- pair in the bulk was compared to that calculated when the pair forms a positronium (Ps) inside the free volume. The calculations are based on the Coupled Dipole Method and the dipole-dipole interaction energy for induced dipoles is taken into account. Furthermore, a correction of a local permittivity for the e+ -- e- interaction is calculated taking into account the non-isotropic medium between them. The method is a step toward more accurate calculations of energetic conditions during the Ps formation in matter. The possibility of emission of the excess energy of the Ps formation as electromagnetic radiation is discussed. It is argued that if this radiation is observed, it can be used as a new spectroscopic tool providing information about...

  12. Nonpolarized signaling reveals two distinct modes of 3D cell migration.

    Science.gov (United States)

    Petrie, Ryan J; Gavara, Núria; Chadwick, Richard S; Yamada, Kenneth M

    2012-04-30

    We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.

  13. Optical Kerr Effect Spectroscopy of a Nonpolar Solute in Dicationic versus Monocationic Ionic Liquids

    Science.gov (United States)

    Gurung, Eshan; Xue, Lianjie; Tamas, George; Quitevis, Edward

    2014-03-01

    A comparison of the intermolecular dynamics of small nonpolar solute molecules in monocationic and dicationic ionic liquids (ILs) was performed using optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The optical Kerr effect (OKE) spectrum of CS2 in 1-methyl-3-propylimidazolium bis(trifluoromethane-sulfonyl)amide [C3mim][NTf2] and 1,6-bis(3-methylimidazolium-1-yl) hexane bis(trifluoromethane-sulfonyl)amide [C6(mim)2][NTf2]2 was investigated as a function of concentration at 295 K. An additivity model with components from the subpicosecond dynamics of IL and CS2 was used to interpret the OKE spectra of the mixtures. The spectrum of CS2 in the two ILs is lower in frequency and narrower than that of neat CS2. The spectrum of CS2 in the dicationic IL is higher in frequency than in the monocationic IL. This result shows that CS2 molecule experiences a stiffer potential in dicationic ILs as compared to monocationic ILs. Higher stiffness in C6(mim)2][NTf2]2 might be due to a more ordered arrangement and lower mobility of the alkyl chains linking the imidazolium rings. This work was supported by NSF Grant CHE-1153077.

  14. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  15. Improving oil recovery in the CO2 flooding process by utilizing nonpolar chemical modifiers☆

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Xiangliang Li; Ping Guo; Yayun Zhuo; Yong Sha

    2016-01-01

    By means of experiments of CO2 miscibility with crude oil, four nonpolar chemicals were evaluated in order to enhance the miscibility of CO2 with crude oil. Through pre-slug injection and joint injection of toluene in CO2, crude oil displacement experiments in the slim-tube were conducted to investigate effects of the toluene-enhanced CO2 flooding under simulated subterranean reservoir conditions. Experimental results showed that toluene can enhance extraction of oil into CO2 and dissolution of CO2 into oil with the increment of 251%and 64%respectively. Addition of toluene can obviously improve the oil recovery in either pre-slug injection or joint injection, and the crude oil recovery increased with the increase of the toluene concentration. The oil recov-ery can increase by 22.5%in pre-slug injection with the high toluene concentration. Pre-slug injection was recom-mended because it can consume less toluene than joint injection. This work could be useful to development and application of the CO2 flooding in the oil recovery as wel as CO2 emission reduction.

  16. Competitive and cooperative adsorption behaviors of phenol and aniline onto nonpolar macroreticular adsorbents

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-ming; CHEN Jin-long; PAN Bing-cai; ZHANG Quan-xing

    2005-01-01

    The adsorption behaviors of phenol and aniline on nonpolar macroreticular adsorbents( NDA100 and Amberlite XAD4) were investigated in single or binary batch system at 293K and 313K respectively in this study. The results indicated that the adsorption isotherms of phenol and aniline on both adsorbents in both systems fitted well Langmuir equation, which indicated a favourable and exothermic process. At the lower equilibrium concentrations, the individual amount adsorbed of phenol or aniline or macroreticular adsorbents in single-component systems was higher than those in binary-component systems because of the competition between phenol and aniline towards the adsorption sites. It is noteworthy, on the contrast, that at higher concentrations, the total uptake amounts of phenol and aniline in binary-component systems were obviously larger than that in single-component systems, and a large excess was noted on the adsorbent surface at saturation, which is presumably due to the cooperative effect primarily arisen from the hydrogen bonding or weak acidbase interaction between phenol and aniline.

  17. A silicone column for GC analysis of polar and nonpolar chemicals

    Science.gov (United States)

    Shen, T. C.

    1991-10-01

    The investigation of the Saturnian System is being proposed jointly by NASA and the European Space Agency (ESA). The mission is scheduled for a launch in 1996. The mission provides an opportunity for close observation and exploration of Saturn's atmosphere, the complex Saturnian System of satellites and rings, Titan (Saturn's planet-sized moon), and Saturn's magnetosphere. The mission gives special attention to Titan which is blanketed by a thick, opaque atmosphere. An atmospheric probe will be deposited into the Titan Atmosphere for in situ measurement during a slow, three hour descent to the surface. The results from this analysis may provide the information which is important to the research of chemical evolution, and the origin of life. An analytical system was developed as a part of the Titan Aerosol Gas Experiment (TAGEX), a proposed experiment for the Cassini Mission. This system will use two highly sensitive detectors, the Metastable Ionization Detector (MID) and the Ion Mobility Spectrometer (IMS). Unfortunately, when commercial columns are utilized with these highly sensitive detectors, volatile components continuously bleed from the column and interfere with the detector. In addition, light columns must be able to separate polar and nonpolar organic chemicals within 10-15 minutes under isothermal conditions for the Titan Mission. Therefore, a highly crosslinked silicone polymeric packed column was developed which is able to efficiently separate amines, alcohols, and hydrocarbons with retention times less that 15 minutes at 100 C isothermal condition.

  18. Self-consistent theory of nanodomain formation on nonpolar surfaces of ferroelectrics

    Science.gov (United States)

    Morozovska, Anna N.; Ievlev, Anton V.; Obukhovskii, Vyacheslav V.; Fomichov, Yevhen; Varenyk, Oleksandr V.; Shur, Vladimir Ya.; Kalinin, Sergei V.; Eliseev, Eugene A.

    2016-04-01

    We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy along the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNb O3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.

  19. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles.

    Science.gov (United States)

    Wang, Fang; Haftka, Joris J-H; Sinnige, Theo L; Hermens, Joop L M; Chen, Wei

    2014-03-01

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and 1,3-dichlorobenzene) and model polar compounds (1-naphthol, 1-naphthylamine, 2,4-dichlorophenol, and 2,4-dinitrotoluene). GONPs exhibited strong adsorption affinities for all the test compounds, with distribution coefficients on the order of 10(3)-10(6) L/kg. Adsorption to GONPs is much more linear than to carbon nanotubes (CNTs) and C60, likely because GO nanoflakes are essentially individually dispersed (rendering adsorption sites of similar adsorption energy) whereas CNT/C60 are prone to bundling/aggregation. For a given compound GONPs and CNTs often exhibit different adsorption affinities, which is attributable to the differences in both the morphology and surface chemistry between the two nanomaterials. Particularly, the high surface O-content of GONPs enables strong H-bonding and Lewis acid-base interactions with hydroxyl- and amino-substituted aromatics.

  20. Molecular Dynamics Simulation of Behaviours of Non-Polar Droplets Merging and Interactions with Hydrophobic Surfaces

    Institute of Scientific and Technical Information of China (English)

    Y.Y.Yan; C.Y.Ji

    2008-01-01

    This paper presents a molecular dynamics simulation of the behaviours of non-polar droplets merging and also the fluid molecules interacting with a hydrophobic surface. Such behaviours and transport phenomena are popular in general micro-channel flow boiling and two-phase flow. The droplets are assumed to be composed of Lennards-Jones type molecules. Periodic boundary conditions are applied in three coordinate directions ofa 3-D system, where there exist two liquid droplets and their vapour. The two droplets merge when they come within the prescribed small distance. The merging of two droplets apart from each other at different initial distances is tested and the possible larger (or critical) non-dimensional distance, in which droplets merging can occur, is discussed. The evolution of the merging process is simulated numerically by employing the Molecular Dynamics (MD) method. For interactions with hydrophobic solid wail, a system with fluid confined between two walls is used to study the wetting phenomena of fluid and solid wail. The results are compared with those of hydrophilic wall to show the unique characteristics of hydrophobic interactions by microscopic methods.

  1. Composition of the non-polar extracts and antimicrobial activity of Chorisia insignis HBK. leaves

    Directory of Open Access Journals (Sweden)

    Salma Ahmed Mahmoud El Sawi

    2014-12-01

    Full Text Available Objective: To investigate the chemical constituents of the petroleum ether extract and the ether fraction of the 70% ethanol extract of Chorisia insignis HBK. leaves, as well as screen its antimicrobial activity. Methods: Different chromatographic methods were applied to investigate the non-polar extracts and the diffusion assay method was applied to study the antimicrobial activity. Results: A total of 50 compounds from the unsaponifiable matter and 20 fatty acid methyl esters were identified from the petroleum ether extract by GC/MS analysis. n-Hentriacontane, n-tritriacontane, stigmastanol, 3-methoxy-5, 6-dihydrostigmasterol, 7,8-dihydroergosterol, 4-methylcholesterol, cholestanol, multiflorenol, cholest-5-en-3-one, cholest-6-one, 5,6- dihydroergosterol, stigmasterol, dihydroalbigenin and 11-methyl-Δ5,7,9,15,17,23-triacont-hex-ene were isolated from the petroleum ether extract. Methyl heptacosanoate and quinic acid ester of rhamnose were isolated from the ether fraction of the 70% ethanol extract. Antimicrobial activity of the total alcohol extract and the successive fractions showed that the ether and the ethyl acetate fractions have potent antibacterial activity against Bacillus subtilis and Bacillus cereus. Conclusions: The ether and the ethyl acetate fractions could be used in pharmaceutical formulations as antibacterial agents against Bacillus subtilis and Bacillus cereus, and further clinical trials should be performed in order to support the above investigations.

  2. Piezoelectricity and rotostriction through polar and non-polar coupled instabilities in bismuth-based piezoceramics

    Science.gov (United States)

    Acosta, Matias; Schmitt, Ljubomira A.; Cazorla, Claudio; Studer, Andrew; Zintler, Alexander; Glaum, Julia; Kleebe, Hans-Joachim; Donner, Wolfgang; Hoffman, Mark; Rödel, Jürgen; Hinterstein, Manuel

    2016-07-01

    Coupling of order parameters provides a means to tune functionality in advanced materials including multiferroics, superconductors, and ionic conductors. We demonstrate that the response of a frustrated ferroelectric state leads to coupling between order parameters under electric field depending on grain orientation. The strain of grains oriented along a specific crystallographic direction, , is caused by converse piezoelectricity originating from a ferrodistortive tetragonal phase. For hhh> oriented grains, the strain results from converse piezoelectricity and rotostriction, as indicated by an antiferrodistortive instability that promotes octahedral tilting in a rhombohedral phase. Both strain mechanisms combined lead to a colossal local strain of (2.4 ± 0.1) % and indicate coupling between oxygen octahedral tilting and polarization, here termed “rotopolarization”. These findings were confirmed with electromechanical experiments, in situ neutron diffraction, and in situ transmission electron microscopy in 0.75Bi1/2Na1/2TiO3-0.25SrTiO3. This work demonstrates that polar and non-polar instabilities can cooperate to provide colossal functional responses.

  3. Analysis of current transport properties in nonpolar a-plane ZnO-based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Haeri; Kim, Dongwook [Ewha Womans University, Seoul (Korea, Republic of)

    2014-09-15

    Using current-voltage (I - V) measurements, we investigated the temperature-dependent transport properties in Ag/nonpolar a-plane ZnO Schottky diodes. The bias-dependent ideality factors were altered by the different temperatures and showed a hump at lower temperatures. The series resistance of the diode depended on the temperatures, which was related to the number of free carriers contributing to the series resistance. For high forward bias, the slope m obtained from the lnI - lnV curves decreased with increasing temperature, assuring the space-charge-limited-current (SCLC) model controlled by an exponential distribution of traps. The reverse-biased current transport was associated with the Schottky effect, with a thermally-assisted tunneling for lower voltages and the Poole-Frenkel effect for higher voltages. The density of localized states (N{sub t}) was obtained by applying the theory of SCLC transport, which yielded a N{sub t} value of 8.32 x 10{sup 11} eV{sup -1}cm{sup -3}.

  4. Handbook of organic solvent properties

    CERN Document Server

    Smallwood, Ian

    2012-01-01

    The properties of 72 of the most commonly used solvents are given, tabulated in the most convenient way, making this book a joy for industrial chemists to use as a desk reference. The properties covered are those which answer the basic questions of: Will it do the job? Will it harm the user? Will it pollute the air? Is it easy to handle? Will it pollute the water? Can it be recovered or incinerated? These are all factors that need to be considered at the early stages of choosing a solvent for a new product or process.A collection of the physical properties of most commonly used solvents, their

  5. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    problems are presented: 1) solvent selection and design for organic synthesis, 2) solvent screening and design of solvent mixtures for pharmaceutical applications and 3) ionic liquids selection and design as solvents. The application of the framework is highlighted successfully through case studies...... focusing on solvent replacement problem in organic synthesis and solvent mixture design for ibuprofen respectively....

  6. Electroluminescence from nonpolar n-ZnO/p-AlGaN heterojunction light-emitting diode on r-sapphire

    Science.gov (United States)

    Chen, Jingwen; Zhang, Jun; Dai, Jiangnan; Wu, Feng; Wang, Shuai; Chen, Cheng; Long, Hanling; Liang, Renli; Zhao, Chong; Chen, Changqing; Tang, Zhiwu; Cheng, Hailing; He, Yunbin; Li, Mingkai

    2017-03-01

    Nonpolar a-plane n-ZnO/p-AlGaN heterojunction light-emitting diodes (LEDs) have been prepared on r-sapphire substrate using metal organic chemical vapor deposition and a pulsed laser deposition method. The dominant electroluminescence emission at 390 nm from the interband transition in n-ZnO layer under a forward bias was observed. Interestingly, electroluminescence with emission at 385 nm based on an avalanche mechanism was also achieved under reverse bias. The mechanisms of both the electroluminescence and I–V characteristics are discussed in detail by considering the avalanche effect. It is demonstrated that the crystalline quality of n-ZnO, not the p-AlGaN, is what affects the performance of the nonpolar ZnO based avalanche LED.

  7. Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: Towards reduced photonic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J., E-mail: jzp@crhea.cnrs.fr; Kappei, L.; Deparis, C.; Chenot, S.; Leroux, M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Reveret, F.; Jamadi, O.; Leymarie, J. [Clermont Université, Institut Pascal (IP), BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, IP, F-63171 Aubière (France); Grundmann, M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Prado, E. de [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain)

    2016-06-20

    Nonpolar ZnO/ZnMgO-based optical microcavities have been grown on (10-10) m-plane ZnO substrates by plasma-assisted molecular beam epitaxy. Reflectivity measurements indicate an exponential increase of the cavity quality factor with the number of layers in the distributed Bragg reflectors. Most importantly, microreflectivity spectra recorded with a spot size in the order of 2 μm show a negligible photonic disorder (well below 1 meV), leading to local quality factors equivalent to those obtained by macroreflectivity. The anisotropic character of the nonpolar heterostructures manifests itself both in the surface features, elongated parallel to the in-plane c direction, and in the optical spectra, with two cavity modes being observed at different energies for orthogonal polarizations.

  8. An analytical method of predicting Lee-Kesler-Ploecker binary interaction coefficients: Part 1, For non-polar hydrocarbon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sand, J.R.

    1994-12-31

    An analytical method is proposed for finding numerical values of binary interaction coefficients for non-polar hydrocarbon mixtures when the Lee-Kesler (LK) equation of state is applied. The method is based on solving simultaneous equations, which are Ploecker`s mixing rules for pseudocritical parameters of a mixture, and the Lee-Kesler equation for the saturation line. For a hydrocarbon mixture, the method allows prediction of {kappa}{sub ij} interaction coefficients (ICs) which are close to values obtained by processing experimental p-v-t data on the saturation line and subsequent averaging. For mixtures of hydrocarbon molecules containing from 2 to 9 carbon atoms, the divergence between calculated and experimentally based ICs is no more than {plus_minus}0.4%. The possibility of extending application of this method to other non-polar substances is discussed.

  9. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents.

    Science.gov (United States)

    Samorì, Chiara; Torri, Cristian; Samorì, Giulia; Fabbri, Daniele; Galletti, Paola; Guerrini, Franca; Pistocchi, Rossella; Tagliavini, Emilio

    2010-05-01

    Lipid extraction is a critical step in the development of biofuels from microalgae. Here a new procedure was proposed to extract hydrocarbons from dried and water-suspended samples of the microalga Botryococcus braunii by using switchable-polarity solvents (SPS) based on 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) and an alcohol. The high affinity of the non-ionic form of DBU/alcohol SPS towards non-polar compounds was exploited to extract hydrocarbons from algae, while the ionic character of the DBU-alkyl carbonate form, obtained by the addition of CO(2), was used to recover hydrocarbons from the SPS. DBU/octanol and DBU/ethanol SPS were tested for the extraction efficiency of lipids from freeze-dried B. braunii samples and compared with n-hexane and chloroform/methanol. The DBU/octanol system was further evaluated for the extraction of hydrocarbons directly from algal culture samples. DBU/octanol exhibited the highest yields of extracted hydrocarbons from both freeze-dried and liquid algal samples (16% and 8.2% respectively against 7.8% and 5.6% with n-hexane).

  10. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.

    Science.gov (United States)

    Humphreys, C J; Griffiths, J T; Tang, F; Oehler, F; Findlay, S D; Zheng, C; Etheridge, J; Martin, T L; Bagot, P A J; Moody, M P; Sutherland, D; Dawson, P; Schulz, S; Zhang, S; Fu, W Y; Zhu, T; Kappers, M J; Oliver, R A

    2017-02-03

    We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

  11. Practical Approaches to Green Solvents

    National Research Council Canada - National Science Library

    Joseph M. DeSimone

    2002-01-01

    Solvents are widely used in commercial manufacturing and service industries. Despite abundant precaution, they inevitably contaminate our air, land, and water because they are difficult to contain and recycle...

  12. Hansen Cleaning Solvent Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulation will force current baseline  precision cleaning solvent (AK-225) to be phased out starting 2015. We plan to develop  a new...

  13. Predicting Partitioning and Diffusion Properties of Nonpolar Chemicals in Biotic Media and Passive Sampler Phases by GC × GC.

    Science.gov (United States)

    Nabi, Deedar; Arey, J Samuel

    2017-02-14

    The chemical parameters needed to explain and predict bioavailability, biodynamics, and baseline toxicity are not readily available for most nonpolar chemicals detected in the environment. Here, we demonstrate that comprehensive two-dimensional gas chromatography (GC × GC) retention times can be used to predict 26 relevant properties for nonpolar chemicals, specifically: partition coefficients for diverse biotic media and passive sampler phases; aquatic baseline toxicity; and relevant diffusion coefficients. The considered biotic and passive sampler phases include membrane and storage lipids, serum and muscle proteins, carbohydrates, algae, mussels, polydimethylsiloxane, polyethylene, polyoxymethylene, polyacrylate, polyurethane, and semipermeable membrane devices. GC × GC-based chemical property predictions are validated with a compilation of 1038 experimental property data collected from the literature. As an example application, we overlay a map of baseline toxicity to fathead minnows onto the separated analyte signal of a polychlorinated alkanes (chlorinated paraffins) technical mixture that contains 7820 congeners. In a second application, GC × GC-estimated properties are used to parametrize multiphase partitioning models for mammalian tissues and organs. In a third example, we estimate chemical depuration kinetics for mussels. Finally, we illustrate an approach to screen the GC × GC chromatogram for nonpolar chemicals of potentially high concern, defined based on their GC × GC-estimated biopartitioning properties, diffusion properties, and baseline toxicity.

  14. Tailoring of polar and nonpolar ZnO planes on MgO (001) substrates through molecular beam epitaxy.

    Science.gov (United States)

    Zhou, Hua; Wang, Hui-Qiong; Liao, Xia-Xia; Zhang, Yufeng; Zheng, Jin-Cheng; Wang, Jia-Ou; Muhemmed, Emin; Qian, Hai-Jie; Ibrahim, Kurash; Chen, Xiaohang; Zhan, Huahan; Kang, Junyong

    2012-03-09

    Polar and nonpolar ZnO thin films were deposited on MgO (001) substrates under different deposition parameters using oxygen plasma-assisted molecular beam epitaxy (MBE). The orientations of ZnO thin films were investigated by in situ reflection high-energy electron diffraction and ex situ X-ray diffraction (XRD). The film roughness measured by atomic force microscopy evolved as a function of substrate temperature and was correlated with the grain sizes determined by XRD. Synchrotron-based X-ray absorption spectroscopy (XAS) was performed to study the conduction band structures of the ZnO films. The fine structures of the XAS spectra, which were consistent with the results of density functional theory calculation, indicated that the polar and nonpolar ZnO films had different electronic structures. Our work suggests that it is possible to vary ZnO film structures from polar to nonpolar using the MBE growth technique and hence tailoring the electronic structures of the ZnO films.PACS: 81; 81.05.Dz; 81.15.Hi.

  15. The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells

    Science.gov (United States)

    Dawson, P.; Schulz, S.; Oliver, R. A.; Kappers, M. J.; Humphreys, C. J.

    2016-05-01

    In this paper, we compare and contrast the experimental data and the theoretical predictions of the low temperature optical properties of polar and nonpolar InGaN/GaN quantum well structures. In both types of structure, the optical properties at low temperatures are governed by the effects of carrier localisation. In polar structures, the effect of the in-built electric field leads to electrons being mainly localised at well width fluctuations, whereas holes are localised at regions within the quantum wells, where the random In distribution leads to local minima in potential energy. This leads to a system of independently localised electrons and holes. In nonpolar quantum wells, the nature of the hole localisation is essentially the same as the polar case but the electrons are now coulombically bound to the holes forming localised excitons. These localisation mechanisms are compatible with the large photoluminescence linewidths of the polar and nonpolar quantum wells as well as the different time scales and form of the radiative recombination decay curves.

  16. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures.

    Science.gov (United States)

    Souda, Ryutaro

    2017-01-18

    Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.

  17. Applied biotransformations in green solvents.

    Science.gov (United States)

    Hernáiz, María J; Alcántara, Andrés R; García, José I; Sinisterra, José V

    2010-08-16

    The definite interest in implementing sustainable industrial technologies has impelled the use of biocatalysts (enzymes or cells), leading to high chemo-, regio- and stereoselectivities under mild conditions. As usual substrates are not soluble in water, the employ of organic solvents is mandatory. We will focus on different attempts to combine the valuable properties of green solvents with the advantages of using biocatalysts for developing cleaner synthetic processes.

  18. The fluorescence of 5-cyano-2-(1-pyrrolyl)-pyridine (CPP) in different solvents and in solid argon: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, S.; Schweke, D.; Zilberg, S. [Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem (Israel); Haas, Y. [Department of Physical Chemistry and the Farkas Center for Light Induced Processes, Hebrew University of Jerusalem, Jerusalem (Israel)], E-mail: yehuda@chem.ch.huji.ac.il

    2007-05-21

    The fluorescence spectrum of 5-cyano-2-(1-pyrrolyl)-pyridine (CPP) was measured in several solvents as well as in an argon matrix. Based on comparison with other compounds and on ab initio calculations it is proposed that the fluorescence in the argon matrix and in non-polar solvents is due to two electronic excited states: one is of locally excited nature, the other a charge transfer (CT) state. In polar solvents the spectrum is dominated by the CT emission. The photo-physical behavior of CPP is discussed by comparison with that of other molecules exhibiting dual fluorescence and in view of a recent model developed for the benzene analog.

  19. Spectrophotometric and spectroscopic studies of charge transfer complexes of p-toluidine as an electron donor with picric acid as an electron acceptor in different solvents.

    Science.gov (United States)

    Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.

  20. Spectrophotometric studies on the charge-transfer interaction between p-nitroaniline with chloranilic acid as π-acceptor in different polar solvents

    Science.gov (United States)

    Singh, Neeti; Ahmad, Afaq

    2017-01-01

    The charge transfer interaction between the donor p-nitroaniline with the acceptor chloranilic acid has been studied spectrophotometrically in various solvents such as chloroform, ethanol, and methanol at room temperature. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (KCT), molar extinction coefficient (εCT), standard free energy (ΔG), oscillator strength (f), transition dipole moment (μN), resonance energy (RN) and ionization potential (ID). The results indicate that the formation constant (KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. The formation of the complex has been confirmed by UV-visible, FT-IR, and 1H NMR techniques.

  1. Comparative Study of the Characteristics of the Basal Plane Stacking Faults of Nonpolar a-Plane and Semipolar (11(2)2) GaN

    Institute of Scientific and Technical Information of China (English)

    XU Sheng-Rui; HAO Yue; LIN Zhi-Yu; XUE Xiao-Yong; LIU Zi-Yang; MA Jun-Cai; JIANG Teng; MAO Wei; WANG Dang-Hui; ZHANG Jin-Cheng

    2012-01-01

    Nonpolar (11-20) and semipolar (11222) GaN are grown on r-plane and m-plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs). Transmission electron microscopy reveals that the density of BSFs for the semipolar (11-22) and nonpolar a-plane GaN template is 3×105cm-1 and 8×10 cm'1, respectively. The semipolar (11-22) GaN shows an arrowhead-like structure, and the nonpolar a-plane GaN has a much smoother morphology with a streak along the c-axis. Both nonpolar (11-20) and semipolar (11-22) GaN have very strong BSF luminescence due to the optically active character of the BSFs.%Nonpolar (11(2)0) and semipolar (11(2)2) GaN are grown on r-plane and m-plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs).Transmission electron microscopy reveals that the density of BSFs for the semipolar (11(2)2) and nonpolar a-plane GaN template is 3x105 cm-1 and 8×105 cm-1,respectively.The semipolar (11(2)2) GaN shows an arrowhead-like structure,and the nonpolar a-plane GaN has a much smoother morphology with a streak along the c-axis.Both nonpolar (11(2)0) and semipolar (11(2)2) GaN have very strong BSF luminescence due to the optically active character of the BSFs.

  2. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  3. Recent Advances in Nonpolar and Semipolar InGaN Light-Emitting Diodes (LEDs).

    Science.gov (United States)

    Jang, Jongjin; Woo, Seohwi; Min, Daehong; Nam, Okhyun

    2015-03-01

    The III-nitrides have attracted much attention because of their applicability in optoelectronic devices, whose emission wavelengths range from green to ultraviolet light due to their wide band gap. However, conventional c-plane GaN-based devices are influenced significantly by spontaneous and piezoelectric polarization effects, which could pose a limitation for increased luminous efficiency as a result of the quantum confined stark effect. Since the early 2000s, many groups have tried to solve these problems by examining the growth of GaN on non- or semipolar surface planes. High power non- and semipolar LEDs can be realized by the growth of a thick active layer. In addition, it is expected that it is possible to grow nonpolar InGaN LEDs with high quality p-GaN layers due to lower hole activation energy, and also long-wavelength semipolar InGaN LEDs because of the capacity for high indium incorporation in the quantum wells (QWs). However, non- and semipolar structures grown on sapphire substrate usually contain a high density of basal stacking faults and threading dislocations. For this reason, the growth of non- and semipolar GaN-based LEDs on a sapphire substrate has been attempted through the introduction of defect reduction techniques such as epitaxial lateral overgrowth, patterned sapphire substrate and re-growth techniques on a porous GaN layer, etc. Also, some researchers have grown high quality non- and semipolar GaN-based LEDs using non- and semipolar freestanding GaN substrates. In this review paper, we introduce and discuss recent progress in the development of non- and semipolar GaN-based LEDs and freestanding GaN substrates.

  4. Schottky contact formation on polar and non-polar AlN

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Pramod; Bryan, Isaac; Bryan, Zachary; Tweedie, James; Kirste, Ronny; Collazo, Ramon; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)

    2014-11-21

    The interfaces of m- and c-plane AlN with metals of different work functions and electro-negativities were characterized and the Schottky barrier heights were measured. The Schottky barrier height was determined by measuring the valence band maximum (VBM) with respect to the Fermi level at the surface (interface) before (after) metallization. VBM determination included accurate modeling and curve fitting of density of states at the valence band edge with the XPS data. The experimental behavior of the barrier heights could not be explained by the Schottky-Mott model and was modeled using InterFace-Induced Gap States (IFIGS). A slope parameter (S{sub X}) was used to incorporate the density of surface states and is a measure of Fermi level pinning. The experimental barriers followed theoretical predictions with a barrier height at the surface Fermi level (Charge neutrality level (CNL)) of ∼2.1 eV (∼2.7 eV) on m-plane (c-plane) and S{sub X} ∼ 0.36 eV/Miedema unit. Slope parameter much lower than 0.86 implied a surface/interface states dominated behavior with significant Fermi level pinning and the measured barrier heights were close to the CNL. Titanium and zirconium provided the lowest barriers (1.6 eV) with gold providing the highest (2.3 eV) among the metals analyzed on m-plane. It was consistently found that barrier heights decreased from metal polar to non-polar surfaces, in general, due to an increasing CNL. The data indicated that charged IFIGS compensate spontaneous polarization charge. These barrier height and slope parameter measurements provided essential information for designing Schottky diodes and other contact-based devices on AlN.

  5. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems.

    Science.gov (United States)

    Shrestha, Lok Kumar; Aramaki, Kenji; Kato, Hiroyuki; Takase, Yoshihiko; Kunieda, Hironobu

    2006-09-26

    Foaming properties of monoglycerol fatty acid esters that have different alkyl chain lengths were studied in different nonpolar oils, namely liquid paraffin (LP 70), squalane, and squalene. The effect of the hydrocarbon chain length of the surfactant, the concentration, the nature of the oil, and the temperature on the nonaqueous foam stability was mainly studied. Five weight percent of glycerol alpha-monododecanoate (monolaurin) formed highly stable foams in squalane at 25 degrees C, and the foams were stable for more than 14 h. Foam stability of the monolaurin/LP 70 and the monolaurin/squalene systems are almost similar, and the foams were stable for more than 12 h. Foam stability was decreased as the hydrocarbon chain length of the monoglyceride decreased. In the glycerol alpha-monodecanoate (monocaprin)-oil systems, the foams were stable only for 3-4 h, depending on the nature of the oil. However, the foams formed in the glycerol alpha-monooctanoate (monocaprylin)-oil systems coarsened very quickly, leading to the progressive destruction of foam films, and all of the foams collapsed within a few minutes. Foam stability decreased when the oil was changed from squalane to squalene, in both monocaprin and monolaurin systems. It was observed that, in the dilute regions, these monoglycerides form fine solid dispersions in the aforementioned oils at 25 degrees C. At higher temperatures, the solid melts to isotropic single-liquid or two-liquid phases and the foams formed collapsed within 5 min. Judging from the wide-angle X-ray scattering (WAXS) and the foaming test, it is concluded that the stable foams are mainly caused by the dispersion of the surfactant solids (beta-crystal) and foam stability is largely influenced by the shape and size of the dispersed solid particles.

  6. Exploring assembly energetics of the 30S ribosomal subunit using an implicit solvent approach.

    Science.gov (United States)

    Trylska, Joanna; McCammon, J Andrew; Brooks Iii, Charles L

    2005-08-10

    To explore the relationship between the assembly of the 30S ribosomal subunit and interactions among the constituent components, 16S RNA and proteins, relative binding free energies of the T. thermophilus 30S proteins to the 16S RNA were studied based on an implicit solvent model of electrostatic, nonpolar, and entropic contributions. The late binding proteins in our assembly map were found not to bind to the naked 16S RNA. The 5' domain early kinetic class proteins, on average, carry the highest positive charge, get buried the most upon binding to 16S RNA, and show the most favorable binding. Some proteins (S10/S14, S6/S18, S13/S19) have more stabilizing interactions while binding as dimers. Our computed assembly map resembles that of E. coli; however, the central domain path is more similar to that of A. aeolicus, a hyperthermophilic bacteria.

  7. Different Response of Carbonyl Carotenoids to Solvent Proticity Helps To Estimate Structure of the Unknown Carotenoid from Chromera velia.

    Science.gov (United States)

    Keşan, Gürkan; Durchan, Milan; Tichý, Josef; Minofar, Babak; Kuznetsova, Valentyna; Fuciman, Marcel; Šlouf, Václav; Parlak, Cemal; Polívka, Tomáš

    2015-10-01

    In order to estimate the possible structure of the unknown carbonyl carotenoid related to isofucoxanthin from Chromera velia denoted as isofucoxanthin-like carotenoid (Ifx-l), we employed steady-state and ultrafast time-resolved spectroscopic techniques to investigate spectroscopic properties of Ifx-l in various solvents. The results were compared with those measured for related carotenoids with known structure: fucoxanthin (Fx) and isofucoxanthin (Ifx). The experimental data were complemented by quantum chemistry calculations and molecular modeling. The data show that Ifx-l must have longer effective conjugation length than Ifx. Yet, the magnitude of polarity-dependent changes in Ifx-l is larger than for Ifx, suggesting significant differences in structure of these two carotenoids. The most interesting spectroscopic feature of Ifx-l is its response to solvent proticity. The transient absorption data show that (1) the magnitude of the ICT-like band of Ifx-l in acetonitrile is larger than in methanol and (2) the S1/ICT lifetime of Ifx-l in acetonitrile, 4 ps, is markedly shorter than in methanol (10 ps). This is opposite behavior than for Fx and Ifx whose S1/ICT lifetimes are always shorter in protic solvent methanol (20 and 13 ps) than in aprotic acetonitrile (30 and 17 ps). Comparison with other carbonyl carotenoids reported earlier showed that proticity response of Ifx-l is consistent with presence of a conjugated lactone ring. Combining the experimental data and quantum chemistry calculations, we estimated a possible structure of Ifx-l.

  8. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    Science.gov (United States)

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-06-07

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  9. Handbook of green chemistry, green solvents, supercritical solvents

    CERN Document Server

    Anastas, Paul T; Jessop, Philip G

    2014-01-01

    Green Chemistry is a vitally important subject area in a world where being as green and environmentally sound as possible is no longer a luxury but a necessity. Its applications include the design of chemical products and processes that help to reduce or eliminate the use and generation of hazardous substances. The Handbook of Green Chemistry comprises 12 volumes, split into subject-specific sets as follows: Set I: Green Catalysis Set II: Green Solvents Volume 4: Supercritical Solvents Volume 5: Reactions in Water Volume 6: Ionic Liquids

  10. DOE solvent handbook information sheet

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, A.A.

    1992-01-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  11. DOE solvent handbook information sheet

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, A.A.

    1992-05-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  12. Computer Aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Conte, Elisa; Abildskov, Jens

    , millions of tons solvents have to be wasted every year [2]. Therefore, it becomes important to minimize and optimize the use of organic solvents as much as possible, to satisfy the “Green Chemistry Principles” [3]. Another challenge is that currently solvent selection relies very much on previous...... is to develop a systematic framework and implement it as software for selection and design of solvents for many applications including organic synthesis, complex reaction systems and solvent-based separations. The solvent selection framework is based on a combination of knowledge from industrial practice...... identification of solvent candidates using special software ProCAMD and ProPred, which are the implementations of computer-aided molecular techniques. The second consists of assigning the RS-indices following the reaction–solvent and then consulting the known solvent database and identifying the set of solvents...

  13. Glycerol based solvents: synthesis, properties and applications

    OpenAIRE

    García, José I.; García-Marín, Héctor; Pires, Elísabet

    2014-01-01

    The most recent advances in the use of glycerol and glycerol derivatives as solvents are reviewed. There are an increasing number of examples of the use of glycerol itself as a reaction medium, solvent-reagent or a dispersive medium for a large variety of applications. In the case of glycerol derivatives, new synthetic methods, physico-chemical properties and application examples as solvents are revised. Recent studies in the field of solvent classification, as well as solvent substitution is...

  14. An interesting case where water behaves as a unique solvent. 4-Aminophthalimide emission profile to monitor aqueous environment.

    Science.gov (United States)

    Durantini, Andrés M; Falcone, R Darío; Anunziata, Jorge D; Silber, Juana J; Abuin, Elsa B; Lissi, Eduardo A; Correa, N Mariano

    2013-02-21

    The behavior of 4-aminophthalimide (4-AP), a common molecular probe utilized in solvation dynamics experiments, was revisited in polar aprotic and protic solvents using absorption, steady-state, and time-resolved fluorescence (TRES) techniques. Also, the deuterium isotope effect was investigated using D(2)O as solvent. The absorption spectra of 4-AP consist of two absorption bands with maxima around 300 nm (B2 band) and 370 nm (B1 band) depending on the environment, while the emission feature consists of a single band. In all the solvents investigated (excluding water), the 4-AP photophysics is similar and the emission spectra are independent of the excitation wavelength used. In water the behavior is unique and the emission spectra maximum is different depending on the excitation wavelength used. The emission maximum is 561.7 nm using the excitation wavelength that correspond to the B2 absorption band maximum (λ(excB2) = 303.4 nm) but is 545.7 nm when the excitation wavelength that correspond to the B1 absorption maximum (λ(excB1) = 370.0 nm) is used. Moreover, while the fluorescence decays of 4-AP in water exhibit no emission wavelength dependence at λ(excB2), the situation is quite different when λ(excB1) is used. In this case, we found a time-dependent emission spectrum that shifts to the blue with time. Our results show that the solvent-mediated proton transfer process displays a fundamental role in the 4-AP emission profile and for the first time a mechanism was proposed that fully explains the 4-AP behavior in every solvent including water. The deuterium isotope effect confirms the assumption because the proton-transfer process is dramatically retarded in this solvent. Consequently, we were able to elucidate not only why in water the emission spectra depend on the excitation wavelength but also why the time-dependent emission spectra shift to the blue with time. Thus, our work reveals the importance that the medium has on the behavior of a widespread dye

  15. Multiple sclerosis and organic solvents

    DEFF Research Database (Denmark)

    Mortensen, J T; Brønnum-Hansen, Henrik; Rasmussen, K

    1998-01-01

    We investigated a possible causal relation between exposure to organic solvents in Danish workers (housepainters, typographers/printers, carpenters/cabinetmakers) and onset of multiple sclerosis. Data on men included in the Danish Multiple Sclerosis Register (3,241 men) were linked with data from......, and butchers. Over a follow-up period of 20 years, we observed no increase in the incidence of multiple sclerosis among men presumed to be exposed to organic solvents. It was not possible to obtain data on potential confounders, and the study design has some potential for selection bias. Nevertheless......, the study does not support existing hypotheses regarding an association between occupational exposure to organic solvents and multiple sclerosis....

  16. Kinetic and fluid descriptions of charged particle swarms in gases and nonpolar fluids: Theory and applications

    Science.gov (United States)

    Dujko, Sasa

    2016-09-01

    In this work we review the progress achieved over the last few decades in the fundamental kinetic theory of charged particle swarms with the focus on numerical techniques for the solution of Boltzmann's equation for electrons, as well as on the development of fluid models. We present a time-dependent multi term solution of Boltzmann's equation valid for electrons and positrons in varying configurations of electric and magnetic fields. The capacity of a theory and associated computer code will be illustrated by considering the heating mechanisms for electrons in radio-frequency electric and magnetic fields in a collision-dominated regime under conditions when electron transport is greatly affected by non-conservative collisions. The kinetic theory for solving the Boltzmann equation will be followed by a fluid equation description of charged particle swarms in both the hydrodynamic and non-hydrodynamic regimes, highlighting (i) the utility of momentum transfer theory for evaluating collisional terms in the balance equations and (ii) closure assumptions and approximations. The applications of this theory are split into three sections. First, we will present our 1.5D model of Resistive Plate Chambers (RPCs) which are used for timing and triggering purposes in many high energy physics experiments. The model is employed to study the avalanche to streamer transition in RPCs under the influence of space charge effects and photoionization. Second, we will discuss our high-order fluid model for streamer discharges. Particular emphases will be placed on the correct implementation of transport data in streamer models as well as on the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the last segment of this work, we will present our model to study the avalanche to streamer transition in non-polar fluids. Using a Monte Carlo simulation technique we have calculated transport coefficients for electrons in

  17. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    Science.gov (United States)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  18. Aprotic synthesis and structural determination of the nanosized nonprotonated nu3-octahedral [Pt6Ni38(CO)48]6- hexaanion stabilized as a cubic solvated [NMe4]+ salt.

    Science.gov (United States)

    de Silva, Namal; Dahl, Lawrence F

    2006-10-30

    The nonprotonated member, 1 (n = 6), of the previously established nanosized nu3-octahedral [H(6-n)Pt6Ni38(CO)48]n- series (n = 3-6) has been isolated from an aprotic synthetic route and stabilized as the crystal-ordered cyclohexane/acetonitrile-solvated [NMe4]+ salt. A highly precise X-ray determination (cubic; Pa3; Z = 4 with 1 possessing -3 site symmetry) has allowed a comparative analysis of the nonprotonated pseudo-D3d structure of 1 with the monoprotonated structure of 2 (n = 5), which constitutes the only previously reported complete geometry of any member of this extraordinary Pt6-encapsulated nu3-octahedral Pt6Ni38 cluster series.

  19. The flotation of Roşia Poieni copper ore in column machine, with non-polar oils addition

    Directory of Open Access Journals (Sweden)

    Ciocani V.

    2005-11-01

    Full Text Available The most important natural resource of copper in Romania is the ore deposit of Roşia Poieni. At present, the utilization of Roşia Poieni poorphyry copper ore is possible by extraction in quarry of the mass ore and mineral processing into a technological flux with modest results for the value of metal recovery in concentrate 70-72 % and an average contents of 16,5 % Cu. Our researches were directed to studies regarding test and utilisation of special procedure of flotation – addition of the non-polar oil – applied to advanced grinding ore with column type machines.

  20. Free ion yields for nonpolar liquids exposed to 1.6-3.5 keV X-rays

    CERN Document Server

    Holroyd, R A

    1998-01-01

    The yields of free ions formed following absorption of 1.6-3.5 keV X-rays were determined for several nonpolar liquids using a conductivity technique. The yields are much less for X-rays than for gamma rays; this effect is largest for branched hydrocarbons. A minimum in yield is observed around 2 keV. The dependence of G sub f sub i sup o on X-ray energy is in good agreement with computer simulations. For tetramethylsilane a sharp dip in ion yield is observed at the Si ls -> sigma sup * resonance, indicating that the free electron yield is even less at this energy.

  1. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane].

    Science.gov (United States)

    Dorneanu, Petronela Pascariu; Homocianu, Mihaela; Tigoianu, Ionut Radu; Airinei, Anton; Zaltariov, Mirela; Cazacu, Maria

    2015-01-05

    Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X₂(L)), excess function (δs₂) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).

  2. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.

    Science.gov (United States)

    Izadyar, Mohammad; Khavani, Mohammad; Housaindokht, Mohammad Reza

    2015-05-07

    Molecular dynamic simulations were performed to investigate the stability of heterocyclic peptide nanotubes composed of 1,4-disubstituted-1,2,3-triazol ε-amino acid. 45 ns MD simulations were conducted on the cyclic peptide nanotube (CPNT) and cyclic peptide dimer in methanol, chloroform, and water and revealed that these structures are more stable in nonpolar solvents. MM-PBSA and MM-GBSA calculations were employed to analyze the solvent effect on the stability and length of the CPNT. These calculations showed that CPNT in chloroform was more stable and longer as compared to other solvents. In addition, the effect of the guest molecule (ethanol) inside the dimer and CPNT was investigated. The obtained results confirmed that guest molecule(s) stabilized the dimer and CPNT in all solvents. Quantum chemistry calculations on the cyclic peptide dimer were performed at the M06-2X/6-31G(d) level in the gas phase and three solvents. The obtained results from the quantum chemistry study were in good agreement with the MD simulation results. DFT calculations showed that the guest molecule stabilized the dimer structure and electrostatically interacted with the cyclic peptide dimer. Finally, for investigation of the solvent effects on the hydrogen bonds of the cyclic peptide dimer, NBO and AIM analysis were performed.

  3. Which solvent for olfactory testing?

    Science.gov (United States)

    Philpott, C M; Goodenough, P C; Wolstenholme, C R; Murty, G E

    2004-12-01

    The physical properties of any carrier can deteriorate over time and thus alter the results in any olfactory test. The aim of this study was to evaluate clinically potential solvents as a clean odourless carrier for olfactory testing. Sweet almond oil, pure coconut oil, pure peach kernel oil, dipropylene glycol, monopropylene glycol, mineral oil and silicone oil were studied. The experimentation was conducted in two parts. First, an olfactory device was used to conduct air through the solvents on a weekly basis using a cohort of six volunteers to assess the perceived odour of each solvent at weekly intervals. Secondly a cross-reference test was performed using small bottled solutions of phenylethyl-alcohol and 1-butanol in 10-fold dilutions to compare any perceived difference in concentrations over a period of 8 weeks. We concluded that mineral oil is the most suitable carrier for the purpose of olfactory testing, possessing many desirable characteristics of an olfactory solvent, and that silicone oil may provide a suitable alternative for odorants with which it is miscible.

  4. Combining a polarizable force-field and a coarse-grained polarizable solvent model. II. Accounting for hydrophobic effects.

    Science.gov (United States)

    Masella, Michel; Borgis, Daniel; Cuniasse, Philippe

    2011-09-01

    A revised and improved version of our efficient polarizable force-field/coarse grained solvent combined approach (Masella, Borgis, and Cuniasse, J. Comput. Chem. 2008, 29, 1707) is described. The polarizable pseudo-particle solvent model represents the macroscopic solvent polarization by induced dipoles placed on mobile pseudo-particles. In this study, we propose a new formulation of the energy term handling the nonelectrostatic interactions among the pseudo-particles. This term is now able to reproduce the energetic and structural response of liquid water due to the presence of a hydrophobic spherical cavity. Accordingly, the parameters of the energy term handling the nonpolar solute/solvent interactions have been refined to reproduce the free-solvation energy of small solutes, based on a standard thermodynamic integration scheme. The reliability of this new approach has been checked for the properties of solvated methane and of the solvated methane dimer, as well as by performing 10 × 20 ns molecular dynamics (MD) trajectories for three solvated proteins. A long-time stability of the protein structures along the trajectories is observed. Moreover, our method still provides a measure of the protein solvation thermodynamic at the same accuracy as standard Poisson-Boltzman continuum methods. These results show the relevance of our approach and its applicability to massively coupled MD schemes to accurately and intensively explore solvated macromolecule potential energy surfaces.

  5. Solvent-Dependent Structure of Iridium Dihydride Complexes: Different Geometries at Low and High Dielectricity of the Medium.

    Science.gov (United States)

    Polukeev, Alexey V; Marcos, Rocío; Ahlquist, Mårten S G; Wendt, Ola F

    2016-03-14

    The hydride iridium pincer complex [(PCyP)IrH2] (PCyP=cis-1,3-bis[(di-tert-butylphosphino)methyl]cyclohexane, 1) reveals remarkably solvent-dependent hydride chemical shifts, isotope chemical shifts, JHD and T1(min), with rHH increasing upon moving to more polar medium. The only known example of such behaviour (complex [(POCOP)IrH2], POCOP=2,6-(tBu2PO)2C6H3) was explained by the coordination of a polar solvent molecule to the iridium (J. Am. Chem. Soc. 2006, 128, 17114). Based on the existence of an agostic bond between α-C-H and iridium in 1 in all solvents, we argue that the coordination of solvent can be rejected. DFT calculations revealed that the structures of 1 and [(POCOP)IrH2] depend on the dielectric permittivity of the medium and these compounds adopt trigonal-bipyramidal geometries in non-polar media and square-pyramidal geometries in polar media.

  6. A DFT study of solvation effects and NBO analysis on the tautomerism of 1-substituted hydantoin

    Directory of Open Access Journals (Sweden)

    Meisam Shabanian

    2016-09-01

    Full Text Available 1-Substituted hydantoins (1-SH have been known as a benefit intermediate for producing agricultural and pharmaceuticals. The effect of solvent polarity on the tautomeric equilibria of 1-substituted hydantoin ring is studied by the density functional theory calculation (B3LYP/6–31++G(d,p level for predominant tautomeric forms of hydantoin derivatives (1-NO2, 1-CF3, 1-Br, 1-H, 1-CHCH2, 1-OH, 1-CH3 in the gas phase and selected solvents (benzene (non-polar solvent, tetrahydrofuran (THF (polar aprotic solvent and water (protic solvent. For electron withdrawing and releasing derivatives in the gas phase and solution Hy1 forms is more stable and dominant form. In addition variation of dipole moments and charges on atoms in the solvents are studied.

  7. Method for analyzing solvent extracted sponge core

    Energy Technology Data Exchange (ETDEWEB)

    Ellington, W.E.; Calkin, C.L.

    1988-11-22

    For use in solvent extracted sponge core measurements of the oil saturation of earth formations, a method is described for quantifying the volume of oil in the fluids resulting from such extraction. The method consists of: (a) separating the solvent/oil mixture from the water in the extracted fluids, (b) distilling at least a portion of the solvent from the solvent/oil mixture substantially without co-distillation or loss of the light hydrocarbons in the mixture, (c) determining the volume contribution of the solvent remaining in the mixture, and (d) determining the volume of oil removed from the sponge by substracting the determined remaining solvent volume.

  8. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J; Yih, T -S

    2014-01-01

    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cros...

  9. Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures

    Science.gov (United States)

    Badcock, T. J.; Ali, M.; Zhu, T.; Pristovsek, M.; Oliver, R. A.; Shields, A. J.

    2016-10-01

    We study the photoluminescence internal quantum efficiency (IQE) and recombination dynamics in a pair of polar and non-polar InGaN/GaN quantum well (QW) light-emitting diode (LED) structures as a function of excess carrier density and temperature. In the polar LED at 293 K, the variation of radiative and non-radiative lifetimes is well described by a modified ABC type model which accounts for the background carrier concentration in the QWs due to unintentional doping. As the temperature is reduced, the sensitivity of the radiative lifetime to excess carrier density becomes progressively weaker. We attribute this behaviour to the reduced mobility of the localised electrons and holes at low temperatures, resulting in a more monomolecular like radiative process. Thus we propose that in polar QWs, the degree of carrier localisation determines the sensitivity of the radiative lifetime to the excess carrier density. In the non-polar LED, the radiative lifetime is independent of excitation density at room temperature, consistent with a wholly excitonic recombination mechanism. These findings have significance for the interpretation of LED efficiency data within the context of the ABC recombination model.

  10. Effects of growth temperature on nonpolar a-plane InN grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S.B. [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore-560013 (India); Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India); Centre of Excellence in Information and Communication Technology, Indian Institute of Technology, Jodhpur-342011 (India); Sinha, Neeraj [Office of Principal Scientific Advisor, Government of India, New Delhi 110011 (India); Department of Materials Science, Gulbarga University, Gulbarga 585 106 (India); Jali, V.M. [Department of Physics, Gulbarga University, Gulbarga 585 106 (India)

    2014-04-15

    Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 C shows better crystallinity with the rocking curve FWHM 0.67 and 0.85 along [0 0 0 1] and [1 -1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room tem-perature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    Science.gov (United States)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ˜60 nm min-1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  12. Effects of n-alkanes on compositions of cellular non-polar lipids in Aspergillus sp. isolated from soils

    Energy Technology Data Exchange (ETDEWEB)

    Miyazima, M.; Iida, M.; Iizuka, H.

    1985-01-01

    A strain of hydrocarbon-using filamentous fungi, Aspergillus sp. No. 250-2, was grown on n-alkanes (C/sub 11/ to C/sub 16/) and glucose as the sole carbon and energy sources, and the distribution of cellular non-polar lipids was determined. The non-polar lipids were examined by thin-layer chromatography; they were sterols, sterol esters, diglycerides, triglycerides, and free fatty acids, and the major lipids were free fatty acids and triglycerides on all substrates. Free fatty acids were mainly even-chain saturated acids on all substrates. When grown on n-C/sub 11/ to 15, the unsaturated fatty acids were mainly incorporated into triglyceride, but there were saturated fatty acids with n-C/sub 16/ and glucose. The proportion of C/sub 16/.0 acid was increased markedly in n-C/sub 16/-grown cells, but C18:0 acid was increased in glucose-grown cells. Compositions of odd-chain fatty acids were slightly increased in both free fatty acids and triglycerides from n-C/sub 15/-grown cells. It is suggested that n-alkanes as substrates influenced the incorporation of fatty acids into triglyceride.

  13. Mechanism and energetics of O and O2 adsorption on polar and non-polar ZnO surfaces

    Science.gov (United States)

    Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif

    2016-05-01

    Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O2 molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn-ZnO) and O-terminated (O-ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn-ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O2 adsorption. We attribute this to the fact that on Zn-ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn-ZnO surfaces, O2 dissociatively adsorbs to form O adatoms. By contrast, on O-ZnO surfaces, the O-rich conditions required for O or O2 adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O2 adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.

  14. Solvent effect on polystyrene surface roughness on top of QCM sensor

    Science.gov (United States)

    Sakti, Setyawan P.; Rahmawati, Eka; Robiandi, Fadli

    2016-03-01

    Quartz Crystal Microbalance (QCM) has been used as a basis for many chemical sensors and biosensor. Its sensitivity to mass change which can detect a mass change on its surface down to sub ng/cm2 is one of its interesting aspects. Another interesting feature is its ability to work in liquid environment. However, there are many aspects which influence QCM sensor properties in contact with liquid. One of the aspects is surface roughness of the matrix layer where on top of it a biological sensitive layer will be immobilized. One of matrix layers in the immobilizing biological sensitive layer was polystyrene. Polystyrene was coated on the QCM sensor by using the spin coating method. During the coating process, polystyrene was solved using non-polar solvent. It is known that the physical and chemical properties of the solvent affect a transition process from soluble polymer becoming rigid polymer layer. In this work, we show that polystyrene solved in chloroform has a higher surface roughness compare to one solved in toluene, xylene, or tetrahydrofuran. Surface roughness of the polystyrene coating were measured using a non-contact profilometer. However, we also found that there is no difference on the electrical impedance of the QCM sensor coated with polystyrene resulted from differing solvent when the sensor was in contact with air and water. Thus, all of the mentioned solvent can be used to solve the polystyrene as a coating material for QCM sensor without affecting the electrical performance of the sensor, but the choice of the solution can be used as a simple method to control the difference roughness of the polystyrene coating.

  15. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.

    Science.gov (United States)

    Asikainen, Martta; Munter, Tony; Linnekoski, Juha

    2015-09-01

    Bio-based fuels are becoming more and more important due to the depleting fossil resources. The production of biodiesel from algae oil is challenging compared to terrestrial vegetable oils, as algae oil consists of polar fatty acids, such as phospholipids and glycolipids, as well as non-polar triglycerides and free fatty acids common in vegetable oils. It is shown that a single sulphonated solid acid catalyst can perform the esterification and transesterification reactions of both polar and non-polar lipids. In mild reaction conditions (60-70 °C) Nafion NR50 catalyst produces methyl palmitate (FAME) from the palmitic acid derivatives of di-, and tri-glyceride, free fatty acid, and phospholipid with over 80% yields, with the glycolipid derivative giving nearly 40% yields of FAME. These results demonstrate how the polar and non-polar lipid derivatives of algal oil can be utilised as feedstocks for biodiesel production with a single catalyst in one reaction step.

  16. Structural stability of scandium on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    González-Hernández, Rafael, E-mail: rhernandezj@uninorte.edu.co [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); Martínez, Gustavo; López-Perez, William [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); Rodriguez, Jairo Arbey [Grupo de Estudio de Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia)

    2014-01-01

    First-principles calculations based on density-functional theory have been implemented to study the scandium (Sc) adsorption and incorporation on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces. It is found that Sc adatom prefers to reside at bridge positions, between the hollow and top sites, on both GaN nonpolar surfaces. In addition, calculating the relative surface energy of several Sc configurations, we constructed a phase diagram showing the energetically most stable surfaces as a function of the Ga chemical potentials. Based on these results, we have found that incorporation of Sc adatoms in the Ga-substitutional site is energetically more favorable compared with the adsorption on the top layers. This effect leads to the formation of ScN interlayers on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces, which reduces the dislocation densities between GaN and ScN.

  17. Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs.

    Science.gov (United States)

    Wu, Minghong; Zhan, Jing; Geng, Bijiang; He, Piaopiao; Wu, Kuan; Wang, Liang; Xu, Gang; Li, Zhen; Yin, Luqiao; Pan, Dengyu

    2017-09-14

    Carbon quantum dots (CQDs) have attracted much attention owing to their unique optical properties and a wide range of applications. The fabrication and control of CQDs with organic solubility and long-wavelength emission are still urgent issues to be addressed for their practical use in LEDs. Here, organic-soluble CQDs were produced at a high yield of ∼90% by a facile solvent engineering treatment of 1,3,6-trinitropyrene, which were simultaneously used as the nitrogen and carbon sources. The optical properties of the organic-soluble CQDs (o-CQDs) were investigated in nonpolar and polar solvents, films, and LED devices. The CQDs have a narrow size distribution around 2.66 nm, and can be dispersed in different organic solvents. Significantly, the as-prepared CQDs present an excitation-independent emission at 607 nm with fluorescence quantum yields (QYs) up to 65.93% in toluene solution. A pronounced solvent effect was observed and their strong absorption bands can be tuned in the whole visible region (400-750 nm) by changing the solvent. The CQDs in various solvents can emit bright, excitation-independent, long-wavelength fluorescence (orange to red). Furthermore, benefiting from the unique oil-solution properties, the as-prepared CQDs can be processed in thin film and device forms to meet the requirements of various applications, such as phosphor-based white-light LEDs. The color coordinate for these CQD modified LEDs is realized at (0.32, 0.31), which is close to pure white light (0.33, 0.33).

  18. Reactions and Separations in Green Solvents

    NARCIS (Netherlands)

    Van Spronsen, J.

    2010-01-01

    Most chemical processes involve solvents in the reaction and the separation step. These solvents give rise to a heavy environmental and economical burden. Moreover, these solvents are based on non-sustainable resources like petroleum. The aim of this thesis has been to develop a number of alternativ

  19. Reactions and Separations in Green Solvents

    NARCIS (Netherlands)

    Van Spronsen, J.

    2010-01-01

    Most chemical processes involve solvents in the reaction and the separation step. These solvents give rise to a heavy environmental and economical burden. Moreover, these solvents are based on non-sustainable resources like petroleum. The aim of this thesis has been to develop a number of

  20. The solvent component of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Weichenberger, Christian X. [European Academy of Bozen/Bolzano (EURAC), Viale Druso 1, Bozen/Bolzano, I-39100 Südtirol/Alto Adige (Italy); Afonine, Pavel V. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mail Stop 64R0121, Berkeley, CA 94720 (United States); Kantardjieff, Katherine [California State University, San Marcos, CA 92078 (United States); Rupp, Bernhard, E-mail: br@hofkristallamt.org [k.-k. Hofkristallamt, 991 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initial phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.

  1. The hype with ionic liquids as solvents

    Science.gov (United States)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  2. Effects of Si-doping on structural, electrical, and optical properties of polar and non-polar AlGaN epi-layers

    Science.gov (United States)

    Yang, Hongquan; Zhang, Xiong; Wang, Shuchang; Wang, Yi; Luan, Huakai; Dai, Qian; Wu, Zili; Zhao, Jianguo; Cui, Yiping

    2016-08-01

    The polar (0001)-oriented c-plane and non-polar (11 2 bar 0) -oriented a-plane wurtzite AlGaN epi-layers were successfully grown on polar (0001)-oriented c-plane and semi-polar (1 1 bar 02) -oriented r-plane sapphire substrates, respectively with various Si-doping levels in a low pressure metal organic chemical vapor deposition (MOCVD) system. The morphological, structural, electrical, and optical properties of the polar and non-polar AlGaN epi-layers were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), Hall effect, and Raman spectroscopy. The characterization results show that Si dopants incorporated into the polar and non-polar AlGaN films induced a relaxation of compressive residual strain and a generation of biaxial tensile strain on the surface in consequence of the dislocation climbing. In particular, it was found that the Si-induced compressive strain relaxation in the non-polar AlGaN samples can be promoted by the structural anisotropy as compared with the polar counterparts. The gradually increased relaxation of compressive residual strain in both polar and non-polar AlGaN samples with increasing Si-doping level was attributed to the Si-induced enhancement in the opportunity for the dislocations to interact and annihilate. This implies that the crystal quality for both polar and non-polar AlGaN epi-layers can be remarkably improved by Si-doping.

  3. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  4. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    Energy Technology Data Exchange (ETDEWEB)

    Gloe, Karsten [Technischen Universität Dresden; Tasker, Peter A [ORNL; Oshima, Tatsuya [University of Miyazaki; Watarai, Hitoshi [Institute for NanoScience Design at Osaka University; Nilsson, Mikael [University of California, Irvine

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  5. An Analytic Equation of State Based on SAFT-CP for Binary Non-Polar Alkane Mixtures Across the Critical Point

    Institute of Scientific and Technical Information of China (English)

    周文来; 密建国; 贺刚; 于燕梅; 陈健

    2003-01-01

    The description using an analytic equation of state of thermodynamic properties near the critical points of fluids and their mixtures remains a challenging problem in the area of chemical engineering. Based on the statistical associating fluid theory across the critical point (SAFT-CP), an analytic equation of state is established in this work for non-polar mixtures. With two binary parameters, this equation of state can be used to calculate not only vapor-liquid equilibria but also critical properties of binary non-polar alkane mixtures with acceptable deviations.

  6. Effect of Concentration on Isomerization of Rhodanine Derivatives of Merocyanine Dyes in Polar Solvents

    Directory of Open Access Journals (Sweden)

    O. P. Dimitriev

    2014-01-01

    Full Text Available Rhodanine derivatives of merocyanine dyes with residues of 1,3,3-trimethyl-3H-indole and 3-ethylbenzothiazoline have been found to possess two molecular forms in diluted solutions of polar solvents such as dimethylformamide, dimethyl sulfoxide, and N-methylpyrrolidinone. The first molecular form was observed to prevail at low concentrations of the dyes, normally up to 10−5 M. The second one prevails at higher concentrations and is displayed through a new band in the electronic absorption spectrum, which is red-shifted with respect to the absorption band of the first form. No similar effect was found for these dyes by use of nonpolar solvents or upon alkyl-substitution of the molecules at nitrogen atom in the rhodanine moiety. We assign the above two forms to different molecular isomers and the analogous spectral changes were shown to take place by light or heat influence which correspond to a typical isomerization effect for the related merocyanine dyes. It is discussed that the isomer transformation is facilitated by the increased mobility of the proton bonded to the nitrogen atom of the rhodanine moiety in the polar environment and the increased amount of dye-dye collisions.

  7. Modification of glucose oxidase for the development of biocatalytic solvent inks.

    Science.gov (United States)

    Talbert, Joey N; He, Fei; Seto, Kayla; Nugen, Sam R; Goddard, Julie M

    2014-02-05

    Inkjet printing of enzymes onto hydrophobic polymeric material offers the potential for economical rapid deposition and patterning of biocatalysts for biosensor, microarray, and intelligent packaging applications. Non-polar solvent based inks provide simple vehicles for direct printing on these materials; however, enzymes are not readily soluble in such inks. Glucose oxidase (Aspergillus niger) was made soluble in toluene by hydrophobic ion pairing with didodecyldimethylammonium bromide. Following modification, single enzyme composites with a mean diameter of 12.5 nm were formed. The enzymes showed no significant change in K'(m) and a 46% decrease in k'(cat) compared to the native enzyme. Modification allowed for direct printing and patterning on PET using piezoelectric inkjet printing. Specific activity of the modified enzyme was reduced from 889 × 10³ μmol/min/g to 2×10³ μmol/min/g after printing. These results suggest that direct inkjet printing of enzymes onto hydrophobic polymers may be accomplished using enzyme modification as a means to induce solubility in solvent inks.

  8. Use of polar and nonpolar fractions as additional information sources for studying thermoxidized virgin olive oils by FTIR

    Directory of Open Access Journals (Sweden)

    Tena, N.

    2014-09-01

    Full Text Available Fourier transform infrared (FTIR spectroscopy has been proposed to study the degradation of virgin olive oils (VOO in samples undergoing thermoxidation. The polar and nonpolar fractions of oxidized oils have been analyzed by FTIR to provide further information on the minor spectral changes taking place during thermoxidation. This information assists in the interpretation of the spectra of the samples. For this purpose polar and nonpolar fractions of 47 VOO samples thermoxidized (190 °C in a fryer were analyzed by FTIR. The time-course change of the band area assigned to single cis double bonds was explained by their correlation with the decrease in oleic acid (adjusted-R2=0.93. The bands assigned to the hydroxyl groups and the first overtone of ester groups was better studied in the spectra collected for the polar and nonpolar fractions, respectively. The bands assigned to peroxide, epoxy, tertiary alcohols and fatty acids were clearly observed in the spectra of the polar fraction while they are not noticeable in the spectra of the oils.La espectroscopía de infrarrojos por transformada de Fourier (FTIR se ha propuesto para estudiar la degradación de los aceites de oliva vírgenes (AOV sujetas a termoxidación. Las fracciones polares y no polares de aceites oxidados se analizaron mediante FTIR para obtener más información sobre los cambios espectrales menores que tienen lugar durante la termoxidación. Esa información ayuda en la interpretación de los espectros de las muestras puras. Con este objetivo, fracciones polares y no polares de 47 AOV termoxidados (190 °C en una freidora se analizaron mediante FTIR. La banda asignada a dobles enlaces cis se explica por su correlación con la disminución de ácido oleico (R2-ajustado=0,93. Las bandas asignadas a los grupos hidroxilos y del primer sobretono de los grupos éster se estudió mejor en los espectros recogidos para la fracción polar y no polar, respectivamente. Grupos asignados a per

  9. Comparison of the mobilities of negative and positive ions in nonpolar solutions.

    Science.gov (United States)

    Ivanishko, Irina S; Borovkov, Vsevolod I

    2010-08-01

    The mobilities of organic radical ions of different molecular volumes have been determined in squalane and hexane solutions to study the influence of the ion charge sign on the ionic mobility in a weakly polar liquid. The relative mobility of geminate radical ions was measured using the method of time-resolved electric field effect in the recombination fluorescence. To determine the mobility of cations and anions separately, a trend in the value of the relative mobility was analyzed by varying the mobility of one of the geminate partners. The ratios between the mobilities of the anion and the cation of the same molecules were found to be about 1.1. It was shown that in liquid alkanes, the solvent electrostriction was the main factor determining a decrease in the mobility of an ion as compared to the parent neutral molecule. The strong dependence of the electrostrictive effect on the radius of the ionic solvation shell allows the observed difference between negative and positive charge carriers by a small but systematic difference in the effective radii of the ions to be explained.

  10. Effect of solvents on the characteristics of rosin walled microcapsules prepared by a solvent evaporation technique.

    Science.gov (United States)

    Sheorey, D S; Dorle, A K

    1991-01-01

    Rosin microcapsules were prepared by a solvent evaporation technique using solvents with different rates of evaporation. Sulphadiazine was used as a model drug. The microcapsules were studied for their size, drug content, wall thickness, surface characteristics and in vitro release. The mean diameter increased and the drug content decreased as the rate of evaporation of the solvent increased. Fast evaporating solvents produced thick walled microcapsules with innumerable surface pores/cracks compared with slow evaporating solvents.

  11. Mechanism of extractant loss in solvent extraction process (Ⅰ)——Transfer of saponified D2EHPA from organic phase to aqueous phase and its aggregation behaviour

    Institute of Scientific and Technical Information of China (English)

    王笃金; 吴瑾光; 李彦; 翁诗甫; 吴佩强; 徐光宪

    1995-01-01

    The phenomenon of the loss of saponified D2EHPA(di(2-ethylhexyl)phosphoric acid,HA)from organic phase to aqueous phase and its aggregation behaviour were studied with FT-IR and DLS(dynamic light scattering)techniques based on the fact that saponified extractant can form reversed micelles orw/o microemulsions in n-heptane,a non-polar diluent.The results indicate that "normal rnioelles" or o/wmicroemulsions are formed from acidic extractant and its sodium salt in aqueous phase,and the micelle ormicroemulsion drop has a non-polar core which can solubilize nheptane,so the equilibrated aqueous phasecontaining extractant is a complex fluid rather than a "real solution".Therefore,the aqueous aggregate for-mation leads to the extractant loss in solvent extraction process.Strong electrolytes can prevent or lessen theextractant loss.The results of this paper provide a theoretical possibility for solving the problem ofextractant and solvent loss in liquid-liquid extraction industry.

  12. Solvent effects on microstructures and properties of three-dimensional hierarchical TiO2 microsphere structures synthesized via solvothermal approach

    Science.gov (United States)

    Xu, Shiping; Sun, Xiang; Gao, Yuan; Yue, Min; Yue, Qinyan; Gao, Baoyu

    2017-09-01

    One-step solvothermal method has been proved to be a simple and efficient route to synthesize three-dimensional (3D) hierarchical TiO2 microsphere structures, but discrepant properties of the solvent media had been claimed as the major factors determining microstructures and properties of the final products. In this study, several typical solvents, including alkane, aromatic hydrocarbons, halohydrocarbon, ketone, organic acid, mono- and dihydric alcohols, were selected to comprehensively investigate the effect of solvents on the morphology, crystal structure, specific surface area, porous property and light harvesting capability of the final products. According to the experimental results, a good interface separating titanium precursor with aqueous phase in the reaction solution, created by non-polar solvents, or polar solvents which are immiscible with titanium precursor, was the decisive factor for the formation of quasi-3D urchin-like TiO2 microspheres self-assembled from one-dimensional (1D) nanostructures, and concentrated H+ induced by organic acid medium was also helpful. Meanwhile, without the liquid-liquid interface or extremely low solution pH, anatase TiO2 sphere structures with big specific surface area comprising of nanoparticles or nanosheets would be formed, and performed well in photodegradation of pollutants in water.

  13. Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push-pull substituted azobenzene.

    Science.gov (United States)

    Corchado, Jose C; Sánchez, M Luz; Fdez Galván, Ignacio; Martín, M Elena; Muñoz-Losa, Aurora; Barata-Morgado, Rute; Aguilar, Manuel A

    2014-10-30

    The ground and low-lying excited free energy surfaces of 4-amino-4'-cyano azobenzene, a molecule that has been proposed as building block for chiroptical switches, are studied in gas phase and a variety of solvents (benzene, chloroform, acetone, and water). Solvent effects on the absorption and emission spectra and on the cis-trans thermal and photo isomerizations are analyzed using two levels of calculation: TD-DFT and CASPT2/CASSCF. The solvent effects are introduced using a polarizable continuum model and a QM/MM method, which permits one to highlight the role played by specific interactions. We found that, in gas phase and in agreement with the results found for other azobenzenes, the thermal cis-trans isomerization follows a rotation-assisted inversion mechanism where the inversion angle must reach values close to 180° but where the rotation angle can take almost any value. On the contrary, in polar solvents the mechanism is controlled by the rotation of the CN═NC angle. The change in the mechanism is mainly related to a better solvation of the nitrogen atoms of the azo group in the rotational transition state. The photoisomerization follows a rotational pathway both in gas phase and in polar and nonpolar solvents. The solvent introduces only small modifications in the nπ* free energy surface (S1), but it has a larger effect on the ππ* surface (S2) that, in polar solvents, gets closer to S1. In fact, the S2 band of the absorption spectrum is red-shifted 0.27 eV for the trans isomer and 0.17 eV for the cis. In the emission spectrum the trend is similar: only S2 is appreciably affected by the solvent, but in this case a blue shift is found.

  14. Elucidating the structure of merocyanine dyes with the ASEC-FEG method. Phenol blue in solution

    Science.gov (United States)

    Franco, Leandro R.; Brandão, Idney; Fonseca, Tertius L.; Georg, Herbert C.

    2016-11-01

    The electronic structure of phenol blue (PB) was investigated in several protic and aprotic solvents, in a wide range of dielectric constants, using atomistic simulations. We employed the sequential QM/MM and the free energy gradient methods to optimize the geometry of PB in each solvent at the MP2/aug-cc-pVTZ level. The ASEC mean field is used to include the ensemble average of the solute-solvent interaction into the molecular hamiltonian, both for the geometry optimization and for the calculations of the electronic properties. We found that the geometry of PB changes considerably, from a polyene-like structure in nonpolar solvents to a cyanine-like in water. Moreover, and quite interestingly, in protic solvents with higher dielectric constant than water, the structure of the molecule is less affected and lies in an intermediate state. The results illustrate the important role played by hydrogen bonds in the conformation of merocyanine dyes.

  15. Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE.

    Science.gov (United States)

    Shih, Cheng-Hung; Huang, Teng-Hsing; Schuber, Ralf; Chen, Yen-Liang; Chang, Liuwen; Lo, Ikai; Chou, Mitch Mc; Schaadt, Daniel M

    2011-06-15

    We have investigated the structure of non-polar GaN, both on the M - and A-plane, grown on LiGaO2 by plasma-assisted molecular beam epitaxy. The epitaxial relationship and the microstructure of the GaN films are investigated by transmission electron microscopy (TEM). The already reported epi-taxial relationship and for M -plane GaN is confirmed. The main defects are threading dislocations and stacking faults in both samples. For the M -plane sample, the density of threading dislocations is around 1 × 1011 cm-2 and the stacking fault density amounts to approximately 2 × 105 cm-1. In the A-plane sample, a threading dislocation density in the same order was found, while the stacking fault density is much lower than in the M -plane sample.

  16. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    Science.gov (United States)

    Smirnov, A. M.; Young, E. C.; Bougrov, V. E.; Speck, J. S.; Romanov, A. E.

    2016-01-01

    We calculate the critical thickness for misfit dislocation (MD) formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs). It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ˜70° for Al0.13Ga0.87N/GaN ( h 0 h ¯ 1 ) semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1-xN/GaN heterostructures.

  17. Simultaneous analysis method for polar and non-polar ginsenosides in red ginseng by reversed-phase HPLC-PAD.

    Science.gov (United States)

    Lee, Sa-Im; Kwon, Ha-Jeong; Lee, Yong-Moon; Lee, Je-Hyun; Hong, Seon-Pyo

    2012-02-23

    The paper describes the development of a simultaneous determination method for polar and non-polar ginsenosides in red ginseng with a reversed-phase high-performance liquid chromatography-pulsed amperometric detection method. This method could be applied directly without any pretreatment steps and enabled the performance of highly sensitive analysis within 1h. The detection (S/N=3) and quantification (S/N=10) limits for the ginsenosides ranged 0.02-0.10 ng and 0.1-0.3 ng, respectively. The linear regression coefficients ranged 0.9975-0.9998. Intra- and inter-day precisions were <9.91%. The mean recoveries ranged 98.08-103.06%. The total amount of ginsenosides in the hairy root of red ginseng was higher than that in the main root.

  18. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    KAUST Repository

    Smirnov, A. M.

    2016-01-20

    We calculate the critical thickness for misfit dislocation (MD) formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs). It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ∼70° for Al0.13Ga0.87N/GaN (h0h̄ 1) semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1−xN/GaN heterostructures.

  19. High-resolution field desorption/ionization fourier transform ion cyclotron resonance mass analysis of nonpolar molecules.

    Science.gov (United States)

    Schaub, Tanner M; Hendrickson, Christopher L; Qian, Kuangnan; Quinn, John P; Marshall, Alan G

    2003-05-01

    We report the first field desorption ionization broadband high-resolution (m/Deltam(50%) approximately 65 000) mass spectra. We have interfaced a field ionization/field desorption source to a home-built 9.4-T FT-ICR mass spectrometer. The instrumental configuration employs convenient sample introduction (in-source liquid injection) and external ion accumulation. We demonstrate the utility of this configuration by generating high-resolution positive-ion mass spectra of C(60) and a midboiling crude oil distillate. The latter contains species not accessible by common soft-ionization methods, for example, low-voltage electron ionization, electrospray ionization, and matrix-assisted laser desorption/ionization. The present work demonstrates significant advantages of FI/FD FT-ICR MS for analysis of nonpolar molecules in complex mixtures.

  20. Interaction of Polar and Nonpolar Organic Pollutants with Soil Organic Matter: Sorption Experiments and Molecular Dynamics Simulation

    CERN Document Server

    Ahmed, Ashour A; Aziz, Saadullah G; Hilal, Rifaat H; Elroby, Shaaban A; Al-Youbi, Abdulrahman O; Leinweber, Peter; Kühn, Oliver

    2014-01-01

    The fate of organic pollutants in the environment is influenced by several factors including the type and strength of their interactions with soil components especially SOM. However, a molecular level answer to the question How organic pollutants interact with SOM? is lacking. In order to explore mechanisms of this interaction, we have developed a new SOM model followed by carrying out molecular dynamics (MD) simulations in parallel with sorption experiments. The new SOM model comprises free SOM functional groups (carboxylic acid and naphthalene) as well as SOM cavities (with two different sizes), representing the soil voids, containing the same SOM functional groups. To examine the effect of the hydrophobicity on the interaction, the organic pollutants hexachlorobenzene (HCB, non-polar) and sulfanilamide (SAA, polar) were considered. The experimental and the theoretical outcomes explored four major points regarding sorption of SAA and HCB on soil. 1. The interaction depends on the SOM chemical composition mo...

  1. Critical thickness for the formation of misfit dislocations originating from prismatic slip in semipolar and nonpolar III-nitride heterostructures

    Directory of Open Access Journals (Sweden)

    A. M. Smirnov

    2016-01-01

    Full Text Available We calculate the critical thickness for misfit dislocation (MD formation in lattice mismatched semipolar and nonpolar III-nitride wurtzite semiconductor layers for the case of MDs originated from prismatic slip (PSMDs. It has been shown that there is a switch of stress relaxation modes from generation of basal slip originated MDs to PSMDs after the angle between c-axis in wurtzite crystal structure and the direction of semipolar growth reaches a particular value, e.g., ∼70° for Al0.13Ga0.87N/GaN ( h 0 h ̄ 1 semipolar heterostructures. This means that for some semipolar growth orientations of III-nitride heterostructures biaxial relaxation of misfit stress can be realized. The results of modeling are compared to experimental data on the onset of plastic relaxation in AlxGa1−xN/GaN heterostructures.

  2. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  3. Partitioning and Localization of Environment-Sensitive 2-(2′-Pyridyl)- and 2-(2′-Pyrimidyl)-Indoles in Lipid Membranes: A Joint Refinement Using Fluorescence Measurements and Molecular Dynamics Simulations

    OpenAIRE

    Kyrychenko, Alexander; Wu, Feiyue; Thummel, Randolph P.; Waluk, Jacek; Ladokhin, Alexey S.

    2010-01-01

    Fluorescence of environment-sensitive dyes is widely applied to monitor local structure and solvation dynamics of biomolecules. It has been shown that, in comparison with a parent indole fluorophore, fluorescence of 2-(2′-pyridyl)-5-methylindole (5M-PyIn-0) and 2-[2′-(4′,6′-dimethylpyrimidyl)]-indole (DMPmIn-0) is remarkably sensitive to hydrogen bonding with protic partners. Strong fluorescence, observed for these compounds in nonpolar and polar aprotic solvents, is efficiently quenched in a...

  4. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    Science.gov (United States)

    Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.

    2014-02-01

    Context. Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. Aims: The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. Methods: The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results: We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-α (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice. Data can be found at http://ghosst.osug.fr/

  5. Surface tension of a coal extract in an organic solvent; Sekitan chushutsu seibun no kaigo to hyomen choryoku

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, T.; Hayasaka, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    The behavior and properties of associated bodies were studied through measurement of surface tension considering acetone-soluble fraction relatively light among various solvent extracts of coal. In experiment, the acetone-soluble fraction was extracted from the substances extracted from Upper Freeport coal as standard specimen using the mixed solvent of carbon disulfide (CS2) and N-methyl-2-pyrrolidinone (NMP), and it was dissolved into NMP after drying. Surface tension was measured by Wilhelmy method. The experimental results are as follows. Equilibrium surface tension is equal to the surface tension of pure solvent in a low concentration range of solution, and decreases with an increase in concentration approaching a fixed value at 0 in log concentration, nearly showing an S curve. Adsorption of species with non-polar aromatic ring of the acetone-soluble fraction on a solution surface probably decreases surface tension. Change with time in surface tension is observed which suggests fast initial reaction and slow subsequent reaction. 4 figs.

  6. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    Science.gov (United States)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  7. Indium incorporation in semipolar (20 2 ̅ 1) and nonpolar (10 1 ̅ 0) InGaN grown by plasma assisted molecular beam epitaxy

    Science.gov (United States)

    Sawicka, M.; Feduniewicz-Żmuda, A.; Kryśko, M.; Turski, H.; Muziol, G.; Siekacz, M.; Wolny, P.; Skierbiszewski, C.

    2017-02-01

    Semipolar (20 2 ̅ 1) , nonpolar m-plane (10 1 ̅ 0) and polar c-plane (0001) GaN and InGaN layers were grown by plasma-assisted molecular beam epitaxy. The surface of semipolar and nonpolar GaN grown under Ga-rich conditions is very smooth. The indium incorporation efficiency in InGaN layers grown under In-rich growth conditions is studied on three surface orientations (i) as a function of temperature from 570 to 650 °C and (ii) for varied active nitrogen flux from 0.41 to 2.03 μm/h. The In content follows the relation (10 1 ̅ 0) experiments. Indium composition in InGaN layers can be increased (i) by the decrease of the growth temperature and (ii) increase of the applied nitrogen flux for all studied surface orientations. Additionally, surface morphology of semipolar, nonpolar and c-polar InGaN layers grown at 650, 640 and 620 °C is compared. No increase in surface roughness for semipolar and nonpolar InGaN was observed in contrast to c-plane counterparts.

  8. Non-polar In x Ga1-x N/GaN quantum dots: impact of dot size and shape anisotropies on excitonic and biexcitonic properties

    Science.gov (United States)

    Kanta Patra, Saroj; Schulz, Stefan

    2017-01-01

    In this work, we present a theoretical analysis of the built-in potential, the excitonic and biexcitonic properties of non-polar InGaN/GaN quantum dots by means of self-consistent Hartree calculations using \\mathbf{k}\\centerdot \\mathbf{p} theory. Special attention is paid to the impact of dot size and shape anisotropies on the results. Our calculations reveal that even though non-polar InGaN/GaN quantum dots exhibit strongly reduced built-in fields when compared to c-plane dots, the excitonic and biexcitonic properties are significantly affected by these residual fields. Furthermore, changes in the built-in field when the geometrical dot features are modified, result in an unusual variation of the exciton binding energy. All these findings highlight that the dot geometry significantly affects electronic and optical properties of non-polar InGaN/GaN systems. This is further supported by comparing our theoretical data with experimental literature results. Here, we analyze also trends in exciton and biexciton binding energies and discuss the potential use of non-polar InGaN/GaN dots for entangled photon emission via the time reordering scheme.

  9. Defensive Armor of Potato Tubers: Nonpolar Metabolite Profiling, Antioxidant Assessment, and Solid-State NMR Compositional Analysis of Suberin-Enriched Wound-Healing Tissues.

    Science.gov (United States)

    Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2015-08-05

    The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative (13)C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar.

  10. Dynamics around solutes and solute-solvent complexes in mixed solvents.

    Science.gov (United States)

    Kwak, Kyungwon; Park, Sungnam; Fayer, M D

    2007-09-04

    Ultrafast 2D-IR vibrational echo experiments, IR pump-probe experiments, and FT-IR spectroscopy of the hydroxyl stretch of phenol-OD in three solvents, CCl4, mesitylene (1, 3, 5 trimethylbenzene), and the mixed solvent of mesitylene and CCl4 (0.83 mole fraction CCl4), are used to study solute-solvent dynamics via observation of spectral diffusion. Phenol forms a complex with Mesitylene. In the mesitylene solution, there is only complexed phenol; in the CCl4 solution, there is only uncomplexed phenol; and in the mixed solvent, both phenol species are present. Dynamics of the free phenol in CCl4 or the mixed solvent are very similar, and dynamics of the complex in mesitylene and in the mixed solvent are very similar. However, there are differences in the slowest time scale dynamics between the pure solvents and the mixed solvents. The mixed solvent produces slower dynamics that are attributed to first solvent shell solvent composition variations. The composition variations require a longer time to randomize than is required in the pure solvents, where only density variations occur. The experimental results and recent MD simulations indicate that the solvent structure around the solute may be different from the mixed solvent's mole fraction.

  11. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films.

    Science.gov (United States)

    Zhao, Min; Shang, Fengjiao; Lv, Jianguo; Song, Ying; Wang, Feng; Zhou, Zhitao; He, Gang; Zhang, Miao; Song, Xueping; Sun, Zhaoqi; Wei, Yiyong; Chen, Xiaoshuang

    2014-01-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail.

  12. Dramatic effects of halogen substitution and solvent on the rates and mechanisms of nucleophilic substitution reactions of aziridines.

    Science.gov (United States)

    Banks, Harold D

    2008-04-04

    In a previous study we reported that fluorine substitution at the carbon positions of aziridine results in profound enhancements of the rate of reaction with ammonia, a typical nucleophile, in the gas phase. In this study the investigation is extended to include chloro- and bromoaziridines. Because syntheses are largely performed in the condensed phase, the present computational investigation [(MP2(Full)/6-311++G(d,p)//MP2(Full)/6-31+G(d) level] was conducted with three typical solvents that cover a wide range of polarity: THF, CH3CN, and H2O. Nucleophiles can react with haloaziridines 1 by displacing a substituted amide ion by means of an SN2 mechanism (pathway a), producing 1,2-diaminohaloethanes (from the initially formed dipolar species 2). Alternatively, a rearrangement mechanism involving rate-determining departure of a halide ion (pathway b) to form an imidoyl halide, 3, is possible. Transition-state theory was used to compute relative reaction rates of these mechanistic possibilities and to assess the role of the halogen substituents and the reaction solvent. Gas-phase results provided the basis of mechanistic insights that were more apparent in the absence of intermolecular interactions. Fluoroaziridines were found to react at accelerated rates relative to aziridine exclusively by means of the a Menshutkin-type mechanism (SN2) in each solvent tested, while the reactions of the chloro- and bromoaziridines could be directed toward 2 in the highly nonpolar solvent, cyclohexane, or toward 3 in the more polar solvents. An assessment is made of the feasibility of using this chemistry of the haloazirdines in the synthetic laboratory.

  13. Waste reduction using carbon dioxide: A solvent substitute for precision cleaning applications

    Energy Technology Data Exchange (ETDEWEB)

    Phelphs, M.R.; Hogan, M.O.; Snowden-Swan, L.J. [and others

    1995-05-01

    The U.S. Department of Energy`s (DOE) Industrial Waste Program (IWP) has been sponsoring the research, development, and commercialization of supercritical fluid cleaning technology for replacement of traditional solvent cleaning processes. Los Alamos National Laboratory and Pacific Northwest Laboratory have been working through this collaborative effort to test the efficacy of carbon dioxide (CO{sub 2}) cleaning. Tests were performed on a variety of substrates at various solvent conditions for a large number of common contaminants to characterize cleaning performance. Cleaning efficiencies with respect to system dynamics were also studied. Results of these tests show that supercritical and near-critical carbon dioxide is not only an effective solvent for precision cleaning applications of parts such as gyroscopes, bearing assemblies, and machine tools but is also feasible for bulk cleaning operations for a variety of industrial needs. It has been tested and shown to be effective for a range of substrates including laser optics components, computer disk drives, and cloth rags. Metals, including stainless steel, beryllium, gold, silver, copper and others; ceramics; and elastomeric seals such as Teflon, silicone, and epoxy potting compounds are highly compatible with SuperCritical CO{sub 2} (SCCO{sub 2}). Many contaminants, including silicones, Krytox, hydrocarbons, esters, fluorocarbons, gyroscope damping and fill fluids, and machining oils and lubricating oils, will dissolve in SCCO{sub 2}. In general, nonpolar, hydrophobic contaminants such as oils dissolve well, while hydrophilic contaminants such as inorganic salts do not. The parts and contaminants mentioned here are not the only applications for SCCO, cleaning, as the full range of possibilities is still being defined by developers and users of the technology. The many advantages of SCCO{sub 2} indicate that it is a technology that should carry industrial cleaning operations into the future.

  14. Influence of Nonpolar Substances on the Extraction Efficiency of Six Alkaloids in Zoagumhwan Investigated by Ultra Performance Liquid Chromatography and Photodiode Array Detection

    Directory of Open Access Journals (Sweden)

    Shijing Liu

    2012-11-01

    Full Text Available A reverse phase ultra performance liquid chromatography and photodiode array (UPLC-PDA detection method was established for the determination of six alkaloids in Zoagumhwan (ZGW, and further for investigating the influence of nonpolar substances on the extraction efficiency of these alkaloids. The method was based on a BEH C18 (50 mm × 2.1 mm, 1.7 μm column and mobile phase of aqueous phosphoric acid and acetonitrile including 0.05% buffer solution under gradient elution. ZGW samples of ZGW I, II, III and IV were obtained and prepared by pre-processing the crude materials of Coptidis rhizoma and Evodiae fructus using four technologies, namely direct water decoction, removal of nonpolar substances in Evodiae fructus by supercritical fluid extraction (SFE, removal of nonpolar substances in ZGW by SFE and removal of nonpolar substances in ZGW by steam distillation. The developed and validated UPLC-PDA method was precise, accurate and sensitive enough based on the facts that the six alkaloids showed good regression (r > 0.9998, the limit of detections and quantifications for six alkaloids were less than 28.8 and 94.5 ng/mL, respectively, and the recovery was in the range of 98.56%–103.24%. The sequence of the total contents of six alkaloids in these samples was ZGW II > ZGW IV > ZGW III > ZGW I. ZGW II, in which nonpolar substances, including essential oils, were firstly removed from Evodiae fructus by SFE, had the highest content of the total alkaloids, indicating that extraction efficiency of the total alkaloids could be remarkably increased after Evodiae fructus being extracted by SFE.

  15. Biological Treatment of Solvent-Based Paint

    Science.gov (United States)

    2011-01-01

    solvent. In addition, hydrocarbon mixtures, aromatic hydrocarbon, and Medium Aliphatic Solvent Naphtha are descriptors used by the manufactures to...Enamel Aromatic Hydrocarbon 14 Mineral Spirits 10 Naphtha 10 Ethyl Benzene 0.21 Xylene 1.0 Sherwin Williams Co Enamel Mineral Spirits 49...Solvent Naphtha 31.5 Non-hazardous Ingredients 68 Parker Paints Enamel Mineral Spirits 17 Naphtha 7 Aromatic Hydrocarbons 3 1,2,4

  16. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    Science.gov (United States)

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-03

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.

  17. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    Science.gov (United States)

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.

  18. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  19. A solvent tolerant isolate of Enterobacter aerogenes.

    Science.gov (United States)

    Gupta, Anshu; Singh, Rajni; Khare, S K; Gupta, M N

    2006-01-01

    A solvent tolerant strain of Enterobacter aerogenes was isolated from soil by cyclohexane enrichment. Presence of cyclohexane (20%) in culture media prolonged the lag phase and caused reduction in biomass. Transmission electron micrographs showed convoluted cell membrane and accumulation of solvent in case of the cells grown in cyclohexane. The Enterobacter isolate was able to grow in the range of organic solvents having log P above 3.2 and also in presence of mercury, thus showing potential for treatment of solvent rich wastes.

  20. Organic solvent use in enterprises in Japan.

    Science.gov (United States)

    Nagasawa, Yasuhiro; Ukai, Hirohiko; Okamoto, Satoru; Samoto, Hajime; Itoh, Kenji; Moriguchi, Jiro; Sakuragi, Sonoko; Ohashi, Fumiko; Takada, Shiro; Kawakami, Tetsuya; Ikeda, Masayuki

    2011-01-01

    This study was initiated to elucidate possible changes in types of organic solvents (to be called solvents in short) used in enterprises in Japan through comparison of current solvent types with historical data since 1983. To investigate current situation in solvent use in enterprises, surveys were conducted during one year of 2009 to 2010. In total, workroom air samples in 1,497 unit workplaces with solvent use were analyzed in accordance with regulatory requirements. Typical use pattern of solvents was as mixtures, accounting for >70% of cases. Adhesives spreading (followed by adhesion) was relatively common in small-scale enterprises, whereas printing and painting work was more common in middle-scale ones, and solvent use for testing and research purpose was basically in large-scaled enterprises. Through-out printing, painting, surface coating and adhesive application, toluene was most common (being detected in 49 to 82% of workplaces depending on work types), whereas isopropyl alcohol was most common (49%) in degreasing, cleaning and wiping workplaces. Other commonly used solvents were methyl alcohol, ethyl acetate and acetone (33 to 37%). Comparison with historical data in Japan and literature-retrieved data outside of Japan all agreed with the observation that toluene is the most commonly used solvent. Application of trichloroethylene and 1,1,1-trichloroethane, once common in 1980s, has ceased to exist in recent years.

  1. Extractive Distillation with Salt in Solvent

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Extractive distillation with salt in solvent is a new process for producing anhydrous ethanol by combining the principle of "salt effect" and some traditional extractive distillation methods. Compared with the common extractive distillation the performance of solvent is improved, the recycling amount of solvent is reduced to 1/4-1/5, and the number of theoretical plates is reduced to 1/3. Energy consumption and cost of equipment are also reduced and continuous production is realized. High efficiency and low solvent wastage make this technique feasible.

  2. OCCUPATIONAL SOLVENT EXPOSURE ASSOCIATED WITH DEVELOPMENTAL TOXICITY

    Directory of Open Access Journals (Sweden)

    Alina-Costina LUCA

    2016-05-01

    Full Text Available Organic solvent is a broad term that applies to many classes of chemicals. The solvent (benzene, toluene etc. aspects of occupational exposure are reviewed via the examination of the use, occurrence, and disposition as well as population’s potential of risk. The general public can be exposed to solvent in ambient air as a result of its occurrence in paint process. Solvents are primarily irritants to the skin and mucous membranes and have narcotic properties at high concentrations. Published epidemiological data identified various types of birth defects in certain occupations.

  3. Green Solvents for Precision Cleaning

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  4. Bitumen recovery from oil sands using deep eutectic solvent and its aqueous solutions

    Science.gov (United States)

    Pulati, Nuerxida

    Oil sands compose a significant proportion of the world's known oil reserves. Oil sands are also known as tar sands and bituminous sands, are complex mixtures of sand, clays, water and bitumen, which is "heavy" and highly viscous oil. The extraction and separation of bitumen from oil sands requires significant amount of energy and large quantities of water and poses several environmental challenges. Bitumen can be successfully separated from oil sands using imidazolium based ionic liquids and nonpolar solvents, however, ionic liquids are expensive and toxic. In this thesis, the ionic liquid alternatives- deep eutectic solvent, were investigated. Oil sands separation can be successfully achieved by using deep eutectic solvents DES (choline chloride and urea) and nonpolar solvent naphtha in different types of oil sands, including Canadian ("water-wet"), Utah ("oil-wet") and low grade Kentucky oil sands. The separation quality depends on oil sands type, including bitumen and fine content, and separation condition, such as solvent ratio, temperature, mixing time and mechanical centrifuge. This separation claims to the DES ability to form ion /charge layering on mineral surface, which results in reduction of adhesion forces between bitumen and minerals and promote their separation. Addition of water to DES can reduce DES viscosity. DES water mixture as a media, oil sands separation can be achieved. However, concentration at about 50 % or higher might be required to obtain a clear separation. And the separation efficiency is oil sands sample dependent. The highest bitumen extraction yield happened at 75% DES-water solution for Utah oil sands samples, and at 50 60% DES-water solutions for Alberta oil sands samples. Force curves were measured using Atomic Force Microscopy new technique, PeakForce Tapping Quantitative Nanomechanical Mapping (PFTQNM). The results demonstrate that, by adding DES, the adhesion force between bitumen and silica and dissipation energy will

  5. Additive diffusion from LDPE slabs into contacting solvents as a function of solvent absorption

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, Th.

    2003-01-01

    This article describes the simultaneous diffusion of a migrant and a solvent in low density polyethylene (LDPE). The migrant (Irganox 1076) moves out of the slab, while the solvent (isooctane, n-heptane or cyclohexane) moves inwards. Solvent absorption was measured separately by following the increa

  6. Additive Diffusion from LDPE Slabs into Contacting Solvents as a Function of Solvent Absorption

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2003-01-01

    This article describes the simultaneous diffusion of a migrant and a solvent in low density polyethylene (LDPE). The migrant (Irganox 1076) moves out of the slab, while the solvent (isooctane, n-heptane or cyclohexane) moves inwards. Solvent absorption was measured separately by following the increa

  7. A spectroscopic and theoretical investigation of the proton-transfer laser. [Fisetin and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Parthenopoulos, D.A.

    1988-01-01

    The lasing characteristics and the spectroscopy of intramolecular proton-transfer molecules were investigated in nonpolar and polar solvents. In addition, molecular orbital calculations on intramolecular proton-transfer molecules were performed. The efficient generation of coherent stimulated emission from 3-hydroxyflavone (3-HF) and fisetin, two molecules that exhibit intramolecular proton transfer was shown. Amplified spontaneous emission from 3-HF is achieved in polar aprotic and moderately protic solvents. The observed shifts of the tautomer fluorescence are attributed to hydrogen bonding interactions with the solvent. In contrast, 3-hydroxychromone does not exhibit amplified spontaneous emission in various solvents and concentrations. Picosecond transient absorption experiments reveal the existence of absorption bands overlapping the emission, which leads to high-loss terms in the gain equation.

  8. Solvent effect in the Walden inversion reactions

    Science.gov (United States)

    Jaume, J.; Lluch, J. M.; Oliva, A.; Bertrán, J.

    1984-04-01

    The solvent effect on the fluoride exchange reaction has been studied by means of ab initio calculations using the 3-21G basis set. It is shown that the motion of the solvent molecules is an important part of the reaction coordinate.

  9. Solvation of rhodamine575 in some solvents

    Science.gov (United States)

    Sharma, Amit

    2016-05-01

    FTIR spectra of Rhodamine575 dye in powder form and in different solvents are reported. Positions of some of the observed FTIR bands show noticeable change in solvents. The bands, which shift, have contributions from the vibrational motion of nitrogen atoms of the ethylamine groups, oxygen atom of the carboxylic group attached to the phenyl ring and oxygen atom of the Xanthene ring.

  10. Composite capillary membrane for solvent resistant nanofiltration

    NARCIS (Netherlands)

    Dutczak, S.M.; Luiten-Olieman, Maria W.J.; Zwijnenberg, Harmen Jan; Bolhuis-Versteeg, Lydia A.M.; Winnubst, Aloysius J.A.; Hempenius, Mark A.; Benes, Nieck Edwin; Wessling, Matthias; Stamatialis, Dimitrios

    2011-01-01

    Solvent resistant nanofiltration (SRNF) is a membrane separation process allowing for an efficient separation of small molecules of 200–1000 g mol−1 from organic solvents. The application of SRNF in industry applications is currently hindered by a limited choice of SRNF membranes and configurations.

  11. Supercritical-Multiple-Solvent Extraction From Coal

    Science.gov (United States)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  12. Improved Supercritical-Solvent Extraction of Coal

    Science.gov (United States)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  13. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  14. Relationship between Fermi Resonance and Solvent Effects

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiu-Lan; LI Dong-Fei; SUN Cheng-Lin; LI Zhan-Long; YANG Guang; ZHOU Mi; LI Zuo-Wei; GAO Shu-Qin

    2011-01-01

    We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations. Also, we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures. It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio, etc., on the other hand, the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.%@@ We theoretically and experimentally study the relationship between Fermi resonance and solvent effects and investigate the Fermi resonance of p-benzoquinone and cyclopentanone in different solvents and the Fermi resonance of CS2 in C6H6 at different concentrations.Also,we investigate the Fermi resonance of C6H6 and CCl4 in their solution at different pressures.It is found that solvent effects can be utilized to search Fermi resonance parameters such as coupling coefficient and spectral intensity ratio,etc.,on the other hand,the mechanism of solvent effects can be revealed according to Fermi resonance at high pressure.

  15. Toxic hepatitis in occupational exposure to solvents

    Institute of Scientific and Technical Information of China (English)

    Giulia Malaguarnera; Emanuela Cataudella; Maria Giordano; Giuseppe Nunnari; Giuseppe Chisari; Mariano Malaguarnera

    2012-01-01

    The liver is the main organ responsible for the metabolism of drugs and toxic chemicals,and so is the primary target organ for many organic solvents.Work activities with hepatotoxins exposures are numerous and,moreover,organic solvents are used in various industrial processes.Organic solvents used in different industrial processes may be associated with hepatotoxicity.Several factors contribute to liver toxicity; among these are:species differences,nutritional condition,genetic factors,interaction with medications in use,alcohol abuse and interaction,and age.This review addresses the mechanisms of hepatotoxicity.The main pathogenic mechanisms responsible for functional and organic damage caused by solvents are:inflammation,dysfunction of cytochrome P450,mitochondrial dysfunction and oxidative stress.The health impact of exposure to solvents in the workplace remains an interesting and worrying question for professional health work.

  16. Assessment of solvents for cellulose dissolution.

    Science.gov (United States)

    Ghasemi, Mohammad; Tsianou, Marina; Alexandridis, Paschalis

    2017-03-01

    A necessary step in the processing of biomass is the pretreatment and dissolution of cellulose. A good solvent for cellulose involves high diffusivity, aggressiveness in decrystallization, and capability of disassociating the cellulose chains. However, it is not clear which of these factors and under what conditions should be improved in order to obtain a more effective solvent. To this end, a newly-developed phenomenological model has been applied to assess the controlling mechanism of cellulose dissolution. Among the findings, the cellulose fibers remain crystalline almost to the end of the dissolution process for decrystallization-controlled kinetics. In such solvents, decreasing the fiber crystallinity, e.g., via pretreatment, would result in a considerable increase in the dissolution rate. Such insights improve the understanding of cellulose dissolution and facilitate the selection of more efficient solvents and processing conditions for biomass. Specific examples of solvents are provided where dissolution is limited due to decrystallization or disentanglement.

  17. Preparation of coal slurry with organic solvents.

    Science.gov (United States)

    Shin, Yu-Jen; Shen, Yun-Hwei

    2007-06-01

    In this study, various organic solvents were used to prepare coal slurries and the rheological and thermal properties of coal-organic solvent slurries were examined. Solvents with molecules containing unpaired electrons (high basicity) show high extraction power and cause swelling of coal. Therefore, coal-organic solvent slurries usually showed higher viscosities compared to coal-water slurry. In addition, coal slurries prepared by alcohols and cyclohexanone demonstrated lower settling rates but a high specific sedimentation volume presumably because these solvents swelled coal particles well and led to the formation of weak gel structures in the bulk. In addition, ethanol and cyclohexanone are capable of breaking a considerable amount of hydrogen bonds in coal and subsequently opening up the structures. Thus, more surface area is available for combustion and the combustion rate of coal slurries was increased.

  18. Efficient cellulose solvent: quaternary ammonium chlorides.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; El Seoud, Omar A; Heinze, Thomas

    2013-10-01

    Pure quaternary tetraalkylammonium chlorides with one long alkyl chain dissolved in various organic solvents constitute a new class of cellulose solvents. The electrolytes are prepared in high yields and purity by Menshutkin quaternization, an inexpensive and easy synthesis route. The pure molten tetraalkylammonium chlorides dissolve up to 15 wt% of cellulose. Cosolvents, including N,N-dimethylacetamide (DMA), may be added in large excess, leading to a system of decreased viscosity. Contrary to the well-established solvent DMA/LiCl, cellulose dissolves in DMA/quaternary ammonium chlorides without any pretreatment. Thus, the use of the new solvent avoids some disadvantages of DMA/LiCl and ionic liquids, the most extensively employed solvents for homogeneous cellulose chemistry.

  19. Green-solvent-processable organic solar cells

    Directory of Open Access Journals (Sweden)

    Shaoqing Zhang

    2016-11-01

    Full Text Available Solution-processable organic photovoltaics (OPV has emerged as a promising clean energy-generating technology due to its potential for low-cost manufacturing with a high power/weight ratio. The state-of-the-art OPV devices are processed by hazardous halogenated solvents. Fabricating high-efficiency OPV devices using greener solvents is a necessary step toward their eventual commercialization. In this review, recent research efforts and advances in green-solvent-processable OPVs are summarized, and two basic strategies including material design and solvent selection of light-harvesting layers are discussed. In particular, the most recent green-solvent-processable OPVs with high efficiencies in excess of 9% are highlighted.

  20. Solvent effects on the absorption and emission spectra of novel (E)-4-((4-(heptyloxy)phenyl)diazenyl)benzyl (((9H-fluoren-9-yl)methoxy)carbonyl)-D-alaninate (Fmoc-al-az): Determination of dipole moment by experimental and theoretical study

    Science.gov (United States)

    Y, Tej Varma; Agarwal, Devesh S.; Sarmah, Amrit; Joshi, Lata; Sakhuja, Rajeev; Pant, Debi D.

    2017-02-01

    Amino acid appended azobenzene hybrid has been synthesized (Fmoc-al-az) and its electronic absorbance and fluorescence spectra were recorded at room temperature in a series of polar and non-polar solvents. The ground state and excited state dipole moments were calculated using solvatochromic shift method. A DFT based study was also performed using- Gaussian09 program package. We have observed that the absorption spectra don't show sensitive behavior to the change in the polarity of the solvent, whereas a bathochromic shift was observed in the fluorescence spectra as we moved from non-polar to polar solvents indicating a π→π* transition. It was observed that the dipole moment in the excited state is much higher than the ground state, due to the amino acid containing hydrogen bond acceptor (Osbnd Cdbnd O) and hydrogen bond donor (sbnd NH) in Fmoc-al-az increasing the reorientation tendency of the solvent molecule around the dye therefore enhancing the stabilization of the excited state which is attributed to the high polarity of the excited states. DFT level electronic structure calculations are also performed for a better molecular level understanding of the experimental observations. We obtained a good correlation between the theoretical studies and experimental results.

  1. [Neurotoxicity of organic solvents--recent findings].

    Science.gov (United States)

    Matsuoka, Masato

    2007-06-01

    In this review, the recent findings of central nervous system (CNS) or peripheral nervous system (PNS) dysfunction induced by occupational exposure to organic solvents are described. While acute, high-level exposure to almost all organic solvents causes the general, nonspecific depression of CNS, it is still not clear whether chronic, low-level occupational exposure causes the chronic neurological dysfunction which has been called "organic solvent syndrome", "painters syndrome", "psycho-organic syndrome" or "chronic solvent encephalopathy". At least at lower than occupational exposure limits, chronic and low-level organic solvent exposure does not appear to cause the "sy mptomatic" neurological dysfunction. The chronic, moderate- to high-level exposure to a few organic solvents (such as carbon disulfide, n-hexane and methyl n-butyl ketone) affects CNS or PNS specifically. The substitutes for chlorofluorocarbons, 2-bromopropane and 1-bromopropane were shown to have the peripheral nerve toxicity in the experimental animals. Shortly after these observations, human cases of 1-bromopropane intoxication with the dysfunction of CNS and PNS were reported in the United States. Neurological abnormalities in workers of a 1-bromopropane factory in China were also reported. Thus, the possible neurotoxicity of newly introduced substitutes for ozone-depleting solvents into the workplace must be considered. Enough evidences indicate that some common solvents (such as toluene and styrene) induce sensorineural hearing loss and acquired color vision disturbances in workers. In some studies using magnetic resonance imaging (MRI), cerebral atrophy, patchy periventricular hyperintensities and hypointensities in the basal ganglia were found in solvent-exposed workers as have been shown in toluene abusers (toluene leukoencephalopathy). Further studies using the neurobehavioral test batteries, neurophysiological measurements and advanced neuroimaging techniques are required to detect the

  2. PARIS II: Computer Aided Solvent Design for Pollution Prevention

    Science.gov (United States)

    This product is a summary of U.S. EPA researchers' work developing the solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). PARIS II finds less toxic solvents or solvent mixtures to replace more toxic solvents co...

  3. Atomistic simulation studies on the dynamics and thermodynamics of nonpolar molecules within the zeolite imidazolate framework-8.

    Science.gov (United States)

    Pantatosaki, Evangelia; Pazzona, Federico G; Megariotis, Gregory; Papadopoulos, George K

    2010-02-25

    Statistical-mechanics-based simulation studies at the atomistic level of argon (Ar), methane (CH(4)), and hydrogen (H(2)) sorbed in the zeolite imidazolate framework-8 (ZIF-8) are reported. ZIF-8 is a product of a special kind of chemical process, recently termed as reticular synthesis, which has generated a class of materials of critical importance as molecular binders. In this work, we explore the mechanisms that govern the sorption thermodynamics and kinetics of nonpolar sorbates possessing different sizes and strength of interactions with the metal-organic framework to understand the outstanding properties of this novel class of sorbents, as revealed by experiments published elsewhere. For this purpose, we have developed an in-house modeling procedure involving calculations of sorption isotherms, partial internal energies, various probability density functions, and molecular dynamics for the simulation of the sorbed phase over a wide range of occupancies and temperatures within a digitally reconstructed unit cell of ZIF-8. The results showed that sorbates perceive a marked energetic inhomogeneity within the atomic framework of the metal-organic material under study, resulting in free energy barriers that give rise to inflections in the sorption isotherms and guide the dynamics of guest molecules.

  4. Treatment of tunnel wash waters - experiments with organic sorbent materials. Part I: Removal of polycyclic aromatic hydrocarbons and nonpolar oil

    Institute of Scientific and Technical Information of China (English)

    PARUCH AdamM; ROSETH Roger

    2008-01-01

    Tunnel wash waters characterize all waters that run off after washing procedures of tunnels are performed. These waters represent a wide spectrum of organic and inorganic pollutants, such as polycyclic aromatic hydrocarbons (PAHs) and toxic metals. Removal of such contaminants from water runoff was investigated using laboratory tests after washing procedure was performed on two road tunnels in eastern Norway (Hanekleiv and Bragernes). Due to diverse character of both, treatment media and treated wash waters, the whole investigation was divided into two separate laboratory experiments. The treatment efficiencies were established based on the levels of concentrations and reductions of the measured contaminants in the effluents released from the tested media. In the first part of the article, the contents of nonpolar oil (NPO), 16 individual PAHs, and total PAHs (∑PAH16) are described. This part revealed that the combination of two organic sorbent materials provided the highest treatment efficiency for wash waters released from the road tunnel and from electrostatic filters. The greatest reduction levels reached 97.6% for NPO, 97.2% for benzo[a]pyrene, and 96.5% for the total PAHs. In the second part of the article, the concentrations and the removal rates of toxic metals are reported

  5. Short-wavelength, mid- and far-infrared intersubband absorption in nonpolar GaN/Al(Ga)N heterostructures

    Science.gov (United States)

    Lim, Caroline B.; Beeler, Mark; Ajay, Akhil; Lähnemann, Jonas; Bellet-Amalric, Edith; Bougerol, Catherine; Schörmann, Jörg; Eickhoff, Martin; Monroy, Eva

    2016-05-01

    This paper assesses nonpolar m-oriented GaN:Si/Al(Ga)N heterostructures grown on free-standing GaN for intersubband optoelectronics in the short-wavelength, mid- and far-infrared ranges. Characterization results are compared with reference c-plane samples and interpreted by correlation with self-consistent Schrödinger-Poisson calculations. In the near- and mid-infrared regions, we demonstrate m-GaN/Al(Ga)N multi-quantum-wells exhibiting room-temperature intersubband absorption tunable in the range of 1.5-5.8 µm (827-214 meV), the long wavelength limit being set by the second order of the Reststrahlen band in the GaN substrates. Extending the study to the far-infrared region, low-temperature intersubband transitions in the 1.5-9 THz range (6.3-37.4 meV) are observed in larger m-plane GaN/AlGaN multi-quantum-wells, covering most of the 7-10 THz band forbidden to GaAs-based technologies.

  6. Photo-Stimulated Electron Detrapping and the Two-State Model for Electron Transport in Nonpolar Liquids

    CERN Document Server

    Shkrob, I A

    2004-01-01

    In common nonpolar liquids, such as saturated hydrocarbons, a dynamic equilibrium between trapped (localized) and quasifree (extended) states has been postulated for the excess electron (the two-state model). Using time-resolved dc conductivity, the effect of 1064 nm laser photoexcitation of trapped electrons on the charge transport has been observed in liquid n-hexane and methylcyclohexane. The light promotes the electron from the trap into the conduction band of the liquid, instantaneously increasing the conductivity by orders of magnitude. From the analysis of the two-pulse, two-color photoconductivity data, the residence time of the electrons in traps has been estimated as ca. 8.4 ps for n-hexane and ca. 13 ps for methylcyclohexane (at 295 K). The rate of detrapping decreases at lower temperature with an activation energy of ca. 200 meV (280-320 K); the lifetime-mobility product for quasifree electrons scales linearly with the temperature. We suggest that the properties of trapped electrons in hydrocarbon...

  7. Predicting the Solubility of Pharmaceutical Cocrystals in Solvent/Anti-Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Linda Lange

    2016-05-01

    Full Text Available In this work, the solubilities of pharmaceutical cocrystals in solvent/anti-solvent systems were predicted using PC-SAFT in order to increase the efficiency of cocrystal formation processes. Modeling results and experimental data were compared for the cocrystal system nicotinamide/succinic acid (2:1 in the solvent/anti-solvent mixtures ethanol/water, ethanol/acetonitrile and ethanol/ethyl acetate at 298.15 K and in the ethanol/ethyl acetate mixture also at 310.15 K. The solubility of the investigated cocrystal slightly increased when adding small amounts of anti-solvent to the solvent, but drastically decreased for high anti-solvent amounts. Furthermore, the solubilities of nicotinamide, succinic acid and the cocrystal in the considered solvent/anti-solvent mixtures showed strong deviations from ideal-solution behavior. However, by accounting for the thermodynamic non-ideality of the components, PC-SAFT is able to predict the solubilities in all above-mentioned solvent/anti-solvent systems in good agreement with the experimental data.

  8. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  9. Remarkable solvent, porphyrin ligand, and substrate effects on participation of multiple active oxidants in manganese(III) porphyrin catalyzed oxidation reactions.

    Science.gov (United States)

    Hyun, Min Young; Jo, Young Dan; Lee, Jun Ho; Lee, Hong Gyu; Park, Hyun Min; Hwang, In Hong; Kim, Kyeong Beom; Lee, Suk Joong; Kim, Cheal

    2013-01-28

    The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron-withdrawing and -donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1-octene, and ethylbenzene in various solvent systems, namely, toluene, CH(2) Cl(2) , CH(3) CN, and H(2) O/CH(3) CN (1:4). With an increase in the concentration of the easy-to-oxidize substrate cyclohexene in the presence of [(TMP)MnCl] (1a) with electron-donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn-OOC(O)R] species 2a is the major active species. When the substrate was changed from the easy-to-oxidize one (cyclohexene) to difficult-to-oxidize ones (1-octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F(20) TPP)Mn-OOC(O)R] species 2b generated from the reaction of [(F(20) TPP)MnCl] (1b) with electron-withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn-OOR] 2a) depending on the concentration of the easy-to-oxidize substrate cyclohexene in all aprotic solvent systems except for CH(3) CN, whereas Mn(V)=O species is the major active oxidant in the protic solvent system. With difficult-to-oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1-octene in toluene, indicating that a Mn(V)=O intermediate generated from the heterolytic cleavage of 2b becomes a major reactive species. We also studied the competitive epoxidations of cis-2-octene and trans-2-octene with two manganese(III) porphyrin complexes by meta-chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis- to trans-2-octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further

  10. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    Science.gov (United States)

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-14

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σp and σm). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  11. Observation of mid-infrared intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Teruhisa, E-mail: kotani.teruhisa@sharp.co.jp [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Life and Environment Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan); Arita, Munetaka [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-12-29

    Mid-infrared (4.20–4.84 μm) intersubband absorption in non-polar m-plane Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells is observed at room temperature. 10 period Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells were grown on free-standing m-plane GaN substrates by metalorganic chemical vapor deposition (MOCVD), and the high-quality structural and optical properties are revealed by x-ray diffraction and photoluminescence studies. Through this we have demonstrated that MOCVD grown non-polar m-plane AlGaN/GaN quantum wells are a promising material for mid-infrared intersubband devices.

  12. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water.

    Science.gov (United States)

    Spolar, R S; Livingstone, J R; Record, M T

    1992-04-28

    This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from the reduction in water-accessible surface area. Although the removal of nonpolar surface makes the dominant contribution to the standard heat capacity change of folding (delta C0fold), here we show that inclusion of the contribution from removal of polar surface allows a quantitative prediction of delta C0fold within the uncertainty of the calorimetrically determined value. Moreover, analysis of the contribution of polar surface area to the enthalpy of transfer of liquid amides provides a means of estimating the contributions from changes in nonpolar and polar surface area as well as other factors to the enthalpy of folding (delta H0fold). In addition to estimates of delta H0fold, this extension of the liquid hydrocarbon model provides a thermodynamic explanation for the observation [Privalov, P. L., & Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665-684] that the specific enthalpy of folding (cal g-1) of a number of globular proteins converges to a common value at approximately 383 K. Because amounts of nonpolar and polar surface area buried by these proteins upon folding are found to be linear functions of molar mass, estimates of both delta C0fold and delta H0fold may be obtained given only the molar mass of the protein of interest.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  14. Auditory dysfunction associated with solvent exposure

    Directory of Open Access Journals (Sweden)

    Fuente Adrian

    2013-01-01

    Full Text Available Abstract Background A number of studies have demonstrated that solvents may induce auditory dysfunction. However, there is still little knowledge regarding the main signs and symptoms of solvent-induced hearing loss (SIHL. The aim of this research was to investigate the association between solvent exposure and adverse effects on peripheral and central auditory functioning with a comprehensive audiological test battery. Methods Seventy-two solvent-exposed workers and 72 non-exposed workers were selected to participate in the study. The test battery comprised pure-tone audiometry (PTA, transient evoked otoacoustic emissions (TEOAE, Random Gap Detection (RGD and Hearing-in-Noise test (HINT. Results Solvent-exposed subjects presented with poorer mean test results than non-exposed subjects. A bivariate and multivariate linear regression model analysis was performed. One model for each auditory outcome (PTA, TEOAE, RGD and HINT was independently constructed. For all of the models solvent exposure was significantly associated with the auditory outcome. Age also appeared significantly associated with some auditory outcomes. Conclusions This study provides further evidence of the possible adverse effect of solvents on the peripheral and central auditory functioning. A discussion of these effects and the utility of selected hearing tests to assess SIHL is addressed.

  15. Solvent Effect on the Photolysis of Riboflavin.

    Science.gov (United States)

    Ahmad, Iqbal; Anwar, Zubair; Ahmed, Sofia; Sheraz, Muhammad Ali; Bano, Raheela; Hafeez, Ambreen

    2015-10-01

    The kinetics of photolysis of riboflavin (RF) in water (pH 7.0) and in organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol, ethyl acetate) has been studied using a multicomponent spectrometric method for the assay of RF and its major photoproducts, formylmethylflavin and lumichrome. The apparent first-order rate constants (k obs) for the reaction range from 3.19 (ethyl acetate) to 4.61 × 10(-3) min(-1) (water). The values of k obs have been found to be a linear function of solvent dielectric constant implying the participation of a dipolar intermediate along the reaction pathway. The degradation of this intermediate is promoted by the polarity of the medium. This indicates a greater stabilization of the excited-triplet states of RF with an increase in solvent polarity to facilitate its reduction. The rate constants for the reaction show a linear relation with the solvent acceptor number indicating the degree of solute-solvent interaction in different solvents. It would depend on the electron-donating capacity of RF molecule in organic solvents. The values of k obs are inversely proportional to the viscosity of the medium as a result of diffusion-controlled processes.

  16. Characterization of nonpolar lipids and steroids by using laser-induced acoustic desorption/chemical ionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z; Daiya, S; Kenttämaa, Hilkka I

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H{sub 2}O){sup +} chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H{sub 2}O) upon reaction with the ClMn(H{sub 2}O){sup +} ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H{sub 2}O ions, but less abundant adduct-2H{sub 2}O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H{sub 2}O){sup +} chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids.

  17. Effect of solvent environment on the Photophysics of a newly synthesized bioactive 7-oxy(5-selenocyanato-pentyl)-2H-1-benzopyran-2-one

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Sayaree [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Rana, Dipak Kumar [Department of Chemistry, Saldiha College, The University of Burdwan, Bankura 722173 (India); Singha Roy, Somnath [Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026 (India); Roy, Swapnadip [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Bhattacharya, Sudin [Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026 (India); Bhattacharya, Subhash Chandra, E-mail: sbjuchem@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700032 (India)

    2012-04-15

    The synthesis and solvatochromic behavior of the compound, 7-oxy(5-selenocyanato-pentyl)-2H-1-benzopyran-2-one (PCM), a pervasive, bioactive coumarin derivative, which is expected to possess antioxidative properties and other important therapeutic activities of significant potency with low systematic toxicity, have been reported employing steady state and time resolved fluorescence techniques. Spectroscopic studies reveal that the solvatochromic behavior of the probe depends not only on the polarity of the medium but also on the hydrogen bonding properties of the solvents. Specific hydrogen bonding interaction of PCM in polar solvents modulated the order of the two close-lying lowest singlet states. The photophysical response of PCM in different solvents has been explained considering solute-solvent interactions. To corroborate these results, we performed the ground-state geometry, lowest energy transition and the UV-vis spectrum of PCM using the density functional theory (DFT) and the time-dependent density functional theory (TD-DFT) at B3LYP/6-31G{sup Low-Asterisk} level. We found excellent correlation between the predicted and experimental spectral data, providing a useful tool in the design of new fluorogenic probes having potential therapeutic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis and photophysical behavior of the bioactive PCM. Black-Right-Pointing-Pointer The order of the two close-lying lowest singlet states is modulated by H-bonding interaction in polar solvents. Black-Right-Pointing-Pointer In non-polar solvent non-radiative path favor due to mixing of n,{pi}{sup Low-Asterisk} and {pi},{pi}{sup Low-Asterisk} singlet states. Black-Right-Pointing-Pointer Quantum chemical calculation has been employed to corroborate with experimental finding.

  18. Purification and characterization of an extracellular halophilic and organic solvent-tolerant amylopullulanase from a haloarchaeon, Halorubrum sp. strain Ha25.

    Directory of Open Access Journals (Sweden)

    Mostafa Fazeli

    2013-01-01

    Full Text Available Introduction: Halophiles, especially haloarchaea are one of the most important groups of extremophiles. Halophilic hydrolases have been studied worldwide and have been considered for biotechnology and industrial technologies. This study is the first report in amylopullulanase production in halophilic microorganisms.Materials and methods: A halophilic archaeon, Halorubrum sp. strain Ha25, produced extracellular halophilic organic solvent-tolerant amylopullulanase. The enzyme was purified using ethanol precipitation and anion exchange chromatography method. Molecular mass of purified enzyme was determined by SDS–PAGE method. After purification, the enzyme was characterized. To study the effects of organic solvents in the stability of the enzyme, the enzyme solution was incubated in the presence of various organic compounds and then, residual enzyme activity was measured. Mode of action of the enzyme was determined by thin-layer chromatography.Results: Molecular weight of the purified enzyme was estimated to be 140 kDa by SDS–PAGE method. Optimum temperature for amylolitic and pullulytic activities was 50 °C. Optimum pH for amylolitic activity was 7.0 and for pullulytic activity was 7.5. This enzyme was active over a wide range of concentrations (0-4.5 M of NaCl. The effect of organic solvents on the amylolitic and pullulytic activities showed that this enzyme was more stable in the presence of non-polar organic solvents than polar solvents. The enzyme solely hydrolyzed pullulan and soluble starch to glucose.Discussion and conclusion: Halorubrum sp. strain Ha25 produces thermophilic and extremely halophilic amylopullulanase. The catalytic function under multi extreme condition of high temperature, high salinity, and low water activity might possess biotechnological and commercial values such as treatment waste solutions with starch residues, high salt content and solvents.

  19. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  20. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  1. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  2. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction

    Institute of Scientific and Technical Information of China (English)

    Sanimah; Simoh; Alizah; Zainal

    2015-01-01

    Objective:To investigate the possible phytochemical constituents of Curcuma aeruginosa Roxb.(C. aeruginosa) rhizome using two different techniques of direct solvent extraction. Methods: Two different techniques of direct solvent extractions, i.e. methyl tert-butyl ether(MTBE) extraction and two-phase methanol/chloroform(M/C) system, were used in this study. The analysis of the phytochemical constituents in MTBE and M/C extracts was performed using gas chromatography-mass spectrometry/mass spectrometry. The mass spectra of the compounds was matched with the NIST 08 mass spectral library. Results: The present study revealed that the extraction using two-phase M/C have resulted in higher metabolite coverage compared to the extraction with MTBE. Direct solvent extraction using MTBE revealed the presence of 27 compounds; whereas, M/C allowed the extraction of 18 and 36 compounds in polar(methanol) and nonpolar(chloroform) fractions respectively. The major compounds detected in the MTBE extract that based on the peak area percentage were methenolone(16.64%), cycloisolongifolene, 8,9-dehydro-9-formyl-(15.93%), labd-13-en-15-oic acid,8,12-epoxy-12-hydroxy-γ-lactone(10.77%), propiolic acid, 3-(1-hydroxy)-2 isopropyl-1,5-methylcyclohexyl)(7.84%), 4-oxo-β-isodamascol(5.17%), velleral(3.11%) and Z-α-farnesene(2.00%). The most prevailing major compounds identified in the polar fraction of the M/C extraction were α-D glucopyranoside, 1,3,4,6 tetrakis-O-(TMS)(trimethylsilyl)-β-D-fructofuranosyl 2,3,4,6-tetrakis-O-(TMS)-(38.08%), d-glucose, 2,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime(14.61%), D-fructose, 1,3,4,5,6-pentakis-O-(TMS)-, O-methyloxime(5.28%), isocitric acid(TMS)(3.06%), oxalic acid, bis(TMS) ester(2.96%), hexadecanoic acid, TMS ester(2.16%), citric acid, ethyl ester, tri-TMS(1.91%) and butanedioic acid, [(TMS) oxy]-, bis(TMS) ester(1.14%); whereas in the nonpolar extract, among the major compounds detected were cycloisolongifolene, 8, 9-dehydro-9-formyl(15

  3. DAPI binding to the DNA minor groove: a continuum solvent analysis.

    Science.gov (United States)

    De Castro, L F Pineda; Zacharias, M

    2002-01-01

    A continuum solvent model based on the generalized Born (GB) or finite-difference Poisson-Boltzmann (FDPB) approaches has been employed to compare the binding of 4'-6-diamidine-2-phenyl indole (DAPI) to the minor groove of various DNA sequences. Qualitative agreement between the results of GB and FDPB approaches as well as between calculated and experimentally observed trends regarding the sequence specificity of DAPI binding to B-DNA was obtained. Calculated binding energies were decomposed into various contributions to solvation and DNA-ligand interaction. DNA conformational adaptation was found to make a favorable contribution to the calculated total interaction energy but did not change the DAPI binding affinity ranking of different DNA sequences. The calculations indicate that closed complex formation is mainly driven by nonpolar contributions and was found to be disfavored electrostatically due to a desolvation penalty that outbalances the attractive Coulomb interaction. The calculated penalty was larger for DAPI binding to GC-rich sequences compared with AT-rich target sequences and generally larger for the FDPB vs the GB continuum model. A radial interaction profile for DAPI at different distances from the DNA minor groove revealed an electrostatic energy minimum a few Angstroms farther away from the closed binding geometry. The calculated electrostatic interaction up to this distance is attractive and it may stabilize a nonspecific binding arrangement.

  4. Analysis of metabolic pathways by the growth of cells in the presence of organic solvents.

    Science.gov (United States)

    Spinnler, H E; Ginies, C; Khan, J A; Vulfson, E N

    1996-01-01

    A new approach to the analysis of metabolic pathways involving poorly water-soluble intermediates is proposed. It relies upon the ability of the hydrophobic intermediates formed by a sequence of intracellular reactions to cross the membrane(s) and partition between aqueous and organic phases, when cells are incubated in the presence of a nonpolar and nontoxic organic solvent. As a result of this thermodynamically driven efflux of the formed intermediates from the cell, they accumulate in the organic medium in sufficient quantities for GC-MS analysis and identification. This enables direct determination of the sequence of chemical reactions involved with no requirement for the isolation of each individual metabolite from a cell-free extract. The feasibility of the proposed methodology has been demonstrated by the elucidation of the biosynthesis of (R)-gamma-decalactone from (R)-ricinoleic acid catalyzed by the yeast Sporidiobolus ruinenii grown in the presence of decane. The corresponding 4-hydroxy-acid intermediates, formed in the course of beta-oxidation of (R)-ricinoleic acid, were simultaneously observed in a single experiment on the same chromatogram. Potential applications of this proposed methodology are briefly discussed. Images Fig. 1 PMID:11607651

  5. Supramolecular complexes of multivalent cholesterol-containing polymers to solubilize carbon nanotubes in apolar organic solvents.

    Science.gov (United States)

    Nguendia, Jules Zeuna; Zhong, Weiheng; Fleury, Alexandre; De Grandpré, Guillaume; Soldera, Armand; Sabat, Ribal Georges; Claverie, Jerome P

    2014-05-01

    Copolymers of 2-ethylhexyl acrylate (EHA) and cholesteryloxycarbonyl-2-hydroxymethacrylate (CEM) were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Supramolecular complexes of these copolymers with carbon nanotubes (CNTs) were soluble in THF, toluene, and isooctane. The colloidal solutions remained stable for months without aggregation. The rationale for the choice of CEM was based on the high adsorption energy of cholesterol on the CNT surface, as computed by DFT calculations. Adsorption isotherms were experimentally measured for copolymers of various architectures (statistical, diblock, and star copolymers), thereby demonstrating that 2-5 cholesterol groups were adsorbed per polymer chain. Once the supramolecular complex had dried, the CNTs could be easily resolubilized in isooctane without the need for high-power sonication and in the absence of added polymer. Analysis by atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated that the CNTs were devoid of bundles. The supramolecular complexes could also be employed in an inverse emulsion polymerization of 2-hydroxyethylmethacrylate (HEMA) in isooctane and dodecane, thereby leading to the formation of a continuous polymeric sheath around the CNTs. Thus, this technique leads to the formation of very stable dispersions in non-polar organic solvents, without altering the fundamental properties of the CNTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The conformation of acetylated virginiamycin M1 and virginiamycin M1 in explicit solvents.

    Science.gov (United States)

    Ng, Chai Ann; Zhao, Wen; Dang, Jason; Bergdahl, Mikael; Separovic, Frances; Brownlee, Robert T C; Metzger, Robert P

    2007-05-01

    The three-dimensional structure of acetylated virginiamycin M(1) (acetylated VM1) in chloroform and in a water/acetonitrile mixture (83:17 v/v) have been established through 2D high resolution NMR experiments and molecular dynamics modeling and the results compared with the conformation of the antibiotic VM1 in the same and other solvents. The results indicated that acetylation of the C-14 OH group of VM1 caused it to rotate about 90 degrees from the position it assumed in non-acetylated VM1. The conformation of both VM1 and acetylated VM1 appear to flatten in moving from a nonpolar to polar solvent. However, the acetylated form has a more hydrophobic nature. The acetylated VM1 in chloroform and in water/acetonitrile solution had a similar configuration to that of VM1 bound to 50S ribosomes and to the Vat(D) active sites as previously determined by X-ray crystallography. Docking studies of VM1 to the 50S ribosomal binding site and the Vat(D) gave conformations very similar to those derived from X-ray crystallographic studies. The docking studies with acetylated VM1 suggested the possibility of a hydrogen bond from the acetyl carbonyl group oxygen of acetylated VM1 to the 2' hydroxyl group of ribose of adenosine 2538 at the ribosomal VM1 binding site. No hydrogen bonds between acetylated VM1 and the Vat(D) active sites were found; the loss of this binding interaction partly accounts for the release of the product from the active site.

  7. Solvent-Free Synthesis of New Coumarins

    Directory of Open Access Journals (Sweden)

    Redah I. Al-Bayati

    2012-01-01

    Full Text Available A solvent-free synthesis of five series of coumarin derivatives using microwave assistant is presented herein. The synthesized compounds are fully characterized by UV-VIS, FT-IR, and NMR spectroscopy.

  8. "Solvent Effects" in 1H NMR Spectroscopy.

    Science.gov (United States)

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  9. Solvent Extraction Developments in Southern Africa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The largest solvent-extraction plant in the world at the time, the Nchanga Copper Operation, was in Zambia. The first commercial process using solvent extraction for the refining of the platinum-group metals was in South Africa. More recently, the Southern African region has seen the implementation of solvent extraction for other base metals, precious metals, and specialty metals. These include the world firsts of primary production of zinc at Skorpion Zinc in Namibia and the large-scale refining of gold by Harmony Gold in South Africa. Several other flowsheets that use solvent-extraction technology are currently under commissioning, development, or feasibility study for implementation in this part of the world, including those for the recovery of copper, cobalt, nickel, tantalum, and niobium.

  10. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J. T., E-mail: jtleona01@gmail.com; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Lee, S. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); DenBaars, S. P.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ∼22 kA/cm{sup 2} (25 mA), with a peak output power of ∼180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP{sub 12,1}), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  11. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    Science.gov (United States)

    Leonard, J. T.; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Lee, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2016-01-01

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ˜22 kA/cm2 (25 mA), with a peak output power of ˜180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  12. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    Science.gov (United States)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  13. Non-polar organic compounds in marine aerosols over the northern South China Sea: Influence of continental outflow.

    Science.gov (United States)

    Zhao, Yan; Zhang, Yingyi; Fu, Pingqing; Ho, Steven Sai Hang; Ho, Kin Fai; Liu, Fobang; Zou, Shichun; Wang, Shan; Lai, Senchao

    2016-06-01

    Filter samples of total suspended particle (TSP) collected during a cruise campaign over the northern South China Sea (SCS) from September to October 2013 were analyzed for non-polar organic compounds (NPOCs) as well as organic carbon (OC), elemental carbon (EC) and water-soluble ions. A total of 115 NPOCs species in groups of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), iso-/antiso-alkanes, hopanes, steranes, methylalkanes, branched alkanes, cycloalkanes, alkenes and phthalates were detected. The characteristics of NPOCs in marine TSP samples were investigated to understand the sources from the Asian continent and other regions. The concentrations of total NPOCs ranged from 19.8 to 288.2 ng/m(3) with an average of 87.9 ng/m(3), which accounted for 0.8-1.7% (average 1.0%) of organic matter (OM). n-Alkanes was the predominant group, accounting for 43.1-79.5%, followed by PAHs (5.5-44.4%) and hopanes (1.6-11.4%). We found that primary combustion (biomass burning/fossil fuel combustion) was the dominant source for the majority of NPOCs (89.1%). Biomass burning in southern/southeastern China via long-range transport was proposed to be a major contributor of NPOCs in marine aerosols over the northern SCS, suggested by the significant correlations between nss-K(+) and NPOCs groups as well as the analysis of air mass back-trajectory and fire spots. For the samples with strong continental influence, the strong enhancement in concentrations of n-alkanes, PAHs, hopanes and steranes were attributed to fossil fuel (coal/petroleum) combustion. In addition, terrestrial plants waxes were another contributor to NPOCs.

  14. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    KAUST Repository

    Leonard, J. T.

    2016-03-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with III-nitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 mu m aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of similar to 550 mu W with a threshold current density of similar to 3.5 kA/cm(2), while the ITO VCSELs show peak powers of similar to 80 mu W and threshold current densities of similar to 7 kA/cm

  15. One-pot synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} nanoparticles using oleylamine as solvent and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Mirabet, Leonardo [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Solano, Eduardo, E-mail: eduardo.solano@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Martínez-Julián, Fernando; Guzmán, Roger [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona (Spain); Puig, Teresa; Obradors, Xavier; Pomar, Alberto [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Yáñez, Ramón; Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2013-03-15

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles (<10 nm) in non-polar media. ► Nanoparticles present high monocrystal quality and monodispersion. ► Superparamagnetic behavior at room temperature. ► Nanoparticles transfer to polar media via ligand exchange. - Abstract: An easy, efficient, reproducible and scalable one-pot synthetic methodology to obtain magnetic spinel ferrite nanoparticles has been developed. This approach is based on one-pot thermal decomposition of Fe(acac){sub 3} and M(acac){sub 2} (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media.

  16. Water as a Solvent for Life

    Science.gov (United States)

    Pohorille, Andrew; Pratt, Lawrence R.

    2015-01-01

    "Follow the water" is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.

  17. Biofiltration of solvent vapors from air

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps and flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.

  18. Competitive solvent-molecule interactions govern primary processes of diphenylcarbene in solvent mixtures

    Science.gov (United States)

    Knorr, Johannes; Sokkar, Pandian; Schott, Sebastian; Costa, Paolo; Thiel, Walter; Sander, Wolfram; Sanchez-Garcia, Elsa; Nuernberger, Patrick

    2016-10-01

    Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.

  19. Solvent dependent photophysical properties of dimethoxy curcumin

    Science.gov (United States)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  20. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  1. Computer-aided tool for solvent selection in pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; K. Tula, Anjan; Gernaey, Krist V.

    In the pharmaceutical processes, solvents have a multipurpose role since different solvents can be used in different stages (such as chemical reactions, separations and purification) in the multistage active pharmaceutical ingredients (APIs) production process. The solvent swap and selection task......-aided framework with the objective to assist the pharmaceutical industry in gaining better process understanding. A software interface to improve the usability of the tool has been created also....

  2. Influence of solvent polarity on preferential solvation of molecular recognition probes in solvent mixtures.

    Science.gov (United States)

    Amenta, Valeria; Cook, Joanne L; Hunter, Christopher A; Low, Caroline M R; Vinter, Jeremy G

    2012-12-13

    The association constants for formation of 1:1 complexes between a H-bond acceptor, tri-n-butylphosphine oxide, and a H-bond donor, 4-phenylazophenol, have been measured in a range of different solvent mixtures. Binary mixtures of n-octane and a more polar solvent (ether, ester, ketone, nitrile, sulfoxide, tertiary amide, and halogenated and aromatic solvents) have been investigated. Similar behavior was observed in all cases. When the concentration of the more polar solvent is low, the association constant is identical to that observed in pure n-octane. Once a threshold concentration of the more polar solvent in reached, the logarithm of the association constant decreases in direct proportion to the logarithm of the concentration of the more polar solvent. This indicates that one of the two solutes is preferentially solvated by the more polar solvent, and it is competition with this solvation equilibrium that determines the observed association constant. The concentration of the more polar solvent at which the onset of preferential solvation takes place depends on solvent polarity: 700 mM for toluene, 60 mM for 1,1,2,2-tetrachloroethane, 20 mM for the ether, ester, ketone, and nitrile, 0.2 mM for the tertiary amide, and 0.1 mM for the sulfoxide solvents. The results can be explained by a simple model that considers only pairwise interactions between specific sites on the surfaces of the solutes and solvents, which implies that the bulk properties of the solvent have little impact on solvation thermodynamics.

  3. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  4. The use of environmentally sustainable bio-derived solvents in solvent extraction applications-A review

    Institute of Scientific and Technical Information of China (English)

    Zheng Li; Kathryn H. Smith; Geoffrey W. Stevens

    2016-01-01

    Replacement of volatile organic compounds (VOCs) by greener or more environmental y sustainable solvents is becoming increasingly important due to the increasing health and environmental concerns as wel as economic pressures associated with VOCs. Solvents that are derived from biomass, namely bio-derived solvents, are a type of green solvent that have attracted intensive investigations in recent years because of their advantages over con-ventional VOCs, such as low toxicity, biodegradability and renewability. This review aims to summarize the use of bio-derived solvents in solvent extraction applications, with special emphasis given to utilization of biodiesels and terpenes. Compared with the conventional VOCs, the overall performance of these bio-derived solvents is comparable in terms of extraction yields and selectivity for natural product extraction and no difference was found for metal extraction. To date most researchers have focused on laboratory scale thermodynamics studies. Future work is required to develop and test new bio-derived solvents and understand the kinetic performance as well as solvent extraction pilot plant studies.

  5. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  6. Influence of Energy on Solvent Diffusion in Polymer/Solvent Systems

    Institute of Scientific and Technical Information of China (English)

    HUHuijun; JIANGWenhua; 等

    2002-01-01

    The Vrentas-Duda free-volume theory has been extensively used to correlate or predict the solvent diffusion coefficient of a polymer/solvent system.The energy term in the free volume diffusion equation is difficult to estimate,so the energy term was usually neglected in previous predictive versions of the free volume diffusion coefficient equation.Recent studies show that the energy effect is very important even above the glass transition temperature of the system. In this paper, a new evaluation method of the energy term is proposed,that is the diffusion energy at different solvent concentrations is assumed to be a linear function of the solvent diffusion energy in pure solvents and that in polymers under the condition that the solvent in infinite dilution.By taking consideration of the influence of energy on the solvent diffustion,the prediction of solvent diffusion coefficient was preformed for three polymer/solvent systems over a wide range of concentrations and temperatures.The results show an improvement on the predictive capability of the free volume diffusion theory.

  7. Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae: Application of factorial design optimization phenolic extraction

    Directory of Open Access Journals (Sweden)

    Khaled Athmouni

    2015-12-01

    Full Text Available Background. Phenolic compounds were extracted and isolated from S. undulata roots. Methods. Sample of roots from E. hirta was tested for phenolic compounds, and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH assay, ABTS, FRAP and reducing power was measured using cyano- ferrate method. Results. The methanolic fraction exhibited the highest total phenol content (6.12 ±0.11 mg AGE/g DW. On the other hand, the highest flavonoids concentration was observed in ethyl acetate fraction (2.90 ±0.05 mg CE/g DW in addition to anthocyanins (28.56 ±3.96 mg/l. Besides, the highest level of tannins content was measured in the polar aprotic solvent ethyl acetate extract (3.25 ±0.06 mg CE/g DW. The different extracts of S. undulata were evaluated for their radical scavenging activities by means of the DPPH assay. The strongest scavenging activity was observed in methanolic fraction scavenged radicals effectively with IC   values of 0.14 ±0.02 mg/ml. Similarly, the potassium ferricyanide reduction (FRAP and ABTS•+ of methanol extract. On the other hand, the total reducing power of ethyl acetate extract was found higher than of other extracts. This paper presents the application of the design-of experiment method for optimizing the extraction of phe- nolic content using methanol solvent. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty, while that of agitation speed is. The two main effects are contributed by the solvent concentration and the maceration period. Conclusion. Our results clearly showed that the extraction of phenolic compounds and their antioxidant ca- pacity is significantly affected by solvent combinations. S. undulata presented the highest total phenolic con- tent, total flavonoids content and antioxidant capacity values. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95

  8. Stability of the Caustic-Side Solvent Extraction (CSSX) Process Solvent: Effect of High Nitrite on Solvent Nitration

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.V.

    2002-06-26

    The purpose of this investigation was to determine whether nitrated organic compounds could be formed during operation of the Caustic-Side Solvent Extraction (CSSX) process, and whether such compounds would present a safety concern. The CSSX process was developed to remove cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site (SRS). The solvent is composed of the cesium extractant calix[4]arene-bis-(4-tert-octylbenzo-crown-6) (BOBCalixC6), a fluorinated alcohol phase modifier, tri-n-octylamine (TOA), and an isoparaffinic diluent (Iospar{reg_sign}). During the CSSX process, the solvent is expected to be exposed to high concentrations of nitrate and nitrite dissolved in the alkaline waste feed. The solvent will also be exposed to dilute (50 mM) nitric acid solutions containing low concentrations of nitrite during scrubbing, followed by stripping with 1 mM nitric acid. The solvent is expected to last for one year of plant operation, and the temperatures the solvent may experience during the process could range from as low as 15 C to as high as 35 C. Excursions from standard process conditions could result in the solvent experiencing higher temperatures, as well as concentrations of nitrate, nitrite, and most importantly nitric acid, that exceed normal operating conditions. Accordingly, conditions may exist where nitration reactions involving the solvent components, possibly leading to other chemical reactions stemming from nitration reactions, could occur. To model such nitration reactions, the solvent was exposed to the types of nitrate- and nitrite-containing solutions that might be expected to be encountered during the process (even under off-normal conditions), as a function of time, temperature, and concentration of nitrate, nitrite, and nitric acid. The experiments conducted as part of this report were designed to examine the more specific effect that high nitrite concentrations could have on forming nitrated

  9. ELECTRONS IN NONPOLAR LIQUIDS.

    Energy Technology Data Exchange (ETDEWEB)

    HOLROYD,R.A.

    2002-10-22

    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  10. Lipase catalyzed esterification of glycidol in nonaqueous solvents: solvent effects on enzymatic activity.

    Science.gov (United States)

    Martins, J F; de Sampaio, T C; de Carvalho, I B; Barreiros, S

    1994-06-05

    We studied the effect of organic solvents on the kinetics of porcine pancreatic lipase (pp) for the resolution of racemic glycidol through esterification with butyric acid. We quantified ppl hydration by measuring water sorption isotherms for the enzyme in the solvents/mixtures tested. The determination of initial rates as a function of enzyme hydration revealed that the enzyme exhibits maximum apparent activity in the solvents/mixtures at the same water content (9% to 11% w/w) within the associated experimental error. The maximum initial rates are different in all the media and correlate well with the logarithm of the molar solubility of water in the media, higher initial rates being observed in the solvents/mixtures with lower water solubilities. The data for the mixtures indicate that ppl apparent activity responds to bulk property of the solvent. Measurements of enzyme particle sizes in five of the solvents, as function of enzyme hydration, revealed that mean particle sizes increased with enzyme hydration in all the solvents, differences between solvents being more pronounced at enzyme hydration levels close to 10%. At this hydration level, solvents having a higher water content lead to lower reaction rates; these are the solvents where the mean enzyme particle sizes are greater. Calculation of the observable modulus indicates there are no internal diffusion limitations. The observed correlation between changes in initial rates and changes in external surface area of the enzyme particles suggests that interfacial activation of ppl is only effective at the external surface of the particles. Data obtained for the mixtures indicate that ppl enantioselectivity depends on specific solvent-enzyme interactions. We make reference to ppl hydration and activity in supercritical carbon dioxide.

  11. Solvent systems with n-hexane and/or cyclohexane in countercurrent chromatography--Physico-chemical parameters and their impact on the separation of alkyl hydroxybenzoates.

    Science.gov (United States)

    Englert, Michael; Vetter, Walter

    2014-05-16

    Countercurrent chromatography (CCC) is an efficient preparative separation technique based on the liquid-liquid distribution of compounds between two phases of a biphasic liquid system. The crucial parameter for the successful application is the selection of the solvent system. Especially for nonpolar analytes the selection options are limited. On the search for a suitable solvent system for the separation of an alkyl hydroxybenzoate homologous series, we noted that the substitution of cyclohexane with n-hexane was accompanied with unexpected differences in partitioning coefficients of the individual analytes. In this study, we investigated the influence of the subsequent substitution of n-hexane with cyclohexane in the n-hexane/cyclohexane/tert-butylmethylether/methanol/water solvent system family. Exact phase compositions and polarity, viscosity and density differences were determined to characterize the different mixtures containing n-hexane and/or cyclohexane. Findings were confirmed by performing CCC separations with different mixtures, which led to baseline resolution for positional isomers when increasing the amount of cyclohexane while the resolution between two pairs of structural isomers decreased. With the new methodology described, structurally similar compounds could be resolved by choosing a certain ratio of n-hexane to cyclohexane.

  12. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Segro, Scott S; Malik, Abdul

    2008-09-26

    A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.

  13. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  14. The orientation of solvent-dipoles at the surface of the pure solvent

    NARCIS (Netherlands)

    Nedermeijer-Denessen, H.J.M.; Ligny, C.L. de

    1975-01-01

    A method is described for the assessment of the preferential orientation of solvent-dipoles at the surface of the solvent from the surface potential χ and its temperature coefficient, dχ/dT. The method is based on the model of Levine et al. of the Stern inner region at the mercury-water interface in

  15. The orientation of solvent-dipoles at the surface of the pure solvent

    NARCIS (Netherlands)

    Nedermeijer-Denessen, H.J.M.; Ligny, C.L. de

    1975-01-01

    A method is described for the assessment of the preferential orientation of solvent-dipoles at the surface of the solvent from the surface potential χ and its temperature coefficient, dχ/dT. The method is based on the model of Levine et al. of the Stern inner region at the mercury-water interface in

  16. PSE For Solvent Applications: A Generic Computer-aided Solvent Selection and Design Framework

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sin, Gürkan; Gani, Rafiqul

    Solvents are widely used across a number of industries in many applications such as separation agents, reaction mediums, cleaning agents and product carriers. Selection of optimal solvents in these applications is mostly based on previous experiences and experimental trial and error. A process sy...

  17. Solvent System Selection Strategies in Countercurrent Separation

    Science.gov (United States)

    Liu, Yang; Friesen, J. Brent; McAlpine, James B.; Pauli, Guido F.

    2015-01-01

    The majority of applications in countercurrent and centrifugal partition chromatography, collectively known as countercurrent separation, are dedicated to medicinal plant and natural product research. In countercurrent separation, the selection of the appropriate solvent system is of utmost importance as it is the equivalent to the simultaneous choice of column and eluent in liquid chromatography. However, solvent system selection is often laborious, involving extensive partition and/or analytical trials. Therefore, simplified solvent system selection strategies that predict the partition coefficients and, thus, analyte behavior are in high demand and may advance both the science of countercurrent separation and its applications. The last decade of solvent system selection theory and applications are critically reviewed, and strategies are classified according to their data input requirements. This offers the practitioner an up-to-date overview of rationales and methods for choosing an efficient solvent system, provides a perspective regarding their accuracy, reliability, and practicality, and discusses the possibility of combining multiple methods for enhanced prediction power. PMID:26393937

  18. Otoneurologic disturbances caused by solvent pollution.

    Science.gov (United States)

    Odkvist, L M; Möller, C; Thuomas, K A

    1992-06-01

    Subjects exposed to industrial solvents may experience vertigo and nausea. Solvents are usually volatile hydrocarbon compounds, which are important parts of everyday life in a modern society. They may also cause neurastenia, personality changes, and reduced intellectual capacity. The syndrome that may develop was formerly named psycho-organic syndrome (POS), but in modern terminology it is called chronic toxic encephalopathy (CTE). The syndrome develops slowly, and during the first years no pathological findings will be found using various test batteries. Somewhat later, when the syndrome still might be reversible, psychometric, auditory, and otoneurologic testing may well unveil disturbances within the posterior fossa structures. Animal experiments suggest one site of effect for solvents to be within the cerebellum and brainstem regions with close relationship to the gamma-amino-butyric acid (GABA) transmission. In the otoneurologic test battery, visual suppression and smooth pursuit are of extreme value, as are some auditory tests such as discrimination of interrupted speech and cortical response audiometry using frequency glides as stimuli. Dynamic posturography and magnetic resonance imaging (MRI) have recently proved valuable in the diagnosis. Research is needed concerning the most efficient test battery for early detection of solvent-induced lesions. During further research it is important to unveil other toxic agents, like heavy metals and alcohol, and their damage to the central nervous system and to make comparisons between these substances and the lesions caused by hydrocarbon solvents.

  19. Chlorinated solvent replacements recycle/recovery review report

    Energy Technology Data Exchange (ETDEWEB)

    Beal, M.; Hsu, D.; McAtee, R.E.; Weidner, J.R. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Berg, L.; McCandless, F.P.; Waltari, S.; Peterson, C. (Montana State Univ., Bozeman, MT (United States). Dept. of Chemical Engineering)

    1992-08-01

    This report is a literature review of waste solvents recycle/recovery methods and shows the results of solvent separations using membrane and distillation technologies. The experimental solvent recovery methods were conducted on solvent replacements for chlorinated solvents at Montana State University. The literature review covers waste solvents separation using distillation, membranes decantation, filtration, carbon adsorption, solvent extraction, and other vapor-phase separation techniques. The results of this study identify solvent distillation methods as the most common separation technique. The alternative separation methods typically supplement distillation. The study shows the need for industries to identify waste solvent disposal methods and investigate the economics of waste solvent recycling as a possible waste reduction method.

  20. Development of deep eutectic solvents applied in extraction and separation.

    Science.gov (United States)

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Recommended methods for purification of solvents and tests for impurities

    CERN Document Server

    Coetzee, J F

    1982-01-01

    Recommended Methods for Purification of Solvents and Tests for Impurities is a compilation of recommended procedures for purification of solvents and tests for solvent impurities. Ten solvents are covered: acetonitrile, sulfolane, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphoramide, pyridine, ethylenediamine, N-methylacetamide, and N-methylpropionamide. This book is comprised of 12 chapters and opens with an introduction to general aspects of impurity effects. The rationale for the selection of solvent is explained, and the relative reactivities of solutes in di

  2. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  3. Soft ionization of saturated hydrocarbons, alcohols and nonpolar compounds by negative-ion direct analysis in real-time mass spectrometry.

    Science.gov (United States)

    Cody, Robert B; Dane, A John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾(•). No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  4. Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry

    Science.gov (United States)

    Cody, Robert B.; Dane, A. John

    2013-03-01

    Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2]‾•. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.

  5. Solvent-free fluidic organic dye lasers.

    Science.gov (United States)

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  6. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  7. Solvent-resistant microporous polymide membranes

    Science.gov (United States)

    Miller, Warren K.; McCray, Scott B.; Friesen, Dwayne T.

    1998-01-01

    An asymmetric microporous membrane with exceptional solvent resistance and highly desirable permeability is disclosed. The membrane is made by a solution-casting or solution-spinning process from a copolyamic acid comprising the condensation reaction product in a solvent of at least three reactants selected from certain diamines and dianhydrides and post-treated to imidize and in some cases cross-link the copolyamic acid. The membrane is useful as an uncoated membrane for ultrafiltration, microfiltration, and membrane contactor applications, or may be used as a support for a permselective coating to form a composite membrane useful in gas separations, reverse osmosis, nanofiltration, pervaporation, or vapor permeation.

  8. Occupational exposure to solvents and bladder cancer

    DEFF Research Database (Denmark)

    Hadkhale, Kishor; Martinsen, Jan Ivar; Weiderpass, Elisabete;

    2017-01-01

    logistic regression model was used to estimate hazard ratios (HR) and their 95% confidence intervals (95% CI). Increased risks were observed for trichloroethylene (HR 1.23, 95% 95% CI 1.12-1.40), toluene (HR 1.20, 95% CI 1.00-1.38), benzene (HR 1.16, 95% CI 1.04-1.31), aromatic hydrocarbon solvents (HR 1...... of occupational exposure to trichloroethylene, perchloroethylene, aromatic hydrocarbon solvents, benzene and toluene and the risk of bladder cancer. This article is protected by copyright. All rights reserved....

  9. Ultrafast intramolecular charge transfer of formyl perylene observed using femtosecond transient absorption spectroscopy.

    Science.gov (United States)

    Mohammed, Omar F

    2010-11-04

    The excited-state photophysics of formylperylene (FPe) have been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of experimental and theoretical methods were employed including femtosecond transient absorption (fs-TA) spectroscopy with 130 fs temporal resolution. We report that the ultrafast intramolecular charge transfer from the perylene unit to the formyl (CHO) group can be facilitated drastically by hydrogen-bonding interactions between the carbonyl group oxygen of FPe and hydrogen-donating solvents in the electronically excited state. The excited-state absorption of FPe in methanol (MeOH) is close to the reported perylene radical cation produced by bimolecular quenching by an electron acceptor. This is a strong indication for a substantial charge transfer in the S(1) state in protic solvents. The larger increase of the dipole moment change in the protic solvents than that in aprotic ones strongly supports this observation. Relaxation mechanisms including vibrational cooling and solvation coupled to the charge-transfer state are also discussed.

  10. TODGA Process Development: an Improved Solvent Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Geist, Andreas [Forschungszentrum Karlsruhe, Institut fuer Nukleare Entsorgung, 76021 Karlsruhe (Germany); Modolo, Giuseppe [Forschungszentrum Juelich, Institute for Energy Research, Safety Research and Reactor Technology, 52425 Juelich (Germany)

    2009-06-15

    Introduction: TODGA (N,N,N',N'-tetra-n-octyl diglycolamide) is studied in the European ACSEPT project as a promising extractant for actinide separations. A mixture of TODGA and TBP in TPH (a kerosene) [1] was successfully used for spiked and hot continuous counter-current tests for the separation of actinides(III) and lanthanides(III) from PUREX raffinate [2, 3]. Furthermore this solvent composition is used for GANEX (group actinide extraction) process development, i.e., co-extraction of Np, Pu, Am, Cm, and Ln from PUREX raffinate with selective stripping of the actinides [4, 5]. We address two of this solvent's drawbacks by replacing TBP (which acts as phase modifier to prevent third phase formation) with 1-octanol: (1) The presence of a non-CHON compound (TBP); (2) The pronounced co-extraction of nitric acid (e.g., 0.2 M TODGA + 0.5 M TBP in TPH extracts approx. 0.6 M HNO{sub 3} from 4 M HNO{sub 3}). Results: When contacting 0.2 M TODGA in TPH with 0.1 M Nd(NO{sub 3}){sub 3} in 5 M HNO{sub 3}, as little as 3 % vol. 1-octanol suppresses the formation of a third phase. Thus, the following solvent composition is used for further studies: 0.2 M TODGA + 5 % vol. 1-octanol in TPH. Due to the absence of TBP, the amount of HNO{sub 3} extraction is reduced to approx. 50 % as compared to the solvent consisting of 0.2 M TODGA + 0.5 M TBP in TPH. Am(III) and Eu(III) distribution ratios are similar to those with the TODGA + TBP solvent [1]. Loading the solvent by extracting from solutions of up to 0.2 M Nd(NO{sub 3}){sub 3} in 3 M or 4 M HNO{sub 3} confirms a 1:3 stoichiometry of the extracted complex. Further investigations are under way. Conclusion: The improved solvent formulation reduces the HNO{sub 3} co-extraction which may be advantageous especially for GANEX process development. Furthermore, the solvent complies with the CHON principle. 1) G. Modolo, H. Asp, C. Schreinemachers, H. Vijgen, Development of a TODGA based process for partitioning of

  11. Factors affecting high-pressure solvent extraction (accelerated solvent extraction) of additives from polymers.

    Science.gov (United States)

    Vandenburg, H J; Clifford, A A; Bartle, K D; Zhu, S A; Carroll, J; Newton, I D; Garden, L M

    1998-05-01

    Irganox 1010 (pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)] propionate) is successfully extracted from polypropylene using solvents at high temperatures and pressures in a homemade accelerated solvent extraction system. For example, using freeze-ground polymer, 90% extraction is possible within 5 min with 2-propanol at 150 °C. Extraction curves for 2-propanol and acetone fit well to the "hot ball" model, previously developed for supercritical fluid extraction. Diffusion coefficients are determined for extractions with 2-propanol, acetone, and cyclohexane over a range of temperatures, and the activation energies for the diffusion are 134, 107, and 61 kJ mol(-)(1), respectively. The lower figure for acetone and cyclohexane indicates that these solvents swell the polymer more than does 2-propanol. The polymer dissolves in the solvent at too high a temperature, which causes blockage of the transfer lines. For maximum extraction rates, the highest temperature for each solvent that avoids dissolution of the polymer should be used. The use of mixed solvents is investigated and shows advantages in some cases, with the aim of producing a solvent that will swell the polymer but not dissolve it.

  12. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  13. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    Science.gov (United States)

    1988-12-01

    Dependence of the 1,3-Dioxolane/AlCI 3 Reaction Using Arrhenius’ Law 88 36 Effect of 1,4-Dioxane on Reactor Pressure 91 67 Effect of 1,4-Dioxane on HCI...and spent solvent. This process was performed for all of the three solvents. Inhibitor Kinetic Studies Batch Reactions. Batch reactor kinetic studies...acceptor in chlorinated solvents. It is an 4 80. Levenspiel , Chemical Reaction Engineering, 2nd ed. (John Wiley and Sons, 1972), pp 41-86. 490

  14. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  15. Solvent tuned single molecule dual emission in protic solvents: effect of polarity and H-bonding.

    Science.gov (United States)

    Chevreux, S; Allain, C; Wilbraham, L; Nakatani, K; Jacques, P; Ciofini, I; Lemercier, G

    2015-01-01

    Phen-PENMe2 has recently been proposed as a promising new molecule displaying solvent-tuned dual emission, highlighting an original and newly-described charge transfer model. The study of the photophysical behaviour of this molecule was extended to include protic solvents. The effects of polarity and hydrogen bonding lead to an even more evident dual emission associated with a large multi-emission band in some solvents like methanol, highlighting Phen-PENMe2 as a promising candidate for white light emission.

  16. Computer-Aided Solvent Screening for Biocatalysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; Leeuwen, M.B. van; Boeriu, C.G.;

    2013-01-01

    . Esterification of acrylic acid with octanol is also addressed. Solvents are screened and candidates identified, confirming existing experimental results. Although the examples involve lipases, the method is quite general, so there seems to be no preclusion against application to other biocatalysts....

  17. Selective solvent absorption in coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  18. Spherical polymer brushes under good solvent conditions

    DEFF Research Database (Denmark)

    Lo Verso, Federica; Egorov, Sergei A.; Milchev, Andrey

    2010-01-01

    A coarse grained model for flexible polymers end-grafted to repulsive spherical nanoparticles is studied for various chain lengths and grafting densities under good solvent conditions by molecular dynamics methods and density functional theory. With increasing chain length, the monomer density...

  19. Organic solvents in electromembrane extraction: recent insights

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-01-01

    Electromembrane extraction (EME) was invented in 2006 as a miniaturized sample preparation technique for the separation of ionized species from aqueous samples. This concept has been investigated in different areas of analytical chemistry by different research groups worldwide since the introduct......Electromembrane extraction (EME) was invented in 2006 as a miniaturized sample preparation technique for the separation of ionized species from aqueous samples. This concept has been investigated in different areas of analytical chemistry by different research groups worldwide since...... the introduction. Under the influence of an electrical field, EME is based on electrokinetic migration of the analytes through a supported liquid membrane (SLM), which is an organic solvent immobilized in the pores of the polymeric membrane, and into the acceptor solution. Up to date, close to 150 research...... articles with focus on EME have been published. The current review summarizes the performance of EME with different organic solvents and discusses several criteria for efficient solvents in EME. In addition, the authors highlight their personal perspective about the most promising organic solvents for EME...

  20. Mixed Solvent Reactive Recrystallization of Sodium Carbonate

    NARCIS (Netherlands)

    Gaertner, R.S.

    2005-01-01

    Investigation of the reactive recrystallization of trona (sodium sesquicarbonate) and sodium bicarbonate to sodium carbonate (soda) in a mixed solvent led to the design of several alternative, less energy consumptive, economically very attractive process routes for the production of soda from all pr